UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Distributed, scalable routing based on link-state vectors

Permalink
https://escholarship.org/uc/item/8f17n5a1l|

Authors

Behrens, J.
Garcia-Luna-Aceves, J.J.

Publication Date
1994-10-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8f17n5q1
https://escholarship.org
http://www.cdlib.org/

Distributed, Scalable Routing
Based on Link-State Vectors

Jochen Behrens

J.J. Garcia-Luna-Aceves

University of California
Santa Cruz, California 95064

jochen, jj@cse.ucsc.edu

Abstract

A new family of routing algorithms for the distributed
maintenance of routing information in large networks and
internets is introduced. This family is called link vector
algorithms (LVA), and is based on the selective diffusion
of link-state information based on the distributed compu-
tation of preferred paths, rather than on the flooding of
complete link-state information to all routers. According
to LVA, each router maintains a subset of the topology that
corresponds to the links used by its neighbor routers in their
preferred paths to known destinations. Based on that sub-
set of topology information, the router derives its own pre-
ferred paths and communicates the corresponding link-state
information to its neighbors. An update message contains a
vector of updates; each such update specifies a link and its
parameters. LVAs can be used for different types of rout-
ing. The correctness of LLVA is verified for arbitrary types of
routing when correct and deterministic algorithms are used
to select preferred paths at each router. LVA is shown to
have smaller complexity than link-state and distance-vector
algorithms, and to have better average performance than
the ideal topology-broadcast algorithm and the distributed
Bellman-Ford algorithm.

1. Introduction

An internetwork consists of a collection of interconnected
domains, where each domain is a collection of such resources
as networks, routers, and hosts, under the control of a sin-
gle administration. All the work in inter-domain and intra-
domain routing has proceeded in two main directions: pro-
tocols based on distance-vector algorithms (DVA), which we
call distance-vector protocols, characterized by BGP [26],
IDRP [22], RIP [18], Cisco’s IGRP [4], and EIGRP [1]; and
protocols based on link-state algorithms (LSA), which we
call link-state protocols, characterized by the inter-domain
policy routing (IDPR) architecture [33], ISO IS-IS [21] and
OSPF [28].

The key advantage of distance-vector protocols is that
they scale well for a given combination of services taken into

This work was supported in part by the Office of Naval Research
(ONR) under Contract No. N-00014-92-J-1807 and by the Advanced
Research Projects Agency (ARPA) under contract F19628-93-C-0175.

account in a cost metric. Because route computation is done
distributedly, distance-vector protocols are ideal to support
the aggregation of destinations to reduce communication,
processing, or storage overhead. However, although DVAs
have been proposed that eliminate the looping problems of
old distance-vector protocols like EGP and RIP [13], an in-
herent limitation of using distance vectors is that routers ex-
change information regarding path characteristics, not link
or node characteristics. Because of this, the storage and
communication requirements of any distance-vector protocol
(e.g., BGP and IDRP) grows proportionally to the number of
combinations of service types or policies [23]; therefore, sup-
porting many types of service together with different types
of policies using any distance-vector protocol is inherently
complex.

Because LSAs replicate topology information at routers,
they avoid the long-term looping problems of old distance-
vector protocols. More importantly, an LSA exchanges in-
formation regarding link characteristics, which means that
the complexity of providing multiple types of services and
policies grows linearly with the service types and policies,
not their combinations. However, a key disadvantage of
today’s link-state protocols is that they require routers to
broadcast complete topology information by flooding. As
pointed out by Estrin and others [7], [8], this approach does
not scale well.

The main scaling problems of today’s link-state protocols
are three: flooding consumes excessive communication re-
sources, requiring each router to compute routes using the
same topology database at every router consumes excessive
processing resources (e.g., see the results shown in [37]), and
communicating complete topology information is unneces-
sary if a subset of links in the network is not used in the
routes favored by routers. Today’s link-state protocols (e.g.,
OSPF) cope with the scaling problems inherent in any LSA
by organizing the network or internet into areas connected
by a backbone; however, this imposes additional network
configuration problems and, as the results in [16] indicate, at
least one DVA (DUAL [13]) using areas outperforms OSPF

even in relatively small networks.

In summary, the routing algorithms used in today’s rout-
ing protocols have inherent scaling problems. DVAs need to
communicate routing information among routers on a per
path basis, which leads to a combinatorial explosion of ser-
vice types and policies. LSAs require the same topology
information to be replicated at all routers, which consumes
excessive communication and processing resources in very
large internets, or leads to additional network management
problems. Surprisingly, although the inherent limitations of
LLSAs and DVAs are well known, all of the existing rout-

ing protocols or proposals for routing in large internets are
based on these two types of algorithms [6], [8], [9].

This paper presents a new method for distributed, scal-
able routing in computer networks called link vector algo-
rithms, or LVA. The basic idea of LVA consists of asking each
router to report to its neighbors the characteristics of each of
the links it uses to reach a destination through one or more
preferred paths, and to report to its neighbors which links it
has erased from its preferred paths. Using this information,
each router constructs a source graph consisting of all the
links it uses in the preferred paths to each destination. LVA
ensures that the link-state information maintained at each
router corresponds to the link constituency of the preferred
paths used by routers in the network or internet. Each router
runs a local algorithm or multiple algorithms on its topol-
ogy table to compute its source graph with the preferred
paths to each destination. Such algorithm can be any type
of algorithm (e.g., shortest path, maximum-capacity path,
policy path) and the only requirements for correct operation
are for all routers to use the same algorithm to compute the
same type of preferred paths, and that routers report all the
links used in all preferred paths obtained.

Because LVAs propagate link-state information by diffus-
ing link states selectively based on the distributed compu-
tation of preferred paths, LVAs reduce the communication
overhead incurred in traditional LSAs, which rely on flood-
ing of link states. Because LLVAs exchange routing informa-
tion that is related to link (and even node) characteristics,
rather than path characteristics, this approach reduces the
combinatorial explosion incurred with any type of DVA for
routing under multiple constraints [23]. Aggregation of in-
formation can take place in an LLVA by adapting the area-
based routing techniques proposed for DVAs in the past [12],
[25], [27], [35]. In contrast, aggregation of information in
traditional LSAs is difficult, because routers need to define
different levels of topologies in order to use topology broad-
cast methods.

The following sections introduce the network model as-
sumed throughout the rest of the paper; describe LVA; show
that LVA converges to correct paths a finite time after the
occurrence of an arbitrary sequence of link-cost or topo-
logical changes under the assumption that all routers run
the same local algorithm(s) for the computation of pre-
ferred paths; compare its performance with that of LSAs
and DVAs in terms of its complexity under the assumption
that a shortest-path routing algorithm is used at every router
to compute preferred paths; and compare the average per-
formance of LVA against the performance of the ideal LSA
and the Distributed Bellman Ford (DBF) algorithm.

2. Network Model

To describe LVA, an internet is modeled as an undirected
connected graph G = (V, E), where V is the set of nodes
and F the set of edges. Routers are the nodes of the graph
and networks or direct links between routers are the edges of
the graph. Each point-to-point link in such a graph has two
lengths or costs associated with it—one for each direction.
Any point-to-point link of the graph exists in both directions
at any one time. For a multipoint link, the cost of the link
is assumed to be the same in all directions, and exists in all
directions at any one time. An underlying protocol assures
that

¢ Every node knows who its neighbors are, which implies
that a node detects within a finite time the existence
of a new neighbor or the loss of connectivity with a
neighbor.

¢ All messages transmitted over an operational link are
received correctly and in the proper sequence within a
finite time.

o All messages, changes in the cost of a link, link failures,
and new-neighbor notifications are processed one at a
time within a finite time and in the order in which they
are detected.

Each router has a unique identifier, and link costs can
vary in time but are always positive. Furthermore, routers
are assumed to operate correctly, and information is assumed
to be stored without errors. The same model can be applied
to a computer network, and is the model used in the DVAs
and LSAs reported in the past.

3. Basic Method

The basic idea of LLVA’s design consists of asking each
router to report to its neighbors the characteristics of every
link it uses to reach a destination through a preferred path.
The set of links used by a router in its preferred paths is
called the source graph of the router. The topology known to
a router consists of its adjacent links and the source graphs
reported by its neighbors. The router uses this topology in-
formation to generate its own source graph using one or more
local algorithms, which we call path selection algorithms. In
the case of shortest-path routing, Dijkstra’s algorithm or the
Bellman-Ford algorithm could be used as a path-selection al-
gorithm [3]. A router derives a routing table specifying the
successor, successors, or paths to each destination by run-
ning a local algorithm on its source graph; of course, this can
simply be a sub-algorithm of the path-selection algorithms
used.

In addition to the parameters of a link, the record of each
link entry in the topology table must contain the set of neigh-
bors that reported the link. This can be implemented by
means of a bit vector. Since a router’s neighbors can be
sorted, a single bit per neighbor suffices to indicate whether
it is member of the set for a given link or not. The struc-
ture of the vector is modified when neighbors are added or
deleted.

The basic update unit in LVA is a link-state update re-
porting the characteristics of a link; an update message con-
tains one or more updates. For a link between router # and
router or destination y, router x is called the head node of
the link in the z to y direction. For a multipoint link, a
single head node is defined. The head node of a link is the
only router that can report changes in the parameters of
that link.

The main complexity in designing LVA stems from the
fact that routers with different topology databases can gen-
erate long-term or even permanent routing loops if the in-
formation in those databases is inconsistent on a long-term
or permanent basis.

Sending updates specifying only those links that a router
currently uses in its preferred paths is not sufficient in LVA,
because a given router sends incremental updates and may
stop forwarding state information regarding one or more
links that are not changing the values of their parameters.
When this happens, it is not possible to ascertain if the

router is still using those links in preferred paths if routers’
updates specify only those links currently used in preferred
paths. Simply aging link-state information would lead to
unnecessary additional control traffic and routing loops, spe-
cially in very large internets. Therefore, to eliminate long-
term or permanent routing loops, routers must not only tell
its neighbor routers which links they use in their preferred
paths, but also which links they no longer use. Accordingly,
routers using LVA send update messages with two types of
update entries: add updates and delete updates. An add up-
date reports a link that should be added to the source graph
of the sending router or whose information should be up-
dated; a delete update specifies a link that should be deleted
from the source graph of the sending router.

A router reports its source graph to its neighbors incre-
mentally; therefore, a typical update message in LVA con-
tains only a few add and delete updates. Of course, when a
router establishes a new link, it has to send its entire source
graph to the new neighbor; this is equivalent to the LSA
case in which a router sends its entire topology table to a
new neighbor, or the DVA case in which a router sends its
entire routing table to a newly found neighbor.

An update specifies all the parameters of the link (just like
in an LSA) and a router sends an update in a message only
when a link is modified, added, or deleted in its source graph,
not when the same unmodified link is used for a modified
set of preferred paths. Therefore, the number of update
messages and the size of update messages do not necessarily
increase with the number of paths that a router uses.

Because of delays in the routers and links of the inter-
net, the add or delete updates sent by a router may prop-
agate at different speeds along different paths. Therefore,
a given router may receive an update from a neighbor with
stale link-state information. The consistency of link-state
information can be controlled on a link-by-link basis taking
advantage of the fact that the only router that can change
the information about a given link is its head node. More
specifically, a distributed termination-detection mechanism
is necessary for a router to ascertain when a given update is
valid. Termination-detection mechanisms based on sequence
numbers similar to those used in a number of LSAs and the
associated protocols [3], [28], [29] or diffusing computations
[14] can be used. Section 5. presents an instance of an LVA
using sequence numbers.

The importance of termination-detection mechanisms for
LVA is illustrated in Figure 1. In the figure, link (z, y) is
assumed to change cost from 10 to 1 and then fail. Because
of latencies in the network, router a receives updates from b
regarding link (z, y) before it receives similar update from
c. Because of that delay, unless there is a way for routers
to determine when an update is stale, a link value of 10 and
infinity may circulate among routers a, b, and ¢ forever. The
same problem occurs in any LSA, of course [3].

4. Differences With Previous Methods

Before proceeding with a detailed description of a specific
LVA, it is worth showing how LVA’s basic design differs from
prior algorithms based on link-state information. There are
three types of prior algorithms that have been or can be used
to compute preferred paths based on link-state information:

o Link-state algorithms (LSA): This type of algorithms

are also called topology broadcast algorithms. In an

Fig. 1. Possibility of nontermination in LVA

LSA, information about the state of each link in the
network 1s sent to every router by means of a reliable
broadcast mechanism, and each router uses a local al-
gorithm to compute preferred paths.

o Path-finding algorithms (PFA): These are DVAs that
exchange distance vectors containing the length and
second-to-last hop (predecessor) of the shortest path
to a destination.

o Path-vector algorithms (PVA): These are DVAs in
which routers exchange distance vectors whose entries
specify complete path information for any destination
they need to reach.

4.1 Differences with LSAs
The key difference between LSAs and LVA is that a link-

state update propagates to all routers in an LSA, while in
LVA the update propagates to only those routers that use
the corresponding link in a path to a destination. Therefore,
the reliable broadcast mechanism used in LSAs to ensure
that all routers with a physical path to a source of link-state
updates receives the most recent updates within a finite time
(e.g., see [2], [14], [10], [19], [24], [29]) is not applicable to
an LVA. Furthermore, as argued before, a router using LVA
must explicitly state which links it stops using.

Figure 2 illustrates how LLVA reduces storage and commu-
nication overhead compared to LSAs, even for the case of
a fairly compact topology. Figure 2(a) shows the complete
topology. For simplicity, it is represented as an undirected
graph and it is assumed that both directions of each link
have the same cost. An LSA would require each router to
maintain a copy of the entire topology, with an entry for
each link in each direction.

Figures 2 (b) through (e) show the partial topology known
at various routers (the black node is the router holding the
information). Solid lines represent the links that are part
of the source graph of the respective router, dashed links
represent links that are part of the router’s topology table
but not of its source graph. Arrowheads on links indicate
the direction of the link stored in the router’s topology table.
A link with two arrowheads corresponds to two links in the
topology table.

Router z’s source graph shown in Figure 2(b) is formed by
the source graphs reported by its neighbors y and z (these
are formed by the links in solid lines shown in Figures 2(c)
and (d)) and the links for which router z is the head node
(namely links (z, y) and (z, 2)).

It is clear from this example that LVA reduces the amount
of topology information each router needs to know to provide

p 10 u 1 Y
10 N\ w
rc—10 O 5 10 10 Ox
0 }0/ \ /
1 1
q \

@

SR 2
SN LN o Ny
1 ! 1
o;\&l%/ 0 1\
q v z q
©

O o—1 5
/ \ ;/ 3
Wy
e o’l ox
\ 1
o=—-21 LG
q 3 z
(b)
y p u y
,,,];,,,><R @) O%O
. | "
".10 10 Ox r@-0-____ =0 Ox
N ! N 1
A 10 L A
1 S \ 1 1
; ? G o

Fig. 2. Example topology

shortest paths to all destinations. For example, router r
knows about its links to routers w and g, but routers z, v,
and z do not have such links in their topology databases.

A router’s topology table may contain a link in only one
direction (e.g., link (y, u) in Figure 2(b)). This is because a
router’s source graph contains links only in the directions of
its preferred paths. While this detail is not important in the
present example, in an internet, the “links” between routers
may be paths through networks that need not have the same
cost in both directions.

Given that LVA reduces the amount of topology informa-
tion stored at each router, an obvious question is whether
this results in fewer routes being available to the router. Be-
cause a router’s source graph contains the links in all its pre-
ferred paths, a router using LLVA for a given type of routing
(e.g., shortest path) has the same number of paths available
than with an LSA for the same type of routing. In our ex-
ample, each router obtains the same shortest-path spanning
tree than it would obtain with any LSA.

Obviously, in the worst case, each router’s source graph
contains all the links in the network and LVA requires the
same communication and storage overhead as an LSA. The
number of updates and size of updates in LVA are bounded
by a number proportional to the number and size of updates
in an LSA, because in that case update messages contain
add updates reporting changes to the parameters of network
links, just as in an LSA. The average size of updates 1s dif-
ficult to characterize analytically; however, the simulation
results presented in Section 8. indicate that updates in LVA
are small.

4.2 Differences with PFAs

Recently, several PFAs algorithms have been proposed
(e.g., see [5], [11], [17], [20], [30]). The basic idea in a PFA is
for each router to maintain the shortest-path spanning tree
reported by its neighbors (i.e., those routers connected to it
through a direct link or a network), and to use this informa-
tion, together with information regarding the cost of adja-
cent links, to generate its own shortest-path spanning tree.
An update message exchanged among neighbors consist of
a vector of entries that reports incremental or full updates
to the sender’s spanning tree; each update entry contains a

destination identifier, a distance to the destination, and the
second-to-last hop in the shortest path to the destination.
Another PFA by Riddle [32] is similar to the ones just
mentioned in that a router communicates information re-
garding the second-to-last hop in the shortest path to each
known destination. However, it uses exclusionary trees,
rather than shortest-path spanning trees, and the cost of
the link between the second-to-last hop and the destination,
rather than the distance to the destination. An exclusion-
ary tree sent from router x to router y consists of router x’s
entire shortest-path tree, with the exception of the subtree
portion that has node y as its root. Riddle’s algorithm does
not use incremental updates.
Of course, just as it is done in Riddle’s algorithm, any
path-finding algorithm can use the cost of the link between
the second-to-last hop and the destination, rather than the
distance to the destination. However, there are two key dif-
ferences between LVA and PFAs, namely:
e The set of preferred paths used by a node to reach other
nodes need not constitute a tree in LVA and it is always
a tree in a path-finding algorithm.

¢ In the path-finding algorithms proposed to date, there is
no notion of how recent the path information reported
by a neighbor is.

There are many reasons why routers may want to commu-
nicate link-state information of preferred paths that do not
correspond to a tree. For example, if multiple shortest paths
are desired, a router will communicate links along multiple
preferred paths to each destination. Another example is the
case in which a router communicates links along multiple
preferred paths to each destination because different criteria
are used to derive each path (e.g., delay, reliability, admin-
istrative constraints).

Because there can be multiple links leading to the same
node in the subgraph of preferred paths communicated by
a router, a router that receives an incremental update from
a neighbor cannot simply assume that the link from node
a to node b communicated by its neighbor can substitute
any previously reported link from another node ¢ to node
b by the same neighbor, as it is done in all path-finding
algorithms but Riddle’s. On the other hand, transmitting
entire subgraphs of preferred paths, as it is done in Riddle’s

algorithm, becomes unacceptable in large networks and in-
ternets. Therefore, the update mechanisms used in path-
finding algorithms to update the subset of link states main-
tained at each router are not applicable to LVA.

4.3 Differences with PVAs

The existing internet routing protocols based on PVAs
(BGP [26] and IDRP [31]) do not exchange link-state infor-
mation per se. However, such information can be exchanged
in a PVA by including it as part of the information for each
hop of the reported path in an update or update entry. This,
however, would become very inefficient when the size of the
network and the number of link-state parameters are large,
or when multiple preferred paths to each destination are de-
sired. Some savings can be obtained by specifying a path
bit vector, instead of specifying the path hops explicitly. To
use the path bit vector, the links of the network have to be
ordered and a maximum number of links has to be defined,
such that the presence or absence of the link in the preferred
path can be indicated by a 1 or a 0 in a vector containing as
many bits as links there are in the network. Unfortunately,
this approach forces the routers to agree on the number and
order of links; therefore, adding and deleting links requires
all the routers to coordinate their update activity, which
limits the benefits of a PVA over an LSA.

A more subtle difference between LVA and any PVA using
link-state information is that routers using LVA determine
whether or not an update to a link state is valid based on
the timeliness of that update alone, just as in an LSA. In
contrast, a router using a PVA that communicates link-state
information still has to operate on a path-oriented basis, i.e.,
the timeliness of an update refers to an entire path, not its
constituent links; therefore, even if a router is able to ascer-
tain that a given update is more recent than another, that
update may still use link-state information that is outdated
(e.g., regarding links that are far away in the path). To elim-
inate the possibility of using stale link-state information in
an adopted path, each link of the path could be validated
(with a sequence number, for example), but this becomes
inefficient in a large internet.

Even if the above limitations of PVAs are overlooked and
PVAs are used to report path information only, the fact is
that LVA provides routers with the same path information
that a PVA provides, but with far less overhead. This is
the case because a router that uses a given link in one or
more preferred paths reports that link only once in LVA,
while it has to include the link in each preferred path it
reports using a PVA. LVA makes reporting complete path
information unnecessary for supporting either source routing
or hop-by-hop routing.

As the number of paths that a router can use per destina-
tion grows, the number of updates communicated and stored
in PVAs grows. Furthermore, if multiple types of service are
provided, the complexity of PVAs grows proportional to the
number of combinations of service parameters. In contrast,
the complexity of LVA grows with the number of service pa-
rameters, because each update simply adds more parameters
to describe a link.

Figure 2(b) helps to illustrate the above points for the case
of shortest-path routing. Using LLVA, router x requires eight
update entries of one link state each to inform its neighbors
about its preferred paths. In contrast, a PVA requires the

same number of update entries, but many of those entries
contain redundant information (e.g., the update entry for the
path from z to p is redundant with the entry for the path
from z to r). Although some paths that are fully contained
in other paths can be simply implied by the paths that con-
tain them, paths may overlap in many different ways in a
large internet.

The same type of savings become apparent for the case
of multipath routing. In LVA, if router = decides to use the
additional path containing link (u,w) to reach router w, it
simply has to send an add update with the parameters of the
link. In contrast, a PVA requires the router to send an up-
date with the entire new path, which contains a substantial
amount of redundant information.

5. An LVA Based on Sequence Numbers

This section describes a concrete example of an LVA de-
signed for shortest-path routing that validates updates by
means of sequence numbers. We denote this embodiment of
LVA by LVA-SEN. The information regarding each link in a
router’s topology table is augmented to include the sequence
number of the most recent update generated by the link’s
head node for that link.

A sequence number is associated with each link; it consists
of a counter that can be incremented only by the head node
of the link. For convenience, a router need to keep only one
counter for all the links for which it is the head node, which
simply means that the sequence number a router gives to
a link for which it is the head node can be incremented by
more than one each time the link parameters change values.

The concrete algorithm, LVA-SEN, is shown in Figure 3.
For simplicity, the specification assumes that unbounded
counters are used to keep track of sequence numbers and
that each router remembers the sequence number of links
deleted from its topology table long enough for the algorithm
to work correctly. The use of finite counters for sequence
numbers is addressed in [15]. The specification assumes the
following data structures at node :

« a topology table T'T; with entries (¢, 7,1, ¢s,r), for the
link (¢, 7), where [represents the cost of the link, ¢s its
sequence number, and r represents the set of reporting
nodes;

¢ a spanning tree ST; containing the edges of the tree
that 1s used for routing and their sequence numbers;

¢ the sequence number ¢;

o the set of neighbors N;, and

o the latest sequence numbers reported by the neighbors.

The update messages sent between nodes are vectors of
tuples (1, J,1, ts, type), representing link (i, j), its cost I, its
sequence number ts, and the label type.

Procedure initin Figure 3 is used to initialize the network.
The sequence number counter is set to zero, and the set
of neighbors of a router is determined through information
from an underlying protocol. The link to each neighbor,
with the appropriate information on the router’s operational
parameters, is stored in the topology table. At this point,
the shortest path tree is essentially the same as the topology
table. The information about all its outgoing links is sent to
all neighbors. This procedure can only be used to initialize
the network, when no information about topology is known
at any node. The same mechanism used by a node to recover
from a crash must be used to add a new node subsequently.

procedure init (i); ST; =0

begin u_message = 0
t=0 comparetrees (ST;, NewST;, u_message)
N; = {=|3(:,), 1, < oo} for all £ € N; do
ST; =0 send (x, u_message)
message = 0 end for
u_message = 0 ST; = NewST;
for all x € N; do t=t41
tx =0 end node_up
message = message U (¢, 2,17, t, add) i
end for procedure answer_query (s,)
update (i, i, message) begin
end init if (i, §) ¢ ST; then
ST; = ST; U (3,)
procedure update (i, n, message) build routing table
begin end if
u_message = 0 for all (k, m) € ST,
updated = updatetopology-table (i, message, u_message) u_message = u_message U TT; (k, m)
if u_message # 0 end for
send (n, u_message) u-message.t = t;
end if send (j, u-message)
u_message = 0 end answer_query
if updated then
build_shortest_path_tree (1, TT;, NewST;) procedure update_topology-table (i, message, u_message)
build routing table begin
comparetrees (i, ST;, NewST,;, u_message) updated = false
remove marked links from TT; for all m = (4, k, 1, ts, type) do
if u_message Z 0 then if type = add then
for all x € N; do if (j, k) € TT; then
send (x, u_message) if TT;(j, k).t < m.ts then
end for TT;(j, k) =m
end if TT;(j, k).r = {message.source }
ST; = NewST; updated = true
t=t41 else if TT;(j, k).t = m.ts and i # message.source then
end if TT;(j, k).r = TT;(j, k).r U{ message.source }
end update updated = true
end if
procedure link_-down(i, 5) else if (i # j or message.source = ¢) and (T7T;(f, k).t <= m.ts) then
begin TT; = TT; Um
message = @ updated = true
N; = N; — {i} (but keep sequence number) end if
for all (k, m) € TT; do if TT;(j, k).t > m.ts then
TT;(k, m).r = TT; (k, m).r — {5} if (4, k) € ST; then
if TT;(k, m).r = 0 or TT;(k, m).r = {i} then u_message = u_message U (TT; (4, k), add)
message = message U {(TT; (k, m), delete)} else
end if u_message = u_message U (TT; (4, k), delete)
end for end if
message = message U {(i, 4, 0o, t, delete)}) end if
update (i, i, message) else if type = delete
end link-down if TT;(j, k).t < m.ts then
if (4, k) € TT; then
procedure link-up(i, 7) mark (j, k) as deleted
begin updated = true
Ny =N U {5} else
update (i, i, {(t, 7, z;, t, add)}) TT;(j, k).t = m.ts
umessage = 0 end if
for all (k, m) € ST; do else if TT;(j, k).t = m.ts then
u_message = u_message U (TT; (k, m), add) if (j, k) € TT; then
end for TT;(j, k).r = TT;(j, k).r—{message.source}
send(j, u_message) if (TT;(5,k).r =0 or TT;(j, k).r = {i}) and i # message.source then
end link_up mark (7, k) as deleted
updated = true
procedure link_change(i) end if
begin end if
update(i, i, {(i, 7, z;, t, add)}) else if TT,(j, k).t > m.ts then
end link_change if (4, k) € ST; then
u_message = u-message U (TT; (4, k), add)
procedure node_up (i); else
begin u_message = u-message U (TT;(J, k), delete)
t=0 end if
message = 0 end if
N, = {]30, 2), 1L < oo} if TT;(j, k).l = oo and TT;(j, k).t < m.ts then
for all x € N; do TTi(5, k).t = m.ts
TT; = TT; U (i, =, 1%, ¢, {i}) end if
ST; = ST, U (i, , t) end if)
end for if j = message.source and j € N; then
build new routing table store sequence number of neighbor
for all = € N; do end if
send (x, query) end for
end for return updated
answers_received = 0 end update_topology_table

while answersreccived < |N;| do

? procedure comparc_trees (i, ST;, NewST;, u_message)
receive (answer)

begin
t = t .t
drr:a"t{ ’”I"S“Jt”bl} for all (j, k) € NewST;, ((4, k) € ST; or NewST;(j, k).ts > ST;(j, k).ts) do
updatetopology-table (i, answer, u-message) u_message = u_message U (5, k, TT; (4, k). ts, TT; (5, k)1, add)
end while ond for i :
t=t+1 . .
for all (j, k) € ST, k) € NewST; d
for all © € N, do Ori:‘l (J,j t)he i» (4, k) € NewST; do
= en
T =t))
i (4 @) u_message = u_message U (5, k, ¢, TT; (4, k).1, delete)
end for loo
e
build shortest_path_tree(s, TT; , NewST, . .)
S table(»TTys i) |, nemessage = nmeniage U (4, k, TT; (5, k)15, TT; (3, k)1, delete)
i
end for

end comparetrees

Fig. 3. LVA-SEN Specification

Procedures update and update_topology_table are the core
part of LVA-SEN. Each time a router receives a message from
one of its neighbors, or if there is some change in the cost
of an outgoing link reported by a lower-level protocol, these
procedures are performed to update all the data structures
held at the router.

For all link-state updates in the received message, their
sequence numbers must be checked. If the sequence num-
ber is older or of the same age as the current content of the
topology table, then the information is discarded. Other-
wise, there are two possible cases:

1. The label of the information is ‘add’. Then this link
state is added to the topology table (which can mean
that it replaces an old entry), or the reporting node is
added to the set of nodes that reported that link.

2. The label is ‘delete’. If there is an entry concerning
this link in the topology table, then the reporting node
is removed from the set of reporting nodes, and the link
is deleted from the topology table if that set becomes
empty and the link is not an outgoing link of finite
length. Otherwise, if there is no entry, the message is
discarded.

A shortest-path algorithm (e.g. Dijkstra’s algorithm [3])
is run on this updated topology table to construct a new
shortest-path tree. This tree is used to compute the new
routing table, using for example a depth-first search in the
shortest-path tree. Then the new tree is compared to the
old tree (procedure compare_trees), and the update message
that will be send to the neighbors is constructed from the
differences of the two trees. Note that a link in the tree is
considered different if its sequence number is changed. If
the different link is in the new tree, then an add update
about this link is added to the update message. If the link
is in the old tree but is not in the new one, then a delete
update i1s added. In addition, the link is removed from the
topology table, unless it is an adjacent link and its length is
not infinity. If any of the link informations refer to the state
of an outgoing link of the node itself, then it gets a current
sequence number.

Finally, the update message is sent to all the neigh-
bors, the sequence number counter is incremented, the old
shortest-path tree is discarded and the new one becomes the
current tree.

If a link cost changes, then the node at which this link
origins will be notified by the link level protocol. It then
runs update with the appropriate message as input. This
holds for simple changes in link cost as well as link failure.
In the latter case, the link cost is set to infinity. The same
thing is done for a new link or a link that comes up again
after a failure.

In the case of a failing node, all its neighbors are notified
about the failure of their links to the failed node. They then
remove the failed node from the list of reporting nodes for
all affected links, and therefore obtain an accurate picture
of the topology after running the update procedure.

We assume that the upcoming node does not ‘remember’
any information that it previously had, in particular it does
not know the last sequence number it used. It is not suffi-
cient to simply run procedure init because other nodes would
discard all update messages with a zero sequence number.
In addition, the neighbors of the node would not send suffi-
cient topology information for the node to regain its needed

knowledge. After initializing its data structures, the upcom-
ing node sends a query to all its neighbors. In response, they
send back their complete shortest-path trees, plus the latest
sequence number they received from the node (nodes store
sequence numbers of neighboring nodes, which are updated
when a link of some neighbor is changed). The node collects
all this information, updates its topology table and sequence
number, and then performs the same steps as in the proce-
dure update.

To illustrate the exchange of updates in LVA-SEN, con-
sider the topology in Figure 2. Assume that link (p, w) fails.
Both endpoints of the link note this failure and call pro-
cedure link_down. The update message sent from w to its
neighbors contains delete updates for links (w,p) and (p,r)
and add updates for links (w,r) and (r,p). Link (w,p) is
deleted from w’s topology table because it failed, while (p,r)
is only removed from the source graph, because w cannot use
this link on the path to r anymore. Instead, the route to r
is now link (w,r). This link was not previously used; there-
fore, it is included in the message in an add update, as is
(r,p), which lies on the new route to p. Similarly, node p
will send a message to its neighbors containing delete up-
dates for links (p,w) and (w,v), and add updates for links

(p, v) and (p, q).

6. Correctness of LVA

This section shows that LVA is correct for multiple types
of routing. The proof of correctness makes use of the as-
sumptions introduced in Section 2. and the additional as-
sumptions that there is a finite number of link cost changes
up to time tg, that no more changes occur after that time,
and that routers can correctly determine which updates are
more recent than others. The correctness of the particular
mechanism used to determine which updates are valid in
LVA-SEN is addressed in [15].

Correctness for LVA means that, within a finite time after
to, all routers obtain link-state information that allow them
to compute loop-free paths that adhere to the constraints
imposed by the local algorithms they use to compute pre-
ferred paths, and to forward packets incrementally.

Because our proof of correctness is intended for many dif-
ferent types of routing, not only shortest-path routing, we
must specify what we mean by the correct operation of a
path-selection algorithm.

To define what a correct path-selection algorithm is, con-
sider first the case in which each router in the network has
complete and most recent topology information in its topol-
ogy table and runs the same path-selection algorithm on
it. In this case, it is evident that, for permanent loops to
be avoided, the way in which the path-selection algorithm
chooses routes must be deterministic.

Assuming that the same deterministic path-selection al-
gorithm is executed at each router using a complete and
most recent copy of the topology, the preferred paths at
any router for each destination constitute a directed acyclic
graph (DAG). Furthermore, the union of the DAGs of any
set of routers for the same destination in the network is also
a DAG. Therefore, there are no permanent loops in the rout-
ing tables computed in this case.

Definition 1: A correct path-selection algorithm is a one
that produces the same loop-free paths when it is provided
with the same complete and correct topology information.

As we have stated in the description of LVA, all routers
use the same path-selection algorithm to compute the same
type of preferred paths (e.g., shortest path, maximum ca-
pacity), and report all the links used in all the preferred
paths obtained through all the path-selection algorithms.
Therefore, the rest of this section can assume that a single
path-selection algorithm is executed at every router.

Because the topology tables of different routers running
LVA need not have the same information, we cannot use
the notion of having all topology tables containing the same
information to ensure correct paths. The following defini-
tion specifies what a topology table should have for loop-free
paths to be produced in LVA.

Definition 2: A router is said to have consistentlink-state
information in its topology table if it has the most recent
link-state information regarding all the links for whom it is
the head node, and the most recent link-state information
corresponding to each of its neighbor’s most recent source
graph.

Theorem 1: A finite time after to, all routers have consis-
tent link-state information in their topology tables and the
preferred paths computed from those tables are correct.
Proof: Because the deterministic path-selection algorithm
used at each router is assumed to be correct, all the proof
needs to show is that

1. All routers eventually stop updating their topology and
routing tables, and stop sending update messages to
their neighbors.

2. All routers obtain consistent link-state information
needed to compute correct preferred paths within a fi-
nite time after ¢g.

These two properties are proven in the following two lem-

mas.

Lemma 1: LVA terminates within a finite amount of time

after tg.
Proof: First note that there is a finite number of links in
the network and that, by assumption, a finite number of
link-state changes occur up to time o, after which no more
changes occur.

By assumption, for each direction of a link whose param-
eters change, there is one router (the head node of the direc-
tion of the link) that must detect the change within a finite
time; such a router updates its topology table and must then
update 1ts source graph. As a result of updating its source
graph, the router can send at most one add update report-
ing the change in the state of the adjacent link, and at most
one add or delete update for each of the links that have been
added to or deleted from preferred paths as a result of the
change in the adjacent link. Therefore, for any link /; in the
network, its head node can generate at most one update for
that link after time ¢g.

A given router x; that never terminates LVA must gen-
erate an infinite number of add or delete updates after time
to. It follows from the previous paragraph that this is pos-
sible only if x; sends such updates as a result of processing
update messages from its neighbors; furthermore, because
the network is finite, 1 must generate an infinite number
of updates for at least one link /5. Because the network is
finite, at least one of those neighbors (call it x2) must send
to 1 an infinite number of update messages containing an
update for either link /; or some other link l; that makes
z1 generate an update for link ;. It follows from the pre-

vious paragraph and the fact that the network is finite that
z2 can send an infinite number of updates regarding link {;
or l; to z; only if at least one of its neighbors (call it s)
generates an infinite number of updates for either link I5 or
some other link I3 that makes x5 generate updates regarding
link I; or l3. Because the network is finite, it is impossible
to continue with the same line of argument, given that the
head node of any link can generate at most one update for
that link after time to. Therefore, LVA can produce only a
finite number of updates and update messages for a finite
number of link-state changes and must stop within a finite
time after ¢o. q.e.d.

Lemma 2: All routers must have consistent link-state in-

formation in their topology databases within a finite time
after tg.
Proof: The definition of consistent link-state information at
a router implies that the router knows all the links it needs
to compute correct preferred path, and that the router has
the most recent link-state information regarding all the links
in its topology table.

Proving that the router receives all the link-state infor-
mation required to compute correct preferred paths can be
done by induction on the number of hops h of a preferred
path. What needs to be shown is that the router knows all
the links on that path within a finite time after ¢o.

Consider some arbitrary preferred path from a router : to
some destination. For h = 1, the preferred path consists of
one of router 2’s outgoing links. Because of the basic assump-
tion that some underlying protocol provides a router with
correct information about its adjacent links within a finite
time after the link-state information for such links changes,
the lemma is true for this case. For h > 1, assume that the
claim is true for any preferred path with fewer than A hops.

Consider an arbitrary preferred path of length A > 1 from
some router ¢ to a destination j. Let k be router ¢’s succes-
sor on this path (i.e., the first intermediate router). Then,
the subpath from k to 7 must have length h — 1, and it
must be one of router k’s preferred paths to j. Denote this
path by Pg;. By the inductive hypothesis, router & knows
all the links on Pj;. Because router : also knows (as in the
base case) the most recent information about link 1% within
a finite time after to, it suffices to show that router k in-
deed sends the link information in path Pj; to its neighbor
router 1.

Assume that Pj; is a new path for router &, then router
k must update its source graph. Because Pj; is a new path
for router k, the information in the updated source graph
concerning Pj; is different than the information in the old
source graph. Therefore, router & must include this infor-
mation as add updates in the update message that it sends
to its neighbors. Because router ¢ is one of those neighbors,
it must receive from k all the information on Pj; within a
finite time after ¢g.

By assumption router k& can determine which link-state
information is valid (i.e., up to date). Accordingly, if Pk, is
already one of router k’s preferred paths, but experiences a
change in the information of some of its constituent links,
then those links with updated link-state information will be
considered different in the new source graph as compared
to the old source graph. Therefore, router & must send the
updated link-state information in Py; to its neighbor ¢ in
add updates.

The same inductive argument holds for link-state changes
resulting in links being deleted from a preferred path. In this
case, an intermediate router that decides that a link should
no longer be used in any of its preferred paths sends a delete
update, which is propagated just like an add update. This
completes the first part of the proof.

Having shown that a router receives the most recent in-
formation about the links used in its source graph within a
finite time after fo, it remains to be shown that it also re-
ceives the most recent information about all the links that
are in its topology table, but not part of the source graph
of preferred paths. There are two possible cases to consider
of links in a router’s topology table that are not used in its
source graph:

¢ An adjacent link to the router.

¢ A non-adjacent link is in the source graph reported by

some of the router’s neighbor.

In the first case, it is obvious that the lemma is true be-
cause of the basic assumption of some underlying protocol
providing the node with correct information about adjacent
links within a finite time. The second case follows almost
immediately from the first part of this proof. Because every
neighbor of the router sends the appropriate add or delete
updates about links added to or deleted from its source own
graph, it must be shown that each such neighbor obtains
consistent information about changes in its source graph,
which was shown to be the case in the first part of this
proof. q.e.d.

Once Theorem 1 has been shown to be true it is easy to
show that these routing tables do not contain any permanent
loops.

Corollary 1: The routing tables created by LVA do not
contain any permanent loop.

Proof: Lemma 2 shows that the topology information at
all routers is consistent within a finite amount of time after
any change in link information. The topology information
held at any router is a subset of the complete topology, and
this subset contains all the information needed at this router
to compute the correct preferred paths. Therefore, the pre-
ferred paths computed from any router’s subset of the topol-
ogy information must be a subset of the DAG computed in
the case of each router having complete topology informa-
tion. Any subset of a DAG is still a DAG; and the union of
any such DAGs also forms a DAG, because that union is also
a subset of the DAG obtained with complete topology infor-
mation. Hence, the routing tables computed by LVA with a
correct path-selection algorithm do not contain permanent
loops. q.e.d.

7. Complexity of LVA

This section quantifies the communication complexity
(i.e., number of messages needed in the worst case), time
complexity (number of steps), computation complexity, and
storage complexity [13] of LVA for shortest-path routing af-
ter a single link change.

7.1 Communication Complexity

The number of messages per link cost change is bounded
by twice the number of links in the network. To prove that
this is the case, it suffices to show that any update can travel
each link at most twice.

Assume that an update concerning link [arrives at some
arbitrary node n for the first time; there are two possibilities
to consider:

1. The link is used in the source graph of n. If this is the
case, the corresponding link-state information is sent
to some neighbor n; over some link ;. There are two
possibilities at this router:

(a) ny uses [: If the information was already known and
used at n1, then no further update will be sent over Iy
(or any other link adjacent to ni). If it was not pre-
viously known at ni, then an update will be sent to
all neighbors of ny, including one over {; to n. From
n, no further update with information concerning !
will be sent over I, until newer information becomes
available.

(b) n1 does not use I: n; will not sent any update with
information concerning I, in particular none over I;.

2. The link is not used at n, in which case no further
update will be sent.

From the above, it follows that the number of messages is

at most in the order of the number of links in the network

(O(ED)-

7.2 Time Complexity

If the cost of links is not directly related to the delays
incurred over such links, the number of steps required for
any link change is O(x), where = is the number of nodes
affected by the change. This can be shown by the follow-
ing argument: the information about a changed link travels
along all the shortest paths that contained the link before
the change, and also along all shortest paths that will con-
tain the link after the change. No other router than those
along the paths and their neighbors will be notified about
the change.

In the worst case, all the affected routers lie along one long
path, thus causing O(z) communication steps. In general,
the paths on which the information is forwarded together
with the affected routers form a directed, acyclic graph, and
the upper bound for the steps required is given by the length
of the longest simple path in that graph.

Because link failures and recoveries are handled as special
cases of link cost changes, and router failures are perceived
by the network as link failures for all their links, it is clear
that O(z) communication steps are also incurred in these
cases. The case of a recovering node involves the nodes get-
ting the complete source graphs from its neighbors, which
takes no more steps than the number of neighbors, before
the links of the routers again are handled as changing their
cost to some finite value. Hence, the same upper bound of
O(z) applies.

This worst case is the same as the complexity of any DVA.
On the other hand, if the link costs reflect the delay of the
links, the complexity for LVA reduces to O(d), where d is
the (delay) diameter of the network. The reasons for this are
that the information travels along the shortest paths and a
router receiving new information can trust the neighbor that
reports the most recent link-state for the associated link;
most importantly, the node will discard older information
from other neighbors. Therefore, a router does not have to
wait for link state updates to reach it through the slower
paths, as is in the case in DVAs. The flooding technique
used in LSAs also takes O(d).

7.3 Complexity of Computations at Routers

The most important routines to analyze are update and
update_topology_table. Most other procedures just call wup-
date with the appropriate input message. One part of
this procedure is the shortest path finding algorithm (Di-
jkstra). Therefore, the overall complexity is at least
O(]V]?). The complexity of the main loop of procedure
update_topology_table is determined by the size of the up-
date message. In the worst case, this message could con-
tain information about every link, resulting in running time
O(|E]) < O(]V]?). This case seems highly unlikely, though.

In “normal” cases, we would expect an update message to
contain information about some path plus possibly a second
path that has to be deleted. A path can have at most length
|V| — 1, leading to an expected complexity of O(|V]). The
amount of work in the other loops is bounded by the number
of nodes in the network.

Note that there also is the hidden complexity of accessing
the topology table. This problem can be solved using a
(dynamic) hash table, which has an expected constant access
time.

7.4 Storage Complexity

In the worst case, the topology table of each router main-
tains the whole topology, making the storage requirement
O(]V]?*). In addition, both the shortest path tree and the
routing table require O(|V|) storage, which is also the case
for link state algorithms.

On the average, we expect the storage for the topology ta-
ble to be by far smaller than O(|V|?). Because the goal is to
keep as sparse a subset of the whole topology as possible, we
hope that the required storage space is closer to O(|V|). This
seems realistic, even the small topology shown as example
in Figure 2 revealed a significant saving of required space
when compared to an algorithm that stores the complete
topology at all routers. In contrast, the LSAs used today
have to store the complete topology. Though the storage
required for DVA is linear in the number of routers, routers
have to store the routing tables of their neighbors. There-
fore, DVAs’ storage requirement really become O(|V||Ngl|)
at router k.

8. Simulation

In this section we compare LVA-SEN, DBF, and a generic
LSA in terms of time and communication complexity. Com-
munication complexity is measured as the number of updates
that are required for the algorithm to converge and the size
of these updates. The time complexity is given in steps:
when a node receives an update message, it compares its
local step counter with the sender’s counter, takes the max-
imum and increments the count. In all three algorithms,
update messages are processed one at a time, in the order in
which they arrive. Both LVA-SEN and LSA use Dijkstra’s
algorithm to compute the local shortest-path tree.

The results presented are based on simulations for the
DOE-ESNET topology [36]. The graphs show the results
for every single link changing cost from 1.0 to 2.0 (Fig. 4,5),
every link failing (Fig. 6, 7) and recovering (Fig. 8, 9), as
well as every node failing (Fig. 10, 11) and recovering again
(Fig. 12, 13). All changes were performed one at a time, and
the algorithms had time to converge before the next change

occurred. The ordinate of Figures 4 to 9 and Figures 10 to 13
represent identifiers of the links and the nodes, respectively,
that are altered in the simulation. In Figures 4, 6, 8, 10, and
12, the data points show the number of updates and the size
of the updates, while in Figures 5, 7, 9, 11, and 13, they
show the number of steps needed for convergence.

As expected, LSA shows almost constant behavior for all
single link cost changes (Figures 4,5). Similar to DBF, the
effort changes considerably from case to case with LVA-SEN,
but is always less than in LSA. With LSA, each of the update
packets contains exactly one link state, the size of packets
remains small with LVA-SEN; too, at an average of 1.36 links
per packet.

Figures 6 and 7 show almost the same general behavior
for hink failures, the exception being DBF suffering from
‘counting to infinity’ in some cases. In almost all cases, LVA-
SEN needs fewer update messages and fewer steps than LLSA;
the size of the messages is bigger than for link changes, with
a mean of 2.61.

When a failed link recovers, DBF shows its strengths and
is superior to both LVA-SEN and LSA. Again, LSA behaves
very uniform for all the simulated link recoveries. The per-
formance of LVA-SEN varies considerably from case to case,
but remains always better than LSA (Figures 8,9). The
mean packet size is less than three links per packet; since
the packet size of LSA is no longer one in this case (due to
the packets containing complete topology information sent
over the recovering link), LVA-SEN almost always requires
less overall information to be sent.

For failing nodes, LLSA usually has the best performance
of the three algorithms. DBF always suffers from ‘counting
to infinity’. In almost all cases, LSA converges faster than
LVA-SEN, it needs fewer steps and updates (Figures 10,11).
Although the mean packet size for LVA-SEN is very moder-
ate (1.5 links per packet), less information is sent through
the network with LSA.

Similar to the recovery of a single link, DBF is superior to
LSA when a node comes up, and LVA-SEN performs even
better than DBF. It needs fewer steps and updates than
the other algorithms (Figures 12,13). Although the mean
packet size for LVA-SEN has its highest value here (3.12),
this is true for the other algorithms, too, such that LVA-SEN
requires the least amount of information to be sent through
the network.

Overall, the results of our simulations are quite encourag-
ing. In terms of its overhead, LVA-SEN behaves much like
DBF when link costs change or resources are added to the
network, and behaves much like the ideal LSA when links or
routers fail. This is precisely the desired result, and there
are a number of simple ways to improve LVA-SEN’s behav-
ior after a link or router failure, which involve establishing a
“hold down” on the updating of a router’s source graph [15].

9. Conclusions

We have presented a new method for truly distributed
routing in computer networks and internets using link-state
information. LLVAs enjoy nice scaling properties: like DVAs,
L.VAs scale well with the number of destinations by aggregat-
ing information; like LSAs, LVAs scale well with the number
of service types because routers communicate link proper-
ties, not path properties in their updates.

An important contribution of this paper is to show that

Updates

Link Changes
Fig. 4. Updates for link changes, DOE-ESNET

10000 _

1000

100

Updates

10 -

1 4 7 10 13 16 19 22 25 28 31
Link Failures

Fig. 6. Updates for link failures, DOE-ESNET

140

120 7

100 7
80

Updates
@

60 —-\
40 - e XY
20 —--eeee

0 P i e i TN ey
1 3 5 7 9111315171921 232527293133
Link Recoveries

Fig. 8. Updates for link recoveries, DOE-ESNET

10000 -
A A A AR I,

10 -

e AA AT

1 vd¥ 7T wrromry~—oT 7Y - n m ©

1 3 5 7 9 11 13 15 17 19 21 23 25
Node Failures

Updates

Fig. 10. Updates for node failures, DOE-ESNET

1 35 7 9 11 13 15 17 19 21 23 25
Node Recoveries

- Updates LVA-SEN — Links per Update LVA-SEN
-+ Updates DBF — Distances per Update DBF
-= Updates LSA —+ Links per Update LSA

Fig. 12. Updates for node recoveries, DOE-ESNET

Steps

14 '7 10153 16 19' 22 25 28 31
Link Changes
Fig. 5. Steps for link changes, DOE-ESNET

1000 -

100

Steps

| L Lr |
1 4 7 10 13 16 19 22 25 28 31
Link Failures

Fig. 7. Steps for link failures, DOE-ESNET

14
12

10 -

Steps
©

1 4 7 10 13 16 19 22 25 28 31
Link Recoveries

Fig. 9. Steps for link recoveries, DOE-ESNET

1000 -
e g T i G NS e N

100

Steps

Il [| [
1 3 5 7 9 11131517 19 21 23 25
Node Failures

Fig. 11. Steps for node failures, DOE-ESNET

40

| L | NN
1 3 5 7 911131517 19212325
Node Recoveries

= LVA-SEN ~ DBF = LSA

Fig. 13. Steps for node recoveries, DOE-ESNET

LVA is correct under different types of routing, assuming
that a correct mechanism is used for routers to ascertain
which updates are recent or outdated.

LLVAs open up a large number of interesting possibilities
for internet routing protocols. To name a few, LVAs can be
the basis for the first routing protocols for packet radio net-
works based on link-state information. Equally important,
LVA can be used to develop intra-domain routing proto-
cols that are based on link-state information but require no
backbones and can take advantage of aggregation schemes
developed for DVAs. Finally, LVAs make PVAs obsolete.
Work is continuing to improve the average-case performance
of ILVAs, and to apply LVAs to policy-based routing, routing
with multiple constraints, and hierarchical routing based on
link vectors.

References

[1] R. Albrightson, J.J. Garcia-Luna-Aceves, and J. Boyle,
“EIGRP—-A Fast Routing Protocol Based on Distance Vec-
tors” Proc. Networld/Interop 94, Las Vegas, Nevada, May
1994.

[2] B. Awerbuch, I. Cidon, and S. Kutten, “Communi-
cation-Optimal Maintenance of Replicated Information,”
Proc. IEEE FOCS ’90, pp. 492-502, August 1990.

[3] D.Bertsekasand R. Gallager, Data Networks, Second Edition,
Prentice-Hall, Inc., 1992.

[4] L. Bosack, “Method and Apparatus for Routing Communi-
cations among Computer Networks,” U.S. Patent assigned to
Cisco Systems, Inc., Menlo Park, California, February 1992.

[6] C. Cheng, R. Riley, S. Kumar, and J.J. Garcia-Luna-
Aceves, “A Loop-Free Extended Bellman-Ford Routing Pro-
tocol without Bouncing Effect,” ACM Computer Comm. Re-
view, Vol. 19, No. 4, pp. 224-236, September 1989.

[6] J.N. Chiappa, “A New IP Routing and Addressing Architec-
ture,” Unpublished Draft, 1991.

[7] D.Estrin and K. Obraczka, “Connectivity Database Overhead
for Inter-Domain Policy Routing,” Proc. of IEFE INFOCOM
’91, Miami, Florida, pp. 265-278, April 1991.

[8] D. Estrin, Y. Rekhter, and S. Hotz, “Scalable Inter-Domain
Routing Architecture,” Computer Comm. Review, Vol. 22,
No. 4, 1992.

[9] D. Estrin, M. Steenstrup, and G. Tsudik, “A Protocol for
Route Establishment and Packet Forwarding across Multido-
main Internets,” IEEE/ACM Trans. on Networking, Vol. 1,
No. 1, February 1993, pp. 56-70.

[10] E. Gafni, “Generalized Scheme for Topology-Update in
Dynamic Networks,” Lecture Notes in Computer Science
(G. Goos and J. Hartmanis, Eds.), No. 312, pp. 187-196, 1987.

[11] J.J. Garcia-Luna-Aceves, “A Fail-Safe Routing Algorithm
for Multihop Packet-Radio Networks,” Proc. of IEEE INFO-
COM ’86, Miami, Florida, April 1986.

[12] —, “Routing Management in Very Large-Scale Networks,”
Future Generation Computing Systems (FGCS), North-
Holland, Vol. 4, No. 2, pp. 81-93, 1988.

[13] —, “Loop-Free Routing Using Diffusing Computations,”
IEEE/ACM Trans. Networking, Vol. 1, No. 1, 1993.
[14] —, “ Reliable Broadcast of Routing Information Using Dif-

fusing Computations,” Proc. IEEE Globecome 92, Orlando,
Florida, December 1992.

[15] J.J. Garcia-Luna-Aceves and J. Behrens, “ Distributed, Scal-
able Routing Based on Vectors of Link States,” Unpublished
Report, Baskin Center for CE & CIS, University of California,
Santa Cruz, CA, 1994.

[16] J.J. Garcia-Luna-Aceves and W.T. Zaumen, “Area-Based,
Loop-Free Internet Routing,” Proc. IEEE INFOCOM 94,
Toronto, Canada, June 1994.

[17] J. Hagouel, “Issues in Routing for Large and Dynamic Net-
works,” IBM Research Report RC 9942 (No. 44055) Commu-
nications, IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, April 1983.

[18] C. Hedrick, “Routing Information Protocol,” RFC 1058,
Network Information Center, SRI International, Menlo Park,
CA, June 1988.

[19] P.A. Humblet and S.R. Soloway, “Topology Broadcast Al-
gorithms,” Computer Networks and ISDN Systems, Vol. 16,
pp. 179-186, 1989.

[20] P. Humblet, “Another Adaptive Distributed Shortest Path
Algorithm,” IEEE Trans. Comm., Vol. 39, No. 6, pp. 995-
1003, June 1991.

[21] International Standards Organization, 1989: “Intra-Domain
IS-IS Routing Protocol,” ISO/IEC JTC1/SC6 WG2 N323,
September 1989.

[22] International Standards Organization, “Protocol for Ex-
change of Inter-domain Routing Information among Interme-
diate Systems to Support Forwarding of ISO 8473 PDUs,”
ISO/IEC/JTC1/SC6 CD10747.

[23] J.M. Jaffe, “Algorithms for Finding Paths with Multiple
Constraints,” Networks, Vol. 14, pp. 95-116, 1984.

[24] J.M. Jaffe, A.E. Baratz, and A. Segall, “Subtle Design Issues
in the Implementation of Distributed, Dynamic Routing Al-
gorithms,” Computer Networks and ISDN Systems, Vol. 12,
pp. 147-158, 1986.

[25] L. Kleinrock and F. Kamoun, “Hierarchical Routing for
Large Networks: Performance Evaluation and Optimization,”
Computer Networks, Vol. 1, pp. 155-174.

[26] K. Lougheed and Y. Rekhter, “ Border Gateway Protocol
3 (BGP-3),” RFC 1267, SRI International, Menlo Park, CA,
October 1991.

[27] J. McQuillan, “Adaptive Routing Algorithms for Distributed
Computer Networks,” BBN Rep. 2831, Bolt Beranek and
Newman Inc., Cambridge MA, May 1974.

[28] J. Moy, “OSPF Version 2,” Network Working Group Internet
Draft, November 1992.

[29] R. Perlman, “Fault-Tolerant Broadcast of Routing Informa-
tion,” in Computer Networks, North-Holland, Vol. 7, pp. 395-
405, 1983.

[30] B. Rajagopalan and M. Faiman, “A Responsive Distributed
Shortest-Path Routing Algorithm within Autonomous Sys-
tems,” Internetworking: Research and FEzperience, Vol. 2,
No. 1, pp. 51-69, March 1991.

[31] Y. Rekhter, “Inter-Domain Routing Protocol (IDRP),” In-
ternetworking: Research and Fzperience, Wiley, Vol. 4, No.
2, June 1993, pp. 61-80.

[32] G.G. Riddle, “Message Routing in a Computer Network,”
U.S. Patent assigned to AT&T Bell Telephone Laboratories,
Inc., Patent Number 4,466,060, August 1984.

[33] M. Steenstrup, “Inter-Domain Policy Routing Protocol Spec-
ification: Version 1,” Internet Draft, May 1992.

[34] J. Spinelli and R. Gallager, “Event Driven Topology Broad-
cast without Sequence Numbers,” IEEE Trans. Commun.,
Vol. 37, pp. 468-474, May 1989.

[35] P. Tsuchiya, “The Landmark Hierarchy: A New Hierarchy
for Routing in Very Large Networks,” Computer Comm. Re-
view, Vol. 18, No. 4, 1988, pp. 43-54.

[36] W. Zaumen and J.J. Garcia-Luna-Aceves, “Dynamics of
Distributed Shortest-Path Routing Algorithms,” Computer
Comm. Review, Vol. 21, No. 4, pp. 31-42, September 1991.

[37] —, “Dynamics of Link-State and Loop-Free Distance-Vector
Routing Algorithms,” Journal of Internetworking: Research
and Fzperience, Vol. 3, No. 4, pp. 161-188 December 1992.

