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ABSTRACT OF THE DISSERTATION

Asymptotic studies of unsteady non-premixed flamelets and buoyancy-induced swirling
flows

by

Adam D. Weiss

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2020

Professor Antonio L. Sánchez, Chair
Professor Forman A. Williams, Co-Chair

Asymptotic techniques are used to investigate two different phenomena, namely, acousti-

cally driven counterflows and the flow field surrounding fire whirls.

In Part I of the dissertation, the interaction of non-premixed flamelets with acoustic waves

of large characteristic wavelength, central to the development of acoustic instabilities in liquid-

propellant rocket engines, is investigated using as model the counterflow diffusion flame subject

to harmonic pressure and strain variations, with the presentation given in this work proceeding

with increasing levels of complexity, outlined below.

xiv



In order to relate to typical experimental realizations of counterflow diffusion flames,

the presentation begins with the investigation of the high-Reynolds and low-Mach number

collision of two chemically frozen gaseous streams of different density. The self-similarity of the

stagnation-point region is analyzed, with the strain-rate and stagnation point location, amongst

other properties relevant for counterflow-flame studies, given as functions of the macroscopic

properties of the experimental setup, including the nozzle-separation to semi-width ratio, for

irrotational and rotational flows, with explicit formulas given for the former.

A general formulation is then provided for reacting mixing layers in counterflows subject

to both time-varying strain and pressure using an inverse-thermal-conductivity-weighted coordi-

nate which is shown to have benefits when compared to the classic Howarth-Dorodnitzyn variable.

The formulation is applied to the interaction of acoustic waves with non-premixed flamelets by

consideration of small amplitude harmonic oscillations of the pressure or strain-rate, with the

amplitude serving as small parameter in the perturbative analysis for model one-step Arrhenius

chemistry. First, the limit of infinitely fast reaction for non-unity Lewis numbers is considered. It

is shown that differential-diffusion effects promote fluctuations of the flame location and reactant

consumption rates. In connection with acoustic instabilities characterized by the Rayleigh index,

the analysis predicts acoustic amplification for all frequencies in the pressure response, whereas a

critical crossover frequency is identified in the strain response demarcating a transition between

amplification and attenuation. Next, finite-rate effects are considered for systems with large

activation energies. The results indicate the response for typical propellant combinations leads to

acoustic amplification, not attenuation, the amplification being larger at higher strain rates.

These results, drawn on the basis of one-step model chemistry, are supplemented with nu-

merical computations of hydrogen-air systems employing realistic chemical-kinetic mechanisms.

The Rayleigh index is employed as a vehicle for quantifying inaccuracies of predictions caused by

the introduction of reduced chemistry to decrease computation times. The computations indicate

that inaccuracies of a systematically reduced 2-step mechanism, derived from a detailed 12-step

xv



mechanism for hydrogen-air systems, are small at low strain rates but become appreciable as

extinction is approached.

Part II of the dissertation describes the steady axisymmetric structure of the cold boundary-

layer flow surrounding fire whirls developing over localized fuel sources lying on a horizontal

surface. The structure is shown to consist of three separate regions, including an outer inviscid

swirling region, a near-wall boundary layer and a near-axis non-slender collision region, each

described sequentially. Particular attention is given to the terminal shape of the boundary-layer

velocity near the axis, displaying a three-layered structure described by matched asymptotic

expansions. The resulting composite expansion, dependent on the level of ambient swirl, is

useful in mathematical formulations of localized fire-whirl flows, providing consistent boundary

conditions for further numerical investigations.
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Part I

Acoustic response of non-premixed

flamelets
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Brief overview of Part I

A brief overview of each chapter of Part I is given in the following five paragraphs,

respectively.

In chapter 1, the planar laminar flow resulting from the impingement of two gaseous jets

of different density issuing into an open space from aligned steadily fed slot nozzles of semi-width

H separated a distance 2L is investigated by numerical and analytical methods, with specific

consideration given to the high-Reynolds and low-Mach number conditions typically present in

counterflow-flame experiments, for which the flow is nearly inviscid and incompressible. It is

shown that introduction of a density-weighted vorticity-stream function formulation effectively

reduces the problem to one involving two jets of equal density, thereby removing the vortex-sheet

character of the interface separating the two jet streams. Besides the geometric parameter L/H,

the solution depends only on the shape of the velocity profiles in the feed streams and on the

jet momentum-flux ratio. While conformal mapping can be used to determine the potential

solution corresponding to uniform velocity profiles, numerical integration is required in general to

compute rotational flows, including those arising with Poiseuille velocity profiles, with simplified

solutions found in the limits L/H� 1 and L/H� 1. The results are used to quantify the near-

stagnation-point region, of interest in counterflow-flame studies, including the local value of the

strain rate as well as the curvature of the separating interface and the variations of the strain rate

away from the stagnation point.

A general formulation is given in chapter 2 for the description of reacting mixing layers

in stagnation-type flows subject to both time-varying strain and pressure. The salient feature

of the formulation is the introduction of a thermal-conductivity-weighted transverse coordinate

that leads to a compact transport operator that facilitates numerical integration and theoretical

analysis. For steady counterflow mixing layers the associated transverse mass flux is shown to be

effectively linear in terms of the new coordinate, so that the conservation equations for energy and
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chemical species uncouple from the mass and momentum conservation equations, thereby greatly

simplifying the solution. Comparisons are shown with computations of diffusion flames with

infinitely fast reaction using both the classic Howarth-Dorodnitzyn density-weighted coordinate

and the new thermal-conductivity-weighted coordinate, illustrating the advantages of the latter.

Also, as an illustrative application of the formulation to the computation of unsteady counterflows,

the flame response to harmonically varying strain is examined in the linear limit.

In chapter 3, the acoustic response of strained nonpremixed flames is investigated using

as a canonical model problem the planar counterflow configuration subject to small harmonic

fluctuations of the stagnation-point pressure and strain rate. To focus on effects of modified trans-

port rates the analysis employs the limit of infinitely fast reaction for a general non-unity Lewis

number of the fuel, including values of interest in hydrogen-oxygen and hydrocarbon-oxygen

systems. For both acoustic-pressure and acoustic-velocity response, differential–diffusion effects

are shown to promote the fluctuations of the flame location and reactant consumption rates (while

in the pressure response, distinct behaviors of the flame temperature were observed depending

on stoichiometry). The results are used, together with the Rayleigh criterion, to investigate the

frequency dependence of the amplification/attenuation rate relevant in computations of acoustic

instabilities. The analysis predicts acoustic amplification for all frequencies in the pressure

response, whereas a critical crossover frequency is identified in the strain response demarcating

the transition from attenuation to amplification of acoustic energy.

Chapter 4 extends the work in chapter 3 by investigating the effects of finite-rate kinetics

whereby an irreversible step with an Arrhenius rate having a large activation energy is used

to model the exothermic reaction between the fuel and the oxidizer. The interactions of the

chemistry with the prescribed time-dependent pressure variations are analyzed by numerical and

asymptotic methods for large values of the Zel’dovich number β� 1 measuring the temperature

dependence of the heat-release rate and small values of the relative amplitude ε� 1 of the

pressure fluctuation, with the the product βε assumed to be of order unity in the distinguished
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limit addressed. Evaluations of the local Rayleigh index for βε� 1 indicate that finite-rate

chemical-kinetic effects dominate the acoustic pressure response of strained flamelets under

conditions near diffusion-flame extinction. For robust, diffusion-controlled flames, on the other

hand, unsteady modifications to the outer chemical-equilibrium transport regions flanking the

reaction layer are more important but produce only moderate effects on acoustic instabilities.

The results of chapters 3 and 4, drawn on the basis of one-step model chemistry, are

supplemented with numerical computations of hydrogen-air systems employing realistic chemical-

kinetic mechanisms in the chapter 5. The Rayleigh index is employed as a vehicle for quantifying

inaccuracies of predictions caused by the introduction of reduced chemistry to decrease com-

putation times. The computations indicate that inaccuracies of a systematically reduced 2-step

mechanism, derived from a detailed 12-step mechanism for hydrogen-air systems, are small at

low strain rates but become appreciable as extinction is approached.
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Chapter 1

Aerodynamics of planar counterflowing

jets

1.1 Introduction

This chapter describes the impingement of two aligned gaseous jets of different density

counterflowing from opposed nozzles. Counterflow jets are ubiquitous in chemical engineering

applications, including different variants with nozzle separations and feed conditions designed

to optimize the specific mixing and reaction needs of the given application [1]. The closely

related problem of a jet impinging on a flat surface is of utmost interest in connection with the

aerodynamics of VTOL aircraft [2]. Recently, counterflow jets have found application in the field

of biology for use in hydrodynamic stretching of DNA molecules [3]. The specific conditions

addressed here, namely, low-Mach-number jets with moderately large Reynolds numbers and

nozzle separation distances of the order of the nozzle transverse size, are of interest in laminar

counterflow burners, schematically represented in figure 1.1, which are used in combustion

experiments to characterize the response to strain of nonpremixed and premixed flames [4].

Both axisymmetric and planar configurations are of interest in applications, with the former
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geometry analyzed in recent studies [5, 6] and the latter being investigated in the present paper by

a combination of analytical and numerical methods.

Planar counterflowing jets have been subject to a number of studies, mostly for configura-

tions with identical impinging jets, whose steady solution exhibits a symmetric structure closely

related to the stagnation-point flow formed by a jet impinging on a flat wall. The latter problem

has been investigated at length, to characterize both the heat transfer rate [7, 8] and the resulting

wall shear stress [9]. An interesting subclass of these problems includes those in which the flow

is inviscid, treated numerically for the case of a nozzle-free jet with different velocity profiles by

[10] and [11]. Potential flow was analyzed using conformal mapping by [12], who examined the

jet issuing from an aperture on a flat wall impacting normally on a parallel wall. The presence

of a nozzle was described approximately for potential flow in the work of [2] by prescribing

the condition of parallel flow at a finite distance from the wall, thereby extending the classical

result of an irrotational free jet impinging on a wall (or colliding against an identical free jet).

Li and collegues [13, 14] described the stability of the counterflowing jet flow with and without

excitation to describe the oscillations of the stagnation plane. Effects of confinement on the

oscillations were addressed in the stability analysis of [15] to characterize the dependence of the

dynamics observed in experiments [16, 17] on the Reynolds number and on the geometry, defined

by the ratio of nozzle spacing to nozzle radius.

Unequal counterflowing planar jets, with and without vorticity, have received considerably

less attention. The previous studies have focused on colliding jets confined in channels [18–20],

including the stability of the resulting configuration [15]. To the best of our knowledge, the case

of two planar jets issuing into an open space from aligned nozzles, relevant for slot-jet counterflow

combustors, has not been addressed in previous work.
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1.2 The flow structure in counterflow combustors

Counterflow burners are widely used in experiments of premixed, partially premixed, and

non-premixed flames. The planar flow sketched in figure 1.1 is relevant in connection to slot-jet

burners, used for instance in studies of edge-flame propagation [21–24]. The spanwise length

of these slot burners is sufficiently large to ensure that the resulting flow is locally planar away

from the edges. In the figure, two opposed planar jets with volumetric flow rates 2Q1 and 2Q2

issue into a stagnant atmosphere from aligned screen-free nozzles of the same semi-width H

placed at a separation distance 2L. In typical combustion experiments the mass fractions, density,

temperature, and transport coefficients are uniform upstream from the nozzle exit, although they

take in general different values in each of the feed streams, denoted by the subscripts 1 and 2,

including densities ρ∗1 and ρ∗2 and viscosities µ∗1 and µ∗2. The shape of the velocity profiles in the

feed streams depends on the development of the flow in the nozzle upstream from the exit plane.

Sufficiently long nozzles result in Poiseuille velocity profiles, that being the case considered in

figure 1.1, while short nozzles give velocity profiles that are uniform outside near-wall boundary

layers.

The mean jet velocity Um = Q1/H ∼ Q2/H used in experiments is much smaller than the

speed of sound, resulting in a low-Mach-number flow with spatial pressure variations that are

much smaller than the ambient pressure. For laminar flame experiments, the specific selection of

the geometry and injection conditions seeks to provide steady buoyancy-free laminar conditions

in the central near-stagnation-point region, of primary interest for combustion tests (see [25] for

a detailed discussion of scaling criteria for counterflow burners). For instance, the jet velocity

and nozzle size must be such that U2
m/(gH)� 1 to minimize buoyancy effects, associated with

density differences between the two feed streams and the surrounding ambient air or with those

induced in the near-flame region.
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The typical values of the Reynolds number

Re =
ρ∗1UmH

µ∗1
∼ ρ∗2UmH

µ∗2
(1.1)

range from about a hundred to about a thousand, so that the flow in the collision region is

nearly inviscid. Molecular transport effects, including effects of viscous stresses, mixing, and

heat conduction, are confined to thin layers, of small characteristic thickness H/Re1/2� 1. As

indicated in the insets of figure 1.1, one of the mixing layers is localized at the fluid surface

separating the two jets, which departs from the central stagnation point, and the others at the

fluid surfaces originating at the rims of the nozzles, separating the jets from the outer stagnant

gas. For the moderately large values of the Reynolds number found in applications, the shear-

driven instabilities affecting the mixing layers develop at a sufficiently slow rate for the central

near-stagnation point region to remain virtually steady, as verified in recent direct numerical

simulations [6].
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Figure 1.1: Schematic representation of the counterflow configuration considered here, includ-
ing a detailed view of the self-similar region around the stagnation point. The streamlines
x1(y), x2(y), and xs(y) bounding the jets correspond to numerical integrations with L/H = 2,
ρ∗2/ρ∗1 = 4, Q2/Q1 = 1.5, Re = 500, and Poiseuille velocity profiles in the feed streams.
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In combustion applications the flame is embedded in the mixing layer localized between

the two opposing streams, where molecular transport and chemical reaction occur. The changes

in temperature and density associated with the chemical heat release are confined to the interior of

this thin separating mixing layer, whereas the temperature and density (and also the composition)

remain uniform outside, and take in general different values on either side of the mixing layer,

equal to those in the corresponding feed streams. Therefore, at leading order in the limit Re� 1

the outer flow reduces to the inviscid collision of two jet streams of different density ρ∗1 and ρ∗2

bounded by sharp interfaces, whose location is to be calculated in a complicated free-boundary

problem by using the condition of negligible pressure jump across the boundary interfaces [26].

The solution for the inviscid outer flow provides in particular the tangential velocity found on

both sides of the interface separating the two jets, with a velocity jump occurring when the

colliding jets have dissimilar density ρ∗1 6= ρ∗2, as follows from the condition of equal pressure.

This vortex-sheet character is not present in opposed jets with ρ∗1 = ρ∗2, for which the resulting

inviscid velocity field remains continuous at the separating interface, thereby simplifying the

solution.

The solution for the flow inside the slender mixing layer separating the two jets requires

consideration of molecular-transport effects and, in combustion applications, also of chemical

reactions. The problem, which can be formulated in the boundary-layer approximation, depends

on the outer inviscid flow through the streamwise distribution of tangential velocity found on

both sides of the mixing layer. The solution provides the transverse distributions of temperature,

density, and composition, with boundary values given by the uniform properties of the bounding

inviscid streams, different in general on both sides. As a result of the chemical heat release, the

temperature is found to reach a maximum at the flame. Correspondingly, the density profile

across the mixing layer, with boundary values ρ∗1 and ρ∗2, exhibits a minimum at the flame, as

indicated in the inset of figure 1.1, whereas the radial velocity has an overshoot there, resulting

from the action of the pressure gradient imposed on the heated gas by the outer flow. The solution
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for the inner structure of the mixing layer provides in particular the small values of the transverse

velocity, of order Um/Re1/2, found at the outer edges of the mixing layer, resulting from the

thermal expansion associated with the chemical heat released at the flame. As shown by [27],

these displacement velocities determine the first-order corrections to the outer inviscid flow, of

order Re−1/2, which could be computed to increase the accuracy of the description, following a

rigorous matched-asymptotic analysis for Re� 1.

The description of the counterflow is simplified at distances from the stagnation point

small compared with H, in a central region where the flow is self-similar, both outside and inside

the mixing layer. The local velocity in the inviscid streams is given by the stagnation-point

potential solution, including a radial velocity along the interface separating the two jets that

increases linearly with the distance to the centreline y∗ according to A∗1y∗ in the inviscid stream 1

and A∗2y∗ in the inviscid stream 2. The stagnation-point strain rates A∗1 and A∗2, of order Um/H,

are related by ρ∗1A∗21 = ρ∗2A∗22 , as follows from the condition of equal pressure on both sides of

the mixing layer. The flow in the reactive mixing layer in this near-stagnation-point region is also

self-similar, with the temperature and composition varying with the distance to the stagnation

plane. The resulting one-dimensional counterflow problem, which has been the basis for studies

of flame-flow interactions in nonpremixed and premixed combustion [4], is amenable to numerical

integration by standard commercial codes. The solution depends on the outer flow only through

the value of the strain rate at the stagnation point A∗1 = (ρ∗2/ρ∗1)
1/2A∗2, the reciprocal of which

being the relevant local stretch time [28]. As mentioned above, at leading order in the limit

Re� 1 the value of A∗1 = (ρ∗2/ρ∗1)
1/2A∗2 can be determined, with small relative errors of order

Re−1/2� 1, from the analysis of the inviscid collision of two jets of different density, as done

earlier in connection with axisymmetric counterflows [6]. The corresponding analysis for the

case of planar jets, of direct interest for slot-jet counterflow burners, is to be presented below.

The description of inviscid counterflowing jets requires in general numerical integration of

the Euler equations. It will be seen below in §1.3 that the problem can be reduced by introducing
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density-weighted variables to one involving equal densities in both streams, resulting in a contin-

uous velocity across the surface separating both jets. Feed streams with uniform and Poiseuille

velocity profiles will be considered in the analysis. The potential-flow solution associated with

feed streams with uniform velocity profiles will be analyzed in §1.4 by conformal–mapping

techniques based on Kirchhoff’s method [29–31], with details of the needed mathematical de-

velopment presented in an appendix. Numerical integrations of the Euler and Navier–Stokes

equations will be used in §1.5 to quantify rotational flows for the case of Poiseuille velocity

profiles in the feed streams. The analytical and numerical results are used to quantify many

different relevant aspects of the flow, including the shape of the jet boundaries and the location

and morphology of the near-stagnation-point region, the latter of direct interest in combustion

applications. Finally, concluding remarks are given in §6.5.

1.3 Formulation

The problem to be analyzed below is the buoyancy-free low-Mach-number planar flow,

symmetric about the centreline, resulting from the collision of two steadily fed gaseous jets of

different density. Cartesian coordinates x= (x,y) centred at the middle point will be used in the

description, with x and y denoting the longitudinal and transverse distances scaled with H. The

mean velocity Um = Q1/H in stream 1 will be used as characteristic scale for the dimensionless

velocity v = (vx,vy), resulting in the nondimensional conservation equations

∇· (ρv) = 0, (1.2)

ρv ·∇v = −∇p′+
1

Re
∇· [µ(∇v+∇vT )], (1.3)

ρv ·∇T =
1

PrRe
∇· (k∇T ), (1.4)

ρv ·∇Yi =
1

SciRe
∇· (ρDi∇Yi), (1.5)
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with the equation of state taking the simplified form

ρT ∑
i

W1

Wi
Yi = 1. (1.6)

These equations must be complemented with expressions for the variation of the transport

parameters µ, k, and Di with the temperature and composition. The properties of stream 1 have

been used to define dimensionless quantities, including the temperature T , density ρ, viscosity µ,

thermal conductivity k, and diffusion coefficient Di of chemical species i. The composition is

described in terms of the mass fractions Yi of species i, with Wi representing in (1.6) its molecular

mass and W1 = 1/(∑iYi1/Wi) being the mean molecular mass in stream 1. In the momentum

equation, p′ represents the pressure difference from the ambient value scaled with ρ∗1U2
m. The

parameters appearing in the above equations include the Prandtl and Schmidt numbers Pr and Sci,

and the Reynolds number Re defined in (1.1), the latter taking moderately large values in typical

combustion applications.

1.3.1 Nearly inviscid flow

In the limit Re� 1, the shear layers bounding the jets, of characteristic thickness Re−1/2H

at distances of order H, appear as infinitesimally thin surfaces. As indicated in figure 1.1, the

two impinging streams are separated by the streamline x = xs(y) departing from the stagnation

point xo = (xo,0). In addition, each jet is separated from the outer stagnant gas by the streamline

x = x1(y) and x = x2(y) , respectively, each originating from their respective nozzle rim (x,y) =

(−L/H,1) and (x,y) = (L/H,1). These bounding surfaces are unknowns to be determined as

part of the solution of a free-boundary problem, to be formulated below.

Consideration of the limit Re� 1 in (1.4) and (1.5) leads to v ·∇T = v ·∇Yi = 0,

indicating that the temperature and composition remain constant along any given streamline in
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the nearly inviscid jets outside the bounding mixing layers. Using these equations in (1.6) yields

v ·∇ρ = 0, (1.7)

a result that can be used in (1.2) to give

∇·v = 0 (1.8)

and in (1.3) to give v ·∇(p′+ρv2/2) = 0. The latter corresponds to the familiar condition of

constant stagnation pressure p′+ρv2/2 along streamlines, yielding in particular

p′+ρv2/2 = p′o (1.9)

along the centreline, where p′o is the pressure at the stagnation point xo, and

|v|= constant at x = x1(y) and at x = x2(y) (1.10)

along the streamlines separating the jets from the stagnant air, where p′ = 0, with the constant

taking in general different values on the surface of each jet.

According to (1.7), for inviscid incompressible flow each streamline carries the value of

the density, so that the density field in the jet collision region is linked to the upstream boundary

distributions of density in the feed streams. In configurations in which the density of the feed

streams is nonuniform, the resulting density is different along different streamlines. In that case,

vorticity is generated in the jet collision region as a result of the interaction of misaligned pressure

and density gradients. This additional vorticity production supplements the vorticity already

carried by the feed streams. The analysis below is restricted to configurations involving feed

streams with uniform temperature and uniform composition, typically encountered in experiments,
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for which the density in each one of the jets is uniform, given by ρ = 1 in jet 1 and ρ = ρ∗2/ρ∗1 in

jet 2. Correspondingly, the baroclinic torque is negligible everywhere, except at the vortex sheet

x = xs(y), where it generates a velocity jump according to

|v|21 = (ρ∗2/ρ
∗
1)|v|22 along x = xs(y), (1.11)

with the subscripts 1 and 2 denoting the velocities on the left and right sides of the interface. The

above equation follows from the condition of zero pressure jump across the interface separating

the two jets, with the pressure evaluated with use made of p′+ρv2/2 = constant on both sides

of x = xs(y). Along all other streamlines the vorticity magnitude ω = ∂vy/∂x−∂vx/∂y remains

constant, with a value equal to that found in the feed streams, to be determined from the boundary

velocity distributions 
v = u1(y)ex as x→−∞,

v =−(Q2/Q1)u2(y)ex as x→ ∞,

(1.12)

where u1(y) and u2(y) represent nondimensional shape functions satisfying
∫ 1

0 u1dy=
∫ 1

0 u2dy= 1.

For example u1 = u2 = 1 and u1 = u2 = (3/2)(1− y2) for uniform and parabolic Poiseuille

distributions, respectively.

In the vicinity of xo = (xo,0), the velocity is given by the well-known stagnation-point

distribution 
− vx/(x− xo) = vy/y = A1 in stream 1,

− vx/(x− xo) = vy/y = A2 in stream 2,
(1.13)

where the dimensionless strain rates A1 = A∗1/(Q1/H2) and A2 = A∗2/(Q1/H2) are related by

A1 = (ρ∗2/ρ
∗
1)

1/2A2, (1.14)

consistent with (1.11). As previously mentioned, this inviscid value of the strain rate, to be
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quantified below in terms of the parameters defining the opposed-nozzle flow (i.e. L/H, ρ∗2/ρ∗1,

and Q2/Q1), determines the near-stagnation-point solution for the thin reactive mixing layer

separating the two jet streams. The accuracy of the selfsimilar mixing-layer solution, which

applies strictly at the centreline, can be expected to degrade with increasing distances from the

stagnation point as a result of curvature effects and of departures of the outer velocity from the

linear distributions vy = A1y and vy = A2y. Curvature effects can be quantified by computing the

shape of the separating streamline x = xs(y) away from the centreline, given by

xs = xo + y2/(2rc), (1.15)

with rc representing the local radius of curvature. On the other hand, the variations of the velocity

on both sides of the separating vortex sheet are of the form

|v|1 = (vy)1 = A1y+A′′1y3/6 and |v|2 = (vy)2 = A2y+A′′2y3/6, (1.16)

written with account taken of the result ∂2vy/∂y2 = 0 at y = 0, stemming from the symmetry

condition ∂vx/∂y = 0 at y = 0 and the solenoidal character of the velocity field. Clearly, configu-

rations with smaller values of r−1
c and A′′1 = (ρ∗2/ρ∗1)

1/2A′′2 can be expected to exhibit an extended

domain where the mixing layer is planar and is subject to a constant strain rate. In that respect,

quantifications of the near-stagnation-point region based on the inviscid solution can be useful

in assessing the range of validity of the one-dimensional selfsimilar description for the reactive

mixing layer.
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1.3.2 Vorticity-stream function formulation

In view of (1.8) the problem can be formulated in terms of the standard stream function

ψ, related to the vorticity by
∂2ψ

∂x2 +
∂2ψ

∂y2 =−ω. (1.17)

The vorticity is constant along the streamlines, so that ω = Ω(ψ), with the function Ω(ψ)

determined implicitly through the expressions


Ω =−du1

dy
, ψ =

∫ y

0
u1dy, for 0≤ ψ≤ 1

Ω =

(
Q2

Q1

)
du2

dy
, ψ =−

(
Q2

Q1

)∫ y

0
u1dy, for −Q2/Q1 ≤ ψ≤ 0

(1.18)

derived with use of the boundary distributions (1.12). The problem reduces to the integration of

∂2ψ

∂x2 +
∂2ψ

∂y2 =−Ω(ψ), (1.19)

supplemented with the implicit definition of Ω(ψ) given in (1.18) and subject to the boundary

conditions

ψ = 0

 at y = 0 for −∞ < x <+∞

and at x = xs(y) for y≥ 0,
(1.20)

ψ = 1

 at y = 1 for −∞ < x <−L/H

and at x = x1(y) for y≥ 1,
(1.21)

ψ =−Q2/Q1

 at y = 1 for L/H < x < ∞

and at x = x2(y) for y≥ 1.
(1.22)
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The surfaces xs(y), x1(y), and x2(y) are unknown free boundaries to be determined with use made

of the additional boundary conditions (1.10) and (1.11), written in the form


1
2 |∇ψ|2 = p′o− 1

2 [u
2
1(0)−u2

1(1)] at x = x1(y),

1
2(ρ
∗
2/ρ
∗
1)|∇ψ|2 = p′o− 1

2(ρ
∗
2/ρ
∗
1)(Q2/Q1)

2[u2
2(0)−u2

2(1)] at x = x2(y),
(1.23)

and

|∇ψ|21 = (ρ∗2/ρ
∗
1)|∇ψ|22 at x = xs(y), (1.24)

respectively. In writing (1.23) from (1.10) we have used (1.9) to express the pressure for the

parallel flow in the nozzles far upstream from the exit in terms of the stagnation-point pressure

p′o.

1.3.3 Reduction to the case of equal densities

The problem defined in (1.18)–(1.24) determines the stream function ψ(x,y) along with

the jet boundaries x1(y), x2(y), and xs(y), and the stagnation-point pressure p′o. Besides the shapes

of the velocity profiles in the feed streams, defined by the functions u1(y) and u2(y), the solution

depends on three parameters, namely, L/H, Q2/Q1, and ρ∗2/ρ∗1. As noted earlier in connection

with axisymmetric jets [6], the solution can be simplified by incorporating a renormalization factor

(ρ∗2/ρ∗1)
1/2 in the definition of the kinematic variables for the fluid of density ρ∗2. Specifically, we

introduce new density-weighted functions ψ̂ and Ω̂, defined by

ψ̂ =


ψ,

(ρ∗2/ρ∗1)
1/2ψ,

and Ω̂ =


Ω, for ψ > 0

(ρ∗2/ρ∗1)
1/2Ω, for ψ < 0,

(1.25)

to write (1.19) as
∂2ψ̂

∂x2 +
∂2ψ̂

∂y2 =−Ω̂(ψ̂), (1.26)
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to be integrated with the boundary conditions


ψ̂ = 0 at y = 0 for −∞ < x <+∞

ψ̂ = 1 at y = 1 for −∞ < x <−L/H

ψ̂ =−Λ at y = 1 for L/H < x <+∞

(1.27)

and 
ψ̂ = 1, 1

2 |∇ψ̂|2 = p′o− 1
2 [u

2
1(0)−u2

1(1)], at x = x1(y)

ψ̂ =−Λ, 1
2 |∇ψ̂|2 = p′o− 1

2Λ2[u2
2(0)−u2

2(1)] at x = x2(y),
(1.28)

which follow from (1.20)–(1.23), respectively, whereas the dynamic condition (1.24) is auto-

matically satisfied provided that∇ψ̂ is continuous, thereby removing the need to consider the

separating surface xs(y) as a free boundary. In the reduced formulation the ratios Q2/Q1 and

ρ∗2/ρ∗1 appear jointly in the new parameter

Λ =

(
ρ∗2
ρ∗1

)1/2(Q2

Q1

)
, (1.29)

with Λ2 representing a measure of the ratio of jet momentum fluxes. The function Ω̂(ψ̂),

identically zero for uniform velocity in the feed streams, can be determined in general from (1.18)

written in the form 
Ω̂ =−du1

dy
, ψ̂ =

∫ y

0
u1dy, as x→−∞,

Ω̂ = Λ
du1

dy
, ψ̂ =−Λ

∫ y

0
u2dy, as x→ ∞.

(1.30)

Inspection of (1.26)–(1.28) reveals that the transformation (1.25) effectively simplifies the

problem to one involving constant density, removing the vortex-sheet character of the separating

surface xs(y), and concurrently reduces the number of controlling parameters from three to only

two, namely, L/H and Λ. Since the streamline pattern found with Λ is a mirror image about the
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plane x = 0 of that found with 1/Λ, only flows with Λ≥ 1 need to be considered in the following.

The jet outer interfaces x1(y) and x2(y) remain as unknown free boundaries, to be deter-

mined along with the unknown value of the stagnation pressure p′o as part of the computation of

ψ̂(x,y) for given values of u1(y), u2(y), Λ, and L/H. The solution provides the location of the

stagnation point xo = (xo,0) and also the associated local values of

Ao =−
∂2ψ̂

∂x∂y

∣∣∣∣
x=xo

,
1
rc

=
1

3Ao

∂3ψ̂

∂y3

∣∣∣∣
x=xo

, and A′′o =− ∂4ψ̂

∂x∂y3

∣∣∣∣
x=xo

, (1.31)

with Ao = A1 = (ρ∗2/ρ∗1)
1/2A2 and A′′o = A′′1 = (ρ∗2/ρ∗1)

1/2A′′2 . The free-boundary problem formu-

lated above has analytical solutions only for configurations with uniform velocity distributions in

the feed streams, such that Ω̂ is identically zero, that being the case considered in the following

section, with rotational solutions addressed in §1.5.

1.4 Irrotational counterflow jets

1.4.1 General considerations

When the velocity profiles in the feed streams are uniform, the vorticity function Ω̂

in (1.26) is identically zero, so that the inviscid flow is irrotational. With u1 = u2 = 1, the

stagnation pressure in both feed streams is uniform, equal to the stagnation-point pressure p′o.

The presence of the collision region generates an overpressure in the feed streams upstream from

the nozzle exit, given by p′1 = p′o−1/2≥ 0 and p′2 = p′o−Λ2/2≥ 0, respectively. The boundary

condition (1.28) on the jet surface reduces to


ψ̂ = 1, 1

2 |∇ψ̂|2 = p′o, at x = x1(y),

ψ̂ =−Λ, 1
2 |∇ψ̂|2 = p′o, at x = x2(y),

(1.32)
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revealing in particular that the speed |∇ψ̂| remains constant along these free surfaces, with a

value given by U =
√

2p′o, to be determined as part of the analysis.

The configuration depicted in figure 1.2 corresponds to L∼ H, the case typically encoun-

tered in counterflow burners. Large and small values of L/H, also considered below, are of interest

in chemical engineering applications [1]. For large separation distances, in the symmetric case

Λ = 1 the problem reduces to the classical problem of collision of two free jets [29–31], with the

stagnation plane x = 0 located far from both nozzle exits. This symmetric configuration is known

to be prone to oscillatory instabilities [13] that cause the stagnation plane to shift alternatively

between both nozzle exits. Configurations with unbalanced momentum flux (i.e. Λ 6= 1) result

in the collision region migrating to the vicinity of the nozzle carrying less momentum (the left

nozzle in the cases Λ > 1 considered here). In that case, the presence of a collision region has

little effect on the flow at the outlet of nozzle 2, where the overpressure is p′2 = 0 and the velocity

profile remains uniform with magnitude Λ, so that for L/H � 1 and Λ > 1 the constant free

streamline speed U is simply equal to Λ.

The collision of the opposed jets results in two symmetric jets that emerge laterally, as

shown in figure 1.2. At transverse distances large compared with H the streamlines in these lateral

jets become aligned as the pressure approaches the ambient pressure p′ = 0, with the velocity

correspondingly approaching the unknown uniform value U =
√

2p′o across the jet, as follows

from conservation of stagnation pressure along the streamlines. Conservation of mass and of

longitudinal momentum provides the two relationships

h
H

U = 1+Λ and
h
H

U2 sinα = (Λ2−1)/2, (1.33)

respectively, involving the thickness h/H and deflection angle α of the lateral jet far from the

opening, the latter measured relative from the y-axis. These two expressions can be combined
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Figure 1.2: Schematic view of the collision region for L/H ∼ 1 and uniform velocity profiles in
the feed streams.

with U =
√

2p′o =
√

Λ2 +2p′2 to give

sinα =
Λ−1
2U

=
1
2

1−1/Λ

(1+2p′2/Λ2)1/2 , (1.34)

involving the unknown overpressure p′2 ≥ 0 in the feed stream 2. As can be seen, the value of α,

identically zero in the symmetric case Λ = 1, increases for increasing values of Λ. An interesting

conclusion stemming from (1.34) is that for the opposed-jet arrangement investigated here (i.e.

aligned jets issuing from nozzles of equal radius) the lateral-jet deflection is limited to a maximum

value α = π/6, achieved for Λ� 1 when the nozzles are placed far apart, so that the pressure in

nozzle 2 equals the ambient value p′2 = 0.

The thickness of the shear layers at the periphery of the lateral jets, small in the collision

region, grow with distance, so that the potential description given here fails at distances of the

order of Re times the jet width h. Consideration of viscous effects, which are significant all across

the jet in this far-field region, would be needed to describe the transition of the jet velocity profile

from the uniform value U to the far-field Bickley profile, as done by [32].
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1.4.2 Selected potential-flow formulae

The solution simplifies for L/H� 1, in that the flow in the nozzles away from the small

opening, including the central region near the stagnation point, is independent of the lateral

emerging jets, with the opening acting as an apparent point sink of strength (1+Λ) for the flow

in the nozzles. The solution can be determined using superposition of a uniform flow and a sink

in a channel [see 31] to give

ψ̂ = y− 1+Λ

π
arctan

[
eπx sin(πy)

eπx cos(πy)+1

]
. (1.35)

The above expression can be used to determine the stagnation–point axial location from the

condition ∂ψ̂/∂y = 0 at y = 0 as well as the values of Ao, r−1
c , and A′′o from (1.31), yielding

xo =
1
π

ln(1/Λ), Ao =
πΛ

Λ+1
, rc =

3(Λ+1)
π(Λ−1)

, and A′′o =−π3Λ(Λ2−4Λ+1)
(Λ+1)3 , (1.36)

independent of L/H. The high-speed flow at distances of order L � H from the opening

corresponds to the potential solution for the discharge of a pressurized container through an

aperture, described for instance on pp. 310–311 of [31], including an emerging jet with

h
H

=
2π

2+π

L
H

and U =
2+π

2π

1+Λ

L/H
, (1.37)

with the associated value of h/(2L) = π/(2+ π) ' 0.61 being the well-known coefficient of

contraction of a planar jet. Because of its large velocity, the deflection of the emerging jet,

required to accommodate the unbalanced momentum flux of the opposed streams, is very small,

as can be seen by using (1.33) and (1.37) to write

sinα =
π

2+π

Λ−1
Λ+1

L
H
. (1.38)
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The derivation of the corresponding analytic solution for the potential flow in the general

case L/H ∼ 1 requires use of conformal mapping techniques. A full and systematic discussion of

the needed analysis is presented in § 1.6. The development provides, in particular, the equation

h/H = cosα

{
2L/H +

1
πU2

[
(U2 +1) ln

(
U−1
U +1

)
+(U2 +Λ

2) ln
(

U−Λ

U +Λ

)
+

Λ2−1
2

ln
(

2U +Λ−1
2U−Λ+1

)]}
, (1.39)

relating the three unknowns α, h/H, and U with the parameters Λ and L/H, as well as the

expressions

Ao =
πΛU4

(U2 +Λ)2(Λ+1)
,

1
rc

=
πU2(U2−2Λ)(Λ−1)

3(Λ+1)(U2 +Λ)2 , A′′o =
π3U8Λ

(Λ+1)3(U2 +Λ)6

× [4U2
Λ(Λ−2)(2Λ−1)−U4(Λ2−4Λ+1)−2Λ

2(3Λ
2−7Λ+3)]

(1.40)

for the stagnation–point properties in terms of U and Λ. Also, the conformal transformation

provides integral expressions for the boundary surfaces x1(y) and x2(y), given in (1.67) and (1.68),

and for the separating streamline xs(y) departing from the stagnation point xo = (xo,0), obtained

by integrating (1.65) along the contour Γ defined by (1.73), with xo determined from (1.72).

Equations (1.40), valid in general for configurations with L/H ∼ 1, enable quantification

of stagnation-point properties in the limiting cases L/H � 1 and L/H � 1. For instance, the

expressions given in (1.36) for Ao, r−1
c , and A′′o when L/H � 1 may be recovered by letting

U → ∞ in (1.40), the appropriate limit as L/H → 0. In the opposite limit L/H � 1 the free–

stream velocity reduces to U = Λ, as discussed above, so that (1.40) gives

Ao =
πΛ3

(Λ+1)3 ,
1
rc

=
πΛ(Λ−2)(Λ−1)

3(1+Λ)3 , A′′o =−π3(Λ−1)2Λ5(Λ2−10Λ+6)
(1+Λ)9 (1.41)

as the limiting values characterizing the stagnation point for distant nozzles with L/H� 1.
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Figure 1.3: The variation with nozzle spacing L/H of the deflection α of the emerging jet (a),
surface speed U (b), and emerging-jet width h/H (c) for selected values of the momentum-flux
ratio Λ. The dashed line in panels (a) and (c) correspond to Λ→ ∞.

1.4.3 General dependences on L/H and Λ

The formulas developed above can be employed to determine the dependence of different

flow features on the inter–nozzle spacing L/H and on the momentum-flux ratio Λ. The free-

surface velocity U and the deflection angle α and dimensionless width h/H of the emerging

jet are computed by solving the mass and momentum conservation equations given in (1.33)

together with (1.39). For ease of calculation, it is convenient to select the values of Λ and U and

then use (1.33) to determine α and h/H, with the corresponding value of L/H finally computed

from (1.39). Results are shown in figure 1.3 in the extended parametric ranges 0 < L/H ≤ 4 and

1≤ Λ≤ 10.

The curves in figure 1.3 help to quantify the effect of the inter–nozzle spacing L/H on

the resulting emerging jet. For small values of L/H the inter–nozzle opening appears as a small

gap, so that a large stagnation pressure p′o is needed to maintain the finite outflow rate 1+Λ.

This results in emerging jets with larger speeds U and smaller thicknesses h/H, as described by

the asymptotic behaviors given in (1.37) and (1.38), corresponding to a jet discharging from a

pressurized container through an aperture of width 2L on a flat wall. The opposite limit L/H� 1

corresponds to two nozzles placed at large distances. In the symmetric case Λ = 1, the two jets

collide at the midpoint between the two distant nozzles, giving rise to two identical transverse jets
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of width h = 2H and velocity U = 1. When Λ > 1, the collision region migrates to the vicinity of

nozzle 1, where the outgoing stream encounters the opposed jet of stream 2, which effectively

behaves as a free jet with speed U = Λ. This is also the speed of the emerging jet for L/H� 1,

whereas its thickness approaches h/H = (1+Λ)/U = (1+Λ)/Λ in this same limit, as follows

from continuity. The jet deflection, identically zero in the symmetric case Λ = 1, is seen to

increase with increasing L/H for Λ 6= 1 to reach a maximum value α = arcsin[(Λ−1)/(2Λ)] for

L/H� 1, as can be obtained from (1.34) with U = Λ. As pointed out earlier, the deflection is

limited to a maximum value α = π/6, reached as Λ→ ∞.
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Figure 1.4: Free–streamline patterns for different values of Λ and L/H, including the outer
interfaces ψ̂ = 1 and ψ̂ = Λ (solid curves) and the separating interface ψ̂ = 0 (dashed curves).

The interfaces x= x1(y), x= x2(y), and x= xs(y) are shown in figure 1.4 for configurations

with unbalanced momentum flux and different nozzle separation distances. As expected, a larger

value of Λ results in a displacement of the stagnation point towards the jet with smaller momentum
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and in a larger deflection of the emerging jet, the latter feature quantified in figure 1.3a. The

variation with L/H of the distance xo +L/H between the stagnation point and the left nozzle

is shown in figure 1.5a, with negative values of xo +L/H corresponding to stagnation points

lying inside the left nozzle. As can be seen, for a given momentum-flux ratio the stagnation point

moves for increasing L/H from the location − ln(Λ)/π corresponding to L/H = 0 to reach a

finite distance from the nozzle as L/H→ ∞, the only exception being the symmetric case Λ = 1,

for which the stagnation point keeps getting farther according to xo +L/H = L/H. It is worth

noting that for Λ >∼ 8.4 the stagnation point remains inside the nozzle regardless of the value of

L/H.

As previously mentioned, the flame in combustion experiments is embedded in the mixing

layer separating the two jets, centred about the inviscid interface x = xs(y). Interest is focused

on the near-stagnation-point region, where the solution for the inner structure of the reactive

mixing layer is selfsimilar in the first approximation, determined by stagnation-point values

of the strain rate A1 and A2 found in both colliding streams outside the mixing layer, related

by Ao = A1 = (ρ∗2/ρ∗1)
1/2A2. For slot nozzles with upstream uniform velocity profiles in the

feed streams the analytic expression given in (1.40) can be employed to determine Ao, with Λ

and L/H entering as the only controlling parameters. The value of Ao evaluated from (1.40)

with the surface velocity U obtained from solving (1.33) and (1.39) is shown in figure 1.5b

as a function of L/H for different Λ. The results indicate that Ao increases with increasing Λ

and with decreasing L/H, so that the resulting values range between the minimum Ao = π/8,

corresponding to symmetric configurations with distant nozzles, to the maximum Ao = π, found

irrespective of the nozzle spacing when the momentum flux is severely unbalanced.

The selfsimilar solution for the counterflow mixing layer assumes a locally planar structure,

with negligible curvature. In reality, however, the separating interface is curved, and there is

interest in quantifying this curvature to assess departures from locally planar selfsimilar structures.

This is done in figure 1.5c with use made of (1.40). The plots reveal that the curvature is always
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Figure 1.5: The variation with L/H of the distance of the stagnation point from the exit plane
of the left nozzle xo +L/H (a), the stagnation-point strain rate Ao (b), the local curvature of
the separating interface at the stagnation point 1/rc (c), and the parameter A′′o measuring the
departures of the velocity from the stagnation-point solution (d) for selected values of Λ; the
dots along the vertical axes represent the limiting values given in (1.36) for L/H = 0 whereas
the dashed lines are the asymptotic values given in (1.41) for L/H� 1.

positive for Λ > 2, corresponding to convex interfaces. For values of the momentum-flux ratio

in the range 1 < Λ < 2, however, the curvature becomes negative for sufficiently large values

of L/H, with a minimum value, reached as L/H → ∞, given in (1.41). This change of sign of

the curvature from convex to concave as the inter-nozzle distance is increased is apparent in the

separating interfaces shown in figure 1.4 for Λ = 1.5. The results indicate that for configurations

with L/H ∼ 1 and Λ <∼ 2, most often found in typical experimental arrangements, the separating

streamline remains fairly flat, a finding that supports the neglect of curvature effects in analyzing

the structure of the reactive mixing layer.

Also central to the selfsimilar character of the counterflow mixing layer is the assumption
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that the velocity in the outer inviscid stream increases linearly with the streamwise distance, as

occurs sufficiently close to the stagnation point. With increasing distances, however, the deviations

from the linear acceleration become more noticeable, with the nondimensional parameters A′′1

and A′′2 measuring the extent of the departures, as indicated in (1.16). The value of A′′o = A′′1 =

(ρ∗2/ρ∗1)
1/2A′′2 evaluated from (1.40) is shown in figure 1.5d. For L/H <∼ 1, the differences in

values of A′′o for different Λ can be fairly large, with small values of Λ resulting in accelerating

flows with A′′o > 0 whereas sufficiently large values yield decelerating velocities with negative

A′′o . The differences diminish as the nozzle spacing increases. As seen in figures 1.5c and 1.5d,

configurations with 1≤ Λ≤ 2 tend to produce relatively small values of A′′o and 1/rc for L/H >∼
1.5, delineating an attractive parametric range for experimental designs aimed at minimizing

departures of the mixing-layer structure from one-dimensional solutions.

1.5 Counterflowing jets with distributed vorticity

We now investigate flows in which Ω̂ 6= 0, specifically considering the case of long nozzles

with Poiseuille flow in each feed stream, for which Ω̂(ψ̂) is given by the implicit representation

ψ̂ =


(Ω̂/6){3− (Ω̂/3)2} for ψ̂ > 0

(Ω̂/6){3− [Ω̂/(3Λ)]2} for ψ̂ < 0
(1.42)

as follows from (1.30) with u1 = u2 = (3/2)(1− y2). The description of the inviscid flow

requires numerical integration of (1.26)–(1.28), with the interfaces x = x1(y) and x = x2(y)

entering as free boundaries. The constant speeds along these interfaces are given from (1.28) by

U1 = [2p′o− (3/2)2]1/2 and U2 = [2p′o− (3/2)2Λ2]1/2, respectively, where p′o is the stagnation-

point pressure. The boundary distribution of stagnation pressure p′+ 1
2 |∇ψ̂|2 is given by p′o +

1
2(3/2)2[(1−y2)2−1] in stream 1 and by p′o+

1
2(3/2)2Λ2[(1−y2)2−1] in stream 2, respectively.

Since the stagnation pressure is different for different streamlines, the velocity across the emerging
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Figure 1.6: Streamlines corresponding to L/H = 0 for feed streams with Poiseuille velocity pro-
files (upper half of the plots) and with uniform velocity profiles (lower half of the plots). Besides
the separating streamline ψ̂ = 0, denoted with a dashed curve, the plots show the streamlines
ψ̂ = (0.05,0.2,0.4,0.6,0.8) for stream 1 and the streamlines ψ̂ =−Λ× (0.05,0.2,0.4,0.6,0.8)
for stream 2.

jet exhibits a nonuniform distribution in the far field, where p′ = 0, with the maximum velocity,

equal to
√

2p′o, found along the separating streamline x = xs(y).

The solution simplifies for L/H � 1 when the description of the flow in the nozzles

away from the openings does not require consideration of the separating interfaces. This case

is considered in §1.5.1, which includes comparisons with the irrotational results derived earlier

in §1.4.2 to investigate influences of boundary velocity distributions. Next, we shall consider

configurations with L/H ∼ 1. Instead of solving the complicated free-boundary problem (1.26)–

(1.28) arising in the inviscid limit, the large-Reynolds-number flow will be described through

integrations of the complete Navier–Stokes equations for 100≤ Re≤ 500. Results of a selected

group of computations with uniform feed streams will be compared with the exact potential

solution to validate the numerical description and also to test the reduced parametric dependence

identified above.

1.5.1 Rotational flow with L/H� 1

For cases with L� H, the velocity at distances of order L from the opening becomes a

factor H/L larger than that found in the feed streams, as follows from a straightforward continuity

balance. The associated point–sink singularities arising in the limit L/H → 0 at the apparent

opening locations (x,y) = (0,±1) can be effectively handled in the numerical description by
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expressing ψ̂ as the sum of a potential stream function ψ̂p carrying the volume flux of the two

streams and a rotational stream function ψ̂r with associated zero volume flux. The rotational

stream function satisfies
∂2ψ̂r

∂x2 +
∂2ψ̂r

∂y2 =−Ω̂(ψ̂), (1.43)

where Ω̂(ψ̂) must be evaluated from (1.42) in terms of ψ̂ = ψ̂p + ψ̂r with ψ̂p given in (1.35). The

boundary conditions for ψ̂r reduce to

ψ̂r = 0 at y = 0,1 for −∞ < x < ∞ (1.44)

and

ψ̂r =
y
2
(1− y2) as x→−∞ and ψ̂r =−Λ

y
2
(1− y2) as x→ ∞, (1.45)

for 0≤ y≤ 1. The stream function approaches the Poiseuille distributions according to


ψ̂r =

y
2
(1− y2)+C−∞eλ1xF1(y) as x→−∞,

ψ̂r =−Λ
y
2
(1− y2)+C+∞e−λ1xF1(y) as x→+∞,

(1.46)

where λ1 = 2.59 and F1 are the smallest eigenvalue and corresponding eigenfunction of the

homogeneous problem

F ′′n +

[
2

1− y2 +λn

]
Fn = 0; F(0) = F(1) = 0, (1.47)

obtained by linearizing (1.43) about the Poiseuille velocity distribution. The constant factors C±∞

in (1.46) are to be determined as part of the numerical integration of (1.43).

Equation (1.43) was solved iteratively on a fixed rectangular domain until convergence was

achieved, determined by the condition ||ψ̂k+1
r −ψ̂k

r ||max < 10−6. A second-order central-difference
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Figure 1.7: The variation with Λ for L/H = 0 of the distance of the stagnation point from the
exit plane of the left nozzle xo (a), the stagnation-point strain rate Ao (b), the local curvature
of the separating interface at the stagnation point 1/rc (c), and the parameter A′′o measuring the
departures of the velocity from the stagnation-point solution (d) as obtained numerically for
selected values of Λ with boundary Poiseuille velocity profiles (dashed curves) and evaluated
from (1.36) for uniform velocity profiles (solid curves).

scheme was used to discretize (1.43) written at each iteration k in the form ∇2ψ̂k+1
r = Ω̂(ψ̂k),

which includes a nonlinear solve for Ω̂(ψ̂k) as defined by the implicit representation (1.42). To

facilitate convergence of the integrations in the finite domain x−∞ ≤ x ≤ x+∞, the boundary

conditions (1.45) as x→±∞ were replaced by


ψ̂r−

1
λ1

∂ψ̂r

∂x
=

y
2
(1− y2) at x = x−∞,

ψ̂r +
1
λ1

∂ψ̂r

∂x
=−Λ

y
2
(1− y2) at x = x+∞,

(1.48)

derived with account taken of the asymptotic behaviors (1.46). The solution was found to be

independent of the longitudinal extent of the integration domain for sufficiently large values of

−x−∞ and x+∞, with the results shown in figures 1.6 and 1.7 corresponding to −x−∞ = x+∞ = 5.
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The streamlines ψ̂ = ψ̂p + ψ̂r = constant are shown in figure 1.6 for different values of Λ

along with the corresponding potential-flow results, evaluated with use made of (1.35). As can be

seen, the general morphology of the flow is not critically affected by the shape of the boundary

velocity distribution. The resulting changes in connection with the stagnation point are further

quantified in figure 1.7. In the range 1≤ Λ≤ 10, the relative changes in axial location xo and in

the local curvature 1/rc of the separating streamline x = xo + y2/(2rc) are of the order of 5 %.

By way of contrast, the local velocity field in the vicinity of xo = (xo,0) is much more sensitive

to the shape of the velocity in the feed streams, as seen in figures 1.7b and 1.7d. The higher

velocity of the Poiseuille distribution at the centreline produces a significantly higher value of Ao.

The parameter A′′o , measuring the variation of the strain rate along the separating interface also

exhibits pronounced differences. In particular, for Λ∼ 1 the rate of increase of the strain rate is

considerably larger for potential flow.

1.5.2 Vortical flow with L/H ' O(1)

The computation of inviscid flows with free boundaries is in general a difficult task,

especially with vorticity present. As shown by [26] when examining the related problem of an

axisymmetric constant-density jet impinging on a perpendicular wall, the inviscid description can

be approached by considering integrations of the Navier–Stokes equations for moderately large

values of the Reynolds number, with associated departures from inviscid flow of order Re−1/2.

This is the procedure followed below.

The previous results concerning the parametric dependence of the problem in the limit

Re� 1 indicate that the specific selection of composition and temperature in the feed streams for

the Navier–Stokes computations is not critical, in that different configurations with the same value

of Λ approach the same nearly inviscid flow structure in the limit Re� 1, with differences arising

only in the interior of the mixing layers surrounding the jets. For simplicity, the integrations below

pertain to isothermal jets of two gases of different densities ρ∗2 and ρ∗1 but identical viscosities
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Figure 1.8: Free and separating streamlines corresponding to uniform velocity in the feed
streams and L/H = 2 obtained from numerical integrations of the Navier–Stokes equations for
Re = 500 with ρ∗2/ρ∗1 = 1 and Q2/Q1 = 3/2 (solid curves), with ρ∗2/ρ∗1 = 9/4 and Q2/Q1 = 1
(dashed curves), and from evaluation of the potential–flow results of §1.4 (dash-dotted). All
three cases correspond to Λ = 3/2.

µ∗1 = µ∗2, so that µ = 1 in (1.3). The density of the ambient gas is taken to be equal to that of

stream 1, so that the density at any point can be computed in terms of the mass fraction Y2 by

writing (1.6) in the form ρ = [1−Y2 +Y2(ρ
∗
1/ρ∗2)]

−1, which can be used in (1.5) to give

v ·∇ρ =
ρ

ScRe
∇· (1

ρ
∇ρ) (1.49)

as a conservation equation for the gas density. Here Sc = µ∗1/(ρ
∗
1D∗) is the Schmidt number

based on the binary diffusion coefficient D∗ of the two gases, with the value Sc = 0.7 used in

the numerical integrations reported below. The problem reduces to the integration of (1.2), (1.3),

and (1.49) with boundary conditions in the feed streams vx− (3/2)(1− y2) = vy = ρ−1 = 0 as

x→−∞ and vx+(3/2)(Q2/Q1)(1−y2)= vy = ρ−(ρ∗2/ρ∗1)= 0 as x→+∞. Nonpermeable walls

with a nonslip flow condition are employed in the description, along with the symmetry conditions

∂vx/∂y= vy = ∂ρ/∂y= 0 at y= 0 and a condition of vanishing normal stress in the surrounding gas

atmosphere, where ρ= 1. The equations were integrated in the rectangular domain x−∞≤ x≤ x+∞
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and 0≤ y≤ y+∞, with −x−∞ = x+∞ = 3L/H and y+∞ = 7. The integrations employed a finite-

element method with P1 elements for the pressure field and P2 elements for the remaining

variables, combined with a Newton-Raphson root-finding algorithm; details of the discretization

method, used for instance by [33], can be found in [34]. An illustration of the resulting flow

is given in figure 1.1, where the boundary streamlines x1(y), x2(y), and xs(y) are obtained by

integrating the above problem for L/H = 2, ρ∗2/ρ∗1 = 4, Q2/Q1 = 1.5, Re = 500.

For the purpose of verification, a number of integrations were performed for uniform

velocity in the feed streams, with a slip flow condition used at the wall to make the results of

the integrations independent of the longitudinal extent of the integration domain. Figure 1.8

shows the separating streamlines (departing from the nozzle rims and from the stagnation point

xo) obtained for L/H = 2 from integrations of the Navier–Stokes equations with Re = 500

for two different set of conditions, namely, ρ∗2/ρ∗1−1 = Q2/Q1−3/2 = 0 and ρ∗2/ρ∗1−9/4 =

Q2/Q1−1 = 0, resulting in the same momentum-flux parameter Λ = 3/2. The associated curves

are practically indistinguishable, supporting the reduced parametric dependence predicted by

the density-weighted formulation presented in §1.3.3. The figure includes comparisons with the

potential–flow solution derived in §1.4, whose associated jet interfaces x = x1(y), x = x2(y), and

x = xs(y) are represented as dot-dashed curves. The close agreement of the potential flow with the

Navier–Stokes results, expected in the limit Re� 1 [26], serves as verification for the numerical

method.

To investigate the flow near the stagnation point the distribution of longitudinal velocity

along the centreline obtained with Poiseuille velocity profiles in the feed streams is plotted in fig-

ure 1.9 for Re = 500, L/H = 2, and three different density ratios, with corresponding volume–flux

ratios Q2/Q1 selected to maintain in all three cases the same value Λ = (ρ∗2/ρ∗1)
1/2Q2/Q1 = 1.5.

The velocity on each side of the stagnation point outside the mixing layer follows a linear distri-

bution given by vx = −A1(x− xo) in stream 1 and vx = −A2(x− xo) in stream 2, in agreement

with the local potential solution (1.13). The values of A1 and A2, which can be obtained by
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Figure 1.9: The distribution of longitudinal velocity along the centreline determined from
the Navier–Stokes computations for Re = 500, L/H = 2, and Q2/Q1 = 1.5/(ρ∗2/ρ∗1)

1/2 with
ρ∗2/ρ∗1 = (4/9,1,9/4); the symbols represent the rescaled velocity distributions ρ1/2vx for
ρ∗2/ρ∗1 = 4/9 (squares) and for ρ∗2/ρ∗1 = 9/4 (circles).

extrapolating the numerical results near the stagnation point, are seen to satisfy the relation-

ship Ao = A1 = (ρ∗2/ρ∗1)
1/2A2 stated in (1.14). The resulting values, Ao = (1.58,1.59,1.60) for

ρ∗2/ρ∗1 = (4/9,1,9/4), are almost identical in all three cases, in agreement with the reduced invis-

cid formulation introduced earlier, which predicts that the strain rate A1 = (ρ∗2/ρ∗1)
1/2A2 depends

on ρ∗2/ρ∗1 and Q2/Q1 through the single parameter Λ = (ρ∗2/ρ∗1)
1/2(Q2/Q1). The derivation of

this reduced dependence is based on the density-weighted variables defined in (1.25), which are

tested in figure 1.9 by representing with symbols the distribution of ρ1/2vx for the two cases

with unequal jet densities. The resulting curves fall on top of the velocity distribution of the

uniform-density case, further illustrating the applicability of the reduced inviscid formulation.

The dependence of the results on the Reynolds number was found to be relatively

weak for moderately large values of Re. Only small variations of a few percent were found

in values of the stagnation-point location xo and in the stagnation-point values of Ao and A′′o

for 100 ≤ Re ≤ 500, with somewhat larger variations affecting the curvature of the separat-

ing streamline 1/rc. For instance, for L/H = 2, ρ∗2/ρ∗1 = 1, and Q2/Q1 = 1.5 the integra-

tions provide xo = (−1.27,−1.29,−1.29), Ao = (1.55,1.58,1.59), A′′o = (1.07,1.07,1.07), and
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Figure 1.10: The variation with L/H of the distance of the stagnation point from the exit plane
of the left nozzle xo +L/H (a), the stagnation-point strain rate Ao (b), the local curvature of
the separating interface at the stagnation point 1/rc (c), and the parameter A′′o measuring the
departures of the velocity from the stagnation-point solution (d) obtained from the Navier–
Stokes computations for Re = 500 and ρ∗2/ρ∗1 = 1; the solid symbols along the vertical axes
represent the limiting values given in figure 1.7.

1/rc = (0.044,0.0561,0.0589) for Re = (100,300,500), respectively.

The computations for Re = 500 and ρ∗2/ρ∗1 = 1 are used in figure 1.10 as a basis to

investigate the dependence of xo, Ao, 1/rc, and A′′o on L/H and Λ. The numerical evaluation of Ao

involves a linear fit about x = xo of the longitudinal velocity distribution vx(x,0). Similarly, A′′o is

obtained by computing the slope of a linear fit of the longitudinal distribution of ∂2vx/∂y2(x,0)

about x = xo, while the computation of rc requires a parabolic fit of the form (1.15) for the

separating streamline departing from xo. The resulting curves, which include the limiting results

for L/H = 0 computed earlier in §1.5.1, exhibit trends that are qualitatively similar to those of

the irrotational results in figure 1.5.
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1.6 Conformal mapping solution for uniform velocity profiles

in feed streams

This section is concerned with the solution of irrotational counterflows in the general case

L/H ∼ 1, represented schematically in figure 1.11a. The resulting flow can be described in terms

of a complex potential

w(z) = φ̂+ iψ̂, (1.50)

with associated complex velocity

ν(z) =
dw
dz

= qe−iθ, (1.51)

where q and θ are the components of the velocity in polar form. The needed conformal trans-

formation, presented below, is based on Kirchhoff’s method, delineated in section 11.50 of

[31].

1.6.1 Definition of conformal planes and associated mapping

The boundary points employed in the conformal transformation are indicated in figure

1.11a, which includes four additional panels representing the different mapping planes involved

in the solution. The points A∞ and A′∞ are considered to be at z =∓∞ respectively. The location

of the stagnation point O, which generally does not coincide with the origin z = 0 except in the

symmetric case Λ = 1, must be determined as part of the solution. The speed is constant and

equal to U along the free streamlines BC∞ and B′C′∞ bounding the resulting free jet that forms

downstream from the impinging region. This lateral jet becomes uniform at C∞C′∞ with width

h/H and direction α measured relative to the y-axis.

The objective of the following development is to determine, for given values of Λ and

L/H, (i) the location of the free streamlines x = x1(y) and x = x2(y), (ii) the speed U along
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these streamlines, (iii) the width h/H and angle α of the emerging jet, (iv) the location of the

stagnation point z = xo, (v) the value Ao of the strain rate at the stagnation point, (vi) the shape of

the separating interface x = xs(y), including its curvature 1/rc at z = xo, and (vii) the parameter

A′′o measuring the initial variation of the strain rate along x = xs(y).

Defining the ratio U/ν we obtain the hodographic plane shown in figure 1.11b. Taking

the logarithm

Q = ln(U/ν) = ln(U/q)+ iθ (1.52)

gives a polygon whose interior may be mapped onto the upper-half ζ−plane using the elementary

transformation ζ = coshQ, such that

ζ =
1
2

(
U
q

eiθ +
q
U

e−iθ
)
, (1.53)

thus defining the location of the different points in the ζ−plane in terms of the unknown parameter

U . For example, the point A∞, corresponding to q= 1 and θ= 0, is mapped onto ζ= (U2+1)/2U .

The ζ−plane is shown in figure 1.11e where the positive constants

a1 =
U2 +Λ2

2ΛU
, a2 =

U2 +1
2U

, c = sinα, (1.54)

are the images of A′∞, A∞, and C, respectively. The points B and B′ are mapped onto ±1, while

the stagnation point O is mapped to ζ = ∞, as shown in the figure.

Taking φ̂ = 0 at the stagnation point O, implies that both A∞D∞ and A′∞D′∞ correspond to

φ̂ =−∞, while C∞C′∞ corresponds to φ̂ = ∞. These selections are accounted for when plotting the

w plane in figure 1.11d.

The next step involves mapping the w−plane, regarded as interior to a polygon, onto the

upper half ζ−plane by use of the Schwarz-Christoffel transformation. The images in the ζ-plane

have already been determined from the mapping Q 7→ ζ defined above. Hence, the required

39



transformation is given by

dw
dζ

= K(ζ+a1)
−1(ζ+ c)−1(ζ−a2)−1 = K

{
δ

ζ−a2
+

β

ζ+a1
− γ

ζ+ c

}
, (1.55)

where K = KR + iKI is in general a complex constant and δ,β, and γ are given by

δ =
1

(a1 +a2)(c+a2)
, β =

1
(a1 +a2)(a1− c)

, γ =
1

(a1− c)(c+a2)
, (1.56)

obtained from partial fraction expansion, with δ+β− γ = 0. Integrating (1.55) yields

w = K
{

δ ln(ζ−a2)+β ln(ζ+a1)− γ ln(ζ+ c)
}
+E, (1.57)

where E is a complex constant of integration. Rearranging (1.57) in the form

w =
K

(a1− c)(c+a2)(a1 +a2)

{
−a1 ln

(
ζ+ c
ζ−a2

)
−a2 ln

(
ζ+ c
ζ+a1

)
+c ln

(
ζ+a1

ζ−a2

)}
+E,

(1.58)

and enforcing the condition that the stagnation point O (w = 0) is mapped to ζ = ∞, immediately

gives E = 0 since the logarithms in (1.58) vanish as ζ→ ∞.

On D∞O, ψ̂ = 0 and hence w is real. Since in the ζ-plane the portion D∞O corresponds to

ζ−a2 > 0, ζ+a1 > 0, ζ+ c > 0, all logarithms in (1.57) are necessarily real. Hence, evaluating

(1.57) along D∞O, where φ̂ 6= 0 and ψ̂ = 0, reveals that KI = 0, so that K = KR is purely real.

Evaluating (1.57) along BC∞, corresponding to the streamline ψ̂ = 1, and equating real

and imaginary parts yields

K =
(a1 +a2)(c+a2)

π
. (1.59)

The constant K may be related to the momentum–flux parameter Λ, by evaluating (1.57) along
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B′C′∞ for which ψ̂ =−Λ. Equating real and imaginary parts and solving for K gives

K =
Λ(a1− c)(a1 +a2)

π
. (1.60)

Equating (1.59) and (1.60) yields c = (Λ−1)/2U , relating c = sinα with Λ and U . Note that this

last result may be derived directly from the continuity and momentum integral balances (1.33).

In summary, we have obtained the following mappings to the upper half ζ−plane

Q(ζ) = cosh−1
ζ = ln(ζ+

√
ζ2−1), (1.61)

w(ζ) = K
{

δ ln(ζ−a2)+β ln(ζ+a1)− γ ln(ζ+ c)
}
. (1.62)

Equation (1.61), together with the definition of Q given in (1.52) provide

ν(ζ) =
U

ζ+
√

ζ2−1
. (1.63)

for the complex velocity.

1.6.2 The jet outer boundaries

In order to compute streamlines, the line element

dz =
dz
dw

dw
dζ

dζ =
1
ν

dw
dζ

dζ, (1.64)

is expressed as
dz
dζ

= Z(ζ) =
K
U

ζ+
√

ζ2−1
(ζ+a1)(ζ+ c)(ζ−a2)

(1.65)

with use of (1.55) and (1.63). Since the free streamlines separating the jets from the ambient

gas are mapped onto the segment −1 < ζ < 1 on the real axis of the ζ− plane, we may write
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√
ζ2−1 = i

√
1−ζ2. Separating real and imaginary parts of (1.65) then gives

dx
dζ

= X(ζ) =
K
U

ζ

(ζ+a1)(ζ+ c)(ζ−a2)
,

dy
dζ

= Y (ζ) =
K
U

√
1−ζ2

(ζ+a1)(ζ+ c)(ζ−a2)
,

(1.66)

which can be integrated to give

x1(ζ) =−L/H +
∫

ζ

1
X(ζ′)dζ

′ and y(ζ) = 1+
∫

ζ

1
Y (ζ′)dζ

′ (1.67)

as an implicit representation for x1(y), and

x2(ζ) = L/H +
∫

ζ

−1
X(ζ′)dζ

′ and y(ζ) = 1+
∫

ζ

−1
Y (ζ′)dζ

′ (1.68)

as an implicit representation for x2(y).

1.6.3 The emerging jet

The two streamlines x1(y) and x2(y) become parallel as y→ ∞. The thickness of the

resulting jet, given by

h/H = cosα lim
y→∞

(x2− x1), (1.69)

can be obtained by evaluating the first equations in (1.67) and (1.68) as ζ→−c and taking the

difference to yield

h/H = cosα

{
2L/H +

1
πU2

[
(U2 +1) ln

(
U−1
U +1

)
+(U2 +Λ

2) ln
(

U−Λ

U +Λ

)
+

Λ2−1
2

ln
(

2U +Λ−1
2U−Λ+1

)]}
, (1.70)
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after simplification with use made of (1.54), (1.56) and (1.59). This equation together with the

continuity and momentum integral balances (1.33) can be used to determine the three unknowns

α, h/H, and U in terms of the parameters Λ and L/H. The value of U can then be used in (1.59)

to compute the factor

K =
(U2 +Λ)2(Λ+1)

4ΛU2 (1.71)

for the functions Z(ζ), X(ζ), and Y (ζ) defined in (1.65) and (1.66).

1.6.4 The interface separating the jets

The stagnation point xo = (xo,0) is located at ζ = ∞ in the ζ−plane. Integrating (1.65)

along BA∞O on the real axis of the ζ− plane, for which ζ > 1 so that dz = dx, gives

xo =−L/H +−
∫

∞

1
Z(ζ′)dζ

′, (1.72)

with the principal value of the integral needed to account for the singularity at ζ = a2. Equation

(1.72) may be integrated numerically to obtain xo.

The separating streamline departs from (x,y) = (xo,0). Its shape can be computed by

integrating (1.65) along the corresponding contour ψ̂ = 0 in the ζ−plane. This contour, denoted

by Γ in figure 1.11e, is obtained from the condition

ψ̂(ζ) = Im[w(ζ)] = 0, (1.73)

with w(ζ) defined by the transformation given in (1.62). The constant of integration is determined

by imposing the correspondence of the points ζ = ∞ and z = xo.
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1.6.5 Flow properties near the stagnation point

As discussed in the main text, the structure of the mixing layer near the stagnation point,

of particular interest in counterflow–flame studies, depends on the local strain rate Ao = A1 =

(ρ2/ρ1)
1/2A2, with departures from selfsimilarity measured by the local values of the mixing-

layer curvature rc and of the parameter A′′o = A′′1 = (ρ2/ρ1)
1/2A′′2 , the latter entering in the velocity

distributions on both sides of the mixing layer given in (1.16). These quantities can be evaluated

by writing (1.31) in terms of the complex potential to give

Ao =−Re
[

d2w
dz2

]
z=xo

,
1
rc

=− 1
3Ao

Re
[

d3w
dz3

]
z=xo

, and A′′o = Re
[

d4w
dz4

]
z=xo

. (1.74)

Since an explicit expression for w = w(z) is not available, in evaluating the above equations it

is convenient to use the expression (1.62) for w = w(ζ) and use the chain rule to express the

derivatives in (1.74) in the form d/dz = Z(ζ)−1d/dζ, where Z(ζ) = dz/dζ is defined in (1.65).

Evaluating the derivatives as ζ→ ∞, corresponding to the location of the stagnation point z = xo

on the ζ-plane, provides

Ao =
πΛU4

(U2 +Λ)2(Λ+1)
,

1
rc

=
πU2(U2−2Λ)(Λ−1)

3(Λ+1)(U2 +Λ)2 , A′′o =
π3U8Λ

(Λ+1)3(U2 +Λ)6

× [4U2
Λ(Λ−2)(2Λ−1)−U4(Λ2−4Λ+1)−2Λ

2(3Λ
2−7Λ+3)],

(1.75)

after simplifying the result.

1.6.6 Extending solution to the distant nozzle limit L/H� 1

As discussed in §1.4.1, when L/H � 1 the constant free streamline speed U is simply

equal to Λ and the collision region migrates to the vicinity of the nozzle with less momentum.

Such a flow can best be classified as the impingement of a free jet onto a nozzle. It should be

noted that the solution presented in this appendix thus far is readily extended to this limiting case.
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To this end, all results derived henceforth may be applied to the distant nozzle limit L/H� 1 by

simply taking U = Λ or equivalently a1 = 1 in the corresponding equation. The corresponding

Q, w, and ζ−planes are simply the counterparts of those shown in figure 1.11 with A′∞ and B′

coincident. In the analysis, the origin of the coordinate system in figure 1.11a should be placed at

the outlet of nozzle 1 (i.e. the nozzle carrying less momentum), the natural selection for L/H� 1.

1.7 Conclusions

The present paper contributes to the quantitative description of the steady planar flow

resulting from the impingement of opposed low-Mach-number gaseous jets of different density

issuing into an open stagnant atmosphere from aligned nozzles, with specific attention given

to the high-Reynolds-number conditions prevailing in most chemical reactors [1] as well as in

combustion facilities used to investigate the response of flames to strain [25]. The flow is nearly

inviscid in the outer streams, with effects of viscous forces, heat conduction, and species diffusion

confined to thin mixing layers, one separating the two jets and the others separating each jet from

the surrounding stagnant atmosphere. In combustion applications, the flame is embedded in the

mixing layer separating the two jets, across which we find large density changes due to the heat

released by the chemical reaction, whereas outside the density in each jet remains equal to the

value found in its feed stream. The solution presented here for the inviscid collision of the two

jets provides, amongst other things, the strain rate exerted by the outer flow on the separating

mixing layer, a quantity of fundamental interest for studies of flame response to strain.

A formulation involving a density-weighted stream function is introduced to simplify

the problem to one involving two jets of equal density. The proposed formulation is also

useful in reducing the number of controlling parameters to only two, namely, the dimensionless

nozzle spacing L/H and the ratio of jet momentum fluxes Λ2. For uniform velocity in the

feed streams, the resulting potential flow can be described analytically by conformal–mapping
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techniques, while numerical integration is needed to describe rotational flow, which is analyzed

here for the important case of Poiseuille flow in the feed streams. The theoretical and numerical

analyses provide relevant quantitative information regarding the parametric dependence of the

flow, including analytic expressions derived for potential flow, given for instance in (1.33), (1.39),

and (1.40), which enable relevant flow characteristics to be readily evaluated for nozzle-flow

types of laminar counterflows with thin near-wall boundary layers.

The variation of the shape of the interfaces bounding the jets is investigated in figure 1.4,

while the far-field characteristics of the associated lateral jet is shown in figure 1.3. The jet

deflection α from the perpendicular direction, small when the two nozzles are placed at a small

distance, is seen to increase with increasing inter-nozzle distances. As anticipated in (1.34) on the

basis of a simple jet-momentum balance, the deflection is limited to a maximum value α = π/6,

reached when L/H� 1 and Λ� 1. Because of their interest in combustion applications, specific

attention has been given to the morphology and velocity field of the near-stagnation-point region,

with results summarized in figures 1.5 and 1.10. The results reveal qualitative similarity in the

stagnation region properties between irrotational flows and those with distributed vorticity, main

differences entering in the larger values of the strain rate in the latter while in the former the flow

accelerates away from the stagnation region at a faster rate. An attractive parametric range —

characterized by momentum flux ratios between 1≤ Λ2 ≤ 4 and nozzle spacings L/H >∼ 1.5 —

was identified aimed at minimizing departures of the mixing-layer structure from one-dimensional

selfsimilar solutions.

The analysis helps to clarify the flow characteristics of planar open-duct and nozzle-flow

types of counterflows, found in chemical reactors and counterflow burners. The associated

quantitative information may aid in considerations of experimental designs of such devices.

Corrections to the leading-order results given here arising from finite-Reynolds-number effects,

near-edge departures from two-dimensional flow, shear-layer instabilities introducing unsteadiness

in the flow, and buoyancy-induced motion should be considered in such designs if increased
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accuracy is desired.

This chapter, in full, has been published in the Journal of Fluid Mechanics, titled “Aero-

dynamics of planar counterflowing jets” by A. D. Weiss, W. Coenen and A. L Sánchez (2017)

821, 1-30. The dissertation author is the primary investigator in this publication. The inputs of

Profs. S. Llewellyn Smith, J. Carpio, J. C. Lasheras, A. Liñán, and F. A. Williams on different

aspects of this research are gratefully acknowledged.
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Chapter 2

A novel formulation for unsteady

counterflow flames using a

thermal-conductivity-weighted coordinate

2.1 Introduction

Transformation methods aimed at facilitating the analysis of laminar boundary-layer type

problems involving variable density were first introduced in the seminal work of Howarth and

Dorodnitzyn [1–3]. These methods employ a density-weighted transverse coordinate that, when

combined with assumptions regarding the variation of the transport properties (i.e. constant

Prandtl and Lewis numbers and a constant value of the product of the density and viscosity),

reduce the molecular–transport operators to second-order derivatives with respect to the transverse

coordinate. In time-dependent flows, use of the Howarth-Dorodnitzyn transformation along with

the introduction of an appropriately defined stream function simplifies the analysis in a similar

fashion in what is often referred to as the Moore-Stewartson transformation [4, 5]. While these

methods work very well in the one-dimensional, time-dependent problems for which they were
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designed, their utility is downgraded in stagnation-point or counterflow problems of the type

addressed here.

The above-mentioned transformations find application in the analysis of reactive boundary-

layer flows (see [6] for a general formulation of the problem), characterized by large variations

of the temperature and composition, which in turn produce significant relative changes of the

density and transport coefficients. In the Howarth-Dorodnitzyn transformation these changes

are embodied in the so-called Chapman-Rubesin parameter (i.e. the product of the density

and viscosity expressed in dimensionless form) appearing in the reduced viscous term of the

momentum equation, and also in the heat-conduction and diffusion terms of the energy and

species conservation equations, when these are written with constant Prandtl and Lewis numbers.

In the presence of a flame, the widely used simplifying assumption of unity Chapman-Rubesin

parameter is in general not justified, thereby complicating the analysis.

As is apparent from observation of the conservation equations, an alternative to the

Howarth-Dorodnitzyn transformation that readily simplifies the molecular–transport operator

involves consideration of a transverse coordinate weighted with the inverse of the viscosity or

thermal conductivity. While well known in the study of freely propagating premixed flames

[7–9], a review of the literature reveals that such a transformation has been largely overlooked for

non-premixed configurations such as those considered here, perhaps because the simplification

that it offers is not immediately obvious. Only recently has this transformed variable been used in

an investigation of steady diffusion flames [10], shedding light on the utility of this alternative

variable for describing situations characterized by large variation in transport properties, that

being the case in reactive flows of interest in combustion.

The purpose of this paper is to explore further the applicability of the thermal-conductivity-

weighted coordinate, extending the treatment to the case of unsteady flows by introduction of an

appropriately defined apparent transverse mass flux. The flow selected for purposes of comparison

will be the mixing layer separating planar counterflowing streams, depicted in Figure 2.1, which
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v = −A′2(t)y

p′s(t)

Figure 2.1: Schematic of stagnation-point mixing layer of characteristic thickness δm subject to
variable strain A′1(t) and variable pressure p′s(t).

has been widely employed as a canonical problem to analyze effects of flow strain on premixed,

partially premixed, and nonpremixed flames [11]. The strain rate imposed on the mixing layer

depends on the characteristics of the outer inviscid flow, as described recently for the case of

slot-jet counterflow burners [12]. The mixing-layer formulation given below includes unsteady

effects through variable strain and pressure as well as a general chemistry description, thereby

enabling future analyses involving time-dependent finite-rate systems. Results for steady diffusion

flames will be compared to those generated with the classical Howarth-Dorodnitzyn variable.

It will be shown that the new formulation is particularly advantageous in this case, because the

transverse mass flux is linearly proportional to the thermal-conductivity-weighted coordinate,

so that the solution effectively reduces to that corresponding to constant density and constant

transport properties. To further illustrate the applicability of the model to unsteady situations, the

formulation is employed to analyze the flame response to harmonic perturbations of the imposed

strain rate, with results presented in an appendix.
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2.2 Unsteady mixing layers subject to strain and variable pres-

sure

Let us consider the counterflow mixing layer separating two opposed nearly inviscid

planar streams. A reference system moving with the dividing streamline will be employed in

the description, with x and y denoting the streamwise and transverse coordinates, as indicated

in Figure 2.1. Following [13], attention is directed to the self-similar stagnation-point region,

described in terms of the streamwise and transverse velocity components u = A′(y, t)x and v(y, t),

temperature T ′(y, t), density ρ′(y, t), and mass fractions Yi(y, t), with A′(y, t) being the strain

rate. A prime ′ is introduced in the notation to differentiate between equivalent non-dimensional

variables that will appear later. Subscripts 1 and 2 will be used to denote conditions in each feed

stream.

In the general time-dependent formulation given below the pressure, although uniform in

the first approximation because of the prevailing low-Mach-number conditions, is allowed to vary

with time. The stagnation-point pressure p′s(t) will be used as a convenient reference value to

describe these temporal pressure changes, which must be accounted for in the equation of state

p′s(t) = ρ
′T ′R/M, (2.1)

where R is the universal gas constant and M(y, t) = [∑iYi/Mi]
−1 is the mean molecular mass, with

Mi denoting the molecular mass of species i. As a result of the compression work, the feed-stream

values of the temperature and density vary in time and satisfy the relationships

ρ
′
1cp1

dT ′1
dt

= ρ
′
2cp2

dT ′2
dt

=
dp′s
dt

, (2.2)

obtained by writing the energy equation in the outer chemically frozen uniform streams, with

cp denoting the specific heat at constant pressure. Using p′s = ρ′1T ′1R/M1 = ρ′2T ′2R/M2 in (2.2)
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gives the familiar equation

γ1

γ1−1
1
T ′1

dT ′1
dt

=
γ1

ρ′1

dρ′1
dt

=
γ2

γ2−1
1
T ′2

dT ′2
dt

=
γ2

ρ′2

dρ′2
dt

=
1
p′s

dp′s
dt

(2.3)

involving the specific-heat ratios γ1 = cp1/(cp1−R/M1) and γ2 = cp2/(cp2−R/M2). For systems

such that the approximation γ1 = γ2 is sufficiently accurate, the ratio of boundary temperatures

and boundary densities at all times takes constant values according to

T ′2/T ′1 = (M2/M1)/(ρ
′
2/ρ
′
1) = Θ (2.4)

as can be obtained from integration of (2.3). This approximation is to be adopted below with

γ = γ1 = γ2 representing in the following the constant ratio of specific heats.

The spatial pressure differences from the stagnation-point value p̃ = p′− p′s(t) are smaller

than p′s by a factor of the order of the Mach number squared, and they correspondingly have been

neglected in writing (2.1) and (2.2). They are, however, fundamental in establishing the motion

along the mixing layer. At leading order in the boundary-layer approximation p̃(x, t) does not

vary with the transverse coordinate. This condition of negligible pressure jump across the mixing

layer can be used in evaluating the streamwise component of the momentum equation in the outer

streams to yield

ρ
′
1

(
dA′1
dt

+A′21

)
x = ρ

′
2

(
dA′2
dt

+A′22

)
x =−∂p̃

∂x
, (2.5)

as an expression relating A′1 and A′2. For given values of p′s(t) and A′1(t), the first equation in (2.5)

together with (2.4) provide a Ricatti equation to determine A′2(t), while (2.3) determines ρ′1, ρ′2,

T ′1 and T ′2 as functions of time. These serve as boundary conditions for the mixing–layer problem,

to be formulated below, following [13].

The solution for the self-similar reactive counterflow mixing layer involves the integration
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of

∂ρ′

∂t
+

∂

∂y
(ρ′v)+ρ

′A′ = 0 (2.6)

ρ
′
(

∂A′

∂t
+ v

∂A′

∂y
+A′2

)
= ρ

′
1

(
dA′1
dt

+A′21

)
+

∂

∂y

(
µ

∂A′

∂y

)
(2.7)

ρ
′cp

(
∂T ′

∂t
+ v

∂T ′

∂y

)
=

∂

∂y

(
λ
′∂T ′

∂y

)
+

dp′s
dt
−∑

i
ho

i ṁi (2.8)

ρ
′
(

∂Yi

∂t
+ v

∂Yi

∂y

)
=

∂

∂y

(
ρ
′Di

∂Yi

∂y

)
+ ṁi (2.9)

with v = 0 at y = 0 and boundary conditions obtained by matching to outer inviscid regions

A′−A′1(t) = T ′−T ′1(t) = Yi−Yi,1 = 0 as y→ ∞ (2.10)

A′−A′2(t) = T ′−T ′2(t) = Yi−Yi,2 = 0 as y→−∞. (2.11)

A Fickian description with Soret diffusion neglected has been adopted for the diffusion velocities,

with Di representing the diffusion coefficient of species i in the mixture. Differences of specific

heat of each species from the mean value cp have been neglected along with Dufour effects in

writing the conductive heat flux, with λ′ representing the thermal conductivity. In the chemical

reaction terms ho
i and ṁi are the enthalpy of formation and chemical rate of production of species

i. The above equations (2.6)–(2.9) must be supplemented by the equation of state (2.1) and by

expressions for the variation with T ′ and composition of the specific heat cp, viscosity µ, and the

transport coefficients λ′ and Di.

2.3 Simplified non-dimensional formulation

The formulation given above can be used for the analysis of time-dependent combustion

problems, including transient ignition events in Diesel-engine applications [13] and periodic

solutions, such as those arising in studies of flame acoustic response [14, 15]. The nondimen-
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sionalization of the problem begins by writing the stagnation-point pressure and the strain rate

in the dimensionless form ps = p′s/p′c and A = A′/A′c with use made of appropriately selected

scales p′c and A′c, the latter used also in the definition of the dimensionless time τ = A′ct. For

steady problems the constant values of p′s and A′1 are used as scales, whereas for time-dependent

systems the specific selection of p′c and A′c depends on the problem at hand. For instance, for

transient ignition or extinction problems the natural scales are the initial values p′s(0) and A′1(0)

whereas for studies of flame response to periodic oscillations the time-average values of p′s(t) and

A′1(t) would be preferred. For a given value of p′c, the accompanying characteristic values of the

temperature and density T ′c and ρ′c for the variables T = T ′/T ′c and ρ = ρ′/ρ′c are to be selected

from the properties of stream 1 to reduce (2.3) to

T1 = T2/Θ = p(γ−1)/γ
s and ρ1 = ρ2Θ/(M2/M1) = p1/γ

s . (2.12)

These dimensionless variables can be used to write (2.5) in the form

dA2

dτ
+A2

2 =
Θ

M2/M1

(
dA1

dτ
+A2

1

)
, (2.13)

whereas the equation of state (2.1) becomes

ps(t) = ρT ∑
i
(M1/Mi)Yi. (2.14)

The key component of the formulation is the introduction of the dimensionless inverse-

thermal-conductivity-weighted coordinate

η(y, t) = (λ′c/δm)
∫ y

0

dy
λ′(y, t)

, (2.15)

involving the characteristic thermal conductivity λ′c = λ′(T ′c ,Yi1) of stream 1 and the characteristic
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mixing layer thickness δm = (λ′c/ρ′ccpA′c)
1/2. Introduction of the transformed coordinate η along

with the modified nondimensional transverse mass flux

F =−ρ′v+ρ′λ′
∫ y

0
∂

∂t

( 1
λ′
)

dy
ρ′cδmA′c

(2.16)

reduce (2.6)–(2.9) to

∂

∂τ
(ρλ) =

∂F
∂η
−ρλA (2.17)

ρλ
∂A
∂τ

= F
∂A
∂η

+Pr
∂2A
∂η2 +λ

[
p1/γ

s

(
dA1

dτ
+A2

1

)
−ρA2

]
(2.18)

ρλ
∂T
∂τ

= F
∂T
∂η

+
∂2T
∂η2 +

γ−1
γ

λ
dps

dτ
−λ∑

i

(
ho

i
cpT ′c

)(
ṁi

ρ′cA′c

)
(2.19)

ρλ
∂Yi

∂τ
= F

∂Yi

∂η
+

1
Li

∂2Yi

∂η2 +λ
ṁi

ρ′cA′c
. (2.20)

where

λ(T,Yi) = λ
′/λ
′
c (2.21)

is the nondimensional thermal conductivity, a function of the temperature and composition. A

constant specific heat cp has been assumed in writing (2.19) while constant values of the Prandtl

number Pr = µcp/λ′ and Lewis numbers Li = λ′/(ρ′cpDi) have been used in (2.18) and (2.20),

respectively. These approximations are introduced to exhibit most clearly the advantage of

the transformation being investigated, since variable specific heats and Prandtl or Lewis num-

bers introduce distracting complications with any transformation. Comparison of (2.17)–(2.20)

with (2.6)–(2.9) reveals that, in this transformed formulation, the product ρλ, which corresponds

to the Chapman-Rubesin parameter of the Howarth-Dorodnitzyn transformation, curiously plays

essentially the same role as the gas density in the original dimensional formulation.

For given functions ps(τ) and A1(τ), the problem reduces to that of integrating (2.17)–

(2.20) supplemented with (2.14) and (2.21) subject to the initial conditions A(η,0) = Ainit(η),
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T (η,0) = Tinit(η), and Yi(η,0) = Yiinit(η) and the boundary conditions F = 0 at η = 0 and


A−A1(τ) = T − p(γ−1)/γ

s = Yi−Yi,1 = 0 as η→ ∞

A−A2(τ) = T −Θp(γ−1)/γ
s = Yi−Yi,2 = 0 as η→−∞,

(2.22)

with the fuel-side strain rate A2(τ) determined from integration of (2.13). Inspection of (2.17)–

(2.20) reveals that introduction of the transverse coordinate η and the accompanying mass flux

F leads to a compact convective-diffusive operator that facilitates numerical integration. As

shown below, an additional advantage of the current formulation lies in the remarkable fact

that in steady systems the transverse mass flux across the mixing layer can be approximated by

the linear distribution F = η, so that the conservation equations for energy and species reduce

to those obtained when employing the thermo-diffusive approximation (constant density and

transport properties), uncoupled from continuity and momentum conservation, and resulting in

the mixture-fraction profile being expressible in explicit form in terms of the error function.

2.4 An illustrative application of the formulation

2.4.1 Steady counterflow diffusion flames

As an illustrative example the counterflow formulation is applied to steady nonpremixed

methane-air flames, corresponding to stationary situations in which the boundary values of the

strain rate A1 and A2 and the stagnation-point pressure ps remain constant. The steady profiles

obtained below provide the base flow needed to analyze unsteady flame perturbations, for example

in studies of flame instability or acoustic response to external forcing. To further illustrate the

applicability of the formulation to these unsteady cases, we present in an appendix the results

corresponding to the flame response to harmonic changes of the imposed strain rate. Extensions

to other cases, including studies of acoustic pressure response, are worth pursuing in future work.
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Stream 1 will be taken to be the air stream, with corresponding air-side oxygen mass

fraction YO2,1 = 0.232. For generality, dilution of the fuel stream with nitrogen is permitted,

and results will be presented for different values YF,2 ≤ 1 of the methane mass fraction in its

feed stream. Since the focus is on the flow structure, the oxidation of the fuel will be modeled

with a one-step irreversible reaction CH4 + 2O2→ CO2 + 2H2O with infinitely fast rate. As is

well known, if a unity Lewis number is assumed for both reactants, a good approximation for

methane-air flames, then the associated Burke-Schumann problem [16] can be described in terms

of the mixture fraction

Z =
SYF−YO +1

S+1
=

T −1+q(YO−1)
Θ−1−q

, (2.23)

written for the normalized reactant mass fractions YF = YF/YF,2 and YO = YO2/YO2,1 . Two thermo-

chemical parameters appear in the description, namely, the mass of air needed to burn the unit

mass of fuel stream S = 4YF,2/YO2,1 and the dimensionless heat of reaction q = (q′YO2,1)/(cpT ′c ),

where q′ = (ho
F − 2ho

H2O− ho
CO2

)/(2MO2) ' 12,537 kJ/g is the amount of heat released per unit

mass of oxygen consumed in the reaction. The flame appears as a surface η = η f separating

a fuel region with YO = 0 from an oxidizer region with YF = 0, with the reactants reaching the

flame by diffusion from opposite sides in stoichiometric proportions. Both reactant mass fractions

vanish at the flame sheet η f , where

Z = Zs =
1

S+1
=

1
4YF,2/0.232+1

(2.24)

and

T = Tf = 1+(Θ−1)Zs +q(1−Zs). (2.25)

Use of (4.53) allows for the temperature and composition to be expressed as piecewise linear
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functions of Z according to


Z > Zs : YO = 0, YF = (Z−Zs)/(1−Zs), T = (Θ−1−q)Z +1+q,

Z < Zs : YO = 1−Z/Zs, YF = 0 T = (Θ−1−q)Z +1+qZ/Zs.

(2.26)

The problem reduces to the integration of the continuity and momentum equations coupled

with a transport equation for the mixture fraction. In terms of the thermal-conductivity-weighted

coordinate η defined in (3.1) and the nondimensional transverse mass flux F =−(ρ′v)/(ρ′1δmA′1),

with

δm =

(
λ′1

ρ′1cpA′1

)1/2

(2.27)

representing the characteristic mixing-layer thickness, the needed conservation equations become

dF
dη
−ρλA = 0

Pr
d2A
dη2 +F

dA
dη

+λ(1−ρA2) = 0

d2Z
dη2 +F

dZ
dη

= 0

(2.28)

to be integrated with the boundary conditions F(0) = 0 and


η→+∞ : A−1 = Z = 0 (oxidizer side)

η→−∞ : A−A2 = Z−1 = 0. (fuel side)
(2.29)

As follows from (2.13), for steady counterflows the fuel-side strain rate is given by A2 =

[Θ(M1/M2)]
1/2, where the molecular–mass ratio varies with the fuel-side dilution according

to
M1

M2
=

1+(MN2/MCH4−1)YF,2

1+(MN2/MO2−1)YO2,1

, (2.30)

with MN2/MCH4 = 28/16 and MN2/MO2 = 28/32. In the integration, equations (2.28) are sup-
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plemented with the presumed power-law expression λ = T 0.7 for the thermal conductivity and

the equation of state

1 = ρT
{

M1

MN2

+YF,2

M1

MN2

(
MN2

MCH4

−1
)

YF +

(
1− M1

MN2

)
YO

}
, (2.31)

which is written by assuming that the mean molecular mass of the combustion products MP is

equal to that of nitrogen, an excellent approximation for methane-air combustion, for which

MP = (MCO2 +2MH2O)/3 = 27≈MN2 = 28 g/mol.

Results obtained with (2.28) will be compared to integrations employing the alternative

conservation equations

dF
dζ
−A = 0

Pr
d
dζ

(
C

dA
dζ

)
+F

dA
dζ

+
1
ρ
−A2 = 0

d
dζ

(
C

dZ
dζ

)
+F

dZ
dζ

= 0

(2.32)

employing the standard Howarth-Dorodnitzyn coordinate

ζ = (ρ′1δm)
−1

∫ y

0
ρ
′(y)dy. (2.33)

The corresponding boundary conditions are identical to those written above for (2.28). Appearing

as a factor in the viscous stress and in the diffusive flux of (2.32) is the Chapman-Rubesin function

C = ρλ which describes the relation between ζ and η according to dζ/dη =C as follows from the

respective definition of each coordinate. In general, C 6= 1 and the resulting transport operators

in (2.32) are more complicated than those obtained with the coordinate η, as can be seen by

comparing (2.28) and (2.32).
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2.4.2 Sample numerical results

Integrations were performed for Pr = 0.7, Θ= 1, and q= 7, as corresponds to methane-air

combustion with equal feed-stream temperatures. Solutions are given for different extents of

dilution of the fuel stream, measured by YF,2 , which enters in the equation of state (2.31), in the

boundary value of the strain rate A2 = [Θ(M1/M2)]
1/2 through the molecular-mass-ratio (2.30),

and in the definition of the stoichiometric mixture fraction Zs defined in (2.24). In particular,

Figure 2.2 shows the mixing-layer structure in terms of the density-weighted coordinate ζ for

methane-air (YF,2 = 1) and diluted methane-air (YF,2 = 0.1), with corresponding results plotted

in terms of the thermal-conductivity-weighted coordinate η in Figure 2.3. Besides profiles of

mixture fraction Z and transverse momentum flux F , the plots include profiles of reactant mass

fractions and normalized temperature increment evaluated using the piecewise relations (4.55).

The right plots in Figure 2.2 display also the variation of the Chapman-Rubesin parameter

C = ρλ across the mixing layer, which shows a discontinuous slope at the flame, with an associated

value there given by

C f = T−0.3
f MN2/M1, (2.34)

with Tf = 1+q(1−Zs), as follows from (3.21). In addition, the graphs show the results obtained

by writing (2.32) with the commonly used approximation C = 1, with associated profiles repre-

sented by the light curves. The departures from unity of C are seen to be substantial, especially for

undiluted fuel feed. Correspondingly, the mixing-layer structures computed with C = 1, including

the resulting flame location in the transformed coordinate, differ significantly from the exact

results.

For completeness, dashed curves are included in Figure 2.2 to illustrate the applicability

of the approximation F = ζ, which when combined with the assumption C = 1 leads to the

analytic result Z = (1/2)erfc(ζ/
√

2), quoted in early flamelet studies [17], where erfc is the

complementary error function. As can be seen, the resulting accuracy is far from satisfactory,
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Figure 2.2: Results of integrations (dark solid curves) using the density-weighted Howarth-
Dorodnitzyn variable ζ for diluted YF,2 = 0.1 (top) and pure YF,2 = 1 (bottom) methane-air
counterflow respectively. Shown in light curves are integrations employing C = 1 in (2.32), with
the dashed curves corresponding to results with the additional approximation F = ζ, for which
Z = (1/2)erfc(ζ/

√
2).

63



-2 0 2
0

0.2

0.4

0.6

0.8

1

1.2

-2 0 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-2 0 2
0

0.2

0.4

0.6

0.8

1

1.2

-2 0 2
-0.5

0

0.5

1

Figure 2.3: Integrations (solid lines) using the thermal-conductivity variable η for diluted
YF,2 = 0.1 (top) and pure YF,2 = 1 (bottom) methane-air counterflow respectively. Shown in
dot-dashed lines are analytic results obtained using the approximation F = η, including Z =
(1/2)erfc(η/

√
2) from which T , YF and YO may be found using the piecewise relation (4.55).
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as would be expected, in view of the profiles of F − ζ shown in the right-hand-side plots of

Figure 2.2.

By way of contrast, the profiles shown on the right-hand-side plots of Figure 2.3 indicate

that the departures of the transverse mass flux from the linear distribution are moderately small

when expressed in terms of the thermal-conductivity-weighted coordinate η. Correspondingly,

the solution for the mixture fraction Z = (1/2)erfc(η/
√

2), obtained with the approximation

F = η by integrating the third equation in (2.28), and the accompanying profiles of temperature

and reactant mass fraction, evaluated from (4.55), give excellent predictions for the mixing-layer

structure, as can be seen in the comparisons of Figure 2.3. The differences of the analytic

predictions, represented by the dot-dashed curves, from the results of numerical integrations

of (2.28) are almost imperceptible for YF,2 = 0.1 and remain remarkably small even for YF,2 = 1.

Use of these analytic expressions for the temperature and composition within the middle equation

of (2.28) together with F = η provides a simplified equation for computing the strain rate. The

resulting profiles A(η), not shown here, compare well with those of the full numerical solution,

with relative departures of the same order as those seen in Figure 2.3 for the corresponding

profiles of composition and temperature.

For completeness, Figure 2.4 shows the variation with fuel-feed dilution of the flame

location y f , defined in the Burke-Schumann limit by the condition Z = Zs. Naturally, when no

simplifications are introduced, both formulations (2.28) and (2.32) provide the same value, which

can be expressed in the dimensionless form

y f

δm
=

∫
η f

0
λdη =

∫
ζ f

0

dζ

ρ
(2.35)

in terms of the dimensionless flame locations η f and ζ f , with δm given for the steady counterflow

in (2.27). For the range of YF,2 investigated, the resulting flame always lies on the air side of

the mixing layer. Consequently, since YO = 0 between the stagnation plane and the flame, the
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first expression in (4.55) must be used in evaluating the integrals in (2.35). The exact numerical

results, shown as a dark solid curve, are compared with those obtained by employing in (2.32) the

approximation C = 1 (light solid curve) and also with those obtained with Z = (1/2)erfc(ζ/
√

2)

(dashed curve). Clearly, the predictions of flame location resulting from these approximations are

far from satisfactory, with both approximations significantly overpredicting the flame distance to

the stagnation plane, in agreement with the profiles shown in Figure 2.2. The figure also tests

the approximation F = η and associated prediction y f /δm =
∫ η f

0 [1+q(1−Z)]0.7dη, where η f =
√

2erfc−1(2Zs) and Z = (1/2)erfc(η/
√

2), with erfc−1 denoting the inverse (not the reciprocal)

of the complementary error function. As can be seen, over the entire range of dilution considered

the accuracy of this approximation is remarkably good.
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Figure 2.4: The variation with the fuel-stream dilution of the flame location (2.35) obtained from
numerical integration of (2.28) or (2.32) (dark solid curve), with the approximation C = 1 used
in integrating (2.32) (light solid curve), with the presumed profile Z = (1/2)erfc(ζ/

√
2) used to

evaluate the density in the last expression of (2.35) (dashed curve), and with the approximation
y f /δm =

∫ η f
0 [1 + q(1− Z)]0.7dη with η f =

√
2erfc−1(2Zs) and Z = (1/2)erfc(η/

√
2) (dot-

dashed curve).
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In summary, the results in Figures 2.2 and 2.4 indicate that departures from unity of

the Chapman-Rubesin parameter cannot be neglected in computations of counterflow flames

using a density-weighted coordinate, and that the analytic solutions stemming from using the

approximations C = 1 and F = ζ are not capable of giving acceptable accuracy under most

conditions. In contrast, the alternative coordinate η results in a simpler transport operator and,

for the steady flames shown in Figure 2.3, effectively reduces the solution to one involving a

linearly varying transverse mass flux. Therefore, somewhat unexpectedly, the resulting solution is

analogous to that obtained in the thermo-diffusive approximation of constant density and constant

transport properties, a drastic simplification worthy of being considered in future work.

2.4.3 Scalar dissipation rate

The above counterflow results can be used to evaluate the scalar dissipation rate χ =

2[λ′/(ρ′cp)]|∇Z|2, a quantity of utmost importance in nonpremixed combustion [11]. For the two

formulations considered above the value χ f of χ at the flame, scaled with the air-side strain rate

A′1, can be expressed as

χ f

A′1
=

2
C f

(
dZ
dη

∣∣∣∣
f

)2

= 2C f

(
dZ
dζ

∣∣∣∣
f

)2

, (2.36)

where the mixture-fraction derivatives are to be evaluated at η = η f or ζ = ζ f , with C f corre-

spondingly representing the flame value of the Chapman-Rubesin parameter, given in (2.34) in

terms of the flame temperature (3.21). The corresponding value of χ f /A′1 is represented by a dark

solid curve in Figure 2.5 as a function of the fuel-feed dilution.

The different approximations discussed above are also tested in Figure 2.5. The curve

styles have been selected to match those employed in the corresponding curves of Figures 2.2–2.4.

Thus, consistent with the results in Figures 2.2 and 2.4, the light curve represents results obtained

from the last expression in (2.36) with C f = 1 and with dZ/dζ| f computed from (2.32) with
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Figure 2.5: The variation with the fuel-stream dilution of the scalar dissipation rate at the
flame (2.36) with the mixture-fraction gradient computed by numerical integration of (2.28)
or (2.32). The dark solid curve represents exact numerical results; the light curve is the prediction
obtained by employing C = 1 in computing dZ/dζ| f along with C f = 1; the dashed curve is
obtained with C f = 1 and (2.37); and the dot-dashed curve is obtained from (2.38).

C = 1, whereas the dashed curve is the prediction obtained by using simultaneously C f = 1

together with (
dZ
dζ

∣∣∣∣
f

)2

=
1

2π
exp[−{

√
2erfc−1(2Zs)}2] (2.37)

the latter stemming from the commonly used approximation Z = (1/2)erfc(ζ/
√

2) [11]. Also

tested in the figure is the approximation F = η, leading to Z = (1/2)erfc(η/
√

2) and to

χ f

A′1
=

1
πC f

exp[−{
√

2erfc−1(2Zs)}2], (2.38)

with corresponding predictions, obtained with use made of (2.24), (3.21), and (2.34), shown as a

dot-dashed curve, that being the curve style used for this approximation in Figures 2.3 and 2.4.

Consistent with the degree of accuracy exhibited by the dot-dashed curves in Figures 2.3
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and 2.4, the comparisons indicate that the analytical prediction (2.38) is remarkably good, with

relative errors that remain smaller than 5% over the whole range of dilutions considered in the

figure. Somewhat unexpectedly, the prediction obtained by using the Howarth-Dorodnitzyn

transformation together with the approximation C = 1 yields similar accuracy. This is the result

of a fortuitous cancellation of errors in (2.36), as can be inferred from the profiles shown in

Figure 2.3. Thus, the approximation C = 1 yields flames that are too far from the stagnation plane,

thereby leading to severe underpredictions of dZ/dζ, but these are almost exactly corrected when

the value of C f ' 0.5−0.6 is replaced by C f = 1 in (2.36). As can be seen in Figure 2.5, this

fortuitous accuracy degrades significantly when the gradient of mixture fraction is evaluated with

use of (2.37).

2.5 Diffusion-flame response to harmonic variations of the

strain rate

As an illustrative example of the applicability of the formulation to unsteady situations,

this section investigates perturbations to the flame arising from variation of the imposed strain rate.

For simplicity, variations of the molecular weight will be neglected and the two feed streams will

be assumed to be at the same temperature (i.e. Θ = 1). Attention is directed to small harmonic

perturbations of the strain rate of the form A1(τ) = A2(τ) = 1+εeiωτ, where the angular frequency

ω has been scaled with the mean strain rate. In the Burke-Schumann limit, the analysis reduces

to the integration of the continuity and momentum equations (2.17) and (2.18) together with the

unsteady form of the mixture-fraction equation

ρλ
∂Z
∂τ

= F
∂Z
∂η

+
∂2Z
∂η2 (2.39)
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with boundary conditions F = 0 at η= 0, Z = A−A1(τ) = 0 as η→∞, and Z−1= A−A2(τ) = 0

as η→−∞. In the integration, the temperature must be evaluated in terms of the mixture fraction

with use made of (4.55), with the simplified equation of state ρ = 1/T and the presumed power

law λ = T 0.7 used to evaluate the density and the thermal conductivity.

For ε� 1 the unsteady perturbations to the different flow variables remain small, so that

expressions of the form F = F̄(η)+εeiωτF̂(η), A= Ā(η)+εeiωτÂ(η), Z = Z̄(η)+εeiωτẐ(η), and

T = T̄ (η)+ εeiωτT̂ (η) may be introduced. The bar is employed to denote the unperturbed steady

solution, whereas the hat denotes the complex functions that describe the unsteady response

of the flame. The solution for the steady functions F̄(η), Ā(η), and Z̄(η), presented in the

paper in section 2.4, determines the basic properties of the unperturbed flame, including the

flame location η̄ f . The functions F̂ , Â, and Ẑ, which must satisfy the boundary conditions

F̂(0) = 0; Ẑ(±∞) = 0; Â(±∞) = 1, are governed by the conservation equations

−T̄ F̂ ′+ T̄ σÂ+(σ−1)T̄ σ−1(iω+ Ā)T̂ = 0,

−Ā′F̂ +(iω+2Ā)T̄ σ−1Â− F̄Â′−PrÂ′′

+
[
Ā2(σ−1)/T̄ −σ

]
T̄ σ−1T̂ = T̄ σ(iω+2),

−Z̄′F̂ + iωT̄ σ−1Ẑ− F̄Ẑ′− Ẑ′′ = 0,

(2.40)

obtained by linearizing (2.17), (2.18), and (2.39), with the prime denoting differentiation with

respect to η. The integration must employ the expressions T̂ = −qẐ for η < η̄ f and T̂ =

q(1/Zs−1)Ẑ for η > η̄ f , obtained from linearizing the piecewise-relation (4.55).

The functions F̂ , Â, and Ẑ obtained by integration of the above problem can be used to

evaluate the flame response to the outer perturbations. For instance, as a result of the harmonic

forcing the flame location η f oscillates about its unperturbed value η̄ f according to η f = η̄ f +

εeiωτη̂ f , where the perturbation η̂ f can be evaluated in terms of the value of Ẑ at η̄ f from

η̂ f Z̄′(η̄ f )+ Ẑ(η̄ f ) = 0, obtained by linearizing the equation Z(η f ) = Zs. It is worth mentioning
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Figure 2.6: The mixture fraction and strain-rate perturbations obtained for ω = 1. Solid lines
correspond to full integration of (2.40) whereas dash-dotted line corresponds to the F = η

approximation

that, as can be easily verified by the reader, the linearized equations obtained when using

the conventional density-weighted coordinate are significantly more complicated than those

presented above, the inherent simplification of the thermal-conductivity-weighted coordinate

being a consequence of the associated compact transport operator.

Representative profiles of perturbation amplitudes are shown in Figure 2.6 for ω = 1. The

integration considers the parametric values Pr = 0.7, q = 7, and Zs = 0.367 corresponding to the

flame displayed in the top plots of Figure 2.3. As can be seen, the perturbations to the mixture

fraction are very small, while the perturbations to the streamwise velocity, measured by the

function |Â|, are much larger. Since |Ẑ| is everywhere small, the associated flame displacement

η̂ f , and also the variations of the temperature T̂ and of the scalar dissipation rate, can be expected

to be very limited, indicating that Burke-Schumann flames are rather insensitive to temporal

variations of the outer strain rate, despite significant variations of the streamwise velocity.

It is worth mentioning that the extremely small value of Ẑ shown in Figure 2.6 is consistent

with our previous observation that the departures of the transverse mass flux F from the linear

distribution F = η are small. To see this, note that the approximation F = η leads to mixture-

fraction perturbations Ẑ that are identically zero, as follows from integration of the last equation
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in (2.40) with F̂ = 0. To further explore the accuracy of the approximation F = η the value of |Â|

obtained from integrating the middle equation in (2.40) with F̄ = η and F̂ = T̂ = 0 is shown as a

dashed curve in Figure 2.6. The resulting strain-rate distribution is seen to be reasonably accurate,

further suggesting that use of of the thermal-conductivity-weighted coordinate η together with

the approximation F = η, shown to give excellent results in steady systems, can also provide a

sufficiently accurate description in future computations of unsteady counterflow flames.

2.6 Concluding remarks

A compact formulation has been presented based on introduction of a new inverse-

thermal-conductivity-weighted variable and associated transformed mass flux which may be

applied towards the description of reacting counterflow mixing layers subject to variable strain

rates and pressures. When compared to classical methods for dealing with boundary-layer-type

problems, namely that of Howarth and Dorodnitzyn, the resulting equations posses a simpler

convective-diffusive operator stemming from the fact that the variation with temperature of

the transport coefficients is removed from the diffusive terms, thereby facilitating numerical

integration and theoretical analyses of these flows, of direct interest in flamelet modeling. The

advantage of the new transformation for combustion problems must be related to the effect of an

increasing thermal conductivity tending to increase the distances over which variables change,

thereby approaching constant-density conditions in the transformed coordinate. The formulation

given can be extended readily, with minor modifications, to other stagnation-point flows of

practical interest, including axisymmetric counterflow mixing layers separating opposed round

jets, as well as stagnation-point boundary-layer flows generated by a jet impinging normally on a

wall. The results presented in the appendix for the response of the counterflow flame to variations

of the strain rate illustrate the potential advantages of the inverse-thermal-conductivity-weighted

coordinate in analyses of unsteady flames, indicating the utility of the formulation in future

72



studies of acoustic response or flame stability, for instance. The use of the transformation to

describe flames subject to nonuniform strain rates, such as those arising in problems involving

interaction of vortices with mixing layers [18], is also worth further investigation, although the

applicability of the reduced variables employed here to these non-selfsimilar configurations does

not appear to be straightforward.

Numerical integrations reveal that, for steady situations, the transformed transverse mass

flux F varies linearly with the rescaled coordinate η, a simplification that does not arise with the

classical density-weighted coordinate ζ. This remarkable fact may be used to uncouple species

and energy conservation from the continuity and momentum equations which then no longer need

to be considered in the analysis. This simplification, akin to the thermo-diffusive approximation

of constant density and constant transport properties, illustrates an additional advantage of the

inverse-thermal-conductivity-weighted coordinate η in the description of stagnation-type flows.

This chapter, in full, has been published in Combustion Theory and Modelling titled “

A novel formulation for unsteady counterflow flames using a thermal-conductivity-weighted

coordinate”, by A. D. Weiss, M. Vera, A. Liñán, A. L. Sánchez and F. A. Williams (2018) 22,

185-201. The dissertation author is the primary investigator in this publication.
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Chapter 3

The acoustic response of Burke-Schumann

counterflow flames

3.1 Introduction

Acoustic combustion instabilities, characterized by the amplification of pressure oscil-

lations corresponding to the acoustic eigenmodes of the combustion chamber, mainly through

interactions with the exothermic combustion reactions, have been a significant concern in the

development of liquid-propellant rocket engines from the beginning [1]. In an effort to mini-

mize the potential physical manifestations of these instabilities – including excessive vibration,

thermo-mechanical failure, and reduced performance – there has been considerable incentive for

scientific studies that provide valuable insight into this unwanted phenomena [2]. Associated

concerns about instabilities continue in recent years [3–8].

Difficulty in predicting acoustic instabilities is intrinsically linked to the complex nature of

the turbulent multi-phase conditions throughout the combustor, so that in the absence of a general

theory for describing such flows, insufficient knowledge of unsteady high-pressure phenomena

limits predictive capabilities of acoustic instabilities. Despite this, significant progress has been
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made with use of flamelet-modeling approaches, in which the turbulent flame is modeled as

an ensemble of laminar flamelets that are strained and distorted by the turbulent flow [9, 10].

Computations of liquid-propellant rocket-engine instabilities using flamelet modeling require

not only knowledge of the statistics regarding distributions of elementary laminar flamelets

throughout the chamber but also their response functions to acoustic excitation [11]. The present

paper addresses the last aspect of this challenging problem by investigating the acoustic response

of planar counterflow nonpremixed flames.

The counterflow diffusion flame has been utilized in the past as a canonical problem to

investigate the interplay of the pressure oscillations with the oscillations of rates of heat release

by chemical reactions, which are modified as the acoustic perturbations propagate through the

diffusion layers of the flames. In the linear limit, the analysis may be greatly simplified by noting

that the acoustic pressure nodes and velocity antinodes coincide [12] so that the flame response

to pressure perturbations and velocity perturbations may be studied independently by regarding

the flamelet to be located at the appropriate node. The analysis here will be concerned with the

Burke-Schuman (B-S) limit of infinitely fast reaction, a limit previously considered in the analysis

of droplet burning [13] and fuel plates [14]. Unlike these early analyses, our computations

account for differential diffusion effects associated with fuel Lewis numbers different from unity.

The solutions obtained here pertain to a flame sheet separating two unsteady regions in

chemical equilibrium. This not only provides the basic structure for future studies accounting for

finite-rate effects but also quantifies one of the two contributions that arise of finite-rate cases,

namely, the direct transport-region contribution. In these respects, it is worth pointing out that

some of the previous finite-rate analyses of flame acoustic response [15, 16] have investigated

the so-called premixed-flame regime [17], including fuel leakage of order unity into the oxidizer

side, which is chemically frozen rather than in chemical equilibrium. This basic structure,

fundamentally different from the B-S structure, is favored when the stoichiometric mixture

fraction ZS is sufficiently small, as occurs in hydrocarbon-air systems, for which ZS ' 1/16. Much
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larger values ZS ' 1/5 are found when the oxidizer is oxygen, which is much more relevant for

liquid-propellant rocket-engine applications, in which burning is likely to occur predominantly in

the diffusion-flame regime [17], which, at leading order, reduces to the B-S limit investigated here.

This fact underscores the need to quantify accurately the response of B-S flames as a necessary

step in future efforts to account for effects of realistic chemistry descriptions.

As shown recently [18], the description of stagnation-point mixing layers subject to

large variations in density and transport properties resulting from chemical heat release can be

facilitated by introducing a thermal-conductivity-weighted coordinate, which is adopted here in

formulating the problem in Sec. 3.2. The limit of infinitely fast reaction and the perturbation

strategy for its description are discussed in Sec. 3.3 and 3.4, respectively. The acoustic pressure

response is discussed in Sec. 3.5. The acoustic velocity or strain response is examined in Sec. 3.6.

A discussion of implications to acoustic instabilities is given in Sec. 3.7, which is followed by

concluding remarks in Sec. 3.8.

3.2 Problem formulation

We consider a locally planar strained mixing layer situated in the stagnation-point flow

generated by counterflowing streams of fuel and oxidizer. At moderately large Reynolds numbers

the thin mixing layer separates two effectively inviscid and isentropic streams whose structure

provides appropriate boundary conditions for the analysis of the unsteady chemically active

mixing region [19]. A reference system moving with the dividing streamline is employed in

the description, with cartesian coordinates (x,y) and the oxidizer approaching from y =+∞, as

indicated in Fig. 3.1. Subscripts O and F are used to denote properties in the oxidizer and fuel

streams, respectively. In the outer inviscid streams the velocity field is given by the potential

solutions (vx,vy) = A∗O(x,−y) and (vx,vy) = A∗F(x,−y) in terms of the time-dependent strain

rates A∗O(t) and A∗F(t), an asterisk idntifying original dimensional variables throughout. The
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Figure 3.1: A schematic view of the planar counterflow system studied here along with a
detailed view of the characteristic time evolution of the temperature profile and associated flame
location over an acoustic cycle.

problem is formulated for low-Mach number flow and acoustic wavelengths large compared

with the characteristic dimension of the stagnation-point region. Under those conditions, the

pressure differences from the time-dependent stagnation-point value p∗s (t) are small and can be

correspondingly neglected when writing the equation of state p∗s = ρ∗(R/M)T ∗ involving the

density ρ∗, temperature T ∗, and mean molecular weight M, with R denoting the universal gas

constant.

The analysis specifically considers small fluctuations of the pressure p∗s (t) and of the

strain rates A∗O(t) and A∗F(t). Mixing of the two streams is confined to a thin layer of characteristic

thickness δm = [λ̄∗O/(ρ̄
∗
Oc∗pĀ∗O)]

1/2, small compared with the natural length scale used in defining

the relevant Reynolds number. Here c∗p is the specific heat at constant pressure, and λ̄∗O, ρ̄∗O, and

Ā∗O are the mean values of the thermal conductivity, density, and strain rate in the oxidizer stream.

Within this slender layer, the solution takes a self-similar form, with the time t and the distance y

to the stagnation plane entering as the only independent variables [20]. In the description, the

streamwise component of the velocity vx = xA∗(y, t), linearly proportional to the streamwise
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distance x, is conveniently described in terms of the strain rate A∗(y, t), whose variation accross the

mixing layer is determined from momentum conservation. This mixing-layer region exhibits large

transverse changes of the density and transport properties, mainly associated with the temperarure

increase caused by the heat release at the flame. While these changes have often been handled

in the past through introduction of a density-weighted transverse coordinate, recent work [18]

suggests that weighting the coordinate with the inverse of the thermal conductivity is beneficial,

especially from the viewpoint of providing a compact transport operator, as will be seen below. To

this end, the problem is formulated with use made of an inverse-thermal-conductivity-weighted

coordinate

η(y, t) = (λ̄∗O/δm)
∫ y

0

dy
λ∗(y, t)

, (3.1)

and a modified nondimensional transverse mass flux

F =−ρ∗vy +ρ∗λ∗
∫ y

0
∂

∂t

( 1
λ∗
)

dy
ρ̄∗OδmĀ∗O

, (3.2)

replacing the streamwise velocity in the integration.

In addition, the mean properties of the oxidizer stream are used to define scaled variables

τ= Ā∗Ot, A(η,τ) =A∗/Ā∗O, ps(τ) = p∗s/p̄∗s , T (η,τ) = T/T̄ ∗O , ρ(η,τ) = ρ∗/ρ̄∗O, and λ(η,τ) = λ∗/λ̄∗O.

In dimensionless form, the equation of state becomes

ps(τ) = ρT (3.3)

when changes of molecular weight are neglected, whereas the isentropic equations relating the

boundary values of the density and temperature on each side of the mixing layer take the form

TO(τ) = TF(τ)/ΘF = p(γ−1)/γ
s

ρO(τ) = ρF(τ)ΘF = p1/γ
s

 (3.4)
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where ΘF = TF/TO is the constant fuel-to-oxidizer temperature ratio and γ is the ratio of specific-

heats. The outer strain rates are related according to

dAO

dτ
+A2

O =
1

ΘF

(
dAF

dτ
+A2

F

)
, (3.5)

as follows from the condition of negligible pressure variation across the separating mixing layer.

The composition will be described in terms of the mass fractions Yi(η,τ) of species i.

Although our primary interest is in undiluted hydrocarbon-oxygen flames, of interest for liquid-

propellant applications, dilution of both streams will be permitted for generality, with YF,F and

YO2,O denoting the boundary mass fractions of fuel and oxygen, respectively. The oxidation of the

fuel will be modeled by the irreversible reaction F+ sO2→ P+Q, where s represents the mass

of oxygen needed to burn the unit mass of fuel and Q is the corresponding total energy released

in the process. The mass of fuel consumed per unit volume per unit time will be denoted by wF

with swF and QwF correspondingly representing the mass of oxygen consumed and the amount of

heat released per unit volume per unit time.

The conservation equations, representing mass, momentum, energy, and species balances,

written for one-step chemistry in terms of the dimensionless variables defined above become [18]

∂(ρλ)

∂τ
=

∂F
∂η
−ρλA, (3.6)

ρλ
∂A
∂τ

= F
∂A
∂η

+Pr
∂2A
∂η2

+λ

[
ρO

(
dAO

dτ
+A2

O

)
−ρA2

]
, (3.7)

ρλ
∂T
∂τ

= F
∂T
∂η

+
∂2T
∂η2 +qkYFYO +

γ−1
γ

λ
dps

dτ
, (3.8)

ρλ
∂YF

∂τ
= F

∂YF

∂η
+

1
LF

∂2YF

∂η2 − kYFYO, (3.9)

ρλ
∂YO

∂τ
= F

∂YO

∂η
+

∂2YO

∂η2 −SkYFYO, (3.10)
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where kYFYO = λwF/(ρ̄
∗
OĀ∗OYF,F) is the dimensionless fuel consumption rate written in terms

of the normalized reactant mass fractions YF = YF/YF,F and YO = YO/YO2,O and involving an

appropriately defined reaction–rate constant k, whose dependence on temperature and pressure

need not be specified in our Burke-Schumann analysis. Besides the compact transport operator

accounting for local accumulation, convection, and diffusion, unsteady effects introduced by

the strain AO(τ) and stagnation pressure ps(τ) are embodied by source terms in (4.10) and (3.8)

associated with unsteady pressure gradients imposed on the mixing layer and with compression

work, respectively. Although the analysis proceeds with the energy equation (3.8) written in

terms of the temperature, alternative forms involving an entropy-related variable T/p(γ−1)/γ
s have

been shown to have advantages in some respects [20, 21], although that selection would not be

particulatly helpful here. As can be seen, the reaction terms in (3.8) and (3.10) exhibit the factors

q =
QYF,F

cpT̄ ∗O
and S =

sYF,F

YO2,O
, (3.11)

where q is a dimensionless heat of reaction and S is the amount of oxidizer needed to burn

completely the unit mass of fuel stream. The ratio q/S = QYO2,O/(scpT̄ ∗O ), independent of fuel

stream dilution YF,F, will also play a role in the analysis, with typical value q/S' 10 used below.

A unity Lewis number has been assumed for the oxidizer, whereas the fuel Lewis number LF

is allowed to take general nonunity values. Appearing in momentum conservation (4.10) is the

Prandtl number Pr taken to be constant in the analysis.

The conservation equations (3.6)–(3.10) are supplemented with the equation of state (3.3)

and with the presumed power law

λ = T σ, (3.12)

for the temperature dependence of the thermal conductivity, with the exponent σ = 0.7 used in

the integrations below. Although there are no qualitative changes in any predictions when the

formulation is simplified through the removal of two parameters, at the outset setting the Prandtl
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number to unity and ignoring the increase in transport properties with increasing temperature by

putting σ = 0, a significant quantitative increase in accuracy for air is achieved with Pr = 0.7 and

σ = 0.7, which does not introduce any complications in the numerical computations. Appropriate

boundary conditions for integration are F(0) = 0, stating that the stagnation plane is located at

η = 0, and

η =+∞ : A−AO = T −TO = YF = YO−1 = 0

η =−∞ : A−AF = T −TF = YF−1 = YO = 0
(3.13)

which follow from matching the mixing-layer solution with that found in the outer inviscid,

isentropic regions flanking the mixing layer. The problem is to be solved for given values of the

stagnation-point pressure ps(τ) and oxidizer-side strain rate AO(τ), with (3.4) used to evaluate the

boundary temperatures TO(τ) and TF(τ) and (3.5) used to evaluate AF(τ). The reader is referred to

[18] for a fuller discussion of the conservation equations.

3.3 Burke-Schumann Flames

The chemical-equilibrium condition

YFYO = 0, (3.14)

applies in the the limit of infinitely fast reaction, as can be obtained by taking the limit k→ ∞ in

any of the three equations (3.8)–(3.10). This condition indicates that the fuel and oxygen appear

in different regions, separated by a infinitesimally thin reaction layer located at η = η f (τ). The

description of the resulting free-boundary problem is facilitated by introduction of chemistry-free

coupling functions, obtained through elimination of the reaction terms in the species and energy

conservation equations by appropriate linear combinations [22]. For instance, a combination
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of (3.9) and (3.10) leads to

ρλ
∂Z
∂τ

= F
∂Z
∂η

+
S/LF +1

S+1
∂2Z
∂η2 (3.15)

involving the classical mixture fraction Z and a diffusion-weighted mixture fraction Z defined by

Z =
SYF−YO +1

S+1
and Z =

SYF/LF−YO +1
S/LF +1

. (3.16)

Clearly, the diffusion-weighted mixture fraction reduces to the classical mixture fraction when

LF = 1, so that (3.15) becomes a transport equation for a single scalar, thereby simplifying the

solution. On the other hand, since the Lewis number of oxygen is unity, it is convenient to

use (3.10) in eliminating the reaction term from (3.8) to yield

ρλ
∂ξ

∂τ
= F

∂ξ

∂η
+

∂2ξ

∂η2

+

(
γ−1

γ
λ

dps

dτ

)
1− (ρ/ρO)[1+ξ(ΘF−1)]

TO(ΘF −1)−q/S
(3.17)

for the normalized enthalpy

ξ =
T −TO +(q/S)(YO−1)

TO(ΘF −1)−q/S
. (3.18)

The above coupling functions have been normalized to give the convenient boundary values

ξ = Z = Z = 0 as η→ ∞ and ξ = Z = Z = 1 as η→−∞. When the stagnation point pressure is

steady, or if the compression-work term appearing in (3.17) is sufficiently small to be neglected,

ξ behaves as a conserved scalar. If, in addition, the fuel Lewis number equals unity, LF = 1, then

ξ becomes equal to the mixture fraction Z, so that ξ = Z = Z, as may be inferred from inspection

of their identical transport equations and boundary conditions.

The flame is the iso-surface Z = ZS = 1/(S+ 1) or Z = ZS = 1/(S/LF + 1) as follows

from use of the condition YF = YO = 0 in the definitions (4.53). On each side of the flame, the

non-coexistence condition (3.14) can be used together with the definitions (4.53) and (3.18) to
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provide the piecewise-linear relationships

YO = 0, YF =
(Z−ZS)
(1−ZS)

= (Z−ZS)
(1−ZS)

T = q
S(1−ξ)+TO[1+ξ(ΘF−1)]

(η≤ η f ) (3.19)

YO = 1− Z
ZS

= 1− Z
ZS
, YF = 0

T = q
S(

Z
ZS
−ξ)+TO[1+ξ(ΘF−1)]

(η≥ η f ), (3.20)

relating the temperature, composition and mixture fraction Z with the coupling functions Z and ξ.

Integration of (3.6), (4.10), (3.15) and (3.17) supplemented with (3.3), (3.12), (3.19), and (3.20)

subject to the boundary conditions given above determines the response of the flow to a prescribed

temporally varying stagnation point pressure ps(τ) and oxidizer-side strain rate AO(τ).

The flame location η f (τ) must be determined as part of the integration. At the flame the

normalized enthalpy takes the value ξ = ξ f (τ) which in turn determines the flame temperature

Tf =
q
S
(1−ξ f )+TO[1+ξ f (ΘF−1)], (3.21)

as follows from (3.19) or (3.20), with TO(τ) given in (3.4). This value is to be compared with the

adiabatic flame temperature

TS = TO +
q
S
(1−ZS)+ZS(TF−TO), (3.22)

resulting from the isobaric combustion of a stoichiometric mixture of the fuel and oxidizer

gases, each at their corresponding instantaneous temperatures TO(τ) and TF(τ). Because of

differential-diffusion effects associated with the nonunity value of LF and the presence of the

compression-work source term in (3.17), the value of ξ f is in general different from ZS, with the
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result that the flame temperature Tf differs in general from TS as described by

Tf −TS

q/S+TF−TO
= ZS−ξ f , (3.23)

obtained by substracting (3.22) from (3.21).

In the B-S limit, the reaction terms in (3.8)–(3.10) appear as Dirac delta functions, which

are necessarily balanced by jumps in the gradients of the mass fractions and temperature across

the flame. The relative jump in the gradients follow from the ratios q :−1 :−S of the reaction

terms appearing in these equations, leading to the jump conditions

mF =−
1
LF

∂YF

∂η

∣∣∣∣
f−

=
1
S

∂YO

∂η

∣∣∣∣
f+

=
1
q

(
∂T
∂η

∣∣∣∣
f−
− ∂T

∂η

∣∣∣∣
f+

)
, (3.24)

where the subscripts f− and f+ denote quantities evaluated on the fuel and oxidizer side of the

flame sheet. Here, with D∗F denoting the diffusion coefficient of the fuel,

mF =−
[ρ∗D∗F(∂YF/∂y)] f

YF,F(λ̄
∗
OĀ∗Oρ̄∗O/c∗p)1/2

(3.25)

is the dimensionless fuel consumption rate per unit flame surface. As can be seen in the first

equation of (3.24), in this limit of infinitely fast reaction the fuel consumption rate per unit flame

surface is determined exclusively by the fuel mass fraction gradient at the flame sheet since

ρ∗D∗F has conveniently been incorporated with use of the coordinate η. Similarly, the oxygen

consumption rate SmF is determined by the oxygen gradient ∂YO/∂η| f+, while the jump in the

temperature gradients at the flame sheet determines in this limit the heat-release rate qmF. Unlike

the gradients of temperature and reactant mass fractions, those of the chemistry-free coupling

functions Z and ξ do not exhibit jumps at the flame. In particular, the gradient of the diffusion-

weighted mixture fraction at η = η f can be used to evaluate the fuel burning rate according
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to

mF =−
1

LF(1−ZS)

∂Z
∂η

∣∣∣∣
f
, (3.26)

as follows from the piecewise relation (3.19) .

3.4 Acoustic–perturbation scheme

The analysis below is restricted to harmonic perturbations of small relative amplitude ε�

1 and acoustic frequencies ω∗ of the order of the local strain rate, corresponding to ω=ω∗/Ā∗O∼ 1,

a relevant distinguished limit for liquid-propellant rocket engines [15]. As previously mentioned,

in the linear limit the flame response to pressure perturbations and velocity perturbations may be

studied independently by considering the flame to be located at an acoustic velocity node (i.e. a

pressure antinode) with forcing terms

ps(τ)−1 = εeiωτ and AO(τ) = 1 (3.27)

or at a pressure node (i.e. a velocity antinode) with

ps(τ) = 1 and AO(τ)−1 = εeiωτ. (3.28)

The associated unsteady response can be addressed by a linear analysis in which the independent

variables are expressed in the form

f = f̄ (η)+ εeiωτ f̂ (η) (3.29)

( f representing any of the independent variables) where the bar is used to denote unperturbed

quantities and the hat is used for the complex functions that describe the acoustic response.
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Correspondingly, the expressions


η f = η̄ f + εeiωτη̂ f

Tf = T̄f + εeiωτT̂f

mF = m̄F + εeiωτm̂F

, (3.30)

involving the time-averaged values η̄ f , T̄f , and m̄F, and the complex response components η̂ f , T̂f ,

and m̂F, will be employed for the resulting flame location, flame temperature, and fuel burning

rate, respectively.

The unperturbed quantities F̄ , Ā, ξ̄ and Z̄ are the steady solutions of the governing

equations with corresponding steady boundary conditions and whose profiles may be found

in [18, 23]. The flame is located at η̄ f where Z̄ = ZS and where the unperturbed temperature

reaches the flame value T̄f = 1+q/S+(ΘF−1−q/S)ξ̄ f . For fuels such that LF = 1, ξ̄ = Z̄ = Z̄,

hence the peak temperature becomes T̄f = 1+ZS(q+ΘF− 1), equal to the unperturbed value

of the adiabatic flame temperature (3.22). As indicated in (3.26), the gradient of Z̄ at the flame

Z̄′f = Z̄′(η̄ f ) determines the unperturbed value of the fuel burning rate per unit surface area

m̄F =−Z̄′f /[LF(1−ZS)].

3.5 Acoustic pressure response

3.5.1 The linearized problem

We now turn our attention to the acoustic pressure response by considering perturbations

of the form (3.27). With a prime denoting differentiation with respect to η, introducing the
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expressions (3.29) into (3.6), (4.10), (3.15), and (3.17) yields the linear equations

−T̄ F̂ ′+ T̄ σÂ+(σ−1)T̄ σ−1(iω+ Ā)T̂

=−(iω+ Ā)T̄ σ,

 (3.31)

−Ā′F̂ + T̄ σ−1(iω+2Ā)Â− F̄Â′−PrÂ′′

+T̄ σ−1[(σ−1)Ā2/T̄ −σ]T̂

=−T̄ σ−1[Ā2− T̄/γ],

 (3.32)

−ξ̄′F̂ + iωT̄ σ−1ξ̂− F̄ ξ̂′− ξ̂′′

= γ−1
γ

iωT̄ σ−1 T̄−[(ΘF−1)ξ̄+1]
ΘF−1−q/S ,

 (3.33)

−Z̄′F̂ + iωT̄ σ−1Ẑ− F̄Ẑ′− (ZS/ZS)Ẑ′′ = 0, (3.34)

after collecting terms of order ε. As with base variables, the prime denotes differentiation of the

response functions with respect to η. Expressions for T̂ and Ẑ, necessary to close the system, can

be obtained by linearizing (3.19) and (3.20) to give

T̂ =
γ−1

γ

(
1+(ΘF−1)ξ̄

)

+(ΘF−1−q/S)ξ̂+


0 (η < η̄ f )

qZ
SZS

(η > η̄ f )

(3.35)

and

Ẑ =


1−ZS
1−ZS

Ẑ (η < η̄ f )

ZS
ZS

Ẑ (η > η̄ f ).

(3.36)

The above equations must be integrated with the homogeneous boundary conditions F̂(0) = 0

and Â = ξ̂ = Ẑ = 0 as η→±∞ to determine the functions F̂ , Â, Ẑ and ξ̂.

The forcing terms appearing on the right-hand sides of (3.31)–(3.33) are related to the
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temporal variation of the pressure ps(τ) = 1+ εeiωτ, which in turn induces density variations as

dictated by the equation of state (3.3). Besides forcing terms proportional to ω, emerging from

time derivatives dps/dτ, there are terms independent of the acoustic frequency in the continuity

and momentum equations (3.31) and (3.32), which account for the unsteady variations of the

density in the last terms of (3.6) and (4.10). Clearly, the latter perturbations become dominant in

the quasisteady limit ω� 1.

3.5.2 Quantification of flame-response functions

The perturbation functions Ẑ and ξ̂ can be used to evaluate the three complex numbers

η̂ f , T̂f , and m̂F that characterize in (3.30) the acoustic response of the B-S flame to perturbations

with a given frequency ω. For instance, the value Ẑ f of Ẑ at η = η̄ f can be used to determine the

flame displacement η̂ f from the condition

η̂ f Z̄′f + Ẑ f = 0 (3.37)

obtained by linearizing Z(η f ) = ZS. Similarly perturbations to the fuel consumption rate take the

form

m̂F =−
1

LF(1−ZS)
(Ẑ′f + η̂ f Z̄′′f ), (3.38)

where Ẑ′f and Z̄′′f denote, respectively, the values of dẐ/dη and d2Z̄/dη2 evaluated at η = η̄ f .

On the other hand, the value ξ̂ f = ξ̂(η̄ f ) determines the fluctuations of the flame temperature

according to

T̂f =
γ−1

γ
[(ΘF −1)ξ̄ f +1]+ (ΘF −1−q/S)

[
ξ̂ f −

ξ̄′f
Z̄′f

Ẑ f

]
, (3.39)

as follows from linearizing (3.21). The expression (3.39) contains two distinct contributions;

the first term is a result of the variation of the boundary temperatures (3.4) due to isentropic

89



10-1 100 101 102
0

0.2

0.4

0.6

0.8

10-1 100 101 102
-1

-0.98

-0.96

-0.94

-0.92

-0.9

-0.88

10-1 100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

10-1 100 101 102
0

0.02

0.04

0.06

0.08

0.1

0.12

10-1 100 101 102
0

0.5

1

1.5

2

2.5

10-1 100 101 102
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 3.2: Pressure response. For LF = 2, the variation with acoustic frequency of the polar
components of perturbations to the (a) flame location η̂ f = |η̂ f |eiϕ f , (b) fuel consumption rate
m̂F = |m̂F|eiϕm , and (c) flame temperature T̂f = |T̂f |eiϕT obtained from equations (3.37), (3.38),
and (3.39) respectively. The phase shift ϕ is shown in radians, with |ϕ| ≤ π/2 corresponding to
perturbations that are in phase with the acoustic forcing, whereas |ϕ|> π/2 are out of phase.
Equal feed-stream conditions (ΘF = 1) are used in the computation.

compression, whereas the second contribution arises from perturbations to the flame value of

the normalized enthalpy, which must be calculated with account taken of the flame displacement

according to ξ̂ f + η̂ f ξ̄′f = ξ̂ f − (ξ̄′f /Z̄′f )Ẑ f , so that the resulting value of T̂f differs from the value

of T̂ at η = η̄ f .

3.5.3 Representative results

The variation with ω of η̂ f = |η̂ f |eiϕ f , m̂F = |m̂F|eiϕm , and T̂f = |T̂f |eiϕT are displayed in

Fig. 3.2, with separate plots given for the modulus and phase shift (with respect to the pressure

perturbation) of each complex quantity. Results are shown for the case of equal feed temperatures

(ΘF = 1), fuel Lewis number LF = 2, and three different values of S = (1.5,4,8), with S = 4 being
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representative of methane-oxygen combustion and the two flanking cases included to investigate

effects of reactant-feed dilution corresponding to either YF,F < 1 or YO2,O < 1 as seen in the

definition of S given in (3.11). The values ΘF = 1, Pr = 0.7, and γ = 1.4 are used in generating

Fig. 3.2, as well as in all results that follow.

The left plots in Fig. 3.2 show the variation of the flame displacement η̂ f with the acoustic

frequency. The resulting magnitude |η̂ f |= |Ẑ f |/Z̄′f increases for increasing ω from the quasi-

steady values obtained for ω� 1. This trend is a consequence of the increase in the value of

the perturbed mixture fraction evaluated at the steady flame location, the higher frequencies

allowing less time for diffusive relaxation of acoustic-produced oscillations. Larger values of S

are seen to give larger displacements, because the resulting flames lie farther from the stagnation

plane, where the associated unperturbed gradients Z̄′f are correspondingly smaller, making the

flame location η̂ f =−Ẑ f /Z̄′f very sensitive to perturbations to the mixture-fraction field. The

flame displacement is seen to be almost exactly out of phase with the acoustic forcing, in that

ϕ f − π remains relatively small for all frequencies. Conversely, the burning-rate amplitude,

shown in the middle plots, is almost exactly in phase with the acoustic forcing, a finding that

has implications concerning the amplification rate, as discussed later in Section 3.7. Here, as the

acoustic frequency increases, instantaneous concentration gradients increase at the flame, leading

to a larger reactant supply, an effect that decreases with increasing S, opposite to |η̂ f |, since the

concentration gradients contributing to |m̂F| are larger closer to the stagnation plane.

The right plots in Fig. 3.2 represent the variation with frequency of the flame-temperature

perturbation, revealing trends similar to those of the flame displacement. In particular, the increase

in magnitude with frequency is evident. These magnitudes are nearly five times larger than those

of m̂ f (and the associated phase variations also are larger), because of the strong temperature

gradient in the vicinity of the B-S flame sheet. For acoustic frequencies much smaller than unity,

the last term in (3.39) becomes small, so that T̂f ' [(γ−1)/γ][(ΘF −1)ξ̄ f +1], where the flame

value of the unperturbed normalized enthalpy ξ̄ f depends on the stoichiometry and Lewis number.
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When the latter equals unity, however, the value T̂f = [(γ−1)/γ][(ΘF −1)ZS +1] corresponding

to ω� 1 can be obtained from (3.39) by noting that, in this low-frequency limit, equations (3.33)

and (3.34) are identical, so that Ẑ = Ẑ = ξ̂ whereas ξ̄′f /Z̄′f = 1. For increasing values of ω the

forcing term in the equation for ξ̂ enters to give non-zero values of ξ̂ f − ξ̄′f /Z̄′f Ẑ f , resulting

in a more pronounced flame-temperature perturbation. The qualitative increase with acoustic

frequency described above, especially that exhibited in the burning rate, has been seen in a variety

of unsteady non-premixed systems, including the counterflow [15] and droplet burning [13].

These general characteristics depend fundamentally on how close to extinction the flame is, so

that distinct qualitative behaviors are expected to arise for flames near extinction, as finite-rate

effects, not addressed here, become dominant [15].

The dependence of the flame acoustic response on the fuel Lewis number is investigated

in Fig. (3.3). Shown are the perturbation amplitudes of the flame location, burning rate, and

peak temperature, for acoustic frequency equal to unity with the same stoichiometric conditions

examined in Fig 3.2. Only the amplitudes are shown, with the corresponding phase functions

ϕi (not shown) displaying comparatively smaller variations in the range of Lewis numbers

0.3 ≤ LF ≤ 2.0 investigated here. As can be seen from the top plot, Lewis-number effects

play a significant role in the flame location, with increased differential diffusion enhancing the

amplitudes of the flame-sheet oscillations. Similar trends are evident in the burning rate, shown

in the middle plot, although the relative changes are somewhat smaller. Shown in the bottom plot

is the variation of the peak-temperature fluctuation amplitude, which reveals different behaviors

for near-symmetric flames and flames displaced far from the stagnation plane. In the former, as

was the case for the flame location and burning rate, differential diffusion for Lewis numbers less

than unity enhances the fluctuating peak-temperature amplitude. By way of comparison however,

flames displaced far from the stagnation plane display the opposite behavior, exhibiting smaller

amplitudes as the Lewis number decreases.
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Figure 3.3: Pressure response. The variation with fuel Lewis number of the perturbation
amplitudes for acoustic frequency ω = 1. The different curves correspond to the following
stoichiometry: S = 1.5 (x); S = 4 (◦); S = 8 (�). Results are for the same parametric conditions
as Fig 3.2 (i.e. ΘF = 1,Pr = 0.7,γ = 1.4).
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3.5.4 The approximation F = η

As previously shown [18, 23], under a wide range of conditions the transverse mass flux

F in counterflow flames is nearly linear in the thermal-conductivity-weighted coordinate η so that

use of the approximation F = η in computations provides sufficient accuracy for many purposes.

The solution simplifies greatly, in that use of F = η uncouples continuity and momentum from

species and energy conservation, leading to a problem in η that is nearly identical to that obtained

in the natural coordinate y when the assumption of constant density and constant transport

properties is employed. In the infinitely fast limit, this simplification is great enough that explicit

expressions can be obtained for the mixture fraction Z, composition, flame location and burning

rate, and, if the flow is steady, also expressions for the normalized enthalpy and temperature

fields.

While these explicit expressions are remarkably accurate for steady flames [18, 23], the

predictive capability of the approximation F = η is more limited in connection with analyses of

acoustic response. Since the perturbations to Z enter only through modifications to the transverse

mass fraction F , use of F = η in (3.15) (or equivalently F̂ = 0 in (3.34)) results in a stationary

mixture-fraction profile. As a result, the flame location and the burning rate remain unaffected by

the pressure oscillations, so that the associated perturbations are simply η̂ f = m̂F = 0. By way

of contrast, sufficiently accurate predictions of flame-temperature perturbations can be made on

the basis of the approximation F = η. The associated value of T̂f can be evaluated from (3.39)

with Ẑ f = 0 and with the value ξ̂ f of ξ̂ at η̄ f determined by integration of the simplified form of

(3.33) (i.e with F̂ = 0). The resulting value of T̂f = |T̂f |eiϕT is compared with the exact results by

the dashed curves in Fig. 3.2, giving excellent agreement over the whole range of frequencies

considered.
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3.6 Acoustic strain response

3.6.1 The linearized problem

When the flame is located at a velocity antinode the pressure remains constant while

the oxidizer-side strain rate varies as indicated in (3.28). In the absence of compression work

in (3.17), the normalized enthalpy becomes a transported scalar. The solution simplifies to

ξ = Z = Z for LF = 1, and the flame temperature Tf remains equal to the constant adiabatic flame

value, independent of the strain-rate variations.

Fluctuations of the oxidizer-side strain rate are accompanied by corresponding fluctuations

on the fuel side AF =
√

ΘF + ÂFεeiωτ, where ÂF is determined from the inviscid momentum

equation (3.5) with use of AO−1 = εeiωτ to give ÂF = ΘF(2+ iω)/(2
√

ΘF+ iω). Then perturbing

the base state with expressions of the form (3.29) leads to the following system of conservation

equations for the complex perturbation functions

−T̄ F̂ ′+ T̄ σÂ+(σ−1)T̄ σ−1(iω+ Ā)T̂ = 0 (3.40)

−Ā′F̂ +(iω+2Ā)T̄ σ−1Â− F̄Â′−PrÂ′′

+T̄ σ−1 [(σ−1)Ā2/T̄ −σ
]

T̂ = T̄ σ(iω+2)

 (3.41)

−Z̄′F̂ + iωT̄ σ−1Ẑ− F̄Ẑ′− (ZS/ZS)Ẑ′′ = 0 (3.42)

−ξ̄
′F̂ + iωT̄ σ−1

ξ̂− F̄ ξ̂
′− ξ̂

′′ = 0 (3.43)

with boundary conditions


η =−∞ : Â− ÂF = Ẑ = ξ̂ = 0

η =+∞ : Â−1 = Ẑ = ξ̂ = 0
(3.44)
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As before, piecewise relations for T̂ and Ẑ are necessary to close the system. These are given by

(3.35) and (3.36) after dropping the first term in the former. Perturbations to the flame location and

burning rate, η̂ f and m̂F, are given by (3.37) and (3.38) whereas the peak-temperature perturbation

is

T̂f = (ΘF−1−q/S)(ξ̂ f −
ξ̄′f
Z̄′f

Ẑ f ) (3.45)

different from (3.39), since boundary temperatures are stationary in the strain response. As is

evident, the temperature perturbation T̂f vanishes when LF = 1, because ξ = Z. Also of interest

is that, as seen in (3.42) and (3.43), the perturbations to the mixture fraction and normalized

enthalpy, which in turn determine through (3.45) the perturbations to the flame temperature, are a

result of the modifications to the transverse mass flux F̂ , in that if F̂ = 0 then Ẑ = Ẑ = ξ̂ = 0.

3.6.2 Representative results

The complex perturbations (3.30) to the flame location, burning rate, and peak temperature

are displayed in Fig. 3.4 for the parametric conditions investigated earlier in Fig. 3.2. The

dependence of the amplitude of the response on frequency in the upper plots of Fig. 3.4 is

notably different than that in Fig. 3.2. While both approach their respective quasi-steady values

as ω approaches zero, rather than the monotonic increase in the amplitude of the response to

pressure oscillations with increasing ω, the amplitude of the response to strain-rate fluctuations

increases to a maximum but then decreases to zero as ω approaches infinity. This difference is a

consequence of the fact that, while acoustic pressure variations are applied all across the mixing

layer, the corresponding strain-rate variations are applied only at the boundaries of the layer.

Hence, while only outward-moving diffusive relaxation occurs with pressure excitation, inward

diffusive transport, propagating inwards from the boundaries over distances of the order 1/
√

ω

(relative to mixing layer thickness), is an additional phenomenon that is essential to the strain-rate

response. As the frequency increases at the lower frequencies in Fig. 3.4, the former of these two
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Figure 3.4: Strain response. For LF = 2, the variation with acoustic frequency of the polar
components of perturbations to the (a) flame location η̂ f = |η̂ f |eiϕ f , (b) fuel consumption
rate m̂F = |m̂F|eiϕm , and (c) flame temperature T̂f = |T̂f |eiϕT obtained from equations (3.37),
(3.38) and (3.45) respectively. The phase shift ϕ is shown in radians. Results are for the same
parametric conditions as Fig 3.2 (i.e. ΘF = 1,Pr = 0.7,γ = 1.4).

effects produces an increase like that seen in Fig. 3.2, but at higher frequencies the latter effect

prevents the mixing layer from sensing the externally imposed strain-rate variations, eventually

completely insulating the mixing layer from the acoustic field in the limit of infinite frequency.

Thus by the principle of superposition, this aspect of the solution leads to the expectation that the

pressure response becomes dominant at sufficiently high frequencies.

The dependences on S of the magnitudes of the flame-location and burning-rate responses

in Fig. 4 are in the same direction as in Fig. 2, for the same reason, while, in contrast, the

magnitude of the flame-temperature response is much smaller in Fig. 4 and actually exhibits the

opposite dependence on S. These differences are attributable to the absence of compression work,

which causes the flame temperature in B-S flames to be rather insensitive to temporal variations

of the strain rate. The phase of the burning-rate fluctuations ϕm for S = 4 and S = 8 is seen in

Fig. 3.4 to change sign at an intermediate crossover frequency ωc, whose value increases with
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Figure 3.5: Representative scaled Rayleigh index evaluated from (3.47) and (3.38) for
(top) methane-oxygen (S,LF) = (4.0,1.0), hydrogen-oxygen (S,LF) = (8.0,0.3) and heavy
hydrocarbon (such as dodecane)-oxygen (S,LF) = (3.5,2.0) flames and (bottom) methane-
air (S,LF) = (17.2,1.0), hydrogen-air (S,LF) = (34.5,0.3) and heavy hydrocarbon (such as
dodecane)-air (S,LF) = (15,2.0) flames. The values ΘF = 1,Pr = 0.7,γ = 1.4 are used in the
computation.

increasing S (and decreases with increasing Lewis number for fixed S, as was seen in additional

computations). On the other hand, for sufficiently large values of LF or sufficiently small values

of S the phase remains always negative, regardless of the frequency. As discussed below, this

crossover behavior has implications with regard to the amplification of acoustic energy within the

flamelet. Computations of strain response considering different Lewis numbers, not shown here,

provided trends similar to those displayed in Fig. 3.3 for flame location and fuel consumption rates.

That similarity does not extend to resulting magnitudes of peak-temperature perturbations |T̂f |;

unlike the curves shown in the bottom plot of Fig. 3.3 for the pressure response, the corresponding

value of |T̂f | for the strain-rate response, which is identically zero for LF = 1, increases with

increasing |LF−1|.
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3.7 Discussion and implications for acoustic instability

The results of the previous analyses may be readily applied towards computations of

acoustic instabilities by application of the Rayleigh criterion, which states that amplification

occurs when, on average, heat is added in phase with the pressure increase [12]. Since the heat

release rate is qmF, for the counterflow flame amplification occurs when the perturbations mF− m̄F

are in phase with the pressure oscillations. Consequently, use of the Rayleigh index

R(ω) =
q

(2π/ω)

∫ 2π/ω

0
(ps−1)(mF− m̄F)dτ (3.46)

provides a convenient measure for quantifying the acoustic response [24], with R > 0 describing a

condition of amplification whereas R < 0 corresponds to attenuation, as follows from Rayleigh’s

criterion. For the B-S flames considered here, the burning rate is equal to the diffusive flux of fuel

at the flame as described by mF = m̄F + εeiωτm̂F.

For the acoustic pressure response use of ps = 1+ εcos(ωτ) in (3.46) yields

R/(qε
2/2) = ℜ{m̂F}, (3.47)

where ℜ{m̂F} denotes the real part of the complex function m̂F. Figure 3.5 shows the variation of

the scaled Rayleigh index (3.47) quantifying the acoustic pressure response of the outer transport

zones for a variety of fuel-oxidizer combinations of practical interest obtained by selecting

appropriate values of the stoichiometric mass ratio S and the fuel Lewis number LF. The top plots

correspond to fuel-oxygen systems whereas the bottom plot investigates fuel-air configurations.

Comparison of the two highlight the role stoichiometry plays on the acoustic response, with larger

values of the stoichiometric mass ratio, that being the case for fuel-air combinations for which

YO2,O = 0.232, displaying smaller values of the Rayleigh index. A similar effect is achieved as

differential diffusion weakens, as can be seen by comparing the curves representative of methane
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Figure 3.6: The acoustic strain response. The imaginary part of the fuel consumption pertur-
bation −ℑ{m̂F}, proportional to the amplification of acoustic energy, evaluated using (3.38).
Parameters and line styles match those appearing in Fig. 3.5 (e.g − methane; −− dodecane;
−. hydrogen). The indicated line (for which higher frequencies are not shown, to avoid clutter)
corresponds to (S,LF) = (1.5,2) for a diluted heavy fuel. The values ΘF = 1,Pr = 0.7,γ = 1.4
are used in the computation.

and dodecane, which posses similar values of S and different values of LF. As can be seen,

the analysis predicts acoustic amplification over all range of frequencies with values of the the

scaled index increasing with frequency. The results suggest that fuel-oxygen systems are more

susceptible to acoustic pressure instabilities than their fuel-air counterparts.

Acoustic amplification or attenuation through strain-rate variations is more complex than

the direct energy addition or removal through pressure-volume work, which is the basis of the

Rayleigh criterion. The acoustic velocity variations produce the strain-rate variations that cause

thermal-expansion variations through the heat-release variations. The portion of these thermal-

expansion variations that is in phase with the pressure variations then contributes to the Rayleigh-

criterion pressure-volume-work contribution to acoustic amplification or attenuation. The phase

relationship between the pressure and velocity variations associated with the equipartition of

energy in the acoustic field external to the heat-release region then completes the feedback of

energy that finally produces amplification or attenuation. This cycle is specific to counterflow
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flames, which respond differently to pressure and strain-rate variations, although there are other

configurations as well, such as droplet burning with non-negligible effects of droplet velocity

lags, in which a corresponding duality would appear.

In regard to how this applies to our analysis, since in the acoustic field external to the

velocity antinode the pressure variations lag those of the velocity variations by π/2, the portion of

the strain-rate-driven heat release that contributes to amplification or attenuation of acoustic energy

is proportional to the imaginary part−ℑ{m̂F}=−|m̂F|sin(ϕm) of the burning rate fluctuation, that

being the contribution in phase with pressure variations. This should be contrasted with the real

part of the burning-rate fluctuation which determines the portion in phase with velocity variations

in the same sense as (3.47). Therefore, in terms of the phase of the complex fuel consumption

perturbation amplitude ϕm, amplification occurs for −π < ϕm < 0 whereas attenuation occurs

when 0 < ϕm < π. Consequently, relevant quantitative information may be obtained from the

bottom middle plot in Fig. 3.4, in that ϕm = 0 (or ϕm = π) delineates the boundary between states

of amplification and attenuation.

The variation with acoustic frequency of −ℑ{m̂F} is shown in Fig. 3.6 for the same

fuel-oxidizer combinations displayed earlier in Fig. 3.5. Of particular interest in Fig. 3.6 is that,

while the acoustic-pressure analysis predicts amplification over all frequencies, the results of

acoustic-strain analysis exhibit a frequency band of attenuation, eventually undergoing transition

to amplification, which occurs for acoustic frequencies of order unity or somewhat larger. This

transition frequency, corresponding to the condition ϕm = 0 mentioned above, depends on the

stoichiometry of reactants and on differential diffusion. The extent of the attenuation region

decreases as the stoichiometric mass ratio decreases and as the Lewis number increases, and that

region disappears completely if S is sufficiently small (as could occur for a diluted-fuel stream

reacting with a pure oxygen stream, for example) and if LF is sufficiently large, corresponding

to a sufficiently heavy fuel; see the partial curve for S = 1.5 and LF = 2 in the figure. Although

the peak amplification rate is appreciably larger than the peak attenuation rate, it occurs at a
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higher frequency, where other attenuation effects would tend to be greater, so that the influence of

the attenuation range in Fig. 6 may not be negligible. The magnitudes for fuel-oxygen systems

are greater than those for fuel-air systems in Fig. 6, just as they are in Fig. 5, which is to be

expected, and the peak magnitudes of the real part seem to be about twice the peak magnitudes of

the imaginary part, favoring greater practical importance of the pressure response, although the

effects of the strain-rate response are not necessarily negligible. The peak in the amplification rate

is seen to fall off at high frequencies towards zero as inward acting diffusive transport is no longer

able to keep up with strain-rate variations applied at the boundaries of the mixing layer. This

behavior is analogous to the high-frequency trends seen in Fig. 3.4 and described in Sec. 3.6.2.

Concerning applications to acoustic instabilities in combustion chambers and to experi-

mental testing of predictions, different approaches may be relevant for different configurations.

In chambers that have relatively random distributions of turbulence exhibiting diffusion flamelets,

turbulence modeling of the flame-surface density may be employed to determine the spatial distri-

bution of their presence, thereby providing the Rayleigh-criterion amplification rates. Although

amplification is absent at pressure nodes, responses in the vicinity of such points may be important

if the velocity fluctuations are sufficiently large. In configurations with axial injection, for exam-

ple, initial amplification estimates may be made directly from the diffusion-flame predictions,

for transverse modes, for example, by estimating flame areas. For testing the present predictions,

experiments that may achieve steady self-supported oscillations may be considered, analogous to

T-burner experiments for solid-propellant acoustic-combustion-instability investigations, with

counterflow equipment replacing the solid-propellant surfaces, the length of the chamber connect-

ing the two ends adjusted to produce the frequency of interest, although larger wall losses and

flow-turning losses may render such designs impractical. More difficult, direct measurements of

acoustic responses with piston-generated imposed pressure waves may be needed, with oscillating

optical emissions detected as indicators of burning-rate responses, for example. In general, then, a

number of challenging experimental studies may be motivated by the present type of investigation.
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3.8 Conclusions

The response of strained diffusion flames in a stagnation-type counterflow subject to

harmonic pressure forcing and harmonic strain-rate forcing exhibits a variety of types of behavior

even in the limit of infinitely fast reaction. Since the development of acoustic instabilities depends

on the interplay of the pressure fluctuations with fluctuations in the heat-release rate, the latter

proportional to fluctuations of the fuel burning rate mF, it is important to target quantification of

fluctuations of mF for different forcing frequencies and different values of the fuel Lewis number

LF and stoichiometric ratio S. Fluctuations of mF are related to direct harmonic modifications of the

transport rates in the outer regions surrounding the flame as controlled mainly by perturbations in

the transverse mass flux. When fluctuations to the transverse mass flux are neglected, the response

is limited, resulting in steady reactant consumption and stationary flames, with temporally

fluctuating peak temperatures driven by the compression work introduced into the system by the

unsteady background pressure. When this background pressure is also a constant, as applies for

the strain-rate response, the peak temperature remains unchanged.

Effects of non-unity fuel Lewis number enhance fuel consumption and flame displace-

ments as differential diffusion becomes significant. Concerning the pressure response, distinct

behaviors with regard to effects of fuel Lewis number on the flame-temperature-perturbation

amplitude arise for near-unity values of S and for flames with large values of S. The pressure

response tends to increase with increasing frequency whereas the strain-rate response drops off

at sufficiently high frequencies. For this reason, the pressure response appears to tend to be

dominant, especially at higher acoustic frequencies.

When the expressions derived for the fluctuations of mF are used in the evaluation of the

relevant Rayleigh index characterizing the amplification/attenuation of acoustic instabilities, it

is found that amplification is predicted in the pressure response for all values of the acoustic

frequency with fuel-oxygen systems more unstable than their fuel-air counterparts, while, by way
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of contrast, the strain-response exhibits attenuation at low frequencies, with a crossover frequency,

dependent on stoichiometry and Lewis number, at which a transition to amplification occurs.

Although the present work is restricted to the limit of infinitely fast reaction, the analysis

serves as a necessary step in examining the response of flamelets that experience finite-rate effects

in the so-called diffusion-flame regime, relevant in hydrocarbon-oxygen systems, and it provides

clear indications of one of the two contributions that arise in that type of problem. Analyses

of such flames accounting for finite-rate effects, which have been shown to be important near

extinction [15, 16], could be carried out on the basis of the present analysis by coupling the

results of the outer transport regions discussed here with a thin quasi-steady reactive-diffusive

layer, following the rigorous asymptotic approach employed in [17] for steady flames. The

present clarifications of parametric dependences on stoichiometry and on fuel Lewis numbers,

not previously available, will be helpful in such analyses.

This chapter, in full, has been published in Combustion and Flame titled “The acoustic

response of Burke-Schumann counterflow flames”, by A. D. Weiss, W. Coenen, A. L. Sánchez

and F. A. Williams (2018) 192, 25-34. The dissertation author is the primary investigator in this

publication.
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Chapter 4

Acoustic response of near-equilibrium

diffusion flames with large activation

energies

4.1 Introduction

In a recent effort [1], we investigated the acoustic response of strained non-premixed

counterflow flames subject to small harmonic fluctuations of the stagnation-point pressure and

strain rate. The reader is referred to that publication for explanations of the background and

motivation of these studies, as well as citation and discussion of the previous relevant literature.

The model addressed serves as a simplified representation for the interactions of acoustic waves

with laminar flamelets of interest, statistical averages of which would apply to computations of

acoustic instabilities in liquid-propellant rocket motors. That analysis was restricted to the limit

of infinitely fast chemical reactions so that, while the response of the outer transport layers was

captured, effects of the finite-rate chemistry present in the thin reaction zones of the flamelets,

coupled with the outer transport regions, could not be predicted. The present contribution remedies
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that omission by analyzing the acoustic pressure response of counterflow flames including the

effects of finite-rate kinetics and their interplay with acoustic forcing, for systems with large

activation energies, thereby extending and complementing our previous work [1]. The large

activation energy introduces an additional parameter that, along with the small parameter of the

acoustic amplitude, gives rise to a distinguished limit that is fully described here, in addition

to determining small-amplitude, harmonic growth rates. In contrast to earlier investigations

(such as [2]), which addresses the so-called premixed-flame regime of the diffusion flame [3] (in

which only one of the two reactants is nearly consumed completely in the thin reaction zone),

the present work treats the diffusion-flame regime (in which both reactants are nearly consumed

completely) reasoned [1] to be most relevant for acoustic instabilities in liquid-propellant rockets

and considered in a recent treatment of diffusion-flame extinction [4].

4.2 Statement of the problem

The relevant problem for acoustic interaction of flamelets in turbulent combustion is

the unsteady, reacting, locally planar strained mixing layer situated in the stagnation-point flow

generated by opposed streams of fuel and oxidizer. The objective of the analysis is to quantify

the interaction of the low-Mach-number flow with acoustic pressure fluctuations of wavelength

large compared with the characteristic dimension of the stagnation-point region. Under those

conditions, the spatial differences of the pressure p∗ from its stagnation-point value p∗o (a function

of time t only) are smaller than p∗o by a factor of the order of the Mach number squared, so that

p∗ can be replaced by p∗o(t) when writing the equation of state as well as the energy equation.

The analysis specifically considers small harmonic fluctuations of the pressure from a prescribed

steady value p̄∗o of the form
p∗o
p̄∗o

= 1+ εcos(ω∗t), (4.1)
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involving the frequency ω∗ and the amplitude ε� 1. In the notation employed, the asterisk (∗) is

used to differentiate dimensional variables from equivalent scaled variables that will be defined

later.

Attention is given to the region located around the stagnation point, where the flow is self-

similar, both inside and outside the mixing layer [5]. The description uses the cartesian coordinates

(s,n), with s measuring the streamwise distance from the stagnation point and n representing the

coordinate normal to the stagnation plane, the oxidizer and fuel stream approaching from n =±∞,

respectively. The temperature T ∗(n, t), density ρ∗(n, t), and mass fractions of fuel and oxygen

YF(n, t) and YO2(n, t) are independent of s. The streamwise and transverse velocity components

are given by vs = A∗(n, t)s and vn(n, t), where A∗ is the strain rate. In the outer inviscid streams

the velocity is given by the potential solutions (vs,vn) = (A∗Os,−A∗On) and (vs,vn) = (A∗Fs,−A∗Fn),

involving the constant strain rates A∗O and A∗F on the oxidizer and fuel sides, which are related by

ρ
∗
O(A
∗
O)

2 = ρ
∗
F(A
∗
F)

2, (4.2)

as follows from the condition of negligible pressure jump across the mixing layer. Here, the

subscripts F and O denote properties in the fuel and oxidizer feed streams, respectively. Although

the boundary values of the strain rate A∗O and A∗F are constant, the compression work associated

with the fluctuating pressure given in Eq. (4.1) causes the density and temperature in the feed

streams to change with time following the familiar isentropic law

T ∗F
T̄ ∗F

=
T ∗O
T̄ ∗O

=

(
ρ∗F
ρ̄∗F

)γ−1

=

(
ρ∗O
ρ̄∗O

)γ−1

=

(
p∗o
p̄∗o

)(γ−1)/γ

, (4.3)

where γ is the specific-heat ratio, assumed to be constant. In the notation, the bar will be used to

denote quantities associated with the steady solution corresponding to unperturbed flames with

p∗o = p̄∗o.

The reaction between the fuel and the oxygen is assumed to occur according to a simple
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irreversible step, with ν denoting the mass of oxygen required to burn a unit mass of fuel and q∗

the amount of heat released per unit mass of fuel consumed. The reaction rate (i.e. the mass of

fuel burnt per unit volume per unit time) is taken to be

ẇF = B∗ρ∗YFYO2 exp[−E/(RT ∗)] (4.4)

involving the frequency factor B∗ and the activation energy E, which appears divided by the

universal gas constant R.

The problem is formulated in dimensionless form following our previous analyses [1, 6],

which should be consulted for details of the derivation. A Fickian description with Soret diffusion

neglected is adopted for the diffusion velocities, and the specific heat at constant pressure cp is

assumed to be constant. To simplify the expression of the transport operator, the formulation

employs a thermal-conductivity-weighted transverse coordinate η and accompanying transverse

mass flux F , defined according to

η = (ρ̄∗OA∗Oλ̄
∗
Ocp)

1/2
∫ n

0

dn′

λ∗(n′, t)
and F =−ρ∗vn +ρ∗λ∗

∫ n
0

∂

∂t

( 1
λ∗
)

dn′

(ρ̄∗OA∗Oλ̄∗O/cp)1/2
, (4.5)

where λ∗ is the thermal conductivity and n′ is a dummy variable of integration. Time is scaled

using the strain rate of the oxidizer stream to give τ = A∗Ot, and the stagnation-point value of the

pressure p∗o is scaled with its unperturbed value p̄∗o to give

p = 1+ εcos(ωτ), (4.6)

as follows from Eq. (4.1), with the dimensionless frequency ω = ω∗/A∗O treated as being of order

unity. The oxidizer-side properties are used in defining the additional dimensionless variables

A = A∗/A∗O, ρ = ρ
∗/ρ̄
∗
O, T = T ∗/T̄ ∗O , λ = λ

∗/λ̄
∗
O, (4.7)
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and the reactants mass fractions are normalized with their free-stream values to give

YF = YF/YF,F, YO = YO2/YO2,O. (4.8)

The variables defined above lead to a compact description of the conservation equations for mass,

momentum, species, and energy.

A complicating aspect of the unsteady problem analyzed below is the motion of the thin

flame in response to the pressure fluctuations, which hinders the application of large activation-

energy asymptotic techniques, as recognized in previous studies [2, 7]. The analysis is facilitated

by introduction of a coordinate x = η−η f (τ), including an apparent instantaneous flame location

η f (τ), whose precise definition, given in the paragraph following Eq. (4.20), is associated with

the basic flame structure that arises for large activation energies, to be discussed in the following

section. Unnecessary in our previous investigation [1], this further transformation facilitates

analysis of the reaction layer. In terms of this alternative coordinate, the conservation equations

take the form (see Eqs. 17-22 in [6] and their full derivation therein)

∂(ρλ)

∂τ
=

∂

∂x

(
F +ρλ

dη f

dτ

)
−ρλA (4.9)

ρλ
∂A
∂τ

=

(
F +ρλ

dη f

dτ

)
∂A
∂x

+Pr
∂2A
∂x2 +λp1/γ−ρλA2 (4.10)

ρλ
∂YF

∂τ
=

(
F +ρλ

dη f

dτ

)
∂YF

∂x
+

∂2YF

∂x2 −Ω (4.11)

ρλ
∂YO

∂τ
=

(
F +ρλ

dη f

dτ

)
∂YO

∂x
+

∂2YO

∂x2 −SΩ (4.12)

ρλ
∂T
∂τ

=

(
F +ρλ

dη f

dτ

)
∂T
∂x

+
∂2T
∂x2 +qΩ+λ

(
γ−1

γ

)
dp
dτ

(4.13)

where the flame location η f (τ) appears (through its derivative) as an eigenvalue of the problem,

to be determined from the solution. A constant Prandtl number Pr has been used in writing

Eq. (4.10), and Lewis numbers of unity are assumed for both reactants, a good approximation for
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methane-oxygen combustion, for instance.

The reaction rate appears in Eqs. (4.11)–(4.13) in the dimensionless form

Ω = ρλBYOYF exp(−Ta/T ), (4.14)

involving the reduced frequency factor B = B∗YO,O/A∗O and the dimensionless activation tem-

perature Ta = E/(RT̄ ∗O )� 1. The factors S = νYF,F/YO,O and q = q∗YF,F/(cpT̄ ∗O ) appearing in

Eqs. (4.12) and (4.13) are the mass of oxidizer stream needed to completely burn a unit mass of

fuel stream and the dimensionless heat release per unit mass of reacted fuel stream, respectively.

As will be seen in the following analysis, an important quantity characterizing the flame response

to pressure variations is the dimensionless fuel consumption rate per unit flame surface mF, which

can be evaluated from

mF =
∫ +∞

−∞
Ωdx =

∫ +∞

−∞
ρλBYOYF exp(−Ta/T )dx, (4.15)

with the associated rate at which heat is released given simply by qmF.

The above equations are supplemented by the equation of state and an additional expres-

sion for the thermal conductivity. These are written in the simplified forms

ρT = p(τ) and λ = T σ, (4.16)

neglecting changes of ρ and λ with composition, with a power law having exponent σ = 0.7

assumed for the temperature variation of the latter.

The condition that the transverse mass flux vanishes at the stagnation plane η = 0 provides

the boundary condition F = 0 at x =−η f . Additional boundary conditions, associated with the
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known streamwise velocity, composition, and temperature in the outer streams, are given by


x =+∞ : A = 1, YO = 1, YF = 0, T = TO(τ) = p(τ)(γ−1)/γ

x =−∞ : A = Θ1/2, YO = 0, YF = 1, T = TF(τ) = Θp(τ)(γ−1)/γ

, (4.17)

which are written with account taken of the relationships given in Eqs. (4.2) and (4.3). Since

changes in the molecular weight are neglected, the ratios of feed-stream temperatures and densities

are related according to Θ = T ∗F /T ∗O = ρ∗O/ρ∗F , an additional parameter that appears in Eq. (4.17).

Our objective is to describe the response of (6.33)–(4.13) under the realistic consideration

that the effective activation temperature Ta appearing in the reaction rate is large. Although

fully time-dependent computations can be made with detailed chemistry that is not excessively

complex, the overall results of such calculations often can be described well by this asymptotic

limit of this one-step approximation, which helps to clarify the underlying mechanism of the

pressure response.

4.3 Preliminary considerations concerning finite-rate effects

Simplified versions of the above formulation serve to analyze different problems of interest.

For example, when ε = 0 the solution becomes steady, that being the case investigated in Liñán’s

seminal analysis [3] using the nondimensional activation temperature Ta as an asymptotically

large parameter. Of relevance to the present work is the diffusion-flame regime, in which the

flame structure at leading order is given by the Burke-Schumann (BS) limit of infinitely fast

reaction, including two regions of equilibrium flow separated by an infinitesimally thin reaction

layer where the peak temperature is given by the adiabatic value

Ts = 1+
Θ−1
S+1

+
q

S+1
. (4.18)
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The temperature profile is rounded off due to finite-rate effects in the thin reaction layer. It is seen

that small temperature decrements of the order of the Frank-Kamenetskii value T 2
s /Ta are able

to reduce the reaction rate by a factor of order unity. The ratio of the characteristic temperature

increment produced by the chemical heat release q/(S+1) to this Frank-Kamenetskii temperature

T 2
s /Ta defines the Zel’dovich number

β =
Ta

T 2
s

q
S+1

(4.19)

the relevant parameter for the analysis of flame extinction [3]. As explained in [4], consideration

of the asymptotic limit β� 1 requires associated asymptotically large values of the preexponential

factor B, as needed to ensure that the temperature decrements are of order T 2
s /Ta in the reaction

layer. This last requirement results in order-unity values of the relevant Damköhler number D,

defined below in Eq. (4.31). In the limit β� 1 with D ∼ 1, the flame structure includes two

chemistry-free transport region flanking a thin reaction-diffusion layer of characteristic thickness

β−1 where the reactant mass fractions are of order β−1. The problem can be solved by expressing

the different flow variables as expansions in powers of β−1, including small corrections in the

outer equilibrium regions due to reactant leakage, with small mass fractions of order β−1, through

the reaction layer [4].

Unsteady effects associated with acoustic pressure variations can be investigated by con-

sidering nonzero values of the pressure amplitude ε� 1. Our previous work [1] specifically

considered the BS limit B→ ∞ (or equivalently D→ ∞, cf. Eq. (4.31)). The acoustic response

was obtained by analyzing the time-dependent perturbations to the base steady solution, includ-

ing relative displacements of the flame sheet of order ε and associated variations of the peak

temperature, resulting from the fluctuations of the reactant diffusion rate into the flame, of order

Tf −Ts ∼ εq/(S+1). This BS analysis of flame acoustic response is extended here, following

the recent work [4], by considering finite-rate effects in the limit β� 1. In view of the previous
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results, it can be expected that small pressure-induced fluctuations of the flame temperature

Tf −Ts ∼ εq/(S+1) of the order of the Frank-Kamenetskii temperature T 2
s /Ta, corresponding

to values of ε of order β−1, may result in order-unity changes of the reaction rate. From the

viewpoint of the classical S-shape curve of the peak temperature as a function of the Damköhler

number (shown for instance on p. 82 of [8]), the previous analysis [1] applies in the limit of

large Damköhler numbers where the curve is nearly flat, while the present analysis extends father

towards the turning point. The reaction-rate changes can be described in this new regime by

addressing the double distinguished limit

ε� 1 and β� 1 with βε∼ 1, (4.20)

with the accompanying value of B� 1 selected to yield D ∼ 1.

The solution at leading order reduces to the steady chemical-equilibrium flow. Pertur-

bations are described by introducing expansions in powers of β−1 both in the outer unsteady

transport region, where the corrections satisfy linear unsteady equations, and in the inner reaction

layer, whose quasi-steady response to the acoustic perturbations is fully nonlinear for βε ∼ 1.

As viewed from the outer regions, the flame appears as a sheet oscillating in response to the

acoustic forcing. The definition of the coordinate x = η−η f used in writing Eqs. (6.33)–(4.13)

incorporates the instantaneous flame-sheet location η f (τ), with η f defined for definiteness as

the apparent fuel-depletion point as seen from the fuel side in the outer solution. This definition

implies that, at all orders in the asymptotic expansion for β� 1, the fuel mass fraction in the outer

transport region (x < 0) vanishes at x = 0, a condition to be used in the asymptotic procedure when

writing the matching conditions between the outer and inner solutions for the fuel in Eq. (4.26).
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4.4 Solution by matched asymptotic expansions

4.4.1 Leading-order description

At leading order in the double distinguished limit defined in Eq. (4.20) the flame is steady

and described by the BS limit of infinitely fast reaction, characterized by two regions of chemical

equilibrium – one with fuel and no oxidizer, the other vice-versa – separated by a flame sheet at

which both the fuel and oxidizer vanish. The subscript 0 will be employed to denote this solution

(e.g. T0(x) for the temperature), which provides the leading terms in the asymptotic expansions

introduced below in Eqs. (6.19) and (4.25). The problem and its solution are summarized in

Supplement A.

The results of the integration provide a number of quantities characterizing the steady

combustion process, including the fuel consumption rate mF0 and the heat liberated at the flame

qmF0, given by

mF0 =−
dYF0

dx

∣∣∣∣
0−

and qmF0 =
dT0

dx

∣∣∣∣
0−
− dT0

dx

∣∣∣∣
0+

, (4.21)

respectively. It can be seen that the fractions of the total heat release that are conducted towards

the fuel and oxidizer sides,

γF =
1

qmF0

dT0

dx

∣∣∣∣
0−

and γO =− 1
qmF0

dT0

dx

∣∣∣∣
0+

, (4.22)

are given by

γF = 1− γO = Zs− (1−Zs)(Θ−1)/q, (4.23)

where Zs = 1/(S+1) is the stoichiometric value of the mixture fraction. Typical values of γO and

γF to be expected are γO = 1− γF = 0.80, corresponding to methane-oxygen combustion (S = 4)

when the feed streams have equal temperature.
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4.4.2 Perturbation strategy and matching requirements

In the distinguished limit defined in Eq. (4.20) the departures from the BS steady flame,

induced by the combined effects of finite-rate kinetics and pressure fluctuations, can be described

by introducing expansions in powers of either β−1 or ε. The former expansion parameter facilitates

the investigation of infinitesimal acoustic perturbations with βε� 1. The selected expansions in

the outer transport regions take the form

YO = YO0(x)+β
−1YO1(x,τ)+ · · ·

YF = YF0(x)+β
−1YF1(x,τ)+ · · ·

T = T0(x)+β
−1T1(x,τ)+ · · ·

F = F0(x)+β
−1F1(x,τ)+ · · ·

A = A0(x)+β
−1A1(x,τ)+ · · ·

η f = η0 +β
−1

η1(τ)+ · · ·

(4.24)

each beginning at leading order with the steady BS profile described in the previous section. The

first-order corrections, denoted by the subscript 1, depend parametrically on βε, which measures

the unsteadiness of the flow. Consequently, for βε = 0 the analysis naturally reduces to that

of the steady diffusion flame, with associated outer-flow corrections determined in [4]. The

equations involved in the computation of the functions YO1,YF1,T1,A1,F1, to be presented below,

are obtained by linearizing the governing Eqs. (6.33)–(4.13) with reaction Ω = 0, whereas the

value of the flame-sheet location η f is to be determined from the condition YF(x = 0−,τ) = 0,

which follows from the definition of x adopted in the analysis.

The reactants coexist with small mass fractions of order β−1 in a thin reaction layer of

characteristic thickness β−1 centered about x = 0, where the temperature departures from Ts are

of order β−1q/(S+1). This reaction layer can be described by introducing a stretched coordinate
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ζ = βx along with expansions in powers of β−1 of the form

YO = β
−1yO(ζ,τ)+ · · ·

YF = β
−1yF(ζ,τ)+ · · ·

T = Ts +β
−1 q

S+1
θ(ζ,τ)+ · · ·

F = F0(0)+β
−1 f (ζ,τ)+ · · ·

A = A0(0)+β
−1a(ζ,τ)+ · · ·

. (4.25)

Matching between Eqs. (6.19) and (4.25) provides the conditions


ζ→−∞ : yO = y−O (τ), yF =−mF0ζ, θ = θ−(τ)+(S+1)mF0γFζ,

ζ→+∞ : yO = y+O (τ)+SmF0ζ, yF = y+F (τ), θ = θ+(τ)− (S+1)mF0γOζ,

(4.26)

where

y±O (τ) = YO1(0±,τ), y+F (τ) = YF1(0+,τ) and θ
±(τ) =

T1(0±,τ)
q/(S+1)

, (4.27)

and Eqs. (4.21) and (4.22) have been used. The matching condition for yF as ζ→−∞ involves a

zero displacement, consistent with the definition of the coordinate x, that is, x has been defined to

prevent a function y−F (τ) from appearing in Eq. (4.26). The expressions in Eq. (4.26) imply that

the gradients of mass fractions and temperature asymptotically approach the boundary values


ζ→−∞ : ∂yO

∂ζ
= 0, ∂yF

∂ζ
=−mF0,

∂θ

∂ζ
= (S+1)mF0γF,

ζ→+∞ : ∂yO
∂ζ

= SmF0,
∂yF
∂ζ

= 0, ∂θ

∂ζ
=−(S+1)mF0γO.

(4.28)
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Similarly, the kinematic variables f and a satisfy the matching conditions


ζ→±∞ : f = f±o (τ)+ζ

dF0
dx (0), a = a±o (τ)+ζ

dA0
dx (0)

ζ→±∞ : ∂ f
∂ζ

= dF0
dx (0),

∂a
∂ζ

= dA0
dx (0)

, (4.29)

where f±o (τ) = F1(0±,τ) and a±o (τ) = A1(0±,τ), respectively.

4.4.3 Summary of the analysis of the reaction layer

The inner layer is found to be quasi-steady, as described in Supplement B. The solution

can be reduced to Liñán’s canonical problem [4] by introduction of a rescaled fuel mass fraction

y = yF/Zs along with a reduced Damköhler number

Λ = D exp
(

C1 +
S+1

S
γFC2

)
, (4.30)

involving the classical Damköhler number

D =
Sβ−3BT σ−1

s

(S+1)3m2
F0

e−Ta/Ts (4.31)

and the time-dependent functions C1(τ) and C2(τ), defined in Supplement B, to be obtained as

part of the matching procedure. The solution to the canonical problem provides the amounts of

fuel and oxygen that leak through the flame, with resulting values y+F = Zsy+ and y−O = (1−Zs)y−

shown on the right in Fig. 4.1 for three representative values of γO.

The curves on the left plot of Fig. 4.1, characterizing the quasi-steady response of the

reaction layer, show a turning point at a minimum value Λ = ΛE of Λ that defines extinction

conditions (e.g. ΛE = 0.176 for γO = 0.80). This extinction point is marked with a circle on

all three curves. The upper branch of each curve, extending above the circle, corresponds to

unstable solutions, so that only solutions along the lower branch are relevant for the analysis.
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Figure 4.1: The variation of the rescaled reactant leakages with the canonical Damköhler
number Λ for selected values of the leading-order oxidizer-side heat-conduction fraction γO. The
turning points, defining extinction conditions, are labeled by circles.

In the quasi-steady response described here the solution fluctuates about the unperturbed point

Λ = D as the reduced Damköhler number varies in response to the pressure pulsation following

Eq. (4.30), resulting in fluctuating reactant leakages.
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4.4.4 Analysis of the outer transport regions

The order β−1 corrections in the transport zone satisfy the system

−T0
∂F1

∂x
+T σ

0 A1 +(σ−1)T σ−1
0

(
∂

∂τ
+A0

)
T1

=−(βε)T σ
0 [A0 cos(ωτ)−ωsin(ωτ)]+(σ−1)T σ−1

0
dT0

dx
dη1

dτ
,

−dA0

dx
F1 +T σ−1

0

(
∂

∂τ
+2A0

)
A1−F0

∂A1

∂x
−Pr

∂2A1

∂x2 +T σ−1
0

(
(σ−1)A2

0
T0

−σ

)
T1

= (βε)T σ−1
0 cos(ωτ)

(
T0

γ
−A2

0

)
+T σ−1

0
dA0

dx
dη1

dτ
,

−dYF0

dx
F1 +

(
T σ−1

0
∂

∂τ
−F0

∂

∂x
− ∂2

∂x2

)
YF1 = T σ−1

0
dYF0

dx
dη1

dτ
,

−dYO0

dx
F1 +

(
T σ−1

0
∂

∂τ
−F0

∂

∂x
− ∂2

∂x2

)
YO1 = T σ−1

0
dYO0

dx
dη1

dτ
,

−dT0

dx
F1 +

(
T σ−1

0
∂

∂τ
−F0

∂

∂x
− ∂2

∂x2

)
T1 = T σ−1

0
dT0

dx
dη1

dτ
− (βε)T σ

0

(
γ−1

γ

)
ωsin(ωτ),

(4.32)

involving the parameter βε and the flame displacement η1(τ), to be determined in the integration.

For a given frequency ω, these equations must be integrated on each side of the flame. When

solving on the fuel side (x < 0) the corresponding boundary conditions are


x =−∞ : A1 = YF1 = YO1 = T1− (βε)Θ γ−1

γ
cosωτ = 0,

x = 0− : F1− fo(τ) = A1−ao(τ) = YF1 = YO1− y−O (τ) = T1− q
S+1θ−(τ) = 0.

(4.33)

Similarly, appropriate boundary conditions on the oxidizer side (x > 0) are


x = 0+ : F1− fo(τ) = A1−ao(τ) = YF1− y+F (τ) = YO1− y+O (τ) = T1− q

S+1θ+(τ) = 0,

x =+∞ : A1 = YF1 = YO1 = T1− (βε) γ−1
γ

cosωτ = 0.
(4.34)

In writing Eqs. (4.33) and (4.34) continuity of A1 and F1 across the flame has been used, a result

that follows from the inner-layer analysis, as shown in Supplement B.
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4.4.5 Closure and solution procedure

Integration of the outer problem Eq. (4.32) for given ω and D requires knowledge of the

values of various variables at each side of the flame, measured by the quantities y+F (τ), y±O (τ),

θ±(τ), ao(τ), and fo(τ) appearing in the boundary conditions given in Eqs. (4.33) and (4.34),

along with information regarding the flame shift η1(τ). The values of y+F (τ), y±O (τ), and θ±(τ)

can be expressed in terms of the reduced reactant leakages y+ and y− according to

y+F =
y+

S+1
,


y−O = S

S+1y−

y+O = S
S+1(y

++ y−)
,


θ− = ln(Λ/D)− γ̄Oy−

θ+ = θ−− y+
, (4.35)

obtained from Eqs. (4.62) and (4.65) supplemented with the relations C2 =−(S/[S+1])y− (from

Supplement B) and C1 = ln(Λ/D)+ γ̄Fy−, the latter following from Eq. (4.30). The canonical

curves in Fig. 4.1 can be used to evaluate y− and y+ in terms of Λ, thereby reducing the set of

unknowns to Λ(τ),ao(τ), fo(τ), and η1(τ). Closure of the solution then requires four additional

equations. The condition of zero mass flux at the stagnation plane yields

F1 = η1
dF0

dx
at x =−η0. (4.36)

Three additional conditions relating the gradients of A1, YF1, YO1, and T1 at x = 0± can be obtained

by integrating the conservation equations across the flame, with the limits of integration x =−δ

and x =+δ lying in the intermediate matching region between the inner and outer expansions,

i.e. β−1� δ� 1. The integration procedure is applied to the momentum Eq. (4.10) and to two

reaction-free linear combinations of Eqs. (4.11)–(4.13). Using the outer expansions shown in

Eq. (6.19) to evaluate the resulting expressions provides at order β−1 the three jump conditions

[
∂A1

∂x

]
=

[
S

∂YF1

∂x
− ∂YO1

∂x

]
=

[
∂T1

∂x
+

q
S

∂YO1

∂x

]
= 0, (4.37)
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thereby effectively closing the problem. Here, the bracket is employed to denote the jump of a

given quantity across the flame, i.e. [( )] = ( )0+− ( )0− . The one-dimensional, unsteady problem

defined by Eqs. (4.32)–(4.34) may be integrated on each side of the flame using the method

of lines after discretization of the spatial derivatives with the boundary conditions at the flame

x = 0± determined in an iterative (e.g. Newton Raphson) fashion at each time step when use is

made of the conditions (4.36) and (4.37), as explained above.

4.4.6 Characteristics of the solution

The asymptotic procedure presented above provides the general framework for the analysis

of the periodic flame response to harmonic pressure fluctuations in the distinguished limit defined

in Eq. (4.20). The problem reduces to the integration of Eq. (4.32) subject to Eqs. (4.33) and (4.34)

and supplemented with Eqs. (4.35)–(4.37) and the additional relations y−(Λ) and y+(Λ) given by

the canonical curves of Fig. 4.1. An important outcome of the analysis is the departure of the

burning rate mF from its steady Burke-Schumann value mF0, which can be obtained, following the

procedure used to derive Eq. (4.37), by integrating Eq. (4.11) across the flame to yield

mF−mF0 = β
−1
([

∂YF1

∂x

]
+F0(0)y+F (τ)

)
. (4.38)

This result shows that the variation of mF is partly due to the modification of the fuel diffusion

flux into the reaction layer and partly due to the unburnt fuel leaking through the flame.

The solution delineated above simplifies for steady counterflow flames with constant

pressure, which can be investigated from the present formulation by considering the steady

counterpart of Eq. (4.32) and setting βε = 0 in Eqs. (4.32)–(4.34). With both reactants having

unity Lewis numbers, it can be shown that the resulting steady value of the rescaled Damköhler

number reduces to Λ̄ = D [4], so that the critical conditions at extinction, defined in this case

by the equation D = ΛE , are independent of the finite-rate perturbations in the outer near-
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equilibrium regions, as first demonstrated in [3]. These perturbations need to be calculated,

however, to determine the corrections to the burning rate resulting from finite-rate effects, given

by

m̄F−mF0 = β
−1
([

dȲF1

dx

]
+F0(0)ȳ+F (τ)

)
, (4.39)

with all variables corresponding to the steady solution denoted by a bar.

The response to unsteady pressure fluctuations is investigated by considering non-zero

values of βε. In the distinguished limit given in Eq. (4.20) the departures from the steady Burke-

Schumann solution, described by the functions YO1(x,τ), YF1(x,τ), . . . in the outer regions and by

the functions yO(ζ,τ), yF(ζ,τ) . . . in the reaction layer, exhibit relative temporal changes of order

unity, larger for larger βε, associated with order-unity fluctuations of the Damköhler number Λ

about its unperturbed value D. These variations of Λ are accompanied by periodic variations

in the reactant leaking across the flame as the system oscillates back and forth along the lower

branch of the canonical curves of Fig. 4.1. Although periodic, these leakages are inharmonic, as a

consequence of the nonlinear character of the reaction-layer problem in Supplement B, reflected

in the exponential time dependence present in the definition of Λ and in the varying slope of the

canonical curves, especially pronounced close to extinction conditions.

The existence of the solution requires that the values of D and βε are such that the

minimum value Λmin of Λ during the fluctuating cycle remains above ΛE . Clearly, the analysis

given here can be expected to fail near the turning point, because the associated rapid variation of

the fuel leakage is incompatible with the assumption of quasi-steadiness in the inner reaction layer.

Therefore, while the condition Λmin = ΛE can be used to predict critical extinction conditions,

the detailed description of transient extinction events requires consideration of unsteady effects in

the reaction layer, not considered here.

The expression given in Eq. (4.38) simplifies in the Burke-Schumann limit D → ∞,

corresponding to solutions with negligibly small reactant leakages lying far below the extinction

points of Fig. 4.1. As shown in our previous analysis [1], the fluctuations of the burning rate
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mF−mF0 for D → ∞ are proportional to ε, a result that can be recovered from the present

formulation by noting that, with negligible reactant leakage, the first-order corrections to the

outer flow, to be obtained from Eqs. (4.32)–(4.34), are driven only by the pressure forcing term,

proportional to βε, so that ∂YF1/∂x ∝ βε, thereby yielding the expected dependence mF−mF0 ∝ ε

from Eq. (4.38).

Thus far we have presented the asymptotic description of the flame response to harmonic

pressure fluctuations of amplitude ε ∼ β−1, sufficient in driving order-unity changes of the

reaction rate in the distinguished limit (4.20). Interest is now directed to the examination of

acoustic phenomena, formally described by infinitesimal acoustic amplitudes ε smaller than

all other perturbations including those due to finite-rate effects ∼ β−1. The resulting problem,

to be described below, may be treated by considering flames with D ∼ 1 subject to pressure

fluctuations of small amplitude ε� β−1, such that both the leading-order BS solution and its

first-order corrections of order β−1 are steady in the first approximation. The resulting problem

for the acoustic perturbations is linear both in the outer transport regions and also in the reaction

layer, so that the flame response is harmonic and can be described in terms of separable variables,

thereby simplifying the solution.

4.5 Flame response for acoustic-pressure amplitudes ε� β−1

In the asymptotic formulation presented above the acoustic-pressure amplitude ε enters in

the expansions shown in Eqs. (6.19) and (4.25) through the implicit dependence of the first-order

corrections on βε. Small departures from the steady solution of order βε can be expected for

βε� 1. These can be described by expanding the first-order corrections in powers of βε, with
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the first two terms in the expansions taking the form

YO1(x,τ) = ȲO1(x)+βεeiωτỸO1(x)

YF1(x,τ) = ȲF1(x)+βεeiωτỸF1(x)

T1(x,τ) = T̄1(x)+βεeiωτT̃1(x)

F1(x,τ) = F̄1(x)+βεeiωτF̃1(x)

A1(x,τ) = Ā1(x)+βεeiωτÃ1(x)

η1(τ) = η̄1 +βεeiωτ
η̃1

(4.40)

for the outer variables and

yO(ζ,τ) = ȳO(ζ)+βεeiωτỹO(ζ)

yF(ζ,τ) = ȳF(ζ)+βεeiωτỹF(ζ)

θ(ζ,τ) = θ̄(ζ)+βεeiωτ
θ̃(ζ)

f (ζ,τ) = f̄ (ζ)+βεeiωτ f̃o

a(ζ,τ) = ā(ζ)+βεeiωτão

(4.41)

for the inner variables. Both sets of expansions begin with the steady solutions corresponding

to βε = 0. The second terms, separable and with a harmonic time dependence, amount to

perturbations of order ε to the original flow variables, as may be made clear by introducing

Eq. (4.40) into Eq. (6.19) (or Eq. (4.41) into Eq. (4.25)). A tilde is used to denote the response

functions, carrying the spatial dependence of the acoustic perturbations, with the velocity functions

f̃o and ão anticipated to be uniform across the reaction layer, as follows from Eq. (4.59). Matching

between the two expansions in Eqs. (4.40) and (4.41) at O(βε) requires that F̃1(0)− f̃o = Ã1(0)−

ão = 0 and that the complex functions ỹO, ỹF, and θ̃ approach the complex limiting values

ỹO = ỹ±O , ỹF = {ỹ+F ,0}, θ̃ = θ̃
± as ζ→±∞ (4.42)
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Figure 4.2: The variation of the canonical eigenvalue-to-leakage ratios λ1/ỹ+ and λ2/ỹ+ with
the steady rescaled fuel leakage ȳ+ for several values of the leading-order oxidizer-side heat-
conduction fraction γO. The circles identify the turning points indicated in Fig. 4.1

where

ỹ±O = ỸO1(0±), ỹ+F = ỸF1(0+),
q

S+1
θ̃
± = T̃1(0±). (4.43)

The analysis of the acoustic response of the inner layer, presented in Supplement C,

provides in particular the expressions

ỹ+F =
ỹ+

S+1
,


ỹ−O =− S

S+1λ2

ỹ+O = S
S+1(ỹ

+−λ2)

,


θ− = λ1

θ+ = λ1− ỹ+
, (4.44)

for the boundary values appearing in Eqs. (4.42)–(4.43). The values of λ1 and λ2, which de-

termine the variation of the Damköhler number according to Λ/Λ̄ = 1+βεeiωτ(λ1− γOλ2), are

proportional to the complex amplitude of the fuel leakage ỹ+F = Zsỹ+, with a proportionality

constant that depends on the steady fuel leakage ȳ+F = Zsȳ+, as shown in Fig. 4.2.

Analysis of the acoustic response of the outer layers is presented in Supplement D. That

analysis requires jump conditions across the inner layer, which can be shown from Eq. (4.37) to
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be [
dÃ1

dx

]
=

[
S

dỸF1

dx
− dỸO1

dx

]
=

[
dT̃1

dx
+

q
S

dỸO1

dx

]
= 0. (4.45)

For given values of ω and D integration of the problem delineated in Supplement D provides in

particular ỹ+, representing the complex amplitude of the harmonic oscillation of the fuel leakage

about its mean value ȳ+. The resulting fluctuations in the fuel leakage lead to oscillations in the

burning rate from its unperturbed value m̄F (defined in Eq. (4.39)) taking the form

mF− m̄F = εeiωτm̃F, where m̃F =

[
dỸF,1

dx

]
+

F0(0)
S+1

ỹ+. (4.46)

The resulting solution may also be employed in quantifying perturbations to the peak

temperature. For a steady flame, the peak temperature is related to the rescaled fuel mass fraction

ȳ by means of the coupling Eq. (4.63) relating θ̄ with ȳ, with the latter determined by integration

of the canonical problem defined in Eq. (4.64). This implies that the order β−1 decrement to the

adiabatic value Ts of the BS peak temperature is determined by the maximum value θ̄max = θ̄(r̄m)

of θ̄ with the location r̄m determined from the condition dȳ/dr̄+γO = 0 following from Eq. (4.63).

Fluctuations of order ε about this steady peak temperature are described by the function θ̃, leading

to harmonic oscillations with complex amplitudes T̃max = [q/(S+1)]θ̃max with θ̃max taking the

form θ̃max = F ỹ+, including a real factor

F (D) =
λ1

ỹ+
− ỹ(r̄m)

ỹ+
, (4.47)

that depends only of the unperturbed Damköhler number D through the values of ỹ/ỹ+ and

λ1/ỹ+. These can be obtained for γO = 0.8 from Figs. 4.8 and 4.2, respectively, yielding, for

instance, F =−(0.35,0.65,2.03) for D = (0.19,0.25,0.50). The associated fluctuations of peak

temperature take the form

T̃max =
q

S+1
F (D) ỹ+, (4.48)
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Figure 4.3: Variation of the relative amplitude M and phase lag P of the burning rate, defined
in Eq. (4.50), obtained from full numeric integration of the governing Eqs. (6.33)–(4.17) when
written in terms of the original coordinate η with D = 0.3 and βε = 1/10 for increasing values
of the Zel’dovich number β. The asymptotic prediction given in Eq. (4.46) is also shown with
the amplitude and phase lag given by |m̃F| and ϕm, respectively, corresponding to the polar
components of m̃F = |m̃F|eiϕm .

where the complex leakage ỹ+ carries the dependence on ω, along with an additional dependence

on D .

4.6 Sample results in the acoustic limit βε� 1

The results in Sec. 4.5 can be used to evaluate the acoustic response of near-equilibrium

diffusion flames for acoustic amplitudes ε� β−1� 1. Illustrative results will be given below

for S = 4, q/S = 10, Pr = σ = 0.7, and Θ = 1, selected as representative of methane-oxygen

diffusion flames with equal feed-stream temperatures. The corresponding unperturbed solution is

characterized by Ts = 9 and γO = 0.8, determined from Eqs. (4.18) and (4.23), with accompanying

values of the flame location and burning rate given by η0 = 0.77 and mF0 = 0.38, obtained from

integration of the steady Burke-Schumann problem. Fixing these values allows us to quantify the

response in terms of the frequency ω and the unperturbed Damköhler number D .
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4.6.1 Comparison with numerical integrations for finite values of β

Before presenting results that quantify the response to acoustic forcing, it is of interest

to investigate the accuracy of the large-activation-energy results by comparing the burning-rate

prediction given in Eq. (4.46) for β→ ∞ with the value obtained from the integral in Eq. (4.15)

with the temperature and composition determined by numerical integrations of the initial problem

defined in Eqs. (6.33)–(4.17) for finite values of β� 1. In the computations, the conservation

equations were written in terms of the original coordinate η. To facilitate comparisons with the

asymptotic results, the activation temperature Ta and the preexponential factor B appearing in

Eq. (4.14) were expressed in terms of β and D with use made of Eqs. (4.19) and (4.31) to give

Be−Ta/T = D
(S+1)3m2

F0
S

T σ−1
s β

3 exp
(

β
T −Ts

T
Ts

q/(S+1)

)
. (4.49)

The computations considered a fixed value of D and increasing values of β, with accompanying

acoustic amplitudes ε selected such that βε� 1. The latter limit ensures that the full numerical

response is nearly harmonic. Correspondingly, Eq. (4.15) takes the approximate form

mF(τ)− m̄F ' εM cos(ωτ+P ), (4.50)

where the amplitude M (relative to the acoustic amplitude) and the phase lag P of the burning-

rate fluctuations can be evaluted from the appropriate Fourier coefficients of the time series

mF(τ) obtained in the full integration, thereby enabling comparisons with the asymptotic result in

Eq. (4.46) to be made.

Results are shown in Fig. 4.3, where the thin curves represent the variation with the

acoustic frequency ω of the values of M and P obtained from the numerical integrations for

β = 10 and β = 20 and fixed values D = 0.3 and βε = 1/10. Also shown as thick curves are the

asymptotic results, characterized by the complex value m̃F = |m̃F|eiϕm defined in Eq. (4.46). The
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Figure 4.4: The variation of the complex fuel leakage ỹ+ = |ỹ+|eiϕy with the acoustic frequency
for increasing values of the Damkhöhler number D = (0.19,0.25,0.5); the corresponding points
have been labeled on the turning-point curve in the inset of Fig. 4.6.

agreement between the asymptotic predictions (|m̃F| and ϕm) and the numerical results (M and

P ) is seen to be satisfactory for frequencies of order unity, with observed relative errors ∼ β−1,

consistent with the order of the asymptotic analysis. The larger relative errors encountered at high

frequencies can be attributable to the quasi-steady structure of the inner reaction layer, which

applies in the asymptotic analysis for ω∼ 1, becoming increasing inaccurate for ω� 1.

4.6.2 Quantification of flame response: variation with Damköhler and

acoustic frequency

Integration of the equations governing the outer transport regions, described by Eqs. (4.73)–

(4.76), provide the response functions ỸF,1, ỸO,1, and T̃1, along with the flame shift η̃1 and the

fluctuating fuel leakage ỹ+. The latter, a complex quantity expressible as ỹ+ = |ỹ+|eiϕy in

terms of its modulus |ỹ+| and phase shift ϕy with respect to the imposed pressure perturbation,

represents an appropriate measure of the extent of finite-rate effects. The variation of |ỹ+|

and ϕy with frequency is shown in Fig. 4.4 for selected values of the unperturbed Damköhler

number D = (0.19,0.25.0.5), with the lowest value D = 0.19 placing the flame near extinction
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(DE = 0.176 for γO = 0.8). For these near-extinction conditions, the solution lies near the turning

point of the C-shape curve, where small perturbations lead to large variations of the reactant

leakage, reflected in the large value of |ỹ+| shown for D = 0.19 in Fig. 4.4. The amplitude of

the fluctuating leakage is seen to increase monotonically with the frequency and to decrease

with increasing D, the latter consistent with the approach to the Burke-Schumann limit D� 1

of vanishing reactant leakage. The phase, on the other hand, is independent of D and shows a

non-monotonic dependence on the frequency, including a peak value at an intermediate value of

ω' 0.9.

The value of the flame shift η̃1 = |η̃1|eiϕ f , together with the fluctuation of the peak

temperature T̃max = |T̃max|eiϕT , computed using Eq. (4.48), and the burning-rate fluctuation

m̃F = |m̃F|eiϕm , evaluated from Eq. (4.46), are used in Fig 4.5 to evaluate the response of diffusion

flames to acoustic perturbations of frequency ω. To better illustrate the extent of finite-rate effects,

besides results obtained for D = (0.19,0.25.0.5), represented with thin curves, the plots include

results corresponding to the Burke-Schumann limit D→ ∞, obtained in our previous analysis [1].

As expected, all finite-rate curves approach the Burke-Schumann results for increasing values

of D. An important first observation from the plots is that the influence of finite-rate effects in

weakly strained flames is very limited, as measured by the small differences between the curves

for D = 0.5 and the BS results, consistent with the small reactant leakages shown in Fig. 4.4 for

D = 0.5.

The plots in the left column of Fig 4.5 show the variation of the flame shift η̃1 = |η̃1|eiϕ f .

As can be seen, its magnitude |η̃1| increases with increasing ω from the quasi-steady value

obtained for ω� 1. Interestingly, the resulting |η̃1| is seen to be rather insensitive to changes

in the Damköhler number, revealing that the flame location is governed mainly by the unsteady

modifications to the outer transport regions, largely independent of the finite-rate chemistry. Also

of interest is that the phase of the flame displacement, shown in the bottom left corner of the figure,

is characterized by values |ϕ f −π| that are relatively small, revealing that the flame displacement
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Figure 4.5: The variation with acoustic frequency of the polar components of perturbations
to the flame location η̃1 = |η̃1|eiϕ f (left), the burning rate m̃F = |m̃F|eiϕm (middle), and to the
maximum temperature T̃max = |T̃max|eiϕT (right). Each curve (in order from light to dark) is for
increasing values of the Damköhler number D = (0.19,0.25,0.5); the corresponding points
have been labeled on the turning-point curve in the inset of Fig. 4.6. The black line corresponds
to data taken from the D = ∞ analysis in [1].

is almost exactly out of phase with the acoustic forcing for all frequencies.

The perturbations to the burning rate m̃F = |m̃F|eiϕm , proportional to fluctuations in the

rate of heat release, are also shown in Fig 4.5. The expression for m̃F in Eq. (4.46) includes two

contributions, one involving the jump of fuel-mass-fraction gradient at the flame [dỸF,1/dx] and

the other being proportional to the leakage ỹ+. The departures of |m̃F| from the Burke-Schumann

value shown in the upper middle plot of Fig 4.5, larger for higher frequencies and smaller

Damköhler numbers, are largely attributable to the direct dependence of the burning rate on

reactant leakage ỹ+, whose variation with D and ω is given in Fig. 4.4. The phase shift ϕm, shown

in the bottom middle plot of Fig 4.5, reveals that the perturbations to the burning rate remain

nearly in phase with the acoustic pressure for all frequencies regardless of the Damköhler number.

This fact has implications concerning the amplification of acoustic energy, to be discussed below,
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and this result may be anticipated from the fact that the reaction term Ω is proportional to the

pressure through the factor ρλ present in its definition.

Shown in the right column of Fig. 4.5 are the variations of the peak temperature T̃max =

|T̃max|eiϕT , which are linearly proportional to ỹ+. Since the constant of proportionality [q/(S+

1)]F (D) is a negative real number, the values of T̃max and ỹ+ are exactly out of phase, as

can be seen by comparing the values of ϕy and ϕT shown in Figs. 4.4 and 4.5, respectively.

Also of interest is that, although ỹ+ approaches zero as the Damköhler number increases, the

accompanying value of |F | increases, with the product approaching a finite value, corresponding

to the peak temperature fluctuation of the Burke-Schumann flame.

4.6.3 Implications for acoustic instability

The use of the counterflow flame subject to harmonic acoustic forcing serves as a simplified

model for the interaction of a sound wave with a laminar flamelet. The amplification or attenuation

of the pressure oscillations in the combustion chamber is a global result of these local interactions.

According to Rayleigh’s criterion, amplification occurs when, on average, heat is added in phase

with the pressure increase. This criterion, based on the fact that the rate of change of the mean

acoustic energy is proportional to the average of the product of the pressure perturbations with the

unsteady heat release [8], may be conveniently characterized through use of the Rayleigh index,

R(ω) =
q

2π/ω

∫ 2π/ω

0
(ps−1)(mF− m̄F)dτ (4.51)

with q(mF− m̄F) representing the unsteady heat release. In this sense, the Rayleigh index R

provides a local criterion for amplification of a flamelet, with R > 0 and R < 0 describing

amplification or attenuation, respectively, as follows from Rayleigh’s criterion.

Substituting into Eq. (4.51) the expression mF− m̄F = εeiωτm̃F, given in Eq. (4.46) for the
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Figure 4.6: For the representative system defined in the first paragraph of this section, the
variation of the scaled Rayleigh index with acoustic frequency for increasing values of the
Damköhler number D = (0.18,0.19,0.25,0.50) corresponding to the points labeled on the
turning-point curve in the inset. The curve D = ∞ is taken from an earlier analysis [1].
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burning rate, along with the imposed pressure variation ps−1 = εcos(ωτ) leads to

R/(qε
2/2) = R{m̃F} , (4.52)

with the symbol R introduced to denote the real part of a complex quantity. Equation (4.52) is

used to evaluate the Rayleigh index, with results shown in Fig. 4.6. The left-hand plot gives

the variation of the Rayleigh index with the frequency of the acoustic pressure oscillations for

selected values of the Damkhöhler number D, marked with a circle along the C-shape curve

shown in the inset. As is evident from the curves, the analysis predicts amplification over all

ranges of the acoustic frequency ω regardless of the Damkhöhler number, a result that may be

anticipated from Fig. 4.5 since the phase ϕm of the burning-rate perturbation lies within the range

|ϕm|< π/2, ensuring that R{m̃F}= |m̃F|cos(ϕm) is positive.

The variation of the Rayleigh index with the Damkhöler number is examined in the right-

hand plot of Fig. 4.6. The results indicate that finite-rate effects dominate the acoustic pressure

response of strained flamelets near extinction. For robust, diffusion-controlled flames unsteady

modifications to the outer chemical-equilibrium transport regions produce only moderate effects.

This result is tied closely to the diminishing value of the leakage as the Damkhöler number

increases, shown in Fig. 4.4. For the typical flow conditions found in the combustion chamber

of a liquid-propellant rocket engine, the strain rate exerted on the flamelets can be expected to

decrease with increasing axial distance from the injectors, leading to an increase in the resulting

local Damköhler number. Therefore, the present results indicate that the acoustic interactions

with the flamelets produce larger rates of amplification in the highly strained near-injector region,

whereas the contribution of the near-equilibrium flamelets found farther downstream will be of

lesser importance. This same result has been found earlier in the context of the premixed-flame

regime of diffusion flames [2].

The extent to which the above amplification results may be applied to realistic rocket
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motors depends also on the relevant damping mechanisms present, including nozzle and/or wall

damping [8], for example, which are not considered in the local analysis presented here. The

inclusion of these effects, as well as addressing self-sustained pressure oscillations through

closed-loop interactions, treated for example in [9, 10], warrants further investigation.

4.7 Concluding remarks

This investigation has served to determine the local response of diffusion flamelets to

imposed harmonic pressure oscillations of wavelength large compared with local mixing-layer

thicknesses, focusing on counterflows, with effects of amplification or attenuation of acoustic

combustion instabilities in liquid-propellant rocket motors identified. The different physical

contributions to the response have been identified and explained, showing that the response for

typical propellant combinations of interest leads to acoustic amplification, not attenuation, the

amplification being larger at higher strain rates (closer to flamelet extinction). These conclusions

are drawn on the basis of one-step Arrhenius chemical kinetics, of first order with respect to

both the fuel and oxidizer, the temperature dependence of the heat-release rate being strong, so

that methods of activation-energy asymptotics can be applied. The extent to which the results

of this chemical-kinetic approximation would apply to the chemistry of bipropellant pairs of

methane-oxygen or hydrogen-oxygen systems would be worthy of future study along these lines,

the first of these being described reasonably employing the equal-diffusivity (Lewis-number-

unity) approximation of the present study, but the second motivating further consideration of

Lewis-number effects. While for hydrogen-oxygen systems detailed chemistry can be used in one-

dimensional pressure response computations [11, 12], for hydrocarbon-oxygen systems reduced

mechanisms might be needed to reduce computational cost, and comparison to the asymptotic

predictions presented here would be worthwhile.
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Supplement A: Steady Burke-Schumann solution

The temperature and composition is described in terms of the mixture fraction

Z0 =
SYF0−YO0−1

S+1
=

T0−1+(q/S)(YO0−1)
Θ−1−q/S

, (4.53)

which satisfies the chemistry-free problem

d2Z0

dx2 +F0
dZ0

dx
= 0; Z0(−∞) = 1,Z0(+∞) = 0. (4.54)

At the flame x = 0 both YF0 =YO0 = 0 so that Z0 = Zs = 1/(S+1) and the temperature reaches the

peak value T0(0) = Ts, where Ts is the adiabatic flame temperature defined in Eq. (4.18). Since

YO0 = 0 on the fuel side of the flame while YF0 = 0 on the oxidizer side of the flame, the definition

given in Eq. (4.53) yields the piecewise linear relations

 YF0 =
Z0−Zs
1−Zs

, YO0 = 0, T0 = (Θ−1− q
S)Z0 +1+ q

S , for x < 0

YF0 = 0, YO0 = 1− Z0
Zs
, T0 = (Θ−1− q

S)Z0 +1+ qZ0
SZs

, for x > 0
. (4.55)

The problem reduces to the integration of Eq. (4.54) along with the steady forms of the continuity

and momentum Eqs. (6.33) and (4.10)

dF0

dx
−ρ0λ0A0 = F0

dA0

dx
+Pr

d2A0

dx2 +λ0(1−ρ0A2
0) = 0 (4.56)

subject to the boundary conditions A0(+∞)− 1 = A0(−∞)−Θ1/2 = F0(−η0) = 0, with the

density ρ0 and thermal conductivity λ0 evaluated in terms of Z0 with use made of Eqs. (4.16)

and (4.55). The unperturbed flame location η0 is to be determined as part of the computation

from the condition that the derivative of Z0 is continuous across the flame at x = 0. For values of

S > 1 the flame tends to be on the oxidizer side of the mixing layer (i.e. positive values of η0),
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Figure 4.7: Internal structure of the reactive-diffusive layer as given by integration of the
canonical problem defined in Eq. (4.64) for γO = 0.80 with fuel-leakages y+ between 1 and 10
in increments of one.

so that at leading order the stagnation plane is located at x =−η0 < 0. As can be inferred from

Eq. (4.55), the derivative of Z0 at the flame is related to those of the temperature and reactant

mass fractions according to

dZ0

dx

∣∣∣∣
0
= (1−Zs)

dYF0

dx

∣∣∣∣
0−

=−Zs
dYO0

dx

∣∣∣∣
0+

=−(1−Zs)

q

(
dT0

dx

∣∣∣∣
0−
− dT0

dx

∣∣∣∣
0+

)
, (4.57)

which can be used to evaluate the rates of fuel consumption and heat release, as indicated in the

main text in Eq. (4.21).

Supplement B: Analysis of the reaction layer

Introduction of the rescaled coordinate ζ = βx and inner expansions of Eq. (4.25) into

Eqs. (6.33)–(4.13) leads to a set of reduced equations for the structure of the inner layer. For
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example, the continuity and momentum equations reduce to

∂ f
∂ζ
− dF0

dx
(0) =

∂2a
∂ζ2 = 0, (4.58)

which yield

f = fo(τ)+
dF0

dx
(0)ζ and a = ao(τ)+

dA0

dx
(0)ζ (4.59)

upon integration with the boundary conditions given in Eq. (4.29), with fo = f+o = f−o and

ao = a+o = a−o . The above result indicates in particular that the corrections F1 and A1 in the outer

solution are continuous at x = 0, a result to be used in writing Eqs. (4.33) and (4.34) in the main

text.

The equations for reactants and energy take the form

− S
S+1

∂2θ

∂ζ2 = S
∂2yF

∂ζ2 =
∂2yO

∂ζ2 =
Sβ−3B
T 1−σ

s
e−Ta/TsyFyOeθ. (4.60)

The first two equations can be integrated twice with use of the matching conditions in Eqs. (4.26)

and (4.28) to yield

yO = SyF +SmF0ζ−C2(τ),

θ =−(S+1)yF− (S+1)mF0γOζ+
S+1

S
C2(τ)+C1(τ),

(4.61)

involving the time-dependent functions

C1(τ) =
S+1

S
y+O (τ)+θ

+(τ) =
S+1

S
y−O (τ)+θ

−(τ),

C2(τ) = Sy+F (τ)− y+O (τ) =−y−O (τ).
(4.62)

Rewriting Eq. (4.60) in terms of the shifted coordinate r = (S+1)mF0ζ− (S+1)C2/S and the
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rescaled fuel mass fraction y = (S+1)yF, defined such that

yO =
S

S+1
(y+ r) and θ =−y− γOr+

S+1
S

γFC2 +C1, (4.63)

produces the canonical problem [4]

∂2y
∂r2 = Λy(y+ r)exp [−γOr− y]


r→−∞ : y+ r = y−(τ) ⇔ ∂y

∂r =−1,

r→+∞ : y = y+(τ) ⇔ ∂y
∂r = 0,

(4.64)

where the boundary conditions are expressed in terms of the rescaled reactant leakages

y− =
S+1

S
y−O and y+ = (S+1)y+F . (4.65)

The relative importance of reaction and diffusion is measured in Eq. (4.64) by the canonical

Damköhler number Λ = D exp [C1 + γFC2(S+1)/S], involving the unknown functions C1(τ) and

C2(τ) and the unperturbed Damköhler defined in Eq. (4.31). For a given γO the integration of

Eq. (4.64) begins by selecting y+ and marching from r = ∞ with an initial zero slope, with the

associated value of Λ obtained by enforcing the condition ∂y/∂r =−1 at r =−∞. Sample profiles

of y(r) obtained for methane-oxygen combustion (γO = 0.80) are shown in Fig. 4.7, including

values of the fuel leakage y+ increasing from y+ = 1 to y+ = 10 in unity increments. The resulting

values of Λ, indicated in the figure, display a non-monotonic variation, a distinctive feature of the

solution associated with the existence of a critical value of Λ characterizing flame extinction [3].

For the case γO = 0.80 considered in Fig. 4.7, oxygen leakage is negligibly small, with associated

values of y− given in the main text in Fig. 4.1. Increased oxygen leakage is seen to occur for

smaller values of γO, corresponding to configurations with fuel-feed dilution (i.e. smaller values

of S).
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Figure 4.8: The internal structure of reactive-diffusive layer at O(βε) as obtained for γO = 0.8
by integration of the linearized canonical problem given in Eq. (4.66).

Supplement C: Acoustic response of inner region for βε� 1

For the analysis of the reaction layer, the time-dependent functions in Eq. (4.62) are

expressed following Eq. (4.41) as C1 = C̄1 +βεeiωτC̃1 and C2 = C̄2 +βεeiωτC̃2. For the case of

unity Lewis numbers considered here Λ̄ = D [4] implying that the unperturbed values C̄1 and C̄2

satisfy C̄1+C̄2γF(S+1)/S = 0 as follows from Eq. (4.30). Correspondingly, the rescaled variables

in Eq. (4.63) for the canonical problem given in Eq. (4.64) take the form r = r̄−βεeiωτ(S+1)C̃2/S

and y = ȳ+βεeiωτ(S+1)ỹF, including the unperturbed variables r̄ = (S+1)mF0ζ− (S+1)C̄2/S

and ȳ = (S+1)ȳF, equivalent to previous results [4]. Linearizing the canonical problem given in

Eq. (4.64) about the unperturbed solution ȳ(r̄) yields

d2ỹ
dr̄2 − k(r̄)ỹ = λ1g(r̄)+λ2h(r̄) (4.66)
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for the complex rescaled fuel mass fraction ỹ= (S+1)ỹF. The corresponding boundary conditions,

written in terms of the rescaled complex amplitude of the fuel leakage ỹ+ = (S+1)ỹ+F , become

r̄ =−∞ : ỹ =
dỹ
dr̄

= 0; and r̄ =+∞ : ỹ− ỹ+ =
dỹ
dr̄

= 0. (4.67)

The real coefficient functions

k(r̄) = Λ̄exp(−ȳ− γ̄Or̄)(2ȳ+ r̄− ȳ2− ȳr̄),

g(r̄) = Λ̄ȳ(ȳ+ r̄)exp(−ȳ− γ̄Or̄) ,

h(r̄) =−Λ̄ȳexp(−ȳ− γ̄Or̄) ,

(4.68)

can be evaluated in terms of the unperturbed solution Λ̄ = D and ȳ(r̄), which in turn depends on

the steady fuel leakage ȳ+.

The complex eigenvalues λ1 = C̃1 +λ2 and λ2 = (S+ 1)C̃2/S appearing in Eq. (4.66),

which determine from Eq. (4.30) the variations of the canonical Damköhler number

Λ/Λ̄ = 1+βεeiωτ(λ1− γOλ2), (4.69)

may be evaluated through

λ1

ỹ+
=

dỹ2
dr̄ (∞)J1− dỹ1

dr̄ (∞)J2

I1J2− I2J1
and

λ2

ỹ+
=−

dỹ2
dr̄ (∞)I1− dỹ1

dr̄ (∞)I2

I1J2− I2J1
, (4.70)

in terms of any two linearly independent homogeneous solutions ỹ1,2 of Eq. (4.66), with

I1,2 =
∫

∞

−∞

ỹ1,2(t)g(t)dt and J1,2 =
∫

∞

−∞

ỹ1,2(t)h(t)dt, (4.71)

as obtained from an integration of Eq. (4.66) with application of the appropriate boundary

conditions. It may be shown from Eq. (4.66) and its boundary conditions that the ratios in
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Eq. (4.70) are real. The values of λ1 and λ2 computed in this manner may be used to evaluate the

oxygen mass fraction ỹO and temperature θ̃ in terms of ỹ from

ỹO =
S

S+1
(ỹ−λ2) and θ̃ = λ1− ỹ, (4.72)

obtained from Eq. (4.63). It follows immediately that the boundary values appearing in Eqs. (4.42)–

(4.43) take the form shown in Eq. (4.44), needed in integrating the linear equations for the acoustic

response of the outer layers. The resulting variation of λ1/ỹ+ and λ2/ỹ+ with the steady fuel

leakage ȳ+ are shown in Fig. 4.2. The corresponding structure of the inner reactive-diffusive layer

is shown in Fig. 4.8 where ỹ/ỹ+ is shown as a function of r̄ for the values of Λ̄ used previously in

Fig. 4.7.

Supplement D: Acoustic response of the outer layers for βε� 1

Linearization of the conservation equations for the outer problem leads to

−T0
dF̃1

dx
+T σ

0 Ã1 +(σ−1)T σ−1
0 (iω+A0)T̃1 = B1,

−dA0

dx
F̃1 +T σ−1

0 (iω+2A0)Ã1−F0
dÃ1

dx
−Pr

d2Ã1

dx2 +T σ−1
0

(
[σ−1]

A2
0

T0
−σ

)
T̃1 = B2,

−dYO0

dx
F̃1 + iωT σ−1

0 ỸO1−F0
dỸO1

dx
− d2ỸO1

dx2 = B3,

−dYF0

dx
F̃1 + iωT σ−1

0 ỸF1−F0
dỸF1

dx
− d2ỸF1

dx2 = B4,

−dT0

dx
F̃1 + iωT σ−1

0 T̃1−F0
dT̃1

dx
− d2T̃1

dx2 = B5.

(4.73)
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The forcing terms B = [B1;B2;B3;B4;B5] on the right-hand side of the above equations are given

by

B =

[
−T σ

0 (iω+A0);T σ−1
0

(
T0

γ
−A2

0

)
;0 ;0 ; iωT σ

0

(
γ−1

γ

)]
+

[
(σ−1)

dT0

dx
;
dA0

dx
;
dYO0

dx
;
dYF0

dx
;
dT0

dx

]
T σ−1

0 iωη̃1,

(4.74)

where the first contribution arises directly through unsteady forcing, whereas the second is due to

the motion of the reaction layer, proportional to η̃1. Equations (4.73) are to be integrated with

boundary conditions


x =−∞ : Ã1 = ỸF1 = ỸO1 = T̃1−Θ

γ−1
γ

= 0

x = 0− : F̃1− f̃o = Ã1− ão = ỸF1 = ỸO1− ỹ−O = T̃1− q
S+1 θ̃− = 0

(4.75)

on the fuel side and
x = 0+ : F̃1− f̃o = Ã1− ão = ỸF1− ỹ+F = ỸO1− ỹ+O = T̃1− q

S+1 θ̃+ = 0

x =+∞ : Ã1 = ỸF1 = ỸO1 = T̃1− γ−1
γ

= 0
(4.76)

on the oxidizer side. The relationship F̃1 = η̃1(dF0/dx) at x = −η0, obtained from Eq. (4.36),

together with the jump conditions given in Eq. (4.45), close the problem by providing four

equations for determining f̃o, ão, η̃1 and ỹ+, with the latter used in Eq. (4.44) together with the

two values λ1/ỹ+ and λ2/ỹ+ obtained from the curves in Fig. 4.2, needed to evaluate the flame

values appearing in the boundary conditions in Eqs. (4.75) and (4.76). In this way, numerical

integration of the linear system served to determine the ten unknown real functions involved.

This chapter, in full, has been published in AIAA Journal titled “Acoustic response of

near-equilibrium diffusion flames with large activation energies”, by A. D. Weiss, A. L. Sánchez

and F. A. Williams (2019) 57, 2933-2945. The dissertation author is the primary investigator
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in this publication. The input of Professor Amable Liñán on different aspects of this research,

especially the suggestion of an attached-flame coordinate x, are gratefully acknowledged.
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Chapter 5

Accuracies of reduced mechanisms for

predicting acoustic combustion instabilities

There is continuing interest in developing methods for computationally predicting com-

bustion instabilities in liquid-propellant rockets and other engines [1]. One relevant aspect of such

investigations is to consider acoustic amplification rates through use of the Rayleigh index [2, 3]

R =
1
τ

∫
τ

0
p̃Qdt (5.1)

where p̃ is the oscillatory component of the pressure, Q is the oscillatory component of the

chemical heat-release rate, and τ is the period of oscillation. The present chapter employs R

as a vehicle for addressing inaccuracies that result from introducing reduced chemical-kinetic

mechanisms in such computations, as often is done because of the excessive computer time

required with detailed chemistry. This can be accomplished in the context of a non-premixed

counterflow configuration, which often has been selected in studying combustion instabilities, with

model one-step Arrhenius chemistry [4–6], with one-step [7] and two-step [8] approximations for

methane-oxygen systems, and with detailed chemistry for hydrogen-oxygen systems [9, 10], the

propellant combination considered here. For realistic combustion chambers DNS is impractical,
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necessitating LES, often performed with flamelet subgrids, following suggestions of Peters [11],

and when that is done the counterflow strain rates A that enter the analysis are larger near injectors

than farther downstream, consistent with stability-diagram correlations [12]. The reciprocal of the

product of A and a chemical heat-release time is a Damköhler number, Da, which becomes small,

tending to lead to extinction, as A increases, which motivates calculations of how R changes as

Da is decreased.

Since counterflow flamelet response calculations with detailed chemistry become increas-

ingly time-consuming as the size of the chemical mechanism increases, there is interest in intro-

ducing systematic reductions through application of chemical-kinetic steady-state approximations

to appropriate reaction intermediaries. That could be especially helpful for hydrocarbon-oxygen

systems, for example, for which four-step approximations are available [13, 14]. To obtain an

indication of magnitudes of resulting errors in R and of how they depend on Da, computations for

hydrogen-air flames with equal feed-stream temperatures T = 298K were made with a 12-step

detailed mechanism and a 2-step systematically reduced mechanism. This 12-step mechanism,

shown in Table 2 of [15], involves 8 chemical species H2, O2, H2O, H, HO2, H2O2, OH, and

O, and it has been reasoned to accurately predict structures of a wide range of premixed and

nonpremixed hydrogen flames. Imposing the steady-state assumption for the last four cited radical

species leads to a two-step mechanism, derived and applied in [16, 17], represented by the overall

chain-branching and termination reactions 3H2 +O2 
 2H2O+2H and H+H+M 
 H2 +M,

respectively. The two steps proceed with global rates written explicitly in Eqs. (9)–(11), (14) and

(16) of [15].

The asymptotic analyses [4–6], drawn on the basis of one-step model chemistry, described

the dependence of the Rayleigh index R on the Damköhler number Da, revealing in particular a

stronger dependence near extinction as compared to the moderate response seen for robust flames

near equilibrium. Since the amplification rate is highest near extinction (where the strain is large)

and decreases towards equilibrium (where the strain is low), two strain rates are selected here in
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Figure 5.1: The variation with the reciprocal of the strain rate 1/A of the maximum temperature
in a hydrogen-air planar counterflow diffusion flame with equal feed-stream temperatures
T = 298K as obtained from detailed chemistry (Table 2. of [15]) (solid curves) and with the
2-step mechanism [16, 17] (dashed curves), at 1 atm and 10 atm. Red and blue markers on
each curve represent near-extinction and near-equilibrium conditions, respectively, to be used in
unsteady computations for the production of Fig. 5.2.

presenting results for R, other values of A providing values that lie in between these two limiting

cases. The specific choice employed is based on the extinction curves presented in Fig. 5.1 shown

dimensionally as the maximum temperature as a function of the reciprocal of the strain rate,

computed for steady hydrogen-air diffusion flames in the planar counterflow configuration with

equal feed-stream temperatures T = 298 K. The pressure in a steady counterflow diffusion flame

is known to affect the extinction strain rate since it plays a fundamental role in determining

the chemical rates, notably influencing radical recombination taking place through three-body

reactions [9]. Because of this, and because typical combustors operate at pressures above

atmospheric, results in Fig. 5.1 are presented for both p = 1atm and p = 10atm. In each case,

the solid curve denotes the results of computations employing the detailed mechanism whereas
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the dashed curve corresponds to those using the 2-step systematically reduced mechanism.

As can be seen from the figure, the 2-step mechanism overestimates the maximum

temperature, with errors on the order of 50 K (a few percent) for p = 1atm and 100 K near

extinction at p = 10atm, although, because of the increase in the maximum temperature with

pressure, the relative errors remain comparable, on the order of a few percent. These trends have

been identified previously [16]. For p = 1atm, the values A = 5,000s−1 and A = 25,000s−1,

labeled with markers, were selected as representative of near-equilibrium and near-extinction

conditions, respectively, to be used below in presenting unsteady results. Similarly, the values

A = 8,000s−1 and A = 200,000s−1 were selected as representative near-equilibrium and near-

extinction conditions, respectively, for p = 10atm. These near-extinction values were chosen to

be approximately 70% of the extinction strain rate computed with the detailed mechanism.

The compact formulation [18], developed for unsteady planar mixing layers in the coun-

terflow configuration subject to unsteady pressure variations, was used for the calculation of

R. These computations were performed for each of the strain conditions listed above with the

amplitude of the oscillatory component of the pressure set to 1% of the steady value, that is

|p̃| = 0.01× 1atm or |p̃| = 0.01× 10atm. A wide range of oscillatory frequencies ω = 2π/τ

were used in the computations. For a given frequency, the integration provides the heat-release

rate Q(t), with time-average Qm, allowing for the computation of R with aid of Eq. (5.1). By

varying the frequency between integrations, the curves in Fig. 5.2, expressed in a normalized

form, were produced. It should be noted that, with typical acoustic frequencies ω on the order

of 103 to 104 Hz for practical combustors, different portions of the curves shown in Fig. 5.2

become relevant when comparing different strain rates. For example, for the near-equilibrium

cases (A = 5,000s−1 and A = 8,000s−1 for p = 1atm and p = 10atm, respectively) results with

ω/A∼ 1 are encountered in practice, but for the larger strain rates of the near-extinction cases,

quasisteady results obtained for ω/A� 1 become more relevant.

As is apparent from the blue curves in Fig. 5.2 (a), for diffusion-controlled flames near
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Figure 5.2: The variation with reduced acoustic frequency ω/A of the Rayleigh index R (scaled
with the amplitude of the pressure variation |p̃| = 0.01× p and the mean heat-release rate
Qm) for strained hydrogen-air flames at T = 298K as computed from (5.1) using the 12-step
mechanism (solid curves) and the 2-step mechanism (dashed curves) for different strain and
pressure conditions.
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equilibrium and at normal atmospheric pressure, the reduced mechanism is able to accurately

predict the Rayleigh index with errors that do not exceed more than 4% over the range of

frequencies of interest. The error is seen to increase (slightly) as ω/A increases. The increase in

the Rayleigh index R for increasing strain A, predicted by [4–6], is also captured by the two-step

mechanism, although the increase is underpredicted over the majority of frequencies considered,

as is evident from comparison of the red curves in Fig. 5.2 (a). These errors are on the order

of 20% for the near-extinction case considered here. Fig. 5.2 (b), for p = 10atm demonstrates

that similar conclusions hold at elevated pressures. Here the reduced mechanism reproduces

near-equilibrium results with excellent accuracy throughout the range shown, exhibiting errors

around 1% over these frequencies. For near-extinction conditions, the reduced mechanism again

substantially underpredicts the Rayleigh index, here with errors on the order of 25%, larger than

those at normal atmospheric conditions.

The conservation equations for chemical species have accumulation, convective-diffusive

transport, and chemical consumption and production terms. For the non-premixed counterflow

configuration under consideration here, these rates are characterized by the reciprocal times ω,

A, 1/tc and 1/tp, respectively, where tc and tp are the characteristic chemical consumption and

production times. The steady-state approximation is strictly valid for radicals when ω, A�

1/tc ∼ 1/tp, ensuring that accumulation and convective-diffusive transport can be neglected in

comparison with chemical production/consumption in the radical-species balance. For the lower

strain rates in Fig. 5.2, there is a hint of the first of these effects in the curves for p = 1atm,

where discrepancies tend to increase towards the right-hand edge of the plot; for all strain

rates selected, this disagreement occurs mainly to the right of the range of conditions shown.

The second effect, on the other hand, is evident at both pressures in Fig. 5.2, the differences

being appreciably larger at the higher strain rates. It is curious, in a sense, that the steady-state

approximation deteriorates as extinction is approached, since, for steadily propagating unstrained

premixed flames, the smaller radical concentrations near flammability limits (at which extinction
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occurs) favor improved accuracy of chemical-kinetic steady states there, as some of our previous

publications have shown [19–21], leading to useful predictions of extinction limits, there being no

externally imposed time scale independent of the chemistry. The reason for this difference is the

strong variation of temperature and radical concentration with the strain rate near strain-induced

extinction, as occurs in the counterflow configuration, an effect absent in unstrained flames.

In general, then, while systematically reduced mechanisms reduce computation times, to

increasing extents as detailed mechanisms become larger, if applying them for acoustic-response

estimates they may be expected to become increasingly inaccurate as near-extinction conditions

are approached and amplification rates increase, corresponding to near-injector locations where

strain rates are high.

This chapter, in full, has been published in Combustion and Flame titled “Accuracies

of reduced mechanisms for predicting acoustic combustion instabilities”, by A. D. Weiss, A.

L. Sánchez and F. A. Williams (2019) 209, 405-407. The dissertation author is the primary

investigator in this publication.
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Part II

Swirling flows induced by buoyancy
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Brief overview of Part II

Part II investigates the steady axisymmetric structure of the cold boundary-layer flow

surrounding fire whirls developing over localized fuel sources lying on a horizontal surface. The

inviscid swirling motion found outside the boundary layer, driven by the entrainment of the

buoyant turbulent plume of hot combustion products that develops above the fire, is described

by an irrotational solution, obtained by combining Taylor’s self-similar solution for the motion

in the axial plane with the azimuthal motion induced by a line vortex of circulation 2πΓ. The

development of the boundary layer from a prescribed radial location is determined by numerical

integration for different swirl levels, measured by the value of the radial-to-azimuthal velocity ratio

σ at the initial radial location. As in the case σ = 0, treated in the seminal boundary-layer analysis

of Burggraf et. al (1971), the pressure gradient associated with the centripetal acceleration of

the inviscid flow is seen to generate a pronounced radial inflow. Specific attention is given to

the terminal shape of the boundary-layer velocity near the axis, which displays a three-layered

structure that is described by matched asymptotic expansions. The resulting composite expansion,

dependent on the level of ambient swirl through the parameter σ, is employed as boundary

condition to describe the deflection of the boundary-layer flow near the axis to form a vertical

swirl jet. Numerical solutions of the resulting non-slender collision region for different values of

σ are presented both for inviscid flow and for viscous flow with moderately large values of the

controlling Reynolds number Γ/ν. The velocity description provided is useful in mathematical

formulations of localized fire-whirl flows, providing consistent boundary conditions accounting

for the ambient swirl level.
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Chapter 6

A model for the boundary layer

surrounding fire whirls

6.1 Introduction

Fire whirls are vortical columns with a concentrated burning core. Observed lengths vary

from about 0.1 m in small experiments to tens of meters in wildland fires. As stated in the recent

review paper by [1], despite significant research efforts, the current understanding of the flow

structure and dynamics of fire whirls, including the reasons for their dramatic flame-lengthening

effect and increased burning rate, is far from complete. The present paper contributes to the

needed understanding by investigating the steady axisymmetric structure of the cold outer flow

surrounding fire whirls developing over localized fuel sources lying on a horizontal surface, a

configuration shown schematically in figure 6.1. Attention will be directed to the development of

the important near-wall boundary layer and the collision consequent to its radially inward flow

component in the vicinity of the fire whirl. The structures of the plume and of the interior of the

fire whirl depicted in the figure are not analyzed here.

The flow of cold air surrounding the fire whirl, at distances much larger than the size of
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the fuel source (e.g. the diameter D of the fuel pool in liquid-pool fires), ultimately is driven

by the buoyant turbulent plume of hot combustion products that develops above the fire. As

revealed by detailed experimental measurements [2], the temperature in fire-whirl plumes decays

exponentially with radial distance from the axis towards the ambient value, so that density

variations are only encountered near the axis, while the flow induced outside by the entrainment

of the turbulent plume has constant density. Since the volumetric entrainment rate per unit

length increases with the two thirds power of the vertical distance [3], the effect of the slender

plume on the outer flow is that of a semi-infinite line sink of varying strength, resulting in a

self-similar potential solution described by [4]. In the presence of obstacles, this meridional flow

may be deflected, introducing an azimuthal velocity component, a fundamental ingredient in the

development of fire whirls [1] and other naturally occurring vortex phenomena, such as tornadoes

[5] and dust devils [6]. In wildland fires, for example, flow deflections beyond those associated

with the circulation in weather patterns may be the result of flow interactions with topological

features or tall vegetation, while in laboratory experiments on fire whirls and dust devils the

deflection is achieved by surrounding the experimental setup with rotating circular screens [7],

thin vertical flow vanes placed at a nonzero angle with respect to the radial direction [8, 9], or

offset cylindrical or planar walls that leave small vertical slits for the tangential inflow of the

incoming air [10].

The specific characteristics of the resulting inviscid swirling flow depend on the flow-

deflection mechanism. For example, while the flow deflection by vertical vanes can be expected

to be largely irrotational, the use of rotating circular screens may introduce a significant amount

of azimuthal vorticity, which is not considered in the present analysis. In the present investigation,

as in some laboratory experiments [9], the distance a at which the circulation is induced is large

compared with the flame height enhanced by whirl augmentation, so that the Taylor solution,

applicable for turbulent plumes with sufficiently weak swirl, can be employed. Strong-swirl

solutions that would generate different inviscid external flow fields at lower altitudes, which then
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would require a different analysis if a were smaller, are not available. The production of swirl

by deflection of the flow entrained by the turbulent plume is a distinctive characteristic of fire

whirls, not present in swirl combustors, for instance, where the swirl is imparted prior to injection

into the combustion chamber [11, 12], leading to flow structures that are markedly different from

those analyzed here.

The presence of swirl in the flow surrounding the fire whirl is accompanied by an increased

radial pressure gradient, needed to balance the centripetal acceleration. Viscous forces decelerate

the swirling motion in a near-wall boundary layer, where the imposed pressure gradient generates

an overshoot of the radial inflow, which becomes more pronounced on approaching the axis.

This flow feature was investigated in the seminal work [13] for the specific case of a boundary

layer on a fixed, non-rotating circular disk of radius a whose axis is concentric with a potential

vortex with circulation 2πΓ. Their analysis clarified in particular the structure of the terminal

velocity profile found at small radial distances r∗� a, including a near-wall viscous sublayer of

shrinking thickness (ν/Γ)1/2r∗ and a nearly inviscid layer of finite thickness δ = (ν/Γ)1/2a, with

ν representing the kinematic viscosity.

The boundary layer surrounding a fire whirl depends on the outer inviscid flow through

its near-wall radial distributions of both azimuthal and radial velocity. To clarify the effect of the

latter on the boundary-layer development, the previous potential-vortex analysis [13], in which

the flow outside the boundary layer was purely azimuthal, is extended here by using as a model

for the inviscid outer flow the potential solution obtained by combining linearly Taylor’s potential

solution [4] for the flow in the axial plane with a potential vortex for the azimuthal motion.

Numerical integrations of the boundary-layer equations are used to describe the development

of the boundary layer for selected radial-to-azimuthal velocity ratios. A consistent asymptotic

description is given for the terminal velocity profiles at the axis, whose structure includes a

thick external layer, additional to the two layers identified earlier by [13], which is needed to

describe the transition to Taylor’s radial flow. A composite expansion combining the results of the
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three layers in a single expression is developed for the profiles of radial and azimuthal velocity,

providing an accurate description for the flow approaching the base of the fire whirl.

As in the potential-vortex analysis [13], the radial mass flux carried by the wall boundary

layer tends to a finite value on approaching the axis. The subsequent boundary-layer collision

leads to the upward deflection of the flow in a nonslender region scaling with the characteristic

near-axis boundary-layer thickness δ = (ν/Γ)1/2a. Similar nonslender collision regions have

been found in other buoyancy-driven flows, for instance in free convection from a heated sphere,

where the eruption of the fluid into the plume above the sphere is the result of the collision of the

boundary layer at the upper stagnation point, as described by [14]. Because of its relevance in

connection with tornados, its inviscid structure has been investigated in the past, using as lateral

boundary condition the velocity profile induced by a potential vortex [15]. Additional results

are presented below for fire whirls, with results given for different values of the ambient swirl,

including profiles of vertical velocity for the deflected stream, which are ultimately responsible

for the locally observed lengthening of fire-whirl flames. Furthermore, the validity of the inviscid

description is critically assessed by investigating the accompanying boundary layer that develops

near the wall in the collision region. Although boundary-layer separation is found to occur in

all cases at a finite distance from the axis, additional integrations of the Navier-Stokes equations

for moderately large values of the relevant Reynolds number Γ/ν reveal that the boundary layer

reattaches before reaching the axis to form a slender recirculating bubble, so that the inviscid

description remains largely valid.

6.2 Boundary-layer development

6.2.1 Preliminary considerations

The cold flow surrounding fire whirls, to be described using cylindrical polar coordinates

(r∗,θ,z∗) and associated velocity components (u∗,v∗,w∗), is induced by the entrainment of
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the turbulent plume that extends vertically above the flame along the axis of symmetry. The

volumetric entrainment rate per unit length, taken from investigations free from fire-whirl swirl,

increases with the two thirds power of the vertical distance z∗ according to Φ = 2πCB1/3z∗2/3,

where B is the specific buoyancy flux [3] and C is a dimensionless factor, which approximately

assumes the value C = 0.041, as suggested by experimental results [16, 17]. Correspondingly,

the flow induced in the axial plane has velocities decaying with the radial distance according

to C(B/r∗)1/3. For r∗� [ν/(CB1/3)]3/2 the associated Reynolds number CB1/3r∗2/3/ν is large,

resulting in nearly inviscid motion, which, in the absence of swirl, is described by a self-similar

potential solution that is due to [4]. The corresponding slip velocity at the wall is given by

u∗w =−ATC(B/r∗)1/3, (6.1)

involving the numerical factor

AT =
4(2)1/3π2

3Γ3(1/3)
' 0.8624, (6.2)

where Γ denotes the Gamma function. The potential solution fails in the boundary layer, where the

radial velocity, also self-similar, is given by u∗/u∗w = f ′T in terms of the derivative of the reduced

stream function fT(ς), a function of the rescaled vertical distance ς = (ATCB1/3/ν)1/2r∗−2/3z∗

determined from the boundary-value problem

f ′′′T −
4
3

fT f ′′T +
1
3
(1− f ′2T ) = 0; fT(0) = f ′T(0) = f ′T(∞)−1 = 0, (6.3)

the subscript T referring to the boundary layer accompanying Taylor’s potential flow. In the

notation employed throughout the paper the prime denotes differentiation of functions of one

variable (e.g. in the above description, it represents differentiation with respect to the self-similar

coordinate ς). It is worth mentioning that the flow structure surrounding turbulent plumes, relevant
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to fire whirls, is fundamentally different from that surrounding laminar plumes, characterized

by small entrainment rates Φ∼ ν and associated flow Reynolds numbers of order unity, the case

analyzed by [18], who found an exact self-similar solution of the first kind for the swirl-free flow

in the axial plane. As shown recently by [19], the accompanying circulation in this viscous case

is described by a self-similar solution of the second kind.

As previously mentioned, the three-dimensional inviscid motion surrounding fire whirls

is affected by the manner in which swirl is imparted to the flow. Instead of focusing on a specific

configuration, for generality in the following analysis the inviscid flow outside the boundary

layer will be described using as a canonical model the exact axisymmetric solution of the Euler

equations resulting from combining Taylor’s potential solution for the meridional flow and a

line vortex of circulation 2πΓ for the azimuthal flow. Correspondingly, at the outer edge of

the boundary layer the radial velocity approaches the value given in (6.1) while the azimuthal

component approaches the value

v∗w = Γ/r∗. (6.4)

The presence of swirl alters the flow across the boundary layer, so that, even for this model

problem, a self-similar description, which is available in the absence of swirl, as described above

in (6.3), does not exist when v∗w 6= 0. The fundamental lack of flow similarity can be illustrated by

considering the flow at large radial distances, where the radial motion becomes dominant, as can

be inferred from the different decay rates present in (6.1) and (6.4). Correspondingly, as r∗→ ∞

the self-similar function u∗/u∗w = f ′T(ς) appears to be the appropriate leading-order representation

for the radial velocity across the boundary layer, while the azimuthal velocity v∗ = ΓgT(ς)/r∗

should be determined by the accompanying problem

g′′T −
4
3

fTg′T = 0; gT(0) = gT(∞)−1 = 0, (6.5)

obtained at leading order from the axisymmetric boundary-layer form of the azimuthal momentum
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equation. This presumed self-similar structure fails, however, because the last problem has

no solution, which can be seen by investigating the behavior as ς→ ∞ of the first integral

g′T = g′T(0)exp
[4

3
∫ ς

0 fTdς̃
]

to show that g′T(0) = 0 to avoid divergence, so that the only possible

solution is gT = constant, which cannot satisfy simultaneously both boundary conditions gT(0) =

gT(∞)−1 = 0; this lack of similarity is also encountered when the outer flow is driven solely by

a potential vortex [20] (see also [21] for a discussion of boundary-layer selfsimilarity when the

outer azimuthal velocity varies with a general power of the radial distance).

Progress in understanding can be achieved by investigating the development of the

boundary layer from a given radial location, as was done in the previous analysis of the boundary

layer on a disk of radius a [13]. The same approach is to be considered below, with the ratio of

the radial-to-azimuthal velocity

σ =
u∗w(a)
v∗w(a)

(6.6)

at the disk edge arising as the only controlling parameter in the resulting description. This

idealized disk problem may, for example, be considered to provide an approximate description of

the main features of the boundary-layer flow in the region between the fire and swirl-producing

vanes at radius a in laboratory fire-whirl experiments, with the velocity ratio σ being directly

related to the angle of inclination of the vanes. In particular, the terminal velocity profile at r∗� a

can be anticipated to provide a realistic representation for the flow surrounding localized fire

whirls, with the parameter σ measuring the level of swirl introduced by the collective effect of the

flow-deflecting obstacles, located at radial distances much larger than the characteristic size of

the fuel source feeding the fire.
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6.2.2 Problem formulation

Following [13], the problem is scaled using a and

δ =
a√
Re

(6.7)

for the radial and axial coordinates, with

Re =
Γ

ν
(6.8)

representing the relevant Reynolds number. Correspondingly, the azimuthal and radial velocity

components u∗ and v∗ are scaled with Γ/a, corresponding to a radial pressure gradient scaling with

ρΓ2/a3 (ρ representing the density), while the axial component w∗ is scaled with (Γ/a)/
√

Re,

resulting in the dimensionless variables

r =
r∗

a
, z =

z∗

δ
, u =

u∗

Γ/a
, v =

v∗

Γ/a
, w =

w∗

Γ/(a
√

Re)
. (6.9)

Neglecting terms of order Re−2� 1 reduces the conservation equations, written in their steady

axisymmetric form for a constant-density fluid, to their boundary-layer form

u
∂u
∂r

+w
∂u
∂z
− v2

r
=− σ2

3r5/3 −
1
r3 +

∂2u
∂z2 , (6.10)

u
∂

∂r
(rv)+w

∂

∂z
(rv) =

∂2

∂z2 (rv), (6.11)

∂

∂r
(ru)+

∂

∂z
(rw) = 0. (6.12)

The first two terms on the right-hand side of (6.10) arise from the radial pressure gradients

imposed by the external Taylor and potential-vortex flows, respectively. These equations are to be
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integrated for decreasing values of r with the boundary conditions

u→−σr−1/3, v→ 1
r

as z→ ∞ (6.13)

and

u = v = w = 0 at z = 0 (6.14)

for r < 1 and the initial velocity profiles u =−σ and v = 1 at r = 1, consistent with (6.13). The

only parameter in the description is the initial flow inclination σ. As expected, for σ = 0 the

problem reduces exactly to that addressed by [13].

6.2.3 Sample numerical results

The problem (6.10)–(6.14) was integrated numerically by marching from r = 1 with

decreasing values of r for selected values of σ. Sample results are shown in figure 6.2 for

σ = 1. The radial and azimuthal velocities are uncoupled for 1− r� 1, when the effects of the

centripetal acceleration−v2/r and pressure gradient−σ2r−3/5/3−r−3 can be neglected in (6.10)

at leading order, reducing the solution with σ 6= 0 to −u/(σr−1/3) = rv = f ′B(ζ), where fB is

Blasius stream function, obtained by integration of f ′′′B + fB f ′′B /2 = 0 with boundary conditions

fB(0) = f ′B(0) = f ′B(∞)−1 = 0, with the prime denoting here differentiation with respect to the

local self-similar coordinate ζ = z/(1− r)1/2. The asymptotic predictions for 1− r� 1 are

compared in figure 6.2 with the profiles obtained numerically at r = 0.9.

The effect of the azimuthal motion on the radial flow is no longer negligible as 1− r

increases to values of order unity, leading to an overshoot in the radial velocity, as is already

evident in the results of figure 6.2 for r = 0.5. This overshoot becomes more prominent as r→ 0,

with the peak value of ru reaching a near-unity value at small distances z∼ r. A detailed view of

this near-wall region is shown in figure 6.3, where the dashed curves represent analytic results, to

be developed below.
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Figure 6.2: Boundary-layer profiles of radial and azimuthal velocity at various radial locations
for σ = 1. The dashed curves represent the asymptotic predictions −u/(σr−1/3) = rv = f ′B(ζ)
for 1− r� 1 evaluated at r = 0.9.
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Figure 6.3: Comparison of the near-wall boundary-layer profiles obtained from the asymptotic
predictions ru=−ψ′0(η) and rv=C1rλγ1(η) (dashed curves) with those determined numerically
at various radial locations by integration of (6.10)–(6.12) for σ = 1 (solid curves).

The profiles of ru and rv shown in figure 6.2 are seen to approach a terminal shape as

r→ 0. Although the specific shape of these terminal profiles depends on the value of σ, all

solutions show a common multi-layered asymptotic structure, which, with the exception of the

outermost layer, is fundamentally similar to that described in [13] for the potential vortex (σ = 0).

A detailed analysis of the different layers is given below, and the associated asymptotic solutions

are combined to generate composite expansions for the radial and azimuthal velocity components,

providing an accurate boundary-layer description for r� 1 (i.e. dimensional distances r∗� a).

6.3 The structure of the terminal velocity profile

We consider now the solution to (6.10)–(6.12) with boundary conditions (6.13) and (6.14)

in the asymptotic limit r� 1 for σ∼ 1. As noted by [13], at leading order viscous effects are

confined to a thin layer z∼ r, outside of which the flow is inviscid, with values of −ru∼ 1 and

1− rv∼ 1 at distances z∼ 1. Unlike the potential-vortex solution σ = 0, which exhibits velocity
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profiles with a rapid exponential decay away from the wall, in fire whirls the transition to the

outer solution ru =−σr2/3 and rv = 1 occurs in a fairly large external layer, which necessitates a

separate analysis, as shown below, exercising the full formalism of matched asymptotic expansions

[22].

6.3.1 The lower viscous sub-layer

At leading order, the solution in the viscous sub-layer, where rv�−ru (as is apparent

from figure 6.3), is independent of σ and corresponds to that described by [13]. With circulation

neglected, the boundary–layer equation (6.10) can be expressed in terms of the self-similar

coordinate η = z/r and accompanying stream function ψ = rψ0(η), defined such that ru =−ψ′0

and rw = ψ0−ηψ′0, to give at leading order the problem

ψ
′′′
0 −ψ0ψ

′′
0−ψ

′2
0 +1 = 0; ψ0(0) = ψ

′
0(0) = ψ

′
0(∞)−1 = 0. (6.15)

The solution, expressible in terms of the parabolic cylinder functions [23], provides the asymptotic

behaviour ψ0 ' η−1.0864 and

rw→−1.0864 (6.16)

for η� 1. The accompanying weak azimuthal motion is described by a self-similar solution of

the second kind of the form rv ∝ rλγ1(η), where the eigenfunction γ1(η) obeys the linear equation

γ
′′
1−ψ0γ

′
1 +λψ

′
0γ1 = 0 (6.17)

stemming from (6.11). A nontrivial solution satisfying the non-slip condition γ1 = 0 at η = 0 and

exhibiting algebraic growth γ1 ∝ ηλ (as opposed to exponential growth) as η→ ∞, as needed to

enable matching with the outer profile, exists only for a discrete set of values of the eigenvalue λ,

with the smallest eigenvalue, corresponding to the dominant eigenfunction for small r, found to
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be λ = 0.6797.

The solution to the above eigenvalue problem determines the near-wall azimuthal velocity

rv = C1rλγ1(η), aside from a multiplicative factor C1, a function of σ to be determined by

matching with the outer inviscid solution. For definiteness, it is convenient to use γ1 = ηλ

as η� 1 as the normalization condition for the eigenfunction γ1, resulting in the asymptotic

behaviour

rv→C1zλ as η→ ∞, (6.18)

to be employed below in the matching procedure. The near-wall asymptotic predictions ru =

−ψ′0(η) and rv =C1rλγ1(η) for r� 1 are compared in figure 6.3 with the results of numerical

integration for σ = 1. The predictions for rv =C1rλγ1(η) are computed with C1 = 0.5496, the

value obtained below by matching with the outer inviscid results when σ = 1. The asymptotic

predictions and the numerical results are seen to be virtually indistinguishable for r = 0.01 in

figure 6.3.

6.3.2 The main inviscid layer

In the intermediate layer z∼ 1, the expansions for the velocity components at r� 1 take

the form

ru = F0(z)+ rF1(z)+ · · · , rv = G0(z)+ rG1(z)+ · · · , rw = H1(z)+ · · · . (6.19)

The leading-order functions F0(z) and G0(z) must satisfy F0→−1 and z−λG0→C1 as z→ 0,

corresponding to matching with the viscous sublayer, and as z→ ∞ they must approach the outer

values F0 = G0− 1 = 0, consistent at this order with the velocity found outside the boundary

layer. The two functions F0 and G0 are related by the equation

F2
0 +G2

0 = 1, (6.20)
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Figure 6.4: Profiles of G0 and F0 for various σ. Shown as dashed line are the profiles of [13]
for σ = 0.
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which follows from the leading-order 1/r3 terms in (6.10), but, other than that, their specific

shape depends on the development of the boundary layer for 0 < r < 1, yielding different profiles

for different values of σ. The additional functions F1, G1, and H1 appearing in (6.19) are related

to the leading-order functions by

H1 = 1.0864F0, F1 =−1.0864F ′0, G1 =−1.0864G′0 (6.21)

as can be seen by carrying the asymptotic solution to a higher order, with the numerical factor

1.0864 selected to ensure inner matching with the vertical velocity (6.16).

To determine G0 and F0 = −
√

1−G2
0, the numerical integration of (6.10)–(6.12) was

extended to extremely small radial distances r ∼ 10−4, and the asymptotic predictions ru =

F0(z)−1.0864rF ′0(z) and rv = G0(z)−1.0864rG′0(z) were used to extrapolate the result to r = 0.

The solution was further corrected to remove the viscous sublayer by replacing the solution at

z� 1 with the near-wall behavior

F0 =−1+
1
2

C2
1z2λ, G0 =C1zλ, (6.22)

arising from matching with (6.18), with the constant C1 obtained from the numerical inte-

grations by evaluating z−λrv at small distances z ∼ r from the wall, yielding for instance

C1 = (0.7125,0.8275,0.9065,0.9596,1.0181,1.6187) for σ = (5,2,1,0.5,0.2,0.1). The ob-

served evolution for decreasing values of σ appears to be in agreement with the limiting value

C1 = 1.6518 reported by [13] for σ = 0.

While the asymptotic behaviour G0 =
√

1−F2
0 ∝ zλ as z→ 0 shown in (6.22) applies for

both σ = 0 and σ 6= 0, the solution as z→ ∞ is qualitatively different in these two cases, with the

exponential decay found by [13] for σ = 0 being replaced for σ 6= 0 by an algebraic decay of the

form

F0 =−C2z−µ + · · · , G0 = 1− 1
2

C2
2z−2µ + · · · , (6.23)
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where the factor C2 and the exponent µ depend on σ. Their values were obtained from the

numerical results by examining the decay with vertical distance of the near-axis terminal profiles

of ru and rv, yielding for instance C2 = (2.85,1.50,0.88,0.47) and µ = (1.21,1.19,1.16,1.11)

for σ = (5,2,1,0.5). At a given r� 1, the range of z over which (6.23) applies decreases for

decreasing σ, thereby hindering the precise evaluation of C2 and µ for σ < 0.5. The observed

evolution of the approximate values, computed with use of the velocity profiles at the smallest

radial distance reached in the boundary-layer computations (i.e. r ' 10−4), indicates that the

exponent µ decreases with decreasing σ to approach unity as σ→ 0, with the accompanying value

of C2 vanishing in this limit.

6.3.3 The upper transition region

The asymptotic expansion (6.19) fails in a transition region corresponding to z∼ r−2/(3µ)�

1 where, according to (6.23), the value of F0 becomes of order F0 ∼ r2/3, comparable to the

limiting value ru =−σr2/3 found at z = ∞. This transition region can be described in terms of the

order-unity similarity coordinate ξ = (σ/C2)
1/µr

2
3µ z and associated rescaled velocity variables

ru = σr2/3 f (ξ), rv = 1+σ
2r4/3g(ξ), rw =C1/µ

2 σ
µ−1

µ r−
2+µ
3µ h(ξ). (6.24)

At leading order, the boundary-layer equations (6.10)–(6.12) in this inviscid outer transition

region simplify to

(
2ξ

3µ
f +h

)
f ′ =

f 2−1
3

+2g, (6.25)(
2ξ

3µ
f +h

)
g′ =−4 f g

3
, (6.26)(

f +
ξ

µ
f ′
)
+

3h′

2
= 0. (6.27)
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The solution can be reduced to a quadrature as follows. Dividing (6.25) by (6.26) and integrating

the resulting equation using the boundary conditions f (∞)→−1 and g(∞)→ 0, which follow

from matching with the outer potential solution, provides

g =
1
2
(1− f 2). (6.28)

Substitution of this result into (6.25) and elimination of h with use of (6.27) leads to the au-

tonomous equation

( f 2−1) f ′′− µ+1
µ

f f ′2 = 0, (6.29)

which can be integrated once using the boundary condition f →−ξ−µ as ξ→ 0, obtained by

matching with (6.23), to give f ′ = µ( f 2−1)(µ+1)/(2µ), finally yielding

µξ =
∫ f

−∞

d f̃

( f̃ 2−1)
µ+1
2µ

, (6.30)

with f̃ being a dummy integration variable. The above integral, which is expressible in terms

of incomplete beta function, provides, together with the previous equation (6.28), the radial and

azimuthal velocity distributions f (ξ) and g(ξ).

Inspection of (6.30) reveals that, for the values µ > 1 that apply in our description, the

function f is a front solution that reaches the boundary value f =−1 at a finite location ξ = ξo

given by

ξo =
1
2µ

B
(

1
2µ

,
µ−1

2µ

)
, (6.31)

as follows directly from (6.30), with B representing here the beta function. Note that, since the

value of µ−1 remains relatively small for σ∼ 1, the front is always located at large distances

ξo ' 1/(µ−1).
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Figure 6.5: Profiles of radial and azimuthal velocity for σ = 0.5 (top row) and σ = 2.0 (bottom
row) obtained at different radial locations r� 1 by numerical integration of (6.10)–(6.12) (solid
curves) and by evaluation of the composite expansion (6.32) (dashed curves).

6.3.4 The composite expansion

The separate solutions found in the different regions can be used to generate the composite

expansions

ru =−ψ
′
0(z/r)+1+F0(z)+σr2/3 f [(σ/C2)

1/µr
2

3µ z]+C2z−µ,

rv =C1rλ
γ1(z/r)−C1zλ +G0(z)+σ

2r4/3g[(σ/C2)
1/µr

2
3µ z]+ 1

2C2
2z−2µ,

(6.32)

which describe the radial and azimuthal velocity profiles as r→ 0 with small errors of order r.

The accuracy of these expansions is tested in figure 6.5 by comparing the asymptotic predictions

with the results of numerical integrations of the boundary-layer equations (6.10)–(6.12). The

degree of agreement displayed in the figure is clearly satisfactory, with the composite expansion

being virtually indistinguishable from the numerical results at r = 0.01.
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6.4 The collision region

The boundary-layer flow, approaching the axis with a velocity nearly parallel to the

wall, undergoes a rapid upward deflection in a non-slender collision region of characteristic size

δ = a/
√

Re. This region is illustrated in figure 6.6, where the three-level flow outside that region

also is shown. The thickness of the viscous sublayer decreases linearly with decreasing radius,

the rotational inviscid layer occupying an increasing fraction of the initially non-similar boundary

layer that emerges at the outer edge of the disk. For the incoming flow, described by the previous

composite expansion, the viscous sublayer, the main inviscid layer, and the region of transition

to potential flow at radial distances of order r∗ ∼ δ have associated thicknesses of increasing

magnitude, given by δ/
√

Re� δ, δ, and Re1/(3µ)
δ� δ, respectively. Since the thickness of the

outer transition layer is much larger than the size of the collision region, a two-level composite

expansion could in principle provide the inlet boundary conditions needed for computation of the

structure of the stagnation-flow-like collision region. Nevertheless, the three-level expansion can

serve the same purpose with higher accuracy and was used in the computations instead.

The collision region has been described earlier for vortex flows relevant to tornado

phenomena. The early control-volume analysis of [24] employed the velocity profiles of [13]

for the lateral incoming-flow boundary condition along with a prescribed form of the outlet

velocity profile of the rising core to generate an approximate description. Inviscid solutions were

determined by [25] using simple presumed functional forms for the radial and azimuthal velocity

distributions across the incoming near-wall boundary layer. Additional inviscid results were

obtained by [15] employing instead tabulated values of the terminal velocity profiles obtained by

[13]. The latter analysis, pertaining to the case σ = 0, focused on computation of the velocity

profile approached by the deflected stream above the collision region, which was used to assess

the occurrence of vortex breakdown by application of Benjamin’s criterion [26]. Also of interest is

the numerical work of [27], who employed as boundary conditions the velocity profiles measured
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Figure 6.6: A schematic view of the boundary-layer flow with indication of the different scales.

experimentally in a vortex chamber [28]. For the moderately large Reynolds number of the

experiments, good agreement was found between the inviscid description and the results of

numerical integrations of the full Navier-Stokes equations, thereby supporting the idea that the

structure of the collision region is fundamentally inviscid.

6.4.1 The rescaled problem

In the non-slender collision region, of characteristic size δ = a/
√

Re, all three velocity

components have comparable magnitudes u∗ ∼ v∗ ∼ w∗ ∼ Γ/δ. Correspondingly, the analysis of

this region necessitates introduction of rescaled velocity components ũ= u∗/(Γ/δ), ṽ= v∗/(Γ/δ),

and w̃ = w∗/(Γ/δ) along with a rescaled radial coordinate r̃ = r∗/δ, while the accompanying

vertical coordinate z̃ = z∗/δ = z is that used in the boundary-layer analysis. With these scales, the
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steady, axisymmetric continuity and momentum equations take the dimensionless form

1
r̃

∂

∂r̃
(r̃ũ)+

∂w̃
∂z̃

= 0, (6.33)

ũ
∂ũ
∂r̃
− ṽ2

r̃
+ w̃

∂ũ
∂z̃

=−∂ p̃
∂r̃

+
1

Re

[
∂

∂r̃

(
1
r̃

∂

∂r̃
(r̃ũ)

)
+

∂2ũ
∂z̃2

]
, (6.34)

ũ
∂

∂r̃
(r̃ṽ)+ w̃

∂

∂z̃
(r̃ṽ) =

1
Re

[
r̃

∂

∂r̃

(
1
r̃

∂

∂r̃
(r̃ṽ)

)
+

∂2

∂z̃2 (r̃ṽ)
]
, (6.35)

ũ
∂w̃
∂r̃

+ w̃
∂w̃
∂z̃

=−∂ p̃
∂z̃

+
1

Re

[
1
r̃

∂

∂r̃

(
r̃

∂w̃
∂r̃

)
+

∂2w̃
∂z̃2

]
, (6.36)

where p̃ denotes the spatial pressure variations scaled with the characteristic dynamic pressure

ρ(Γ/δ)2. The distribution of radial and azimuthal velocity at large radial distances is given by the

terminal profiles (6.32) written in terms of the rescaled variables. The solution depends on the

Reynolds number Re = Γ/ν, which appears explicitly in the equations, and on the ambient swirl

level, through the parameter σ present in the boundary velocity profiles (6.32).

For the large values Re� 1 considered here, the flow can be expected to be nearly

inviscid, although rotational, with viscous effects largely confined to a near-wall layer and to a

near-axis core region, both of characteristic size δv = δ/
√

Re� δ. The inviscid solution is to

be investigated in detail below for different values of σ. To check for consistency of the large-

Reynolds-number structure, additional attention is given to the accompanying near-wall boundary

layer. The computations reveal that boundary-layer separation occurs at a finite distance r∗ ∼ δ

regardless of the value of σ, indicating that the description of the corner region should, in principle,

account for viscous effects. This finding motivates additional Navier-Stokes computations for

moderately large values of Re, which allow us to investigate the extent of the separation region

and its dependence on the Reynolds number.

The results to be presented below, extending the previous studies by using boundary ve-

locity profiles that are directly relevant to fire-whirl applications, pertain to cold flow only. Before

proceeding with the analysis, it is worth discussing the relevance of the results in connection with
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localized fire whirls. If one considers, for definiteness, the case of fire whirls developing above

liquid-fuel pools, then the fuel-pool diameter D emerges as relevant characteristic length, to be

compared with the size of the collision region δ. In the relevant distinguished limit D∼ δ the fire

whirl develops in the collision region, driven by the approaching boundary-layer profile described

in (6.32). Since Re� 1, the flame, developing from the liquid-pool rim, would be confined

initially to the viscous layer z∗ ∼ δv = δ/
√

Re found in the immediate vicinity of the pool surface

and, upon flow deflection near the origin, to the near-axis viscous core found at r∗ ∼ δ/
√

Re. The

inviscid results given below provide in this case the velocity profile found outside the thin reactive

regions as well as the associated imposed pressure gradient, both along the liquid-pool surface and

along the vertical axis. The fire whirl, driven by the fast upward flow resulting from the deflection,

would continue to develop vertically over distances larger than δ, eventually transitioning to a

turbulent plume. Depending on the flow conditions, buoyancy effects, which eventually drive the

turbulent plume, can become important already in the reactive boundary layer developing near

the liquid-pool surface, possibly helping to prevent boundary-layer separation. A recent attempt

to describe this layer [29] has employed a constant-density model along with the self-similar

velocity profile computed from (6.15). Clearly, more accurate numerical computations, account-

ing for variable-density and buoyancy effects and using as boundary condition the wall-velocity

distribution obtained in the inviscid analysis of the collision region, are worth pursuing in future

work.

6.4.2 The reduced inviscid formulation

As first shown by [30], the inviscid equations that follow from removing the viscous terms

involving the factor Re−1 from the momentum equations (6.33)–(6.36) can be combined into

a single equation for the stream function ψ̃. As explained by [31], the development uses the

condition that the circulation per unit azimuthal angle C̃ = r̃ṽ and the total head H̃ = p̃+(ũ2 +

ṽ2 + w̃2)/2 remain constant along any given streamline, allowing the azimuthal component of the
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vorticity to be written in the form

∂ũ
∂z̃
− ∂w̃

∂r̃
=

C̃
r̃

dC̃
dψ̃
− r̃

dH̃
dψ̃

, (6.37)

finally yielding
∂2ψ̃

∂r̃2 −
1
r̃

∂ψ̃

∂r̃
+

∂2ψ̃

∂z̃2 =−C̃
dC̃
dψ̃

+ r̃2 dH̃
dψ̃

, (6.38)

upon substitution of the expressions r̃w̃ = ∂ψ̃/∂r̃ and r̃ũ = −∂ψ̃/∂z̃. As shown below, the

functions C̃(ψ̃) and H̃(ψ̃) are to be evaluated using the terminal velocity profiles (6.32) written in

the simplified form r̃ũ = F0(z̃) and r̃ṽ = G0(z̃), corresponding to Re→ ∞, with the functions F0

and G0 carrying the dependence on σ, as shown in figure 6.4.

Since the streamlines lie parallel to the wall as r̃→∞, the equation r̃ũ =−∂ψ̃/∂z̃ provides

ψ̃ =−∫ z̃
0 F0dz̃, which can be used to determine the boundary distribution

ψ̃ = ψ̃∞(z̃) =−
∫ z̃

0
F0dz̃ as r̃→ ∞, (6.39)

and, implicitly through

ψ̃ =−
∫ z̃∞

0
F0dz̃, (6.40)

the height z̃∞(ψ̃) at which a given streamline originates. While the head tends to a uniform

value as the velocity decays far from the axis, so that dH̃/dψ̃ = 0 in (6.38), the circulation C̃

varies between streamlines, yielding a contribution to (6.38) that can be evaluated by using

C̃dC̃/dψ̃ = F ′0[z̃∞(ψ̃)], derived with use of (6.20). The problem then reduces to that of integrating

the nonlinear equation
∂2ψ̃

∂r̃2 −
1
r̃

∂ψ̃

∂r̃
+

∂2ψ̃

∂z̃2 = m(ψ̃), (6.41)
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where m(ψ̃) =−F ′0[z̃∞(ψ̃)], with boundary conditions

ψ̃(0, z̃) = ψ̃(r̃,0) = ψ̃(∞, z̃)− ψ̃∞(z̃) = 0 and
∂ψ̃

∂z̃
= 0 as z̃→ ∞. (6.42)

The solution depends on σ through the derivative and antiderivative of the function F0, which

appear on the right-hand side of (6.41) and in the boundary distribution ψ̃∞ given in (6.39),

respectively. Note that, despite the slow algebraic decay F0 ' −C2z̃−µ indicated in (6.23), the

condition µ > 1 guarantees that the antiderivative
∫ z̃

0 F0dz̃ approaches a finite value as z̃→ ∞ for

all values of σ. Once ψ̃(r̃, z̃) has been determined, the distribution of azimuthal velocity can be

evaluated with use of r̃ṽ = C̃(ψ̃) = G0[z̃∞(ψ̃)] supplemented by (6.40), as follows in the inviscid

limit from conservation of circulation along streamlines. This reduced description is the basis of

many of the early vortex-core studies [15, 25, 27].

6.4.3 Sample results

Numerical solutions to the problem defined in (6.41) and (6.42) were obtained using a

finite-element method [32]. No convergence problems were encountered for any value of σ. The

streamlines and circulation distribution corresponding to σ = 1 are shown in figure 6.7(a). The

integration provides in particular the slip velocity along the wall ũw =−(1/r̃)∂ψ̃/∂z̃|z̃=0 and the

associated radial pressure gradient −∂ p̃/∂r̃ = ũwdũw/dr̃, with the latter shown in figure 6.7(b)

for selected values of σ. In all cases, the pressure gradient, whose magnitude increases with

decreasing σ, is favorable far from the axis and adverse near the axis. The value of ũwdũw/dr̃ is

seen to decrease linearly with the radial distance on approaching the origin, a behavior that is

consistent with the local stagnation-point solution ψ̃∼ r̃2z̃ that prevails at r̃2 + z̃2� 1, as follows

from a local analysis of (6.41).

The deflected streamlines become aligned with the axis for z̃� 1, when the stream

function approaches the limiting distribution Ψ(r̃) = ψ̃(r̃,∞), to be determined from integration
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Figure 6.7: The inviscid structure of the collision region calculated from (6.41), including
the streamlines ψ̃ = (0.25,0.5,0.75,1.0,1.25,1.5,1.75,2.0) (solid curves) and circulation r̃ṽ
(color map) for σ = 1 (a), the negative radial pressure gradient on the wall obtained from
ũw(r̃) = −(1/r̃)∂ψ̃/∂z̃|z̃=0 for σ = (0.1,1.0,2.0) (b), and the corresponding profiles of axial
velocity w̃ (c) and circulation r̃ṽ (d) approached as z̃→ ∞.
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of

Ψ
′′−Ψ

′/r̃ = m(Ψ), Ψ(0) = Ψ(∞)+
∫

∞

0
F0dz̃ = 0, (6.43)

the one-dimensional counterpart of (6.41). The corresponding distributions of axial velocity

w̃ = Ψ′/r̃ and circulation r̃ṽ = C̃[Ψ(r̃)], which provide the initial conditions for studying the

development of the flow above the collision region, are shown in figures 6.7(c) and 6.7(d) for the

three representative flow inclinations σ = (0.1,1,2), for which the boundary values of the stream

function are Ψ(∞) = (1.62,4.16,5.57), respectively. As can be seen, the rising jet is found to

be wider for increasing σ, a consequence of the shape of the boundary velocity distributions

F0 and G0. The integration provides, in particular, the peak axial velocity w̃0 = w̃(0), given by

w̃0 = (1.22,1.01,0.86) for σ = (0.1,1,2). Near the axis, where m =−C2
1λΨ2λ−1 and C̃ =C1Ψλ

with λ = 0.6797, as follows from (6.22), the solution takes the form

w̃ = w̃0−
C2

1λw̃2λ−1
0 r̃4λ−2

22λ(2λ−1)
and r̃ṽ =C1

(
w̃0r̃2/2

)λ
. (6.44)

Since λ < 3/4, the axial velocity of the inviscid solution displays an infinite slope at the axis.

This characteristic of the velocity distribution, which would disappear in the presence of viscous

forces, is not revealed in the early results of [15] because the tabulated representations of F0 and

G0 employed in their description, taken from [13], did not contain enough points to reproduce the

near-wall behavior (6.22).

6.4.4 The boundary layer in the collision region

The inviscid flow described above is accompanied by a near-wall viscous boundary layer

with characteristic thickness z∗ ∼ δv = δ/
√

Re at radial distances r∗ ∼ δ. As seen in figure 6.7(b)

this boundary layer develops under the action of a pressure gradient −∂ p̃/∂r̃ = ũwdũw/dr̃ that

is negative (favorable) at large radial distances but becomes positive (adverse) on approaching

the axis. Clearly, the validity of the inviscid solution as a representation of the flow for Re� 1
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Figure 6.8: Boundary-layer profiles of radial velocity at selected locations obtained by integra-
tion of (6.46) for σ = 1.

requires that the boundary layer remains attached, that being the assumption underlying previous

descriptions [5, 15, 27]. Examination of this aspect of the problem requires introduction of the

rescaled variables

r̂ =
r∗

δ
= r̃, ẑ =

z∗

δv
=
√

Rez̃, û =
u∗

Γ/δ
= ũ, ŵ =

√
Rew∗

Γ/δ
=
√

Rew̃ (6.45)

to write the boundary-layer equations

û
∂û
∂r̂

+ ŵ
∂û
∂ẑ

= ũw
dũw

dr̂
+

∂2û
∂ẑ2 , (6.46)

∂

∂r̂
(r̂û)+

∂

∂ẑ
(r̂ŵ) = 0, (6.47)

and associated initial and boundary conditions

r̂→ ∞ : r̂û =−ψ
′
0(ẑ/r̂),

ẑ = 0 : û = ŵ = 0, ẑ→ ∞ : û→ ũw(r̂),
(6.48)

involving the apparent slip velocity ũw of the inviscid collision region, which carries the depen-

dence on σ, and on the rescaled stream function ψ0 across the viscous sublayer, determined
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from (6.15).

Numerical integration of (6.46)–(6.48) for decreasing values of r̂ reveals that for all σ

the boundary layer separates at a radial location r̂ ∼ 1, where the velocity profile develops an

inflection point at the wall, preventing integration beyond that point. Illustrative results are shown

in figure 6.8 for σ = 1, for which separation is predicted to occur at r̂ ' 1.76.

6.4.5 The viscous structure of the collision region

The predicted separation of the boundary layer, questioning the validity of the inviscid

description, was further investigated numerically by integrating the complete Navier-Stokes

equations (6.33)–(6.36) with a Newton-Raphson method in combination with the finite-element

solver FreeFem++ [32] for increasing values of Re and different values of σ. A cylindrical

computational domain with outer radius r̃max � 1 and height z̃max � 1 was employed in the

integrations. The three-level composite expansions of (6.32), written in terms of the collision-

region variables, were used to provide the inlet boundary conditions at r̃ = r̃max. Additional

boundary conditions include ũ = ṽ = w̃ = 0 at z̃ = 0, ũ = ṽ = ∂w̃/∂r̃ = 0 at r̃ = 0, and the outflow

condition ∂p/∂z = 0 at z̃ = z̃max. The results for the flow in the collision region r̃ ∼ z̃∼ 1 were

found to be independent of the size of the computational domain provided that the boundaries

were selected in the ranges 5 <∼ r̃max <∼ 10 and 10 <∼ z̃max <∼ 20. Illustrative results using r̃max = 8

and z̃max = 16 are shown in figure 6.9(a), (b) and (c) for σ = 1 and three different values of the

relevant Reynolds number Re. It should be noted that previous experimental results [33] suggest

that, for the two largest Reynolds numbers considered, namely, Re = 105 and Re = 4×105, the

boundary layer of the steady-flow solutions considered here is probably unstable and would

experience transition to a turbulent state, but that aspect of the problem is not investigated in

our numerical computations, which are focused instead on the emergence of boundary-layer

separation.

It can be seen in figure 6.9(a) that the structure of the flow for Re = 104 is very similar to
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Figure 6.9: The viscous structure of the collision region for σ = 1, including streamlines
obtained by integration of (6.33)–(6.36) for (a) Re = 104, (b) Re = 105, and (c) Re = 4×105,
together with a comparison of radial profiles of (d) axial velocity w̃ and (e) circulation r̃ṽ at
z̃ = 5 with the inviscid results shown in figure 6.7(c) and 6.7(d). Streamlines in (a)–(c) are not
equispaced. The arrows in (b) and (c) indicate the location where the boundary layer separates.
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the inviscid structure, in that the boundary layer remains attached and the resulting streamlines are

similar to those shown in figure (6.7)(a). By way of contrast, the flow structure found when the

Reynolds number is increased to Re = 105 is markedly different (figure 6.9(b)). The streamline

pattern reveals the presence of a slender recirculating bubble adjacent to the wall, generated by

the separation of the boundary layer at r̃ ' 1.55, and subsequent reattachment at r̃ ' 0.3. Further

increasing the Reynolds number to Re = 4×105 causes the recirculation bubble to enlarge, and

this also moves the location of the point at which the boundary layer separates to r̃ = 1.75,

approaching the value r̃ = 1.76 predicted by the boundary-layer computations.

The closed recirculating bubble has a limited effect on the vertical jet issuing from the

collision region. This is quantified in figures 6.9(d) and (e), where profiles of axial velocity and

circulation at z̃ = 5 for the three values of the Reynolds number considered before are compared

with the inviscid results shown in figure 6.7(c) and (d). A noticeable difference is found near the

axis, where the sharp peak of the inviscid axial velocity is smoothed by the viscous forces. The

resulting near-axis boundary layer is thicker for smaller Reynolds numbers, resulting in a smaller

peak velocity. The quantitative agreement everywhere else is quite satisfactory, with the viscous

results approaching the inviscid profile for increasing values of the Reynolds number.

It is worth pointing out that closed recirculating bubbles, similar to those shown in

figures 6.9(b) and 6.9(c), were observed near the end wall in early flow simulations of Ward-type

vortex chambers with Reynolds number 103 (based on the flow rate and on the vortex-chamber

radius) when the swirl level was sufficiently low [34]. The separation bubble disappears for

increasing swirl level [34] and is not present in subsequent computations of the same flow at

Reynolds number 104 [27], for which the flow was shown to be fundamentally inviscid. No

indication of boundary-layer separation was found in recent tornado simulations at much higher

Reynolds numbers [35] employing a prescribed forcing term in the vertical momentum equation to

generate the motion. The differences between the results of these previous simulations [27, 34, 35]

and the predictions reported above are attributable to the differences in the associated flow field,
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suggesting that the detailed distribution of near-wall velocity plays a critical role in the occurrence

of boundary-layer separation on approaching the axis.

6.5 Conclusions

This investigation clarifies a number of aspects of the structure of the boundary layer

that will develop between an axisymmetric fire and swirl-producing obstacles located at a large

but finite radius from its center, by analyzing situations in which the external inviscid flow can

be described as a superposition of a potential vortex and the Taylor potential flow generated by

a turbulent plume. A one-parameter family of solutions was developed, that parameter being

the ratio of the inward radial component of velocity to the azimuthal (swirl) component at the

cylindrical swirl-generation boundary, thereby extending an earlier, tornado-motivated analysis

(for which that parameter vanishes) to conditions of interest for fire whirls. The initially non-

similar boundary layer evolves, at radii small compared with the radius of the obstacle location,

into a three-level structure composed of an inner self-similar viscous sublayer, below a thicker,

self-similar, rotational, inviscid layer which, in turn, lies below an even thicker, self-similar, still

rotational, inviscid layer of transition to the external potential flow. A composite expansion is

given that describes the structure of this three-level boundary layer, which helps in addressing

computationally the flow near the axis of symmetry, needing study for accurate and complete

descriptions of fire-whirl structures, including their stability and the onset of vortex breakdown.For

instance, the composite expansion has been used recently [36] as boundary condition for the

numerical description of the structure of fire whirls lifted over liquid-fuel pools, stabilized by

vortex breakdown when the level of ambient swirl becomes sufficiently large [37]. Similar

numerical investigations can be useful in addressing unsteady fire-whirl dynamics, including

transitions between attached and lifted flames and intermittent vortex breakdown, which have

been observed in controlled laboratory experiments [9].
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With decreasing radius, the thickness of the viscous sublayer decreases, and the azimuthal

velocity decreases, while the inward radial velocity increases, leading to a collision region near

the axis, of a size proportional to the square root of the ratio of the kinematic viscosity to the

circulation (the reciprocal of a Reynolds number), in which the flow experiences transition

from predominantly radially inward to predominantly upward motion. This collision region is

described, in general, by the full Navier-Stokes equations, but it develops a dominantly inviscid

structure for large enough Reynolds numbers, with boundary layers at the base and on the axis.

The colliding inward motion produces a stagnation-flow type of behavior, which results in an

unfavorable pressure gradient acting on the viscous base flow, leading to its separation at high

enough Reynolds numbers, but which apparently turns out to be followed by re-attachment,

at least at Reynolds numbers accessible computationally, so that the upward outflow can be

estimated reasonably. These rather complex constant-density boundary-layer structures in fire

whirls underlie the combustion effects which, by decreasing the gas density, give rise to the

tall fire whirls that generally are seen. Proper complete analyses of these fire whirls and of the

vortex-breakdown phenomena that occur in them at sufficiently small values of the ratio of radial

to azimuthal incoming velocity need to take into account the flow characteristics uncovered in the

present work.

This chapter, in full, has been submitted for publication in the Journal of Fluid Mechanics,

“A model for the boundary layer surrounding fire whirls”, by A. D. Weiss, P. Rajamanickam, W.

Coenen, A. L. Sánchez, and F. A. Williams. The dissertation author is the primary investigator in

this publication.
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