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Abstract

Organisms living in mountains contend with extreme climatic conditions, including short 

growing seasons and long winters with extensive snow cover. Anthropogenic climate change is 

driving unprecedented, rapid warming of montane regions across the globe, resulting in reduced 

winter snowpack. Loss of snow as a thermal buffer may have serious consequences for animals 

overwintering in soil, yet little is known about how variability in snowpack acts as a selective 

agent in montane ecosystems. Here we examine genomic variation in California populations of 

the leaf beetle Chrysomela aeneicollis, an emerging natural model system for understanding how

organisms respond to climate change. We used a genotype-environment association approach to 

identify genomic signatures of local adaptation to microclimate in populations from three 

montane regions with variable snowpack and a coastal region with no snow. We found that both 

winter-associated environmental variation and geographic distance contribute to overall genomic

variation across the landscape. We identified non-synonymous variation in novel candidate loci 

associated with cytoskeletal function, ion transport and membrane stability, cellular processes 

associated with cold tolerance in other insects. These findings provide intriguing evidence that 

variation in snowpack imposes selective gradients in montane ecosystems.
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Introduction

Seasonality serves as one of the strongest and most ubiquitous sources of environmental 

variation impacting natural systems, with distinct selective forces operating between periods of 

summer growth and reproduction and overwintering survival (Fretwell, 1972; Williams et al., 

2017). For small montane ectotherms, elevated and variable air temperatures during summertime

can cause physiological stress during critical periods of reproduction, growth, and development 

(Dahlhoff et al., 2008; McMillan et al., 2005; Neargarder et al. 2003). As hotter, drier summers 

become more common, upslope shifts in montane insect species are becoming more frequent, 

posing novel challenges at the limits of physiological tolerance (Larsen, 2012; Moret et al., 

2016). For organisms that overwinter beneath the soil, snow cover is a key environmental factor 

influencing physiology and survival because snow buffers microclimate variability (Pauli et al., 

2013; Slatyer et al., 2022; Zhu et al., 2019). Climate change is causing more prevalent, intense, 

and lengthy droughts, which in turn leads to more winters with a higher elevation snowline and 

lower total snowpack (Huning & AghaKouchak, 2020; Mote et al., 2018). Reductions in 

snowpack may expose organisms overwintering in the soil to temperature extremes that cause 

physiological stress, reducing their overwintering survival and reproductive success at 

subsequent summer emergence. Recent declines in insect populations in montane environments 

documented across the globe demonstrate the urgency in gaining a clear understanding of how 

organisms cope with greater seasonal variability in temperature and precipitation in montane 

ecosystems (Birrell et al., 2020; Halsch et al., 2021; Shah et al., 2020). Seasonal fluctuation can 

maintain genetic polymorphisms within populations (Haldane & Jayakar, 1963; Wittmann et al., 

2017), and variation in the extent and magnitude of seasonal fluctuations can generate spatial 
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clines in allelic variants (Conover, 1992; Rank & Dahlhoff, 2002; Rhomberg & Singh, 1986).  

Elucidating how past climatic conditions have structured genetic variation and corresponding 

physiological responses for organisms in these habitats will be critical for predicting their 

responses to future environmental change.

Local adaptation, which occurs when resident genotypes have a higher relative fitness in 

their local habitat than genotypes originating from other habitats, is an important mechanism by 

which genetic variation is maintained in heterogeneous environments (Felsenstein, 1976; 

Hedrick et al., 1976; Kawecki & Ebert, 2004). The extent and persistence of local adaptation is 

determined by a balance between natural selection for alleles that confer improved reproductive 

success in a particular microclimate and the homogenizing effects of gene flow and other neutral 

processes (Forester et al., 2016; Kawecki & Ebert, 2004; Nadeau et al., 2016; Orsini et al., 2013; 

Slatkin, 1987). Neutral processes that influence patterns of genetic variation among populations 

include dispersal rates, colonization history, and population expansion and contraction, which in 

turn affects levels of genetic drift (Nadeau et al., 2016; Orsini et al., 2013). Local adaptation may

be detected by identifying a stronger genetic variant ‘signal’ from weaker, non-selective ‘noise’

(Shafer & Wolf, 2013; Wang & Bradburd, 2014). Unfortunately, selective climatic gradients, 

geography, and migration corridors tend to covary, which complicates quantifying the relative 

contribution of selective and neutral evolutionary forces; thus, effects of isolation by distance and

population structure must be taken into account before patterns of genomic variation can be 

associated with selective features of the environment (Forester et al., 2018a; Frichot et al., 2013; 

Rellstab et al., 2015; Sork et al., 2013).
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In this study, we investigated relationships between microclimatic factors and genetic 

variation in the willow leaf beetle Chrysomela aeneicollis, a well-described model species for 

understanding how climate change impacts montane ecosystems (Dahlhoff et al., 2019; Millstein,

2006; Rank & Dahlhoff, 2002). This insect is ideal for investigating processes of local adaptation

in a region of high topographic and seasonal landscape heterogeneity (Camus, 2020). During the 

brief summer growing season, this univoltine beetle species mates, lays eggs, and undergoes one 

generation of larval development before new adults emerge and feed before winter returns 

(Smiley & Rank, 1986). They overwinter in the soil as freeze-tolerant adults for eight to nine 

months before emergence of reproductively mature adults (Boychuck et al., 2015; Roberts et al., 

2021).

In western North America, C. aeneicollis is found living on willows in cool, moist 

habitats separated by regions of arid or Mediterranean climates, resulting in highly fragmented 

distribution with little connectivity among populations (Brown, 1956; Dellicour et al., 2014). In 

California, this species inhabits regions with distinct microclimate and seasonal characteristics: 

along high-elevation (2700 - 3400 m) streams and bogs in the Sierra Nevada, in isolated montane

populations on the edge of the Great Basin, and in low elevation riparian habitats along the 

Northern California coast. Within the Sierra Nevada, populations experience stressfully warm 

and cold temperatures throughout the year and their distribution is affected by seasonality and 

elevation, with populations contracting upslope and declining in abundance during droughts and 

growing in size and expanding to lower elevations after wet, snowy winters (Dahlhoff et al., 

2019; McMillan et al., 2005; Rank, 1994; Rank et al., 2020; Roberts et al., 2021; Smiley & 

Rank, 1986). Despite these fluctuations in population size, Sierra Nevada populations have 
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maintained high levels of heterozygosity at protein coding genes and other loci and show no 

deviation from Hardy Weinberg expectations with respect to expected versus observed genotype 

frequencies (Rank 1992a, Rank et al. 2020), suggesting that they are sufficiently large to avoid 

bottlenecks and effects of inbreeding. Montane populations show evidence of substantial, stable 

genetic differentiation along a 60 km latitudinal gradient, from the South Fork of the Kings River

in the south to Rock Creek in the north, with especially high divergence at mitochondrial loci 

and the metabolic enzyme locus phosphoglucose isomerase, Pgi (Dahlhoff et al., 2008; Rank, 

1992a; Rank et al., 2020; Rank & Dahlhoff, 2002). Prior laboratory and field studies have also 

shown that effects of temperature on performance and fitness components vary among 

individuals with different nuclear and mitochondrial variants (Camus, 2020; Dahlhoff et al., 

2019; Dahlhoff & Rank, 2000; Dick et al., 2013; Rank et al., 2020). While extensive studies 

support the hypothesis that variation at metabolic loci such as Pgi and the mitochondrion reflect 

local adaptation (Bracewell et al., 2023; Dahlhoff et al., 2008; Dahlhoff & Rank, 2000; Rank & 

Dahlhoff, 2002), we lack information about how variation throughout the genome reflects the 

complex interaction of neutral and adaptive processes across the beetle’s range.

Here, we address this gap by evaluating relationships between genomic variation and 

environmental conditions in locations where willow beetle populations occur in four distinct 

ecoregions of California (Griffith et al., 2016). We quantified differentiation at nuclear loci 

among populations in three montane regions in Eastern California and populations in an isolated 

coastal area; this sampling design covers all known regions within California where this species 

is currently known to occur (Brown, 1956; Dellicour et al., 2014). We identified selective 

microclimatic gradients that contribute to spatial patterns of potentially adaptive genomic 
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variation across the landscape, then used this information to predict functions of newly identified

genes that vary along microclimatic gradients to examine how genomic differentiation among 

these regions may contribute to local adaptation.
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Results

Sequencing and marker filtering

Illumina sequencing generated 5.06 billion paired-end reads from 175 individuals in 12 

populations (Table 1), of which 4.05 billion total reads (80.1%) passed initial quality filters (per 

sample: mean = 23.1 million, sd = 7.9 million). The joint genotype calling workflow identified 

12 million hard-filtered biallelic SNPs (Tables S1, S2). We then used a conservative SNP 

filtering approach based on minor allele frequency (MAF), heterozygosity, and inbreeding 

coefficient, resulting in 22,323 SNPs across all individuals and 12 populations. Filtering 

thresholds that contributed substantially to the reduced set of analyzed SNPs were those that 

removed SNPs with a MAF < 0.01 (Table S2B) and that removed loci with low quality reads 

within populations (Table S2C). These SNPs were distributed evenly across the nuclear genome 

(Table S1).

Microclimate simulation

The NicheMapR microclimate model simulated 24 variables for the 12 beetle populations that 

represent air, soil, and snow conditions beetles experience throughout their lifecycle (Table S3). 

Simulated environmental variables demonstrated high sensitivity to the shade input parameter in 

the model (Fig S1), but relative multivariate environmental distances between populations were 

consistent between minimum and maximum shade conditions (Fig S2). Simulated microclimatic 

data under minimum shade conditions were more concordant with available empirical 

measurement based on RMSE (Table S4), so downstream analyses were therefore conducted 

using simulated environmental variables under 10% shade. 
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Population genomic differentiation across California landscape

The first two principal components on population-level minor allele frequencies explained 55.8%

of total genomic variation (Fig 1B). Eastern Cascade and Coast Range ecoregions exhibited the 

greatest genomic divergence among populations, and population genomic variation in the Sierra 

Nevada and Central Basin ecoregions followed a latitudinal gradient (Fig 1; Table S5). SNP 

filtering thresholds used in analyses did not meaningfully influence estimates of population 

structure compared to more relaxed filter thresholds (Fig S3-S5). 

A population genetic structure analysis was used to estimate proportions of individual 

genomes originating from ancestral gene pools based on the five populations determined by 

selecting a value of K that minimized cross entropy (Fig S6). Individuals in the Sierra Nevada 

ecoregion show a strong pattern of genetic differentiation with latitude (Fig 1). Based on 

proportions of estimated ancestral coefficients, individuals in the southern drainage Tuttle Creek 

(TC) are genetically distinct and belong to one ancestral population. Individuals in Taboose Pass 

(TP) are mixed, sharing ancestry with neighbors in Tuttle Creek to the south, Big Pine (BP) and 

Baker (BK) Creek to the north. Individuals in South Bishop Creek (BC) and Tyee Lakes (TL) 

share ancestry with both southern (BP, BK) and northern (NF, PC, RC) populations, which in 

turn share ancestry with those from the Great Basin (DC). Individuals collected in Eastern 

Cascades and Coast Range ecoregions were genetically distinct from each other and from the 

Sierra Nevada-Great Basin complex (Fig 1).

Analysis of pairwise Fst values among population pairs revealed that populations in the 

montane Eastern Cascades region were more similar to montane populations in the Sierra 

Nevada and Great Basin than they were to Coast Range populations, despite similar geographic 
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distances separating each region (Fig 2). When populations were classified by habitat type 

(coastal or mountain), Fst values for “coast vs. mountain” population pairs were four-fold greater 

(LSM = 0.43 + 0.02) than those for “mountain vs. mountain” population pairs (LSM = 0.11 + 

0.01, F1,63 = 197.4, P < 0.001; Fig 2). The overall relationship between geographic distance and 

Fst was similar within the two types of population pairs and was consistent with ‘isolation by 

distance’ genetic differentiation (F1,63 = 24.5, P < 0.001; Fig 2). Together, these results suggest 

that isolation by distance and isolation by environment (coastal versus montane) both shape 

genomic differentiation, and differences in environmental conditions appear to strongly influence

genetic composition of C. aeneicollis populations.

Associations between environmental and genomic variation

Partial redundancy analysis (pRDA)- The pRDA made it possible to identify specific genetic 

polymorphisms that were associated with environmental differences among populations. Among 

all California populations, the pRDA was globally significant (F2,7 = 2.18, P = 0.001; Fig 3), and 

the constraining environmental matrix explained 17.1% of variation in genomic data, while the 

conditioning spatial matrix explained 19.0% of genomic variation. The forward selection 

procedure identified a significant positive spatial variable (MEM1), which was retained as 

conditioning variable in pRDA. The forward selection procedure identified annual air 

temperature range at 1.75 m above ground level (annual Tmax –Tmin) and maximum daily snowfall

as significant environmental predictors of genomic variation (Fig 3; annual air temperature range

F1,7 = 2.28, P = 0.001; maximum daily snowfall F1,7 = 2.08, P = 0.001). The first and second 

RDA axes also explained substantial proportions of genomic variation (RDA1 = 18.7%, F1,7 = 

2.32, P = 0.014; RDA2 = 16.6% F1,7 = 2.05, P = 0.022). Candidate single nucleotide 
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polymorphisms (SNPs) were identified based on high correlation with temperature- and snow-

related environmental variables (r > |0.65|) and z-score values of loadings of loci in ordination 

space (z scores ± 2.1, two-tailed P = 0.036). Based on these criteria, 107 SNPs were identified as 

candidate loci (Fig 3). Sixty-eight SNPs were related to annual air temperature range, thirty-

seven to maximum daily snowfall, and two were related to both temperature and snowfall (Table 

S6). When the coastal Gualala River population was excluded, the pRDA was globally 

significant (F1,8 = 2.04, P = 0.021; Fig S7), and with MEM1 as the conditioning variable, the 

forward selection procedure identified only maximum daily snowfall as a significant predictor of 

genomic variation. Using the above candidate loci criteria, 116 SNPs were related to maximum 

snowfall (Table S9).

Latent factor mixed model (LFMM)- The LFMM represents a second approach to identify SNPs 

related to environmental variability while accounting for overall population genetic structure. 

With all California populations, a LFMM was run with five estimated ancestry coefficients as 

latent factors to test single-locus relationships with annual air temperature range and maximum 

daily snowfall (ancestry coefficients shown in Fig 1). A large proportion of identified 

polymorphisms (19.2%; 4,289 SNPs) were associated with annual air temperature range, and 

7.2% (1,603 SNPs) were associated with maximum daily snowfall (Fig 4). Using the LFMM 

excluding the coastal Gualala River population and four ancestral populations, 1,471 SNPs 

(6.6% total) were associated with maximum snowfall (Table S9, Fig S8).

SNP and protein functional annotations

To reduce probability of false positive associations and narrow the search for candidate 

polymorphisms, we focused on SNPs identified by both pRDA and LFMM, and we assessed 
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associations across coastal and montane populations and then again using only montane 

populations (Tables 2, S6, S9). In analyses with all populations, most SNPs correlated with 

annual air temperature range in pRDA were also identified using LFMM (67 of 70). A slightly 

lower proportion of SNPs associated with maximum daily snowfall based on pRDA were also 

identified by LFMM (26 of 39; Table S6). In analyses with only montane populations, most 

SNPs correlated with maximum daily snowfall based on pRDA were also identified by LFMM 

(79 of 116), and 18 SNPs identified in the pRDA with only montane populations were also 

identified in analyses with coastal and montane populations (Table S9).

Analyses of all populations and only montane populations identified three non-

synonymous SNPs associated with maximum daily snowfall found in genes coding for proteins 

involved in cell structure and movement (inverted formin-2 and microtubule-actin cross-linking 

factor). Analyses including all populations or only montane populations identified five non-

synonymous SNPs associated daily snowfall that are found in genes coding for proteins involved

in ion transport or cellular membrane activity (Table 3, S8A, S11A). Three non-synonymous 

SNPs associated with air temperature range across all populations were found in genes coding 

for proteins involved in intracellular signaling and energetics [cytochrome p450, phospholipid 

transfer protein, (Table 3)].
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Discussion

Detecting accurate signals of local adaptation in the genome requires linking observed genetic 

patterns to underlying selective features of the environment while accounting for associations 

imposed by neutral processes. Here we demonstrate that populations of the willow leaf beetle 

Chrysomela aeneicollis across California are differentiated across the nuclear genome, and we 

provide strong evidence that snow serves as a prominent selective gradient and driver of local 

adaptation across their geographic range. We show that both large-scale variation in snowfall 

across the California landscape and small-scale variation in snowfall within montane locations 

are associated with adaptive genetic variation. Specifically, we provide evidence that variation in

maximum daily snowfall is linked to non-synonymous polymorphisms in genes associated with 

cytoskeletal motility, ion transport, and membrane structure and function, highlighting the 

potential role of adaptive protein modifications that could enhance insect cold tolerance in cold 

snowy regions. 

Spatial patterns of genetic divergence in Chrysomela aeneicollis 

Results of this study reveal that populations of the willow leaf beetle Chrysomela aeneicollis 

living in different regions of California are genetically differentiated across loci in the nuclear 

genome. Three of four ecoregions sampled show substantial levels of genetic divergence among 

them, such that North Coast populations are distinct from those in the Eastern Cascades 

ecoregion, and both of those populations are distinct from populations in the Sierra Nevada and 

Great Basin (Fig 1). Within Eastern California, populations from northern drainages of the 

Eastern Sierra Nevada are less genetically isolated from populations sampled in the neighboring 

White Mountains than those found in southern drainages of the Sierra Nevada. Furthermore, 
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consistent with previous studies, populations within the Sierra Nevada show relatively high 

levels of genetic divergence given their relatively close geographic proximity (Fig 1) (Dahlhoff 

et al., 2008; Rank, 1992a; Rank et al., 2020). Patterns of genetic differentiation separating 

populations in different ecoregions suggest that geographic and seasonal environmental variation

present a major selective pressure on alleles in the nuclear genome and that genes related to 

thriving under different local environmental conditions contribute to local adaptation among 

populations of C. aeneicollis (Fig 2). 

The strong pattern of geographic differentiation of genomic variation across California 

was illustrated for the first time in the present study, but it is consistent with findings of Dellicour

et al. (2014). The earlier study found that C. aeneicollis populations in Western North America 

(Montana, coastal Oregon, Colorado, and California) were strongly differentiated at 

mitochondrial and nuclear genetic markers, suggesting that geographic isolation among these 

regions predates recent fluctuations in the extent of glaciation over the past 50,000 years. 

Isolation of populations at mitochondrial loci was greater than nuclear genes, but there was 

overall agreement among loci that differentiation among geographic regions was substantial, 

which would contribute to conditions favoring local adaptation (Dellicour et al., 2014). To date, 

this study provides the best picture of signatures of adaptation to seasonal variation in this wide-

ranging insect. 

Maximum daily snowfall variation contributes to adaptive genetic variation 

Identifying climatic variables that act as drivers of spatially varying selection will be critical for 

predicting evolutionary responses to climate change and environmental disturbance (Bay et al., 

2018). Among all simulated microclimate conditions that represent air, soil, and snow conditions
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throughout the year, we found that maximum daily snowfall explains a significant portion of 

variation in genomic data, after controlling for spatial autocorrelation and population history (Fig

3, Fig S7). This association is identified both across the California landscape, where climatic 

conditions differ greatly between coastal and montane populations, as well as within montane 

populations, where differences in climatic conditions are more subtle. Comparisons made within 

montane populations suggest that this snowfall gradient may characterize spatially varying 

selective pressures related to winter cold exposure within mountain ecoregions (Fig S9). Eco-

physiological models for C. aeneicollis indicate that the relationship between elevation and cold 

exposure in soil is strongly non-linear, with cold exposure peaking at mid-elevation montane 

populations that are not buffered by persistent snow cover (Roberts et al., 2021). Since snow 

decouples the relationship between air and soil temperatures, variation in snow cover reflects 

variation in cold exposure in the soil at a given elevation. Without the thermal buffer that snow 

provides for organisms overwintering in soil, cold microclimate temperatures can drop below a 

species-specific cold tolerance threshold, which can result in mortality or sublethal cold injuries

(Bale, 1996; Sinclair et al., 2003). This result highlights the importance of snow cover variation 

as a key factor in maintaining this variation and driving selection on genes associated with cold 

tolerance and stress in winter.
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Prior work in Sierra Nevada populations of C. aeneicollis shows that air temperature 

varies between genetically differentiated populations and shows evidence of physiological 

adaptation to different thermal regimes (Dahlhoff & Rank, 2000; 2007; Rank et al., 2008). 

However, in the present study, the effect of ‘annual air temperature range’ (Fig 3) is largely 

driven by climatic conditions in the Coast Range (CR). This broad thermal selective gradient 

covaries with neutral patterns of population structure, which complicates distinctions between 

neutral and selected loci (Nadeau et al., 2016); thus, the high detection rates observed in the 

LFMM in the present study could also be due to residual, unaccounted population structure (Fig 

4). 

Putative mechanisms of local adaptation to snow cover mirror mechanisms of cold tolerance 

Genes containing nonsynonymous SNPs associated with variation in snowfall encode proteins 

with functions related to ion binding, actin and cytoskeleton binding and organization, and 

membrane components; protein identifications were assigned with a high level of confidence, as 

all homologous proteins are present in other beetle species (Table 3). These protein functions 

align with previously identified mechanisms of cold tolerance and acclimation in both insects 

and plants (Des Marteaux et al., 2018; Kim et al., 2006; Örvar et al., 2000; Pokorná et al., 2004). 

Primary cellular challenges associated with deep and prolonged cold exposure or freezing 

include loss of ion and water homeostasis and depolymerization of cytoskeletal components (e.g.

actin and tubulin), which can impair ion transport function, cause loss of cell junction integrity, 

and exacerbate disturbances in membrane integrity caused by paracellular leaks of water and 

ions (Cantiello, 1995; Khurana, 2000; Toxopeus & Sinclair, 2018; Turner et al., 1997). Cold-

acclimated insects are better able to maintain ion and water balance at low temperatures 
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compared to warm-acclimated insects (Overgaard & Macmillan, 2017), due to cellular structural 

modifications that enhance cytoskeletal stability, thus protecting ionoregulatory tissues (e.g. 

Malpighian tubules in insects) from chilling injury and loss of transport function (Des Marteaux 

et al., 2018). Cold-acclimated insects also differentially regulate cytoskeletal gene expression, 

with cold acclimation inducing upregulation of actin-associated genes or enzymes that promote 

membrane and cytoskeletal remodeling (Des Marteaux et al., 2017; Kim et al., 2006; Toxopeus 

et al., 2019). Because polymorphisms associated with variation in snowfall may relate to protein 

modifications that enhance cytoskeletal and membrane stability in the cold, putative mechanisms

underlying local adaptation to snow are related to primary cellular mechanisms of cold 

acclimation and tolerance. These results provide genomic evidence that variation in snowfall 

imposes a selective gradient in exposure to cold stress, supporting the theory that snow 

modulates cold stress and exposure for insects that overwinter in the soil (Roberts et al., 2021).

Tandem genotype-environment association approach identifies signatures of local adaptation 

In detecting genomic signatures of local adaptation, genotype-environment associations 

identified by various methods will depend strongly on demographic and sampling scenarios

(Forester et al., 2018; M. R. Jones et al., 2013; Nadeau et al., 2016; Rellstab et al., 2015). 

Simulations conducted by Forester et al. 2016 find that multivariate ordination methods like 

pRDA produce uniformly low false positive rates (0-2%), whereas LFMM produced high false 

positive rates under low dispersal scenarios (Forester et al., 2016). Chrysomela aeneicollis 

individuals have low levels of dispersal, with individuals often spending most of their life on a 

single host plant (Rank, 1992b, 1994). 
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Nonetheless, correcting for population structure in pRDA can result in low power to 

detect true associations (Lotterhos, 2023), and recent simulation modeling indicates that LFMM 

provides the best compromise between detection power and error rates in situations with 

complex hierarchical neutral genetic structure (De Villemereuil et al., 2014). Herbivorous insects

can have a subdivided population structure that reflects the distribution of their plant hosts

(Moraiti et al., 2014; Orrest & Thomson, 2011), and previous work found hierarchical, 

subdivided genetic structure among patches and willows within a patch (Rank, 1992a). The 

application of these two GEA methods highlights the trade-off between conservative and liberal 

approaches in detecting a true adaptive signal, yet applying these methods in combination can 

therefore yield increased confidence in true positive detections of local adaptation. Future work 

should investigate the relationship between non-clinal allele frequency patterns and 

environmental gradients, which can evolve under multivariate environments and can lead to 

inaccurate inferences using GEA approaches (Lotterhos, 2023).

Limitations 

A limitation of this study is sampling bias toward populations in the Sierra Nevada 

ecoregion relative to the other three eco-regions included in this study (Fig 1), which may bias 

genetic-environmental relationships and relative contributions of isolation by environment and 

distance (Fig 2). Replicated sampling along environmental gradients increases confidence in true 

positive detections of genotype-environmental associations (Rellstab et al., 2015), yet the 

beetle’s fragmented distribution in California limits replication across climatic conditions. 

Another potential limitation is that temporal coverage of sampling was limited to one year in all 

but the Sierra Nevada (SN) Ecoregions (Table 1), so that allele frequencies in these populations 
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may be influenced by environmental conditions in the collection year. Prior studies suggest that 

genetic variation among SN, CB and CR populations has remained relatively stable since we last 

sampled and analyzed them (Dellicour et al., 2014). We therefore expect that patterns reported 

here reflect adaptation to long-term environmental conditions due to the geographic isolation 

among populations.

Additionally, stringent SNP filter thresholds were applied to ensure quality genotypes 

within each population, resulting in a relatively modest set of polymorphisms (N = 22,323 

SNPs). While these thresholds did not alter overall estimates of population structure (Figs S3-

S5), candidate SNPs associated with environmental gradients in this study likely represent a 

subset of loci involved in local adaptation. 

Conclusion

Many montane species live on the periphery of both suitable habitat and physiological tolerance, 

which contributes to the unique sensitivity of montane populations to climate change. Even small

environmental changes may result in large implications for survival and reproductive success

(Dahlhoff et al., 2019; Pepin et al., 2015; Stewart et al., 2017). The willow leaf beetle has 

emerged as a natural model for analyzing the relationship between adaptive genetic variation and

environmental change (Dahlhoff et al., 2019; Dahlhoff & Rank, 2000; Rank, 1992a; Rank et al., 

2020b). By analyzing all known Californian C. aeneicollis populations across the nuclear 

genome, this study represents the broadest investigation of adaptive genetic variation in the 

species to date and provides a path forward for understanding the evolutionary significance of 

variation at genes associated with response to environmental stress. Future work should identify 

regions where genetic–environmental relationships will be most likely disrupted by climate 
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change and reduced snowfall, which will be critical for land management decisions and gene 

conservation in vulnerable populations (Shaffer et al., 2022).
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Methods

Study populations and sampling design

Ecoregions were identified following United States Geological Survey (USGS) designations

(Griffith et al., 2016). Beetle populations from the Sierra Nevada ecoregion were surveyed at 

winter snowmelt (May-June) from 1996-2016, following methods detailed in Dahlhoff et al. 

2019 (Appendix 1.1). In all, 175 individuals from 54 sampling locations were included and 

assigned a priori to 12 populations (Table 1, Fig 1) based on previous work (Dellicour et al., 

2014a; Rank, 1992a; Rank et al., 2020a). These represent all known populations in California, 

and they experience a wide range of seasonality, snow cover, and air temperature variation, 

especially between montane and coastal regions (Table S3). Though allele frequencies can 

fluctuate within a beetle population across years (Rank & Dahlhoff, 2002), the magnitude of 

these fluctuations is relatively small compared to the magnitude of genetic divergence among 

regions (Dahlhoff et al., 2008; Dellicour et al, 2014; Rank et al., 2020).

DNA Library preparation and processing of genomic sequencing data

Genomic DNA was extracted from individual beetles using NucleoMag Bacteria DNA Isolation 

kit (Macherey-Nagel, Düren, Germany), and whole genome libraries were prepared following 

the plexWell library preparation protocol by the CCGP MiniCore. Paired-end sequencing (2 x 

150 bp) was performed on an Illumina HiSeq4000 platform at UC Berkeley’s QB3 Genomics 

Core Facility (Berkeley, CA, USA). Nextera adapter sequences and low-quality bases (base 

quality < 15, sliding window 4 bp) were removed from each read using Trimmomatic v0.39

(Bolger et al., 2014). Reads were aligned to a Chrysomela aeneicollis reference genome 

(Bracewell et al., 2023) using the Burrows-Wheeler Aligner (BWA-MEM) algorithm (Li & 
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Durbin, 2009). Joint genotyping was performed on all samples using Genome Analysis Toolkit 

(GATK) v4.2.6.0 functions HaplotypeCaller and GenotypeGVCFs (Poplin et al., 2017). Variant 

data were filtered to include only biallelic SNPs, and SNPs were hard-filtered using GATK best-

practice recommendations (Van der Auwera & O’Conner, 2020) (Table S2A). SNPs were 

removed if minor allele frequency (MAF) across all individuals was less than 0.01 or if 

heterozygote frequencies deviated greatly from Hardy Weinberg expectations (e.g., excess 

heterozygosity or inbreeding coefficient greater than +0.5) (Table S2B). Finally, SNPs were 

retained if 70% of all samples and 70% of samples within each population showed a read depth 

between three and 30 and a genotype quality greater than 20 [Table S2C; (Xuereb et al., 2018)]. 

After filtering, principal components analysis (PCA) was performed on Hellinger-transformed 

population-level minor allele frequencies (Legendre & Gallagher, 2001; Xuereb et al., 2018). 

Because variant filter thresholds influence estimates of population structure (Linck & Battey, 

2019; Pearman et al., 2022), we assessed sensitivity of genetic differentiation to filter threshold 

levels. 

Microclimate variable simulation 

To obtain spatially explicit environmental variables representing local microclimate conditions 

across the life cycle, microclimate simulations were conducted for the 12 beetle populations 

using the biophysical modeling package NicheMapR (Kearney & Porter, 2017). The model 

computes microclimatic conditions at a defined distance above ground, given local habitat 

properties and weather conditions. The microclimate model was run using historical gridded 

weather data from the GRIDMET daily weather database with 5 x 5 km resolution (Abatzoglou, 

2013). The mid-latitude, -longitude, and -elevation of all demes within each population were 
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used as input in the model (Table 1, S2). The microclimate model was run in soil moisture and 

snow modes under both minimum (10%) and maximum shade (90%) conditions for 1989-2020. 

Simulated variables included air temperature and humidity at 1.75 m above the ground, snow-

related variables, and soil-related variables. To characterize mean environmental conditions, 

daily microclimate variables were averaged over 30 simulated years (Table S3). We evaluated 

sensitivity of simulated microclimate variables to input microclimate model parameters by 

calculating RMSE between simulated outputs and empirically derived microclimate data from 

available weather stations (California Department of Water Resources, CDEC). Air temperature 

and snow depth data from CDEC were available for weather stations within 1 km of mid-

elevation sites in Rock Creek, Big Pine Creek, South Bishop Creek, and North Bishop Creek. 

Population genomic differentiation across the California landscape

Population structure from SNP genotypic data was assessed by estimating proportions of 

individual genomes originating from ancestral gene pools. A range of estimated ancestral gene 

pools (K = 1-10) were tested using a sparse non-negative matrix factorization algorithm using the

function ‘snmf’ in the R package LEA v.3.6.0 [(Frichot et al., 2014; Frichot & François, 2015), 

K= 3-7 shown in Fig S11]. The value of K that minimized cross-entropy and best explained 

genotypic data was five [(Alexander & Lange, 2011), Fig S6] and this value was used for 

subsequent analysis. The ‘snmf’ function was also used to estimate individual ancestry 

coefficients. Five replicates were run using the best estimate of K, and individual ancestry 

coefficients were extracted from the replicate with the lowest cross-entropy.

To quantify contributions of geographic and environmental distances to patterns of 

genetic differentiation, we assessed isolation by distance (IBD) and isolation by environment 
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(IBE) for all population pairs using an analysis of covariance (ANCOVA). The ANCOVA tested

whether the means of pairwise Fst between populations were equal across habitat type, while 

controlling geographic distance. Unbiased pairwise Fst using minor allele frequencies of all 

populations were calculated using the R package BEDASSLE v.1.6 (Bradburd, 2022; Weir & 

Hill, 2002). Pairwise geographic distance in kilometers was calculated using the R package fields

v.13.3 (Nychka & Furrer, 2021). Population pairs were identified as “coast vs. mountain” and 

“mountain vs. mountain” to describe habitat type of populations, as this categorical descriptor 

represents most environmental variation among populations (Table S3). Using the R package 

rstatix v.0.7.1, ANCOVA was conducted with pair-wise Fst values as dependent variable, binary 

environmental descriptor as categorical independent variable, and geographic distance as a 

covariate. Least squares means were calculated for habitat types using the R package emmeans 

v.1.8.3.

Genotype-environment association tests to identify signatures of local adaptation

Signatures of local adaptation to climate were investigated using two genotype-environment 

association (GEA) methods, partial redundancy analysis [pRDA, (Borcard et al., 1992; Forester 

et al., 2018; Peres-Neto et al., 2006)] and latent factor mixed modeling [LFMM, (Frichot et al., 

2013)], which control for signals generated by neutral processes through separate mechanisms. 

Both GEA analyses were performed on two sets of populations: 1) all populations and 2) all 

montane populations excluding the coastal (Gualala River) population. Partial redundancy 

analysis (pRDA) was conducted at the population level since the resolution of environmental 

data did not include environmental variation within a population. To account for isolation by 

distance, we conducted a spatial eigenfunction analysis that produced a conditioning matrix in 
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the pRDA using distance-based Moran’s eigenvector maps [Appendix 1.2, (Forester et al., 

2018b)]. All simulated environmental variables were scaled and centered to produce the 

environmental matrix, and forward selection was used to select significant environmental 

predictors, with significant dbMEMs as explanatory conditioning matrix and Hellinger-

transformed SNP minor allele frequencies as response matrix. The final pRDA was run with 

significant (alpha < 0.05) environmental predictors using the R package vegan v2.6-2 (Oksanen 

et al., 2022). Outlier loci on constrained ordination axes were determined based on loadings of 

each locus in ordination space (Forester et al., 2018; Xuereb et al., 2018).

We then conducted a latent factor mixed model (LFMM) and documented overlap of 

detections with results from pRDA (Bay et al., 2018; De Villemereuil et al., 2014; Forester et al.,

2018; Nadeau et al., 2016). Neutral population structure due to shared demographic history or 

background genetic variation is introduced through unobserved, latent factors (Frichot et al., 

2013). This method used individual-based genotypic data, which assessed the effect of a priori 

designated populations used previously in pRDA. The ‘lfmm’ function in the LEA package was 

implemented using individual-level genotypic data (22,323 SNPs) as response matrix, forward-

selected environmental variables used in pRDA as environmental predictors, and the best 

estimate of K (estimated ancestral gene pools) as number of latent factors. More detailed GEA 

methods are provided in Appendix 1.3. 

SNP and protein functional annotations

We identified genes containing candidate SNPs and predicted SNP’s coding effects with an 

interval forest approach using the program SnpEff v.5.1 (Cingolani et al., 2012) and Caen 1.0 

annotated genome (Bracewell et al., 2023). SNPs were annotated based on genomic location, and
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coding effects were predicted (Appendix 1.4). To assign a putative protein name, protein 

sequences were aligned to NCBI’s protein database using BlastP (Table 3, S7, S10). Gene 

Ontology (GO) terms were assigned to candidate genes using the functional annotation web 

server database Protein ANNotation with Z-scoRE [PANNZER2, (Törönen et al., 2018)]. 
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Tables

Table 1. Localities and sample sizes for population genomic studies.

Ecoregion
Population name Latitude Longitude Elevation

(m)
N

sites
N beetles

(total) Year(s)1

Sierra Nevada
Tuttle Creek (TC) 36.53779 -118.21530 3012 1 10 2019

Taboose Pass (TP) 36.96824 -118.43419 3321 3 18 2009

Big Pine Creek (BP) 37.12863 -118.48704 3142 11 28 1998-2014

Baker Creek (BK) 37.16780 -118.47143 3120 3 18 1999

S Bishop Creek (BC) 37.16601 -118.55171 3098 14 38 2004-2014

Tyee Lakes (TL) 37.18567 -118.57565 3191 4 9 2014

N Bishop Creek (NF) 37.21760 -118.64757 3131 6 12 2003-2014 

Pine Creek (PC) 37.34442 -118.72861 3057 2 4 2013

Rock Creek (RC) 37.45561 -118.74034 3030 5 10 2013-2014

Central Basin
Davis Creek (DC) 37.78392 -118.23650 2895 1 12 2003

Eastern Cascades
Fitzhugh Creek (FC) 41.35091 -120.29662 1968 3 11 2020

Coast Range
Gualala River (GR) 38.74906 -123.51919 12 1 8 2016

1We sampled newly emerged overwintered adults, either from the most recent population 

expansion (2013-14), or the most recent observation of overwintered beetles at that site. Further 

details of sampling design are described in Appendix 1.1.
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Table 2. Candidate SNPs correlated with microclimate variables. Total number of SNPs are 

shown. For genic SNPs, the number of unique genes containing at least one non-synonymous 

(NSY) or synonymous (SYN) substitution, as well as genes where the SNP is located in an 

intron, are also indicated. Candidate SNPs and genes are delineated by identification through 

analyses with montane and coastal populations or analyses with only montane populations.

Microclimate
variable Populations Detection Method

Number of
SNPs Number of genes

Total Genic NonSyn Syn Intron
Air 
temperature 
range

Montane & 
coastal

pRDA & LFMM 67 33 4 11 18

pRDA only 70 33 4 11 18

Maximum 
daily snowfall

Montane & 
coastal

pRDA & LFMM 26 16 4  4  4

pRDA only 39 21 5  4  7

Maximum 
daily snowfall

Montane 
only

pRDA & LFMM 79 40 4 10        11

pRDA only 116 62 8 13 15
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Table 3. Candidate proteins that vary with microclimate. Proteins were identified using 

BlastP alignment using predicted amino acid sequence; associated NCBI accession number is 

noted for sequence with highest homology to reference taxa; populations included in analysis 

(montane and coastal, montane only, or both) are indicated. 

Gene ID
Amino

acid
variants 

Protein
Reference sequence
(taxaA, % identity)
Accession number

Gene Ontology
(GO) termsB

Air temperature range 
Montane & Coastal
05_00.257 Val/Ile nuclear valosin-containing 

protein-like
Ld: 99, 71 ATP binding and hydrolysis 2

XP_023023254.1 ribosome binding2, biogenesis3

telomerase activity3

06_05.960 Asn/His cytochrome P450 315a1, 
mitochondrial

Ld: 100, 58 Monooxygenase, oxidoreductase
XP_023020072.1 activity2; ecdysone biosynthesis3

15_02.330 Leu/Phe phospholipid transfer 
protein

Ag: 100, 75 membrane1 nucleotidyl trans. activity2

XP_018561647.1 phosphorylation, signal transduction3

Maximum daily snowfall
Montane & Coastal
02_12.369 Ser/Gly transmembrane protein 131 Ld: 94, 66 membrane1

XP_023015832.1
14_11.590 Val/Ala testinC Tg: 100, 63 zinc ion binding2

XP_008194458.1
Montane only
02_16.309 Ser/Pro long-chain-fatty-acid CoA 

ligase
Ld: 99, 76
XP_023012248.1

ligase activity2, lipid metabolic process3,
neuron cellular homeostasis3

03_01.420 Val/Leu protein pigeon (PION)C Ld: 100, 73
XP_023019414.1

regulation of membrane protein 
(amyloid-beta) formation3

03_04.184 Asn/Asp ankyrin repeat; IBR 
domain-containing proteinC

Ag: 98, 81
XP_018576173.1

metal ion binding2,
ubiquitin-protein transferase activity2,
protein ubiquitination3

04_00.113 Ile/Val zinc transporter ZIP-1 like 
isoformC

Ld: 100, 67
XP_023015018.1

metal ion transmembrane transporter 
activity2,3

18_04.151 Asn/Thr ribosomal protein Ld: 100, 68 ribosome1, translation3

XP_023030475.1
Montane & Coastal + Montane only
10_13.168 Glu/Asp inverted formin-2 Ag: 98, 63 actin cytoskeleton organization2

Pro/Ala XP_023310886.1
20_03.324 Gln/His microtubule-actin cross-

linking factor
Dv: 45, 69 membrane1, cytoskeleton1

XP_028131989.1 Ca++ ion binding2, microtubule binding2;
cytoskeleton organization3

AReference taxa: Leptinotarsa decemlineata (Ld: Colorado potato beetle), Anoplophora glabripennis (Ag: Asian 
long-horned beetle), Tribolium castaneum (Tc: Red flour beetle), Diabrotica virgifera (Dv: Corn rootworm beetle).

BGOTerm Categories: cellular component1, molecular function2, biological process3

CSNP only detected with pRDA;SNP locations directly adjacent (Table S6)
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Figures

Figure 1. Genetic differentiation and structure of Chrysomela aeneicollis populations across

California. A. Map of study populations. Abbreviation in parenthesis refers to population 

ecoregion (SN: Sierra Nevada, CB: Central Basin, EC: Eastern Cascades, CR: Coast Range). 

Inset map features the sampled populations located in the Sierra Nevada and Central Basin 

ecoregions. Populations in the Sierra Nevada ecoregion are presented using a blue color gradient 

and are ordered based by latitude, south to north. representing increasing latitude. B. PCA 
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ordination highlighting genomic differentiation among populations based on the minor allele 

frequencies. C. Stacked barplots for each individual (N = 175 total) indicate estimated ancestry 

coefficients, representing the posterior probability that an individual originates from K = 5 

ancestral gene pools. Colors below the stacked barplot indicate each individual’s a priori 

population designations, as shown in parts A and B. Two-letter population designations are 

described in Table 1.
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Figure 2. Genomic differentiation as a function of geographic distance and habitat type for 

California willow beetle populations. Data shown highlight the relationship between pairwise 

geographic distance (km) and pairwise genetic distance (Fst). The black lines indicate the fitted 

values from the ANCOVA model, and points are color coded by the categorical independent 

variable used in the ANCOVA model.
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Figure 3. Partial redundancy analysis (pRDA) identifies candidate loci associated with 

selective climatic gradients. A. Ordination of populations and environmental variable loadings 

in multivariate space. Environmental variable loadings are multiplied by 10 to improve 

visualization. B. Ordination of SNP loci and environmental variable loadings in multivariate 

space. Outlier loci are colored based on correlation with an environmental variable (Pearson’s r >

|0.65|). Environmental variable loadings are multiplied by 0.4 to improve visualization. Two-

letter population designations are described in Table 3. Results of pRDA with only montane 

populations are provided in Figure S7.
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Figure 4. Latent factor mixed model (LFMM) identifies candidate loci associated with 

selective climatic gradients. Points indicate the FDR-adjusted p-value (q-value) of the 

association between a locus and an environmental gradient. The dotted black line represents a q-

value of 0.05, and purple and red colored loci are those detected by the pRDA. A. Loci 

associations with annual air temperature range. B. Loci associations with maximum daily 

snowfall. Results of LFMM with only montane populations are provided in Figure S8.
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