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Abstract

What capacities enable linguistic interaction? While several
proposals have been advanced, little progress has been made in
comparing and articulating them within an integrative frame-
work. In this paper, we take initial steps towards a connec-
tionist framework designed to systematically compare differ-
ent cognitive models of social interactions. The framework
we propose couples two simple-recurrent network systems
(Chang, 2002) to explore the computational underpinnings of
interaction, and apply this modeling framework to predict the
semantic structure derived from transcripts of an experimen-
tal joint decision task (Bahrami et al., 2010; Fusaroli et al.,
2012). In an exploratory application of this framework, we
find (i) that the coupled network approach is capable of learn-
ing from noisy naturalistic input but (ii) that integration of pro-
duction and comprehension does not increase the network per-
formance. We end by discussing the value of looking to tra-
ditional parallel distributed processing as flexible models for
exploring computational mechanisms of conversation.
Keywords: language; interaction; neural networks; produc-
tion; comprehension

Introduction
What capacities enable linguistic interaction? There are a
large number of extant theoretical proposals. A glance at
the literature reveals a host of proposed mechanisms that sup-
port conversation and other sorts of interactive tasks. Some
of these are specific to social or linguistic cognition, such
as mirroring and simulation (Oberman & Ramachandran,
2007), mind or intention reading (Tomasello, Carpenter, Call,
Behne, & Moll, 2005), linguistic alignment (Garrod & Pick-
ering, 2004), and use of common ground (Clark, 1996). Oth-
ers have drawn on domain-general cognitive processes, in-
cluding memory resonance of social identity (Horton & Ger-
rig, 2005), perceptuomotor entrainment (Shockley, Richard-
son, & Dale, 2009), synergies (Fusaroli, Ra̧czaszek-Leonardi,
& Tylén, 2014), one-bit information integration (Brennan,
Galati, & Kuhlen, 2010), coupled oscillatory systems (Wilson
& Wilson, 2005), executive control (Brown-Schmidt, 2009),
brain-to-brain coupling (Hasson, Ghazanfar, Galantucci, Gar-
rod, & Keysers, 2012), and situated processes (Bjørndahl,
Fusaroli, Østergaard, & Tylén, 2014).

Many of these proposals are individually supported by rig-
orous experimentation or corpus analysis. However, language

happens in the “here-and-now” (Christiansen & Chater, in
press) and thus must satisfy a plurality of constraints at the
same time: from the perceptuomotor level all the way “up” to
social discourse and pragmatics (Abney et al., 2014; Fusaroli
et al., 2014; Louwerse, Dale, Bard, & Jeuniaux, 2012). Ac-
cordingly, there remains a need to systematically compare
and articulate the contributions of the suggested mechanisms
in an integrative model of interactional language performance
(Dale, Fusaroli, Duran, & Richardson, 2013).

In this paper, we propose a computational framework that
enables flexible combination and comparison of different
cognitive constraints. We show that coupled simple-recurrent
networks are capable of learning sequential structure from
latent-semantic analysis (LSA) representation of wordforms
in interactive transcripts. As a first case study, we use a tradi-
tional neural-network approach to test the role of production-
comprehension integration during natural language perfor-
mance (MacDonald, 2013; Pickering & Garrod, 2014).

Production, Comprehension, and Prediction
We look to production-comprehension integration to illustrate
this framework. The relationship between production and
comprehension is a key factor in most theories of language
processing. In research on conversational or task-based in-
teraction, these two systems are granted considerable and of-
ten distinct attention. Does language production vary more
as a function of internal constraints of the speaker, or more
in response to the needs of his or her listener (for some re-
view, among many, see Brennan & Hanna, 2009; Ferreira &
Bock, 2006; Jaeger, 2013)? A prominent recent theory takes
these systems to be deeply intertwined. Pickering and Gar-
rod (2014; see also MacDonald, 2013) have argued that an
integration of production and comprehension is critical in un-
derstanding the mechanistic underpinnings of interaction.

Experimental and neuroimaging work suggests simultane-
ous involvement of both aspects of language processing dur-
ing linguistic interactions (e.g, Silbert, Honey, Simony, Poep-
pel, & Hasson, 2014). However, explicit cognitive modeling
can more directly reveal the extent to which, for example,
prediction and understanding are improved as a function of
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Figure 1: (1) A representation of two coupled simple-recurrent networks (SRN) inspired by Chang (2002). A conversant is
modeled as a two-SRN agent. A pair of coupled subnetworks is referred to as an agent network. (2) In the original Chang
(2002) model, production did not influence comprehension. We model the complete integration of production-comprehension
by having these two subnetworks share internal states. (3) A conversation can be modeled as a coupling between two such “nets
of nets,” leading to a second-order recurrent network. Each agent receives input from the other, and shares the hidden states of
its comprehension subnetwork with the input layer of its production when it is its turn. We refer to this second-order network as
a dyad network. (4) This framework can be parameterized to investigate, for example, the effect of explicitly externally shared
information between interlocutors, akin to emerging common ground (black box with dotted lines), or the extent to which one
network is facilitated by having access to the “internal state” of another network (thick solid line).

tighter integration. In what follows, we describe one way to
model human interaction using parallel distributed process-
ing (PDP). Inspired by a predictive approach to language, we
adapt the models of Elman (1990) and Chang (2002) to cou-
ple neural networks into two interacting systems, and show
that such a model can be parameterized in various ways to
test computational claims.

Higher-Order Recurrent Dynamics
We draw inspiration from the successful PDP model of El-
man (1990) and adapted by Chang (2002) to investigate sen-
tence processing in a single cognitive agent. The architec-
ture of this simple-recurrent network (SRN) is shown in Fig.
1, panel 1. This network receives input in a comprehension
subnetwork. In Chang (2002), this was modeled as a set of
input sentence primes. The hidden state of the comprehen-
sion network (activation of nodes at the hidden layer) then
constrains the production subnetwork, and influences its sub-
sequent performance. Such a network has been shown to ef-
fectively model syntactic priming effects (Chang, 2002).1

Each person in an interaction can be represented as a pair
of SRNs – receiving input and generating output with pro-
duction and comprehension subnetworks. Modeling conver-
sation then involves coupling these neural network architec-
tures into a “dyad.” We couple these nets by taking the output
of “speaker” and use it as the input of the “listener,” as shown

1Note in Fig. 1 that Chang’s original model only included the
constraint on production from prior comprehension.

in Fig. 1, panel 3. On a turn-by-turn basis, we can switch
who is doing the producing and comprehending. The net-
works are trained to predict word sequences in this way, in
the context of a coupled “conversation.” As shown in Fig. 1,
panel 3, there are two levels of coupling in this model. These
first-order networks (agent network) are coupled in their com-
prehension and production subnetworks in some way. Inter-
action is modeled as a coupling between two such networks,
as a second-order recurrent network (dyad network).

This model can be readily adapted to parameterize con-
straints on processing. In Fig. 1, panel 2, we show that we can
“complete the circuit” in the dyads by connecting production
to comprehension in the same way. This simple modification
inspired two conditions in a preliminary simulation. First, we
studied the ability of dyad nets to predict words in interac-
tion under the original formulation, with only comprehension
constraining production. We then tested the contribution of
full comprehension-production integration by completing the
circuit, and compared its performance to the original formu-
lation.

Like any cognitive model, this framework requires an in-
put space that provides structure to the task. Elman (1990)
used simulated sentences generated by a simple grammar, and
Chang (2002) used hand-coded semantic and syntactic rep-
resentations in a simplified grammar. To get input vectors
for our model, we used transcripts from an interactive task in
which two participants communicate to jointly solve a per-
ceptual task (Fusaroli et al., 2012). Taking the word-by-word
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sequences in these transcripts, we created input activations
based on latent semantic analysis representations. This re-
duces the dimensionality and sparsity of the input space and
makes the learning problem more tractable for the network.
It also tests the framework with complex naturalistic data.

Input Corpus: LSA Word Vectors
The corpus consists of 16 dyads (32 Danish-speaking individ-
uals) totaling more than 1,600 joint decisions, 25,000 word
tokens and 1,075 unique word types.2 Given the sparsity of
the lexical space, we transformed the corpus into a latent se-
mantic analysis (LSA) representation (Landauer & Dumais,
1997). This projects words into a lower dimensional feature
(vector) space based on how the words occur in the corpus.
We define a word’s relative cooccurrence to another word by
using a simple 1-step window, so that the cooccurrence of
word wi with word w j is the total number of times they fol-
lowed each other, f (i, j) = NP(wi,t ,w j,t+1), where N is the
total number of words in sequence, and P the joint prob-
ability that words i and j occurred together at times t and
t + 1, respectively. This count serves as an entry in a 1,075
× 1,075 matrix M, as the entry at the ith row and jth column.
This matrix is, of course, quite sparse, because most words
do not cooccur with every other word. LSA was employed
as a means to overcome such sparsity, providing a lower-
dimensional representation of word similarity based on these
distributional patterns: [U,S,V ] = SVD(M).

The left eigenvector matrix (U) provides a more compact
representation for individual words. Rather than a complete
(but sparse) representation across all 1,075 of its column
entries, the SVD solution that LSA uses allows us to take
a much smaller number of columns of U instead. These
columns represent the most prominent sources of variance in
the distributional patterns of the word usage.

When inspecting the singular values (S) of the SVD so-
lution in an LSA model, we find that word usage across all
transcripts can be captured by about 7 of these columns of U .
A schematic of how we use these feature vectors is shown in
Fig. 2, which illustrates a pattern of activity across 7 nodes as
the input for these networks. This gives us a 7-dimensional
representation of words, where activations can be negative or
positive, which requires some modification to the training of
our SRN subnetworks.

Training with LSA
Because common backpropagation assumes an activation
range of [0,1], we had to modify the input and output ac-
tivation transformations to suit a [−1,1] range. To do this
we changed the standard sigmoid function, used as output
activation function, to a tanh function that has the desired

2Space limitations prevent us from fully describing the construc-
tion of this semantic representation, but we note that we also in-
cluded a “turn end” marker to ensure that words adjacent across
turns were not treated as if they were spoken in the same sequence
of words by one person.

properties. In order to propagate error back, we differenti-
ate the tanh function at the output nodes. Because derivative
d tanh = 1− tanh2, we obtain

δo = o◦do◦ e = o(1−o◦o)◦ e (1)

Where o is the output vector of the network, e is the error as-
sociated with each node, and ◦ represents elementwise mul-
tiplication. δo reflects the error assignment to output nodes.
Once this is calculated, we can modify the weights Wh→o with

∆Wh→o = αhT
δo (2)

α represents the learning rate parameter, and h the hidden unit
activations of a given subnetwork. We used this approach to
modify the weights connecting hidden and output layers. All
other layers were treated in the common way with the sigmoid
function and its derivative, in accordance with traditional it-
erated backpropagation.

In order to train the networks using LSA vectors as they
interact in dyads, we follow the process illustrated in Fig.
2. In a turn-by-turn fashion, the production subnetwork of
one agent net would be trained to predict its “spoken” output,
while the comprehension subnetwork of the other agent net
would receive this output as input and predict it in a word-by-
word fashion.

Simulation Procedure
Training and Testing To assess how well the models cap-
ture interactional structure of the empirical data, we trained
16 dyad networks in each of two conditions (comprehension
to production only vs. full integration). Each network was
trained on one pass on the full transcripts of 15 dyads (almost
25,000 word presentations) and then tested on the remaining
target dyad. We set α to .01, and the number of hidden units
across all subnetworks to 10.3 We built a baseline control for
each test dyad by shuffling its word order, thus disrupting the
sequential structure that the networks were expected to learn.
The ‘A’ or ‘B’ designation of interlocutors was randomly as-
signed, but used here for convenience of presentation.

Our performance measure was based on the common mea-
sure of cosine between the output and target vectors. Co-
sine is commonly used with the LSA model, since it captures
whether word vectors are pointing in the same direction in
“semantic space.” Cosine varies from [−1,1], with higher
values reflecting better predictions by the network.

Predictions First, we expected that the “content” shared be-
tween speaker and listener, projected in LSA space, should
allow the networks to learn the statistical structure of in-
teraction. Second, we contrasted three hypotheses about
production-comprehension integration. (H1) Fully inte-
grated production-comprehension systems would benefit per-
formance, as the networks are able to receive “more in-

3Space restricts our parameter search, but we found, in general,
that hidden layer size did not greatly impact performance in any con-
ditions in our explorations.
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Figure 2: We organized network training by interactive turn. For a given turn, one participant (A or B) is doing the talking.
We take the LSA vectors (visualized as a distributed pattern of activation) and have the production network of the speaker on
that turn predict its output, and the comprehension network of the other participant predict its input. Within each dyad, the
subnetworks of each participant take turns learning to predict the LSA vectors.

formation,” in that the comprehension net is now receiving
input from production. (H2) Fully integrated production-
comprehension systems degrade performance as they intro-
duce noise to the network and an additional set of weights that
the network has to learn. (H3) There will be no difference be-
tween these networks: Our simplified task has the production
and comprehension networks doing very similar things, and
so we may not observe any divergence in their performance.

Results

Can Dyad Nets Learn Sequential Structure? When com-
paring networks in both conditions, it appears that they are
very similarly effective at predicting word-by-word LSA vec-
tors in unseen interactions, and that they also show much bet-
ter performance than the control baseline, in which words are
shuffled. This means that networks are processing the or-
der of LSA features, and not simply capturing the activation
space in which these LSA features reside. This learning ef-
fect is quite large, and is shown in Fig. 3. The appropriate
test here is a paired-sample t-test, since each network and its
control are trained on matched sets of words with the same
network. A t-test across all four subnetworks shows the ex-
pected result, for both conditions: t’s > 25 and p’s < .000001.

Does Integration Improve Prediction? The average co-
sine performance did not differ between the two network
conditions, using the same paired-sample t-test across lay-
ers, t(63) = 0.33, p = .74. This absence of an effect is quite
evident in Fig. 3. No reliable difference emerges in direct
comparison of any of the subnetworks, either.
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Figure 3: Dyad networks are capable of learning interactional
structure. The cosine for agent subnetworks trained on se-
quential structure show greatly increased scores relative to
baseline subnetworks, for which temporal order of the LSA
training vectors are shuffled. In general, agent nets with com-
prehension⇒ production (circle) do not perform differently
from agent nets with integration (triangle). They do both
show better performance than the control (red). The models
are both learning to predict LSA vector sequences. cos(t,o)
stands for the cosine of target and observed output vectors.
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Figure 4: Difference between integrated and unintegrated
agent network conditions relative to their respective base-
lines. It reflects how much more one network can be ex-
pected to exceed its baseline relative to the other condition.
If integrating production and comprehension improves per-
formance, we expect a positive value on the y-axis.

Does Integration Improve Prediction above Baseline?
These results are shown in Fig. 4. In general, as might be
expected from the prior analyses, the models are not differ-
ent from each other in most subnetwork performance. All
results are non-significant, with the initial agent net config-
uration not different from its baseline relative to that of the
fully integrated networks, |t|’s < 1.

General Discussion
In this paper, we described a flexible computational frame-
work to investigate the cognitive mechanisms underlying lin-
guistic interaction. The first step in this direction is the im-
plementation of coupled neural networks to learn from inter-
action data. We demonstrated that this adaptation of Chang
(2002) is capable of learning the sequential semantic structure
in raw, noisy input.

Based on the current debate on interactive alignment,
we manipulated their internal cognitive structure to contrast
two theoretically motivated models: (i) a model with full
comprehension-production integration, and (ii) a model with-
out integration. These alternative coupled networks were then
used to model real conversational data in order to investigate
hypothesized prediction benefits of full integration. Our re-
sults did not reveal an effect of full integration. Put simply,
hypothesis (H3) seems to have been supported here: In this
computational system, full integration does not bring great
gains, if any. Why did we not observe clearer results? To
conclude, we outline theoretical and methodological consid-
erations that hint at possible explanations and motivate future
implementations of the framework.

First, the results can be interpreted to suggest that ‘inter-

nal’ production-comprehension coupling is in fact not facili-
tating mutual prediction in this context. This could indicate
that recurrent (and thus predictive) structure resides on lev-
els other than the turn-by-turn organization of the conver-
sation. In fact, a recent study (relying on the same corpus)
suggests that linguistic patterns critical to performance in the
task tend to straddle interlocutors and speech turns making
turn-by-turn alignment secondary to recurrent structural pat-
terns at the level of the conversation as a whole (Fusaroli &
Tylén, 2016). A future implementation of the model could
directly test such ideas (sometimes referred to as the interper-
sonal synergy model of dialogue: Fusaroli et al., 2014) and
compare the performance to other types of conversational in-
teraction that might entail different functional organization.

These results might also be contingent upon a number of
methodological limitations that will need to be overcome in
future developments. First, the sample size is not impres-
sive and a bigger corpus would possibly enable better train-
ing of the networks. Second, in order to deal with the sparse
lexical space of real conversations, we reduced the input to
LSA vectors. As a consequence both the comprehension and
production subnetwork end up dealing with the same kind of
data. Integrating comprehension does therefore not add in-
formation that is not already contained in the LSA vectors
processed in production subnetworks. Thus, the integration
is at least partially redundant and cannot be expected to add
much to the performance of the model.

There are also more general limitations to overcome. For
example, anticipatory dynamics in agent networks should al-
low overlap at the turn level, as seen in natural interactions.
This is a critical feature for modeling the higher-order dy-
namics of interaction. The PDP approach embraces such
computational extensions. For example, networks could be
gated, such that off/on states of the production subnetwork
will have to be learned by agents. The recurrent property of
these networks should allow them to predict forthcoming turn
switches. The approach offers much in the way of extension,
as these networks are, after all, nonlinear function approxima-
tors over any arbitrary sets of temporal constraints. For exam-
ple, we could also develop other input spaces, such as multi-
modal constraints from nonverbal aspects of interaction, and
add them to the verbal components we have explored here.

This flexibility also permits more focused theoretical ex-
plorations. The constraints on these networks have theoreti-
cal implications that can be readily adapted to further com-
pare and integrate proposed mechanisms, the topic that began
this paper. For example, Fig. 1, panel 4 showcases how we
might develop the framework to test combinations of other
constraints on interaction, such as “common ground.” An-
other example is how internal constraints from one agent net-
work might constrain, and possibly facilitate, the dynamics
of the agent to which it is coupled in the dyad network. The-
oretically motivated manipulations of this kind would allow
more explicit tests of the relationship among these various
proposals for the mechanisms of interaction, and compar-
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isons to related computational frameworks (e.g., Buschmeier,
Bergmann, & Kopp, 2010; Reitter, Keller, & Moore, 2011).
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