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Abstract Most common pool resource (CPR) dilemmas share two features: they
evolve over time and they are managed under environmental uncertainties. We pro-
pose a stylized dynamic model that integrates these two dimensions. A distinguishing
feature of our model is that the duration of the game is determined endogenously by
the users’ collective decisions. In the proposed model, if the resource stock level
below which the irreversible event occurs is known in advance, then the optimal re-
source use coincides with a unique symmetric equilibrium that guarantees survival
of the resource. As the uncertainty about the threshold level increases, resource use
increases if users adopt decision strategies that quickly deplete the resource stock, but
decreases if they adopt path strategies guaranteeing that the unknown threshold level
is never exceeded. We show that under relatively high uncertainty about resource size,
CPR users frequently implement decision strategies that terminate the game imme-
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diately. When this uncertainty is reduced, they maintain a positive resource level for
longer durations.

Keywords Common pool resources · Social dilemmas · Uncertainty · Sustainability

1 Introduction

The most natural common pool resource (CPR) dilemmas share two main features:
they evolve over time and they are managed under environmental uncertainties. Ex-
amples include groundwater, fishery resources, and climate change, all of which are
dynamic in nature, with uncertainty about the size of the resource changing over time,
in part, as a function of previous appropriations (Koundouri 2004; Bailey et al. 2010;
Barrett and Dannenberg 2012). While each of these two features has been analyzed
separately in the experimental literature, no attempt has been made to integrate them
into a single experimental setup. In particular, the analysis of strategic behavior in
the face of environmental uncertainty about the size of the CPR has traditionally
been conducted under the assumption of single-period interaction, whereas the anal-
ysis of strategic behavior in time-dependent settings has ignored environmental un-
certainties. The latter literature uses dynamic game theory to compare cooperative
and non-cooperative time paths for resource appropriation in a deterministic frame-
work, and experimental results tend to show aggregate behavior consistent with the
predicted non-cooperative equilibria. The former literature uses static game theory
to address the question of whether increased uncertainty about the size of the CPR
leads to more or to less appropriation at the predicted Nash equilibrium of the CPR
dilemma, and experimental results show a strong positive relationship between pool-
size uncertainty and resource appropriation.

Our goal in this paper is to integrate these two strands of the experimental liter-
ature. This involves the development of a stochastic dynamic game-theoretic model
of the CPR dilemma. Although the solutions to stochastic dynamic games can be
particularly difficult to characterize analytically, there are two reasons for doing this.
The first is to examine whether the conclusions derived from models of dynamic
games with no environmental uncertainty are still valid when uncertainty is intro-
duced, and whether the conclusions from static models of environmental uncertainty
in the basic CPR game transfer to time-dependent settings. The second reason for
integrating these two strands of the experimental literature is to address questions
that cannot be answered without this integration. We are particularly concerned with
two major questions: (1) what are the strategies that appropriators adopt when both
environmental uncertainties and temporal considerations are present, and (2) are the
strategies that they adopt sensitive to different levels of environmental uncertainty?

These two questions are addressed in our paper by proposing and experimentally
testing a stochastic dynamic game integrating the effects of environmental uncer-
tainty in time-dependent CPR dilemmas. The paper is organized as follows. Section 2
provides a brief review of the related literature that considers time-dependency and
environmental uncertainty separately. Section 3 presents the model and solves it for
alternative theoretical benchmarks. Section 4 outlines the experimental design and
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presents the theoretical predictions that are later used as benchmarks for the analysis
of the experimental data. Section 5 reports the results of the experiment, and Sect. 6
concludes.

2 Related literature

The bulk of the experimental literature (e.g., Ostrom et al. 1994) has analyzed unre-
stricted resource-use decisions by placing subjects in the context of repeated time-
independent CPR dilemmas characterized only by strategic uncertainty about the
behavior of other group members. A major finding is that aggregate behavior is
consistent with the theoretically predicted resource misallocations (Gordon 1954;
Hardin 1968). Brown (2001) has noted that while the time-independent framework
may be an adequate representation of CPRs characterized by flows, in which the
availability of the resource in the future is independent of current requests, it fails to
capture the important temporal feature of stock resources, like groundwater systems,
fisheries, and forests, where decisions concerning resource-use are typically made in
the “shadow of the future”.

When temporal factors are incorporated into the model, it is a priori not clear if
the appropriation decisions that they elicit should differ from the ones observed in
time-independent settings. Because current appropriations not only affect the future
profits of other group members, but also their individual profits, CPR users may adopt
precautionary strategies that lead them closer to Pareto optimal outcomes (e.g. Rein-
ganum and Stokey 1985). On the other hand, the consideration that current appro-
priation decisions affect future request possibilities creates a dynamic optimization
problem that complicates the attainment of Pareto optimal outcomes even in single-
agent contexts (Messick and McClelland 1983; Hey et al. 2009). Moreover, as shown
by Dutta (1995), the standard intuition from infinitely repeated time-independent
games, whereby Pareto optimal outcomes can be sustained in equilibrium through
threat of credible punishment by patient players, does not necessarily carry over to
time-dependent games with stock variables. Rather, players’ payoffs in these games
depend not only on current and previous periods’ decisions, but also on state variables
that change over time. Theoretically, this renders tacit agreements on Pareto optimal
paths more difficult to attain than in purely repeated frameworks.

Seminal experimental investigations placing subjects in time-dependent CPR con-
texts have been conducted by Herr et al. (1997) and Mason and Phillips (1997).
Herr et al. (1997) have concluded that their subjects did not internalize the future
increased costs, and that behavior in the time-dependent setting intensified the race
for resources appropriation relative to time-independent settings. Mason and Phillips
(1997) have considered an infinite-time horizon supergame in which subjects were
given an initial stock, and request strategies endogenously determined the stock size
(and exploitation costs) thereafter. They have concluded that lack of cooperative be-
havior is exacerbated when time-dependency is included in CPR dilemmas. In yet
another study, Osés-Eraso et al. (2008) have modified this game by implementing
a more realistic finite-horizon supergame and allowing for early extinction of the
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stock as a function of cumulative group requests. Exogenously manipulating the ini-
tial stock size, they reported that early extinction of the resource occurs irrespective
of the initial scarcity condition and costs.

Osés-Eraso et al. (2008), and one of the experimental conditions in Mason and
Phillips (1997), have excluded the possibility of more complex resource dynamics
involving threshold effects and sudden changes in the resource state.1 The only study
that partially addressed this possibility experimentally is Gardner and Walker (1992),
who implemented a 20-period supergame in which resource extinction (end of the
game) could occur within a given period with an endogenously determined proba-
bility modeled as an increasing function of total group requests. In their model, the
critical threshold stock level triggering the catastrophic event was known in advance,
but subjects were unable to avoid the damage, and the resource was quickly destroyed
with a median duration of six periods. In contrast to our study, their model does not
capture the effects of incomplete information regarding the size and growth of natural
resources, which characterizes most real-world commons.

Experimental assessments of the impact of environmental uncertainty on appro-
priation requests from a CPR have been reported by Rapoport and Suleiman (1992)
and Budescu et al. (1995) in the context of repeated single-trial CPR experiments.
In their experiments, subjects could request resources from pools whose parameters
were randomly selected from a set of commonly known uniform probability distri-
butions. Using mean-preserving spreads to capture increasing levels of uncertainty
regarding the resource size, these experiments have demonstrated that increased un-
certainty causes subjects to significantly increase their appropriation from the shared
resource. Alternative explanations for this finding have been proposed by Rapoport
and Suleiman (1992), Budescu et al. (1995) and Gustafsson et al. (1999). Despite the
merit of these explanations, the literature seems to have overlooked that the observed
relationship between environmental uncertainty and individual requests pertains to
single-trial experiments. Under these circumstances, a significant restraint in individ-
ual requests by the group members that can be considered cooperative behavior may
not yield the highest collective payoffs as it may constitute resource under-use from
an economically efficient perspective. Indeed, increased exploitation of the CPR as a
response to an increase in environmental uncertainty levels in time-independent set-
tings conforms to Pareto-efficient solutions, and not just Nash behavior. However, this
observation is unlikely to be true in time-dependent settings. A number of theoreti-
cal articles on various resource management problems (e.g., Tsur and Zemel 1995;
Yin and Newman 1996; and Clarke and Reed 1994) have generally established that
efficient solutions to the dynamic management of resources under uncertain critical
threshold levels require more prudence and conservative behavior than those under
conditions of certainty. Thus, whether the positive relationship between environmen-
tal uncertainty and request decisions from a shared resource is likely to be observed
in a time-dependent laboratory setting remains an open empirical question.

1See, for example, Muradian (2001) for a survey of real world examples of ecosystems characterized by
ecological discontinuities and uncertain threshold levels.
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3 Stochastic dynamic CPR game

We develop a stochastic dynamic game-theoretic model of the appropriation of a CPR
by non-cooperative players under conditions of environmental uncertainty. The game
involves a fixed set of n agents who play a stage game �t in each period t , where
an upper bound T to the length of the game is common knowledge, and earnings
accumulate through the course of play. However, in contrast to purely dynamic time-
dependent games with no uncertainty in the evolution of the game environment (Dutta
1995), the particular game to be faced by the players at time t in the present setup
is randomly selected from a commonly known finite set of games, thereby falling in
the category of stochastic games (Shapley 1953; Sobel 1971). In addition, in order to
capture the effects of environmental uncertainty on the CPR dilemma, players do not
know which game has been selected when the game at time t is to be played.

In each of the stage games �t that make up the dynamic game a group of n play-
ers decide simultaneously and anonymously on how much to request from a shared
resource (CPR) whose precise size is unknown. However, it is commonly known that
the resource size, denoted by St , is uniformly distributed on the [α,β] closed inter-
val.2 Each of the n individuals may request anything between 0 and β from the shared
resource,3 and after the requests are made, the precise size of the resource is publicly
announced, corresponding to the random realization st of St . Thus, the precise value
of st corresponds to the particular stage game �t randomly selected by “nature” at
time t . Furthermore, if the sum of group requests is smaller than or equal to st , then
each individual keeps his or her own request. On the other hand, if the sum of group
requests exceeds the size st of the resource, then each individual’s payoff is zero.

Assuming linear utility functions for all agents, and letting rjt stand for the request
made by agent j on trial t , the expected payoff to each agent in stage game �t is given
by

πjt =

⎧
⎪⎨

⎪⎩

rjt if
∑n

j=1 rjt ≤ α

rjt × Prob(
∑n

j=1 rjt ≤ st ) if α <
∑n

j=1 rjt ≤ β

0 if
∑n

j=1 rjt > β

(1)

where
∑n

j=1 rjt is the sum of group requests in stage game �t, and Prob(
∑n

j=1 rjt ≤
st ) = (β − ∑n

j=1 rjt )/(β − α).

2The use of the uniform distribution to model players’ imperfect knowledge about the resource is made
primarily to simplify the experimental task, as the uniform distribution is most easily explained to the
participants.
3As noted by one of the referees, this feature of the game yields a large appropriation capacity to each
player in the group. A design option modifying the Suleiman and Rapoport (1988) stage game (from
which this feature is drawn) would be to limit each player’s appropriation to some fraction of β , which
may be at odds with the possibility of unrestricted resource-use at the individual level. For example, if we
think of this CPR as a groundwater system from which a group of n farmers pump water to irrigate their
crops, and if each knows that the size of the groundwater system may go up to a number β , limiting a priori
their water extraction to a fraction of β presupposes in itself that there is some technology limit common
to them all or that there is some external regulator that has the ability to dictate and impose upon each
of them such a limit. Therefore, we maintained this feature of the stage game in Suleiman and Rapoport
(1988).
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We introduce structural time dependence in this model through the definition of
transition probabilities governing how the game proceeds from period t to period
t + 1, which we condition on the actual game �t played in period t as randomly
selected by “nature,” and on the actions chosen by the players in period t . Specifically,
if the aggregate requests are smaller than or equal to the resource size at time t ,
then the game continues to period t + 1. If the aggregate requests are infeasible, in
the sense that they exceed the resource size at time t , then the game terminates.4

Formally, the continuation probability from period t to period t + 1 is given by

pt =

⎧
⎪⎨

⎪⎩

1 if
∑n

j=1 rjt ≤ α
β−∑n

j=1 rj t

β−α
if α <

∑n
j=1 rjt ≤ st

0 if
∑n

j=1 rjt > st

(2)

In words, if the group request is below a minimum pre-determined quantity α, the
game continues to a subsequent period with certainty, implying an economically un-
changed resource size between the periods. If the group request exceeds the randomly
determined resource size, then the resource is degraded and the game is terminated.
If the group request belongs to this interval of quantities, then the game continues to a
subsequent period with a positive probability corresponding to the ex-ante probabil-
ity that the group request does not exceed the resource size. Thus, while players may
request resources over a predetermined and commonly known time horizon, a distin-
guishing feature of this model is that the precise duration of the game is determined
endogenously by the players whose collective decisions determine the probability of
an irreversible environmental event.5

Because the CPR game is composed of interdependent stochastic dynamic pro-
gramming problems, it may be solved by dynamic programming/Bellman’s equation
method, and because it is symmetric, we focus on symmetric outcomes as bench-
marks for data analysis. In particular, we solve the game for three types of outcomes:
the social optimum (joint payoff maximization) outcome, the subgame perfect equi-
librium outcome, and a “conservative” outcome guaranteeing survival of the resource
over the entire time horizon.

4Although admittedly extreme, this rule accounts for a basic characteristic of a variety of ecological sys-
tems which can be exploited up to some critical (threshold) level while maintaining their integrity and
retaining much of their use value. Once the exploitation level exceeds the (often largely uncertain) thresh-
old, the resource value drops catastrophically, and may not be reversed even after stopping the perturbation
that caused the shift during many years (Muradian 2001, pp. 18–19).
5As noted, for example, by Hine and Gifford (1996), many real-world commons are characterized not
only by pool-size uncertainty but also by regeneration-rate uncertainty. Although the present model fo-
cuses on pool-size uncertainty, it may also be seen as capturing those circumstances that are characterized
by regeneration-rate uncertainty. When group requests exceed α but the resource is not depleted, the inter-
temporal effect of group requests may be interpreted as captured by a stochastic regeneration rate gt

applied to end of period remaining stock, st − ∑n
j=1 rj t . The parameter gt determines the stock avail-

able in the subsequent period, st+1 = (st − ∑n
j=1 rj t )gt , where gt is uniformly distributed with limits

endogenously determined by group requests and the stochastic resource size; its lower limit is given by
α/(st − ∑n

j=1 rj t ), which happens if the resource size in the subsequent period takes its lowest possi-

ble value, and its upper limit is given by β/(st − ∑n
j=1 rj t ), which happens if the resource size in the

subsequent period takes its highest possible value.
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We first construct the symmetric subgame perfect Nash equilibrium outcome, in
which players are assumed to adopt “decision rule strategies” (Reinganum and Stokey
1985) since they cannot credibly commit to future requests. In this context, each
player j independently seeks to maximize the value of the resource at any time t by
choice of appropriation strategy, taking the decision rule strategies of all the other
players exploiting the resource as given. Assuming no discounting of future payoffs,
the value of the resource for player j at time t , Vjt (rjt ), satisfies the Bellman equa-
tion:

Vjt (rjt ) = πjt + pt × Vjt+1(rjt+1), t = 1,2, . . . , T − 1. (3)

The transversality condition for this maximization problem is that the value of
the resource after the final period T is zero (meaning that players leave behind no
resources, or if they do, then those extra resources do not contribute anything to the
maximized value):

VjT +1(rjT +1) = 0. (4)

The recursive equation defining player’s j value function at final time T is there-
fore:

VjT (rjT ) = πjT . (5)

Maximizing VjT (rjT ) in the quadratic region of (1) with respect to rjT , yields:

∂VjT (rjT )

∂rjT

= ∂πjT

∂rjT

= ∂(rjT
β−∑n

j=1 rj t

β−α
)

∂rjT

= ∂(rjT
β−rjT −rn\jT

β−α
)

∂rjT

= 0, (5′)

so that ∂VjT (rjT )/∂rjT = (β − 2rjT − rn\jT )/(β − α) = 0.
Invoking symmetry to write the sum of requests by all the n players excluding

player j as rn\jT = (n − 1)rjT , yields the subgame perfect request at time T :

r∗
jT = β

n + 1
. (6)

The value function at time T is then given by (using (6) in (5)):

VjT

(
r∗
jT

) = [ β
n+1 ]2

β − α
. (7)

Similarly, the value function at time T − 1 is given by

VjT −1(rjT −1) = πjT −1 + pT −1 × VjT

(
r∗
jT

)
. (8)

Maximizing VjT −1(rjT −1) with respect to rjT −1, and assuming that rn\jT −1 = (n −
1)rjT −1, yields the subgame perfect request at time T − 1:

r∗
jT −1 =

[
β

n + 1

][

1 − β

(n + 1)2(β − α)

]

. (9)
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The value function at time T − 1 is then given by (using (9) and (7) in (8)):

VjT −1
(
r∗
jT −1

) =
[
(

β
n+1 )2

β − α

][

1 + nβ

(n + 1)2(β − α)

]2

. (10)

Letting a = nβ/(n + 1)2(β − α), the value function at time T − 1 can be re-written
as:

VjT −1
(
r∗
jT −1

) = VjT

(
r∗
jT

)[1 + a]2, (11)

and the subgame perfect request at time T − 1 can be written as

r∗
jT −1 = r∗

jT

[

1 − a

n

]

. (12)

Using mathematical induction, one can show that the equilibrium value function at
any time t is given by

Vjt

(
r∗
j t

) = VjT

(
r∗
jT

)[1 + aγt ]2 =
[
(

β
n+1 )2

β − α

]

[1 + aγt ]2, (13)

and the subgame perfect request at time t is given by

r∗
j t = r∗

jT

[

1 −
(

a

n

)

γt

]

=
[

β

n + 1

][

1 −
(

a

n

)

γt

]

, (14)

where the recursive factor γt is given by

γt = (1 + aγt+1)
2. (15)

One starts solving the recursion by noting that (7) can also be written as:

[ β
n+1 ]2

(β − α)
= r∗

jT

[
β

(n + 1)(β − α)

]

, (16)

and using (14) and (15), the equation above can also be written as:

[ β
n+1 ]2

(β − α)
=

[
β

n + 1

][

1 −
(

a

n

)

(1 + aγt+1)
2
][

β

(n + 1)(β − α)

]

. (17)

Solving (17) with respect to γT +1 yields:

γT +1 = −1

a
. (18)

The value of γT +1 in (18) can then be substituted into (15) to get γT , and working
backward from there to the first period at time t = 1.

Note, however, that the solution in (14) does not constitute the subgame perfect
equilibrium request in all cases. At any time t , if rjt + rn\j t ≤ α, then any vector of
requests r∗

t = (r1t , r2t , . . . , rnt ), whose elements satisfy the condition
∑n

j=1 r∗
j t = α,
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rjt ≥ 0, is also an equilibrium solution whereby the group ensures a continuation
probability equal to one. Assuming a symmetrical solution, the result following this
condition can be written as:

r∗
j t = α

n
. (19)

To summarize, the subgame perfect equilibrium request at any time t is then given
by:

r∗
j t = max

(
α

n
,

[
β

n + 1

][

1 −
(

a

n

)

γt

])

. (20)

Moving next from the equilibrium solution to joint payoff maximization, the social
optimum path can be constructed by applying dynamic programming to (3) under
the assumption that only a single agent is in charge of the resource. Eliminating the
algebra, it can be shown that the social optimum request by player j at any time t in
all cases is then given by:

r∗∗
j t = max

(
α

n
,

[
β

2n

]
[
1 − (b)λt

]
)

, (21)

where b = β/4(β − α), λt = (1 + bλt+1)
2, and λT +1 = −1/b.

Comparison of Eqs. (20) and (21) reveals that the subgame perfect path involves
higher requests than the social optimum path as long as (β −α) > α/n, rendering the
decision rule strategies Pareto deficient for levels of uncertainty beyond a relatively
small threshold level which depends on the two parameters of the distribution of
the resource size. In turn, the social optimum path only guarantees the survival of
the resource over the entire time horizon for moderate levels of uncertainty, that is,
as long as β < 2α. Beyond this level of uncertainty, survival of the resource over
the entire time horizon could only be attained by the adoption of “path” strategies
requiring each player to commit to a “conservative” request equal to α/n at each
stage of the game. This is the third benchmark that we propose for our data analysis.

4 Experimental design and theoretical predictions

4.1 Procedures, parameters and treatments

We designed a simple experiment operationalizing the game described by Eqs. (1)
and (2) with groups composed of six (n = 6) subjects and maximum time horizon
of ten periods (T = 10). Each subject participated in thirty repetitions of the same
dynamic game. Prior to the first game, each subject was randomly and anonymously
assigned to a fixed group for the duration of a session. We implemented two mean-
preserving uncertainty conditions in a between-subject design. In one of the uncer-
tainty conditions (hereinafter, “high” uncertainty condition), the commonly known
resource size was uniformly distributed on the [150,850] closed interval, for an un-
certainty range of 700 and an expected value of 500. Subjects were provided with
written instructions informing them that they could, individually, request from 0 up
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to 850 tokens, and that the precise value of the resource (called “random draw”) in
any period was to be randomly extracted (and announced) after all group members
made their requests. They were also informed that if the sum of group requests ex-
ceeded the randomly determined resource size in any period, then their individual
payoffs in that period would be zero, and the game would be terminated; otherwise,
their individual payoffs in that period would equal their individual requests, and the
game would continue to a subsequent period unless it had reached the final period T .6

Specifically, subjects were informed that the game would be terminated either if the
sum of the group requests exceeded the value of the resource on any given period
or after 10 periods, whichever came first. In addition to $5 participation fee, at the
end of the session subjects were paid for the tokens accumulated in four (randomly
determined for each subject) out of the thirty repetitions, in which each token was
worth 2 cents. This procedure was implemented to prevent wealth effects. Exactly
the same procedures were used to implement a second uncertainty condition (here-
inafter, “low” uncertainty condition) in which the commonly known resource size
was uniformly distributed on the [270,730] closed interval, for a smaller uncertainty
range of 460 and the same expected value of 500. In each of the two conditions, the
sessions lasted for about 2 hours.

The experiment was implemented using the z-Tree (Fischbacher 2007) software.
No communication between the subjects was allowed. All experimental sessions were
conducted at the Behavioral Research Lab of the University of California, Riverside,
which is a standard computerized laboratory with subjects’ stations placed in separate
“cubicles” ensuring privacy. Subjects were recruited from the pool of students reg-
istered to participate in research studies through the web-based subject recruitment
system, ensuring that no subject had participated in a similar experiment before. A to-
tal of 114 subjects participated in this experiment, 60 of them in the high uncertainty
condition (10 different groups) and 54 of them in the low uncertainty condition (9 dif-
ferent groups).

4.2 Theoretical predictions

We present the theoretical predictions that are later used as benchmarks for the analy-
sis of the data from the two treatments.7 The top panel in Table 1 shows the dynamic

6At the end of each period, each subject was presented with a screen displaying her/his request in the
period, the requests by each of the other group members, the total group request, the value of the ran-
dom draw, and her/his payoff (in tokens) for the period. The instructions to participants are presented in
Electronic supplementary material (ESM).
7These numerical predictions result from the direct application of the solutions developed for the model
in Sect. 3, which assumes that in determining the size of his or her request, the subject is motivated to
maximize expected payoff. The generalization of the model to account for the maximization of expected
utility is given in ESM, showing that, compared with the risk-neutral case, equilibrium requests are lower
(higher) under the assumption of (common) risk-aversion (risk-preference) by subjects in both of the con-
sidered uncertainty conditions, leaving practically unaffected the predicted differences in equilibrium re-
quests across the conditions. The main conclusion in the text with respect to the effect of different degrees
of environmental uncertainty on subjects’ behavior does not depend on the assumed shape of the subjects’
(common) utility functions.
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programming paths for the high uncertainty condition. If players follow a conserva-
tive path (not shown in Table 1), then the symmetric individual request (r) is 25 to-
kens in each period of the game, for a total group request (R) of 150 tokens. The
overall payoff across the 10 periods of the game (Π ) for each player is, therefore,
25 × 10 = 250 tokens. Next, consider the social optimum (SO) path displayed in
Table 1 (top panel). In the last period of the game, when only a single period re-
mains to the end of the game, the optimal solution is an individual request of 71. The
probability of receiving this request (p) is about 0.61, yielding an expected payoff
of Π = 43 tokens. If only two periods remain, the optimal solution is an individual
request of 49. The probability of receiving this request is about 0.79. The individual’s
expected payoff across these two periods is, therefore, 49×0.79+0.79×43 = 73 to-
kens. Working backwards in this fashion, the individual’s expected payoff across the
10 periods of the game from following the social optimum path is equal to 274 to-
kens, the value of Π shown in Table 1 when ten periods are remaining (i.e., at the
beginning of the game). This corresponds to the maximum symmetric expected pay-
offs that subjects may achieve in this game. Comparing the expected payoffs from
following a conservative path to the social optimum path yields an efficiency index
of (250/274) × 100 = 91 % for the conservative path. This means that subjects are
expected to achieve 91 percent of the maximum expected payoffs in this game if they
follow the very simple conservative path. The subgame perfect equilibrium (SPNE)
path shown in Table 1 is constructed in the same manner, considering the predicted
(symmetric) Nash equilibrium requests by each player. In this case, the individual’s
expected payoff across the ten periods of the game from following this path is only
31 tokens, yielding a meager efficiency index of about 11 percent.

The bottom panel in Table 1 shows the dynamic programming paths for the low-
uncertainty condition. If players follow the conservative path in this condition, then
the symmetric individual request is 45 tokens in each period of the game, for a total
group request of 270 each period of the game. The overall payoff across the ten peri-
ods of the game for each player is 45 × 10 = 450 tokens. The individual’s expected
payoff across the 10 periods of the game from following the social optimum path
is 453 tokens, and it is only 44 tokens from following the subgame perfect equilib-
rium path. In this case, the subgame perfect path yields an efficiency index of about
10 percent.

Comparison of the upper and lower parts of Table 1 shows that, as might be ex-
pected, payoffs increase under all three benchmarks as the uncertainty about the size
of the resource decreases. Table 1 shows that each of these two uncertainty conditions
yields different predictions concerning players’ requests from the shared resource,
with the social optimum path entailing substantially lower requests than the respec-
tive subgame perfect path. Therefore, the subgame perfect paths are Pareto deficient
in the two uncertainty conditions implemented in the laboratory. Importantly, the ef-
ficiency index of the subgame perfect path is maintained approximately equal in both
uncertainty conditions (11 % and 10 %), so that the incentives for any cooperative
behavior do not differ much between them. Moreover, any increase in the requests
that might be observed in response to an increase in the uncertainty levels cannot
simultaneously constitute part of a competitive (subgame perfect) and a cooperative
(conservative or social optimum) path. Indeed, as shown in Table 1, while the in-
creased uncertainty in the high uncertainty condition elicits higher requests than in

Author's personal copy



A. Botelho et al.

Table 1 Dynamic programming paths for high- and low-uncertainty conditions

Time
remaining

Social optimum (SO) path Subgame perfect (SPNE) path

R r p Π R r p Π

A. High-uncertainty condition: n = 6, α = 150, β = 850, Expected Value = 500, Range = 700

1 425 71 0.61 43 729 121 0.17 21

2 296 49 0.79 73 711 118 0.20 28

3 206 34 0.92 99 705 117 0.21 30

4 150 25 1.00 124 703 117 0.21 31

5 150 25 1.00 149 702 117 0.21 31

6 150 25 1.00 174 702 117 0.21 31

7 150 25 1.00 199 702 117 0.21 31

8 150 25 1.00 224 702 117 0.21 31

9 150 25 1.00 249 702 117 0.21 31

10 150 25 1.00 274 702 117 0.21 31

Efficiency
index (%)

100 11

B. Low-uncertainty condition: n = 6, α = 270, β = 730, Expected Value = 500, Range = 460

1 365 61 0.79 48 626 104 0.23 24

2 270 45 1.00 93 605 101 0.27 34

3 270 45 1.00 138 597 99 0.29 39

4 270 45 1.00 183 593 99 0.30 41

5 270 45 1.00 228 591 98 0.30 42

6 270 45 1.00 273 589 98 0.31 43

7 270 45 1.00 318 589 98 0.31 43

8 270 45 1.00 363 589 98 0.31 43

9 270 45 1.00 408 588 98 0.31 44

10 270 45 1.00 453 588 98 0.31 44

Efficiency
index (%)

100 10

Note: R is total group request; r is individual (symmetric) request; p is the probability of receiving the
request and continuing the game; Π is individual expected payoff from conforming to the paths described.
Adoption of a conservative strategy yields an efficiency index of 91 % (25×10 = 250/274) in the high un-
certainty condition, and an efficiency index of 99 % (45×10 = 450/453) in the low-uncertainty condition.
All numbers are rounded up to their nearest value

the low condition, if subjects follow the subgame perfect equilibrium path, it overall
elicits significantly lower requests than in the low-uncertainty condition, if subjects
follow the conservative path or the social optimum path.

5 Experimental results

Our analysis of the experimental data focuses on the effects of environmental uncer-
tainty on resource-use decisions at the group level. We organize the analysis of group
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behavior by examining in order: (A) behavior in the high-uncertainty condition, (B)
behavior in the low-uncertainty condition, and (C) comparison of the behavior across
the two uncertainty conditions.8 In each case, the main results are presented in the
form of summary observations.

5.1 High-uncertainty condition

Panel A in Tables 2 and 3 summarize the main results of the high-uncertainty con-
dition. Table 2 presents the duration of the games played by each group. Pooling
across all 10 groups, the median length of the games is one period, with three of the
ten groups registering a median length of two periods. Clearly, none of the groups
adopted a conservative path, and depletion of the resource stock occurred rather
quickly.

Figure 1 depicts the probability of resource destruction in the high-uncertainty
condition as implied by the social optimum and equilibrium paths (broken lines)
along with the observed proportions. Using the predictions in the top panel of Ta-
ble 1, the probability of resource destruction prior to period 8 is 0 percent at the
social optimum path, increasing to 8 percent ((1 − 0.92) × 100) prior to period 9 and
to 27 percent ((1 − 0.92 × 0.79) × 100) prior to period 10. In the context of dynamic
games, theory informs us that we should observe an immediate depletion of the re-
source stock if groups are unable or unwilling to make commitments about future
extraction rates (Reinganum and Stokey 1985), corresponding to the assumption that
behavior is guided by decision rule strategies underlying the predicted SPNE path.
In fact, as implied by the numbers in Table 1, the probability of resource destruc-
tion prior to period two is 79 percent ((1 − 0.21) × 100) at the equilibrium path,
increasing to 96 percent ((1 − 0.21 × 0.21)× 100) prior to period three, and reaching
about 100 percent in subsequent periods. With such high destruction probabilities,
the probability of observing games lasting for more than a single period is quite
small if subjects do not deviate from the predicted equilibrium path. As Fig. 1 re-
veals, despite the variability of group behavior, the rates of resource destruction are
quite above those predicted by the social optimum path, and considerably closer to
the equilibrium path.

Table 3 shows that group requests terminating the game immediately, which ac-
counted for about 55 percent of the data, average 688 tokens. This mean compares

8Because subjects participated in 30 repetitions/series of the same dynamic game, we first investigated
whether play of the games changed as subjects gained more experience. A common finding in purely
repeated CPR games is that behavior is consistent with efficient outcomes in the first rounds of play, and
approaches the equilibrium prediction in the last rounds. Under this pattern of behavior, we would expect
to observe longer games in the first series of play, and shorter games as the series approach the end. The
figure in the ESM plots the maximum number of periods played by each group in each of the games,
where the title in each of the panels identifies the uncertainty condition. In each case, the figure suggests
that there is no systematic association between the length of the games and order of play. This impression
was confirmed by several statistical analyses (available from the authors) at the group level. The same
result occurs by regressing the natural logarithm of individual requests on dummy variables identifying
each of the dynamic games, while controlling for group membership, the period within the game, and
intra-subject correlation. Therefore, we pool the data across the games for the statistical analysis of the
data in both uncertainty conditions.
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Table 2 Number of games played by group (Gi) and length of game by uncertainty condition

Length G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Total %

A. High-uncertainty condition

1 11 20 19 19 12 10 20 20 16 17 164 54.7

2 6 6 5 6 6 7 9 6 5 5 61 20.3

3 5 3 4 2 7 6 1 3 5 4 40 13.3

4 3 1 2 2 2 5 0 1 2 1 19 6.3

5 1 0 0 0 0 0 0 0 0 0 1 0.3

6 2 0 0 0 1 0 0 0 0 2 5 1.7

7 0 0 0 0 1 0 0 0 2 1 4 1.3

8 2 0 0 1 1 1 0 0 0 0 5 1.7

9 0 0 0 0 0 0 0 0 0 0 0 0.0

10 0 0 0 0 0 1 0 0 0 0 1 0.3

Median 2 1 1 1 2 2 1 1 1 1 1

Mean 3 2 2 2 2 3 1 2 2 2 2

SD 2 1 1 1 2 2 1 1 2 2 2

B. Low-uncertainty condition

1 17 13 10 15 8 17 13 19 11 123 45.6

2 4 7 8 6 8 8 8 6 5 60 22.2

3 4 3 4 0 1 1 5 1 4 23 8.5

4 3 1 1 0 2 0 3 1 2 13 4.8

5 0 1 1 4 5 3 0 1 0 15 5.6

6 1 2 1 1 1 1 1 0 2 10 3.7

7 0 1 3 0 0 0 0 0 4 8 3.0

8 0 0 0 0 1 0 0 0 0 1 0.4

9 0 0 0 4 4 0 0 1 1 10 3.7

10 1 2 2 0 0 0 0 1 1 7 2.6

Median 1 2 2 2 2 1 2 1 2 2

Mean 2 3 3 3 4 2 2 2 3 3

SD 2 3 3 3 3 1 1 2 3 2

Note: Column % indicates the percentage of games of length l = 1, . . . , 10 out of the total 300 (270) games
played by the groups in the high-uncertainty (low-uncertainty) condition

closely to the equilibrium prediction of 702 tokens. As expected, first-period requests
are negatively associated with the length of the game. The mean first-period group
request for games longer than one period, which account for 45 percent of the data,
is 487 tokens. These requests are in between the efficient and the equilibrium values.

Using Wald tests while adjusting standard errors for clustering at the group level,
the signed mean differences between the observed first-period group requests (RObs)
and the equilibrium (RSPNE) and efficient (RSO) values were tested for statistical sig-
nificance. The results are summarized in Panel A of Table 4; they show that group
requests in games terminated in the first period (Length = 1) are not significantly dif-
ferent from the predicted equilibrium value. The mean estimated difference between
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Table 3 Mean group requests by period and length of game by uncertainty condition

Length
of game

Period within the game

1 2 3 4 5 6 7 8 9 10

A. High-uncertainty condition

1 688
(219)

2 549 589
(139) (174)

3 435 442 495
(103) (75) (160)

4 459 468 421 432
(102) (76) (89) (77)

5 375 375 400 325 325
(0) (0) (0) (0) (0)

6 427 398 366 387 357 564
(53) (73) (46) (76) (52) (362)

7 454 417 349 378 384 366 395
(58) (83) (66) (33) (54) (29) (23)

8 393 369 353 369 403 398 410 458
(81) (107) (74) (46) (82) (84) (68) (132)

10 395 385 320 337 335 309 343 282 335 277
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

B. Low-uncertainty condition

1 569
(186)

2 430 506
(101) (166)

3 464 425 455
(112) (73) (89)

4 394 398 404 447
(93) (105) (89) (83)

5 375 381 384 397 463
(114) (82) (86) (69) (102)

6 372 386 390 398 387 397
(102) (64) (49) (82) (73) (62)

7 358 338 401 405 334 351 461
(65) (60) (74) (94) (56) (59) (85)

8 270 420 320 500 420 370 470 620
(0) (0) (0) (0) (0) (0) (0) (0)

9 351 373 371 371 342 359 343 329 497
(64) (74) (56) (83) (57) (73) (54) (38) (105)

10 416 369 350 433 353 405 341 389 376 449
(67) (37) (54) (59) (34) (70) (55) (52) (51) (141)

Note: Standard deviation is in parentheses. In the high-uncertainty condition, games of length 5 and 10
were only observed once; the average first-period (last-period) group requests for games longer than one
period is 487 (524) tokens with a standard deviation of 130 (179) tokens. In the low-uncertainty condition,
games of length 8 were only observed once; the average first-period (last-period) group requests for games
longer than one period is 412 (476) tokens with a standard deviation of 105 (133) tokens
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Fig. 1 Probability of
destruction: Predicted (SO,
SPNE) and observed values
under the high-uncertainty
condition

Table 4 Statistical analysis of differences between observed and predicted values

Length
games

Variable Coefficient Wald z

statistics
p-value Lower

95 %
CI

Upper
95 %
CI

A. High-uncertainty condition

Length = 1 RObs − RSPNE −13.757 −0.39 0.699 −83.461 55.947

RObs − RSO 537.854 15.12 0.000 468.150 607.558

	 = |RObs−RSPNE

RObs−RSO | 0.026 0.38 0.706 −0.107 0.158

Length > 1 RObs − RSPNE −214.397 −8.37 0.000 −264.601 −164.194

RObs − RSO 337.213 13.16 0.000 287.010 387.417

	 = |RObs−RSPNE

RObs−RSO | 0.636 5.12 0.000 0.392 0.879

B. Low-uncertainty condition

Length = 1 RObs − RSPNE −18.977 −0.60 0.545 −80.464 42.510

RObs − RSO 299.415 9.54 0.000 237.923 360.902

	 = |RObs−RSPNE

RObs−RSO | 0.063 0.57 0.569 −0.155 0.282

Length > 1 RObs − RSPNE −176.841 −9.50 0.000 −213.315 −140.367

RObs − RSO 141.551 7.61 0.000 105.077 178.025

	 = |RObs−RSPNE

RObs−RSO | 1.249 4.22 0.000 0.670 1.829

Note: Test results for the high-uncertainty (low-uncertainty) condition are based on 164 (123) observa-
tions corresponding to games terminated in the first period (Length = 1), and on 136 (147) observations
corresponding to games lasting for more than a single period (Length > 1). Due to the “panel” nature
of our data, we use a “clustering” specification that allows for intragroup correlation in the computation
of the standard-errors (10 groups in the high-uncertainty condition, and 9 groups in the low-uncertainty
condition)

RObs and RSPNE is about −14 tokens; it is not significantly different from zero at
conventional significance levels using the Wald statistics. The mean differences be-
tween first-period group requests and predicted equilibrium and efficient values are
both significantly different from zero for games lasting for more than a single period
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(Length > 1). Mean group requests are 214 tokens below the equilibrium value, and
337 tokens above the efficient value. In order to evaluate whether the observed devi-
ations from equilibrium requests are either larger or smaller than the observed devi-
ations from efficient requests, the delta method (Oehlert 1992) was used to calculate
the standard error and 95 percent confidence interval of the absolute value of the ratio
of the estimated difference between observed requests and the respective equilibrium
and efficient requests (	). The confidence interval for the ratio is [0.4;0.9]. It in-
dicates that the observed deviations from equilibrium requests are smaller than the
observed deviations from efficient requests.

To complement the analysis of group behavior in the high-uncertainty condition,
we computed the per-period mean square deviation (MSD) of requests from predicted
requests (either SPNE or SO) for each group in each of the 30 played games. For each
group separately, Panel A in Table 5 presents the number of games in which the MSD
from the SPNE path is smaller than the MSD from the SO path. Also reported in the
table are the binomial probabilities associated with the observed number of games
under the null hypothesis that it is equally likely for either of the two predicted paths
to result in the smaller MSD in any given game. The results show that the SPNE
path is the best predictor of behavior for eight of the ten groups, and that for two
of the groups we cannot reject the hypothesis that both paths are equally likely at
a significance level of 5 percent. Defining success as an observation in which the
SPNE path is the best predictor of group behavior, the probability of observing 8
or more groups following the SPNE path is 0.003 under the null hypothesis that the
three events (SPNE, SO, or both) are equally likely. For any one-tailed significance
level lower than 5 percent, we reject the null hypothesis in favor of the alternative
hypothesis that the SPNE path is the overall best predictor of behavior for the groups
in this uncertainty condition.

Considered jointly, these findings are summarized in the following observation.

Observation 1 Groups in the high-uncertainty condition adopt decision strategies
that quickly deplete the resource stock. Group requests are uniformly closer to the
SPNE path than to the SO path.

5.2 Low-uncertainty condition

Panel B in Tables 2 and 3 summarize the main results in the low-uncertainty con-
dition. The median length of the games in the low-uncertainty treatment across all
groups is two periods, with four of the nine groups (44 percent) registering a median
length of one period. It is twice as large as the same median in the high-uncertainty
condition. Again, none of the groups adopted a conservative path, with depletion of
the resource stock occurring rather quickly.

Figure 2 depicts the probability of resource destruction as implied by the SO and
SPNE paths, along with the observed proportions. Although the destruction probabil-
ity curves are more dispersed than in Fig. 1, they are closer to the SPNE than the SO
path.

Panel B in Table 3 shows that group requests terminating the game immediately,
which accounted for about 46 percent of the data, average 569. This mean request
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Table 5 Number of games with smallest MSD from the SPNE path

Group No.
games

Proportion Hypotheses p-value Decision

A. High-uncertainty condition
1 17 0.567 H0: p = 0.5

H1: p > 0.5
0.292 Do not Rej. H0

2 29 0.967 H0: p = 0.5
H1: p > 0.5

< 0.001 Rej. H0

3 27 0.900 H0: p = 0.5
H1: p > 0.5

< 0.001 Rej. H0

4 28 0.933 H0: p = 0.5
H1: p > 0.5

< 0.001 Rej. H0

5 27 0.900 H0: p = 0.5
H1: p > 0.5

< 0.001 Rej. H0

6 17 0.567 H0: p = 0.5
H1: p > 0.5

0.292 Do not Rej. H0

7 30 1.000 H0: p = 0.5
H1: p > 0.5

< 0.001 Rej. H0

8 29 0.967 H0: p = 0.5
H1: p > 0.5

< 0.001 Rej. H0

9 20 0.667 H0: p = 0.5
H1: p > 0.5

0.05 Rej. H0

10 21 0.700 H0: p = 0.5
H1: p > 0.5

0.02 Rej. H0

B. Low-uncertainty condition
1 21 0.700 H0: p = 0.5

H1: p > 0.5
0.02 Rej. H0

2 17 0.567 H0: p = 0.5
H1: p > 0.5

0.292 Do not Rej. H0

3 11 0.367 H0: p = 0.5
H1: p < 0.5

0.100 Do not Rej. H0

4 8 0.267 H0: p = 0.5
H1: p < 0.5

0.008 Rej. H0

5 4 0.133 H0: p = 0.5
H1: p < 0.5

< 0.001 Rej. H0

6 23 0.767 H0: p = 0.5
H1: p > 0.5

0.003 Rej. H0

7 30 1.000 H0: p = 0.5
H1: p > 0.5

< 0.001 Rej. H0

8 27 0.900 H0: p = 0.5
H1: p > 0.5

< 0.001 Rej. H0

9 15 0.500 H0: p = 0.5
H1: p > 0.5

0.572 Do not Rej. H0

Note: The per period mean square deviation (MSD) of requests from predicted requests for each group in

each game k = 1, . . . , 30, is computed as
∑lk

tk=1(Rtk −R∗
tk

)2/lk , where Rtk is the observed group request
in period t of game k, R∗

tk
is the respective prediction (either at the SPNE or SO path), and lk is the length

of game k. For each group, we define a “success” as a game in which the MSD from the SPNE path is
smaller than the MSD from the SO path. Let sg represent the number of successes for each group. Under
the null hypothesis that it is equally likely for either of the two predicted paths to result in the smaller
MSD in any given game (H0: p = 0.5), the probability of observing at least sg successes (H1: p > 0.5)

in 30 games is given by ( 1
2 )30 × ∑30

i=sg( 30
i

), and the probability of observing at most sg successes (H1:

p < 0.5) in 30 games is given by ( 1
2 )30 × ∑sg

i=0( 30
i

). In each case, construction of 95 % confidence
intervals (available from the authors) around the proportions allowing for intragroup correlation does not
change the hypotheses testing’ decisions
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Fig. 2 Probability of
destruction: Predicted (SO,
SPNE) and observed values
under the low-uncertainty
condition

compares closely to the equilibrium prediction of 588 tokens. The mean first-period
group requests for games longer than one period is 412 tokens. These requests are in
between the efficient and the equilibrium values.

Panel B in Table 4 addresses the issue of whether first-period requests are signifi-
cantly different from the SPNE and SO paths. In games terminating in the first period,
the mean difference between RObs and RSPNE is −19 tokens; the null hypothesis of
zero difference could not be rejected by the Wald test at conventional significance
levels. The mean differences between first-period group requests and predicted equi-
librium and efficient values are both significantly different from zero for games last-
ing for more than a single period (Length > 1). Mean group requests are 177 tokens
below the equilibrium value, and 142 tokens above the efficient value. Although the
absolute value of the ratio of these two differences is greater than 1, suggesting that
the distance between observed requests and the SPNE prediction is larger than the
distance between observed requests and the SO prediction, the computed confidence
interval for the ratio is [0.7; 1.8]. Thus, at the 5 percent significance level, we cannot
reject the hypothesis that the observed deviations from the SPNE path are equal to
the observed deviations from the SO path.

Panel B in Table 5 addresses the issue of whether groups’ behavior is better de-
scribed by the SPNE or the SO path. The results show that the SPNE path is the best
predictor of behavior for four of the nine groups. The SO path is the best predictor
of behavior for two other groups, and the results are inconclusive for the remaining
three groups. Defining success as an observation in which the SPNE path is the best
predictor of group behavior, the probability of observing four or more groups fol-
lowing the SPNE path is 0.35 under the null hypothesis that the three events (SPNE,
SO, or both) are equally likely. Therefore, we do not reject the null hypothesis at
conventional significance levels.9

We summarize these findings in the following observation.

9As pointed out by one of the referees, because the observed effects at the group level could result from
the mere aggregation of weak effects at the individual level, we also computed the per-period MSD of
individual requests from predicted individual requests (either SPNE or SO) for each subject in each of the
30 played games. The results show that the SPNE path is the best predictor of individual behavior for 24
out of the 54 subjects (44.4 %) in the low-uncertainty condition, and for 36 out of the 60 subjects (60 %) in
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Observation 2 Groups in the low-uncertainty condition tend to adopt decision
strategies that quickly deplete the resource stock. However, the SPNE path is not
uniformly the best predictor of group requests, with some groups adopting behavior
closer to the SO path and other groups adopting behavior falling in between these
two polar cases.

5.3 Comparing uncertainty conditions

We would expect higher uncertainty about the size of the resource to elicit higher
group requests, if groups adopt decision strategies, but to elicit lower group requests,
if groups adopt path strategies leading to perfectly efficient outcomes. As seen above
(Table 3), and consistent with the adoption of decision strategies, group requests are
higher in the high-uncertainty condition than in the low-uncertainty condition.10,11

Given that the same differences in requests generate different probabilities of resource
destruction across different manipulations of uncertainty ranges, a general assessment
of the effects of increased uncertainty is better accomplished by analyzing the implied
differences in destruction probabilities rather than by analyzing the differences in
requests observed across the different manipulations of uncertainty ranges.

Panels A and B in Table 6 report the estimated effects of the higher-uncertainty
level on the implied probabilities of resource destruction by first-period requests. For
completeness, also reported in Table 6 (panel C) is the estimated effect implied by
all non-first-period requests. Given that the dependent variable is naturally bounded

the high-uncertainty condition. In each case, these proportions do not differ from the observed proportion
of groups with behavior closer to the SPNE path (4/9 and 8/10 in the low and high uncertainty conditions,
respectively; the p-value of a proportions test is 0.23 in the high-uncertainty condition, not rejecting the
null hypothesis that a proportion 8/10 is equal to a proportion of 36/60). Thus, the results at the individual
level concur with those at the group level.
10This result was confirmed by regressing the natural logarithm of group requests on a dummy variable
identifying the experimental conditions, while controlling for each of the dynamic games, the period within
the game, and intra-group correlation. The statistical significance of the difference in the length of the
games between the experimental conditions was also confirmed by a random effects Poisson regression
controlling for each of the dynamic games and intra-group correlation (random-effects).
11A referee cautioned that although the efficiency index of the subgame perfect paths is approximately
equal in the two uncertainty conditions, it is possible that the differences in α between them may have
an important impact on behavior since the individuals’ choice of α/n is presumably less attractive as it
moves to a smaller value. Accordingly, we would expect to observe subjects’ choice of the α/n = 25 token
value in the high-uncertainty condition to be less frequent than the subjects’ choice of the α/n = 45 token
in the low-uncertainty condition. While this behavioral hypothesis points to the development of different
experimental treatments, we do not find this behavior in the current experimental data. In fact, the choice of
the 25 token is observed in 8.24 % of all the individual decisions in the high-uncertainty condition, whereas
the choice of the 45 token is observed in 4.89 % of all the individual decisions in the low-uncertainty
condition. On the other hand, the choice of the β = 850 tokens is more frequent in the high-uncertainty
condition (representing 0.2 % all the individual decisions) than the choice of the β = 730 tokens in the
low-uncertainty condition (representing 0.09 % all the individual decisions). Because the choice of these
extreme values is very rare in both conditions, we also computed the proportion of individual decisions
falling above a 25 % bandwidth around the mean request of the respective group members; these decisions
account for about 1/4 of all individual decisions in both conditions (26.97 % and 24.87 % in the high and
low-uncertainty conditions, respectively), suggesting that the difference in aggregate outcomes between
the conditions is not affected by different propensities to choose extreme values by the subjects in each
condition.
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Table 6 Maximum likelihood estimates of treatment effects on destruction probabilities

Variable Coefficient Wald z statistics p-value Lower 95 % CI Upper 95 % CI

A. Length of Games = 1

HIGH 0.1232 4.39 0.000 0.0681 0.1782

B. Length of Games > 1—First Period Requests

HIGH 0.1713 6.88 0.000 0.1225 0.2201

C. Length of Games > 1—Non-First Period Requests

HIGH 0.1338 8.73 0.000 0.1038 0.1638

Note: Estimates in panel A (B) are based on 287 (283) observations corresponding to all first-period deci-
sions made by groups in both conditions in single period games (in games lasting for more than a single
period). Estimates in panel C are based on 748 observations corresponding to all non-first-period decisions
made by groups in both conditions in games lasting for more than a single period. Given that the depen-
dent variable in each case is naturally bounded between 0 and 1, the estimation of the models’ coefficients
uses the specification developed by Papke and Wooldridge (1996) for fractional dependent variables: the
log-likelihood of observation i is specified as li (β) = yi log[G(xiβ)] + (1 − yi ) log[1 − G(xiβ)] for de-
struction probability yi , explanatory variables xi , parameter vector β , and some known function G(.)

satisfying 0 < G(.) < 1, such as the logistic function. The reported marginal effect of the treatment vari-
able HIGH is obtained as the difference between the estimated values of the nonlinear conditional mean
function when HIGH takes the unit value (high-uncertainty condition) and when HIGH takes the zero
value (low-uncertainty condition)

between 0 and 1, the estimation of treatment effects uses the specification developed
by Papke and Wooldridge (1996) for fractional-dependent variables. In addition, be-
cause the conditional expectation function in the specification used is nonlinear (so as
to generate predictions naturally bounded between 0 and 1), the estimated parameter
value associated with the treatment variable does not directly measure the treatment
effect on the mean value of the dependent variable. Thus, to aid in interpretation, the
coefficient estimates reported in Table 6 are the marginal effects of a discrete change
in explanatory variable HIGH taking the unit value for the high-uncertainty condition
and the zero value for the low-uncertainty condition.

Table 6 shows that the implied probabilities of destruction induced by the higher
request in the high-uncertainty condition are significantly higher than the probabil-
ities of destruction observed in the low-uncertainty condition. Considering only the
subset of games terminated in period 1, the probabilities of destruction are, on av-
erage, 12 percentage points higher in the high than the low-uncertainty condition.
Moreover, the width of the 95 percent confidence interval indicates that we cannot
reject the hypothesis that the difference in destruction probabilities between the two
treatments is 10 percentage points, corresponding to the predicted difference gener-
ated by the SPNE paths. This result is not particularly surprising, given that group
requests in both treatments are consistent with the respective SPNE paths for this
subset of the data.

Considering only the first-period requests in the subset of games lasting for more
than one period, the difference in destruction probabilities between the treatments is
17 percentage points, significantly higher than the predicted difference by the SPNE
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paths.12 Because first-period requests in games terminated after the first period are
lower than the predicted SPNE values in both treatments, it could still be the case that
the difference in the implied destruction probabilities remained at about the 10 per-
centage points, generated by the respective SPNE paths. Clearly, this is not the case,
suggesting that reducing uncertainty levels positively impacts resource conservation
beyond what would be predicted by common inability of the groups to commit to
future extraction rates (i.e., by behavior consistent with the SPNE path).

This observation is further corroborated by the results in Panel C, considering only
the subset of all non-first requests in both treatments. Had groups approximated their
requests to the SPNE paths after the first period of the game, then the mean differ-
ences in destruction probabilities between the treatments would have been 8.5 per-
centage points, since the difference declines systematically as the game evolves. Con-
sistent with this pattern of behavior, we observe lower differences in destruction prob-
abilities between the treatments in subsequent periods. However, as indicated by the
95 percent confidence interval, the difference is again significantly higher than would
be predicted by groups approximating their respective SPNE paths.

Coupled with those summarized in Observations 1 and 2 above, these findings
indicate not only that treatment effects cannot solely be attributed to Nash behavior,
but also that it is groups’ behavior in the low-uncertainty condition that explains the
differential treatment effect with respect to equilibrium predictions.

These findings are summarized in the following observation.

Observation 3 Compared with the high-uncertainty condition, the low-uncertainty
condition elicits lower requests from the shared resource. Moreover, it also induces
a qualitative change in groups’ behavior in the sense that it positively impacts re-
source conservation beyond what would be predicted by groups adopting decision
rule strategies under both conditions.

6 Conclusions

The stochastic dynamic game-theoretic model proposed in this paper focuses on the
effects of environmental uncertainty in time-dependent CPR dilemmas. While CPR
users may extract resources over a predetermined and commonly known time hori-
zon, a distinguishing feature of our model is that the duration of the game is deter-
mined endogenously by the players whose collective decisions determine the prob-
ability of an irreversible environmental outcome. The abrupt intrusion of salt water
in coastal aquifers once the groundwater table declines below an unknown threshold
level is an example of such an event. In the present model, if the resource stock level
below which the irreversible outcome occurs is known in advance, then the optimal

12These results stand in contrast with the findings from previous experimental implementations of
Suleiman and Rapoport (1988)’s single-stage game. Using uncertainty ranges of 500 and 750 tokens (sim-
ilar to the 460 and 700 uncertainty ranges used in the present conditions), Rapoport and Suleiman (1992)
report mean requests supporting the respective Nash equilibrium solutions, implying differences in de-
struction probabilities consistent with the equilibrium solutions.
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resource use coincides with a unique symmetric equilibrium use guaranteeing sur-
vival of the resource over the finite horizon. As the uncertainty about an otherwise
equally expected threshold level increases, resource use increases if users adopt de-
cision strategies that quickly deplete the resource stock. Resource use decreases if
users adopt path strategies guaranteeing that the unknown threshold level is never
exceeded over the entire horizon.

In an experiment that manipulates the common uncertainty about the threshold
resource level, we find that CPR users implement decision strategies that quickly ter-
minate the game. Notwithstanding, reducing the uncertainty about the resource level
induces a qualitative change in behavior with users more frequently maintaining a
positive resource level for a longer duration (Observation 3). If replicated and ex-
tended, these results have potentially important theoretical and policy implications.
At the theoretical level, they suggest decision strategies that CPR users may use when
they may not make credible commitments. At the policy level, these results provide
evidence that the reduction of environmental uncertainty by creating and disseminat-
ing more accurate scientific information may play a major role in long-range planning
to elicit synergy between the economic and ecological systems that jointly govern
the dynamic management of shared natural resources. Estimated as the difference
between the high- and the low-uncertainty outcomes, the value of this information is
an indicator to the policy maker about how much to invest in acquiring and dissemi-
nating information to the user that reduces uncertainty about the size of the CPR.
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