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Solutions to the Catastrophic Forgetting Problem

Anthony Robins (COSCAVR@OTAGO.AC.NZ)
Computer Science Department, The University of Otago,
P.O. Box 56, Dunedin, New Zealand

Abstract

In this paper we review three kinds of proposed solutions
to the catastrophic forgetting problem in neural networks.
The solutions are based on reducing hidden unit overlap,
rehearsal, and pseudorehearsal mechanisms. We compare
the methods and identify some underlying similarities. We
then briefly note some potential implications of the
rehearsal / pseudorehearsal based methods, including their
application to sequential learning tasks.

Introduction

In most standard neural network learning algorithms, such as
back-propagation (Rumelhart, Hinton & Williams, 1986),
all information is learned “concurrently”. In other words,
the whole population of interest is presented and trained as a
single, complete entity. Training is then “finished” and no
further information is added to the network. Being limited
to concurrent learning is undesirable in practical terms,
making it very difficult to modify or extend any given neural
network application without completely retraining the
network (compared with a traditional rule based system
where information or rules can easily be added to or removed
from the system). It is also a highly implausible constraint
for cognitive modelling where so much of human learning is
clearly sequential or incremental in nature. This limitation
arises because of the “catastrophic forgetting" problem — the
learning of new information disrupts previously learned
information in a network.

In this paper we review three kinds of proposed solutions
to the catastrophic forgetting problem. The~ are based on
reducing hidden unit overlap, rehearsal, and pseudorehearsal
mechanisms. We compare the methods and identify some
underlying similarities. Rehearsal and pseudorehearsal allow
new information to be added to a network sequentially (at
any time) without disrupting old information. We briefly
explore some potential implications of these methods,
including the possibility of a framework for modelling
ongoing or continuous learning / development with neural
networks, and speculations about the relationship of these
methods to the consolidation of information during sleep.

Catastrophic forgetting and concurrent
learning

Ideally the representations developed by a learning system
should be stable enough to preserve important information
over time, but plastic enough to incorporate new
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information when necessary. One consequence of a failure to
address this “stability / plasticity dilemma” (Grossberg,
1987) in many neural networks is excessive plasticity,
usually called “catastrophic forgetting” (or “catastrophic
interference”, or the “serial learning problem”). If a network
is exposed to the learning of new information, then any
previously learned information will typically be greatly
disrupted or lost. Grossberg (1987) suggests the analogy of a
human trained to recognise the word “cat”, and subsequently
to recognise “table”, being then unable to recognise “cat”.

A number of recent studies have used multi-layer
perceptron (typically back-propagation) networks to
highlight the problem of catastrophic forgetting and explore
various issues — these include, McCloskey & Cohen (1989),
Hetherington & Seidenberg (1989), Ratcliff (1990),
Lewandowsky (1991), Murre (1992a, 1992b), French (1992,
1994, 1997), McRae & Hetherington (1993), Lewandowsky
& Li (1995), Sharkey & Sharkey (1995), Robins (1995,
1996a), and Frean & Robins (1997). Similar issues have
been explored in the context of Hopfield networks by Nadal,
Toulouse, Changeux & Dehaene (1986), Burgess, Shapiro
& Moore (1991), and Robins & McCallum (1998).

In a typical illustration of catastrophic forgetting we use a
back-propagation network to learn a base population of
items (input / output vector pairs) in the usual way.
Subsequently a number of new items are learned one by
onel. The effect of these new items can be illustrated by
plotting a measure (such as goodness or error) of the ability
of the network to correctly reproduce the base population
after each new item. As shown in Figure 1, the error in a
base population of items increases “catastrophically” after
the learning of even one new item, and continues to rise as
further new items are learned.

This catastrophic forgetting is the underlying constraint
that restricts most neural networks to concurrent learning
(where the whole population of interest must be learned as a
single, complete entity).

Al simulations in this paper use the “Iris™ data set (Murphy
& Aha, 1994) consisting of 150 items divided into three classes
(distinct species of iris) of 50 items each. Each item consists of
four real valued measurements of the iris (such as petal length).
We used a 4:3:4 or 4:4:4 autoassociative back-propagation
network with a learning constant of 0.05 and a momentum
constant of 0.9, and an error criterion of 0.01. All results
reported were averaged over 50 individual replications of the
simulation (using different populations for each replication).
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Figure 1: The basic catastrophic forgetting effect. (Adapted
from Robins (1996) Figure 1).
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Figure 2: Hypothetical hidden unit activations.

Solutions to catastrophic forgetting

In this section we briefly review three general approaches to
solving the catastrophic forgetting problem. These are based
on reducing hidden unit overlap, on rehearsal, and on
pseudorehearsal respectively. Other proposed solutions
based on specific “purpose built” architectures are noted in
Sharkey and Sharkey (1995).

Reducing hidden unit overlap

French (1992) suggests that the extent to which catastrophic
forgetting occurs is largely a consequence of the overlap of
distributed representations, and that the effect can be reduced
by reducing this overlap. Catastrophic forgetting will be
worst when new item inputs are similar to bz se population
inputs (i.e. generate similar hidden unit patterns) but require
very different output patterns to be produced.

Several studies have explored mechanisms for reducing
representational overlap and their impact on catastrophic
forgetting. The novelty rule (Kortge, 1990), activation
sharpening (French, 1992), and techniques developed by
Murre (1992a) and McRae and Hetherington (1993) all fall
within this general framework. These methods focus on
increasing the separation (orthogonality) of the hidden unit
representations developed by the network, typically by
creating “sparser’” representations (hidden unit patterns with a
smaller number of active units). French's activation
sharpening, for example, introduces an extra step to the
learning process for each input which adds weight changes
that slightly increases the activation of the most active (or k
most active) hidden units while decreasing the activations of

all others. To illustrate these points consider a hypothetical
network with four hidden units which has learned a
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Figure 3: Rehearsal and pseudorechearsal methods

effectively eliminate the catastrophic forgetting. (Adapted
from Robins (1996) Figures 3 & 4).

population where the inputs are divided into two relatively
distinct categories. Figure 2 (a) illustrates possible hidden
unit patterns of activation for each category in a standard
back-propagation network. The representations of each
category may not be well separated. Figure 2 (b) illustrates
typical hidden unit patterns of activation for each category in
a back-propagation network using single node activation
sharpening. The representations of each category are well
separated, and sparse.

While these methods can reduce the impact of catastrophic
forgetting in varying ways (as discussed below), French
(1994) identifies several problems with the use of sparse
hidden unit representations. French shows that the reduced
representational capacity of sparse patterns of activation can
in some circumstances result in an increase in catastrophic
forgetting, and also argues that it results in a reduced
capacity to categorise and discriminate inputs, and a reduced
capacity to generalise. The use of sparse (more “localist”)
representations would also imply a decreased robustness in
the face of noise and damage. French (1994) concludes that
hidden layer representations need to be highly distributed as
well as separated, and describes a new method, “context
biasing”, which generates such representations. Context
biasing introduces an extra step to the learning process for
each input which adds weight changes that enhance the
differences between the pattern of hidden unit activation
generated by the current input and the pattern generated by
the previous input. Figure 2 (c) illustrates typical hidden
unit patterns of activation for each of two hypothetical
categories in a back-propagation network using context
biasing. The representations of each category are well
separated, but distributed, avoiding the problems associated
with sparse representations.

Of the methods for reducing hidden unit overlap,
activation sharpening and context biasing do not actually
prevent a base population from being disrupted by new
items. These methods do, however, ameliorate the effects of
this catastrophic forgetting to the extent that they allow the
base population to be subsequently retrained to criterion
more quickly than is the case in a standard back-propagation
network. The novelty rule (Kortge, 1990) has been shown
to prevent catastrophic forgetting, but can only be used with
autoencoder (autoassociative) networks. Catastrophic



forgetting may also be prevented if it is possible to pre-train
the network on a population which is “relevant” to the base
population and new items (simulating prior knowledge of a
task domain) as explored by Sharkey and Sharkey (1995) and
McRae and Hetherington (1993). In McRae and
Hetherington's simulations this pretraining naturally reduced
the overlap of hidden unit representations in subsequent
learning.

Rehearsal

A second general approach to preventing catastrophic
forgetting involves “rehearsing” the base population by
retraining some base population items as the new items are
trained. Ideally this will allow the new items to be
incorporated into the structure of the base population instead
of just overwriting it. Rehearsal was first explored in the
context of catastrophic forgetting by Hetherington and
Seidenberg (1989) and Ratcliffe (1990), and a range of
rehearsal methods have been explored by Murre (1992b) and
Robins (1995).

Following Ratcliffe (1990), rehearsal can be thought of as
introducing each new item not alone, but in a rehearsal
buffer along with a number of old items. The population of
items in the rehearsal buffer are then trained over a number
of epochs (iterations of the learning algorithm) in the usual
way. The various possible ways of selecting and managing
the old items in a rehearsal buffer define a family of possible
rehearsal regimes. Robins (1995) explores a range of
rehearsal regimes, including a “recency” regime (following
Ratcliffe (1990)), a “random” regime (independently
proposed in Murre (1992b)), and a “sweep” regime. In this
paper we will illustrate the general properties of rehearsal
using the sweep regime as a specific example. In sweep
rehearsal the rehearsal buffer always contains the new item,
and also contains a number (one or more) of old items that
are randomly selected for each epoch of training (replacing
the old items used in the previous epoch so that the buffer
remains of a fixed size)*. Training continues until the
single new item reaches criterion.

Our second simulation explores the performance of
(sweep) rehearsal compared to the simple no rehearsal
condition illustrated in the first simulation (see Figure 1).
We use the same network, parameters, and porulations, i.e.
a base population consisting of 30 items of one species of
iris and 20 new items drawn from a second species. Each
new item is trained in a buffer along with a number (five in
this case) of previously learned items (base population items
or new items learned earlier in the sequence) chosen at
random for each epoch. The results are shown in Figure 3,

2 The ratio of old items in the buffer to the size of the base
population is an important factor. Simulations based on the Iris
population in this paper continue to use the baseline
established in Robins (1995) of setting the size of the rehearsal
buffer to include a number of old items equal to roughly 15% of
the size of the base population, This figure appears to provide
an acceptable tradeoff between performance and the amount of
rehearsal required. The performance of all regimes can be
arbitrarily improved by increasing the size of the rehearsal
buffer,
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“Rehearsal” condition. Performance on the base population
is maintained very effectively.

In rehearsal one chooses some number of old items to be
learned alongside a new item. If all old items were included,
rehearsal would simply amount to retraining the entire base
population as new items are introduced (as is the case in for
example the “interleaved learning” proposed by McClelland,
McNaughton and O’Reilly (1995)). What is interesting
about the studies described above, however, is that subsets
of the base population or less rigorous training criteria can
also be used effectively. The (sweep) rehearsal regime
illustrated here is very effective despite the fact that it does
not use all the items at every step and does not explicitly
retrain old items to criterion. This suggests that in general
rehearsal should be “‘broad” but it does not need to be “deep”.

Pseudorehearsal

Rehearsal of this kind is an effective solution as long as the
previously learned items are actually available for relearning.
It may be, however, that the old items have been lost, or it
is not practical for some reason to store them. Sharkey and
Sharkey note, for example, that:

“the interference [catastrophic forgetting] problem is [...]
general and should be of concern to all those involved in
developing applications in which the training data only
become available piecemeal over an extended period of
time. For example, in on-line learning of control
processes, such as found in robotics or manufacturing, it
may not be practical to maintain all of the training data in
memory and retrain each time a novel aspect of the data is
encountered.” Sharkey & Sharkey (1995, p 302).

In any case, retaining old items for rehearsal in memory
seems somewhat artificial, as it requires that they be
available on demand from some other source, which would
seem to make the memory itself redundant!

It is possible to achieve the benefits of rehearsal, however,
even when there is no access to the base population. In
other words, we can do rehearsal even when we do not have
the old items to rehearse! This *“pseudorehearsal”
mechanism, introduced in Robins (1995), is based on the
use of artificially constructed populations of “pseudoitems”
instead of the actual old items.

A pseudoitem is constructed by generating a new input
vector at random, and passing it forward through a network
in the standard way. Whatever output vector this input
generates becomes the associated target output. For a given
network (trained on the base population) a population of
pseudoitems constructed in this way can be used instead of
the actual base population items in any rehearsal regime.
Such a population is constructed before each new item is
learned” . Learning proceeds exactly as before, except that
instead of rehearsing items chosen from the old base
population they are chosen from the population of
pseudoitems.

Just as for simple rehearsal, in this paper we use the
“sweep” regime for choosing pseudoitems (see Robins
(1995) for other variants). Using the same network and

3 Our simulations use populations of 128 pseudoitems.



populations as above, we repeat the training procedure of the
rehearsal process (second simulation) except that
pseudoitems are used instead of actual old items.
Specifically, before each new item is learned a population of
pseudoitems is constructed. The new item is then learned
alongside pseudoitems (five in this case) that are chosen at
random for each epoch. Training continues in this way until
the new item is trained to criterion. The results are shown
in Figure 3, “Pseudorehearsal” condition. Pseudorehearsal
remains highly effective at preserving performance on the
base population. After the twentieth new item, the error is
roughly two percent of the error of the no rehearsal condition
(Figure 1) and increasing only gradually.

In short, pseudorehearsal is a promising method for
achieving the benefits of rehearsal in reducing catastrophic
forgetting without assuming access to old information.
Rather than explicitly storing all learned items for later
rehearsal, pseudorehearsal approximates this information
whenever it is needed. As well as autoassociative learning
with the Iris data set used in this paper and Robins (1996),
pseudorehearsal based mechanisms have been shown to be
effective on: autoassociative and heteroassociative randomly
constructed data sets by Robins (1995) and Ans & Rousset
(1997); a classification task using the Mushroom data set
(see Murphy & Aha (1992)) by French (1997); and an
autoassociative alphanumeric character set (using a Hopfield
type network) by Robins & McCallum (1998).

Pseudorehearsal is based on sampling the function fit by
the network to the base population in the process of
learning. Obviously the performance of pseudorehearsal
based methods will be greatly influenced by the nature of
this learning process. Networks which have been trained so
as to generalise well (fit the base population data points
with a smooth, compact function) will in general generate
useful pseudoitems that preserve the structure of the base
population well. Networks which do not generalise well (fit
the base population data points with a noisy function) will
not necessarily generate useful pseudoitems. As good
generalisation is frequently a specific objective of training,
however, there are a wide range of techniques which can be
applied to constrain a network to learn compact functions
(see for example Moody (1994)).

Comparing the methods

The essence of preventing catastrophic forgetting is to
localise changes to the function learned by the network.
Rehearsal accomplishes this by relearning the original
training data points during new training. Pseudorehearsal
accomplishes this by relearning other points randomly
chosen from the function during new training (see Frean &
Robins (1997) for further discussion). In short, rehearsal /
pseudorehearsal works directly with the function to localise
changes. Methods based on reducing the overlap of hidden
unit patterns work indirectly by manipulating the
“representation” of the function within the network. The
two approaches are related in that some sharpening of hidden
unit representations emerges naturally from the rehearsal /
pseudorehearsal process.

In order to explore hidden unit representations this
simulation uses the Iris population and a back-propagation
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network of the same architecture and parameters as the
simulations above. Once again the network is trained on a
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Figure 4: Hidden unit activations.

base population of 30 irises drawn from one species, and
subsequently on 20 individual irises drawn from a second
species.

The hidden unit patterns of activation after the learning of
the base population and after subsequent learning of the new
items are represented in Figure 4. Each graph shows the
representations of the base population (filled bars) after
learning, where a representation consists of the activation of
the network’s 4 hidden units arranged in order of most to
least active (averaged over all items in the population). For
the rehearsal condition (graphs (a) to (c)), graph (a) shows
the representation of the base population after its initial
learning. Graph (b) shows that this representation has been
somewhat sharpened after the 20 new items have been added
to the network using rehearsal. Graph (c) shows the same
representation of the base population as graph (b) and
contrasts it with the representation of the 20 learned new
items (unfilled bars). Graphs (d) to (f) show equivalent
results using pseudorehearsal instead of rehearsal.

For both rehearsal and pseudorehearsal conditions the
subsequent learning of the new item population results in a
somewhat “sharper” representation of the base population.
Particularly in the rehearsal condition, the representations of
both the base and new item populations (see Figure 4 (c) and
(f)) have the same form as hidden unit representations
generated by French’s (1994) context biasing method (see
Figure 2(c)), being usefully “distributed but separated”. We
suggest that in general the tendency to develop distributed
but separated hidden unit representations will emerge
naturally from rehearsal based processes. This “localisation
of representation” may be one of the mechanisms by which



the rehearsal processes achieve local changes to the base
population function in a neural network.

A reduction in overlap also emerges naturally from McRae
and Hetherington’s (1993) pretraining method. This may
account for the fact that both pretraining and rehearsal are
able to actually prevent catastrophic forgetting, whereas in
general techniques that directly modify the learning
algorithm just ameliorate its effects as noted above. A
relevant observation from our current simulation is that in
only a minority of cases (11 out of 50 replications of the
simulation for rehearsal, and 13 out of 50 replications for
pseudorehearsal) are the two hidden units that are most active
after the base population has been learned (i.e. parts (a) and
(d) in Figure 4) the same units as the two most active units
after the new items have also been learned (i.e. parts (b) and
(e) in Figure 4). In general, then, the representation
developed during the rehearsal process has involved a
significant re-ordering of the units as well as an overall
sharpening. This suggests that considerable flexibility may
be needed to develop appropriate hidden unit representations,
whereas any modification to the learning algorithm that
directly sharpens patterns of activation works against
flexibility by further entrenching established patterns.

French (1994) notes that very sparse representations may
generalise poorly, and this is one of the motivations for his
use of context biasing to develop distributed but separated
representations. The similar representations emergent from
the rehearsal and pseudorehearsal processes not only preserve
the base population, but they also maintain good
generalisation performance (as is characteristic of both neural
networks and human cognition) on that base population.
During the training and testing of the base population
described above the performance of the network on a test
population was also assessed. The test population consisted
of a further 20 examples drawn from the same species of iris
as the 30 base population items. Every time the average
error of the base population was computed (i.e. for each trial
from 0 to 20 new items) the average error of the test
population was also computed. For both rehearsal and
pseudorehearsal the error of the test population over all 21
trials typically exceeded the average error of the base
population by no more than 0.005. Note that it is not the
case that the networks are generalising well simply because
they have learned to autoassociate any input (see the
discussion of discriminability in Robins (1995) and Sharkey
and Sharkey (1995)). Networks trained on all 150 irises to
criterion and subsequently tested on 150 randomly
constructed autoassociative items produce an average error of
0.158 for the random population (cf. 0.01 for the Iris
population).

Discussion

To summarise, catastrophic forgetting is a natural
consequence of an neural network style of learning and
affects a wide range of networks. One family of solutions
has been proposed which focuses on reducing the overlap of
hidden unit representations. Some of these methods are
effective at reducing catastrophic forgetting in specific
circumstances, others reduce it in the sense that the disrupted
base population is able to be quickly retrained. A second
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family of solutions is based on rehearsing some previously
learned items as new items are added to the network, but
these methods require the separate storage of all previously
learned information so that it is available for relearning.

Pseudorehearsal is very like rehearsal but does not require
access to old information. Instead, pseudorehearsal
approximates old information as needed by randomly
sampling the behaviour of the network. Both methods
work by forcing changes made to the function embodied by
the network to be local to the new information being
learned. Rehearsal / pseudorehearsal methods are related to
other proposed solutions to the catastrophic forgetting
problem in that they naturally result in a sharpening of
hidden unit representations. (In contrast to other methods
however, hidden units are also reordered, implying that
considerable flexibility may be required to fully exploit
sharpening).

The main significance of these methods is that they
provide a practical way of extending the capabilities of
current neural network learning algorithms to allow
sequential learning (learning new information at any time).
This should enable a range of topics, including the
consolidation of newly learned information, ongoing /
lifelong learning, developmental effects, and also transfer
effects (see for example Robins (1997)), to be more easily
modelled within the neural network framework.

In Robins (1996) we have also argued more specifically
pseudorehearsal can be related to the “sleep consolidation”
hypothesis. If the catastrophic forgetting problem has
occurred during the evolution of the brain then a specific
solution, a mechanism for consolidating knowledge, is
obviously required. The sleep consolidation hypothesis
proposes that newly learned information is consolidated into
long term memory during sleep (see for example Winson
(1990)). There are a number of similarities between
pseudorehearsal and sleep consolidation. Both serve the
function of consolidation without requiring explicit access to
the old information (previous learning experiences) for
relearning. Both involve the random stimulation of the
“long term memory”, pseudorehearsal by the construction of
random pseudoitems, and sleep in the stimulation of the
neocortex by random or chaotic input from the brainstem.
Robins (1996) describes these similarities in more depth.

Extending rehearsal and pseudorehearsal methods to other
network types has resulted in some interesting insights. In
contrast to the feed forward "function approximation"
networks described in this paper, Hopfield networks are
recurrent "dynamical systems”". As shown by Robins &
McCallum (1998), rehearsal and pseudorehearsal (where
pseudoitems are randomly chosen attractors in the network)
are both effective in this context, but the distinction between
the methods starts to break down. Randomly sampling the
attractors of a network results in both novel “spurious”
attractors and also actual attractors corresponding to learned
items. Either can be effectively rehearsed to minimise
catastrophic forgetting. We are currently exploring the
relationship between this relearning effect, and the
unlearning model of Crick & Mitchison (1983, [986) as a
model of the consolidation of information during sleep.
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