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Nonlinearmicrobial thermal response and its
implications for abrupt soil organic carbon
responses to warming

Kailiang Yu 1,2 , Lei He 3, Shuli Niu 1, Jinsong Wang 1 ,
Pablo Garcia-palacios4, Marina Dacal 5,6, Colin Averill7, Katerina Georgiou8,
Jian-sheng Ye 9, Fei Mo 10, Lu Yang11 & Thomas W. Crowther 7

Microbial carbon use efficiency (CUE) is a key microbial trait affecting soil
organic carbon (SOC) dynamics. However, we lack a unified and predictive
understanding of the mechanisms underpinning the temperature response of
microbial CUE, and, thus, its impacts on SOC storage in awarmingworld. Here,
we leverage three independent soil datasets (n = 618 formicrobial CUE; n = 591
and660 for heterotrophic respiration) at broad spatial scales to investigate the
microbial thermal response and its implications for SOC responses to warm-
ing. We show a nonlinear increase and decrease of CUE and heterotrophic
respiration, respectively, in response tomean annual temperature (MAT), with
a thermal threshold at ≈15 °C. These nonlinear relationships are mainly asso-
ciated with changes in the fungal-to-bacterial biomass ratio. Our microbial-
explicit SOCmodel predicts significant SOC losses at MAT above ≈15 °C due to
increased CUE, total microbial biomass, and heterotrophic respiration,
implying a potential abrupt transition to more vulnerable SOC under climate
warming.

Microbial C use efficiency (CUE) – the ratio of organic C allocated to
growth versus organic C uptake1 – has emerged as a critical
community-level functional trait for predicting soil organic carbon
(SOC) responses to climate warming in global biogeochemical
models2–4. Yet, we lack a unified quantitative understanding of the
mechanismsunderpinning the temperature response ofmicrobialCUE
and its linkage with SOC responses to warming at broad spatial scales.
So far, although some empirical studies show that biomass-specific
heterotrophic respiration (i.e., respiration per unit of soil microbial

biomass) is lower in soils from warmer climates, supporting the ther-
mal adaptation theory5–7, other studies do not confirm this pattern8,9.
From a conceptual perspective, the depletion of more labile com-
pounds, thermal adaptation of microbial physiology (i.e., via enzyme
and membrane structures), and changes in microbial community
composition have been hypothesized as main drivers of reduced soil
respiration in warmer climates5,6,10. If thermal adaptation reduces the
biomass-specific microbial respiration rate, all else being equal, CUE
would also be expected to adapt to warmer conditions and increase
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across spatial temperature gradients or in response to long-term
warming. In fact, positive temperature effects were found when esti-
mating CUE from a stoichiometric model11, but negative effects
emerged from a meta-analysis and data assimilation3. Therefore, the
CUE thermal response remains poorly understood, and the empirical
evidence of increased CUE with temperature is still mixed. Moreover,
while a previous global study has reported a threshold for temperature
sensitivity of ecosystem respiration12, a key knowledge gap exists in
whether the temperature-CUE relationship emerges in a similar non-
linear manner and how this would influence SOC responses to
warming.

A deep understanding of the environmental controls and
mechanisms governing the thermal response of CUE remains chal-
lenging due to two primary reasons. First, the methodological diffi-
culty of estimating CUE in the field, which has relied heavily on
laboratory studies using a range of different substrates, limits our
understanding of the thermal response of CUE across broad spatio-
temporal scales1,13. Second, interacting biotic and abiotic factors that
covary with mean annual temperature (MAT) have led to inconsistent
conclusions about the drivers of microbial CUE14,15. For instance,
microbial community composition strongly influences community-
level metabolism (CUE and heterotrophic respiration) and SOC
dynamics16,17, as fungi have beenhypothesized to have higher CUE than
bacteria, owing to their more conservative resource use strategies18,19.
However, empirical studies have shown neutral20 or negative21,22 rela-
tionships between microbial community CUE and fungal dominance.
Furthermore, higher CUE has been found in conditions of abundant
soil nutrients and moisture23. As such, to resolve the ongoing debate
about the thermal response of microbial CUE, it is essential to account
for the impacts of substrates alongside biotic and abiotic factors.

A unified and predictive understanding of the mechanisms
underlying CUE thermal response could be important to improve
predictions of SOC response in a warming world with biogeochemical
models. An increase in CUE implies greater microbial growth for a
given resource uptake rate, leading to highermicrobial necromass that
can contribute to SOC stability because of its long residence time3,24,25.
Alternatively, higher CUE has the potential to increase the microbial
biomass pool for enzyme production, which could accelerate SOC
decomposition, decrease SOC stocks, and amplify the positive feed-
back to global warming2,26,27. Previous modeling studies have reported
divergent responses, including positive or negative relationships
between CUE and SOC under warming3,26, depending on model
structure (specifically depending on whether microbial processes are
implicit or explicit in the models) and spatial scales28. Moreover, pre-
vious studies have mainly focused on linear relationships among CUE,
temperature and SOC25,26, but a strong nonlinear relationship could
imply an abrupt change (i.e., decrease or collapse) of SOC in a warmer
climate. Investigating whether nonlinear thermal response of CUE and
respiration exists is urgently needed at global scales. Incorporating
such nonlinear CUE-temperature relationships into biogeochemical
models can increase our confidence on the prediction of temperature
sensitivity of SOC turnover, which is a major source of uncertainty in
projecting SOC feedbacks to the climate system16,29,30.

Here, to disentangle the potential nonlinear thermal response of
CUE across a geographically-broad temperature gradient,wecompiled
a large-scale dataset (n = 618; see Supplemental Data 1 andMethods) of
surface soil (0–30 cm depth) microbial CUE directly estimated in
incubation conditions (Fig. 1a). Because CUE estimates depend on the
type of substrates added in the incubations, we used two com-
plementary approaches to account for substrate effects on CUE. In the
first approach, we included substrate type as a categorical variable
together with other complementary environmental conditions as
covariates while examining the environmental controls on original
CUE (hereafter original CUE approach). In the second approach, we
standardized the varied substrate effects observed across sites/studies

as a common substrate using the ‘detrend’ method in a partial least
squares approach31, thus allowing us to link the detrended CUE with
environmental conditions (hereafter detrended CUE approach; see
Methods and Supplementary Fig. 1 for the comparison between ori-
ginal and detrended CUE). We then used two large-scale datasets of
heterotrophic respiration from soil incubations under different tem-
peratures (n = 660 for global Dacal dataset and n = 591 for regional
Bradford dataset in North America)5,6 to examine the potential non-
linear thermal response of respiration (Fig. 1b). Finally, we included the
nonlinear thermal response of CUE as estimated from our statistical
models into a first order model32 and an explicit microbial model2,32,33

(Supplementary Fig. 2). These models were used to examine the
changes of SOC under warming assuming that the CUE patterns we
observed across climatic gradients still hold when temperature chan-
ges through time at a given location26,28. Themodel runs were spatially
implicit without accounting for spatial heterogeneity by focusing on
variations in CUE due to temperature, while other variables such as C
inputs, climate and soil conditions were kept constant. As such, these
model runs represent ‘all else being equal’ scenarios in which biotic
and abiotic covariates needed to be controlled (i.e., by partial depen-
dence analysis inmachine learning)34 while deriving and incorporating
the CUE-MAT equations into models (see Methods) – an approach
motivated by coupling biogeochemical models with the data-driven
machine learning35.

Results and Discussion
Nonlinear thermal response of CUE and heterotrophic respira-
tion along climatic gradients
The random forest model analysis indicated that MAT was one of the
most important factors influencing CUE, following substrate for ori-
ginal CUE (Fig. 2a) and followed by F:B ratio for detrended CUE (Sup-
plementary Fig. 3a). Instead, the simple ordinary least squares linear
regression analysis showed that both original and detrendedCUEwere
independent of MAT (Fig. 2b; Supplementary Fig. 3b). The partial
dependence analysis confirmed a strong nonlinear relationship
between both original and detrended CUE andMAT and identified two
apparent threshold temperatures (≈0and 15 °C) that shape the slopeof
CUE-MAT relationships (Fig. 2c; Supplementary Fig. 3c). The further
analyses using segmented regressions quantitively showed the two
MAT threshold values as 1.2 (standard error - SE = 0.3) and 16.3 °C
(SE =0.4) for original CUE (Supplementary Fig. 4a) versus 1.3 (SE = 0.7)
and 16.5 °C (SE = 0.2) for detrended CUE (Supplementary Fig. 4b),
respectively.

Our CUE datasets were largely limited to temperate regions in the
Northern Hemisphere (Fig. 1a), so other MAT threshold values may
occur in warmer tropical regions. We attempted to increase the spatial
coverage of ourCUEdatasets by includingCUEmeasures from 18O-H2O
studies (n > 200) (Supplementary Fig. 5), while we caution that the
18O-H2O incorporation method tends to yield lower CUE estimates in
comparison to the traditional C isotopic method26. Our results after
including the 18O-H2O CUE data showed a robust pattern of CUE with a
MAT threshold of ≈15 °C, while the breakpoint of ≈0 °C disappeared in
detrended CUE presumably because of lower CUE sample sizes at high
latitude, low temperature zones12 (Supplementary Fig. 6). Because soil
microbial communities experience soil rather than air temperature
(MAT)36, we further examined the original and detrended CUE
responses to soil temperature. The results by using soil temperature
demonstrated the robustness of the MAT threshold of ≈15 °C for both
original and detrended CUE (Supplementary Fig. 7), but the tempera-
ture threshold at ≈0 °C was not apparent, presumably because of the
less broad soil temperature gradient than the MAT gradient36 (Sup-
plementary Fig. 8). The uncertainty about the pattern at low tem-
peratures highlights the need for more empirical evidence of CUE in
both low and high latitude regions to better constrain microbial CUE
response to temperature. To assess whether the uneven sample
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distribution has any consequence on the MAT thresholds, we further
used bootstrapping (200 iterations) to randomly sample 90% CUE
values for estimating the probability distribution of the mean MAT
threshold value, showing robustness of the MAT threshold ≈15 °C
(Supplementary Fig. 9).

Collectively, our results using both original and detrended
CUE with and without inclusion of CUE measures from 18O-H2O
method, and using either air or soil temperature showed a non-
linear increase of microbial CUE when MAT increased above a
threshold value of ≈15 °C. This strongly nonlinear increase of CUE

40°S

0°N

40°N

80°N

0.
00

0.
02

0.
04

0.
06

Density

60 °S

30 °S

0

30 °N

60 °N

90 °N

180 °W 120 °W 60 °W 0 60 °E 120 °E 180 °E

CUE
0.0 0.5 1.0

a

40°S

0°N

40°N

80°N

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Density

60 °S

30 °S

0

30 °N

60 °N

90 °N

180 °W 120 °W 60 °W 0 60 °E 120 °E 180 °E

Bradford Dacal Respiration (�g�C−CO2�dry−weight�soil�1�h�1)

0 5 10 15

b

Fig. 1 | Map of sample locations including soil microbial carbon use efficiency
(CUE) and soil heterotrophic respiration rates in incubation conditions. a A
total of 618 samples of surface soil microbial original CUE were collected from
published references with information provided on substrates added and incu-
bation temperature. These data were strictly screened from a larger database of
CUE (n = 1145), whereby the soil microbial CUE without information on substrates
added and incubation temperature, with soil depths out of surface (i.e., with
sampling depths > 30 cm), andmeasured with 18O-H2Omethod were not included.

b A total of 1,251 soil heterotrophic respiration measurements (μg C-CO2 g dry-
weight soil−1 h−1) were used from published references by Bradford et al. (n = 591)
andDacal et al. (n = 660)5,6. The Bradforddatasetwas located inNorth America and
the Dacal dataset was distributed globally. The datasets have been previously used
to examine the linear thermal adaptationof heterotrophic respiration, and herewe
focused on examining the nonlinear thermal response of heterotrophic
respiration.
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with MAT contradicts previous studies at a broad spatial scale,
which predicted a nonlinear but weak increase of CUE11 (esti-
mated with a stoichiometric model) or even a decrease of CUE3

(estimated from data assimilation) with MAT. Our results of non-
linear increase of CUE with MAT also differ from short-term
warming experiments in which CUE was found to decrease at
higher incubation temperatures37,38 (Fig. 2b). Our study thus
provides the empirical evidence of a strong nonlinear CUE ther-
mal response and also highlights the divergent response of CUE
to short-term versus long-term warming.

We interpret these large-scale patterns in soil microbial CUE
as results of ecological and evolutionary processes leading to
changes in microbial growth or respiration that determine CUE.
As higher respiration for given C uptake implies lower CUE, we
expect a sharp decrease in respiration at the MAT threshold
where CUE increases (assuming the CUE thermal response is due
to variations in respiration). Confirming this expectation, a non-
linear relationship was also found between soil heterotrophic
respiration and MAT using two large-scale independent (global
Dacal and regional Bradford) datasets5,6, with apparently similar
threshold values (≈0 or 15 °C) of thermal adaptation as found with
CUE (Fig. 3). The segmented regression analysis on the global
Dacal dataset estimated these thresholds of MAT to be 4.9 (95%
confidence interval = 0.8) and 13.3 °C (95% confidence interval =
2.8) (Fig. 3a). These results agree with those of a recent study
using 210 eddy covariance sites and showing the temperature
threshold at 15 °C for ecosystem respiration12. By comparison, the
segmented regression analysis on the regional Bradford dataset
in North America identified a lower MAT threshold value of 11 °C
(95% confidence interval = 2.8) (Fig. 3b) presumably because of
their regional distribution in North America.

Besides the MAT threshold for respiration, microbial growth
could also influence CUE13,22,39 and contribute to this nonlinear beha-
vior. Indeed, the rate of increase of CUE was steeper than the rate of
decrease of respiration over ≈15 °C (Fig. 2c; Fig. 3), implying that
microbial growth rates could have further contributed to the nonlinear
increaseof CUE athigher temperatures. So far, however, the lack of full
report on the matched/paired measures of microbial growth rate,
respiration, and CUE across the meta-data compiled in this study (see
Methods) hinders our ability to robustly examine the role ofmicrobial
growth, highlighting the need of future research endeavors on this
topic. Despite the limitations, our results based on the three inde-
pendent datasets consistently confirm that microbial CUE thermal
response was nonlinear along a temperature gradient. Yet, it remains

largely understudied whether and howCUE thermal response covaries
with other biotic and abiotic factors.

Soil microbial composition associated to nonlinear thermal
response of CUE
Multiple interacting and causal variables such as soil microbial com-
munity composition and abiotic conditions covarying with MAT could
have contributed to the emergent nonlinear thermal response of CUE.
Soil communities with a greater relative dominance of fungi tended to
exhibit a lower original or detrended CUE, as shown by analysis on
original CUE in incubation conditions (Supplementary Fig. 11), using
nonlinear random forest models (Fig. 2a; Supplementary Fig. 3a;
Supplementary Fig. 12a, b) on original and detrended CUE by con-
trolling other natural environmental conditions. These results suggest
that the thresholds observed in the thermal response of CUE and
respiration could be related to shifts in microbial community
composition5,6,40. Evolutionary trade-offs in enzyme and membrane
structure and functionmightmanifest at the community scale through
shifts inmicrobial taxa, suggesting that the F:B ratio –CUE relationship
could arise from turnover of specieswhich arephysiologically adapted
to warmer conditions41. We suspect that the lower CUE observed in
fungal-dominated communities may be partly explained by fungi
dominating in soils with more recalcitrant substrates or limited nutri-
ent availability42,43, as evidenced by the negative relationship between
soil C:N and CUE (Supplementary Fig. 12c, d). As such, fungi spend
more energy to decompose recalcitrant substrates22,44 or locally adapt
to nutrient-poor soils by respiring more C per unit of C acquired45.
Moreover, greater investment in enzyme production to compensate
lower enzymatic activity at cooler temperatures, which needs to be
tested in future field studies, could also lead to lower CUE at high
latitudes46. Future studies should also examine whether competitive
interactions among different fungal taxa47 or trophic interactions48

exert a stronger influence on CUE than temperature alone. As such,
multiple mechanisms could contribute to the shift towards bacterial
dominance at warmer locations and thus to the CUE changes across
the MAT gradient (Fig. 2c; Supplementary Fig. 3c).

Besides the biotic factors, aridity index and soil C:N were iden-
tified as important abiotic factors in influencing original (Fig. 2b) and
detrended CUE (Supplementary Fig. 3b). Our findings thus supported
the resource acquisition and stress tolerance hypothesis23, which
state that the energy cost (and thus respiration) is high and thus CUE
is lower in drier climates (i.e., lower aridity index; Fig. 2b for original
CUE, Supplementary Fig. 3b for detrended CUE) or under lower soil
nutrient availability (i.e., high soil C:N; Fig. 2b and Supplementary

a b

1.7

1.8

1.9

2.0

0 5 10 15 20 25
MAT (°C)

Lo
g 

(P
ot

en
tia

l r
es

pi
ra

tio
n 

ra
te

)
−0.6

−0.5

−0.4

−0.3

0 5 10 15 20 25
MAT (°C)

Lo
g 

(P
ot

en
tia

l r
es

pi
ra

tio
n 

ra
te

)

Fig. 3 | Nonlinear thermal response of soil microbial carbon usage efficiency
(CUE) is linked or partially contributed by soil heterotrophic respiration.
Partial feature contributions ofMAT to heterotrophic respiration rate at a standard
incubation temperature (natural log-transformed, μg C-CO2 g dry-weight soil−1 h−1)
in global Dacal et al. (2019)5 (a) and regional Bradford et al. (2019)6 (b) datasets
after controlling for effects of microbial biomass, substrates, incubation

temperature, and soil properties. The percent of variance explained increased
from 59% and 67% bymultivariate linear regression in the original studies5,6 to 75%
and 91%, respectively, when using the Random Forest machine learning algorithm
in this study. Microbial biomass is included in the analysis to represent the het-
erotrophic respiration rates at a controlled biomass.
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Fig. 12c for original CUE; Supplementary Figs. 3b and 12d for
detrended CUE).

The detrended CUE approach standardizes substrate effects as a
common substrate, thus enabling further investigation in the role of
underlying environmental factors by accounting for spatial auto-
correlation of sample distributions (i.e., using spatial error models).
Spatial error model analysis on the whole dataset or the dataset with
MAT< 15 °C showed the robustness of lacking linear relationships
between MAT and detrended CUE, while F:B ratio was a strong pre-
dictor of detrended CUE (Supplementary Figs. 13a, b). By comparison,
spatial error model analysis on the dataset with MAT> 15 °C showed
the positive and linear relationship between MAT and detrended CUE
(Supplementary Fig. 13c), thus highlighting the dependence of spatial
scale in deriving the MAT-CUE relationship.

Given the observed substantial role of biotic and abiotic factors in
affecting the CUE-temperature relationship, we propose that future
studies adopt a systemic scheme to test the adaptation of CUE to
changing temperatures by subjecting soil samples from different nat-
ural climates to a consistent incubation temperature gradient while
controlling for covarying factors. Future advances in this research area
should further disentangle the mechanisms underlying microbial
adaptation to global warming, such as individual physiological chan-
ges in enzyme and membrane structures at evolutionary timescales
versus species composition shifts at ecological timescales. This
emergent knowledge would be highly valuable to improve the accu-
racy of biogeochemical models used to estimate the magnitude of
climate-C cycle feedback, and subsequently, a crucial step to establish
more appropriate greenhouse gas emission targets in a future warmer
climate.

Implication of nonlinear thermal response of soil microbial
physiology in SOC responses to warming
We also examined how the identified nonlinear microbial thermal CUE
response could improve our understanding of SOC responses to
warming. To this end, we incorporated this thermal CUE response to
MAT into a first-order SOC model, where soil microbes are implicitly
represented49, and a four-pool microbial explicit SOC model2,32,33. The
microbial-explicit model accounts for soil microbial physiology,
community composition or biomass and its interactions or feedbacks
to SOC decomposition2,26,27. Specifically, the segmented linear regres-
sions of original or detrended CUE as a function of MAT (R2 = 0.96 for
original CUE; R2 = 0.92 for detrended CUE; see legend in

Supplementary Fig. 4) were incorporated into both SOC models. We
run these models in transient conditions without accounting for spa-
tial heterogeneity (see Methods) to assess howMAT affects SOCmass
loss, as quantified by the decay constant (proportional to total het-
erotrophic respiration) emerging from model simulations.

Both the first-order SOC and soil microbial models predicted a
nonlinear decrease inmass-specific heterotrophic respiration rate and
nonlinear increase in microbial biomass C with increasing MAT (Sup-
plementary Figs. 14a–d), as expected from our statistical analysis
(Fig. 3). However, the decay constant (Fig. 4a) or the total hetero-
trophic respiration rate (mass-specific respiration times microbial
biomass) (Supplementary Figs. 14e–f) nonlinearly decreasedwithMAT
only in the first-order model. Therefore, all else being equal, higher
MAT slowed down decomposition and SOC loss in the first-order
model, but only above the ≈0 or 15 °C thresholds (Fig. 4b for original
CUE; Supplementary Fig. 15b for detrended CUE). The microbial-
explicit model behaved in the opposite way, predicting higher decay
constant and SOC losses above a MAT of ≈0 or 15 °C (Fig. 4a, b for
original CUE; Supplementary Figs. 15a, b for detrended CUE). This
divergence inpredictions is causedbydifferent roles ofCUE in theSOC
dynamics of the two models. In the microbial model (see Supple-
mentary Fig. 2 formodel structure), the higher CUE inwarmer climates
promoted microbial growth and biomass (Supplementary Fig. 14c, d),
which in turn accelerated decomposition with increased effective K
and thus decrease SOC (Fig. 4; Supplementary Fig. 16). Similarly, a
recent empirical study showed the negative relationship between CUE
and SOC at regional scales50.

Focusing on results from the microbial model—which accounts
for known substrate-microbe interactions—our analysis highlights the
risk for the potential abrupt SOC losses in boreal and temperate eco-
systems under a warmer climate. However, we clarify that our mod-
eling results were spatially implicit without accounting for spatial
heterogeneity. Thus, controlling for covarying biotic and abiotic fac-
tors (i.e., through partial dependence analysis34) is necessary when
deriving and incorporating the emerging nonlinearMAT-CUE equation
into themicrobialmodel (seeMethods). Further analysis on examining
the sensitivity of this partial dependence approach to covarying vari-
ables suggested that the emerging nonlinear MAT-CUE relationships
were generally robust in scenarios of 1) excluding each of these cov-
arying variables (incubation temperature, soil C:N, SOC, aridity index,
and F:B ratio in Fig. 2b) (Supplementary Figs. 17a–e), and 2) including
only F:B ratio and substrate (Supplementary Fig. 17f). Our approach
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Fig. 4 | The influence of nonlinear thermal response of soil microbial carbon
usage efficiency (CUE) on the decay constant and soil organic carbon (SOC)
simulated at transient conditions. The decay constant (effective K, 1/yr) (a) used
to quantify SOC mass loss (b) in response to air mean annual temperature (MAT)
emerging from model simulations by microbial-explicit versus first-order models
at transient conditions (i.e., 1 year) by including the segmented equations of

original CUE as a function of air MAT fitted using segmented regressions (see
Supplementary Fig. 4 legend for the segmented equations) (see Methods for
modeling details). The relative changes (%) of both variables (effective K and SOC)
as compared with equilibrium values at 20 °C were presented to facilitate com-
parisons between models.
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thus advocates for the integration of data-driven machine learning
approach35,51,52 (e.g., identifying and incorporating the emerging non-
linear equations as shown in this study) with biogeochemical models.
While applying our approach across a heterogeneous landscape, ‘scale
transition theory’ could provide the insight or tool to scale-up process
functions in heterogeneous systems by adopting the mean-field
equation and also accounting for different types of heterogeneity53.
With lacking of previous theoretical and empirical applications, how-
ever, we would like to also highlight the caveats about formulating the
partial dependence plot (PDP) as equations incorporated into bio-
geochemical models. As such, we suggest that our partial dependence
plot approach and segmented linear regression derived equations—
despite its high accuracy in fittings in our study (R2 > 0.9)—require
additional research to refine their future applications, whereby spatial
scales would be critical. Our results also suggested the uncertainty of
the ≈0 °C MAT or SOC thresholds in boreal regions and potential
uncertainty in applying the space-time substitution approach54.
Moreover, as demonstrated by this study (Supplementary Fig. 12), CUE
is a crucial microbial trait likely shaped by shifts in microbial species
composition and soil conditions (e.g., soil C:N). Therefore, future
studies should explicitly linkmicrobial species composition (e.g., fungi
vs. bacteria), MAT, and CUE with SOC in biogeochemical models16.

In conclusion, our study leveraged three independent empirical
datasets at broad spatial scales that collectively highlight the presence
of nonlinear trends in the thermal response of soil microbial physiol-
ogy. Above the threshold value of ≈15 °C, there is a potential decou-
pling of heterotrophic respiration and growth, whereby warming-
induced increases in microbial CUE correspond with decreased het-
erotrophic respiration rates and potentially increased microbial
growth. The results underscore the heterogeneity of SOC responses to
warming, with high temperature sensitivity in temperate zones that
coulddrive positive SOC feedbacks to climatewarming. Thesefindings
also emphasize the necessity of incorporating nonlinear warming
responses into biogeochemical models to accurately evaluate the
sensitivity of SOC dynamics and its feedbacks to climate warming. The
≈15 °C threshold of CUE could be linked to the thermal adaptation of
heterotrophic respiration, which is likely driven by shifts in microbial
community composition. By including the thermal thresholds of CUE
into a microbial model, our findings suggest the likely potential for
abrupt SOC losses under a warming climate, especially in temperate
regions.

Methods
Soil microbial CUE and respiration datasets
We compiled a dataset of soil microbial CUE at cross-biome scale. Part
of dataset was derived from Qiao et al., 2019, which included 780
observations in incubation experiments from98 sites across the globe.
It reported themetadata of coordinates (latitude and longitude) of soil
samples, incubation temperature, incubation time, and the substrate
added, but some information of sampling depth was lacked. As such,
we added the information of sampling depth from original
references37. We further added and updated this dataset of soil
microbial CUE from peer-published references before 1st August 2022
using the Web of Science, Google Scholar, and the China National
Knowledge Infrastructure. We used the following combinations of
keywords for searches: (“soil microbial” OR “soil microbe”) AND
(“carbon use efficiency” OR “CUE” OR “microbial carbon accumula-
tion”OR “cumulative heterotrophic respiration”OR “carbon substrate
consumption”). Soil microbial CUE was directly reported from refer-
ences or any of microbial C accumulation, cumulative heterotrophic
respiration, C substrate consumption in lab conditions were clearly
described so that CUE could be estimated based on its definition37.
When needed, the microbial CUE data were extracted directly from
figures or using the GetData Graph Digitizer (version 2.0). This ulti-
mately led to an expanded CUE with 1145 observations).

We used the following criteria to select the studies or CUE values
that were used in our study: (1) no disturbance and contamination
occurred during soil sampling (thus also excluding measurements on
microbial isolates); (2) if the experiments included other treatments,
such as warming, elevated CO2, nitrogen addition, or other experi-
mental treatments, only data from the control were used; (3) soil
microbial incubation temperature, the type of substrate added, and
soil sampling depth had to be provided; and (4) for standardization
purposes, we limited the data of soil microbial CUE experiments to
surface samples (≈0-30 cm; no samples from the litter layer) and fur-
ther excluded the observations of CUE with missing information of
incubation temperature and/or the substrate added. This ultimately
led to a total of 618 (with C-based substrate) (Fig. 1a) and 826 (Sup-
plementary Fig. 5) (with C-based substrate and water-based substrate -
18O-H2O method26) samples of surface soil microbial CUE. Overall, the
studies in the datasetwere located between 71.9°S to 78.9°N,withMAT
ranging from –5.6 °C to 27.4 °C and MAP from 32.1mm to 3147mm
(Fig. 1a and Supplementary Data 1). Collectively, the meta-data of CUE
were compiled from several studies (n = 68) in which various types of
substrates were added. Following previous studies37,55, we classified
them into 16 types (see Supplementary Data 1 for details).

We used two large-scale published datasets of soil heterotrophic
respiration rates and both of these two datasets have been used to
investigate the thermal adaptation of respiration. The first set of data
was from Dacal et al.5, which sampled surface soils across 110 global
dryland ecosystems located in 19 countries across all continents
except Antarctica between June 2006 and December 2013. In each
dryland site,five replicates of soil were randomly sampled in vegetated
microsite and open microsite, respectively. Soil samples were then
bulked and homogenized to derive two composite samples per site,
thus leading to 220 soil samples in total. These 220 soil samples were
incubated in three profiling assay temperatures (10, 20, 30 °C) to
measure soil heterotrophic respiration rates with substrate in excess
(glucose). This ultimately led to sample size of 660 used in both the
study by Dacal et al.5 and in our study (Fig. 1b). The second set of data
was from Bradford et al.6, which sampled surface soils in two vegeta-
tion types (forest vs herb) across 3 years (2010, 2011, 2012) from 11
locations (including 10 US Long Term Ecological Research [LTER]
stations) ranging from Hawaii to Northern Alaska in North America.
The soil samples were incubated in profiling assays to measure
soil heterotrophic respiration rates with controlled temperature
(12, 20, 28 °C) and substrates in excess (glucose, oxalic acid, glycine).
This ultimately led to sample size of 591 (after excluding three outlier
values of respiration) for the study led by Bradford et al.5 and in our
study (Fig. 1b). More details of soil samplings and measures of soil
heterotrophic respiration in incubation conditions were presented in
Dacal et al5 and Bradford et al.6. Different experimental designs,
methods of measuring soil heterotrophic respiration and microbial
biomass (which needed tobe included in statistical analysis to estimate
mass specific respiration)6,7 precluded the capability of merging these
two independent datasets into a harmonized global dataset of soil
heterotrophic respiration. Moreover, the lack of full reports on mat-
ched/paired measures of soil microbial growth, soil heterotrophic
respiration andCUE alsoprecluded thepossibility ofmerging the three
independent datasets of CUE and soil heterotrophic respiration.

Drivers of CUE
Incubation temperatures, substrates, and other environmental condi-
tions such as mean annual temperature (MAT), aridity index, soil
organic carbon (SOC) and soil C:N ratio as well as microbial compo-
sition (F:B ratio) were expected to influence CUE. As clarified above,
incubation temperatures and substrate types were compiled from the
literature. Since the majority of sites were lacking field measurements
of environmental variables, we extracted the other environmental
variables from global gridded rasters17 based on georeferenced CUE
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data. This approach provided standardized environmental variables
across geographical areas, and avoided the inconsistence of data
sources (field vs. rasters) with different spatial scales. As such, F:B ratio
was derived from the recently published global maps17 based on the
georeferenced coordinates of CUE. Climate variables – MAT and
aridity index and soil properties – SOC and soil C:N ratio were derived
from world climate and SoilGrids56, respectively, based on the geor-
eferenced coordinates of CUE. Mean annual soil temperature (MAT_-
soil) was derived from the recently published global map of soil
temperature based on the georeferenced coordinates of CUE36.

Statistical analysis
CUE in incubation conditions. We first investigated the relationship
between fungal:bacterial ratio and incubation temperature and CUE
under laboratory conditions4,43. Generalized linearmixedmodels using
Markov Chain Monte Carlo (MCMCglmm) were used to examine the
dependence of soil microbial CUE on fungal: bacterial ratio, by con-
trolling for the effects of incubation temperature and the substrate.
We thus have

CUEincubation =β1F : B+ β2Tincubation + b+ ε ð1Þ

where F : B is fungal:bacterial ratio, Tincubation is the incubation tem-
perature, β is the standardized fixed effect associated with an indivi-
dual model parameter, b represents the random effect of the
substrate, and ε is random error which is assumed to follow a normal
distribution with mean zero and standard deviation σ.

Effects of substrate and environmental conditions on CUE using
original CUE. We assess whether CUE variations could be linked with
natural environmental conditions after controlling for the effects of
substrates and incubation temperature under lab conditions. A similar
approach was previously used to examine the thermal adaptation of
soil heterotrophic respiration when using a common or single sub-
strate in lab incubation conditions6. To this end, while examining the
relationships between original CUE and natural environmental condi-
tions, we first used simple ordinary least squares linear regressions.
Moreover, a random forest machine learning algorithm using ran-
domForest package was applied to determine the importance of dif-
ferent variables including substrate, incubation temperature
(Tincubation), MAT, F:B ratio, aridity index, SOC and soil C:N57 on original
CUE. Substrate types and incubation temperature were included as
categorical and continuous variables, respectively, to control their
effects on original CUE. As such, we have

CUE = f ðsubstrate, Tincubation,MAT , F : Bratio,aridity index, SOC, soilC : NÞ
ð2Þ

where CUE refers to ‘original CUE’ as opposed to the ‘detrended CUE’
presentedbelow.Meandecrease in accuracy (%IncMSE)was calculated
to identify themore important variables as thosewith greater values of
%IncMSE. The significance of variables was evaluated using rfPermute
package. Moreover, partial functions of the most important variables
(MAT and F:B ratio) were plotted using pdp package to examine their
influences onoriginal CUEbycontrollingother variables in Eq. 2. Based
on the partial relations between original CUE and MAT, segmented
linear regressions (also used in previous studies58) were used to iden-
tify the threshold values of MAT. The obtained segmented linear
regressions were incorporated into microbial-explicit and first-order
models (see Section ‘SOC models’ for details) to examine their
implications on SOC dynamics in a warmer climate. This approach
could be feasible in spatially implicit model runs without accounting
for spatial heterogeneity (see the following section of SOCmodels for
details), thus requiring to control the biotic and abiotic factors (see
Eq. 2) covarying with temperature in influencing CUE in the partial

dependence analysis34. The sensitivity of nonlinear CUE and MAT
relations and MAT threshold values were examined by using more
datasets of compiled CUE which include 18O-H2O method26 or using
MAT_soil.

Effects of substrate and environmental conditions on CUE using
detrendedCUE. Because CUEwas substantially influenced by the type
of substrates added (Fig. 2a) and that varied acrossmeta-data studies59,
here we used a ‘detrend’ approach to standardize the effects of sub-
strates. The principle of ‘detrend’ was to remove the influence of
individual substrate effects on the overall relationship using a partial
least squares approach31. As such, CUE measured in incubation con-
ditions with the 16 types of substrates added across studies could be
regarded as the systematic study of using the common type of sub-
strates. We then evaluated the thermal response of detrended CUE
across the climate gradient—an approach previously used to examine
the thermal adaptation of soil heterotrophic respiration from labora-
tory incubations with a common or single substrate5,6. The detrended
CUE with values lower than 0 or higher than 1 (n = 11 out of 826 sam-
ples) were not used. The relationship between the detrended CUE and
original CUE was examined using the simple ordinary least squares
regression. The detrended CUE led to overestimated or under-
estimated values as compared to the original low or high CUE,
respectively, thus generally decreasing the range of CUE values (Sup-
plementary Fig. 1).

As in the analysis of original CUE, simple ordinary least squares
linear regressions and random forest models (%IncMSE and a feature
partial dependence analysis) were used to examine the dependence of
detrended CUE on Tincubation and natural environmental conditions
(MAT, F:B ratio, aridity index, SOC and soil C:N). In the random forest
models, we have

Detrended CUE = f ðTincubation,MAT , F : Bratio,aridity index, SOC, soilC : NÞ
ð3Þ

Similarly to the approach used for the original CUE, the seg-
mented regressions were used to identify the threshold values of MAT
in detrended CUE-MAT relations. The segmented linear regressions
were incorporated into microbial-explicit and first-order models to
examine their implications of the nonlinear detrended CUE thermal
response on SOC dynamics under climate warming. The full CUE
datasets including 18O-H2O method26 or MAT_soil were used to exam-
ine the sensitivity of nonlinear detrended CUE and MAT relations and
MAT threshold values.

The detrended CUE approach standardized the CUE values by
controlling the effects of different substrates, thus allowing to further
use spatial error models accounting for spatial autocorrelation of
sample distribution to examine environmental controls on detrended
CUE. The spatial error models used a spatial weights matrix with
neighborhoods defined as cells within a certain distance of the focal
cell to remove the impacts of the spatial autocorrelation in the resi-
duals (Moran’s I test; all P > 0.05).

Nonlinear thermal response of soil heterotrophic respiration. We
used the soil heterotrophic respiration datasets from Dacal et al. and
Bradford et al.5,6 to inspect the potential nonlinear thermal response.
To this end, we used the random forest analysis and feature partial
dependence analysis to investigate the nonlinear thermal response of
respiration by controlling the covariates presented in the linear ana-
lysis by Dacal et al. and Bradford et al.5,6. Similarly, the segmented
regressions58 were performed to identify the threshold values of MAT
in correlating with soil microbial mass-specific heterotrophic
respiration.
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SOC models. We used two soil organic carbon (SOC) models: i) a
conventional first-order decomposition model49 and ii) a four-pool
microbial-explicit model2 to examine how the CUE-MAT relationships
identified in this study (the segmented linear regressions in relating
MAT with original or detrended CUE; Supplementary Fig. 4) influence
the response of SOC to warming. To do this, we used a space-for-time
approach to simulate the effects of CUE under future warming on SOC
dynamics3,26. The first-order model includes three C pools, (i.e., SOC,
dissolved organic C (DOC), and microbial biomass C (MBC), with each
pool’s decomposition rate represented as a first-order decay function.
The first-order model lacks an explicit CUE, but the transfer coeffi-
cients that indicate flux partitioning into CO2 vs. soil C pools are
conceptually comparable2,32,33. The four-pool microbial model adds an
enzyme pool (ENZ) with the enzymatic decomposition of SOC and
subsequent assimilation (i.e., uptake) of DOC by microbes2 (see Sup-
plementary Fig. 2 for model structure). As such, the four-pool micro-
bial-explicit model allows the microbial pool to feed back to SOC
decomposition. To examine the influence of the CUE-MAT relation on
respiration and SOC dynamics, only CUE was assumed to vary with
MAT in the model parameterization and setup with other variables
such as C inputs, climate, and soil conditions being setup as constants.
Thedetailed equations andparameters in the twomodels canbe found
in Ye et al. (2019)33.

It is important to emphasize that the model runs did not account
for spatial heterogeneity across landscapes where C inputs, climate
and soil conditions could vary substantially. To this end, any spatially
varying predictor of CUE in Eq. (2) and (3) needed to be considered in
partial dependence plots to derive the relationships between original
or detrended CUE and MAT while incorporating nonlinear MAT-CUE
equations into the biogeochemical models. As such, it leveraged the
data-driven machine learning approach to be integrated with biogeo-
chemical models35 while examining the SOC dynamics in a warming
climate. To test the sensitivity of this partial dependence approach to
covarying abiotic and biotic variables, we considered two scenarios: (1)
running several models in each of which we excluded one of different
covariates shown in Fig. 2b (i.e., incubation temperature, soil C:N, SOC,
aridity index, F:B ratio; Supplementary Figs. 17a–e), and (2) building
the model including only F:B ratio and substrate as covariates (Sup-
plementary Fig. 17f).

To assess the thermal sensitivity of decomposition, we ran the
SOCmodelswithout litter input in the transient scenario by following a
unit of C as it is decomposed at differentMAT.Wedefined the effective
decomposition rate (effective ke) as an indicator of thermal sensitivity
of decomposition at different MAT:

ke = �
ln SOCt

SOC0

� �

t
ð4Þ

where t is the time thatmodels run, SOC0 is the initial SOC, and SOCt is
the remaining SOC after decomposition within time t. The pattern
shown in Fig. 4 refers to the long-term ke values after they have
approximately stabilized (i.e., 1 year).

Data availability
Data of original and detrended CUE, the associated environmental
variables and the original references as well as data of respiration in
Bradford et al and Dacal et al. and associated environmental variables
are deposited in https://github.com/KailiangYu/Microbial-carbon-use-
efficiency.

Code availability
Codes used to derive detrended CUE and generate Figs. 1–4 in main
text are deposited in https://github.com/KailiangYu/Microbial-carbon-
use-efficiency.
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