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Abstract

Humans have an intuitive understanding of music. We can pre-
dict the ensuing notes of a melody given the first few notes,
but what exactly drives these predictions? Previous research
on musical cognition explores probabilistic models of melody
perception where a melody’s structure can be inferred given
its surface. Other research theorizes about “musical forces”,
forces that are analogous to how we represent the physical
world, and which inform the way we form expectations about
music. We propose a single model of melodic expectation that
combines both ideas using a structured generative model and
sequential Monte Carlo inference. The generative model for-
malizes these musical forces, and combined with inference, en-
ables predicting the last note of a melody given the beginning
notes. This model explains human performance in an exist-
ing dataset of melodic predictions. The model explains more
variance than its ablations, and suggests an “intuitive physics”
basis for melodic expectation.

Keywords: melodic expectation; musical cognition; Bayesian
inference; machine learning

Introduction
Theoretical Background
Melodic expectation is a fundamental concept of musical cog-
nition, referring to the cognitive processes involved when
one is (often spontaneously) predicting the next notes in a
melody. Existing research in musical cognition has explored
different aspects of melodic expectation including its similar-
ity to linguistic prediction (Fogel, Rosenberg, Lehman, Ku-
perberg, & Patel, 2015), the cognitive neuroscience of sound
expectancy (Koelsch, Gunter, Friederici, & Schröger, 2000),
and its structural analysis using mathematical theories (e.g.,
Gjerdingen & Narmour, 1992).

What computations underlie our perception of melodies
and melodic expectation? Existing work considers two possi-
bilities in largely non-overlapping literature: melody percep-
tion as a probabilistic process (Temperley, 2008) and the exis-
tence of ”musical forces” that influence melodic expectation
(Larson, 2004). While these two theories may not necessarily
coexist currently, their existence presents a promising oppor-
tunity to combine both into a single computational model of
melodic expectation. We hypothesize that a model that in-
corporates both probabilistic melody perception and musical
forces can explain patterns of human melodic expectation.

Probabilistic approaches have been extensively consid-
ered for understanding musical cognition (Temperley, 2007).
Most notably, Temperley (2008) proposed a probabilistic
model of melody perception where a melody’s structure is
inferred from its “surface”, or the observed notes. Temperley
focuses on ‘key’ as the underlying structure of a melody, but

structure can also include meter or “other musical informa-
tion”. The general idea of the model is that listeners of mu-
sic use “surface processes” or measurements, which include
pitch identification, error detection, and expectation, to infer
the most probable structure. Through data analysis of a cor-
pus of European folk melodies, Temperley also found that the
notes in a melody can be represented as a normal distribution
centered around a central pitch, the center of the tonal range.
(This observation informs how we build the prior distribution
of notes in our probabilistic model.)

The research on musical cognition often observes tempo-
ral predictions as a core element, much like the predictive
processes implicated in sentence completion (Feld & Fox,
1994). However, existing modeling work in melodic expec-
tation takes primarily a statistical approach, learning condi-
tional distributions of melodic transformations based on ex-
isting corpora of melodies. Examples include the Temper-
ley model (Temperley, 2008), the expectation network model
(Verosky & Morgan, 2021), and the information dynamics of
music model (Pearce, 2018). In other cases, for example, in
rhythm perception, the temporal distribution is marginalized
over (Fram & Berger, 2023), still focusing on the statistical
properties of notes.

A different line of work directly engages to characterize the
nature of these temporal predictions, suggesting that melodic
expectations may come from “musical forces”. Larson (2004)
discusses a set of concepts, in analogy to forces between
physical objects, as the drivers of our melodic expectations.
These include gravity, magnetism, and inertia, which are
meant to metaphorically reflect our “experience of physi-
cal motions” (Larson, 2004). Listeners (but not necessarily
players) of music systematically expect completions of mu-
sical phrases where the aforementioned musical forces dic-
tate the ”auralized traces”, or auditory representation of mu-
sic notes. In other words, we expect melodies to be com-
pleted and we expect musical forces to be at play in these
completions. Gravity is the tendency for an unstable note to
descend, magnetism is the tendency for an unstable note to
move towards the nearest stable pitch, and inertia is the ten-
dency of a melody to continue in the direction it was mov-
ing in before the current note. These individual forces come
together to create a cumulative force which influences how
we perceive note-to-note transitions in a melody. Consider
how some emotional songs may feel ”heavy” or how some
vocal runs start low and gradually climb in pitch. Unlike
the probabilistic models, Larson’s proposal of musical forces,
and similar conceptual frameworks (Margulis, 2005), remain
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Figure 1: (A) Melodic expectation task involves predicting the final note from a “melodic stem” — a sequence of notes except
the final note. We represent notes using the MIDI notation. (B) One part of the structure in the generative model is the musical
key. We illustrate key using the example of C major scale. We incorporate a prior over the 15 major keys in the generative
model. (C) In addition to the key, the generative model incorporates ”musical forces” –the forces due to gravity, magnetism,
and inertia– calculated using the previous note (the previous two notes in the case of inertia). These forces are then summed
and applied to the previous note to arrive at the next note.

non-computational.
Larson’s theory, that we perceive these musical elements in

terms of gravity, magnetism, and inertia, has striking parallels
to more modern work in cognitive science which proposes
that humans have an ”intuitive physics engine” (Battaglia,
Hamrick, & Tenenbaum, 2013). This is a theory of how we
can make fast and often accurate inferences about the physi-
cal world, including how objects move and interact. This en-
gine runs on probabilistic simulations which allow us to make
these inferences even when all information is not necessarily
observed. We wonder if this proposal extends to the musical
world and how it can be implemented.

Proposal
We propose a model of melodic expectation that combines
both Temperley’s work on probabilistic inference of melodic
structure and Larson’s work on musical forces. This model
relies heavily on a melody’s key as its underlying structure.
It selects each note based on the sequence of notes before it
and a calculation of each musical force. Our goal is to algo-
rithmically represent how melodies and melodic expectation
are represented in the mind using a probabilistic and physics-
based approach.

To solve this inference problem, we first created a gen-
erative model that solves a sequence of inference problems
where the output of one application is the input of the next.
The nature of this inference problem invites the utilization
of a sequential Monte Carlo method called particle filtering
(Elfring, Torta, & Van De Molengraft, 2021). Once the gen-
erative process is established, it is called within a particle fil-
ter to generate a series of melodic sequences. At each time
step, each sequence is weighed by its likelihood to be correct
with respect to an observed note, and resampled according to

these weights for the next time step. We evaluate the model
by comparing its predictions after the final note (the final note
in an observed sequence) to that of human participants in
melodic expectation tasks. These behavioral measurements
come from an existing study (Morgan, Fogel, Nair, & Patel,
2019). We find that the model’s predictions correlates with
average human performance. We also analyzed outputs from
the full and ablated versions of the model to assess to the
extent to which the musical forces we considered in our hy-
pothesis are supported by the data.

Computational Model
Overview of the Generative Model
To understand the representations behind melodic expecta-
tion in computational terms, we first establish it as a genera-
tive process. Using the two aforementioned theories from the
literature, we created a function that generates melodies in a
randomly chosen major key with an initial note chosen from
a normal distribution centered around the home note of that
key. We implemented this model and our inference procedure
in Julia using Gen.jl, a state-of-the-art probabilistic program-
ming system (Cusumano-Towner, Saad, Lew, & Mansinghka,
2019).

Before constructing the model, we transformed musical
pitches into numerical values using the MIDI note value sys-
tem where C4 (middle C) is equal to 60 and each semitone
up or down from C4 is +1 or -1. Not only does this method
allow us to accurately and consistently represent music notes
in machine-readable form, we are also easily able to deter-
mine the proximity between the model’s performance and the
human performance.

Following Temperley (Temperley, 2008), we can pose
melodic perception as probabilistic inference of musical
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structure from surface

P(structure|sur f ace) =
P(sur f ace|structure)P(structure)

P(sur f ace)

where surface is a noisy measurement of a note and the struc-
ture includes the key and the actual note played.

Crucially, here, we hypothesize that melodies follow
a probabilistic ”intuitive physics” like structure (Sanborn,
Mansinghka, & Griffiths, 2013; Battaglia et al., 2013):

Notet+1|Notet ∼ N (Notet +F,σ)

where F is the cumulative force that moves the previous note
Notet into the current note Notet+1. To characterize this
force, we adopt Larson’s theory (Larson, 2004):

F = wGG+wMM+wII

where G, M, and I are values that represent the influence of
the individual forces of gravity, magnetism, and inertia, and
wG, wM , and wI are weights assigned to each force. Notet+1
is calculated by drawing a value from a normal distribution
centered around Notet + F with noise parameter σ. Given
an initial note and the key, the generative model aggregates
musical force at each time step, and applies it to the current
note to arrive at the next note. We illustrate various samples
from this generative process in Fig. 2.

Figure 2: Three melodies sampled from the generative model.
We draw a key and initial note at random and then use the
temporal kernel of ”musical forces” implemented in our gen-
erative model to unfold the remaining notes.

Then melodic expectation takes the form of the following
posterior under this generative model:

P(Key,Note1:T |x1:T ) ∝ (1)

P(Key)P(Note1)∏P(Notet+1|Notet)P(xt+1|Notet+1)

where P(Key) is a uniform prior over notes and P(Note1) is a
normal distribution centered around the corresponding key’s
home note.

This posterior incorporates the theories of Larson and Tem-
perley by using a selected key and musical forces as the struc-
ture of melody and probabilistically relating this to observa-
tions (surface). We note that our implementation of either
theory is not meant to exactly match what was originally in
the literature. For instance, Larson’s original theory stated
that gravity and inertia should be represented by assigning
scores that denote the degree to which a pattern gives in to
each force. Temperley’s original model also had a key-finding
feature whereas, during inference, we assume that the key is
given. We seek to preserve the higher-level ideas of each the-
ory but also implement them such that they work together.
Therefore, despite these deviations, the generative model pre-
serves the core elements of each theory.

Structure: Key and Musical Forces

We now specify how in the generative model the key and mu-
sical forces are implemented.

Key To reflect Temperley’s idea that the underlying struc-
ture of a melody is its key, the generative model incorporates
a single one-octave scale per each of the 15 major keys. Each
of these scales starts at the home note (i.e., the ”tonic” in mu-
sic theory, typically the first note on the scale) with the rest
of the notes on the scale following the set intervals for major
scales. A broad range of evidence suggests that key, includ-
ing the systematic spacing of notes in a scale, drives our intu-
itions about correct and incorrect notes (e.g., McDermott &
Oxenham, 2008).

The scale establishes which notes are stable and guides the
calculation of musical forces as the generative process un-
folds. In each of the following musical force functions, the
notes of a scale of a given key is the fundamental element.
The key, represented as an array of integers, and the current
sequence of notes are inputs to each musical force function.

Force due to gravity Gravity, G, is calculated by first find-
ing the difference between the current note and the home note
of the scale. The difference is then multiplied by -1 if the cur-
rent note is higher than the home note in the scale. If the
current note is lower than the home note in the scale, then
gravity is set to 0. This implementation allows the effect of
the gravity to be proportional to the distance between the cur-
rent note and the start of the scale. In practice, this means that
higher notes are more heavily influenced by gravity and notes
lower than the start of the scale are not influenced by gravity.
(We interpret the -1 as the gravity constant and the distance
as the mass.)

Force due to magnetism Magnetism, M, is calculated by
taking the inverse square of the distance in semitones to the
nearest note in the scale (i.e., stable note), dto, and subtracting
the inverse square of the distance in semitones to the closest
stable note in the other direction, d f rom. This formula influ-
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Figure 3: Posterior samples from the particle filter for three typical input melodic stems. The red line represents the actual
sequence of observed notes with the mean of participant responses added as the last note. The solid and dashed black lines
represent the mean of human predictions and model predictions, respectively, of the final note to complete the melody.

ences notes to move towards stable notes is directly adapted
from Larson’s existing theory:

M = 1/dto
2 −1/d f rom

2

Force due to inertia Calculating inertia, I, requires input
of the current and previous note to determine the direction of
the melody. If the current note is the first note in the melody,
then inertia is set to 0. Inertia is also set to 0 if the current
note is below the start of the scale (i.e., the home note) to
guide the melody toward the range of the scale. Otherwise,
inertia is set to a positive or negative constant depending on
if the current note is above or below the previous note.

Additionally, the generative model allows for a ”bounce”
to occur with probability 0.1 which negates the inertia value.
We implemented this to account for the dominating force of
gravity and the periodic rises of pitch in a melody.

In summary, this structure of key and forces form a tempo-
ral kernel that calculates each musical force for a given note
and the key. Fig. 1 shows a schematic of this generative pro-
cess, transitioning from previous notes to the next. First, sep-
arate functions calculate contributions of gravity, magnetism,
and inertia for the current note using the key and current
sequence of notes as input (Fig. 1A & 1B). We introduce
stochasticity to the outputs of these functions using a normal
distribution to perturb these outputs. Respective weights are
applied to each force. All forces are summed and applied
to the current note. Lastly, the resulting value is used as the
center of a normal distribution from which the next note is
drawn.

Inference
We implemented a particle filter to approximate the posterior
in Equation 1. Particles are collections of samples that rep-
resent possible states of an ongoing melody (i.e., the current

note) as well as their associated posterior probability scores.
At each time step, the model makes predictions by resampling
the current collection of particles (according to their posterior
scores) and updating the weights based on newly observed
data, assigning higher weights to particles that have a higher
likelihood of occurring. Ultimately, we use these inferences
to draw a last note prediction from the generative model (the
posterior predictive distribution), which we compare to hu-
man predictions.

Inference takes as input sequentially presented notes that
together make up a ”melodic stem” (i.e., all notes in a melody
except the last note). For each input sequence, we run our
particle filter with 100 particles and return 100 unweighted
samples from the posterior for further analysis (to compute a
prediction over the last note of the stem).

For computational convenience, the particle filter is initial-
ized with the ground truth key of the melodic stem as well as
the first note in the melody. (Instead, this initialization can be
carried out using a data-driven proposal.) At each following
time step, the particle filter state evolves by possibly resam-
pling and updating the weights based on the observed data,
which only includes the current note.

Fig. 3 shows several runs of the particle filter on three ex-
ample input melodic stems ranging in length from 7-8 notes.
We simulate the prediction of a final note (the last time step)
by simulating the temporal kernel of the generative model on
the posterior samples.

Behavioral Task and Model Simulation
An existing experiment from ”Statistical learning and
Gestalt-like principles predict melodic expectations”
(Morgan et al., 2019) parallels the model’s task in human
participants. We use the behavioral dataset from this to
test our model and its ablations. This experiment presented
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Figure 4: Comparisons between model and behavior. (A) Model vs. human accuracy for full model. (B) Linear correlation
between human and model accuracy across full and ablated models. Error bars/regions depict 95% CI.

melodic stems, i.e., the first 6-9 notes of a melody, to 25
participants and asked them to sing the next note. The
melodic stems were composed from another study (Fogel et
al., 2015). To the best of our knowledge (based on what we
can infer reading these papers), we note that the design of
the behavioral study and the melody stems used in it were
not in any way designed to elicit or be based on Larson’s
theory of musical forces. Participants were asked to complete
45 distinct melodic stems, all of varying lengths and keys.
We coded the melodic stems and the respective mean of
participant responses into MIDI note values.

We simulated our particle filter on each of the 45 melodic
stems and obtained a posterior predictive distribution on the
final note of each. We compare the average predicted note by
our model (average of 100 samples) to average human predic-
tions. In our simulations, we set the weights on the forces as
wG = 0.3,WI = 0.4, and wM = 12.5; these values were cho-
sen to ensure that after scaling by these weights, each force
contributed in a similar numerical range. Prior to multiplying
with these weights, we apply a small Gaussian noise to each
force component, with a standard deviation of 1 for gravity,
0.005 for magnetism, and 0.75 for inertia. (Again, these stan-
dard deviations were chosen to roughly match the dynamic
range of each force component.) Finally, we set the observa-
tion noise σ = 0.025.

Model vs. Behavior Comparisons
We performed a linear regression between the average model
predicted notes and human data (Fig. 4A). We found a mod-
erate, positive correlation, r(43) = 0.40, R2 = 0.162, p = .006,
between the model and humans in predicting a final note for
each melody. This result suggests that the model’s generative
structure captures some of the variance in people’s melodic
expectations.

We also conducted ablation studies to explore the impact

of individual musical forces in the generative model. By de-
veloping alternative models that incorporate only a subset of
two out of the three forces, we could then analyze how the ab-
sence of a specific force influenced the model’s performance.
Fig. 4B shows a visualization of the correlations between the
different model versions. Compared to the original model,
models that only included magnetism and inertia (“without
gravity”; r(43) = .16, p < .001), gravity and inertia (“with-
out magnetism”; r(43) = .19, p < .001), or gravity and mag-
netism (“without inertia”; r(43) = −.02, p < .001) resulted
in a lower correlations to behavior (using direct bootstrap hy-
pothesis testing with bootstrapping participants 1000 times).
In other words, removing any one of the musical forces re-
sults in a less accurate model of human melodic expectation.

Discussion
We presented a model of human melodic expectations that
combines two, previously separate, accounts of this process:
Temperley’s theory of the probabilistic inference of struc-
ture from surface and Larson’s theory of musical forces as
the drivers of melodic expectations. (We note that Larson in
his seminal work has speculated about full implementations
of “computer models” of his theory.) Our model appropri-
ately combines these two distinct perspectives. The genera-
tive model unfolds melodies using the combined structure of
a key and the algorithmic influences of musical forces. Infer-
ence under this generative model typically well explains the
melodic stems. The predictive distribution under these infer-
ences correlate with average human responses, lending sup-
port for our intuitive physics approach to modeling melodic
expectation. The results of our ablation studies affirm that all
of the musical forces we considered are necessary in model-
ing melodic expectation in the context of our model.

This model may relate to existing hypotheses about
Bayesian surprise and music preference (Itti & Baldi, 2009;
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Sarasso et al., 2022; Stupacher, Matthews, Pando-Naude,
Foster Vander Elst, & Vuust, 2022). Music has evolved from
one-layer (monophonic) Gregorian chants in the 9th century
to hundred-layer (polyphonic) electronic music today (Harris,
2024). Perhaps what drives our musical preferences are pat-
terns that do deviate from probabilistic or algorithmic norms
— perhaps in ways that themselves remain predictable. We
consider the “bounce” variable in our generative model (im-
plemented within the inertia force) as one such candidate. In
the model, the bounces occur against ”invisible” surfaces, af-
fording some degree of algorithmic surprise.

The moderate performance of our model prompts consid-
eration of both its strengths and limitations. In some cases,
inferences under the generative model do not accurately re-
capitulate the observed notes, indicating that the generative
model is not sufficiently expressive. The current implemen-
tation of the model also does not infer key (and the initial
note). A fuller account should address these issues, for exam-
ple by using data-driven proposals or simply including their
inferences in the particle filter.

Another limitation of the model is that musical forces for
each note are calculated independently of the longer context
of the previous notes; all of the forces consider only the pre-
vious step (i.e., Markovian as is typical in physics simula-
tion) with the exception of inertia which considers the pre-
vious two steps. But in music (and in physics) there can be
temporally elongated, perceptually relevant structures (e.g., a
pattern of bouncing of a ball). Future versions of this model
should account for the entire melody when calculating a next
note. Ideas from other domains of musical cognition (Fram &
Berger, 2023) and more generally structured representations
in cognitive science should be of interest (Sablé-Meyer, Ellis,
Tenenbaum, & Dehaene, 2022).

Lastly, our model represents melodies solely in terms of
pitches (MIDI notation is a numerical mapping of pitches)
and time steps of equal length. Music is not solely made of
observed notes. It also includes rhythm, meter, dynamics, and
even qualitative aspects such as emotion and articulation. Ex-
tending the model with these more complex aspects of music
is of great interest. Similarly, considering different types of
keys (i.e., minor or blues) or styles of music (i.e., Eastern or
Arabic) could enhance the model’s scope of performance and
give better insight into the mechanism behind melodic expec-
tation in the mind.

In conclusion, our model introduces a new approach to
modeling melodic expectation by combining two distinct the-
ories: probabilistic melody perception and musical forces.
The model performed moderately well at predicting human
performance in melodic expectation tasks. Where the model
does not perform well, there is opportunity to explore differ-
ent features of music that may contribute to this process of
”intuitive physics” or the idea of Bayesian surprise in musi-
cal cognition. We hope that future work will build upon our
model to further our understanding of musical cognition and
melodic expectation.
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