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* 
PARTIATJ BOOTSTRAP OF THE SCHIZOPmENIC POMRON 

Geoffrey.F. Chew and Dale R. Snider 

Department of Physics and Lawrence Radiation Laboratory 
University of California, Berkeley, California 94720 

July 21, 1970 

ABSTRACT 

The Pomeranchuk. (P) trajectory and residue near 

t 0 are calculated through self-consistency requiretnents' 

from properties of the P'. The calculation is based on 

a general multiperipheral model whose kernel is assumed to 

be nonsingular near J = 1, t = 0, apart from a small 

component associated with pomeron exchange and containing 

the corresponding AFS branch point. This small component 

of the kernel is treated by standard perturbation techniques. 

The self-consistent P trajectory turns out to have a 

slope smaller than normal and substantial positive curvature, 

whereas the logarithmic derivative of the residue is 

abnormally large. Although these effects result from 

proximity to the AFS branch point in the multiperipheral 

kernel, the corresponding branch point in the amplitude 

itself turns out to be relatively unimportant near t = 0. 
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I. INTRODUCTION 

It has recently been conjectured that the high-subenergy, pomeron 

component of the multiperipheral kernel, although much weaker than the 

low- subenergy, resonance component, may split the leading output pole at 
1 

t = 0 into two poles, th&. P and the P.  Insuch an event there 

occurs a partial bootstrap mechanism for the pomeron, since to some 

degree the output P is the result of the P input into the kernel. 

This pomeron bootstrap mechanism is less self-contained than that described 

in Ref. 2, which ignored the low-subenergy component of the kernel, but 

even a partial bootstrap may place significant constraints on the elastic 

diffraction mechanism. In this paper we confirm the conjecture of Ref. 1 

that self-consistency of the "schizophrenic pomeron" hj -pothesis requires 

the slope of the pomeron near t = 0 to be smaller than that of "normal" 

trajectories. We also show the logarithmic derivative of the pomeron 

residue to be abnormally large. Although a complete explanation of the 

pomeron intercept cannot be claimed, it will be seen that proximity to 

J = 1 is a natural feature of the partial bootstrap. 

Our analysis is based on a generalization and extension to non-

zero momentum transfer of the model employed, in Ref. 1. The generalization 

allows all linkage types to appear in the multiperipheral chain, no longer 

requiring that alternate excbange4fril be pionic. It also will be possible 

to relax the factorizability requirement for the low-subenergy component 

of the kernel. We require factorizability only for the pomeron component, 

for which supporting arguments are given. A final improvement on Ref. 1 

is that we do not here replace J cuts in the multiperipheral kernel by 

"equivalent" poles. Such an approxbnation, although sometimes justified 

and useful, tends to obscure the meaning of the results obtained. 
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• 	 . 	II. GENERAL FORMALISM 

Because we shall make no use of the detailed structure of the 

strong low-subenergy. component of .the kernel, it is possible to consider 

a rather general form of multiperipheral model. We employ the multi-Regge 

formalism developed by Ciafaloni, DeTar, and Misheloff, 
4 
 assuming that in 

principle the inclusion of a sufficiently large number of poles in the 

kernel can represent the low-subenergy components.. Reggé cuts may be 

included as. "continua" of poles. 	. 

We thus assume that after d.iagonalization in angular momentum, 

rarity, Isospin, etc. the (projected) imaginary part is given by the 

analy-tic continuation of a matrix function B' , , which obeys the 

integral equation 	 . 

	

BI 	= 	+ 	 st 	I.,t •. 	 (11.1) 

In this symbolic notation J and t represent the set of diagonal 

variables, Including the total (crossed channel) angular momentum and 

the square of the overall momentum transfer, while y . represents the 

nondiagonal variables. As Indicated in Fig. 1, .7  includes two pertlal 

momentum transfers (reggeon "masses"), desiated t and t , and a 

"channel" index to identify a particular pe.ir of Regge trajectories. 

The vertex quantity 	corresponds to the emission of one stable 

.article, uniquely identified by the quantum numbers of the four attached 

trajectories. The quantity S J,t can be characterized as a two-reggeon 

"prbgator," since it contains the pole factor 

1-1 

I -  a u(t ) - a7 (t) + lj 
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Being concerned, with generation of the pomeron, we restrict attention 

to the equation with overall vacuum quantum numbers. Aniong the different: 

possible channels (reggeon pairs) in this case isa pair of pomerons, which 

we denote by y = P. Now there exists no stable particle with quantum 

numbers coupling P to P; in other words, 	= 0. By a contraction PP 

process it is then possible to eliminate the P.  channel from the space 

in which the equation is to be solved. That is, for.  y / P 7' , and 

temporarily, suppressing the common indices 3, t, one may show Eq. (II .i) 

to be equivalent to 

B77, 
= 	+ 	

B77 , S,, 	 (11.1') 

y/P 

where 

•7y,
= v77 , + v, , 	 (11.2) 

with 

• V771 	V 	S V,, . 	 ( 11.3)YP 

• 	 A 

This definition of V is iflustrated. in Fig. 2. 

The two physical assumptions essential to. the schizophrenic 

pomeron idea may now be stated in terms of the kernel 

A 	 A 
• K=SV 

= K + k, 	 • 	 (II. 1 ) 

where 

K=SV, 	 • 

k = Sv.  
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(i) The predominantly low-subenergy kernel component K is strong, 

with a leading elgenvalue that corresponds to a trajectory passing near 

J = 1, t = 0, a neighborhood in which K(J,t) is itself nonsingular 

since it contains no pomeron propagators. The "unperturbed" spectrum in 

this neighborhood thus consists of a single well-isolated, pole. 

(2) The kernel component k, constituting the pomeron input, is a 

weak perturbation, being of negligible consequence except near the 

singularity arising from the pomeron propagator S, . To exhibit this 

crucial singularity we write out the definition of V in the weak 

coupling or high-subenergy approximation, keeping Only the pole part of 

the propagator: 5  

v771 (J,t) = fdt dt 	,t(t,t,ttn)sJ,t(tutu)t(t9tut?tt) 

Vt fit 

dt dt 	 (t,tL)ZP 	f it
Py U.  

[_x(t,t,t2) ] V2 	j - a (t 
II 

) - a (t i ) + i Pu 	P 

(ii.6) 

the functions P representing vertices with two reggeons and one particle 

and 2'. being the usual phase-space factor, 

X(x,y,z) = x2  + y2  + z - 2(xy + xz + yz) 

The range of integration is such that x(t, t ", t) 0 . We are 

evidently dealing here with the familiar AFS branáh point, 6 
although for 

us it appears in the kernel, not in the amplitude itself. 

The AFS branch point in v(J, t), even though the discontinuity 

around the associated cut is small, introduces fine structure into the 

A 
spectrum of the complete kernel K = K + k. That is, a single pole in 
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the spectrum of the tt perturbed u  kernel K(J, t) occurring near the 

weak branch point of k(J, t) becomes a pole in the perturbed spectrum 

4 
on each sheet of the Riemann surface associated with the branch point. 7  

The pole displacements from one sheet to the next, although relatively 

small, may nevertheless be observable, and. the first two sheets have pert 

of the physical region as a common boundary. It is therefore possible 

for the poles on these two sheets both to be of physical imPorUbdej  we 

shall later identify one of these poles as the P and the other as the 

Pt 
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III. FIRST-ORDER PERTURBATION OF TEE FREDHOUV1 SOLUTION 

Our formal problem is to solve the integral equation 

A; 	 A 
B = V + BSV,  

where 

A 
v = v + v, 	 (1112) 

given a knowledge of the solution to the "unperturbed" equation 

B(0) = V + BS V (III 3) 

The slightly tricky point is that we are working. close to a solution of 

the unperturbed homogeneous equation, so a straightforward expansion of 

B to first order in v. is not adequate. We may, however, make a simple 

perturbation expansion of the se2Mate Fredhoim numerator and denominator 

functions. That is, if 

B77, = N77, 	
(iii 

then to a good approximation 

N77 , 	N? + 5 N77 , ' 	 (iii 5) 

D 	D(0) + Z5 D , 	 (111.6) 

where 5 N, and S D are both small, of first order in v. 

Recalling that all quantities depend on J .  and t , we see that 

Regge poles occur at points where D(J,t) vanishes. Similarly an 

"unperturbed" Regge trajectory may be defined by D(0) (Jt) = 0. Now we 

are assuming that the leading unperturbed trajectory, J = a(t), passes 

fairly close to the point J = 1 1  t = .0. This means that we are Interested 

in the region where D(0) is small, so the perturbation of D is of 
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greater significance than that of N 77  . There is, after all, no reason 

to expect N? to be small. We therefore adopt as our perturbed solution 
YY 

(0). 
N 

B' 	 (111.7) 
D (o 

'+6D 

The Fredhoim denominator is a determinant 

D = det(l-S), 	 (iii8) 

and to first order in v 

det[ 1 - s(v + V 	det(l - sv) 1 - tr[Sv(l - 

111.9) 

This formula can be shoi. to become exact:if v. isJ'actorizable, 

a property. which we shall later argue to be roughly valid, but for the 

moment we may be content with (111.9) as a first,-order perturbation result. 

We now insert the additional information that 3 is close to 

Cr0  , so close that B(0) may be approximated by a single pole, with its 

factorized, residue, 

B °  (j) 	 . 	. 	 (111.10) 
3-a0  

• The motivation here rests heavily on the presumed absence of J 

singularities of the unperturbed kernel near a 0  , and the presumed 

coxisequent wide scing between the leading unperturbed trajectory and 

the remainder of the unperturbed spectrum. Since 

B °  = V(l - s v) -1  ,  

it follows that b7(0) is an eigenfunction of :SV, with eigenvalue 

unity, while 
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D(0) 	cl
- 	] , 	 (111.12) 

where c is independent of J. One may then evaluate (iii 9) as 

D 	c [ - a0 	 7  - 	b(0) s v7 , s7 , b7c0)J 	(iii 13) 

77 

Coniparing (111.7), (111.10), and (111.13),  we see that our perturbed 

solution may be written 

b ° b 
B, 	 ( iii.i) 77 	J-a0-J) 

where 

	

b7(0)s 	
? 	S , b(,0) 	 (iii 15) 

yy t 

The S dependence of the denominator shift L, which will be of 

central concern to us, arises principally from the AFS branch point of 

v7  ,, , as given by Formula (11.6). The propagator S 7  is nonsingular in 

the region of interest and, within this propagator, J may be set eq.ual 

to a0 
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IV. DEPENDENCE ON t 

The single unperturbed J-pole approximation (iii .i) amounts to 

linearizing the J dependence of the unperturbed fredhoim determinant 

D(0), with a total neglect of the J dependence of the numerator. it 

would evidently have been equally plausible to so treat the t variable. 

The result then would be a t dependence of the pomeron residue that 

arises entire'y from the denominator shift L(J, t ) through v, (J, t), 
77 

as given by (11.6). Such an approximation can be justified a posteriori 

if the t dependence generated by z(J, t) turns, out to be "abnormally 

rapid." By this we mean, for example, that the logarithmic derivative 

of the pomeron residue with respect to t at t =0 turns out to be 

substantially larger than the rate of variation characteristic of the 

unperturbed amplitude 

With the only t dependence residing in the Fredholm denominator, 

pole residues vary with t in a channel-independent manner. That is, if 

a pole of B77 , (J, t) occurs at 3 = a(t), where D(a(t), t) = 0, the 

residueis 

b ° b (0)  
7 	7' 

(D(J,t)\ 	' 	. 	
' 	 (Iv.3) 

\AT 	I J=cr(t) 

If we denote the factorized potneron residue, in particular, by 

g7 (t,t,t) 	 t) , 	' 	(iV.Ii.) 

corresponding to Fig. 3, then the t independence of the numerator in 

(Iv.3) implies 
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g7 (ttt) 	g7(t,t) rph/2 , , 	 (t) 	 (Iv 5) 

where the. normalization of r is arbitrary. 

The vertex functiona 	appearing in Formula (11.6) are analytic YP 

continuations of g 	to a point where one of the three reggeons has YP 

become a stable physical rarticle. If the form:(IV..5) is maintained in 

this continuation, then 	 - 

7p(t,t) 	
y(t)rp1/2(t), 

(iv.6) 

7,(t) rp1/2t) 

leading to 	. 

v77? (J,t) 	(t) 7 (t) 	,(t) 7 ,(t) 	, 	( iv '1) 

where 

ãt dt 	 r(t") 
p (j,t) = 	 '2 P 	 [_x(t;t,t) 1 1/ 	j - a(t) - a(t) f 	+ i 

(iv.8) 

We choose now to normalize r in Eq. (IV.6).so that 	' 	as J - 

Inserting (Iv.'?') into  (iii.is),  we  may then write 

iXJ,t) 	€ p,(J,t) , 	 (Iv.9) 

where 

b7 °  s7  ;() 7 (t) 	71 (t) s, b7 , °  , 

y,7 T  
(iv.io) 

the sum including integration over the four t's. The final - 

form of our perturbed solution, with all t and. J dependence 
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exhibited, thus becomes 

b ° b 
B 	(j,t) 	 Y . 	 , 	 (Iv u) 
77.. 	T 	a 	bt 	(T 

the important function 	 being given, by (iv.8). Similar 

expressions, although usually with additional t dependence, have been 

previously derived on the basis of more explicit odels,"3' 
7,8 

m 
	
including 

that of ABFST--which does not require representing the low-sübenergy 

kernel by a Regge expansion. 3  We conjecture thatany multiperipheral 

model with a weak pomeron input, including versions not yet studied, will 

lead to the approximate form (Iv.11). 

The two Eqs. (iv.8) and (Iv.11) constitute our bootstrap conditions. 

The pomerOn appears as the leading singularity . of (iv. ii) where it is 

determined in part by p,  and in Eq. (Iv 8) it is used to calculate p 

Implicit in Eq (Iv 8) for PP(J,t) is the assumption that the poxneron 

"propagator" is adequately represented by a single Regge pole. Our 

approach is based on the identification and special treatment of 

singularities close to J = 1, t = 0, but this neighborhood will in 

general include singularities, such as the AFS branch point, in addition. 

to the leading pole. In the Appendix a more general formula is given 

for 	 which includes all the singularities implied by Eq. (IV.11). 

We shall not attempt in this paper to solve the problem of self-consistency 

for all these singularities, but rather assume that the pole is dominant 

and hence employ Eq. (iv.8) for 	 The error introduced by neglect 

of the áut will be estimated in Sec. VII. 

Gribov and Mig1, using "reggeon calculus, have arrived at a 

form similar to (iv.u) in the course of "modifying" a "bare" pomeron 
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progator. There may be no harm in referring to our unperturbed trajectory, 

a0  = a + bt, as "bare," although a connotation "fundamental" would be 

inappropriate, but other aspects of the Gribov-Migdal approach 9  differ from. 

ours in an essential way. They, assume that both the 'bare" and the 

"modified" pomeron trajectories sass exactly through J 1 at t = 0. 

Neither does so in our model. In order to aàhieve consistency near 

t = 0, furthermore, Gribov and Migdal assume their equivalent of 

to vanish at t = 0 Nonvanishing at this point is a vital feature of 

our Formula. (iv.8). Our approach is less flexible because we depend for 

motivation on unitarity as represented through the multiperipheral model. 
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V. PARTIAL BOOTSTRAP CONDITIONS 

One of the partial bootstrap conditions resides in the requirement 

that the ponleron trajectory a(t), which appears in Formula (iv.8) for 

be given by the leading pole of (iv.n). That is, we require 

0 = a(t) - a - bt - €P P
P  (a(t),t) . 	 (v.i) 

A second condition is that the pomeron vertex factor r(t) in (iv.8) 

be proportional to the residue of this pole, that is, proportional to the 

reciprocal Of the J derivative of D(J,t.), evaluated at J = 

I 
r (t) oc 	1 - 	 (V.2) 

I 

The constant of proportionality in this residue relation involves the 

unperturbed residue, so we cannot determine € through our partial 

bootstrap. 

In a future more complete bootstrap one may attempt to obtain 

from the solution to the full integral equation, but todo so will 

require a detailed treatment of the low-subenergy kernel. The simplest 

detailed model with substantial plausibility is that of ABFST, which has 

been discussed for t = 0 in Ref. 3, where an explicit Fredhoim 

determinant estimate has been derived that can be compared with (111.13) 

and (Iv.9). The result for the product c E was 

€ 	 1 
P 	

e ,• • 
	 ( v.3) 2 	3 	it 7(It 

where A is the effective momentum-transfer upper limit for a pion link 

e and a 	is the elastic itrr cross section just above the region of 
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prominentresonances. Estimating a 	3 mb and A 	1 GeV2  leads 

from (V.3)  to c €P 0.03, whereas the same ABFST model estimates c to 

be of order unity. We shall see below that e 	 0.03 is indicated by 

the results of this paper as well as the corresponding ones in Ref. 1, in 

agreement with Formula (v.3). 

However, the low-subenergy ABFST kernel has less strength than 

required by experiment,3' 10 so the estimate (v.3) cannot be made a direct 

component of our bootstrap calculation. In any event the uncertainty 

about the momentum-transfer cutoff 	will, remain until the pion link 

itself is included in thebootstrap. It thereforeseems unavoidable at 

present to regard € as. an arbitrary parameter. 

The bootstrap equations (v.1), (v.2) and(IV.8) are supposed to 

be valid only near t = 0, and in this paper we require their satisfaction 

only to zeroth and first order in a power-series expansion in t about 

the origin. We begin by assuming that the pomeron residue does not vanish 

at or near t = 0 and can be represented by an exponential form for r(t): 

7t 
r(t) = constant x e 	, 	 (v.l) 

the parameter y to be determined from self-consistency requirements. 

It is evident that y must be positive for the integral in (iv.8) to 

exist. Formula (iv.8) then becomes 

dt dt 	 7p(t+t) 

ff[_x(t,t,t))1/2 	 () - a(t) + 1 
= 

rr 	dtu  dtt 	7(t+t,) 

[_x(o,t,t)) 1/2  

(v.5) 
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if the normalization of r is adjusted so that 	 j as J -+ 

Let us next employ a linear representation of the pomeron trajectory, 

a(t) 	1 - x + b t , 

	 (v.6) 

	

the constants 1 - 	 and b corresponding, respetively, to the 

pomeron intercept and slope. We introduce the displacement of the 

intercept from J = 1, rather than the intercept itself, because we 

expect the displacement to be small. Substitutionof (v.6) into (V.5) 

and the carrying out of one of the two integrations then give 

= 
e (/2)t 

fco 	
- 

b 	b 	' 

(v.7) 

leading to 

	

(y1,/2)t ( 	 - 
p{a (t),t] = e 	 I 	d 	e 	

, 	 (v.8) b 	Vp  
x,,+--t+— 

'p 
and 

	

• I(J,t) 1 	 (y/2)t 	
e 

[ 	 j 	=-e 	jd. 	
2 

(7/2)t 

= 	- e 	
b 	~ p1a(t),t] f , 

	

Vp 	 p 
x + .- P t 

(v.9) 

Now requiring that Eq. (v.1) be satisfiel. to zeroth and first 

powers of t , we find 
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1 - a - Xp = Ep 
	

d 	e 	
(v.io) 

and 

b - b = - 1 + a + x} 	 (V ii) 

At the same time, consistency of Formula (V 2) with (V li.) to a corresponding 

order in t implies that 

)J=a(t) = 

yp 

- 

=f€p(yp) - bbPJ 

b 	7pp 
• 	 b 	2x b 

or 

(vl2) 

Thus, from the three requirements that the pomeron intercept, slope and 

residue logarithmic derivative be self-consistent, we have found three 
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equations (v.10, 11, 12) which determine these three parameters 

(i.e.,b and y 	once values have been assigned to a, b, and 

ep.  

• 	Before we take up numerical aspects of the solution to these 

equations, certain qualitative observations are in order. Note, first 

of all, that consideratiOns of reality in Eq. (v.10) require the t = 0 

pomeron slope b to be nonnegative, while x must fall Into the 

interval 

0 < x < 1 -a . 	 (v.13) 

The pomeron intercept, that is, must lie below J = 1 and above the 

intercept of the leading unperturbed trajectory. Furthermore if 	is 

small in comparison with 1;- a, Eq. (V.10) requIres x to lie either 

close to zero .or close to 1 ••• a. 

Turning to Eq (V U), we see that for small 6 the nonnegative 

requirement for b imposes a lower bound on 

€ 

	

X-

P

> 2 1- a ±b/7 	• • 	• 	 (V.l1i) 

In order that y be positive, on the other hand, we require from (v.12) 

that 

2 i•____ 
< 2 2  b • 	

' 	 (v.15) 
1 b  

ruling out the possibility that, as € -- 1. 0, x, might approach 1 - a. 

When all these constraints are put together, it is plausible that, for 

small €V  x will be proportional to 	• Such is indeed the result 

of a complete numerical analysis, as we shal 1 see in Sec. VII. 
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Further qualitative analysis of the three equations reveals that 

as E and x together approach zero the quotient 	also becomes 

proportional to C1)  . In fact, if 	>> b and e <<1, one may deduce 

from (v.11) and (v.12) that 

2(1- a) 	 (V 16) 

and 

- 	2x .• 	 (v.17) 
VP 

These two formulas turn out to be approximately valid in the domain of 

physical interest. Formula (V.17) suggests that the pomeron slope b 

will be small, although precisely how small is dIfficult to establish 

without a complete numerical solution. Before embarking on detailed 

numerical analysis we must first decide on the physically interesting 

choice for the larameters a, b, and epo 
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VI CHOICE OF THE PAAMETERS a, b, ATj 

The parameters a and b characterize the low-subenergy 

component of the kernel, giving the intercept and slope of the leading 

trajectory that would be generated by that component acting alone. Since 

we are not attempting in this paper to determine these parameters from 

self-consistency, we look to experiment for guidance in their choice. 

The pomeron perturbation is expected to be substantial only near 

J 1, where the weak pomeron coupling is compensated by the proximity 

of the kernel singularity, so it is plausible that near 3= 2 the 

unperturbed trajectory, a + bt, may be a good approximation to the 

actual leading trajectory with vacuum quantum numbers. The lowest mass 

J = 2 meson with such quantum numbers is the f0(1250),  so we adopt, as 

one condition, 

a + b mf 2 
	

2 . 	 (vI.l) 
0 

A second condition may be based on the observed energy dependence 

of elastic amplitudes near t = 0. Phenomenological analysis in terms of 

two or three Regge poles with vacuum quantum numbers leads to an intercept 
11 

f or the second vacuum pole, usually labeled P', at J 0.6. ; in our 

model only the leading pole occurs on the real axis of the physical J sheet; 

other poles must be reached by passing through the cut connecting 3 = - 00. 

to the b'anch. .point.o.t 

ac(t) = max[ap(t) + a(t) 	iJ 
1 - 2x+ --t . 	 (vI.2) 

Nevertheless, if we examine the cut discontinuity in (Iv.11) we find that 

for small c the discontinuity is small except in a narrow interval 
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near J a + bt, where there is a sharp peak due to a close-lying 

second-sheet pole. (See FIg. 5.) The effect of the cut can thus be 
32 

approximated by a single real-axis pole which we identify with the P'. 

Roughly, then, 

a 	a,(0). 	 (VI 3) 

Choosing €p  is more difficult. A rough upper bound is provided 

by the experimental requirement that the pomeron intercept be close to 

J = 1. Requiring a(o) > 0.9 or x < 0.1, fOr example, leads from 

(v.16) with .a > 0.6 to e 	0..08. 

To obtain a lower bound on e we may refer to the experimental 

indication that the pomeron residue at t = 0 is of the same order of 

magnitude as that of the P'.. Using the fact that our model amplitude, 

as given by. Fonnula (iv.u), satisfies an unsubtracted dispersion relation 

in J, with a. pole at J = 	and a cut running from J = - 	to 

J = a, it is . easy to demonstrate a sum rule that the integrated cut 

discontinuity plus the pole residue is equal to the residue of the 

unperturbed pole. A short calculation then gives the ratio of the sum 

of the integrated cut discontinuity and the pole residue to the pole 

residue alone, at t = 0, to be 

2 	 2 
g (o) + gp, (0) 	b 	7P P 

= - + 	. 	 (vI.!4.) 2 
g(o) 	.b 	.2xb 

We are here interpreting the integrated cut discontinuity as the effective 

residue of P', assuming that the peak in the cut discontinuity near 

J = a pt exhausts most of the integral from J = -oo to J= 
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This last assumption will be investigated inSec. VII, but 

tentatively we see from (VI.li.) that to avoid an unacceptably small pomeron 

residue we must not allow either b/br  or 7€1,/2xb to become very 

large compared with unity. If we use the rough relations (V 16) and 

(V.17), the latter objective requires that the quantity 

(1-a)2  
2 

Xp 	P 

not be excessively large. Thus we cannot allow C to be orders of 

magnitude smaller than (1 - a )2 

Following the roeceding guidelines, the range of E to be 

studied in the following stion will be 0.01 	e 	0.06. 
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• VII. NUNERICAL SOLUTION OF THE BOOTSTRAP EQUATIONS 

We may for convenience use the reciprocal of the unperturbed 

trajectory slope b as our unit of squared momentum transfer. The 

results for b and. 	with b = 1 are then to be understood as 

ratios b'b and yIb . Figure !1. shows the solution of Eqs. (v.10, 11, 12) 

for a 0.7 and the physically interesting range of 	In addition to 

showing the values of xv,, b1jb, and 71/b , we exhibit the ratiO of P 

to P' residues, as given by (Vi.l.), and the P 1, Intercept, the latter 

being defined as the value of J near J = a where the real part of the 

denominator of (iv.ii) vanishes. The cut discontinuity has its maximum 

at this point, as illustrated in Fig. 5, which corresponds to the special 

case a = 0.7 and E = 0.03, the choice for these parameters that was 

made in Ref. 1. We see that for this choice the P' Intercept occurs 

at J = 0 .57. Also note that the cut discontinuity near the branch point 

is small compared to the pomeron residue, justifying a posteriori the 

neglect of the cut in Eq. (IV.8). 

Figure 4 shows that the pomeron slope b decreases as E is 

made smaller, the ratio br/b becoming equal to 1/2 at 6 = 0. OiL 

Pomeron slopes much smiler than this are accompanied by unacceptably small 

values of the pomeron residue. (See Sec. VIII.) On the other hand, pomeron 

slopes close to the unperturbed slope are accompanied by a pomeron intercept 

excessively far below J = 1. Thus our model leads unavoidably to an 

"intermediate" value for the pomeron slope at t = 0, given the conflicting 

demands of residue and intercept. 

The P 1  intercept is controlled mainly by the value of the 

parameter •a and is relatively insensitive to e p. We therefore consider 
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VIII. DISCUSSION OF RESULTS 

Given a knowledge of the leading trajectory in the spectrum of 

the unperturbed low-subenergy kernel, a trajectory which we have roughly 

identified with the P', it'has been possible to predict pomeron 

characteristics near t 0 in terms of one additional parameter 

What is known experimentally about these characteristics? 

To appr.ch this question we must establish the relation of our 

model to measured differential elastic and total cross sections. The 

elastic amplitude is obtained by inverting the projection that led to 

B771 (J,t) and then continuing the reggeon mass variables tu  t, t, and 

to points that correspond to physical particles. To avoid kinematic 

singularities one must understand B 77 ,(J,t.). as.a "reduced" partialwave 

amplitude from which there has been removed a factor 

ci 
k7 (t) k7,(t) 	

(viii.i) 

5ojwhere 

k 2(t) 	
-(t, tu  t) 	

(VIII.2) 7 	= 	L.t 

and s is an arbitrarily chosen constant of dimension energy squared. 13  

Different choices f Or s evidently lead to different t dependence 

for a Regge residue, but we suppose, with regard to the reasohing of. 

Sec. IV, that choosing s0  = 1 GeV2  will lead to a logarithmic derivative 

for the residue of the leading unperturbed trajectory that is smaller 

than or of the order of 1 GeV2 . We assume, in other words, that the 

characteristic dimension of the unperturbed kernel is of the order 
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14. 

1 Gel)2 . 	The treatment in Sec. IV is presumed to be justified if 

turns out large compared with 1 GeV2, and by the same token the precise 

value of s0  . will not matter so long as this parameter is near 1 GeV2 . 

With the uxderstanding that the pomeron resIdue, Formula (iV.4)., 

refers to the reduced partial-wave amplitude with s = 1 GeV2; it 

follows, that the elastic cross section for. particle A on particle B has 

the standard high energy form13  

do AB 	 / \2a(t)_2 	 ,i (t) 2 

dt 	 (t) 	(t) (s-) 	i - cot 
(VIII 3) 

and the corresponding total cross section is 

.. .'. à(o)i 

tot 	()1/2 	
(0) %(o)(L) 	. 	 (Ii.) 

We are ignoring spin, a simplification legitimate near .t = 0. In view 

of the factOrized t dependence of our model porneron residue, Formula 

(iv.5), and the exponential shape (v.4) assumed for r(t), we may write. 

(vnI.3) in the simpler form 	 , 

da AB - 
e 	, 	22 

dt 	°A B 
e27Pt 	

cx 
(; 

j(t)_2 ., 

(viii.3') 

the signature factor being omitted on the grounds that :.(t) is close 

to 1. 

In comparing these simple forms with finite-energy experiments, 

there arise the usual ambiguities due to lower-lying Regge singularities. 

In addition to singularities such as the P', that are in principle 
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included in our model, there may occur branch points associated with 

s-channel "absorption" that are not included 5  Considering the roughness 

of our model, we shall therefore make no effort to correct for absorption. 

It is of course possible to correct for the P' by employing the results 

of phenomenological Regge pole analysis. 13  We are In fact directly 

interested in the ratio of P to P I  residues. 

The most significant experimemtal evidence concerning, the pomeron 

slope near t = 0 comes from the 1969 pp elastic scattering measure-

ment at Serpukhov,16 which yields an uncorrected value 

a(o) = 0.47 ± 0.09 GeV 2  . 	 (vIII.7) 

Taken at face value, this slope Implies for our model, according to Fig. 4, 

that e = 0.021 ± 0.010. Such a value for 
I 
 e means from Fig. 4 that 

a(0) =• 0.97 ± 0.01, a satisfactorily high pomerón intercept. For 

the model prediction is a bit too large but in the right neighborhood; 

from Fig. 4 we read off y.,.. = 6.0 ± 2.0 GeV 2 . The un rrettd rrmkhnr 

pp experimentl6 implies y = 3.4 0.2 GèV 2  whereas the highest-energy 

Brookhaven irp elastic experiment17  gives y, = 3.8 ± 0.2 GeV 2, 

assuming the pomeron slope ( 1/111.5) and making no P' correction. 

Including the latter correction reduces the Brookhaven-measured y to 
-2 11 

3.0 GeV • 	it is gratifying that the experimental value of y is 

similar in pp and icp scattering, rough channel-independence of the 

pomeron t behavior being a characteristic feature of our model. 

For further discussion of the model let us adopt a slightly 

higher value of E that is consistent with the experimental requirements 

for both c(0) and 7. We see from Table I that e = 0.03 leads to 
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acceptable 'values for a(0), a(0), and y. Only the model-predicted 

ratio g 2 (0)/g, 2 (0) = 0.33 need cause concern. The experimental value 

of this ratio froin irp total cross sections is1., while from pp and 
- 	 .l3 

pp total cross sections it is 1.1. 	We are encouraged by the roughly 

channel-independent nature of the experimental ratio, a feature of our 

model, but the predicted theoretical ratio has too low a magnitude. 

A different choice for s can make some difference here. For 

example, were we to choose s = 0.5 GeV2, the experinental ratio would 

decrease by a factor P1142 0 It was found in the model of Ref. 1, 

furthermore, that the pomeron perturbation of the Fredhoim numerator, an 

effect ignored in this paper, enhances the P residue with respect to 

the P'. it seems plausible that such will be the case in any version :. 

of the model. (The factor of enhancement in the particular model of 

Ref. 1 was i. 1 ..) We also of course may increase the PIP'  residue ratio 

by further increasing c, at the price of additional decrease in the 

potneron intercept) 8  A glance at Table I with c = 0.4 illustrates 

the situation. Finally, we see from Fig. 5 that to associate the 

entire cut discontinuity with the P', as we have done, is somewhat, 

unfair to the pomeron. 
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IX. CONCLUSION 

With the foregoing generally favorable experimental pic1ure, it 

would be premature at present to discard the schizophrenic pomeron model 

on the grounds of too small a p/pt  residue ratio. . This point must, 

however, be carefully watched. A closely related remarkable prediction 

of the model, as noted in Ref. 1, is that the rate of increase of multi-

plicity with the log of the energy will change from a value at moderate 

energies that is characteristic of the unperturbed residue to a signifi-

cantly smaller value at extremely high energies that is characteristic 

of the pomeron residue. 19  If no such decrease is observed, the model 

will be in serious trouble. 

Since we have assumed that the pomeron residue does not vanish 

at t = 0, the intercept unavoidably lies below 3 = 0 and the total 

cross section is correspondingly predicted to decrease asymptotically with 

increasing energy. This decrease is slow, however, and its onset may be 

delayed by absorptive effects not included in our model. 

Another characteristic prediction of the schizophrenic pomeron 

model, albeit one not explored.in the foregoing analysis, is that positive 

curvature will develop in the pomeron trajectory as, with negatively 

increasing t, it approaches the AFS branch point. If the pomeron slope 

at t = 0 is b P,with interäept 1 - x then the branch point has slope 

bt, , with intercept 1 - 2x, and the two singularities will intersect 

at t = _2x1,/b unless curvature develops. It can be seen from Eq. (v.1) 

that intersection is impossible (since p, would at that point become 

infinite) and curvature is thus inevitable. With 	= 0.03 the projected 

intersection would occur, according to Table I, at t = -0.17 GeV 2, so 
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the trajectory curvature is large. 20  We have not yet extended our search 

for a self-ôonsistent solution beyond the linear region around t = 0, 

but it is plausible that for negative t the pomeron may never deviate 

from J =. 1 by an amount large compared withand. may even approach 

J = 1 asymptotically as t -+ -CD • Such curious trajectory behavior may, 

of course, turn out to be of only academic interest if the pomeron residue 

continues its precipitous decrease as the separation grows between unper-

turbed and perturbed poles. 

	

• 	An important limitation of this paper has been the restriction to 

very small values of It I. For a variety of reasons, the approximations 

employed break down as the pomeron pole-trajectory approaches the AFS 

branch point. In addition to the nonlinearity of the trajectory, the 

integrated cut discontinuity from the region just below the branch point 

will bécomé larger and compete in importance with the pomeron residue. 

The pole dominance shown in Fig. 5, that is, is not guaranteed to persist. 

Pole and cut should then be combined in generating the pomeron perturbation 

of. the kernel. This more difficult but perhaps not insoluble self-

consistency problem remains for future work; the relevant equations are 

given in the Appendix. 

It is interesting also to speculate on the pomeron 1 s fate for 

positive t. Here the pole and branch point widen their separation, so 

it is plausible that the perturbation of the kernel becomes progressively 

smaller, i.e. that a(t) approaches a 0 (t) as t increases positively. 

At the same time the P' trajectory.remains on the next sheet of the 

J Riemann surface and passes the AFS branch point at 

	

t 	(1,- 2x - a)/(b - b) 0. 4 GeV2, thereafter being distant from 
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the physical region. Thus, as suggested in Ref. i,by the time we reach 

t = mf. 2, 
	

= 2, there will be only one physically important trajectory 
0 

--the analytic continuation of the pomeron. The pomeron changes from 

normal status when t 1 GéV2  to an abnormal status fcr t -1 GeV2 . 

Near t = 0, where this paper has concentrated its attention, the pomeron 

is in transition. The speculations of this paragraph and the one preceding 

are illustrated in Fig. 6. 

What if the pomeron residue vanishes at t = 0? The trajectory 

then might pass through J = 1 at t = 0, with the branch cut playing a 

mathematically prominent role. 22  We believe that, since we have been 

able to achieve approximate self-consistency in the model of this paper ., 

the physical content of such an alternative would not differ greatly from 

our solution. (In either case, for example, the total cross section has 

a slow asymptotic decrease.) In bootstrap investigations, where a well-

defined set of equations never exists, it is especially important to 

recognize the unattainability of absolute accuracy in the description of 

natural phenomena. The selection of equations unavoidably depends on a 

guess about the nature of their solution and can Only be justified 

a posteriori in some approximate sense. By the same token it is pointless 

to make much ado about mathematical differences between "solutions" whose 

physical content lies within that range of uncertainty which is inherent 

in the original selection of equations. 
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APPENDIX: GENERALIZATION OF THE PONERON PROPAGATOR 

Eq.uat ion (iv.u) includes a branch point as well as the pomeron 

pole onthé physical J-sheet, the relative maitudes of the cut-

discontinuity and the pole residue being channel-independent. Second 

sheet singularities, such as the P', also are included. All high energy 

amplitudes with vacuum quantum numbers are then approximately determined 

in our model, apart from normalization, by a pomeron ttpropagator, 

	

s(J,t) = 
	 1 	

(A.l) 
- a(t) - ep p(J,t) 

This propagator satisfies an unsubtracted. J-dispersion relation, 

a(t) 
r(t) 	 r ,, .i- 

	

s (,t) = 	 + ±. 	j 	 ''' 	ir' , 	(A.2) P 	J_cr(t) 	J 	J-J' 
- 00 

as also does the function P(J,t): 

a(t) 

P. 	
= 	f 	. 	 (A.3) 

00 

The discontinuity of S is related to that of PP  by 

e w(J,t) 
.sJ,t) = 2 	2 2 

	

U - a(t) - 	Re 	(,t)] 	+ 	w (J,t) 

(A.!4.) 

with the pomeron pole position and residue being given by Eqs (V i) and 

(v.2). 
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Formula (iv.8) corresponds to keeping only the pole in the 

progator spectrum (A.2) 0  neglecting the cut and ignoring the signature 

factor. The more general formula is 

(r 	d.t d.t 	 ,t )(j  ,t ) 
p (,t) = constant x • j 	U 	

' 	/ 	
U U 

P 	
jJ [_(t,-,t)]" 	- 	+ i 

(A5) 
where 

(1 - cot) 	p(t) 5[J - a(t)] + 	s(J,t)e[a (t) - J] 

(A.6) 

the normalizing constant to be adjusted, as befóré, so that 

1 
as J -, 

The partial bootstrap still requires e-ass1gnment of a0 (t) 

and Ep, but now one may attempt to make self consistent the entire 

pomeron propagator and not simply the leading pole. The possibility of 

a(o) = 1 with r(0) = 0 remains open. 
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Table I Self-consistent ponieron parameters for 	a = 0 . 7 	and 

b = 0. 83 GeV 2, corresponding to mf 	= 1. 25 GeV 	and. a,(o) 	0 6 

.a(0).a(0)GeV 2  GeV 	. g 2 (o)/g,2 (o) 

0.02 .0.969 	o.48 6.1 0.21 

0.03 0.953 	0 .55 4.2 0.34 

0.04 0.936 	0.60 3.0 0.52 
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FIGURE CAFJIONS 

Fig. 1. Diagram definix the variables appearing in Eq. (II • 1). 

Wiggly lines denote Regge trajectories 

Fig. 2. DIagram illustrating the definition of the modified vertex after 

contraction of the P channel. 

Fig. 3. Diagram depicting the factorized pomeron residue. 

Fig.. i. Numerical solution of the linearized bootstrap equations 

(v.10, II, 12) for a = 0.7. 	 . . 

Fig. 5. The discontinuity of B(J, t = o). across the AFS cut for a = 0.7 

and e= 0.03. For purposes.of relative norulization the 

rectangLe centered at J = a(o) has been given an area corre-

sponding. to the.. porneron residue. 

Fig. 6. Conjectured extrapolation avay from t = 0 of the P and (real 

part of) Pt  trajectories for E 	0.03 and . a = 0.7. The 

dotted line is the unperturbed trajectory. 
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