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ABSTRACT OF THE DISSERTATION

Characterizing Real World Neural Systems Using Variational Methods of Data
Assimilation

by

Daniel Breen

Doctor of Philosophy in Physics

University of California, San Diego, 2017

Professor Henry Abarbanel, Chair

Traditionally, characterizing many properties of biological or silicon neural sys-

tems has been expensive, laborious, or impossible. Conductance models describing how

properties of these systems change with time can be used with accessible data, such

as measured voltage traces, to help characterize inaccessible properties such as ionic

currents or transistor mismatch. This is accomplished using variational methods which

formulate an inference problem about these properties as nonlinear optimization. Because

measurement noise and model error are inevitable in the study of complex systems, the

method is designed to cope with unknown processes. Conductance models are overparam-
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eterized, causing the inference problem to remain underdetermined, which can result in a

proliferation of widely separated sets of estimated model parameters producing accurate

predictions. Additionally, real world data will be approximated by a model in a number

of ways, leading to an additional contribution to this model identifiability problem. This

dissertation probes and overcomes some of the difficulties encountered in the analysis

of real world data in individual biological and silicon neurons. One key result is the

characterization of a neuromorphic silicon neuron followed by emulation of a biological

neuron on the silicon substrate. Another key result is a data mining approach which

discovers statistical differences in estimated model parameters, despite underdeterminacy,

in an Alzheimer’s strain of neurons in mice compared to healthy controls.
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Chapter 1

Data Assimilation

Physicists are interested in finding physical mechanisms underlying observed data.

Although a few simple systems such as particle trajectories can be explained by an appeal

to first principles, the absence of such explanatory descriptions for the dynamics of large

networks confronts the modeler with a challenge. There are a set of tools which allow

the modeler to estimate and validate quantitative models positing physical mechanisms

underlying complex dynamical systems in a reproducible way. The application of some

of these tools to the description of neurons is the main focus of this dissertation.

1.1 The Inference Problem

The quantitative measurement and modeling of complex dynamical systems

inevitably involves inaccuracies. Systems in the real world almost always contain

processes that the modeler is ignorant about or cannot represent. Another difficulty comes

from the fact that measurements are noisy, which limits the ability to infer properties

of systems even in the presence of perfect models. Measurement noise and model error

suggest a probabilistic approach to reasoning about the system under study, here through

the use of conditional probabilities of the state variables given a set of observations

1
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within an estimation window [1]. Computing these probability distributions is usually

intractable because it requires the evaluation of high dimensional integrals. The strategy

here is to instead seek expected values of the probability distribution through a variational

approximation [66].

Dynamical systems involve describing the evolution of a system in time. Our

system consists of a D dimensional state vector x(t). In formulating our inference

problem, we will approach the specification of the system’s trajectory x(t) by making use

of a discrete time description, defining the state of the system at times {t1, t2, ..., tn}. We

then define the discrete time system trajectory X as {x(t1),x(t2), ...,x(tn)}. In general,

the state of the system x at a time ti will depend on the state of the system at previous

times. We are interested in systems where the state of the system x(ti) depends on the

state of the system at the previous time point x(ti−1) only. This simplification, known

as the Markov property, is one which we will exploit in the derivation of the following

probabilistic formulation of our inference problem.

Modeling a complex system involves positing processes which are not measured.

These are included as components within X . There are also L processes we can measure.

For our problems, L is typically much smaller than D, the dimension of the state vector for

our system. The collection of the L processes y is defined at times {y(t1),y(t2), ...,y(tn)}

and is our data, which we call Y .

We will unravel the probability P(X |Y ) of observing the trajectory X given our

observed data Y . To do this we will use Bayes’ rule, which is an identity of probability

theory, and the Markov property.

P(X |Y ) = P(X ,Y )
P(Y )

(1.1)

P(Y ) is a term independent of X which we can ignore since we are eventually

interested in expectation values over X . The reason we can ignore it is that P(Y ) will



3

appear in numerator and denominator, so it will cancel. We now first make a double

application of Bayes’ rule and then utilize the Markov property to create a recursion

relationship for the probability of the trajectory of the system P(Xn,Yn) up to time tn and

the probability of the system P(Xn−1,Yn−1) up to time tn−1.

P(Xn,Yn) = P(y(tn)|Xn,Yn−1)P(Xn,Yn−1)

= P(y(tn)|Xn,Yn−1)P(x(tn)|Xn−1Yn−1)P(Xn−1,Yn−1)

P(y(tn)|Xn,Yn−1) = P(y(tn)|x(tn))

P(x(tn)|Xn−1Yn−1) = P(x(tn)|x(tn−1))

P(Xn,Yn) = P(x(tn)|x(tn−1))P(y(tn)|x(tn))P(Xn−1,Yn−1) (1.2)

In the third and fourth lines we used the Markov property, the assumption that our

measurements are independent of each other in time, and that measurements at previous

times give us no information about the state of the system at the current time. Of course,

none of these assumptions are true, but they help to shrink the complexity of the problem

into a manageable size. We only have to apply our recursion relationship repeatedly to

get our expression for P(X ,Y ), and by extension, P(X |Y ).

P(Xn,Yn) =
n

∏
i=2

P(x(ti)|x(ti−1))P(y(ti)|x(ti))P(x(t1))P(y(t1)|x(t1)) (1.3)

P(x(ti)|x(ti−1)), the transition probability, depends on the dynamical model of

the physical system. We take the model to have the explicit form:
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x(ti) = f(x(ti−1))+η(ti−1) (1.4)

η(ti−1) represents a stochastic component in our otherwise deterministic model.

P(y(ti)|x(ti)) is the probability recording observation y(ti) if the system is in configuration

x(ti) at that point in time. We will deal with deterministic models in the rest of the

dissertation, so we set η = 0.

We will define a projection operator with components h j(xi) which maps the

system to the components of our measurements at each time point, y j(ti). We have

assumed of our measurement noise that it is additive and uncorrelated in time. We

additionally assume it is distributed according to a Gaussian, and we denote the non-zero

elements of the diagonal inverse correlation matrix Rm by Rm(l). We assume the model

errors are also Gaussian distributed and denote the non-zero values of the inverse model

covariance R f by R f (d). While our model does not explicitly contain model error, this

error provides a relaxation of the dynamical constraints of the model and has proven

useful elsewhere [38, 24].

Lastly, we assume maximal ignorance of the initial state x(t0), taking it to be uni-

formly distributed over the dynamical range of the model, though the assumption of such

a non-informative prior is rare in large geophysical and meteorological applications [38],

where low background covariances convey relatively strong belief in recent forecasts.

Together, these assumptions lead to the Gaussian error action in discrete time [1]:
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A0(X |Y ) =
N,L

∑
n=1,l=1

Rm(l)
2

(hl(x(tn))− yl(tn))2

+
N−1,D

∑
n=1,d=1

R f (d)
2

(xd(tn+1)− fd(x(tn)))2 (1.5)

with

P(X ,Y ) = exp(−A0(X |Y )) (1.6)

If we are interested in the state of the system at the end of an estimation window,

we can use another identity of probability theory and marginalize over all possible

configurations Xn−1. In that case, we arrive at a path integral formulation of our inference

problem, where the analogy to the path integral commonly occurring in physics becomes

more apparent.

P(x(tN)|Y ) =
∫ N−1

∏
i=1

dxi exp(−A0(X |Y )) (1.7)

1.2 From Inference to Optimization

It is computationally expensive to evaluate the path integral expression, equation

1.7, or even its predecessor, equation 1.6. Fortunately, in most applications we are not

interested in knowing the full probability distribution. We are interested in expectation

values G(xn) of the probability distribution.

G(xn) =
∫

G(X)
N−1

∏
i=1

dxi exp(−A0(X |Y )) (1.8)

with equation 1.7 as the appropriate normalization factor.
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Such expectation values are easy to compute when only a small portion of the

overall probability distribution of equation 1.7 contributes to the integral. In cases when

up to only a few regions of path space X dominate the contribution to the integral, the

expectation values can be computed via the method of Laplace. In order to do this, the

expression for the action A0 of equation 1.5 in the exponential of equation 1.7 must

contain up to only a few minima.

Since one must then proceed to find these regions of path space X , the challenge

of the inference problem is now shifted to one of nonconvex optimization. There

are a number of ways that the optimization problem can be formulated in addition

to minimizing the cost function of equation 1.5 directly. One way is to impose the

dynamical rule evolving the system forward in time as a set of nonlinear constraints on

the optimization problem. This is a route taken in the last chapter of this disseration.

Another method is to instead iteratively use the information contained in educated initial

conditions about where these regions may be located. This method is called annealing and

is developed and applied substantially in this dissertation to the application of complex

real world neural systems.

The values of Rm(l) and R f (d) are assigned before the beginning of the optimiza-

tion procedure, and reflect the relative weighting of evidence from the data versus prior

information in the model from a Bayesian perspective.

The Gaussian error action (1.5) uses different notation from, but is otherwise

equivalent to, the weak 4D-Var cost function known in the meteorological literature

[84, 38]. This is so as long as there is zero background precision in the action (Eq. 1.5),

the assumption of a uniform prior.



7

J(x) =
1
2
(x0−xb)B−1(x0−xb)

+
1
2

N

∑
n=0

(yn−Hn(xn))R−1
n (yn−Hn(xn))

+
1
2

N

∑
n=0

(xn+1− f (xn))Q−1
n (xn+1− f (xn)) (1.9)

Here we use the form of the action in (1.5) as it corresponds to the notation used

in our previous work on DA in biological and physical settings [93, 94, 40].

We call A0, the log-likelihood of P(x(tN)|Y ), the ’action’ due to its analogy with

Lagrangian mechanics. In the present work, we approximate the integral (1.7) utilizing

Laplace’s method. In continuous time, the action is a functional, and Laplace’s method

amounts to finding extrema paths Xq. Finding the extrema of the action is known in

classical mechanics as the variational principle, where the extrema are solutions to the

Euler-Lagrange equations [27, 50, 46].

In physics, typically the solutions to the Euler-Lagrange equations are constrained

as an initial-value problem. In data assimilation, solutions to the Euler-Lagrange equa-

tions are constrained instead as a two-point boundary-value problem [8, 9, 94, 38].

1.2.1 Annealing

The implementation of data assimilation algorithms runs into numerical difficul-

ties when the system is nonlinear and of high dimension, and when the measurements are

sparse and noisy. Ill conditioning of the Hessian, cliffs in the cost function, as well as a

proliferation of critical points such as local minima and saddle points make it difficult to

find the ’correct’ set of model parameters. In neuronal systems, typically the time course

of the membrane V (t) at the soma can be measured, but not the activation of the gating
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variables or most ionic concentrations. The annealing method that we discuss here is

meant to mitigate this challenge somewhat, but because conductance models of neurons

are often overparameterized and because it is only ever possible to approximate a real

system, there is a proliferation of close to equally valid minima, problems remain. One

potential limitation of annealing as it is presently formulated is that it imposes the model

constraints in an unflexible, discrete manner. Allowing the optimization algorithm to

instead flexibly impose the constraints at every time point in a continuous manner, could

be a worthwhile avenue to explore in improving the annealing method.

The way in which Rm and R f are weighted relative to one another in the cost

function influences the result of minimizing it. Manipulating the cost function by varying

these values forms the basis of our annealing method, shown to be effective in state and

parameter estimation in archetypal chaotic models such as the Lorenz ’96 model [93].

When Rm� R f , the model error is a perturbation to the measurement error. Such an

assumption causes the cost function to form minima where measured states in the model

fit the data closely. The model error is then permitted to be large and so is enforced weakly,

effectively decoupling parameters and unmeasured states from the data. Conversely,

when Rm ≈ R f , both terms contribute equally to the cost function, so minimizing the cost

function will tend to satisfy the data while simultaneously enforcing the dynamical map.

In contrast, when the model error is forced, by large R f , to be small, the nonlinearity

of the vector field f(x) manifests itself at the smallest scales in the phase space of the

paths X over which we are searching. This results in complicated fine structure seen as

multiple local minima [1] in the action, especially when the number of measurements L

is too small. It is unlikely that directly minimizing the cost function under this condition

will yield good estimates of the system’s parameters and state variables.

The innovation of the annealing method developed in previous work [93] is

then to start with Rm � R f initially. The cost function is then minimized, which is
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typically easy, since the model constraints are in a role of giving a small perturbation to

the parabolic, and therefore convex, measurement constraints. Then R f is increased in

magnitude by a factor α > 1, and the cost function is minimized again, starting the search

for minima at the previous solution. The process is repeated until R f � Rm. In this way,

the nonlinearities are introduced gradually so that by essentially just using Newton’s

method, the effect of the computations amounts to carefully crawling towards a minimum

which fits the data and the model better than other options.

The implementation of the annealing algorithm as well as other formulations of

the optimization problem used in this disseration were accomplished through the use

of the open source software package IPOPT (Interior Point OPTimizer) with the linear

solver ma57 [90].



Chapter 2

Neurobiological Background

The focus of this dissertation is on developing and applying methods of data

assimilation for inferring parameters and states in neural systems when confronted

with real data. Neurons are complex systems, while the models used to describe them

contain only a sliver of the complexity of the real system. While there is an extensive

literature focusing on computational modeling of neurons, often this literature focuses on

estimating specific facets of neurons such as the properties of individual ionic currents or

detecting qualitative differences between populations of neurons, such as snapshots of

these altered processes, including the magnitude of calcium release from internal stores

or afterhyperpolarization. They are not usually focused on predicting dynamics, and they

often average over many different neurons instead of characterisizing the variability over

populations of neurons.

Data assimilation provides a means to ask and answer specific questions about

complex real physical systems, such as neurons, from limited data. In this chapter, we

will review neurobiological background material to set the stage for the next several

chapters.

10
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2.1 Characterising Neuron Electrophysiology

2.1.1 Neurobiological Experiments

The data that is the topic of analyses covered in this text consists of time series

measurements of the membrane voltage in response to a specified current injected into

the neuron. The membrane voltage is the difference between the voltage at the outside

and inside of the cell. The cell membrane is a barrier selectively porous to currents and

other substances.

Specialized instruments deliver the current into the cell and record the voltage. In

broad strokes, a narrow pipette on the order of microns in diameter sucks in a small patch

of cell membrane. The membrane forms a bond with the inside of the pipette, and the

remaining membrane inside the pipette is broken so that the cell is open to the pipette,

but a seal has been formed so that current can be injected directly into the cell while the

membrane voltage can be recorded.

A ’current clamp’ consists of ’clamping’, or fixing, the membrane potential at a

fixed value, then superimposing an injected current to manipulate the voltage on top of

that. The current clamp procedure is designed to manipulate the voltage of the neuron in

such a way as to activate selectively permeable current channels in the membrane of the

neuron. There is an enormous variety of current channels on a neuron membrane which

acts to either push the membrane voltage to more positive or more negative values.

The goal of data assimilation is to characterize these current channels compu-

tationally, in some cases to characterize the biophysics of the neuron to predict the

response of the neuron to future driving currents, in other cases to identify population

differences between classes of neurons for biomedical purposes. We will devote some

time to understanding how to model these current channels computationally.
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2.1.2 The Charge Conservation Equation

The neuron membrane is basically just a capacitor across which currents can pass

and deposit charge on the inside or the outside. The expression for the change in voltage

over time is just

Cm
dV
dt

= ∑
i

Ii (2.1)

where Cm is the membrane capacitance of the neuron and V is the membrane

voltage. The Ii are just currents which flow into or out of the membrane.

We could just list all of the many ionic currents on the right hand side, but

this would lead to an intractably complicated equation. So we typically choose only

a few of the many Ii to list on the right hand side. We will choose only a couple of

the most important, INa and IK . INa is the inactivating sodium current, meaning that

it is capable of turning itself off, and typically shortly does turn itself off after being

activated. In the normal range of physiological behavior, it tends to move the cell to more

positive membrane voltages. INa passes Na+ ions, while IK passes K+ ions. IK is the

delayed rectifier current. It is not inactivating and tends to move the cell to more negative

membrane voltages.

In addition to INa and IK , we will also include the leak current IL. The membrane

is somewhat nonselectively porous to ions, but IL also plays the role of a fudge factor,

mostly playing the role of an offset DC current and giving the neuron’s membrane a

characteristic electrical conductance at baseline voltages.

Finally we include the injected current Iin j so that our current balance equation

reads

Cm
dV
dt

= INa + IK + IL + Iin j (2.2)
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We will now turn to characterising IK and INa.

2.1.3 Conductance Based Models

We have yet to specify the form of the current channels embedded in the neurons

membrane are actually proteins which have a complicated structure designed to change

in response to a wide variety of factors, including cell signalling ligands and the voltage

difference across the cell membrane. Ligands are chemicals which bind to places on the

protein and change its structure, thereby changing how it passes currents. The simplest

example of a ligand is a calcium ion. Calcium ions are involved in many aspects of

cell signalling and a few of those will be touched upon later in this work. IK and INa

are among those proteins which pass current in a way that is strongly dependent on

membrane voltage.

It would be extremely difficult to exactly characterize how individual channels

respond to changes in membrane voltage and environmental mileau. The modeler makes a

choice here to use a very simplified rule describing how the channels change in response

to voltage. Presently, there aren’t many good alternatives to accepting model errors

in exchange for the simple and effective conductance based Hodgkin-Huxley (H-H)

description.

For most channels, the H-H framework says that the current dependence on

voltage is characterized by an equilibrium value as the channel is held at that voltage for

an infinite time. This equilibrium value depends on a few factors.

1. The number of ion channels

2. The max amount of current each channel can pass per unit concentration of a

particular ion species
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3. The ratio of channels which have undergone the number of conformational changes

required to open the channel

4. The ratio of channels which have undergone a conformational change which

inactivates the channel

5. The ratio of intracellular and extracellular concentrations of a particular ion species

The first two conditions together constitute the max conductance of an ion current,

determined by the maximal amount of current passed per channel times the number of

channels.

The proteins which pass current and are embedded in the membrane of the

channel undergo conformational changes which allow them to pass currents. These are

the third and fourth conditions. In the H-H framework, these conformational changes

each occur independently of one another, though this is unlikely to be the case in reality.

The probability that channels have undergone such a conformational change, in the H-H

framework, depends strictly on the voltage.

The population of proteins relax to this ratio exponentially at a characteristic

rate which also depends strictly on membrane voltage. Again, this is unlikely to be the

case in reality, but is a necessary simplification in order to shrink the inherent biological

complexity to a manageable size for present computational resources.

Finally, the flux term summarizes the electrical and chemical forces pushing ions

into and out of a cell. It accounts for relative differences in the amount of an ion species

inside and outside of the cell and depends on the membrane voltage.

The equations which summarize the above are the following.
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IM(V (t)) = gMm(t)ah(t)b
Φ(M,V ) (2.3)

dm
dt

=
m∞(V )−m

τm(V )
(2.4)

dh
dt

=
h∞(V )−h

τh(V )
(2.5)

where IM is an ionic current for ion species M with maximal conductance gM. a

denotes the number of conformational changes a protein must undergo to open a channel,

while b denotes the number of independent conformational changes the same protein must

undergo to close a channel. Φ(M,V ) is the flux term acoounting for relative differences of

an ion species inside and outside of a cell. m and h denote the probability that proteins of

a particular species have undergone an activating or inactivating conformational change,

respectively. The x∞(V ) denote the equilibrium ratio of channels having undergone a

conformational change given the voltage V , while the τx(V ) are the voltage dependent

rates at which the ratio of channels having undergone a conformational change m or h

relaxes to the equilibrium ratio.

In the literature, typical forms for x∞ and τx are the following.

x∞ = 0.5(1+ tanh((V −θx)/σx)) (2.6)

τx = tx0 + tx1(1− tanh((V −θx)/σx)
2) (2.7)

Although these are forms estimated in the literature and which have proven their

usefulness in data assimilation, these forms are not set in stone. It is up to the modeler to

seek alternative forms.

a and b are also determined on a case by case basis.
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The form of Φ(M,V ) derives from the Nernst-Planck equation, equation 2.8, for

describing the flux of ion species M under the influence of drift and diffusion.

J = Jdi f f + Jdri f t =−D∇[M]−µz[M]∇V (2.8)

D is the diffusion coefficient, [M] is the concentration of M (mol/cm3), µ is the

mobility (cm2/(V s)) and z is the valence of the ion (dimensionless).

When ions are assumed not to interact with one another, the gradient of the

potential is constant, and ion movement across the membrane is described by Nernst-

Planck, then solving for the ion current across a barrier with constant electric field as a

function of ion concentration and membrane potential gives equation 2.9.

I([M],V ) = PzFξ
[M]in− [M]outexp(−ξ)

1− exp(−ξ)
(2.9)

where ξ = zV F
RT . F is Faraday’s constant (96840 C/mol), and R is the gas constant

(1.98 cal/(Kmol)). The value of P is determined by the expression P = βu∗RT
lF , where β

is the dimensionless water membrane partition coefficient for the ion, l is the width of the

membrane, and u∗ is the molar mobility of the ion within the membrane (cm2/(V smol)).

As our expression relates the current I to the membrane voltage and ion concen-

trations inside and outside of the cell, we can absorb the coefficients PzF into the max

conductance gM and identify the remaining expression with Φ([M],V ).

Φ([M],V ) =V
[M]in− [M]outexp(−ξ)

1− exp(−ξ)
(2.10)

In the case of Na+ and K+ currents, the concentrations inside and outside the cell

of Na+ or K+ do not change that much when Na+ or K+ is allowed to flow across the
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membrane. These are held constant, and the resulting expression is well approximated by

a first order taylor expansion around the potential V where the current changes sign, which

is known as the reversal potential. This value can be found with a simple application of

L’Hospitals rule. Thus, the expressions for the Na+ or K+ currents are approximately

ohmic with nonlinear conductances depending on voltage, which itself depends on time.

We note in passing that the ion Ca2+ is not as well approximated by a first order

taylor expansion because the concentrations of Ca2+ inside and outside of the cell are

highly disparate. Additionally, because the concentration of Ca2+ is very small inside the

cell and very large outside of the cell, intracellular Ca2+ increases dramatically during

influx of Ca2+ through Ca2+ channels. As a result, for some applications one may need

to retain the dependence of ΦCa2+ on Ca2+. One example would be to increase the

sensitivity of the calcium current on intracellular Ca2+ by immersing the neuron in a low

Ca2+ concentration external bath, which could be useful in inferring intracellular levels

of Ca2+ from measurements of voltage alone.

The only current that we have not examined yet is the leak current. This current

might be interpreted as a catch all for many different kinds of ions which leak across the

cell membrane, but in fact it is probably more accurate to say that it is a fudge factor

which enables more accurate modeling. In modeling electrophysiological experiments, it

proves useful as the reversal potential EL can be set near the value at which the neuron is

clamped, typically voltages where the neuron is not very active, while the conductance gL

represents the conductance of the neuron near membrane potentials at which the neuron

is clamped.

For INa, a = 3 and b = 1, while for IK , a = 4 and b = 0 is typical. Our H-H model

for a neuron is then
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Cm
dV
dt

= gNam3h(ENa−V )+gKn4(EK−V )+gL(EL−V )+ Iin j (2.11)

dm
dt

=
m∞(V )−m

τm(V )
(2.12)

dh
dt

=
h∞(V )−h

τh(V )
(2.13)

dn
dt

=
n∞(V )−n

τn(V )
(2.14)

(2.15)

with appropriate expressions for the steady state activations/inactivation x∞(V )

and relaxation times τx(V ) such as those given above.

2.1.4 Modeling of Calcium Dynamics

With these preliminaries aside, we set the background for Chapter 6, where we

will discuss promising directions for future research. Here we construct a mathematical

model of calcium dynamics within a neuron which, when validated, could provide insight

about disease mechanisms of Alzheimer’s disease and potential therapeutic remedies.

The purpose of this section is to give appropriate background for the discussion in the

final chapter about the application of data assimilation to questions of biomedical interest.

Our model will include terms for the dependence of calcium dynamics on RyR and

IP3 regulation, efflux through plasma membrane calcium ATPase (PMCA) type pumps,

refilling of the ER with calcium ions through store-operated channels (SOCs) in the cell

membrane, calcium release from cytoplasm to ER through sarco/endoplasmic reticulum

calcium ATPase (SERCA) type pump, and passive calcium leak from the ER to the

cytoplasm.

Calcium plays a crucial role in a multitude of intracellular signalling pathways. It
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acts as a second messenger in the cell, mediating a few processes including the following:

• initiating the biochemical cascades that lead to the changes in receptor insertion in

the membrane, which underlie synaptic plasticity

• muscle contraction

• secretion of neurotransmitter at nerve terminals

• gene expression

Chemical reactions in single neurons causing the opening and closing of ion

channels are often simplified as simple chemical reactions described by kinetic schemes.

These models of chemical reactions hide the real complexity when such a level of detail

is not required. In reality, there exist specific sequences of reactions leading from a cause,

such as modulator release in the synaptic cleft, to an end effect, such as phosphorylation

of voltage gated ion channels that change the kinetics of the channel. These sequences of

reactions are known as intracellular signalling pathways.

Ignoring the diffusion of the participant molecules simplifies the model, which

then focuses solely on modelling the reaction kinetics. Such an assumption can be

justified when the diffusion of the participant molecules is much faster than reaction time

course, such as signalling pathways involving both binding and enzymatic reactions.

Law of Mass Action

The simplest binding reaction is the law of mass action. With molecules A and

B as the substrates, AB as the product, k+ as the forward reaction rate, and k− as the

backward rate, the differential equation describing the rate of change of species A (or

species B) is:
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dA
dt

= k−[AB]− k+AB (2.16)

The time evolution of the product AB is the negative of the expression above. In

order to calculate the concentrations of A, B, and AB for all time, one needs to know

the initial concentrations of A, B and AB and apply the equations above. Modelling the

process as a deterministic reaction assumes that there are a lot of reactants A and B and

that the solution is well stirred. If this assumption does not hold, stochastic modelling is

required.

One can rearrange the terms in the equation above to solve for the equilibrium

ratio of reactants to products:

Kd =
A∞B∞

[AB]∞
=

k−

k+

which has units of concentration.

Enzymatic Reactions

Enzymatic reactions are two-step reactions in which the action of one molecule,

the enzyme E, results in a substrate S being converted into a product P via a reversible

reaction that produces a complex ES. E itself is not consumed. This sort of reaction was

described by Michaelis and Menten as the reaction sequence:

E +S↔ ES→ E +P (2.17)

The second reaction step leading to product P is assumed to be irreversible and
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typically the substrate is in excess, so the reaction sequence is limited by the amount of

enzyme. Assuming the law of mass action, the production of complex ES and product P

are described by the differential equations:

dES
dt

= k1[E][S]− (k−1 + kc)ES (2.18)

dP
dt

= kcES (2.19)

dP
dt can be written, assuming the enzyme and subtrate reaction is much faster than

the enzyme to product reaction:

dP
dt

=Vmax
S

Km +S
(2.20)

This results from applying E = Etot−ES, where Etot is the total enzyme concen-

tration, and rearranging.

This steady state approximation to the full enzymatic reaction sequence is often

referred to as Michaelis-Menten kinetics. If the production of P involves the binding of a

number n of identical molecules of S simultaneously, the rate of reaction is given by the

Hill equation:

dP
dt

=Vmax
Sn

Kn
m +Sn (2.21)

where n is the Hill coefficient.
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Calcium Conservation

Faradays constant gives the amount of charge carried by a mole of monovalent

ions: 96490 coulombs per mole. Since calcium is divalent, we multiply this by two then

divide the current ICa by the result to get the number of moles flowing per unit area and

per unit time. Multiplying this by the total surface area and dividing by the compartment

volume gives the rate of change in concentration, also known as the flux.

The flux that results from an ionic calcium current ICa in units of current per unit

area, is given by:

Jcc =−
aICa

2Fv
(2.22)

where a is the surface area across which the current flows, v is the volume of

the intracellular compartment and F is Faradays constant. This is how we translate

current into a certain number of calcium ions entering the cellular compartment per unit

time. v turns the rate of calcium ions entering the cell into a rate of change of calcium

concentration in the compartment.

Other fluxes, such as those due to membrane-bound pumps and buffering, act

to restore calcium to its resting level following an influx. The pool model captures the

phenomenon that the calcium concentration will always return to its resting value. This

model describes calcium decay by a single time constant τCa, giving:

dCa
dt

= Jcc−
Ca2+−Ca2+

e q
τCa

(2.23)

This model is consistent with the calcium transients in cellular compartments
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with fluorescent dyes. Clearance of calcium from small compartments, such as spine

heads, may be quite rapid, with a time constant as small as 12 ms. Similarly, clearance of

calcium by buffering or other pumps from small domains around individual membrane

calcium channels may differ from clearance from the bulk cytosol. More complex models

include the fluxes that remove calcium from a cellular compartment, such as pumps,

buffering and diffusion. The sum of these fluxes may be approximated by this single

exponential decay model.

Membrane-bound pumps contribute to restoring resting levels of calcium by

extruding calcium ions back through the membrane, moving them against their concentra-

tion gradient. A high-affinity pump has a low dissociation constant Km so that it reaches

its half-maximal pump rate at a low calcium concentration. High capacity means that the

maximum pump velocity Vmax is large. Two kinds of pumps act to remove calcium from

a cell. The active membrane calcium-ATPase pump (knows as PMCA) is a high-affinity,

low capacity mechanism that can switch on rapidly following calcium entry through

voltage-gated channels, and so plays a major role shaping dynamic changes in intra-

cellular calcium. This pump is also responsible for uptake of calcium into intraceullar

stores. Passive membrane pumps such as the sodium-calcium exchanger are low-affinity,

high capacity calcium pumps that are largely responsible for maintaining resting calcium

levels.

Sodium Calcium Exchanger

Although complex pump models are available, a simpler approach to modeling

the exchanger is to treat extrusion as an enzymatic reaction:
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Ca+P↔CaP (2.24)

CaP→Caext +P (2.25)

The first equation refers to the binding of intracellular calcium to the pump.

This changes the conformation of the pump, exposing bound calcium to the exterior

facing membrane. This calcium is then released outside the cell. The energy causing the

conformational change is provided by sodium ions coming down their concentration and

electrical gradient into the cell. The pump flux can then be modified as an instantaneous

function of the intracellular calcium concentration, described by a Michaelis-Menten

relationship:

Jpump =Vpump
Ca

Kpump +Ca
(2.26)

Biophysically, Vpump = ak+2 Pm/v, with Pm the number of pump molecules per

unit area of membrane. Kpump = (k−1 + k+2 )/k+1 , with k+,−
1,2 the forward or backward rate

constants for reaction 1 or 2, respectively.

Data is scarce concerning the properties of these pumps, and data assimilation

is well positioned to provide information on them, including the value of parameters in

the model, once these measurements become available. Estimates of pump velocity for

the calcium-ATPase pump in hippocampal pyramidal cells range over several orders of

magnitude from around 10−13 to 10−10 mol cm−2. The surface area of a dendritic spine

in rat hippocampal neurons is about 1 µm2. Kpump = 1µM for the calcium-ATPase pump.

The sodium-calcium exchanger will have higher values for Vmax and Kpump.

It is worth noting that slightly more complicated models of calcium flux may not
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be distinguishable from simpler models where sufficient measurements are not available

to tease apart the contributions to the net calcium dynamics from the many different

terms.

Intracellular calcium can be sequestered into stores in such structures as the

endoplasmic reticulum (ER), with release into the cytoplasm being mediated by second-

messenger pathways. Stores can have large capacity, with estimates of Ca2+ in stores

ranging from 100 µM to 5 mM. Uptake and release of calcium from these stores can

result in intracellular calcium waves, or oscillations, on the timescale of seconds. It may

be desirable to take recordings from neurons over many seconds in order to resolve the

processes underlying calcium stores.

Uptake into the stores is via a calcium-ATPase pump in the smooth ER membrane,

known as the SERCA pump. Since it binds two calcium ions for each ATP molecule, it

can be described by Michaelis-Menten kinetics with a Hill coefficient of 2:

JSERCA =VSERCA
Ca2

K2
SERCA +Ca2

where VSERCA is again the membrane pump velocity and KSERCA is the equilib-

rium ratio of the product of unbound substrate and enzyme to the bound complex, or

equivalently, the pump affinity for calcium. A limitation of this approach is that the

uptake flux does not depend on the intrastore calcium concentration, even though empty

stores have a higher uptake rate.

Another mechanism for uptake into the ER is through a special set of pumps

which are formed when calcium levels within the ER become low and directly connect

the ER membrane to the outside of the cell. These are called store operated calcium

pumps and at the time of writing, not much is known about them. They would likely have

large pump velocity and lower affinity. The form for these pumps, called store operated

calcium pumps, is the following:
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Jsoc = vsoc
Ksoc

Ksoc +CaER
(2.27)

The ER membrane contains calcium channels that are activated by calcium itself,

leading to calcium-induced calcium release (CICR). The two major channels contributing

to this effect are the ryanodine receptors and inositol 1,4,5-triphosphate (IP3). The IP3

receptors require the binding of both calcium and IP3, while the ryanodine receptors

(RyR) require only calcium.

The two types of receptor contribute to CICR in different ways for different

neurons. In dendritic spines, RyR contribute more to the dynamics than IP3Rs in

hippocampal neurons, while the reverse is true of Purkinje cell spines.

A simple formulation of calcium release through the RyRs involves modelling

the activation of the RyRs through a hill function of cytoplasmic calcium. Since calcium

is not modulated instantaneously by rapid changes in calcium, one can assume that R

relaxes to its steady state value. The calcium flux through the ER membrane due to RyRs

is then given by:

JR =VRR(Cacyt)(CaER−Cacyt)

with

dR
dt

=
R∞−R

τR

and

R(Cacyt) =
Can

cyt

Kn
R +Can

cyt



27

Calcium buffering

Calcium interacts with buffers, including fluorescent dyes such as Fura-2, which

bind calcium and are thus calcium buffers that strongly affect the level of free cal-

cium. It may be desirable for a model of intracellular calcium based on fluorescent dye

measurements to account for this buffering effect explicitly.

The interaction of cytosolic calcium and a buffer B in a well mixed pool is given

by the kinetic scheme:

Ca+B↔CaB

As measurements of calcium concentration near SK or BK channels is not yet

available, it may only be desirable to explicitly model buffering processes in the bulk

cytoplasm. Then for a particular well-mixed cellular compartment this leads to the system

of coupled ODEs:

dCa
dt

=−k+[Ca][B]+ k−[CaB]+ ...

dB
dt

=
dCa
dt

dCaB
dt

=−dB
dt

=−dCa
dt

where a single pool has been assumed, eliminating the need to consider diffusion

rates of calcium and free/bound buffer.

As buffers bind calcium, their affinity is defined by KB = k−/k+. A slow buffer

with a high affinity (smaller KB) may have less of an effect on calcium transients observed,

such as those appearing in independent pools for SK and BK models where buffering

processes are modeled implicitly. However, it will speed the return to equilibrium calcium
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concentration in the cytosol. On the other hand, a fast buffer with a low affinity (high KB)

will greatly reduce transients, perhaps eliminating the effects of SK or even BK currents

altogether, while the return to equilibrium will be about as slow in the cytosol, perhaps

slower than in the case with no buffer. This is due to the slow equilibration throughout

the compartment and return to resting calcium levels determined by the time course

of unbinding of calcium from a buffer free to diffuse from locations of high calcium

concentration in the submembrane shell to locations of lower calcium concentrations in

the bulk cytosol.

As buffers affect the calcium dynamics in the cell, they may be candidates for

therapeutic strategies. The advantage of modeling a buffer explicitly is that it can be

removed to better reflect the situation for free calcium transients in buffer free media in

situations that cannot be explored experimentally.

Rapid Buffer Approximation

The rapid buffer approximation is used when the buffering of calcium is fast so

that the calcium and buffer concentrations are essentially always in equilibrium with each

other, so that the effects of the buffer can be accounted for easily as:

dCa
dt

=
JCa

1+κ

where

κ =
KB[B]tot

(KB +Ca)2

which indicates how much calcium entering a cellular compartment becomes

bound to the buffer. When calcium concentrations are much less than the dissociation

constant KB, so that the affinity of the buffer is low, this ratio is κ = [B]tot/KB.
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Relating Fluorescence to Calcium Concentration

It is assumed that the fluorescence f is related linearly to the free calcium indicator

dye concentration F and the calcium-bound dye concentration CaF via:

f = SF [F ]+SFCaCaF = SF [F ]tot +(SFCa−SF)CaF

where the total dye concentration is [F ]tot = F +CaF and the coefficients SF and

SFCa specify the contribution from the dye’s unbound and bound forms, respectively. The

fluorescent intensity of saturated dye (i.e., maximally bound by calcium so that [F] can

be neglected compared to [CaF]) is fmax = SFCa[F ]tot . The intensity in minimal calcium

is fmin = SF [F ]tot .

It is additionally assumed that the rapid buffer approximation holds. Given

this approximation and the expressions for f, fmax, and fmin above, the free calcium

concentration can be derived as:

Ca = KF
f − fmin

fmax− f

In practice, it is difficult to measure fmin as calcium cannot be entirely removed

from the experimental tissue slice preparation. Defining R f = fmax/ fmin of the indicator,

the dynamic range, the intracellular calcium concentration is:

Ca = KF
f/ fmax−1/R f

1− f/ fmax

If R f is large, as it is for dyes such as Fluo-3 and Fluo-4, then 1/R f is much

smaller than f/ fmax and does not much influence the calculated value of Ca2+.

Changes in Ca2+ from a baseline can be estimated. With fres as the fluorescence

at the resting baseline, ∆ f/ f = ( f − fres)/ fres, with maximum value ∆ fmax/ f = ( fmax−
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fres)/ fres:

∆Ca = KF(1−1/R f )
(∆ fmax/ fres +1)|δ f

(∆ fmax/ fres−∆ f/ fres)∆ fmax

Cares = KF
(1−1/R f )

∆ fmax/ fres
− KF

R f

IP3 Model

On relatively simple model for the IP3 dynamics is the one of . A potentially

undesirable simplification of is that it neglects the production and degradation of IP3 and

how that might contribute to the dynamics. A model from contains these terms. The

model is designed for understanding calcium dynamics in glial cells, but the authors

claim the model should be applicable to other kinds of cells as well. The variables in the

models are the intracellular Ca2+ level C, the fraction of inactive IP3 receptors h, and the

available IP3 concentration I. A term modeling the contribution of glutamate signals to

IP3 production may be included as an additional production term. Calcium-induced Ca2+

release in the model is controlled by the interplay of two effects: flow of calcium from the

ER to the cytoplasm mediated by Ca2+ dependent opening of the IP3 receptor channels

and flow of calcium into the ER due to the action of sarco-endoplasmic reticulum Ca2+

ATPase (SERCA) pumps. The equilibrium calcium levels in the cytoplasm are set by a

balance of Ca2+ leak from the ER, SERCA uptake, and plasma membrane Ca2+ transport.

At these levels, slight increases in cytoplasmic Ca2+ levels leads to slight CICR. The

opening probability of IP3 receptors depends nonlinearly on the Ca2+ concentration.

CICR increases dramatically when Ca2+ levels rise sufficiently but reverses at high

cytoplasmic Ca2+ concentrations when inactivation of IP3 channels occurs. SERCA

pumps also tend to bring down cytoplasmic Ca2+ levels, increasing their sequestering

of Ca2+ into the ER lumen at elevated Ca2+ levels. When the cytoplasmic Ca2+ levels
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return to baseline, IP3 channels deinactivate.

The equation for cytoplasmic calcium (C) balance is given by:

dC
dt

= JIP3 + Jleak− Jpump (2.28)

As in the case of the RyR model, SERCA pump rate has a Hill rate expression

with exponent 2:

Jpump = vpump
C2

C2 +K2
p

(2.29)

The nonspecific Ca2+ leak current is proportional to the Ca2+ gradient across the

ER membrane:

Jleak = vleak(CER−C) (2.30)

IP3 receptor channels are modeled as ensembles of four independent subunits

with three binding sites each: one for IP3 and two for Ca2+. Ca2+ sites include an

activation site and a separate site for inactivation. The channel is open when IP3 and

Ca2+ are bound to a fixed set of three out of four subunits.

Then the form for the calcium current through the IP 3 receptors (IP3 Rs) is:

JIP3 = vIP3m3
∞n3

∞h3(CER−C) (2.31)

where m∞ = Hill(I,d1), n∞ = Hill(C,d5), and h account for the three gating
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reactions, IP3 binding, activating Ca2+ binding, and Ca2+ dependent inactivation of

the receptor. I is the intracellular IP3 concentration and vIP3 is the maximum channel

permeability. The calcium concentration in the ER is:

CER = 1
r (CtotC) where Ctot is the total calcium concentration and r is the volume

ratio between the ER and the cytosol volumes.

This equation is coupled with an equation for h that accounts for the kinetics of

IP3Rs:

dh
dt

=
h∞−h

τh

where:

h∞ =
Q2

Q2 +C
,τh =

1
a2(Q2 +C)

,Q2 = d2
I +d1

I +d3

According to [3], IP3 is produced by hydrolysis of PIP2 by PLCβ and PLCδ.

PLCβ pertains to glutamate-dependent IP3 production, while PLCδ is activated by

increased intracellular calcium levels. In [3], it is modeled as follows:

vδ =
v̄δ

1+ I
κδ

where κδ is the inhibition constant of PLCδ activity. Two major IP3 degradation

pathways include phosphorylation and dephosphorylation of IP3. Both are modeled as of

Michaelis-Menten type:
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v5P = v̄5PHill(I,K5) (2.32)

v3K = v̄3KHill(C4,KD)Hill(I,K3) (2.33)

(2.34)

Then IP3 balance is modeled as:

dI
dt

= vδ− v5P− v3K

The contribution of glutamate signals to IP3 production can be taken into account

as well. It is modeled as:

vβ = v̄βR(γ,C)

where γ is the extracellular glutamate concentration. v̄β is the maximal PLCβ rate

that depends on the surface density of mGluRs and R(γ,C) is the fraction of activated

(bound) mGluRs. PLCβ activity also depends on intracellular calcium concentration

when [Ca2+] ¿10 µM . However, this is typically outside of the physiological range, so

this intracellular [Ca2+] dependence is not included in this model. R(γ,C) is modeled

with a Hill-binding reaction scheme with an exponent ranging between 0.5 and 1. In [3],

the exponent is 0.7.

R(γ,C) = Hill(γ0.7,Kγ(γ,C))

Kγ(γ,C) is a term lumping two pathways underlying termination mechanisms

of PLCβ signaling. One is involved in the reconstitution of the inactive G-protein

heterotrimer due to intrinsic GTPase activity of activated Gα subunits. The second
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is PKC phosphorylation of the receptor, or of the G protein, or of PLCβ, or some

combination thereof.

The effective Hill midpoint of R(γ,C) increases as PLCβ termination takes over:

Kγ = KR(1+
Kp

KR
Hill(γ0.7,KR)Hill(C,Kπ))

KR is the Hill midpoint of glutamate binding with its receptor whereas Kp mea-

sures the increment of the apparent affinity of the receptor due to PLCβ terminating

signals.

The purpose of including this more complicated term modeling the contribution of

glutamate to IP3 production is only for completeness. It isnt clear yet whether such a term

will be necessary for the purposes of data assimilation when quantitative measurements

of calcium concentration become available, especially in a model which excludes the

contributing effects of synapses to neuronal dynamics.

Explicit Calcium Dynamics Model

The sections preceding can be combined into a set of equations describing the

intracellular calcium dynamics of the bulk cytosol and ER. Such a detailed model requires

many more measurements of the calcium dynamics inside a cell than are currently

available. We omit the contribution from IP3, as it adds another level of complexity due

to the difficulty of obtaining measurements associated with this signalling pathway, but it

is straightforward to include this term in the model for completeness as well.

Jsoc = vsoc
Ksoc

Ksoc +CaER

JSERCA = vSERCA
Ca2

cyt

Ca2
cyt +K2

SERCA
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JPMCA = vPMCA
Ca2

cyt

Ca2
cyt +K2

PMCA

JNa−Ca = vNa−Ca
Cacyt

Cacyt +KNa−Ca

Jleak,PM = vleak,PM(Caext−Cacyt)

Jleak,ER = vleak,ER(CaER−Cacyt)

JRyR = vRyRR(CaER−Cacyt)

dR
dt

=
R∞−R

τR

R∞ =
Can

cyt

Can
cyt +Kn

RyR

Jbu f ,PM = k+B,PMBeq,PM(Caeq,PM−Cacyt)

Jbu f ,ER = k+B,ERBeq,ER(Caeq,ER−CaER)

Here the excess buffering approximation is used to approximate the effect of the

endogenous buffers, where the concentration of buffer is very large compared to the

concentration of free calcium in the cytosol or ER. The reaction of buffers and calcium

is also assumed to be fast, so that calcium and buffer is always in equilibrium. Beq and

Caeq are the equilibrium concentrations of the buffer and free calcium, respectively. k+B is

the rate constant for the forward reaction of buffer and free calcium into the state where

calcium is bound to the buffer.

κ =
KFFeq

(KF +Cacyt)2

Jin,F =
Jin

1+κ
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Here Jin,F and the binding ratio κ describes how the rapid buffering of the

fluorescence dye attenuates the influence of calcium influx Jin due to VGCC, NMDA

receptors, and other sources, on the free calcium concentration. The dynamics of calcium

in the ER and cytosol are then:

dCacyt

dt
= Jin,F + Jbu f ,PM− JNa−Ca− JPMCA− JSERCA + JRyR + Jleak,PM + Jleak,ER

dCaER

dt
= Jsoc + Jbu f ,ER + JSERCA− JRyR− Jleak,ER

This model contains terms accounting for most known contributions to net cal-

cium dynamics, including CICR, thought to be altered in Alzheimer’s disease. For the

purposes of teasing apart different mechanisms underlying the pathology, it is necessary

to include all of them in a detailed model. As measurements of calcium concentration

involves measuring fluorescence levels, it is necessary to include terms accounting for

the effects of fast dyes used in this process which alter the ordinary calcium dynamics.

Until chapter 6, we will not attempt a further investigation involving the detailed model,

instead choosing to ask a more modest set of questions which can be answered with

simpler neuron models and measurements that are presently available.



Chapter 3

Inferring Membrane Dynamics and

Channel Kinetics of a Neuromorphic

Integrated Circuit

Emulating the biophysics of neuronal dynamics and behavior offers a principled

analysis-by-synthesis approach towards understanding mechanisms of brain function.

Here we report on a set of procedures assimilating and emulating neurobiological data

on a neuromorphic very large-scale integrated (VLSI) circuit. The analog VLSI chip,

Neurodyn, features 384 digitally programmable parameters specifying for 4 generalized

Hodgkin-Huxley neurons coupled through 12 conductance based chemical synapses,

reversal potentials, conductances, and spline regressed gating variables. In one set of

experiments, we assimilated membrane potential recorded from one of the neurons on

the chip to the model structure upon which NeuroDyn was designed and the known

current input sequence, arriving at the programmed parameters except for model errors

due to analog imperfections in the chip fabrication. In a related set of experiments,

we replicated songbird individual neuron dynamics on NeuroDyn by estimating and

37
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configuring parameters extracted using data assimilation (DA) from intracellular neural

recordings. Faithful emulation of detailed biophysical neural dynamics will enable the use

of NeuroDyn as a tool to probe electrical and molecular properties of functional neural

circuits, with neuroscience applications in studying the relationship between molecular

properties of neurons and the emergence of different spike patterns or different brain

behaviors, and clinical applications in studying and predicting effects of neuromodulators

or neurodegenerative diseases on ion channel kinetics.

The analogy that exists between the kinetics of biological channels and semi-

conductors can be exploited to design electronics which emulate neural circuits. The

analogy is in the voltage-dependent electron/hole channels in silicon transistors and

voltage dependent ion channels in biology. The Boltzmann distribution describing both

the hole/electron energy in silicon transistors and the channel activation in biological ion

channels scales exponentially in response to the gate and membrane voltage respectively.

This analogy can be used to construct electrical circuits which have the exponential

current-voltage characteristic.

Neuromorphic engineering [55] pursues the design of integrated electronic sys-

tems that physically emulate the function and structure of biological neural systems

driven by two complementary but synergistic objectives: the engineering of naturally

intelligent systems for perception and computation that approach the robustness, noise

resilience and energy efficiency of their counterparts in biology; and the science of

progressing towards a more fundamental understanding of the cognitive function of the

brain [13]. These two objectives are jointly pursued through analysis-by-synthesis as the

combination of top-down deconstruction and bottom-up construction of physical models

of brain function, in the spirit of Richard Feynman’s famous words: “What I cannot build,

I do not understand.”

Despite formidable advances in the engineering of neuromorphic silicon models
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of perception and cognition, the “morphing” of form and structure from neurobiology to

silicon integrated circuits has mostly been a qualitative analysis-by-synthesis endeavor,

with systematic quantitative methods for their precise alignment pursued only in a few

instances, e.g., [71]. This work pursues the application of a proven systematic quantitative

method, data assimilation (DA) [1], to analysis-by-synthesis in neuromorphic engineering

by aligning the dynamics of biological and model neuronal state variables in mapping

the biophysics onto finely tuned equivalent physics in the silicon emulation medium,

illustrated in Fig. 3.1.

Data 

Assimilation

Neuromorphic Chip Brain

Figure 3.1: Motivation: using the physical medium of silicon neurons to emulate
biological neuronal dynamics.

Formulating a proper model to emulate multiple types of neurons is a critical step

in the synthesis. However, realizing the complex functional form of membrane currents

and channel variables is difficult, especially in analog circuits. This has motivated

alternative realizations by simplifications in the model. The prevailing approach has

been to abstract the neuron membrane action potential to discrete-time spike events in

simplified models that capture the essence of integrate-and-fire dynamics and synaptic
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coupling between large numbers of neurons in an address-event representation. These

approaches may lead to highly efficient and densely integrated implementations in analog

very-large scale integrated (VLSI) silicon, e.g., [65]. However, to examine effects of

neuromodulators, neurotoxins, and neurodegenerative diseases on ion channel kinetics,

and to accurately emulate behavior of different types of neurons, a more sophisticated

and flexible model is necessary. This has motivated the custom design of specialized

and yet highly flexible neuromimetic analog integrated circuits capable of emulating the

detailed and parameterized continuous-time dynamics of neuronal and synaptic state

variables, e.g., [71].

NeuroDyn [96, 97] is such an analog very large-scale integrated (VLSI) circuit

instantiation of a general continuous-time model of biophysical neuronal dynamics

on a small-scale, 4-neuron 12-synapse network. NeuroDyn features 384 digitally pro-

grammable parameters, specifying for each neuron and synapse the reversal potentials,

conductances, and spline-regressed voltage dependence profile of opening and closing

rates of the gating variables. These parameterized characteristics in NeuroDyn provide

the capacity to emulate a large variety of neuron and synapse behaviors, which in turn

requires the complex task of adjusting a large number of parameters. A relatively simple

calibration and parameter fitting procedure proved adequate to set parameters in the

biophysical model approximately to desired values[96] and even to generate phasic and

tonic bursting in an extended Hodgkin-Huxley model formalism[97]. This was only

possible by tuning each of the internal variables in the dynamics in isolation based

on detailed model knowledge. In contrast, this luxury cannot be afforded in the more

complex settings typical in experimental neuroscience that require inferring neural form

and structure from very limited data recorded from very sparse locations in the brain.

Thus, a more systematic and powerful method for arriving at values for parameters in

such complex models and porting them to highly parameterized neuromorphic emulation
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platforms, accounting for substantial uncertainties in the modeling and noise in the

observations as well as sources of imprecision and transistor mismatch in the physical

emulation platform, is highly desirable.

Data assimilation (DA) methods have been applied to model estimation and time

series prediction in biological neural systems [56, 61]. Extending the model estimation

to silicon neural systems [91], DA accomplishes the alignment of biological and silicon

physics, inspiring confidence in the implementation of functional neural circuits in the

silicon medium. In this work we map biophysical neural function onto NeuroDyn,

enabling the task of programming its parameters; then use NeuroDyn to predict the

behavior of a biological neuron. The scheme is illustrated in Fig. 3.2.

The inference problem of DA is formulated as nonlinear optimization over a

high-dimensional path integral and has been explored both in its exact and approximate

form on various chaotic and neural models [88, 45, 2, 60, 56, 44, 40, 7]. We find that

DA is capable of estimating parameters in a model of biophysical neural dynamics in

data recorded from a songbird HVC neuron, mapped itself onto a model describing the

dynamics of physical state variables in the chip. When these parameters are programmed

onto the chip, it successfully emulates the voltage time series recorded from the songbird

HVC neuron.
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Silicon
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Biological 
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Mathematical

Model Mapping

Model 

Refinement

Figure 3.2: Scheme of this work. Harnessing DA to map a biological system to a
neuromorphic silicon chip, through independent characterization of each system [91]
and model integration to complete the mapping. Previous notable work in fitting neural
data onto a mathematical model [2] and characterization of neuromorphic hardware
[60] are provided in context.
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The analog VLSI design of the NeuroDyn system was presented in [96]. Initial

results of applying DA of songbird HVC neural data to the NeuroDyn chip were presented

in [91]. This chapter extends this work and contributes a systematic method to correct

for analog mismatch in the NeuroDyn chip leading to demonstration of precise mapping

from recorded HVC dynamics to equivalent neuronal state variable dynamics recorded

on the chip. This chapter is organized as follows: the NeuroDyn chip model and a

new method for correcting analog mismatch based on DA are presented in Section 3.1;

results of applying the proposed DA methods on synthetic benchmark data, measured

NeuroDyn data, and recorded HVC neuron data in mapping the HVC neuron dynamics

on the NeuroDyn chip are presented in Section 3.2; extensions of the DA methods and

application to dynamically interactive neural prostheses are discussed in Section 3.2.6;

and concluding remarks are offered in the last Section.

3.1 NeuroDyn Model

3.1.1 Generalized Model of Biophysical Neural Dynamics

The Hodgkin-Huxley (H-H) model has been a de facto standard in biophysical

modeling of single-unit neural dynamics, described by a system of four differential

equations in the membrane potential V and three gating variables h, m, and n [32].

These four variables interact to give the neuron its excitable dynamics, generating action

potentials in response to external or synaptic current stimuli IInj. The H-H model specifies

precise equations governing the kinetics of voltage-gated channel opening and closing

in the membrane conductances, which Hodgkin and Huxley derived by curve-fitting

detailed measurements on the giant squid axon with astounding accuracy [32]. However,

these kinetics depend on properties of membrane ion channels that are highly variable

across neuronal types and species, calling for greater flexibility in their functional form.
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NeuroDyn [96, 97] implements an extended form of H-H dynamics and rate-

based kinetics with general parameterized voltage dependence of the opening and closing

rates in the ion channel gating variables. It also provides for general parameterized

rate-based synaptic coupling between neurons [96], which is not investigated here. Each

neuron i = 1, . . .4 undergoes membrane dynamics of the form:

Cmem
dVi

dt
=−INa,i− IK,i− IL,i + IInj,i (3.1)

with membrane capacitance Cmem, injected current IInj,i, and sodium, potassium and leak

conductance-based currents of the approximate form:

INa,i = m3h gNa,i (Vi−ENa,i), (3.2)

IK,i = n4 gK,i (Vi−EK,i), (3.3)

IL,i = gL,i (Vi−EL,i). (3.4)

In turn, the dynamics of the gating variables hi, mi and ni are described by rate-based

kinetics of the form:
dxi

dt
= αx,i(Vi) (1− xi)−βx,i(Vi) xi (3.5)

where the notation x stands for each of h, m, and n. Unlike the specific voltage dependence

of the rate kinetics in the standard H-H formulation, the opening rates αx,i and closing

rates βx,i in NeuroDyn depend on membrane voltage Vi in general parameterized form

regressed as 7-point additive spline sigmoidal functions:

αx,i(Vi) =
7

∑
k=1

αx,i,k σk(Vi) (3.6)

βx,i(Vi) =
7

∑
k=1

βx,i,k σk(Vi) (3.7)
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with predetermined sigmoids1:

σk(V ) =
1

1+ e±κ(Vb,k−V )/VT
(3.8)

at uniformly spaced centers spanning the voltage range:

Vb,k =Vb,min +
k−1

6
(Vb,max−Vb,min). (3.9)

3.1.2 Mixed-Signal VLSI Circuit Implementation

INa = 2IgNam3h tanh(
κ

2VT
(Vm−ENa)) (3.10)

IgNam3h = Ig,Na(
Im

Ire f ,m
)3 Ih

Ire f ,h
(3.11)

IK = 2IgKn4 tanh(
κ

2VT
(Vm−EK)) (3.12)

IgKn4 = Ig,K(
In

Ire f ,n
)4 (3.13)

IL = 2IgL tanh(
κ

2VT
(Vm−EL)) (3.14)

IgL = Ig,L (3.15)

1The polarity (±) in the exponent is programmed as either +1 or −1 through an additional binary
parameter for each αx,i and βx,i. This supports either a monotonically increasing or a monotonically
decreasing voltage profile for each of the opening and closing rates.
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Reversal potentials ENa, EK and EL are described by

Erev = Ivol,rev(erev/1024)Rrev +Vre f (3.16)

where erev is a programmable integer which can be programmed from 0 to 1023 to

configure reversal potentials.

The general form of Ig,Na, Ig,K and Ig,L is represented by

Ig,gate = Imas,gate(ggate/1024) (3.17)

where ggate is also a programmable integer from 0 to 1023. Thus,

d
dt

X =
Iα

CgateVT
(1−X)−

Iβ

CgateVT
X (3.18)

X =
Igate

Ire f ,gate
(3.19)

where X is a placeholder for the gating variables n, m and h. VT = kT/q is the thermal

voltage. Iα

CgateVT
and

Iβ

CgateVT
function as opening and closing rate in the standard H-H

model.

In contrast to the specific heuristic equations for the opening and closing rates

of the kinetics in the gating variables, as arrived at through intricate curve fitting in the

original H-H model [32], NeuroDyn permits a more general form regressed as 7-point

additive spline sigmoidal functions:

Irate(V ) =
7

∑
k=1

Ibk Iσ,k(V ) =
7

∑
k=1

Ibk

1+ e±κ(Vbk−V )/VT
(3.20)

where the output current Irate denotes either one of the Iα and Iβ rates, and Vbk are fixed

uniformly spaced voltages described by Eqn.3.22. Ibk is describe in Eqn.3.23.
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Vb1 = Vre f −R0Ivol,bias (3.21)

Vbk = Vb1 +Rbias,kIvol,bias (3.22)

Here, k = 2...7.

Ibk = Imas,rategate,k(rategate,k/1024) (3.23)

rategate,k can be αgate,k or βgate,k which are digital values for the 7-point additive spline

sigmoidal functions. There are seven digital values for each of 3 opening and 3 closing

rates, namely 42 configurable variables in total.

All the digital values are converted to analog values by a current DAC. Vre f is a

reference voltage. All the reversal potentials are shifted by this Vre f . So are the Vbk.

Therefore, take 42 Imas,rate, 3 Imas,gate, 3 Ivol,rev, 1 Ivol,bias, 3 Ire f ,gate, 1 Cmem, 3

Cgate, 7 Rbias and 1 injected current scaling factor K into consideration, there are 64

parameters to estimate if we ignore the 45 κ and 45 thermal voltage VT . All the Imas,X ,

Ivol,X , and Ire f ,X are mirrored from one of three current sources respectively.

3.1.3 Twin Experiments

To build confidence in the ability of our algorithm to return the correct values

of unknown parameters and states on a given system with sparse measurements, we

attempt experiments in which we have as much knowledge and control of the system and

experimental data as possible. We generate synthetic data so that the system, including

all unknown states and parameters, are known to the experimenter. The experimenter

compares the output of the algorithm with the true underlying dynamics. Because

the model is exact and mirrors the true system, we call such an experiment a “twin
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experiment” [1].

In a real experiment, the experimenter will not know the value of most parameters

and states. The experimenter will usually have data for measured states for times greater

than the end of the estimation window. When this is the case, the experimenter can test

the algorithm’s estimates by integrating the model forward using the estimated dynamical

map from the configuration of the system at the end of the estimation window. This

is called the model prediction. The prediction is compared with the measurements to

evaluate the quality of state and parameter estimates within the estimation window. Good

’fits’ to the data are easy to achieve, and are not considered a good measure of the quality

of the estimated model.

In neural systems, injected currents that are high enough in amplitude to drive

spiking behavior, long enough in duration to sample all the degrees of freedom of a model

neuron, and low enough in frequency to not be absorbed into the RC time constant of the

membrane are necessary for the algorithm to succeed in a twin or real experiment. This is

a result of the fact that nothing can be inferred about a component of a process if it is not

influencing the behavior of the system in a data set. In order for the dynamical map to be

inferred from the data, all of its degrees of freedom must be activated for the algorithm

to have a chance to infer values of parameters and unknown states that generalize outside

of the training set [31]. A chaotic stimulus waveform of sufficiently low frequency, such

as the trajectory of one of the states generated from the Lorenz ‘63 dynamical equations,

will satisfy the above conditions.
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3.2 Experiments and Results

3.2.1 Data Assimilation with Synthetic Data

The experiments we conducted confirm the power of the DA method to perform

parameter estimation and predict neuronal dynamics from limited data, both in computer

simulation and in measurements on the NeuroDyn chip. To establish a baseline for the

DA experiments with the NeuroDyn chip, a twin experiment of DA in software with

synthetic data was conducted first, in which the data was generated to fit the model of

the NeuroDyn chip perfectly. We used the theoretic model, (3.5)-(3.20), extracted from

the chip, and a chaotic time-series current waveform IInj to generate the time-series of

membrane potential V (t). We then used the DA method of Section II to estimate the

model parameters. The results shown in Fig. 3.3 suggest that when the measurement

functions hl are known and the model of the physics on the chip is without error, sufficient

measurements can be obtained from the chip for the DA algorithm to correctly estimate

all unknown parameters.
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Figure 3.3: Estimated (blue), predicted (red), and simulated (black) data of the Neu-
roDyn model in software. The prediction is obtained by integrating the equations of
motion forward using the estimated parameters and configuration of the system at the
end of the estimation window. The injected stimulating current protocol IInj (bottom
graph) is also displayed.

3.2.2 Data Assimilation with NeuroDyn

In subsequent experiments DA was applied to estimate parameters in the Neuro-

Dyn model from measurements on the NeuroDyn chip. A similar complex stimulating

current waveform IInj was applied to the Neurodyn chip to elicit dynamical waveforms,

which where then used as the data for DA of the NeuroDyn model. Data obtained from

the chip yielded time series measurements of [V (t),m(t),h(t),n(t)] at a time resolution

of 500 kHz. Details on the experimental prototols used to obtain the recordings of these

time series are presented in [91].
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The results of DA are displayed in Fig. 3.4. Although the estimates and predic-

tions are quite good, there is some disagreement between the theoretical values given the

model of the chip and the configured values, shown in Table 3.1. It is desirable to check

for discrepancies between configured parameter values and theoretical parameter values

obtained with DA. Two factors mainly result in the discrepancies: inaccuracy of the

model describing circuits implemented in NeuroDyn, and mismatch during fabrication.

In the next section, a systematic means to correct for model error and mismatch using

DA is introduced.

3.2.3 Model Error and Mismatch Correction

As all the Imas,X , Ivol,X , and Ire f ,X are mirrored from corresponding current sources

by current mirrors, to predict the membrane dynamics and channel kinetics accurately,

the mismatch between current mirrors should be estimated first. Thus a general first order

linear equation is proposed as (3.24) to describe the mismatch of the current mirrors.

IX ,real = IX ,ideal(1+ εX) (3.24)

IX ,ideal is the theoretical current mirrored from current source, and IX ,real is the real current

which takes mismatch εX of current mirrors into consideration. To avoid degeneracy,

if more than one independent parameters multiply together in the model, they would

be estimated as one parameter. For instance, A ∗B will be replaced with C if A and B

are independent parameters. Take estimation of reversal potential as an example, when

mismatch is considered, (3.16) is modified as (3.25). Instead to estimate all the three

parameters Ivol,rev, Rrev and εIvol , we only estimate εIvol and assign theoretical value to

Ivol,Rev and Rrev. In this way, degeneracy is avoided and fewer parameters are required to
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be estimated. This also speeds the process of estimation.

Erev = Ivol,rev(1+ εIvol)Rrev(erev/1024)+Vre f (3.25)

As a result, we need to estimate two distinct sets of parameters. The first set of

parameters are represented as εIvol in (3.25). The other set are digitally programmed onto

the NeurDyn chip, as erev in (3.25).

Fundamentally, the first set is specific to the chip and its analog mismatch,

whereas the second set is specific to the neural data and the model. In principle, the two

DA estimations can be completely decoupled: the estimation of the first set should be

done separately for each chip independent of the particular neural data that it is tasked

to emulate; and the estimation of the second set can be done for each new data set

independent of the chip that will target its implementation.

The result of estimating first set of parameters is shown in table 3.2. The ‘re-

maining’ parameters noted in the table could not be estimated, as DA results are not

sensitive to them. To configure NeuroDyn chip, they were assigned zero. Parameter set

one then were incorporated to refine the mathematical model. This refined model was

used to conduct DA on neurobiological data to estimate the programmable parameters.

The results are presented in sections 3.2.4 and 3.2.5.
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Figure 3.4: Estimated (blue), predicted (red), and measured (black) data recorded
from the NeuroDyn chip. The estimation and prediction were obtained, and the curent
injection (bottom graph) was applied, under identical conditions as in Fig. 3.3.

3.2.4 Data Assimilation with Biological Neuron Data

Using the above DA method, we proceeded to assimilate voltage data obtained

from zebra finch HVCI neurons[45] to the model of the physics on the chip. Integrating

forward the state of the model with the obtained parameter set, the resulting waveform

matches the recorded voltage data within the intrinsic variability of the neuron. This is

displayed in Fig. 3.5. The activation and inactivation of channels are shown in Fig. 3.6.

This result is notable because to our knowledge such a simple HH model with only

INa, IK and IL has previously been insufficient to accurately describe features including

spike timing and amplitude, AP shape, and subthreshold variations. Typically a number

of sodium, potassium, and calcium currents are included in conductance based models as
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Table 3.1: Reference and Estimated Values

Params Ref Estimated Params Ref Estimated
gNa 600 294.81 αh5 0 4.3293e-6
eNa 450 408.09 αh6 0 3.0360e-6
gK 160 100 αh7 0 3.0332e-6
eK 200 234.40 βh1 0 10
gL 12 2.61 βh2 0 2.8240e6
eL 250 235.88 βh3 0 1.0368

kin j 1 0.08 βh4 0 3.0750e-5
σ 13.5 15 βh5 41 79.9999

Vb1 0.61 0.61 βh6 25 49.9737
Vstep 0.123 0.13 βh7 8 48.7581
αm1 0 0.0003 αn1 0 4.9057e-5
αm2 0 0.0001 αn2 0 0.0374
αm3 120 222.943 αn3 0 1.3169e-6
αm4 400 306.742 αn4 0 1.2238
αm5 800 600.001 αn5 18 49.9987
αm6 1023 800.211 αn6 5 1.5156
αm7 1023 809.773 αn7 43 18.9959
βm1 1023 1000.14 βn1 1 0.0414
βm2 1023 1022.93 βn2 0 0.0009
βm3 1023 1023 βn3 0 2.3919
βm4 1023 800 βn4 1 8.3258e-6
βm5 0 9.9998 βn5 0 2.2087e-5
βm6 0 9.9999 βn6 0 0.0067
βm7 0 9.9999 βn7 1 2.6981
αh1 237 120 Imaster 100 83.5093
αh2 5 1 Ivolt 232 228.9760
αh3 7 1.0000 Vo f f set 1 0.9913
αh4 6 14.4858 Rgate 1.53e+06 1.5373e+6

well as a number of spatial compartments. These have been tuned by hand [21, 59, 89]

or by using other approaches including exhaustive grid, stochastic, and evolutionary

search algorithms [25, 68, 22, 70, 31, 11, 56]. The ability to successfully assimilate

data to such a simple model may be attributable to our methods of DA and/or to the

flexible implementation of opening rates α and closing rates β in NeuroDyn’s highly

parameterized model.
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Table 3.2: Intrinsic parameters and mismatch

Intri + Mismatch Estimated Intri + Mismatch Estimated
eImNa 4.95 eIah3 1.12
eIvNa -0.34 eIbh4 -0.99
eImK 4.95 eIbh5 1.65
eIvK 3.00 eIbh6 0.44
eImL 1.62 eIan4 -0.98
eIvL 4.23 eIan5 -0.99

o f f setI 5.45 eIan6 -0.98
eIam4 -0.72 eIan7 2.35
eIam5 -0.98 eIbn1 2.78
eIbm3 4.55 eIbn2 1.93
eIbm4 -0.97 eIbn3 2.75
eIbm5 -0.48 remaining N/A
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Figure 3.5: Estimated (blue), predicted (red), and electrophysiological (black) data
recorded in vivo from an HVC interneuron (HVCI) [45] and instantiated onto the
NeuroDyn hardware model. The input current IInj injected into the systems (bottom
graph) elicits an almost identical response.
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3.2.5 Biological Neuron Emulation with NeuroDyn

Finally, the estimated parameters for HVC neuron were used to configure Neuro-

Dyn chip. However, we still need to tune the estimated parameters to make NeuroDyn

behavior close to HVC neuron. The value of estimated and actually used parameters is

shown in table 3.3. The behavior of NeuroDyn chip is more sensitive to gNa, eNa, gK ,

eK , gL and eL, compared with αs and βs which are the amplitude of spline sigmoidal

functions.
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Figure 3.8: Emulated (red) data from an HVC interneuron (HVCI) [45] and instantiated
onto the NeuroDyn hardware model.
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Table 3.3: Estimated Values and used values

Params Estimated Used Params Estimated Used
gNa 600.04 690 αh3 111.38 100
eNa 855.91 800 βh4 29.96 20
gK 701.26 800 βh5 59.99 60
eK 235.74 200 βh6 42.16 40
gL 37.05 40 αn4 30.00 40
eL 297.42 310 αn5 100.03 100

αm4 128.13 160 αn6 300.53 300
αm5 678.50 680 αn7 350.83 350
βm3 982.53 1000 βn1 14.59 14
βm4 302.97 300 βn2 8.36 10
βm5 119.99 98 βn3 20.00 15

o f f setI 5.45 N/a other α,β N/A 0

3.2.6 Discussion

The formation of biohybrid circuits between biological and silicon neurons has

enabled neuroscientists to investigate the interactions of cellular and network proper-

ties with an unprecedented level of experimental control inaccessible with traditional

pharmacological and electrophysiological techniques. Over the last two decades, the

coupling of biological and silicon neurons through an artificial synapse has allowed to

dissect and reveal the role of various individual cellular and synaptic conductances in the

activity of a single neuron or neuronal network in invertebrates [83, 77] and vertebrates

[35, 48]. Analog silicon neuron designs and implementations ensure that the model

neuron runs in real-time independently of the model complexity while offering a great

level of flexibility for the configuration of different neuron types [97, 49]. While a

high level of programmability is desirable, the configuration of analog silicon neurons

can become problematic due to the inherent nonlinearities of the model neuron and the

intrinsic VLSI process variability of the hardware implementation. Thus, automated

parameter estimation and configuration of silicon neurons are needed, especially for

extended dynamic clamp applications where more than one silicon neurons are couped



60

with biological neurons [67].

Here, we have presented a DA procedure capable of tuning the parameters of

a model of an analog VLSI chip emulating membrane dynamics and channel kinetics

of generalized H-H neurons, and have shown that if all measurement functions hl are

known and the dynamical model of the chip is accurate, we can correctly estimate all

of the parameters, many of which enter the equations nonlinearly. We have also shown

that given noisy voltage data recorded from zebra finch HVCI neurons and the relatively

simple extended H-H model of the Neurodyn chip with only two ionic currents, INa and

IK , the time evolution of an HVCI neuron can be accurately predicted. Finally, we have

shown that NeuroDyn’s model is approximately correct. With some additional manual

adjustment, NeuroDyn’s parameters can be tuned, starting from parameter estimates using

DA, to achieve emulation of biological data. Potential discrepancies between theoretical

values of parameters estimated using DA and configured parameters on Neurodyn have

also been identified. Further work is needed to ascertain whether these discrepancies

caused by mismatch of transistors can be resolved with improvements to the model,

measurement functions hl , and/or refinements to the DA procedure. We also found during

DA on synthetic data and chip data that without prior constraints about the range of

parameter values, many different parameter sets could be found which produced accurate

estimations and predictions of all state variables which could not be distinguished from

each other.

In the future, emulation of multiple biological neurons can be done in three steps.

First, inject a standard current waveform to elicit a voltage response on each silicon

neuron on the neuromorphic chips. Run the assimilation filter to estimate parameter set

1, parameterizing model error due to the fabrication mismatch. Second, run DA using

neurobiological data using the corrected mathematical model describing silicon neurons

on the neuromorphic chips. This yields the estimate of parameter set 2, the programmable
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parameters. Third, based on parameter set 1, parameter set 2 will be mapped onto

neuromorphic chips. This will achieve emulation of the biological dynamics on silicon.

The combination of DA and Neuromorphic chip will be a promising computational tool to

emulate, communicate, and even control biological neurons in real-time. More accurate

mathematical model and fast DA are necessary.

Figure 3.9: Dynamic clamp. (Left) Neuromorphic NeuroDyn chip and measurement
PCB setup, (Right) Biological neurons on a multi-electrode array capable of recording
and stimulation.

3.3 Conclusions

Importantly, we have successfully mapped biological dynamics to a silicon sub-

strate leveraging the exponential voltage-current relationship present in biological ionic

current kinetics and transistors. We have surmounted the fabrication mismatch in the

NeuroDyn chip and estimated parameters in the NeuroDyn model, enabling emulation of

biological data. We estimated the in/activation and voltage-dependent time constants of

ion channels. These results demonstrate the analysis of biological neurons by synthesis
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and provide a basis for building biologically realistic network models in an integrated

analog circuit chip which has the potential of forming closed-loop interaction between

artificial and biological neural networks. The results may also help to understand the ef-

fects of neuromodulators or neurodegenerative diseases on ion channel kinetics, and may

further provide insights into the relationship between molecular properties of neurons

and the emergence of different spike patterns or different brain behaviors.

We have shown that the extended H-H model implemented on NeuroDyn is

sufficient for describing one class of interneurons within the nucleus HVC, however there

is a tremendous diversity of mechanisms in nervous systems. Such mechanisms include

other ion channels such as calcium channels, neuromodulators, multi-compartmental

dynamics through linear and nonlinear dendritic coupling, and intracellular signaling

pathways. This motivates the design of neuromorphic chips containing more neurons

which have more channels and each channel is flexible enough to be programmed to

describe different ion kinetics.

Chapter 3 is reproduced in part from material as it appears in “Assimilation

of Biophysical Neuronal Dynamics in Neuromorphic VLSI. Jun Wang, Daniel Breen,

Abraham Akinin, Frederic Broccard, Henry DI Abarbanel, and Gert Cauwenberghs. The

dissertation author was one of two first authors on this paper.



Chapter 4

An Underdetermined Problem:

Inference on HVC Interneurons Using

Data Assimilation

Male zebra finches sing a short, stereotyped motif for the span of their adult lives,

a behavior that is learned over several months while they are juveniles. An aspirational

goal of the present research is to find the single cell and network mechanisms underlying

learned sequential behaviors with a biophysically grounded simulation of the song

motor pathway. Conductance based models represent membrane dynamics in terms

of ion currents through passive, voltage-gated, and ligand-gated conductances. The

dynamics of these conductances can be expressed mathematically in terms of biophysical

descriptions of specific channel gating kinetics. This provides a mechanistic link between

molecular cell properties and behavior [4, 52]. Previous research strongly suggests that

the membrane dynamics of single neurons within nucleus HVC are crucial mechanistic

components encoding the zebra finch song motif [29, 34, 51]. Two classes of neuron

constitute the building blocks of the motor pathway responsible for song production. The

63
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first is a class of neurons called HVCRA neurons which send excitatory projections to the

nucleus RA from HVC. These neurons conspicuously feature at most one burst per song

motif. The other kind of neuron is called an HVC Interneuron (HVCI neuron) and does

not project to other nuclei, but instead inhibits neurons local to HVC.

In this chapter we implement our methods of statistical data assimilation (DA) to

construct a model of the HVCI neuron as an isolated building block. We demonstrate

the power of DA to extract information about HVCI neurons given a biophysical model

and data. We discover a minimal set of necessary ionic currents and sets of parameters

reproducing essential characteristic electrophysiological features. We also find evidence

for a manifold of degenerate solutions to minimizing a cost function containing measure-

ment noise and model error terms. This may also represent present limitations of our

DA procedure due to model errors including missing currents, insufficient number of

measurements, or mundane numerical issues such as ill conditioning. We do not attempt

to study models of these cells within the context of a simulated network of neurons.

Future work will be aimed at placing these model HVCI cells as nodes within a network.

The mathematical form of our model is a Hodgkin Huxley (HH) conductance

based model. The ion currents included are biologically grounded in pharmacological

experiments and computer modeling . Our data assimilation algorithm estimates all

of the unobserved states and parameters of the model conditioned on measurements

recorded from HVCI neurons in vitro. The present work is significant because it extends

previous work [88, 45, 44, 56], demonstrating that the time course of several unobservable

variables and dozens of parameters that enter the dynamical equations nonlinearly can be

accurately estimated, using recently developed annealing methods of data assimilation

[93]. It demonstrates the capability of the data assimilation methods to estimate all

the parameters of conductance-based Hodgkin Huxley models, including those which

enter nonlinearly such as the parameters describing the gating kinetics, given voltage
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recordings of real HVCI neurons. Neuronal properties described by these parameters

change over time [14], have a spatial dependence over the different parts of the neuron[4],

while also varying among cells of the same class [73]. Because our method is capable of

estimating all the parameters which enter into HH models, we can better characterize

variability, such as the shape of IV curves, across neurons. Data assimilation also allows

one to characterize properties of a model that would not otherwise be readily apparent,

such as the existence of a manifold including multiple distinct model parameter sets with

indistinguishable predictive power. We discuss such parameter set degeneracies for our

HVCI neuron model.

Our data assimilation algorithm formulates the problem as one of nonlinear

optimization over a high dimensional path integral and has been explored both in its exact

and approximate form on various chaotic and neural models [88, 45, 1, 44, 56, 95, 93, 37].

Experiments done on simulated systems in which all of the parameters and states are

known to the experimenter we call twin experiments. The purpose of such experiments

is to inform the use of the algorithm on real neural systems in order to estimate model

parameters and unknown states which produce accurate predictions. In real physical

systems, only sparse measurements are typically available and errors in the model and

measurements are inevitable. If the data assimilation algorithm can recover unknown

states and parameters in controlled conditions where the parameters and state of the

system at all times are known, then we are more confident of its ability to do so with real

systems.

First we motivate and validate our model with results of data assimilation on

voltage recordings of HVCI neurons in vitro, showing that it exhibits key qualitative

features and biophysical mechanisms found in other work [47, 19]. We then show results

of applying our data assimilation procedure on synthetic and real voltage recordings of

single HVCI neurons.
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4.1 Methods

4.1.1 HVCI Neuron Model

Our Hodgkin Huxley model for an isolated HVCI neuron derives from the model

of [19]. The current balance equation for the membrane voltage is:

Cm
dV (t)

dt
=IK(V (t))+ INa(V (t))+ ICaL(V (t), [Ca](t))

+ ICaT (V (t), [Ca](t))+ IA(V (t))

+ ISK(V (t), [Ca](t))+ IKNa(V (t))+ IH(V (t))

+ INap + IL(V (t))+ Iin j(t)

Cm is the capacitance of the membrane and Iin j is a custom built drive current.

The ion currents are IK , the delayed rectifier potassium current; INa, the inactivating

sodium current; ICaL, a high threshold L-type calcium current; ICaT , a low threshold

voltage gated calcium current; IA, an A-type potassium current; ISK , a small-conductance

calcium activated potassium current; IKNa, a sodium dependent potassium current; IH , a

hyperpolarization activated cation current; INap, a persistent sodium current; and IL, the

leak current. Our analysis is restricted to isolated single HVCI neurons, so we do not

include a synaptic current term Isyn.

We reduce this model to a simplified form with suitability for insertion into nodes

within a simulation of HVC in mind. A simpler model is also easier to understand,

reduces the computational difficulty of data assimilation and the number of parameter set

degeneracies, or model symmetries (to be discussed below), present given the limitations

of our present computational resources and methods to transfer the information in the

data to our model. We eliminate IA, ISK , IKNa, and INap because these currents have
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been shown to be small in HVCI neurons in other work [19]. HVCI neurons are highly

excitable with high resting membrane potentials and very little afterhyperpolarization

(AHP), so the absence of these currents can be partially understood as a consequence

of IA, ISK , IKNa being currents which depress the resting membrane voltage of neurons

and contribute to AHP. ICaL may contribute to the dynamics of HVCI neurons, but we

did not find a significant difference in the quality of data assimilation results when

ICaL was and was not present in addition to the remaining currents. We conclude that

it can be justified for removal for our purposes, modeling the time evolution of the

voltage dynamics for durations not exceeding ≈ 10 seconds, as not important in causing

the most conspicuous features of HVCI neuron electrophysiology: a hyperpolarization

induced sag upon hyperpolarizing current injection and rebound spiking upon release

from hyperpolarizing current injection. ICaT and IH are both critical mechanisms in this

behavior as discussed in other work [19], so we retain them in our model.

Upon simplification our Hodgkin Huxley model for an isolated HVCI neuron

becomes:

Cm
dV (t)

dt
= IK(V (t))+ INa(V (t))+ IH(V (t))

+ ICaT (V (t), [Ca](t))+ IL(V (t))+ Iin j(t)

d[Ca]
dt

= φICaT (V (t), [Ca](t))+
[Ca]eq− [Ca](t)

τ[Ca]

dx
dt

=
x∞(V )− x(t)

τx(V )

(4.1)

The variables n(t),m(t),h(t),H(t),a(t),b(t) ∈ x are gating variables which reg-

ulate the conductance of ions through the membrane of a neuron, described by the

following equations:

x∞(V ) = 0.5(1+ tanh(
V −θx

σx
))

τx(V ) = t1 + t2(1− tanh2(
V −θxt

σxt

))

(4.2)
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The θ, σ, and ti are the kinetic parameters, properties of individual neurons.

The ion currents have the following form:

IK(V (t)) = gKn(t)4(EK−V (t))

INa(V (t)) = gNam(t)3h(t)(ENa−V (t))

IH(V (t)) = gHH(t)2(EH−V (t))

ICaT (V (t), [Ca](t)) = gCaT a(t)3b(t)3
ΦGHK(V (t), [Ca](t))

ΦGHK(V (t), [Ca](t)) =V (t)
[Ca]ext exp(−V (t)

VT
)− [Ca](t)

1− exp(−V (t)
VT

)

(4.3)

The various gX and EX are the maximal conductances and reversal potentials of

the ion currents.

ΦGHK(V (t), [Ca](t)) is the Goldman-Hodgkin-Katz equation for the ionic flux

through the neuron membrane. Here it is used instead of the ohmic form to accurately

model the calcium current.

Calcium appears as a dynamical variable in the model. The equations describing

the calcium dynamics are informed by calcium ion conservation. These equations

balance the change caused by calcium ion current influx and decay to equilibium calcium

concentration.

d[Ca](t)
dt

= φICaT (V (t), [Ca](t))+
[Ca]eq− [Ca](t)

τ[Ca]

[Ca](t) is the cytosolic, or internal, calcium concentration, [Ca]eq is the equilib-

rium cytosolic calcium concentration, τ[Ca] is the time constant describing the rate at

which the internal concentration of calcium tends towards its equilibrium concentration,

[Ca]ext is the concentration of calcium outside the cell membrane, and VT is the thermal
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voltage. With our HVCI model, parameters governing only the time evolution of [Ca](t)

cannot be determined from data assimilation using a measurement of V (t) alone, as

[Ca](t) is only weakly coupled to the dynamics of membrane voltage. Virtually no

calcium is available inside the cell to flow outwards at physiological concentrations, so

ΦGHK(V (t), [Ca](t))≈ΦGHK(V (t)).

HVCI neurons recorded in vitro are highly excitable, have a slow increase in rest-

ing membrane potential in response to hyperpolarizing current injection, and fire rebound

action potentials in response to release from hyperpolarizing current injection [47, 19].

With the support of pharmacological manipulation and computational modeling, [19]

suggests the underlying mechanisms are two voltage gated ion currents, a hyperpolar-

ization activated current IH and a low threshold T type calcium current ICaT . With these

currents, our model reproduces the above qualitative features as shown in Figure 4.2.

The parameters of the model in Table 4.1 exhibiting these features are derived from

data assimilation on a real HVCI neuron. Results of estimation and prediction on the

voltage trace, with corresponding stimulating current, are plotted in Figure 4.1. As shown

in Figure 4.2, when IH alone is blocked, the sag is eliminated, but a delayed rebound

spike is preserved. When both IH and ICaT are blocked, the sag and rebound spiking are

eliminated. Additionally, when ICaT is blocked, the membrane potential is depressed by

about 10 mV, in agreement with experimental observations[19]. This demonstrates that

an HH model with currents defined in Equation 4.3 is sufficient to describe experimentally

obtained voltage recordings of HVCI neurons.

4.1.2 Twin Experiments

In our twin experiments on the HVCI model neuron, the voltage is the only

measured variable, an expected experimental limitation on what can be measured in real

neurons. To our synthetic data, Gaussian noise is added at each time point. We then run
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the data assimilation algorithm and compare the estimations of unknown parameters and

unobserved states to their true values. Following this, the true values or trajectories are

compared to the model predicted trajectories outside of the estimation window.

4.1.3 Data Assimilation on Real Data

A twin experiment informs us about what measurements are necessary in order

for data assimilation on a real system to succeed. Our twin experiments on a single

compartment HVCI neuron, to be described in a later section, demonstrate the conditions

that a time series measurement of only the voltage will suffice to produce accurate

predictions. Bounds, such as those on kinetic parameters associated with ICaT , were

chosen to be around values reviewed in the literature [33]. Experimental voltage data

was sampled at either 50,000 or 10,000 Hz. Lower time resolution has the disadvantage

that less subthreshold information is available. However, because simulations are run

on single computing nodes and therefore larger problems take a long time to run, an

advantage of coarse grained time resolution is that currents stimulating more degrees of

freedom in the model can be chosen. This also reduces the numerical difficulty of the

optimization problem substantially. Bounds and estimates of the parameters are given

in table 4.1. ENa, EK , EH , VT , and [Ca]ext are known for these neurons, so were fixed

during data assimilation.

Table 4.1: Parameter estimates after 28 annealing steps using a voltage recording of an
actual HVCI neuron as input into the data assimilation algorithm. The predictions are
good, and a few of the parameters are at or near the bounds, but most are somewhere
in between. A ‘-’ here denotes that a parameter was set at the indicated value because
it is either fixed by experiment or well known (The various Ex’s and the extracellular
calcium concentration [Ca]ext), for example.

Parameter Lower Bound Upper Bound Estimate

Cm(nF) 0.01 0.033 0.0317
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Table 4.1 continued.

Parameter Lower Bound Upper Bound Estimate

gNa(µS) 0.01 10.0 0.63

gK(µS) 0.01 15.0 2.15

gH(µS) 0.0001 0.01 0.0032

gCaT (µSµM−1) 0.00001 0.01 0.0064

gL(µS) 0.0001 0.01 0.0052

ENa (mV) - - 55.0

EK (mV) - - -90.0

EH (mV) - - -40.0

EL (mV) -90.0 -30.0 -66.32

θH (mV) -85 -55 -81.62

σH (mV) -62.5 -5.0 -9.80

tH1 (ms) 1.0 1000.0 214.39

tH2 (ms) 10.0 2000.0 157.80

θHt (mV) -80.0 -40.0 -59.70

σHt (mV) -62.5 -5.0 -5.52

θa (mV) -80.0 -30.0 -30.0

σa (mV) 5.0 62.5 32.9

ta1 (ms) 0.01 5.0 4.44

ta2 (ms) 1.0 20.0 4.24

θat (mV) -80.0 -40.0 -55.12

σat (mV) 5.0 62.5 5.0

θb (mV) -90.0 -60.0 -61.98

σb (mV) -62.5 -5.0 -62.5
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Table 4.1 continued.

Parameter Lower Bound Upper Bound Estimate

tb1 (ms) 0.01 10.0 2.90

tb2 (ms) 1.0 100.0 7.57

θbt (mV) -90.0 -50.0 -59.6

σbt (mV) -62.5 -5.0 -15.1

θm (mV) -50.0 -30.0 -32.304

σm (mV) 5.0 62.5 32.4

tm1 (ms) 0.001 1.0 0.001

θh (mV) -60.0 -20.0 -58.54

σh (mV) -62.5 -5.0 -59.2

th1 (ms) 0.01 1.0 0.42

th2 (ms) 1.0 10.0 4.44

θht (mV) -60.0 -20.0 -60.0

σht (mV) -100.0 -5.0 -12.5

θn (mV) -60.0 -20.0 -30.01

σn (mV) 5.0 62.5 62.5

tn1 (ms) 0.01 1.0 0.01

tn2 (ms) 0.1 10.0 10.0

θnt (mV) -60 -20 -30.79

σnt (mV) -100.0 -5.0 -37.7

φ(µMnA−1) 0.01 10.0 3.88

τCa (ms) 0.1 100.0 0.143

VT (mV) - - 12.5

[Ca]ext(µM) - - 2500.0
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Table 4.1 continued.

Parameter Lower Bound Upper Bound Estimate

[Ca]0(µM) 0.01 5.0 1.11

4.2 Results

4.2.1 Data Assimilation for a Real HVCI Neuron

As a preliminary analysis we attempted data assimilation with voltage recordings

obtained from real HVCI neurons in vitro. The estimates for parameters during this

analysis were used to later generate synthetic data used in twin experiments to better

understand the extent that our method of data assimilation is able to recover dynamical

properties of single neurons. Our estimation window consisted of 16001 time points

sampled at 10000 Hz. These data - the resulting estimation of the voltage, the comparison

of the obtained prediction of the voltage with the actual recording outside of the training

window, and the stimulating current used - are plotted in Figure 4.1. The parameter

set obtained from data assimilation is included in Table 4.1. The results of prediction

agree well with the data. As discussed in Section 4.2.2, qualitative features of HVCI

neurons including a sag in the voltage in response to hyperpolarizing current injection

and rebound spiking upon termination of a hyperpolarizing stimulus were reproduced

by this estimated parameter set. When IH is blocked by setting gH = 0 in the model

and simulating the behavior of the neuron, the sag is eliminated and weaker rebound

spiking is observed. When ICaT is blocked in addition to IH , neither the sag nor rebound

spiking is observed, and the resting membrane voltage is depressed by about 10 mV, all

in accordance with experimental observation [47, 19].



74

Figure 4.1: Top: Voltage trace (blue) and injected current (red) used in data assimilation,
obtained from an HVCI recorded in vitro.
Bottom: Comparison of estimated voltage (red) and predicted voltage for times t > tM
with the recording (black). The prediction is obtained by integrating the configuration
of the system at the end of the estimation window x(tM) forward with the estimated
parameters. The agreement between prediction and observed data is excellent.



75

4.2.2 Qualitative Behavior of HVCI Model

Previously performed experiments on HVCI neurons in vitro show that a sag in

the voltage appears when negative DC injected current is applied. When this negative

DC current is removed, rebound spiking is observed [47, 19]. [19] also shows through

pharmacological manipulation and computer modeling that the biological mechanisms

responsible for this are a T-type calcium current and a hyperpolarization activated cation

current. [33] describes features of T-type calcium currents in the central nervous system.

Channels gating these currents are open only when their simultaneous activation and

deinactivation are achieved. When the neuron is depolarized, ICaT becomes increasingly

inactivated and deinactivation requires a duration of quiescence or hyperpolarization.

During hyperpolarization, IH causes a sag in the voltage waveform to appear. Deinacti-

vated ICaT acts in conjunction with IH when a neuron is released from hyperpolarization

to cause rebound spiking.

HVCI neurons are highly excitable, firing with high frequency in response to de-

polarizing current pulses. This may be in part due to the depolarizing influence of IH and

ICaT which bring the neuron close to firing threshold. Large maximal conductances gNa

and gK corresponding to the currents INa and IK may also contribute to high excitability.

Table 4.1 shows the set of parameters that were used in generating Fig. 4.2. When

developing a model, a central idea to data assimilation is that the form of the model must

be determined by the modeler. However, once the model is specified, the values of the

unknown parameters are to be determined by the algorithm.

IH and ICaT have the following form:

IH(V (t)) =gHH(t)2(EH−V (t))

ICaT (V (t), [Ca](t)) =gCaT a(t)3b(t)3
ΦGHK(V (t), [Ca](t))

(4.4)

In Figure 4.2 we verified that our model produces the expected results: IH induces
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Figure 4.2: Qualitative features of the HVCI model neuron with a parameter set (Ta-
ble 4.1) obtained from data assimilation on a real HVCI neuron. When IH and ICaT are
not blocked, the model produces rebound spiking when released from hyperpolarizing
current injection. When IH is blocked but ICaT is not blocked, the model produces weak
rebound spiking while the sag disappears (top). When IH and ICaT are both blocked,
neither rebound spiking nor a sag are seen (bottom). Additionally, the resting membrane
voltage is depressed by about 10 mV, in accordance with experimental observations [19].

sag, while IH and ICaT both contribute to the rebound spiking. When gH is set to zero, the

sag is eliminated while weaker rebound spiking remains. When gCaT is also set to zero,

both the sag and rebound spiking are eliminated (Figure 4.2). This verifies the results of

pharmacologically blocking IH and ICaT [19].
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4.2.3 Real Data: Dependence of Data Assimilation Results on Stim-

ulating Currents and Sample Rate

We contrasted the effects of different stimulating current protocols on the results

of data assimilation and examined the structure of model ’symmetries’ given assimilated

data collected from HVCI neurons in vitro. A ’symmetry’ is the presence of multiple

sets of parameters and initial conditions that produce similar voltage waveform behavior

given a stimulating current. More precisely, integrating forward our HVCI model using

a number of estimated parameter sets produces indistinguishable (or nearly so) time

evolution in the voltage given a stimulating current protocol. A number of measures, to

be enumerated below, were used to analyze the structure in the model producing these

symmetries given the assimilated data. To explore the tradeoffs given finite computational

power between stimulating extra degrees of freedom and losing resolution of the measure-

ments in time by downsizing the measured data, the same voltage traces were sampled at

different frequencies. One set was sampled at 50 kHz, while the other set was sampled at

10 kHz. We used 24001 data points (480.02 ms) when analyzing the 50 kHz voltage trace

and 10001 data points (1000.1) data points when analyzing the 10 kHz voltage trace. For

either the 10 kHz or 50 kHz sampling rate conditions, 3 different stimulating current pro-

tocols were used to drive the voltage; a step current, a high frequency chaotic current, and

a low frequency chaotic current. The quality of the resulting estimates were based on the

predictive capabilities of the model estimations. In each case the lower frequency chaotic

current protocol producing a voltage waveform with the highest quality predictions. The

step current produced the lowest quality predictions, while the high frequency chaotic

current performed in the middle. This is in contrast to the situation in twin experiments

in section 4.2.5, where the step current and low frequency chaotic current stimulus fared

the best, with the high frequency chaotic current giving the most mediocre results. This
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discrepency can be accounted for by the fact that the voltage waveform of the model

neuron in twin experiments did not become driven to the subthreshold regime, while the

voltage of the in vitro HVCI neuron did become driven to this regime given the same

stimulating current. Since ICaT and IH are both active in the subthreshold regime, the

assimilation failed to produce a model which captured the effects of these currents when

the synthetic voltage waveform was presented as data. Another possible factor is that due

to the low pass filter properties of the differential equation giving the time evolution of

the voltage, the added Gaussian noise in the synthetic voltage waveform in section 4.2.5

was so large that the signal to noise ratio was too small to inform the model in the case of

a high frequency stimulating protocol. The step current protocol likely performed better

with synthetic data due to the fact that the system generating the data is identical to the

assimilated model, a simplification not available in the case of real physical systems. We

now turn to the use of data assimilation in the analysis of real neurons.

When multiple excitatory ionic currents such as ICaT and INa with similarly fast

activation times are simultaneously present in a model, different combinations of ICaT

and INa can lead to voltage behavior which appears the same. There are a few other ways

to characterize how estimates which produce similar and accurate predictions might be

structured.

1. Plot the max attained amplitude and time averaged magnitude of individual ionic

currents for each set of parameters as compared to the true value.

2. Compare the relative probability of each estimate producing accurate predictions

by examining the distribution of the cost function.

Analysis of data will be provided in the same format for each stimulating current

protocol and each of the sampling rate conditions as in experiments with synthetic data in

section 4.1.2 below. In each section, the stimulating current and driven voltage waveform,
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the action level plot, box plots showing the distribution of the estimated average value and

maximum magnitude of each of the theoretical ionic currents, and exemplar plots of the

estimation and prediction beyond t = tM of the time evolution of the voltage waveform

and theoretical ionic currents will be presented for each stimulating current protocol.

4.2.4 Important Comments

In the rest of the chapter, we present only the results of twin experiments and

analyses done on synthetic data. The patterns we found and discuss below in the analyses

of synthetic data were replicated on real data. We note here that due to the fact that real

world neurons are much more complicated than our models, the interpretation of the

meaning of estimated parameters and what constitutes accurate model predictions is less

clear. For those results, the interested reader may refer to the archive preprint [7] which

this chapter is based on.

We were also interested in what would happen if ICaL were added to the model

in addition to the other four ionic currents, INa, IK , ICaT , and IH . The addition of ICaL

did not improve the quality of the estimations and predictions. Data assimilation with

addition of ICaL produced a variety of distinct parameter sets, but none of these parameter

sets produced estimates differing significantly enough in the value of the cost function

to dominate the contribution of the path integral. However, dropping ICaT and retaining

ICaL eliminated the ability of the assimilated model to reproduce rebound spiking. This

suggests that ICaL is not important for reproducing observed behavior and therefore can

be dropped from the model.

We also attempted data assimilation at a variety of sampling rates higher and

lower than 10 kHz. For conditions in which the sampling rate was higher than 10 kHz,

we increased the dimension D of the problem so that the estimation window was the same

length in time for a 50 kHz and 25 kHz condition and allowed the algorithm to run as
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long as necessary to complete. Even with the condition of increasing the computational

resources available for the problem, we did not find any improvement in the quality of

predictions or undesirable multimodality of the probability distribution.

4.2.5 Twin Experiments: Dependence of Data Assimilation Results

on Stimulating Currents and Sample Rate

To continue our investigation into parameter set degeneracies and how success-

fully our data assimilation methods produced accurate predictions when the sampling

rate and stimulating currents varied, we compared predictions from 6 different conditions

using synthetic data generated from our model with the estimated parameters of Table

4.1. For this analysis, 3 different current protocols from real experiments were used for

data assimilation. As before, to explore the tradeoffs given finite computational power

between stimulating extra degrees of freedom and losing resolution of the measurements

in time by downsizing the measured data, the same voltage traces were sampled at

different frequencies. One set was sampled at 50 kHz, while the other set was sampled

at 10 kHz. The same stimulating current waveforms were used here as with DA on real

data to demonstrate the presence of multiple sets of parameters and initial conditions

that produce similar voltage waveform behavior when the system producing the data was

known. Similar measures of these degeneracies were used here as were in the analysis of

real data, to be enumerated again below. For all conditions, the length of the estimation

window was 16001 time points. This is around the maximum possible number of time

points which allows the estimation procedure to complete in 24 hours given constraints

on our computational resources. For 10 kHz, this is a 1600.1 ms time window, while for

50 kHz, this is a 320.02 ms time window. For annealing, α = 2 and β is incremented by

1 at each annealing step.

The stimulating current protocols, along with the response voltage and represen-
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tative estimates and predictions for each protocol and sampling rate condition are shown

in Figures 4.3-4.5.

Integrating forward our HVCI model using a number of estimated parameter

sets produces indistinguishable (or nearly so) time evolution in the voltage given a

stimulating current protocol. For example, when multiple excitatory ionic currents such

as ICaT and INa with similarly fast activation times are simultaneously present in a model,

different combinations of ICaT and INa can lead to voltage behavior which appears the

same. Because information about the flux of ionic currents is not typically available

when taking recordings from real neurons, we first examine these potential shortcomings

when estimating the accuracy of the inferred parameters in a single neuron model using

synthetic data, where all the unrecorded processes are known to the experimenter but

withheld from the data assimilation algorithm.

There are a few ways to characterize how estimates which produce accurate

predictions might be structured.

1. Plot the max attained amplitude and time averaged magnitude of individual ionic

currents for each set of parameters as compared to the true value.

2. Find whether estimations producing accurate predictions have significantly differ-

ent values of the cost function.

3. Plot the estimated I-V curves for individual ionic currents and compare them to the

true I-V curves.

4. Compare the value of all sets of estimated parameters to the true set of values.

The results of twin experiments with model HVCI neurons suggest that when

data assimilation produces a set of high quality predictions in the voltage traces with

different estimated parameter sets, there is clustering in all three of these measures. When
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Figure 4.3: Typical data assimilation results using a step current on a synthetic HVCI
neuron. Substantially varying model parameters produce similar quality results. The
variation is larger when a step current rather than a complex current is used. Data and a
representative estimate and prediction are plotted for the 50 kHz and 10 kHz condition,
top and bottom graph respectively. The graphs show membrane voltage (top of each
graph) in response to injection of a step current waveform (bottom of each graph). The
black traces show recorded voltage, and the blue traces show estimated voltage from the
data assimilation procedure for times between 0-320 ms or 0-1,600 ms, during which
all state variables and parameters of the model were estimated. The red traces show the
voltage predicted by integrating the completed model with estimated parameters and
state variables forward in time beyond 320 ms or 1,600ms.
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Figure 4.4: Typical data assimilation results using a high frequency complex current
on a synthetic HVCI neuron. Substantially varying model parameters produce similar
quality results. With the high frequency complex current protocol used here, the
neuron is not driven far into the subthreshold regime. Passive membrane properties
are therefore not estimated well, and the overall prediction quality suffers. A 50 kHz
sampling produced results no better than a 10 kHz sampling.
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Figure 4.5: Typical data assimilation results using a low frequency complex current on a
synthetic HVCI neuron. As with other protocols, substantially varying model parameters
produce similar quality results. The 50 kHz protocol (top) and the 10 kHz protocol
(bottom) use the same number of time points and therefore have the same dimensionality.
They both require a similar amount of computation time to finish (around 24 hours on
a single compute node), but because the 10 kHz protocol samples additional regimes,
including the subthreshold regime, it produces much better predictions.
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the accuracy of predictions degrades, the variance of the distributions for each measure

increase. Once the predictions have become sufficiently inaccurate, usually when the

subthreshold behavior is not matched well and the predicted spike timing is off, the

clustering is gone and there are significant deficiencies in the estimations.

Figures 4.6 and 4.9 demonstrate that none of the sets of estimated parameters

producing accurate predictions for each stimulating current protocol can be considered

to be much more probable than any of the others. This is because the value of the cost

function is not very different for each distinct estimated parameter set path, so the integral

in the expression for the probability distribution

P(x(tM)|Y (tM)) =
∫

dX exp(−A0(X ,Y ))

is highly multimodal and does not have any dominant contribution. An expected

value for the parameters and estimated initial conditions can still be computed, but

because there is no reason to believe that all the minima contributing to the integral have

been found or that the expected value of parameters will correspond to the true value,

there is not a sound basis for calculating this expected value.

The values of average and max currents and maximally attained values of I-V

curves are also systematically observed to be biased upwards of their true values. These

data support the hypothesis that large depolarizing currents can be offset by similarly

large rectifying currents while maintaining an identical net membrane voltage. Some

of the degeneracies in estimated parameter sets were merely due to deficiencies in the

training data presented to the algorithm. In such cases, the model produced accurate

predictions only when the stimulating current presented after the estimation window

was sufficiently similar to the training data, but comparison of the maximally attained,

1-norm, and theoretical I-V curves between different recording epochs showed that

some characteristics of the current protocols caused these measures to be closer to their
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true values despite superficially comparable performance in forward prediction. This

demonstrates the importance of validating the model in a number of ways, such as

forward integration of the model with a variety of novel stimulating current waveforms

in the prediction window.

In the graphs in Figure 4.3 - 4.5, the quality of predictions fell into roughly 3

classes of high, medium, and low quality. High quality predictions matched the voltage

waveform of the data exactly. Medium quality predictions showed a close correspondence

with subthreshold behavior but missed some spikes. Low quality predictions did not

match the subthreshold behavior and missed many spikes.

The 3 stimulation protocols are a step current protocol, a high frequency complex

waveform protocol, and a low frequency complex waveform protocol. The step current

protocol sampled at 10 kHz produced high quality predictions, while the 50 kHz step

current protocol produced medium quality predictions. The high frequency complex

current protocol sampled at 10 kHz produced low quality predictions, while the 50

kHz version produced medium quality predictions. The low frequency complex current

protocol sampled at 10 kHz produced high quality predictions but produced low quality

predictions when sampled at 50 kHz. These patterns can be seen in Figures 4.3 - 4.5.

However, when the plots of the theoretical I-V curves and maximal/1-norm

currents were analyzed, the 10kHz-sampled step current protocol which produced high

quality predictions did less well than the 10kHz-sampled low frequency complex current

protocol. This shows that complex current protocols better sample the available degrees

of freedom in the model than step current protocols. The resulting parameter sets are

then likely to generalize better to other stimulating current waveforms.

The high frequency complex current waveform may have generated parameter sets

less able to generalize well to new driving current waveforms because the subthreshold

behavior of the neuron was not adequately explored during the estimation window.
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Although the neuron was highly excited during the estimation window, it spent most of

its time in similar regions of phase space, along the limit cycle trajectory of a spike. This

supports the idea that driving the voltage of a neuron into as many regions of phase space

available to the model as possible is crucial when attempting to estimate the parameters

and unknown states. The poor performance is likely also due to the fact that the RC time

constant of the membrane responded only weakly to the rapidly oscillating stimulating

current waveform. This information in the voltage waveform was erased by the addition

of ≈ 1 mV measurement noise, resulting in bad model estimates.

4.2.6 Twin Experiment: Step Current, Sparse

The step current protocol sampled at 10 kHz produced high quality predictions,

also doing well on the clustering measures above. Out of 25 paths examined, 21 (84%)

produced high quality predictions. In each path examined, all anneal steps producing good

predictions were retained. This is likely to be a confounding source of clustering in the

measures used because of the similarity of the cost function landscape between annealing

steps in the numerical procedure used to locate the lowest minima. A subset of these high

quality predictions produced the best predictions, but in order to explore the distribution

of the clustering methods above and to simulate conditions in a real experiment where

unresolved processes are not known and low error on the training and validation data does

not necessarily imply good generalization ability of the model, all accurate predictions

were retained. One strategy to evaluate the ability of the algorithm to resolve unknown

processes would be to choose only parameter sets producing accurate predictions that

correspond to the lowest value of the action in the action level plot of Figure 4.6. This

strategy is not taken, however, because in real experiments, parameter sets corresponding

to the lowest action values could be overfit to the training and validation data and

generalize poorly to different stimulating currents.
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Estimated parameters were symmetrically distributed around their true values in

many cases with relatively small variance, or were clustered in a region close to their true

values. The step current protocol produced the best quality of parameter estimates, in

terms of the squared deviation of the estimates from their true values. Yet, the theoretical

I-V curves were of lower quality than their low frequency chaotic current protocol

counterparts. Among the very best of these predictions, the variance of the clustering

measures would likely be smaller. The quality of predictions increased as the number of

anneal steps increased, with no degradation in their quality in the range of beta completed

in 24 hours.

The primary difference between this set of predictions and the other set of high

quality predictions in the next section is that the action level plot plateaued (Figure 4.6)

and did not begin to increase again (Figure 4.9).

In the set of estimated parameters, we found that the ionic current amplitudes

were estimated to be too large. This is because excessively large estimated depolarizing

currents can sometimes be offset by excessively large rectifying currents. Other possible

symmetries involve an increase in the maximal conductances and/or larger widths in the

steady state activation functions for each ionic current offset by an increased value of the

thresholds. In fact, this was often observed to be the case.

Next, the steady state value of the ionic currents as a function of voltage was

calculated by substituting the steady state activation and inactivation functions in the

expressions for the ionic currents. The pattern here was that the I-V curves for the

excitatory currents INa and ICaT were shifted to the left, as shown in Figure 4.7. The

estimated I-V curves tended to match the shape of the true I-V curves less well using

the step current protocol than the curves obtained from the complex current protocol,

shown in the next section. This is likely due to the fact that the range of parameter sets

which assimilate the data from the simpler step current drive is larger than the range of
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Figure 4.6: Action level (cost function) plot for the sparsely sampled step current
protocol. The natural logarithm of the action is plotted against β for α = 2. None of
the estimated paths produce dominant contributions to the variational integral because
the corresponding values of the cost function are not appreciatively different. The
action flattens out with increasing β, and in contrast to the situation in Figure 4.9 in the
low frequency complex current protocol, does not begin to rise again. Although these
models described the data in the estimation and prediction window well, comparison
of the estimated theoretical I-V curves with their true value shows that these estimated
models are inferior to the models corresponding to the lowest action levels of Figure
4.9. This demonstrates the importance of validating an estimated model in many ways,
such as with a variety of novel stimulating currents in the prediction window.

parameter sets assimilating the low frequency complex current protocol, which puts more

constraints on the values of the parameters in the assimilation window.

The steady state activation curves for IK and IH are shown in Figure 4.8. The IH

waveform was not estimated as well as other current wave forms, probably due to the fact

that it is a current that operates on a much slower timescale and could not be sufficiently

sampled in the 1600 ms recording epoch. It also operates at hyperpolarized voltages,

while the stimulating protocol used did not explore this regime of the membrane voltage

sufficiently.
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Figure 4.7: Steady state activation functions for INa (top) and ICaT (bottom) for the
sparse step current stimulating protocol. The red curves are sample curves calculated
from the estimated parameter sets, and the blue from the parameter sets used to generate
the data. The estimates for ICaT appear to cluster around the true value, while for INa

are shifted a bit to the left due to σm being substantially overestimated (not shown) with
little compensation in other kinetic parameters. Overall, the shape of the estimated
theoretical I-V curves using the step current protocol are less like the true theoretical
I-V curves than those estimated using the low frequency complex current protocol of
Figure 4.10
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Figure 4.8: Steady state activation functions for IK (top) and IH (middle) for the
sparse step current stimulating protocol (bottom). The red curves are sample curves
calculated from the estimated parameter sets, and the blue from the parameter sets
used to generate the data. IK seems to be well estimated, though here again σn was
substantially overestimated. To compensate, gK was often underestimated.
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4.2.7 Twin Experiment: Low Frequency Complex Current, Sparse

The low frequency complex current protocol sampled at 10 kHz produced high

quality predictions and did well on the clustering measures. Out of 100 paths examined,

11 (11%) produced high quality predictions. A subset of these high quality predictions

produced the best predictions in the prediction window, but to best explore the distribution

of the clustering of the model, all the levels of quality of predictions were retained.

The graph showing clustering of parameters is once again very large, as there

were ∼40 parameters estimated. Therefore, this graph is omitted. Estimated parameters

were clustered in a region close to their true values, but were systematically overestimated

or underestimated. In no case were all of the parameters correctly estimated. Although

the quality of predictions monotonically increased with the anneal step (β value) in the

range of β completed in 24 hours, the estimated parameter sets were always wrong and

therefore the action began to rise again after an initial plateau, as shown in Figure 4.9.

Despite this inaccuracy, the obtained predictions are still very good, suggesting that the

parameter sets obtained are symmetries in the model given the data. Another possible

explanation for the inaccurate parameter estimations is that the Gaussian noise added to

the data in the estimation window degrades the quality of the estimations.
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Figure 4.9: Action level (cost function) plot for the sparsely sampled complex current
protocol. The natural logarithm of the action is plotted against β for α = 2. None of the
estimated paths produce dominant contributions to the variational integral because the
corresponding values of the cost function are not appreciatively different. The action
flattens out but begins to rise again with increasing β, in contrast to the situation in Figure
4.6. This rising of the action indicates that the model corresponding to the minimum
found in the high dimensional landscape is slightly wrong. The paths corresponding
to these lowest action levels were still superior to those of Figure 4.6 as measured by
forward prediction and by the shape of the estimated theoretical I-V curves compared to
their true shapes, a result of the superior stimulation protocol used.

Next, the steady state value of the ionic currents as a function of voltage was

calculated. The pattern here was that the I-V curves for the excitatory currents INa and

ICaT had an estimated shape which was mostly correct, but with a too-large amplitude.

The curves for the complex stimulating protocol are shown in Figure 4.10. IK also

compares well with its true value, but IH matches less well, especially at subthreshold

voltages, which are not well sampled during the estimation procedure.

The I-V curves for IK and IH are shown in Figure 4.11. Again, the IH waveform

was not estimated as well as other current wave forms, probably due to the fact that

it is a current that operates on a much slower timescale and could not be sufficiently

sampled in the 1600 ms recording epoch. It also operates at hyperpolarized voltages,
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Figure 4.10: Steady state activation functions for INa (top) and ICaT (middle) for the
sparse complex current stimulating protocol (bottom). The red curves are sample curves
calculated from the estimated parameter sets, and the blue from the parameter sets used
to generate the data. The magnitude of the current was generally overestimated. One
respect in which these steady state curves seem to be improved upon the estimations
using the step current protocol is that their average shape is much closer to the true
shape, if sometimes estimated to be of larger magnitude, and they are much closer to
the true value in regions sensitive to turning subthreshold stimulating into an action
potential.
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Figure 4.11: Steady state activation functions for IK (top) and IH (middle) for the sparse
complex current stimulating protocol (bottom). The red curves are calculated from the
estimated parameter sets, and the blue from the parameter sets used to generate the
data. IK seems to be well estimated, though here the parameters σn, gK and θn were
consistently overestimated. IH , however, did not seem to be as well estimated, probably
due to the fact that its overall contribution to net behavior is small.

while the stimulating protocol used did not explore this regime of the membrane voltage

sufficiently.

4.3 Discussion

4.3.1 Conclusions to be drawn from model fit to real data

Attaining a model fit producing accurate predictions to novel stimuli on voltage

recordings from real HVCI neurons, including estimating all parameters entering the
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model nonlinearly such as the kinetic parameters, is a significant achievement. To our

knowledge, our methods of data assimilation are the only methods to date that are capable

of this.

The model fit also reproduced qualitatively observed behavior of HVCI neurons,

including a sag in the voltage in response to hyperpolarizing current injection and rebound

spiking upon release. Additionally, the model was able to reproduce experimentally

observed effects of blocking IH or ICaT . This shows that the corresponding degrees of

freedom in the model were stimulated during data assimilation with the recorded voltage

waveform.

One potential limitation of the current methodology is that all voltage recordings

are obtained by injecting a custom current waveform into the neuron which then drives

the voltage. Even with a well selected complex current waveform, the regions of phase

space of the model neuron are limited to those that can be stimulated at subthreshold

membrane voltages and those that are attainable by relatively stereotyped limit cycle

trajectories traced out during voltage spikes. A potential methodological improvement

could be to control the membrane voltage directly and record the requisite injected current

for bringing the membrane voltage to the control values. With cleverly designed control

voltage waveforms, the region of phase space traversed and available to the assimilation

algorithm could be significantly increased, constraining the number of theoretical I-V

and relaxation curves compatible with the data.

4.3.2 Conclusions to be drawn from data analysis of real data

Out of the six different analyses performed using three stimulating current proto-

cols eliciting a voltage measured from HVCI in vitro, the low frequency current protocol

at 10kHz (1000.1 ms) was the most successful [7]. It appears that the improvement in

prediction and estimation from longer estimation windows due to lower frequency sam-
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pling surpasses any decline in prediction and estimation quality due to lower sampling

rates, which means lower dimensionality of the optimization problem to be solved. It

can also be concluded that a step current is less effective at sampling the I-V curves and

relaxation properties of a neuron to clearly define minima in the action and prevent the

formation of isosurfaces in the cost function which lead to inaccurate models. A chaotic

current, with a region of extended negative current to explore subthreshold membrane

voltages activating IH and ICaT , is required for higher quality predictions.

In general, a chaotic current with slow oscillations relative to the RC time constant

of the membrane and an extended hyperpolarizing region within the estimation region

are needed for the best predictions. Additionally a longer estimation window is more

important than the additional resolution in time of a 50 kHz sampling rate as opposed to

a 10 kHz sampling rate.

In the analysis on real data, the estimated magnitude of IH is less than or equal

in magnitude to the leak current. If a simpler model is desired, this suggests that IH

may be removed from the model. Alternatively our model is missing some other crucial

component, or the parameterization of IH in the model is not realistic.

The magnitude of IH could be as small as it appears, with its main effect in the

subthreshold region, being small but contributing significantly to the behavior of the

neuron. IH and ICaT are complementary and crucial mechanisms in the dynamics of some

neural circuits [33, 54]. Future work should examine the role of IH in the dynamics of

HVC.

4.3.3 Conclusions to be drawn from data analysis of synthetic data

In our HVCI neuron model, different combinations of parameters could produce

accurate predictions and effectively identical voltage traces. Plotting the theoretical I-V

curves from the estimated sets of parameters against their true value shows that max
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conductances g, activation and inactivation thresholds θ, and widths σ can trade off with

each other to produce I-V curves which are similar in shape, and which produce nearly

identical responses in the membrane voltage to different values of the injected current.

There also exist model degeneracies in parameters given the assimilated and

validation data. We found that data assimilation on step currents could produce a variety

of models producing accurate predictions when current waveforms similar to those found

in the estimation window were presented to the neuron. However, the resulting estimated

theoretical I-V curves were less similar to the true theoretical I-V curves than in the

case where a low frequency complex current waveform was presented to the neuron.

If the neuron model estimated from the voltage waveform elicited by the step current

stimulating protocol is presented with one of the chaotic current stimulating protocols, it

is likely to produce inaccurate predictions.

When the voltage waveform produced by driving the neuron with the high fre-

quency stimulating current was presented to the assimilation algorithm, it did not produce

accurate estimated neuron models. This could have been caused by the fact that the high

frequency stimulating current did not sample the subthreshold degrees of freedom of the

neuron model, producing parameter sets able to predict accurately only in stimulating

current regimes producing spiking, but doing relatively poorly when tested in subthresh-

old regimes. Overall, this stimulating current produced estimated theoretical I-V curves

far from their true value.

Another factor explored in our twin experiments on HVCI neurons was the

influence of the tradeoffs in higher or lower sampling rates given limited computational

resources. We found that for assimilation on the HVCI neuron model, 10 kHz time

resolution did better than 50 kHz. In this case, this means that the loss in information

transfer from data to the model by reducing the time resolution was outweighed by the

increase in information transfer by stimulating additional degrees of freedom in the
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model.

Chapter 4 is reproduced from material as it appears in a preprint on ArXiV. “HVC

Interneuron Properties from Statistical Data Assimilation. Daniel Breen, Sasha Shirman,

Eve Armstrong, Nirag Kadakia, and Henry DI Abarbanel. The dissertation author was

the first author on this preprint.



Chapter 5

Use of Data Assimilation for Inference

of CA1 Neuron Pathology in 3xTg

Mouse Model of Alzheimers

Experiments used to characterize altered electrical and molecular properties of

neurons in Alzheimer’s disease are laborious and may fail to detect variability and

multifaceted differences in and across populations of neurons. We present techniques of

data assimilation together with a data mining approach to investigate pathology in the

3xTg mouse model of Alzheimer’s disease combining both amyloidopathy and tauopathy.

We find differences in individual intrinsic excitability and use our biophysically tuned

models to propose mechanisms underlying these differences. The scientific contribution

is primarily methodological, as we presently wish only to show a proof of principle of

the methods. We set a foundation to extend the methods towards investigating alterations

in Ca2+ dynamics and medical applications.

While the etiology of Alzheimer’s disease (AD) is unknown, the production of

beta-amyloid peptides (Aβ) [30] and disruption of Ca2+ signaling [53, 79] in the brain

100
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are involved. Histopathological features of AD, including amyloid and tau pathology,

interact with the calcium signaling dysregulations in a vicious spiral [82, 80].

What is now lacking in the understanding of neuropathology are the links between

underlying causes at the molecular, single cell, and circuits level of the disease and the

behavioral symptoms. Computational modeling offers the potential to link across the

different levels of genes and drugs, synapses and neurons, and cognition and behavior to

provide a unified, testable basis for formulating therapeutic strategies [23, 18, 6, 58, 62,

99].

Mathematical models have been applied to the study of Aβ related excitability

changes [18, 62, 99]. Biophysical neuron models such as conductance based Hodgkin

Huxley (HH) type models contain interpretable and biologically meaningful parameters

capable of reproducing experimentally observed membrane dynamics. Such models thus

provide a framework in which to identify changes in biophysical properties of diseased

cells in a manner that elicits targets for potential therapeutic intervention.

Neurophysiological studies often focus on how AD pathology disturbs synaptic

function [12, 16, 43, 74, 75, 76, 98]. More recently, alterations in intrinsic neuronal

properties have been examined [6, 26, 57, 10, 18, 85, 86, 36, 42, 92, 72]

We wish to identify quantitative changes in the detailed electrical membrane

dynamics between wild type and diseased cells where the latter have been genetically

modified, in mice, to produce analogs to human Alzheimer’s responses. These 3xTg-AD

mice express mutant presenilin (PS1), Aβ precursor protein (APP), and tau, and develop

both plaques and tangles in an age and region dependent manner [63, 64]. The goal is to

further develop HH like models of cortical cells implicated in Alzheimer’s disease and

to inform the use of well designed experiments which will quantify changes, including

intracellular Ca2+ dynamics of these cells. Models will incorporate enough biological

realism to be useful tools in the neuropharmacological process of drug design, such as by
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prescreening a number of compounds for bench testing in the laboratory. An example

would include using the estimated models as a readout for alterations in Ca2+ dynamics

and molecular signaling pathways, an area that has been identified as a target mechanism

where the initial stages of Alzheimer’s can be tracked and where further degeneration of

3xTg cellular behavior can be potentially identified and treated [15]. The present work

investigates alterations in neuronal intrinsic excitability, and sets foundations which can

be used to attend to alterations of Ca2+ dynamics in future work.

We have previously developed methods of statistical data assimilation which have

been successful in incorporating information in complex chaotic and neural systems,

from incomplete data sets [88, 45, 1, 44, 56, 94, 93, 39, 61].

Other methods of parameter fitting in neuron systems include hand-tuning [78],

parameter space exploration [5, 68, 69], gradient descent [5], and evolutionary algorithms

[87, 41, 3]. These methods have yielded the estimation of many states and parameters as

well, but with one or more of the following limitations [17]:

• parameter identifiability issues are not addressed

• the parameters must be heavily constrained, reflecting unlikely prior knowledge

• only parameters which enter the model linearly can be accurately estimated

• make adequate “best fits” but fail to predict

The first and last are crucial shortcomings - work in single neuron modeling often

does not raise the issue about the uniqueness of estimated parameters [17], nor does it

often consider the subjectivity of a good fit. Hand tuning is highly subjective, and even if

a ‘good’ parameter set can be found, it is never certain if there is a better one that has not

been discovered. Methods incorporating a heuristic metric of error, including parameter

space exploration and evolutionary algorithms, may miss best parameter sets and have

poor predictive power.
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The approach advanced here directly addresses the issue of testable model fitting

in neural systems. Previously [88, 45, 44, 56, 39, 61], it has demonstrated success in

estimating all of the parameters in HH conductance models, including those that enter

nonlinearly such as the gating kinetics describing the ion currents. They have also been

shown capable of predicting precise waveform information of the voltage of a neuron

evolving in time according to a novel stimulating current.

5.1 Methods

5.1.1 CA1 Neuron Model

One of the limitations of minimizing a smooth loss function is the danger of

getting stuck in local minima. This tends to yield a number of different parameter

sets which fit the data well and have good predictive power. A more complex model

including more ionic currents would have the advantage of incorporating some elements

of biological realism. However, we are interested in finding alterations in parameters and

features which can be used to distinguish populations of neurons in a biophysical context,

so we must take into consideration this parameter identification problem.

We subjected different neuron models, some including Ca2+ dynamics, to our

methods of parameter estimation. Although we wish to identify alterations in Ca2+

dynamics in 3xTg cells, these models encountered substantial parameter identifiability

obstacles that remain to be overcome. Instead, we settled with a basic HH model,

as it is a biophysically realistic model which provides a simplified arena in which to

cope with obstacles of parameter identifiability. The basic HH model did better at

reproducing many features of the data without the parameter identification issues of

more complicated models. This will set a foundation for future refinements including

calcium and calcium activated potassium currents in the model, which are able to address
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investigating alterations in calcium dynamics.

In our experiments collecting voltage data, we use a current clamp setup, where

voltage traces are measured with a known injected current. Intuitively, one example of

parameter unidentifiability is that different depolarizing and repolarizing ion currents

can contribute to the opening and closing of ion channels underlying voltage response

to injected current. Using only measured voltage, it is difficult to determine what the

relative contributions of different ionic currents are to characteristics of features of the

voltage waveform.

Our CA1 neuron model is thus a basic Hodgkin-Huxley (HH) neuron with only

sodium (INa), potassium (IK), and leak (IL) currents:

Cm
dV (t)

dt
= gNam(t)3h(t)(ENa−V (t))+gKn(t)4(EK−V (t)) (5.1)

+gL(EL−V (t))+ Iin jected(t)

dx(t)
dt

=
x∞(V )− x(t)

τx(V )

x∞(V ) = 0.5(1+ tanh(
V −θx

σx
))

τx(V ) = tx0 + tx1(1− tanh2(
V −θx

σxt
)) (5.2)

Here V (t) is the membrane voltage, Cm is the membrane capacitance, and

Iin jected(t) is a known stimulating current injected into the neuron in a current clamp

setup. gi and Ei denote the maximum conductance and reversal potential for current i,

respectively.

The equations for x are a shorthand for the kinetics of the gating variables m,

h, and n. x∞(V ) is the voltage dependent steady state activation which depends on θx,

the voltage at half activation, and σx, the width of this activation. τx(V ) is the voltage
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dependent relaxation time, describing the rate that the gating variables change to their

steady state values.

Errors in the descriptions of the dynamics of these channels in HH models and

noisy measurements contribute to the parameter identifiability problem. We show, using

our data assimilation algorithm described in section 5.1.2, that we can find sets of

parameters in a basic HH model capable of reproducing nearly exactly the shape of

the waveform of our recorded data. Correctly predicted features include the shape of

the action potential waveform, afterhyperpolarization effects, refractory periods, spike

timing, and subthreshold variations. An example of a prediction is displayed in Figure

5.2.

Our strategy here is to estimate ensembles of models and look for similarities and

differences in patterns in these ensembles across distinct populations of neurons. Since

there are many sets of model parameters which are compatible with the observed data,

we do not attempt to pinpoint a unique ‘correct set’ of model parameters. Each set of

model parameters possessing good predictive power is assumed to be as good as any

other set. We do retain some element of subjectivity in that estimated models are said to

be compatible with the data when predictions, generated by integrating the model beyond

the estimation, are judged to match the subthreshold voltage variations and spike timing.

This subjective evaluation was generally easy as matches to the data were either very

good or very poor.

The criteria used to make this evaluation included checking the value of a number

of features of the estimated models. For example, predictions were checked for action

potentials with a duration within a biologically realistic range (no more than several

ms), whether subthreshold voltages and spike amplitudes were within a few millivolts of

the correct value. Another useful measure involved checking whether the value of the

objective function, defined in section 5.1.2, was smaller than a cutoff value. The cutoff
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value was easily determined as the objective function tended to take either large or small

values which corresponded to very poor or very good fits, respectively.

5.1.2 Methods of Data Assimilation

Data assimilation refers to analytical and numerical procedures in which mea-

surements and models are combined to infer knowledge about a system which is not

available in the measurements alone. Information in measurements is transferred to

model dynamical equations selected to describe the processes thought to produce the

data. The problem is typically formulated as follows. We formulate a model describing

the system with state variables x defined at times t0, t1, ..., tT , and we seek to infer the

model state variables at the end of the estimation window x(tT ) and the unknown model

parameters p.

One of the difficulties commonly encountered in data assimilation arises from

the fact that systems in the real world almost always contain processes that the modeler

is ignorant about or cannot represent. Another difficulty comes from the fact that

measurements are noisy, which limits the ability to infer properties of systems even in

the presence of perfect models. Estimating properties of the dynamics of systems which

are nonlinear, such as neurons, only compounds these problems. Previously, we have

developed methods of data assimilation capable of dealing with gaussian measurement

noise when the neural system under study is perfectly described by a basic HH model

[88, 45, 44, 39]. As our focus here is on data from real neurons, we cannot hope to have

a perfect model, but past studies provide a firm basis on which to build our understanding

here.

We have applied a variational approach which has been used successfully for

estimating models of neurons, using data from neurons in region hvc of the avian song

system, in [56, 61] and remains a reliable choice in complex or simpler models, including
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our basic HH model of CA1 neurons here. A critical concern in variational approaches

to nonlinear dynamical systems is that the familiar least-squares objective function may

give an irregular search surface with many local minima. We addressed this problem

here by including a balanced synchronization term, u(t)(Vdata(t)−V (t)), in the model

dynamics, which regularizes and minimizes the influence of local minima by ensuring

that the solution set defines a model that is capable of synchronizing with the data. The

objective function includes a penalty for this regularization and is taken as

T

∑
t=1

(Vdata(t)−V (t))2 +u(t)2 (5.3)

where Vdata(t) is the measured voltage, V (t) is the voltage output from the model,

and T is the number of discretely sampled time points in the estimation window. u(t)

describes the magnitude of the synchronization term.

The neuron model that we investigated is not known to be chaotic for the bio-

physical range of our parameters, but it is nonlinear, and in the high-dimensional search

space, there may well exist chaotic regions that must be explored by the optimization

routine, and these will benefit from this regularization. If a solution to the model can

be found that is consistent with the data, the value for the control parameter u(t) should

become small relative to the model dynamics at the end of the optimization. The quality

of the model was tested by setting u(t) to zero and integrating the model forward from

the end of the assimilation period using the estimated parameter and state values.

The implementation of the data assimilation algorithm was accomplished through

the use of the open source software package IPOPT (Interior Point OPTimizer) with the

linear solver ma57 [90].
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5.1.3 Detecting Altered Features and Mechanisms

We are interested in identifying features of membrane electrical behavior in our

neuron models which are different between two strains, 3xTg and nonTg. Using the

estimated models, the number of features was expanded from the set of 20 estimated

parameters in the models to include approximately 50 total features.

The predictions, obtained by integrating the model forward past the end of the

estimation window, is the blue trace such as those shown in Figure 5.2.

We trained random and regression forest models using the features and model

parameters to predict labels of interest, including the known type of each neuron (3xTg

or nonTg), threshold voltage, spike half-width, and other features. We used the feature

importance attribute of the trained models to determine the relative importance of each

feature in predicting the value of each label.

We also calculated kernel density functions over the data points in three dimen-

sional subspaces of the 50 dimensional feature space. We used these density functions to

estimate the overlap of three dimensional probability distributions describing the 3xTg

and nonTg neurons. Feature importances significantly reduce the number of feature

subspaces to examine when searching for differences between the two populations.

We have used regression forests to detect predictors of altered features between

3xTg and nonTg strains. These can include model parameters and other features. An

example includes discovering other features and model properties predicting intrinsic

excitability. Threshold voltage and the rheobase are examples of features quantifying

intrinsic excitability. By finding predictors of quantities such as these, we are able to

propose mechanisms causing the observed differences in the two populations of neurons.

We also computed correlations among these model parameters and features, though in

some cases relationships are nonlinear.

It may be that features detected to be altered differ only between subsets of 3xTg
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and nonTg. In this case, if two features A and B are found to be altered, it may be that A

is altered in some neurons while B is unaltered in a other neurons. Then, in some neurons,

feature B may be altered, while A is unaltered in others. A decision tree may reveal this

kind of structure, while a table of variable importances will not. For clarity and simplicity

of the presentation, we do not include decision trees, but mention in passing that splits

along different features descending down the decision tree supported this notion.

In our set of recordings, an epoch is defined as each instance in which recordings

are obtained from a neuron by eliciting a response with a stimulating current. Each epoch

usually involves the neuron being stimulated with a new injected current.

Using our methods of data assimilation, we estimated model parameters for

56 epochs from 5 3xTg and 6 nonTg neurons. Recordings were collected from two

preparations. Each preparation contained one 3xTg and one NonTg mouse, both male.

One preparation used 3 month old mice, while the other preparation used 1 month old

mice. For each data set, we initialized our data assimilation search procedure with 500

distinct sets of parameters sampling each parameter from a uniform distribution defined

between the parameter bounds. At the end of search procedure, many of these parameter

value initializations did not result in an estimated model which passed the validation tests

described in section 5.1.1. These were not included in the processed data set used to

draw inferences about differences between 3xTg and nonTg neuron populations.

In order to balance out the contribution from each neuron and class in the data, we

sampled with replacement from the pool of estimated parameter sets so that each neuron

contributed an equal number of samples to its respective class. Finally, we ensured that

the 3xTg and nonTg pools had equal size.
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5.2 Results

5.2.1 Estimating Ensembles of Model Parameters

Much of the power of the analysis presented here derives from the data assimila-

tion procedure described in section 5.1.2 and elsewhere. When integrated forward, the

estimated model parameter values accurately predict spike timing, subthreshold variation,

afterhyperpolarization, spike amplitude and other features within the range of biological

trial by trial variability. This even holds true with a basic HH model with only the usual

INa and IK currents, despite missing many other currents which are present. Figures

illustrating the data assimilation protocol on the data set are displayed in Figures 5.1 and

5.2. The model fit and prediction of Figure 5.2 is among the best produced, though not

by much. The technical difficulty of estimating the many parameters of even a basic

HH model is challenging because many of the parameters enter the equations of motion

nonlinearily. Although the model fits and predictions are often judged subjectively to be

quite good, they are not perfect and make mistakes in the prediction. This is illustrated in

Figure 5.3, where some of the action potentials and features produced by other currents,

including ISK , are not accurately reproduced.

We do not find that all 3xTg models can be cleanly separated from nonTg. The

differences between estimated parameter sets in the two classes may sometimes be subtle

or nonexistent. This could reflect the fact that 3xTg and NonTg do not always have

strikingly different electrophysiological behavior, or it may be due to present limitations

of the model and the fitting procedure. Because only 11 neurons were analyzed, some of

the differences found may be spurious due to the low sample size. These include some of

the passive membrane properties, as discussed in section 5.2.2. Still, in some aspects,

clear differences in the neural dynamics do emerge.
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Figure 5.1: Recorded voltage data and injected current. The stimulating current wave-
form used in the data assimilation procedures is a combination of a pseudo-noisy current
and the output of a chaotic model. The pseudo-noisy current was created by uniformly
sampling current values about every 20 ms and linearly interpolating in between. The
chaotic current waveform is the output from the Lorenz63 model used as a stimulating
current.
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Figure 5.2: Recorded voltage data (black), model estimate (red), and prediction (blue)
obtained after the minimization procedure. The quality of the model estimate alone
does not give any information about whether the estimated parameters are good. To
evaluate the goodness of fit of the parameters to the data, a prediction must be generated
by integrating the equations of motion, using the estimated parameters, starting from
the end of the estimation window.
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Figure 5.3: Estimated voltage (black) and prediction (blue), obtained by integrating the
estimated model forward in time. The prediction is displayed in higher resolution to
clearly that while the prediction is very good, it also does not always perfectly reproduce
all spikes and features like the AHP likely produced by the calcium dependent potassium
current ISK . A future area of improvement would be to reproduce the AHP following
durations where the neuron is active. Refinements to the model and methodology
overcoming model identifiability issues not adequately addressed by other work will be
necessary.
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5.2.2 Identifying Differences Between 3xTg and nonTg Neurons

Random Forest Analysis

Figure 5.5 shows the separation achieved in a subspace including the membrane

time constant τmem =Cm/gL, the leak conductance gL, and the membrane capacitance

Cm. Among the full set of features tested for differentiating classes of neurons, this and

other subspaces including these features are excellent at distinguishing between the two

populations as measured by variable importance calculated from the trained random

forest classifier. However, the boundary that one can draw between the NonTg and

3xTg strains in subspaces including these features is very complicated. A complicated

separating subspace between the two strains may simply be the result of the fact that

the number of neurons analyzed is not very large. Therefore, we hesitate to draw any

conclusions about whether this separation is biologically significant.

The fact that membrane capacitance Cm, leak conductance gL, and membrane time

constant τmem are excellent predictors of neuron strain because the number of neurons is

low caused us to exclude them from the calculation of variable importances predicting

neuron type in Table 5.1. Without the influence of these parameters, rheobase, threshold

voltage, IDC = gLEL, and features measuring excitability and properties of INa and IK

during action potentials are the most important distinguishing characteristics. Rheobase

is defined as the lowest value at which a sustained step current first causes an action

potential. The voltage at which this occurs is the threshold voltage. Rheobase and

threshold voltage are depicted in Figure 5.4, where simulated and measured traces are

compared. gL is the leak conductance, while EL is the voltage at which the leak current

IL reverses.

The time derivative of the ionic currents were calculated at the threshold volt-

age during an action potential, denoted İNa(Vthres). There are two times at which the
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Figure 5.4: Injected current (purple) eliciting measured (black) and simulated (blue)
voltage responses. The simulated trace (blue) is obtained by integrating forward the
model equations with the estimated parameters. In the experiments, the voltage is held
at -70 mV. Rheobase is then defined as the smallest magnitude of the step that produces
an action potential, here approximately 120 pA. The threshold voltage is the voltage at
which the action potential occurs, here at approximately -50 mV. Although the model
reproduces some features of the voltage trace well, some ionic current currents including
ISK are likely missing.
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Table 5.1: Features predicting neuron strain (3xTg or NonTg) are calculated using the
variable importance from a random forest classifier. Rheobase is the lowest sustained
step current required to elicit an action potential, while threshold voltage is the voltage
at which the action potential is first elicited.

Features Predicting Strain Var Imp Centroid Difference
Rheobase (pA/pF) 0.122 -1.648
Threshold Voltage (mV) 0.070 -6.301

voltage passes through the threshold value, one during the upstroke, and one during the

downstroke. There was a pattern detected of altered values between the two strains in

the time derivaties of INa and IK at threshold voltage. However, the magnitudes of INa,

IK , and their time derivatives were not found to be altered. It is not clear why İNa(Vthres)

and İK(Vthres) are effective predictors of neuron strain, but altered threshold voltage may

partly account for this.

IDC is associated with a measure of excitability distinct from, though sometimes

related to, reduced threshold voltage or rheobase. In the model, increasing EL increases

IDC, which can counteract repolarizing currents such as IK during trains of action po-

tentials and reduce depolarizing currents needed to generate an action potential. Larger

IDC does not consistently predict decreased threshold voltage and current in the set of

estimated models. Instead, IDC may be related to these values in more complicated ways.

In some cases, IDC is increased as a compensatory mechanism to retain a similar threshold

voltage when properties of IK and INa are altered. Still, in Table 5.4, increased IDC does

have an overall weak negative correlation with rheobase. A similar explanatory principle

may account for why other features effectively predicting the value of a given feature in

a regression tree structure show only weak correlations in Tables 5.3 and 5.4.

Alterations in the kinetic properties of INa and IK in the two strains of neurons

were also detected. Altered parameters are listed in Table 5.2. The regression forest

models of Tables 5.3 and 5.4 show that θm, θh, and σh are important predictors of

threshold voltage and rheobase. These are features which are different between neuron
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Figure 5.5: The (Cm, τmem =Cm/gL, EL) random variable subspace gives one of the best
separations between the two strains consistent with the calculated variable importances.
There are more subspaces in which the two strains separate, but we focus on this
subspace as these features are biologically interpretable while showing that the methods
presented in the paper detect a separation between the two strains. In this subspace, the
separation is complex and the data is sparse, so strong conclusions should not be drawn
from it. 3xTg estimated values are plotted in red, nonTg cells in blue. Other subspaces,
such as those of Figures 5.6 and 5.7, give separations of 3xTg and nonTg values which
are simpler with attendant mechanistic interpretations we describe.

Table 5.2: Model parameters predicting neuron strain. IDC = gLEL is equivalent to an
applied DC current, EL is the potential at which the direction of the leak current IL

reverses. σh is the width of the voltages at which the gating variable h describes the
inactivation of INa, thetam is the half-activation voltage of m describing the activation
of INa, and σht is the width of voltages where the relaxation time are large.

Params Predicting Strain Var Imp Centroid Difference
IDC (pA/pF) 0.134 0.954
EL (mV) 0.117 -1.322
σh (mV) 0.096 10.672
θm (mV) 0.087 -3.701
σht (mV) 0.058 4.535
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Table 5.3: Feature importances for threshold voltage using only the model parameters
as predictors. thetam is the half-activation voltage of m describing the activation of INa.
σh is the width of voltages where h describes the inactivation of INa. The appearance
of θm and σh shows that in the dataset, variations in properties of INa, rather than IK ,
account for variations in the threshold voltage. Interestingly, a longer membrane time
constant τmem is perhaps associated with lower threshold voltage.

All Params Predicting Threshold Voltage Var Imp Correlation
θm (mV) 0.208 0.392
τmem (ms) 0.127 -0.320
σh (mV) 0.081 -0.363

strains in the random forest model of Table 5.1. The two random forest models predicting

strain then complement each other, with the regression forest models predicting rheobase

and threshold voltage helping to provide a coherent picture of the altered mechanisms

underlying these observed differences.

In the (θm, σm) subspace, shown in Figure 5.6, a separation between 3xTg and

nonTg cells is apparent and provides evidence that altered kinetics in INa results in a

lower threshold voltage in 3xTg. Inspecting Figure 5.6 suggests that there is a weak

linear relationship between θm and σm. One can test θm and σm for collinearity from an

analysis of eigenvalues and eigenvectors of the feature correlation matrix. The correlation

matrix C is has elements Ci j which are the correlation between random variables i and

j. Here, random variables i and j are features and parameters of the estimated neuron

models. When an eigenvalue of this matrix is close to zero, the nonzero indices of the

corresponding eigenvector shows which variables are collinear. Therapeutic remedies

could be screened in one way by checking for whether they can shift the value of θm

and/or σm in 3xTg cells into the nonTg regime of Figure 5.6.

Strain Probability Distribution Overlap

We calculated Gaussian kernel density estimates (KDEs) of the probability distri-

butions over three and four dimensional feature subspaces, grouped by strain. Subspaces



119

Figure 5.6: We can see by inspection of the figure that θm and σm are modestly collinear.
This can also be seen by calculating the eigenvalues and eigenvectors of the correlation
matrix between all features. In two dimensions the separation between the two classes
of neurons becomes stronger than in the case of either of θm or σm individually.

Table 5.4: Feature importances for rheobase using only model parameters. IDC is itself
a current and τmem describes the extent to which the membrane smoothes excitatory
currents. Alterations in INa, rather than IK , are present again as well. For example, larger
gNa predicts a lesser rheobase. The values of θm and θh, parameters describing voltages
where INa become activated and inactivated, respectively, are often more positive when
more current is required to elicit an action potential.

All Params Predicting Rheobase Var Imp Correlation
θh (mV) 0.154 0.183
τmem (ms) 0.111 -0.283
IDC (pA/pF) 0.098 -0.146
gNa (nS) 0.077 -0.295
θm (mV) 0.063 0.224
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Table 5.5: Overlap was calculated between probability density functions for the two
strains in three and four dimensional subspaces representing a particular strain. Sub-
spaces achieving the best separation are in accordance with the top ranked random forest
variable importance features. The probability distributions are kernel-density estimates
using Gaussian kernels. Details about the specific implementation can be found in
the scipy documentation. We repeated the calculation for all four dimensional feature
subspaces. In four dimensions the subspace (Threshold Voltage (mV), İNa(Vthres) Down-
stroke (pA/pF/ms), İNa(Vthres) Upstroke (pA/pF/ms), İK(Vthres) Downstroke (pA/pF/ms))
has the minimal overlap of 3.6%.

3D Subspace Overlap Percentage
(Cm (pF), EL (mV), τmem (ms)) 0.213
(Rheobase (pA/pF), Threshold Voltage (mV), IDC (pA)) 0.368

achieving the best separation were consistent with highly predictive features of the ran-

dom forest models (Table 5.5). As the overlap percentages alone do not give sufficient

information to determine the nature of the separations, visualizing the feature separations

is mandatory. Passive membrane properties tended to give complex separation surfaces

(Figure 5.5), while separations using kinetic properties of ionic current tended to be

simpler (Figure 5.7).

As the dimension of the feature subspaces increases, their number increases facto-

rially, while computational cost of calculating the KDEs grows exponentially. Therefore,

it is not feasible to scale this approach up to higher dimensions, and evaluating feature

importances using random forest models is preferred.
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Figure 5.7: One subspace demonstrating a simple separation with minimal overlap
between the neuron strains. The separating features include those associated with neuron
excitability and are consistent with features selected by the random forest model.
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5.3 Discussion

Electrophysiological experiments typically carried out to characterize membrane

properties are tedious and laborious. The assimilation filter and data mining procedure

presented here together constitute a less time consuming and expensive approach. With

this approach, it is possible to infer the electrical properties, in detail, across a sizeable

population of neurons. This makes it possible to characterize variability and to discover

multifaceted differences which might otherwise be lost due to low sample size and

averaging. This is a step towards further understanding neuronal dysfunction in AD,

with possible application to other neuronal disorders, potentially opening a path towards

evaluating the efficacy of novel potential therapeutics or, conversely, detecting adverse of

effects of compounds targeting other mechanisms.

While the Aβ hypothesis continues remarkably unabated, as yet no Aβ-directed

therapeutic has been successful in human clinical trials. Many of the existing therapeutics

alter properties of ion channels. Principal therapeutics remain cholinesterase inhibitors,

meant to boost acetycholine (ACh) levels. ACh acts through nicotinic receptors (ligand

gated ion channels) and muscarinic receptors. These are G-protein coupled receptors that

could influence Ca2+ signaling through IP3R, neuron excitability through M-channels

and G protein regulated channels. Another therapeutic is memantine, an NMDA-sensitive

receptor antagonist. NMDA-Rs are ligand gated ion channels known for their Ca2+ flux.

These drugs may temporarily treat some of the symptoms of AD, but they do not halt the

progression. It is clear that we need a more comprehensive understanding of the impact

of drugs on neuronal ion channel functionality. A means to characterize properties of

ion channels through a simple, rapid measurement, rather than picking each apart one

channel at a time, would be of considerable benefit.

A present obstacle is the model identifiability problem arising from the numerical
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difficulty of assimilating data to biophysical models which are too complex. Here we have

limited our analysis to detecting alterations in intrinsic excitability of neurons. Consistent

with other work bath applying extracellular Aβ to 1 month old WT mice, we have found

a hyperpolarized threshold voltage [85, 86] as well as a reduced rheobase in 3xTG mice.

However, our study uses relatively young mice, with little or no Aβ accumulation and no

neurofibrillary tangles. Our combined modeling and data mining approach therefore may

have identified detectable electrophysiological functional differences between young

AD mouse model neurons and nontransgenic controls. Our study additionally provides

possible mechanisms underlying these altered features. We mainly find alterations in the

IDC component of the leak current and INa. Others have found a reduction in INa [10] or

reductions in IK [72]. In contrast, we primarily see alterations in the gating kinetics of

INa.

We do not find an alteration in spike width. Reductions [85, 86] and broadening

[72] in spike width have been found elsewhere. The discrepencies are possibly due to

differing mouse models used across studies.

An increased AHP through Ca2+-sensitive K+ conductances has been noted

elsewhere [36, 81]. Our model with only INa and IK cannot detect this AHP, as it requires

a slower current such as ISK which is sensitive to intracellular Ca2+. Incorporating

intracellular Ca2+ dynamics will be the goal of future work.

Chapter 5 is reproduced from material as it appears in a preprint being prepared

for publication. Use of Data Assimilation for Inference of CA1 Neuron Pathology in

3xTg Mouse Model of Alzheimers. Daniel Breen, Clark Briggs, Grace Stutzmann, and

Henry DI Abarbanel. The dissertation author was the first author on this preprint.



Chapter 6

Future Opportunities

There are many things that I didn’t have the time or the expertise to try. Some of

these things, such as using data from voltage clamp and incorporating ISK into the CA1

neuron model introduced in Chapter 5, seem straightforward and promising. Others, such

as implementing new optimization algorithms, would involve expertise in subjects such

as nonlinear optimization and high-performance computing. In this chapter, I discuss

some possible directions for future work.

6.1 Data Assimilation using Voltage Clamp

In patch clamp experiments, the usual methodology has been to design and inject

a current waveform into the neuron, eliciting a voltage response which is measured and

recorded. This is called current clamp. Another experiment that is possible in patch clamp

experiments is to instead control the membrane voltage directly, measuring the injected

current that is required to pass through the membrane to cause the desired change in

voltage. The reason that this experiment, called voltage clamp, might be preferable is that

in current clamp mode, it is not always possible to distinguish the currents which cause

depolarization or repolarization of the cell. The intuition is that there are so many ways

124
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to get a neuron to spike that fitting the model to a spike waveform might not constrain

the parameters very much. For example, the transient sodium current INa and the L-type

calcium channel ICaL might both be responsible for depolarizing the cell membrane. In

current clamp mode, this can cause model identifiability issues of the flavor discussed in

previous chapters. Models with equal predictive power will be estimated using the data,

but with quite different relative strengths of ICaL and INa.

Voltage clamp mode can overcome these issues, as it is possible to control

the voltage within a narrow range so that just one of the currents, say INa, activates,

deactivates, or inactivates. In that case, the strength and gating kinetics of INa could then

be characterized independently of ICaL. After exploring the range of voltages at which INa,

the voltage could be perturbed to find the regime at which ICaL becomes active. Then ICaL

could be characterized, and the process could be repeated for other ionic currents. This is

similar to experiments involving chemical agents which isolate the effects of a specific

current by blocking the others. However, this ‘electrical pharmacology’ has an advantage

over methodology involving chemical blockers. Chemical blockers can be only partially

effective or alter other properties of the cell when they achieve their effect. Additionally,

the effects of chemical blockers can be irreversible, which is highly undesirable in slice

recordings as it can render the rest of the slice as useless. It is therefore desirable to have

a technique which has the capability of isolating the effects of specific currents while

simultaneously leaving the cell and the rest of the preparation unaltered.

An example of a voltage clamp protocol, with an explanation of reasoning under-

lying its design and potential use, is given in Figure 6.1.

Showing that the data assimilation procedure can work using data recorded in

voltage clamp mode would likely be straightforward. Thus, this represents a good

opportunity for future work. One potential limitation of voltage clamp is that, as a result

of the fact that perturbations in the membrane voltage at the site of the patch clamp will
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Figure 6.1: An example of a candidate voltage clamp protocol. The idea behind this
waveform is to gradually ramp up the voltage until the threshold for activating the
current is found. There are 30 steps, each incrementing by one volt after one oscillation.
The steps return to baseline in order to explore the relaxation properties of whatever
current is under investigation. A consideration in the design of voltage clamp protocols
is that the voltage must not change too quickly. A sudden change in voltage will give
erroneous values of the injected current. This artifact manifests because of charging
of the pipette used to patch onto the cell. In order to use this waveform, it would be
voltage shifted and temporally stretched to fit a particular problem. The voltage might
be shifted by -100 mV, very hyperpolarized potentials, to explore the hyperpolarization
activated cation current IH and the passive properties of the membrane, including leak
conductance and the RC time constant at subthreshold potentials. Similarly, the protocol
would be shifted -70 mV to explore ICaT or INaP, -55 mV to explore INa, and somewhere
from -25 mV to -5 mV to explore high threshold calcium currents such as ICaL.
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decay spatially with increasing distance from the pipette, only local ion channels will be

affected by voltage perturbations. Therefore, an experiment using voltage clamp might

miss types of ion channels that are not near the site of the clamp, which is typically at or

near the soma. Therefore, it may be desirable to check the results of data assimilation

using a voltage clamp protocol against estimates obtained using a current clamp protocol.

6.2 Biophysical Neuron Modeling

6.2.1 Modeling Cellular Mechanisms of Alzheimer’s Disease

An aspirational goal is to validate quantitative models which incorporate proposed

disease mechanisms. We investigate potential mechanisms underlying one specific type of

Alzheimer’s which is developed much earlier in life and is genetically inherited. This type

of Alzheimer’s is called familial Alzheimer’s disease. In mice, a condition resembling

hereditary Alzheimer’s which is used as a model for the disease can be generated in mice

with expressing three human transgenes, PSEN1, APP, and MAPT. This is the triple

transgenic mouse model, denoted 3xTg.

PSEN1, or Presenilin-1, is a gene encoding information about transmembrane

proteins called presenilins which are involved in cleaving APP, the amyloid precursor

protein. APP is also a transmembrane protein, which when cleaved gives rise to Aβ pep-

tides. The presence of amyloid beta (Aβ) species are highly correlated with Alzheimer’s

disease. Aβ gathers into clumps which are the characteristic Aβ plaques found in the

brains of people with Alzheimer’s disease. Mutations in PSEN1 cause an increase in

the Aβ42/Aβ40 ratio. Aβ42 is the peptide form which is the far more pathogenic Aβ

oligomer and its presence is highly correlated with Alzheimer’s disease.

The majority of pathogenic APP mutations cluster near the cleavage sites of the

proteases β-secretase and γ-secretase, and generally increase total Aβ levels and/or the
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Aβ42/Aβ40 ratio.

The physiological function of the tau protein is to bind tubulin and stabilize

microtubules, which form the skeleton of the cell. In this way it supports cell differenti-

ation, polarization, and other processes involving the cytoskeleton. Although it is not

clear what the pathologic mechanism of the mutation of the MAPT gene is, it is thought

that an aggregate propagates across synapses, leading to pathological aggregation and

eventually to microtubule breakdown and neurodegeneration, causing the characteristic

neurofibrillary tangles of Alzheimer’s disease.

We investigate one proposed disease mechanism, altered dynamics of calcium

concentration inside the cell caused by mutations in PSEN1 and APP. Increased baseline

calcium levels could be mediated by calcium permeable pores formed by Aβ pores

through the plasma membrane.

Presenilin can function as an endoplasmic reticulum (ER) membrane calcium

leak channel, helping to maintain calcium homeostasis in the ER. The ER is a large

organelle in cells which serves many functions. The one we are concerned with is that

the calcium concentration in the ER is hundreds of times larger than in the surrounding

cytosol. We would then expect that alterations in the functions of the ER could lead to

pathology associated with alterations of calcium dynamics of the cell.

Mutations in presenilin may help cause Familial AD by rendering presenilin

unable to pass calcium ions, though this is a controversial mechanism. Alterations in the

calcium leak current in the ER and calcium balance between the ER and cytoplasm in

the model may reflect this disease mechanism.

Presenilin also interacts with ryanodine receptors (RyRs), causing the ryanodine

receptor to be more active at high calcium concentrations when the channel normally

would be inhibited. RyRs are a class of large proteins cause release of calcium from

the ER when calcium levels increase inside the cell. This is called calcium induced
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calcium release (CICR). Increased sensitivity of RyRs to CICR from the ER is observed

in Alzheimer’s disease. In a model, this could be reflected in alterations to the parameters

governing the kinetic properties of the RyRs. An increased number of neuronal RyRs is

another observed disease mechanism.

Inositol triphosphate (IP3) is a messenger associated with calcium dynamics.

Presenilin alters IP3 receptor (IP3R) activity, manifesting as an increase in the open

probability of IP3Rs at threshold IP3 concentrations and a leakage of calcium from the

ER “at rest” conditions. This may manifest in the model as a change in kinetic parameters

governing the kinetics of IP3Rs.

Finding alterations in these processes using measurements of calcium concentra-

tion and a detailed model of cellular calcium dynamics, such as that discussed in chapter

2 of this dissertation, is a goal of future work. It is possible, but technically challenging,

to obtain measurements of the calcium concentration as a function of time. Additionally,

at the time of writing, these measurements can be done at a frequency of order 10-102 Hz,

far below the resolution of patch clamp recordings, 104 - 105 Hz. This limits the present

scope of experiments that can be done. When better data becomes available, it could be

desirable to drive the neuron in voltage clamp mode, rather than current clamp, to drive

the calcium dynamics into a greater range of phase space. This will help to constrain the

range of estimated model parameter values.

6.2.2 Refinements to Neuron Modeling

CA1 neurons are a class of large pyramidal neurons located in the hippocampus

of the mammalian brain. The hippocampus is involved in memory and is a vulnerable

region in Alzheimer’s disease. It is thought that the L-type calcium current and potassium

current increases with age in mouse models of Alzheimer’s disease. Additionally, due to

increased influx of calcium through the L-type channels, one set of calcium-dependent
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potassium channels is spatially close to L-type channels and therefore coupled to them.

They constitute the calcium dependent potassium current ISK , which is thought to be

increased as well. Therefore, including these currents and a basic description of calcium

dynamics in our neuron model is desirable.

Our baseline H-H model includes, in addition to ISK and ICaL , INa and IK . INa

is a fast activating and inactivating sodium current, while IK is a current summarizing

the effects of the delayed rectifier and other fast potassium channels. Although many

other subthreshold ionic currents exist, trial and error suggests that some currents are

sufficiently similar with another that a single measurement of the voltage is not suf-

ficient to correctly distinguish the contributions from these currents. These currents

include the potassium current IA, IK , and IBK . IH is difficult to distinguish from slow-

afterhyperpolarization current IsAHP and the muscarinic current IM.

The proliferation of sets of model parameters within the H-H framework giving

equal predictive power suggests that conductance based models may be too simplistic.

If this is an underlying reason, this suggests that model parameters should not be taken

literally and that simply adding more such currents does not go far in bridging the

complexity gap between model and system which would remediate the issue of model

error sufficiently. Many other components, including correctly modeling interactions

among subunits of gating proteins, adding in many more compartments to capture the

spatial information of neurons, adding flexibility to the shape of gating variables and

relaxation times, including cell signaling processes modulating the kinetics of channels,

and many others, would have to be included for parameters of a neuron model to be

sufficiently interpretable to justify the hypothesis that adding complexity could aid the

inference problem.

Other less fundamental, but still challening, obstacles include the fact that even

small amounts of error in the voltage could derail estimating the parameters of a ‘suffi-
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ciently accurate’, but very complex model. The numerical difficulty of the optimization

procedure is another large hurdle to such an enterprise. In order to keep the numerical

difficulty of the problem controlled and for the reasons discussed above, we opt out of

including additional complexity in our model. Then the equations describing our H-H

model are the following:

C
dV
dt

= (INa + IK + ISK + ICaL + IL + Iin j)

This equation simply describes current conservation across the cell membrane.

Given a measurement of only the voltage V as a function of time, we can determine

the values of these ionic currents as a function of time. These ionic currents have the

following form:

INa = gNam2h(ENa−V )

IK == gKn(EK−V )

ISK = gSKq(EK−V )

ICaL = gCaLs2
ΦGHK(Ca2+,V )

The various gX are the maximal conductances for each ionic current. EX are the

reversal potentials. m, h, n, q, and s are the activation and inactivation variables for these

currents. All but q have voltage dependent sigmoidal activation functions which relax

to equilibrium with a voltage dependent time constant. q∞ is a calcium dependent hill

function, q∞ =
Ca2

SK
Ca2

SK+K2
SK

, attempting only to model the calcium pool CaSK , considering

the background calcium concentration of the bulk cytosol to be constant. q relaxes
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to its equilibrium value with a calcium dependent time constant. ΦGHK(Ca2+,V ) is

the Goldman-Hodgkin-Katz flux formula, a more accurate form for describing calcium

currents.

We could also consider a model lacking a term ICaL, as its contribution to changes

in membrane voltage might be small, and therefore negligible. Then the influx of calcium

might be modeled as being proportional to INa instead of ICaL, or some other measure.

This would have the advantage of eliminating a potential source of underdeterminacy in

the data assimilation problem and reducing the number of parameters to be estimated in

the model. Then we would merely have for the voltage equation:

C
dV
dt

= (INa + IK + ISK + IL + Iin j)

As discussed in Chapter 5, biologically realistic computational models can be

used in basic and clinical research, such as in the neuropharmacological process of

drug design by prescreening a number of compounds for bench testing in the laboratory.

By understanding the relationship between detailed biological mechanisms and the

parameters in the computational models, the response of the neuron to different treatments

can be predicted by simulation, guiding intuition and leading to better understanding of

disease mechanisms.

Because of the numerical difficulty of data assimilation, computational resources

limit the complexity of a model. Additionally, a model with many terms representing

cell signaling and ion currents may be too underdetermined a problem, so that results of

data assimilation cannot be trusted.

Model fits have made predictions about differences in the electrophysiological

properties of recordings made from Alzheimers mice and wildtype controls, including

the enhancement of calcium and potassium ion currents that have been experimentally

observed previously in aged mice and in mouse models of Alzheimers disease. These
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results are displayed in Figures 6.2 and 6.3.

Despite being an underdetermined problem, we can examine the data for overall

patterns in engineered features or the estimated parameters. Here, we might guess

that the currents ICaL , ISK , and IK are all increased in the 3xTG animals compared to

controls. As we saw in chapter 5, data assimilation may be capable of answering broad

questions about unobserved, altered processes within a system, so long as the model is

approximately correct and not too complex for the number of measurements that are

available. Here, however, the distribution over the possible range of the magnitudes of

ionic currents is very large. There is an unaccecptably high variation in the contribution

of different depolarizing and repolarizing currents. Sometimes, model estimates show

ICaL as primarily responsible for depolarizing the cell. Other sets of model parameters

suggest this role actually belongs to INa, and still others give intermediate roles for INa

and ICaL .

For the purpose of making inferences about the properties of ionic currents for

biophysical and medical applications, additional refinements to the model, improving the

inference algorithm, and/or using additional measurements obtained from physiological

experiments are necessary and a goal of future work. It may also be necessary to find

appropriate statistical measures for hypothesis testing and uncertainty about observed

differences between populations.

6.3 Probing Model Identifiability by Exploring the Sur-

face of the Action

Recent empirical and theoretical work argues that in the case of training large

artificial neural networks, local minima are not a significant problem [20, 28]. In the past,

training neural networks, which involves solving large-scale non-convex optimization
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Figure 6.2: Data assimilation window and prediction window for a recording from
3xTG (top)and wildtype (bottom) mouse hippocampal CA1 neurons. Membrane voltage
in response to injection of a complex current waveform (purple). The black trace shows
recorded voltage, and the blue trace shows estimated voltage from the data assimilation
procedure for times between 0-1,600 ms, during which all state variables and parameters
of the model were estimated. The red trace shows the voltage predicted by integrating
the completed model with estimated parameters and state variables forward in time
beyond 1,600ms.
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Figure 6.3: Ionic Currents for 3xTG (top) and wildtype neurons (bottom) inferred
from their forms given in the model. Data is plotted in black. The magnitude of
the calcium currents and potassium currents are much larger in the 3xTG than in the
wildtype mouse, according to these particular model parameters. However, the reverse
conclusion could also be drawn be examining other sets of model parameters producing
accurate predictions. The estimated and predicted traces from these particular model
fits are given in Figure 6.2.
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problems like those considered in this dissertation, was long thought to be extremely

difficult because of a proliferation of local minima and other obstacles. Recently, however,

it has been found that on a straight path from initialization to solution, even state of the art

neural networks never encounter any significant obstacles [28]. Finding this direction, of

course, is not easy. Yet, although finding a good direction to search in a high dimensional

space is a difficult problem, it is much easier than navigating an error surface that has

complicated obstacles such as local minima or saddle points. This suggests that more

mundane problems including poor conditioning are the primary difficulties in training

neural networks.

Optimizing neural networks generally results in a proliferation of different solu-

tions achieving very good performance. As some metric, such as predictive accuracy on

some task, is generally important, such a proliferation of many good configuratons of

the neural network is not an issue. According to recent work studying neural networks

[20], a large number of saddle points, rather than local minima, trap the search procedure.

These saddle points are thought to proliferate and become progressively more difficult

to escape, with fewer search directions leading to lesser values of the cost function, as

the cost function becomes smaller. Therefore, the authors of [20] develop a ‘saddle free’

Newton method which can rapidly escape high dimensional saddle points, unlike gradient

descent and quasi-Newton methods.

Carrying out a similar analysis for the cost landscape in the parameter estimation

problems considered in this disseration might yield some insight into what goes wrong

during the search procedure. In addition to checking for a complicated structure of the

landscape between random initializations and a solution, it would also be of interest to

interpolate between any two solutions with different model parameters to check whether

there are barriers of high cost in between them. It may be that many solutions yielding

similar values of the cost function and having similar predictive power lie on a connected
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manifold. Applying other search procedures, such as the ‘saddle-free’ Netwon method of

[20], may yield improvements over the present implementation of annealing using the

open source software IPOPT. IPOPT deploys an interior point algorithm, including the

use of line search and Newton’s method.

6.4 Parallelization

Another potential direction is to parallelize the computations to speed up the

process of convergence to local optima. One possible method would be to parallelize

the linear algebra computations while minimizing the action using a GPU. This would

involve writing a custom algorithm, such as one using an interior point method. Another

potential direction would be to develop highly parallelizable Monte Carlo algorithms to

explore the action surface.

6.5 Characterizing a Network of Silicon Neurons

In Chapter 3, we characterized an individual silicon neuron on a neuromorphic

chip and simulated data from an HVCI neuron on it, all using data assimilation. The

chip, NeuroDyn, consists of a small network of 4 such neurons which are synaptically

connected. One natural extension to the work presented in this dissertation is to assimilate

data from other kinds of neurons and emulate those neurons on the chip. Another is

to characterize the synapses on the chip and emulate biological synapses in the silicon

substrate. An additional direction might be emulating several synaptically connected

biological neurons on the chip simultaneously and demonstrating that the methods of

data assimilation can be extended to characterizing small real world circuits.
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