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PARTTAT BOOTSTRAP OF THE SCHIZOPHRENIC}POMERON

Geoffrey,F. Chew and Dale R. Snider

 Department of Physies and Lawrence Radiation Laboratory

University of California, Berkeley, California 9&720
“July 21, 1970 |
ABSTRACT
" The Ibmeraﬁéhuk.(P)'trajectory and'fes;due near

t =0 are caléulatéd throughzself-consistencjVrééuirements
frqm proberﬁies of the Pf.‘ The Calcﬁlatioﬁ is baéed on
a general multiperiphéral model whose kernel is assumed to
be nonsingular near J = l,‘ t = O,'"apart from alsmall
component assdciatéd with Pomeron exchangé énd cbntaiﬁing

the corresponding AFS branch point. This small component

“of the kernel is treated by standard perturbation techniques.

The self-consistent P trajectory turns out to have a

slope smaller than normal and substantial positive curvature,

whereas the logarithmic derivative of the residue is

‘ abndrmally large. Aithough these effects result from

proximity to the AFS branch point in the multiperipheral
kernel, the corresponding branch point in the amplitude

itself turns out to be relatively unimportant near + = 0.
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I. INTRODUCTION
it.has recently been conjecﬁurethﬁat the high-éubenergy, pomeron

componeht’of the'multiperiphéral'kernel;'aithough much weaker than the

: low-subenergy; resonance component, may split the leading output pole at

. 1.
t =0 into two poles, the’ P and the P'. In,such an event there

occurs a. partial bootstrap mechanlsm for the pomeron, since to some

'degree the output P .1s the result of the P input into the kernel

This pomeron bootstrap mechanism is less self-contained than that described

in Ref. 2, which ignored the low~subenergy componént.of the kernel, but

even a»partial bootstrap may place significant consfraints on the elastic

diffraction'mechanism. In this>paper we oonfirm the ooﬁjecture of Ref. 1
that self-consistency of the "schizophrenic'pomeroﬁ" hypothesis reqoires _
the slope of the pomeron near t = O to be smaller than that of "normal"
trajectories. We also show the logarithmic derivative of the pomeron
residue ﬁo be abnormally large. Although a complete explanation of the
pomeron intércept cannot bé claimed, it will be.soen that proximity to
J=1 is:évnatural feature of the partial bootsﬁrép.

Oof analysis is based on a generalizatiop and extension to non=-
zero momentum transfer of the model employed in Ref. 1. The generalization
allows all linkage tjpes to appear in the multiperipheral chain, no longer
requiring that alternate exchange-links be pionic. It also will be possible
to relax the factorizability requirement for the low-subenergy component
of the kernel. We require factorizability only'for the pomeron component,

for which supporting arguments are given. A final improvement on Ref. 1

.is that we do not here replace J cuts in the'multiperipheral kornel by

‘equivalent” poles. Such an approximation, although sometimes justified

and hseful, tends to obscure the meaning of the results obtained.
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The .rea.der is breferred to Refs. 1 and 3 fpr‘:physica.l arguments |
showing that the ' pomeron canbdhent of thé mﬁlt'iﬁe‘:i"ifli)hera..l kei'nel can be
no more.ﬁﬁa#fa-small_pertu:bafioh of the total kerpél if the experi-
mentally Qbéerveq multiplicitj. of produced particles is to be achieved.
We do not. i“.nuthis‘ paper clongern ourselves with éroduction mul_t;ipiicity, '
but the.‘ exberiﬁental facts in this connection should not be forgotten. :

They constitute a crucial motivation for the idea of a '"weak pomeron."
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II." GENERAL FORMALISM

Because we shall make no use of the detailed structure of the

- strong low-subenergy:component of_thé kernel, it is possible to consider

.a rather'general form of multiperipheral model._ Wévemploy the multi-Regge

. ) , 4
formalism developed by Ciafaloni, DeTar, and Misheloff, assuming that in

principle the inclusion of a sufficiently large number of poles in the

_kernel can represent the low-subenergy components. ~Regge cuts may be

included as "continua" of poles.
‘We thus assume that after diagpnalizatioﬁ in angular momentum,

parity, isospin, etc. the (projected) imaginary part is given by the

J,t

analytic continuation of a matrix function By yt which obeys the
o 5] )

integral equation

B‘;‘;f - vg’y? + Z B‘;;?, s‘g’,,t v‘;’,,;, . - ra)
: 4

In this symbolic notation J and t represent'the set of diagonal

variables, including the total (crossed channel) éngular momentum and

the square of the overall momentum tranéfer, while 7_«represents the -

nondiagonal variables. As Iindicated in Fig. 1; "y includes two partial

momentum transfers (reggeon "masses'), designated t, and t, , and a

"channel” index to identify a particular pair of Regge trajectaries.

The vertex quantity Vi;? corresponds to the emission of one stéble

particle, uniquely identified by the quantum nuﬁbérs of the four attached

trajectories. The quantity S7 can be characterized as a two-reggeon

"propagator, " since it contains the pole factor

u | L -1
[J - Q, (tu) - (t,) + ;] .
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;Beiog concerned_with genefation_of the:pomefoh, we restrict'attenﬁion
to the equation with overall ﬁacuum qpaotum numoers.b Among the different“
possible channels (reggeon pairs) in this case is a pair of pomerons,. which
. we denote.by 7 = P. Now there exists no stable particle with quantum
numbers coupling P to P; in other words, -V'I’t = O. By a cOntraction 1
process it is then possible to eliminate the P channel from the space
in whlch-the equation is to be solved._ That is, for 4 # P % 7! , and
temporarlly ‘suppressing the common indices J, ) one may show Eq. (II.l)

‘to be eqpivalent to

P
>

B77' L= vyy’ + . B77" Sy," Voy"yt‘i, .- (II.l') |
s b _ o
where
A o\
Vyyr = Vygr F Ve (11.2)
with
Vyyr = Vop Sp va, . (11.3)

This definitlon of V is illustrated in Fig. 2. B
The two physical assumptions essential to the schizophrenic

pomeron {dea may now be stated in terms of the kernel

A A
K = 8V
= K + k, o j;-e (II.h);;v
where‘”‘ -
K = sV,

x = Sv. | (11.5)
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(1) fThé{prédominantly lnw-subenefgy kernel-componenﬁl X is strong;
:kwinh a lééaing eigenvalue that correSponds to a %rajectory paSsing near
J = l,b t = O, a nelghborhood in which K(J,t) is itself nonsingular

. since it contains no pomeron propagators. The vunperturbed spectrum in
‘this neighborhbod thus consists of & single WeliQisnlated pole.

| (2) 'The kernel component X, constituting the pomeron input, is a
weak pertnrbation, being of;negiigible consequengévﬁexcept*near the

singularity arising from the pomeron propagator S, To exhibit this

P L
crucial s1ngular1ty we write out the deflnition of v in the weak

coupling or high-subenergy approx1mation, keeping only the pole part of

the propagator 2
- " " st noon "J, 5
vw,(J,t) = dt  dt, Vgp (tu,tz,tu,tL)SP vJ ,(t t&,t £ )
" 1 * ." - * m. " | 4
~ s dt, 67P(tu,tu)syp(t&,t%)ﬁb,(tu, b Ppy 1 (Eyty)
" : 1"
[-)\.(t,t;,tz)]lfg J - aP(tu) - czP(tZ) +1
(11.6)

the functions P representing vertices with two reggeons and one particle

~and A being the usual phase-space factor,
X(X)Y;.z) = x2 + Y2 + Z2 - 2(xy + XZ +yz) .

The range of integration is such that A(t, t:, tz)FS.O . We are
evidently dealing here with the familiar AFS branch point,6 although for
us it appears in the kernel, not in the amplitude'itself.

The AFS branch point in v(J,t), even though the discontinuity
around the associated cut is small, introducesbfine structure into the

spectrum of the complete kernel 'ﬁ = K + k. That is, a single pole in
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the spectfum_of the "unperturbed" kernel X(J,t)  ogéurring near the |
weak 'branch‘point of k(J,t) becomes a pole in‘th_é .';pert'urbed spectrum - .
~on each sheef'of the Riemann surface assbciated ﬁith,the branch point.7 -
The pole displacements from one sheet_to the néxf; 41though relatively
small, ﬁﬁy:névertheless be observable, andlthe first.two'sheets ha&e part
of the physical region as a common boundsry. It is.therefore possible
for the po;es on these two sheets both to be of'?ﬁysical'imp@mtance; we

shall later 'identify one of these pbles as the P and the other as the f,
1, : | | |
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III. FIRST-ORDER PERTURBATION OF THE FREDHOLM SOLUTION

»Oﬁr formal problem is to solve the integral equation

B s + BSV, o (III.1)

where

V=V + v, S (111.2)
given a-knovledge of the solution to the "unperturbedv equation

R T S (I11.3)

The slightiy trieky point is that we are working close to a solution of

the unperturbed homogeneous equation, so a streighﬁforward expansion of

B to first'order in- v. is not adequate. We may, however, make a simple
perturbation expansion of the'sepgrete Fredholm numerator and denominator

functione;=oThat is, if
B, = —£~ | o (I11.4)

then to a good‘approximation

| (o) |, - -
~ III.
N, N t BN, (111.5)
p ~ 0 4 sp, | (111.6)

where :B:Nyy, and 5 D are both small, of first'order in wv.

Recalling that all quantities depend og  J and t s We see that
Regge polee occur at points where ﬁ(J,t) venishee. Similarly an
"unperturbed" Regge trajectory may be defined bj‘:D(o)(J,t) = 0., Now we
are assuﬁing that the leading unperfurbed trajeotory) J = ab(t): passes

fairly cloee to the point J = l; t = 0. This means that we are interested

. , : 0
in the region where D( ) is small, so the perturbation of D is of



-8- . UCRL-20033

greater significance than that of N Thereuis, after all, no reason

yr' o V
to expect. Nig? to be small. We therefore adopt‘as our perturbed solution
| | . (0) |
: N,
B, = _(_.;ZJ___ —_— - (1I1.7)
7y D 0 + 8D . _

The Fredholm denominator is a determinant

D = det (1-57%), o (111.8)

and to fifst order in v

Y
i

. _det[ 1 - 8(V+ v)

~ det(l - sV){ 1 - pr[Sv(l - sv)’l} .

' . I11.9)

This formUla‘can,be shown to become exactgif'Jvéiiszfactorizable,». |

a ﬁroperty which wevshall later argue to be roughl&rvalid, but for the

mbment ﬁe may be content with (III.9) as a first-order perturbatipn fesult,
We now insert the additional information that J is close to

- &y, so close that p(0) may be approximated by a single pole, with its

factorized.residue,
0 0
377'_(“]*) ~ » (I11.10)

J - %y

The motivation here rests heavily on thevpresumed~absence of J
singularities of the unperturbed kernel near o, and the presumed
consequent wide spacing between the ledding unperturbed trajectory and

the remainder of the unperturbed spectrum. Since

50 _ ya-.svt, (117.11)
it follows that by(o) is an eigenfunction of SV, with eigenvalue

unity, while
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D(O) =

cF J-ayl, (111.12)

where c¢ “is independent of J. One maj.then e&aluateb(III.9) as

| - .; - (O) ‘: ‘ﬁ(0)

,1? c|J B Z b S, Vo 8B 0 | (II1.13)
oo : 771‘ B

Comparing (III.7), (II1.10), and (III.13), we see that our perturbed -

solution may be written

Y (0)‘5.'(0)'
B, = 74 AR (IIT.14)
7 J -y - AJ)
where . . “ | L
R S S

1248

ihéiﬁ de?endence of the denominator shifﬁi'is, which will be of
central concern tb us, arises principally from the}AFS‘branch point of
iy s aé given by Fofmula (1I1.6). The propagaﬁor_ 87 ‘is nonsingular in.
the region of ihteresﬁ and, within this propagator, J may be set equal

to ao.q _
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IV. DEPENDENCE ON t

The single unperturbed J-pole approx1mation (IIT.14) amounts to
linearizing the J dependence of the unperturbed Fredholm determinant
(O), with’a total neglect of the J dependence of the numerstor. It
.would e\fidently have been eq_ua]_ly plausible to so treat the t variable.
The result then would be a t dependence of the pomeron residue that
arises entirely from the denominator shift &(J, t) through V. (J,tL

as given by (11.6). Such an approximation can be Justifled a posterlorl

1f the t dependence generated by A(J,t) turns out to be "abnormally i
rapid. ﬂByfthis we mean, for example, that the logarithmic derivative ‘
of the pomeron residue with respect to 't at t O turns out to be
substantially larger than the rate of variation characteristic of the
unperturbed amplitude.
| With the only t dependence residing in- the Fredholm denominator;

pole residues vary with t in a channel- independent manner. That is, if
a pole °?»IB77’(J’t) occurs at J = a(t), where D(a(t),t) = 0, the

residue . is

(Iv.3)
(aD(J t) /30
J=0/(t)
: If.we denote the factorized pomeron residue, in particular, by
, . L :

corresponding to Fig. 3, then the t independence of the numerator in

(IV.3) implies
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Gy 1/2 S
'57P(.tu’tz’t) ~ Sy(tu’%) r77(t) 5 o (Iv.5)
where thefnormalization of rp is arbitrary.
The vertex functions. 67 : appearing iﬁvFormula (II 6) are analytic

contlnuations of gyP to a point where one of the three reggeons has
become a stable physical particle. If the formt(IV;s) is maintained in
this cohtinuation, then ” |
" ~ - 1/2 | " .
ByP(t ) _lﬁy(tu)rP (tu),_
. (1v.6)
" - : " 1/2 " .
o 6P7.(t t) = By (b)) g (80)
leading to - ‘ [

T (38) % By (5,) 8 (6,) B (8)) B, (8) pp@,8) 5 (TV.T)

where

" v ‘.* 1 ’b L]
at! aty ri(t)) rp(ty)

[-x(_t,-tl'l',tg) }1/2 3 - ap(t!) - oplty) + 1

-

‘ DP(j,t) =

| (IV.8).-

We choose now to normalize rp in Eq. (IV.6) so that pP(J,O) ~ % as J > .

Inserting (IV.7) into (III.15), we mlé}y_ then write

NI) ® epepdt), (1v.9)

where

‘ : o) .
%= Zm,”sa(ﬂe(t&)s<t>s,<t>s LA
‘ 7,7’ . f
o : . - (1v.10)
the sum 1nclud1ng integration over the four t's. The final

form of our perturbed solutlon, with all t and J dependence
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exhibited, thus becomes

S p (0)y (0 | |
B .(J,t) = VA A Gt (Iv.11)
r\dy , ) ,
7y J-a -t - e ep(d,t)

.
'fhe impeffant function pP(J,f)' being given,byv<IV.8). Similar
expressiéns; elthough usually with additional %  &ependence, have been -
previously derived on the basis of more explicit models 1,3,7,8 including
that of ABFST--which does not require representing the low—subenergy

kernel by a Regge expe.nsion.5

We congecture that _EI multiperipheral
model w1th a weak pomeron input, includlng ver51ons not yet studied, w1ll
lead to the approximate form (IV. 11) A |
The two Eqs. (IV.8) and (IV.11) constltute our bootstrap conditlons.
. The pomeron appears as the leading singularity of (IV 11) where it is
determlned in part by pp and in Eq. (1v.8) it is used to calculate pPU
Implicitiin Eq. (IV.8) for pP(J,t) is the assnmption that the pomeron.:
| propagator 1s.adeqpately represented by a~single Regge pole. Our
approach is based on the identification and special treatment of
singularities close to J = l, t = O, but this neighborhoodeill in »
generaljinclude singularities, such as the AFS:nranch point, in additionn
to thelieeding pole. ‘In the Appendix a more generel formula is giVen |
for p?(J,ﬁ), which includes all the singularities implied by Eq. (IV.11).
We shall not attempt in this raper to solve the problem of self-consistency
for a;lnthese'singularities, but rather assume pnat the pole is dominant‘
and hencevemploy Eq. (1v.8) for pP(J,t). The.erfor introduced by neéleefv
of the cﬁﬁ will be estimated in Sec. VII. |
9

" Gribov and Migdal,” using "reggeon calculus, " have arrived at a

form similar to (IV.1l) in the course of "modifying™ a "bare" pemeron
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propagetor. There may be no harm in referring to our unperturbed tragectory;

oy = a + bt, as "pare, "

1nappropr1ate, but other aspects of the Gribov-Migdal approach9 dlffer from

although a connotation . fundamental would be

ours in an essential way. They assume that both the "pare" and the

! modified pomeron trajectories rass exactly through J=1 at t = 0.
Neither does S0 1n our model., In order to achleve consistency near

t =0, furthermore, Gribov and Migdal assume thelr equlvalent of pP(J,t)
to vanlsh at t = 0. Nonvanishing at this point-is a vital feature of
our Formula.(IV 8) Our approach is less flex1ble because we depend for

motlvatlon on unitarity as represented through the multiperlpheral model.
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V. PARTIAL BOOTSTRAP CONDITIONS
Oﬁe of the partial bootstrap conditions resides in-thé requirement
that the pomeron trajectory aP(t), which appears in Formula (IV.8)vfor

0,(J,t), be given by the leading pole of (IV.11). That is, we require
P > € , .

o] .;‘ aP(t) -a-bt - ey pP01P(t),t) .  , | (v.1)

A second condition is that the pomeron vertex factdf rP(t) in (Iv.8)
be proportibnal ﬁo the residue of this pole, that is, proportional to the

reciprocal of the J derivative of D(J,t), evalusted at J = ap(t):

A Pp(d, ) |
r ~(t) oc 1 - & 55— o (v.2)
e . - FT=ag(t) .
The constaﬁt of proportionélity‘in this residué felation involves the
unperturbéd residue, so we cannot determine eé 'ﬁhfough our partial
bootstrap. |
In avfuturé more complete bootéfra§ onefmé& attempt to obtain
€p from #hgysolution to the full integral equatién; but to do so will
require é detailed treatment of the low-subenergyikernel. The simplest
detailed model with suﬁstantial plausibility‘is'that of ABFST, which has
‘been diéqussed for t =0 in Ref. 3, . where an éxplicit Fredholm |
determinant estimate has been derived that can be compared with (111.13):

and (IV.9). The result for the product c e, was .

P
_ 3 1 el
c € N L e A @ , (V.B)
P 2 l6ﬁ3 T T v

where A% ‘is the effective momentum-transfer upper limit for a pion link

L o
and cﬂﬂe is the elastic =nn cross section just above the region of
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promiheht-reSOnances. 'Estimating_ cﬂ#e# ~ 3 mb and A =1 GeV2 leads

from.(V.j) to ¢ p ~ 0.03, whereas the same ABFST.model estimates ¢ to

 be of order'unity} We shall see beldﬁ that e, ~ O. 05 is indicated by
ithe results of this paper as well as the correspondlng ones 1n Ref. 1, in
agreement with Formula (V.B)

, waever, the low~sﬂbenergy ABFST kernel has less strength than
required by experiment,3’ 8o the estimate (v. 3) cannot be made a direct
component of our bootstrap calculation. 'In any event the uncertainty
sbout the momentun-transfer cutor? A vl rexre.in witil the pion link
itself istincluded'in the:boetstrap.._It-therefore;seems unavoidable at

present to regard as an arbitrary parameter.

€p
The bootstrap equations (v. l), (v.2) and- (IV .8) are supposed to

be valid only near t = 0, and in this paper we require their satisfaction

only to zeroth and first oraer in a'power-series éxpansioh in t about

the origin. We begin by assuming that the'pomeroh residue dees not vanish

at or near t =0 endzcan be represented by an exponential form for rP(t):

' Tt ‘
rP(t) = constant x e ) _ (V.h)‘

the parameter 7p to be determined from self-consistency requirements.
It is evident that 7p must be positive for the integral in (IV.8) to

exist. - Formula (IV.8) then becomes

at_ at 7p(t ”‘%) |
u 4 - .
; '~[-x(t,tu,t&)]l/2 J - a (t ) .Q:P(t&)'+ 1
pp(d,t) = — —
P at_ dt (t. +t,)
w7 ™ -
“ 1/2
A (0,t 5 t,)] /

(V.5)
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if the normalization of r_ 1is adjusted so. that pP(J,'O) ~ % as J =+ o0,

P
Let us next'employ a linear representation of the pomeron trajectory,

aP(t),.,% L Ath , ' | (v.6)
the constants 1 - x, and by corresponding, respectively, to the
pomeron- intercept and slope,: We introduce the displacementdof the
intercept from J = 1, rather than the intercept itself, bécause we
expect the displacement to be small. Substitution of (V.6) into (V.5)

. and the carrying out of one 6f the two -integrations then give

| G -t
pP(J,t) = e P/ dag - . _e' o D P)
: . P P .l
A J-{l-,_exp+2—t--7-;g}»
(v.7)
leading to : -
G2 e |
D'P[aP(t)’t] = e P/ -ag - .be o P (V-8)
' 0. xP+?Pt+'-£'§
| . 7
and o ‘ _ R
| 33,0 (rg/2)% R
—————— = - . dg - -
Ly J=a(t) | °p p -
_ ‘ P . 0] | - xP +.? t + ‘7'; 3
7'P e('yP/e)t :
P X + £ t
P
(v.9)

Now requiring that Eq. (V.1) be satisfied to zeroth and first

powers of t , we find
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l-a_-XP = GP dg ————b—P—-—— (V.lO)"
Xy + T
P ¥y
and
€ i _
b-b, = 7 é-}?;v-1+a‘+ Xp ) o (v.11)

At the same time, consistency of Formula (v. 2) with (V.h) to a corresponding
order in t implies that

3 ( NERY
-
P ot AR (t)
. o

o =0
Ly =
P
1-¢
o J=x (t)
1L t=0 -
s (2(L_7p) _ 2 P
P _2xP Xp bP bP
= - ,‘
b . Tp %
by 2xPpP

or

B4 \ _ . . :

v _-b—E = -i.. — (-—— - l) N . . (V.12)
P P ,

Thus, from the three requirements that the pomeron intercept, slope and

residue logarithmic derivative be self-consistent, we have found three
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equations (V.10, 11, 12) which determine these three parameters
'(i.e.,.‘xré_ bP -and 7P) once vﬁlueS’have been éssigngd to s, b; and
€pe |

|  Before we take up numerical aspects of thé solution to these
equations, pertain‘qpalitative observations are in;prder. Noté, first
of all, that considerations of reality in Eq. (V.lO)Areqnire the t =0

pomeronvslbpe bP_ to be nonnegative; while x, must fall into the

P

interval

0 '<7x1> < 1l-a. AR - (V.13)

The pomeron intercept; that is, must lie below J*ﬁ'l and above the ,

intercept of the leading unperturbed trajectqry; Furthermore if e, is

small in comparison with 1.- a, Eq. (V.lO);reQuires. Xp to lie either .

close to zero or close to 1 ~ a.

Turning to Eq. (V.11), we'see that for small e, the nonnegative

P
- requirement for by, . imposes & lower bound on Xpt
‘ 1 P o '
Xp > 2 1-a+ b/7P v (v.1h)

In order that 7p e positive, on the other hand, we require from (V.12)

that
€ =
2 < 2 2 (V.15)
P 5 %
2.5—-1
p

P -+ 0, xP _ﬁight approach 1 - a.A,

When all these constraints are put together, it is plausible that, for

ruling out the possibility that, as e

small eI, b d will be proportional to € Such is indeed the result

P P

of a cbmplete numerical analysis, as we shall éee in Sec. VII.
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| Further qualitative analysis of the threev'equations reveals that

as GP P

proportional to €

and: Xy  ‘together approach zero the quotient bP/yP also becomes

p+ Infact, if 7, > b and €, << 1, one may deduce

.~ from (V‘_.;Ll). and (v.12) that |

P

- i P - . , : ' o
*p T ET - a) | - (Va8
and
b ,
P _ ‘ a : :
;;_ ~ 2xP . . : v : (V‘l7)

These {c{rb formulas turn out to be. amﬁ&_imt_ely valid in the domain of
physical'intefesﬁ. Formula‘(V.l7) suggésts thatrfhe pomeron slope by
will»be}small, although précisely how small is difficult to establish
without é complete nuherical solution. Before embarking on detailed
numericai anélySis we must fifst decidé on the physiéally interesting

choice for the parameters a, b, and éP‘
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VI. CHOICE OF THE PARAMETERS a, b, AND €

' The perameters a and b characterize the low-subenergy
component of the kernel, giving the intercept and-siope of the leading ‘
trajectory‘that wouid be generatedhby that component acting alone. Since |
we are_not'attempting in this paper to determine.these rarameters from
\self—consistencyy we look to.eiperiment for guidence in their choice.

The pomeron perturbation is expected to be substantial only near -
J = l, where the weak pomeron coupling is compensated by the proximity
of the kernel singularity) so' it is plausible that near J 2 the
‘unperturbed tragectory, ‘a + bt, may be a. good epproximatlon to the
actual'leading trajectory with vacuum quantum numbers. The lowest mass
J=2 neson with such quantum numbers is the f0(1250),'so we adopt, as
one condition,

a + bm 2 2. (vt

o

A‘second condition may be based on thefoheerved energy dependence
of elastic amplitudes mear t = 0. Pnenomenological analysis in terms of ,
two or three Regge poies with vacuun quantum numbere leads to an intercept_
for the second vacuum pole, usually labeled P!, éd;' J = o.‘6.ll.» In our
model only the leadlng pole occurs on the real axis of the physical J sheet'
other poles must be reached by passing through the cut connecting Jd =00

to the bfgnch point at:

max[aP(tu) + aP(t’&) - 1]

b
l—2xP+?

a (t)

P{;. (lvj:.e) ,

Q

Nevertheless, if we examine the cut discontinuity in (IV.ll)_we find that

- for small €p the discontinuity is small except in a narrow interval
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near J = a + bt, where there is a sharp peak due to a close-lying
second-sheet pole. (See Fig 5. ) The effect of the cut can thus be

12
approximated by a single real-axis pole which we identify with the P,

Roughly, then,

rChoosing“ €p isfmore difficult. A rough upper bound is provided
by the experimental ré@uirément that the poheroh iﬁtercept be clbse to
J = 1. Requiring p(0) >0.9 or x,<O0.1, for example, leads from

0.08.

P

(V.16) with : a>06 to eP~

To obtain a lower bpund on eP we may refer to_the experimental
indication that theApomeron residue at t = 0 is of the same order of
magnitude as that of the P'. Using the féct that our model ampliﬁude,
as giveh.by.Formula (IV.ll), satisfies an ﬁnsubtra¢£ed dispersion relation

in J ’ with a pole at J and a cut runnlng from Jd = -00 to

%p
J =Q o’ 1t is easy to demonstrate a sum rule that the 1ntegrated cut
discontinuity plus the pole residue is equal to the residue of the
unperturﬁed'pole.' A short calculation then gives the ratio of the sum
of the integrated cut discontinuity and the pole residue to the pole
residue alone, at t = O, to be

g () + g, e

gPQ_(O) | _bP 2Xp Pp

(vi.h4) |

We are here interpreting the integrated cut discontinuity as the effective
residue of P', assuming that the peak in the cut discontinuity near

J =0

o1 exhausts most of the integral from J = -c0 to J = a, -
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Tﬁiénlést assumpﬁion will be investigated iﬁ'Sec. VIT, but
tenta’cively we see from (VI h) that to avoid an unacceptably small pomeron'
residue we: must not allow either b/b or 7P€P/2x b to become very
large compared with unity. If we use the rough relations (V 16) and
(v. 17), the latter objective requires that the qua.ntity

%p ~ (:\.-a.)2

thQ e? |

not be excessively large. Thus we cannot allow ‘ "eP to be orders of

‘magnitude smaller than (1 - a)?.

Following the préééd;i_ng guidelines, the range of €p ‘to be

. studied in the following section will be 0.01 S €p 5 0.06.
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. VII. NUMERICAL SOLUTION OF THE BOOTSTRAP EQUATTONS
‘We'may‘for convenience ﬁse the reciprocal of the ﬁnperturbed

trajectcfy-slope” b as our unit of'squafed_momentum transfer. The

P
ratios fbr/b:‘and ‘7P/b . TFigure 4 shows the solution of Egs. (V.10, 11, 12)

results for b, and 7Pi with' b= 1 are then to Be understood as

pr In addition to

showing thé»valués of Xp 5 bP/b, and 7I/b » We exhibit the ratio of P

for a = 0.7 and the physically interesting rahge of €

to P! fesidues,Aas given by (VI.4), and the P' intercept, the latter
being défined as the value of J near J =a where the real part of the
denominatar of (IV.11) vanishes. The cut discontinuity has its maximm
at thisvpoint,,as illustfated[in:Fig. 5;'which éor?esponds to the special
case & =0.7 and €= 0.03, the cholce for these parameters that was |
j mede in Ref. 1. We see thét for this choice ﬁhe P! intercépt‘occurs

“at J = 0.57. Also note that the cut discontinuity near the branch point

is small compared to the pomerbn_residue, Justifying a'posteribri the
neglect of the cut in Eq. (IV.8).

P decreases as €p is
made smaller, the ratio bE/b becoming equal to 1/2 at e, = 0.01k.

Figure 4 shows thﬁt the pomeron'sldpe b
P
Pomeron slopes much smaller than this are accompanied by unacceptably smail
values of the pomeron residue. (See Sec. VIII.) On the other hand,'poﬁeron
slopes ciose to the unperturbéd slope are accompanied by a pomeron intercept
excessively far below J = 1. Thus our modél léads unavoidably to an ‘
- "intermediate" value for the pomeron slope at t ﬁ-Cb given the conflictihg‘
demands ¢firesidue and intercept; R E
The P' intercept is cohtroiled mainly‘by the value of the

parameter a _and is relatively insensitive to € We therefore consider

'Po
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a as beihg;ui]ambigu_ously fixed at a value near 0.7. The requirement

(VI.1) then implies b ~ 0.83 GeV™>, from the measured £, mass

.fo

m, = 1.25 GeV, and we may convert the content of Fig. 4 into more
usual notation, as shown in Table I.
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VIII. DISCUSSION OF RESULTS
“Given a kncﬁledge'of the'ieadiné trajectory in the spectrum of
the unperturbéa low-subenergy kernel,‘a trajecfdry wﬁich we have roughly
identified with'thé P';.itfhaé beenvp05sible to'predict pomeron
charactefisﬁics.néar t=0 in terﬁslof one cdditional parametcr €pe
What is kﬁcﬁn'expefimentally about these charactcfistics?
| :To approach this qﬁestioh we:must establish}the'relation of our
model to measured differentiai'eléstic and total cross sections. The
elastic aﬁplitude is obtained by‘inverting the brojection»that led to |
Byy,(J,t) and then continuing'the reggeon mass vari#bles t s tys t;? and
t;v to points that correspond to physngi particles. Tq avoid kinematic'
singularities one must»unde?étand Byy,(J}t), agca "reduced" partial-wave
amplitude from which there has been removed a factor

k,(t) ky,(t)

.So

5 B . (vIIr.1)
wherel_

A5, b, b ) o |
2 . L D R A ‘
k, (t) i s c (virz.2)

and g is an arbitrarily chosen constant of dimension enérgy squared.15

‘Different choices for s, evidently lead to different +t - dependence

0]
for a Reggc residue, but we suppose, with regard to the reasoming of
Sec. IV} that'choosing 8o =1 GeV2 will ;ead fd a lbgarithmic derivativc
for the residue of the ieading unpérfprbed trajectory that is smalier
than or of the order of 1 GeVP. Ve assume, in other words, that the

characteristic dimension of the unperturbed kernel is of the crder
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1 GeV2 The treatment in Sec. IV is presumed to be Justified if 7P
turns out large compared with 1 Gevz, and by.the-same token the mrecise

value of s. will not matter so long as this parameter is near 1 GeV".

0.
With the understanding that the pomeron residue, Formula (IV.L4),

refers to the reduced partial-wave amplitude with s = l GeV2 it

O
follows. that the elastic cross section for particle A on particle B has
the standard high energy form >
dce;&AB : 2le (t)-2 | m (t) 2
at ~ gAP (t) gBP (t) = i - cot 2 ’
(VIII.3)
and the corresponding total cross sectlon is
ﬁﬁt --7- gAP(O) gBP(O) LR | (VIII.})
n) .

We are ignoring spin, a simplificatlon 1egitimate near t = 0., In view

of the factorized t dependence of our model pomeron residue, Formula
(Iv.5), and the exponential shape (V.4) assumed for rP(t), we may write

(VIII.3) in the simpler form

¢°e£AB‘ o ergt caplt)2 . .
& gA &g - © () | (vitr.3')
ﬁhe signature'factor being omitted on the grounds that aaP(t) is close 
to 1. " | |
~"In comparing these simfle forms with finite-energy experiments,
there ariee the usual ambiguities due te lower-lying Regge singularities.

In addition to singularities such as the P', that are in principle

¥,
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included in our model, there may oceur branch points associated with

-channel absorption that are not included, 15 Considerlng the roughness
of our model, we shall therefore make | no effort to correct for absorption.
It is of course possible to correct for the P! by»employing the results
of phenomenologlcal Regge pole a.na.lys1s.13 We arelin fact directly
1nterested 1n the ratio of P to P! residues;- N

The most significant experimental evidence concerning the pomeron

slope near t = 0 comes from the 1969 PP elastic scatterlng measure-

ment at Serpukhovyl6 which yields an uncorrected value
a;(o) = 0.U7 t 0.09 Gevf2 . (vIrz.s)

Taken at face value, this slope implies for our model, according to Fig. &,

that ej = 0,021 % 0.010. Such a value for o

aP(O) = 0,97 * 0.01, a satisfactorily high pomeronzintercept. For 7p

means from Fig. 4 that

the model prediction is a bit too large but in the right neighborhood;
from Fig; 4 we read off 7p = 6.0 * 2.0 GeV-e..'The'uncorrecteo Serpukhov
PP experiment16 implies 7P = B;ﬁ T o.2 GeVFE wnerees the highest-energy
Brookhaven mp. elastic experimentl7 gives Yp = 3,8 + 0.2 GeV ™2
assuming the pomeron slope (VIII;5) and making noA P! - correction.
Including'the latter correction reduces the Brookhaven-measured 7p to
3.0 GeV 2. H It is gratifying‘that the experimental value of 7y, is
similar in Pp and np' scattering, rough channel-independence of the
bomeron t behavior being a characteristic feature of our model.

For further discussion of the model let us adopt a slightly

higher value of ¢ that is consistent with the experimental requ1rements

P

for both a (0) and 7p We see from Table I that €

P= 0.05 leads to
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 acceptable values for aP(O), aé(O), and 7. Only the model-predietad;
ratio gP?(C)/gP,2(O) = 0.33 need cause concern. The experimental value
of this ratiovfrom ﬂP total cross seeticns is 1.4, while from - pp and

13 -
We are encouraged by the roughly

Pp ‘total cross sections it is 1.1.
channel-independent nature of the experimental ratio, & feature of our
model, bu£ the predicted theoreticai ratio has‘too~10w a magnitude.

‘A differeht choice for s Ean make some difference here. For

0]
eiample,'ﬁere we to choose 8¢ - 0.5 Gévz, the.eiperimental ratio would »
decrease by a factor ~V2 . It was found in the model of Re‘f..l,’ »
furthermore, that the pomeron perturbation of the Ffedholm numerator, an
effect ignored in this paper, enhances'the P residue with respect to
the P'.»eIt‘seems plausible thet such will be the case in any version

of the model. (The factor of enhanceﬁent in the.particular model of

Ref. 1 was 1.4,) We also ef course may increase the P/P! residue ratio
by further increasing ’eI, at the price of additienal decrease in ﬁhe
pomeron intercept.q'8 A glance at Table I with €p = 0.4 1illustrates

the sifuatipn. Finally, we see from‘Fig. 5Vthat to associate the

entire cut discontinuity with the P', as we have done, is somewhat

unfair to the pomeron.
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_iX. CONCLUSION ,

Wifh-the foregoing generally favorablevexﬁerimental picture, it
would be premature at present to discard the schizophrenic pomeron model’
on the grounds of too small a R/P' residue ratio. . This point must,
however, be carefully watched. A_ciosely related remarkable prediction
’ of the model, ss noted.in Ref. 1, is that the rate of increase of multi;
plicity'with the log of the energy will'change frop a value at moderete
energies'that is characteristic of the uhperturbed residue to a signifi-
cantly smaller value at extremely high eﬁergies that is characteristic

19

of the pomeron residue. It no such decrease is>observed, the model
will be in serious trouble. |

Since we have assumed that the pomeron residﬁe does not vanish
at t = O,Jthe intercept unavoidabiy lies belowh J = 0 and the total
cross section 1s correspondingly ﬁredicted to decrease asymptotically with
increasing energy. This decrease is slow, however, and its»onset may be
deiayed by absorptive effects not included in our model.

Ahother cheracteristic predictioh'of‘the schizophrenic pomeron
model, albeit one not explored in the foregoihg enalysis, is that positive
curvature will develop in the pomeron trajectory as, with negetively |
increasing' t, it approaches the AFS branch point. If the pomeron slope
at t = Q' is bI’ with intercept 1 - xP, then the branch point has slope
%-bP 3 with intercept 1 - EXI, and the two sihgularities.will ihtersect

at t = -EXP/bP unless curvature develops. It can be seen from Eq. (V.1)

that intersection is impossible (since Pp would at that point become

i

infinite) and curvature is thus inevitable. >Wi£h ‘eP = 0,03 the projected

intersection would occur, according to'Table I, at t = -0.17 GeVE,‘so
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the tréjéctory curvafure'is 1é,rge.20 ‘We have not yei extended our search
for é Selffcénsistent solution beyona'the linear reg;oh ardund‘At‘= o,
.but it‘is.plausiblé‘that for ﬁegative t thé pomefén mayAnevef deviate
Cfrom J =.1 by an amount iérée cdmﬁared with ef,‘aﬁd may eﬁgﬁ approach
'J =1 asymptotically as t + 0. Such_curious‘trajégtory'beha§ior way,
of course,'turﬁ out to be of only acadenic intérest if the pomeron residué
continues.its'precipitous decréase as the separéti&n growézbétweeh unper -
turbed ahd perturbed poles. |

.'An_important limitation of this paper has'beenvthe féstriction to
very small Values pf  |t|. For a variety of reasoné,.the approximations
employed bréak down as thé pomeron poie-trajeqtory épproaches the AFS -
branch point. in addition to thelnonlinearity’of‘thé trajectoryj the
integrated guﬁ diécoﬁtinuity from the région jué£ below the branch point<
will become larger and compete in importance with the pomeron residue. =
The pole dbminance shown in Fig. 5, that is, iS'not:guaranféed to persiéﬁ.
Pole ahdbcut should then be‘combined in generating‘ﬁhe pomeron péfturbatibn
of the kernel. This more difficult but perhaps not insoluble self-
consistencyxproblem remains for future work; the‘relevanﬁ equations are
givennvin fhe Appendi#. R

It is interesting also to speculate on the pomeron's fate for

positive t. Here the pdle and branch point wideﬁ their separation, so
it is plausible that the perturbation of thevkérnel becomes p&ogressively.
smaller; i.e. that aP(t) approaches ao(t) as t increaseg positively. .
At the samé time the Pt trajectory reméins on thé next sheet of the

J Riemann surface and passes the AFS branch point at

L

5 bP) ~ 0.4 GeV2, thereafter being distant from

t = (1 - 2xg - a)/ (b -
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the physical region. Thﬁs, as suggested in Ref. 1, by the time we reach
2

t = mfo ZI_J =2, thefé will be only one physicallj imﬁortant trajectory
--the analyfic ééntinuation_of the poméron. The pomeron'changes from
normal status when t 2 1 GéV to an abnofmal.status far t S -leéVE.
Near + 5v0;>where this paper has concentraﬁed_its attention, the pomeron
is in trdnsition. The speculationsiof thiS'parégmaph and tﬁe one preceding
are illustrated in Fig. 6. | -

, What if the pomeron residue vanishes at - 0?7 . The trajectory
then might'passbthrough J=1 at t =0, with the branch cut playing a
mathemaﬁically prominént role.22 We believe thatz.éince we have been
able tb achieve approximate self-consisﬁency in'the:model of this paper,
thé Rgxsic51 content of such‘an alternative‘would:nof differ greatly from
our solution. (In either case; for example, the totai cross section has
a slow aéymptotié decrease.) In bootstrap inveétigations, where a well-
defined.sétbof equations never exists, it is especially important to
recognize the unattainability of absolute accuracy in the description of

natural phenomena. The selection of equations uhavoidably depends on a

guess about the nature of their solution and can only be justified'

a posteriori ih some- approximate sense. By the same token it is pointless
to make much ado about mathematical differences between "solutions" whose
phyéical content lies within that range of uncertainty which is inherent

in the original selection of eguatibns.
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APPENDIX: GENERALIZATION OF THE POMERON;_?ROPAGATOR

Equatioh (IV ll) dneludes a;' branch point“a.s‘- Weil as the pomeron
pole on the physical J -sheet, the relatlve magnitudes of the cut- |
discontinulty and the pole residue bemg channel-lndependent. Second
sheet singtﬂ.arlties, such as 'bhe P!, also are included. A1l high energy
amplitudes with vacuum q_uantum numbers are then approximately determined
in our model, apart from norme.lizatlon, by a pomeron propaga.tor,

Splhe) = (g)rl- - (‘J t) R (A

o’/ Tp TP

‘This propagator satisfies an unsubtracted J-dispersion relation,

A (, | Otc'(t) .
g r (t '
SP(J,t) = __.._2......_ + 1 , M as' , (A.2)
. J - CXP(t) T . - J - Jl
-Q0 . o
as also does the function pP(J,t):
@, (t)-
‘ = 1 ‘L(_J_:L_). ' '

The discontinuity of Sp 1is related to that of pp by

€p w(J,t)

.s(J,.t) =
- -[J.- ao(t) - €

_ ,
p Re pP(J,'t)]Q' el we(J,t)

=P
(A.4)

with the pomeron pole position and residue being given by Egs. (V.1) and

(v.2).
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Formula (IV.8) corresponds to keeping only the pole in the

propagator spectrum (A.2), neglecting the cut and ignoring the signature

factor. The more general formula is   'f-_,4 - N
- . e -
. , d‘t dt ‘ s (Ju) tu)S(J&) t&)
pP(J,t) = constant x | 1/2 47 dJ, — s
- -h(t,t & )] LT d =g =, +1
s
where o '
= .= 1) | .. | l
s(J,t) = (1 ~ cot ET') rP(t) a[q - aP(t)] + ;-g(J,t)e[ac(t) -J1 )},

(a.6
the normalizing constant to be adjusted, as before, so that
B , y
pP(J,O) 3 as J = . |
- The partial'bootStrép.still requires pre-éssignment of a,(t)
and ei, but now one may attempt to make self consistent the entire

pomeron propagator and not simply the leading pole. The possibillty of

aP(O) =1 with rP(O) = 0 remains open.
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Tabie I: Séif-consistent pomeron parameters for a = O.7b and

b = 0.83 GéV-g, corresponding to m

. =1.25GeV and

qP,(o) ~ 0.6.

0.0h

0
& ap(0)  ogloleevE  ypeev g 7(0)/ep 7 (0)
0.05 0.953 0.55 - RR-3 0.3k
0.936 0.60 : 3.0 0.52
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D. Branson,_to be published in Nuovo Cimentot(;970). 'An alternative K

mechanism'to allow a J =1 pomeron intercept has been proposed by
J. B Bronzan, ‘An Exact Pbmeron Bootstrap, Argonne National Laboratory

Report, July 2& 1970. - Bronzan s bootstrap eqpations are similar

to ours in some respects but are 1ncons1stent W1th the multiperlpheral

model.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission: ‘

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, 'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any Information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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