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Abstract 

Multiple acoustic dimensions contribute to speech 
categorization. Yet highly diagnostic dimensions contribute 
greater ‘perceptual weight’ in influencing speech 
categorization than less diagnostic dimensions. Recent 
research demonstrates that perturbations in short-term input 
regularities lead to rapid dynamic re-weighting of auditory 
dimensions. Here, we test the hypothesis that phonetic-
category-level activation via a highly diagnostic acoustic 
dimension is critical in driving this rapid tuning of how input 
maps to phonetic categories. To do so, we manipulate the 
inherent relative effectiveness, the perceptual weight, of two 
acoustic dimensions in signaling English vowel 
categorization using noise-vocoded versus clear speech. We 
observe that rapid tuning across statistical regularities is 
affected by dimensions’ effectiveness in signaling the vowel 
categories. These findings indicate that category activation 
via a highly diagnostic dimension drives adaptive tuning in 
speech perception, consistent with error-driven supervised 
learning. 

Keywords: Auditory dimension-based statistical learning; 
Speech perception; Noise vocoding; Perceptual tuning; 
Vowel categorization; Error-driven learning 

Introduction 
Everyday speech communication seems effortless, but it 

presents listeners a series of perceptual challenges in 
mapping from the acoustic signal to linguistically-relevant 
categories. One challenge is acoustic variability. The 
acoustics underlying speech signals are intrinsically variable 
such that there is no simple mapping from the many 
possible acoustic realizations to a particular phoneme or 
word. Even within a single talker’s speech, a given word 
may be realized with variable acoustics, depending on 
factors such as articulation rate (Miller, Grosjean, & 
Lomanto, 1984) and coarticulation (Ohman, 1966). This is 
exacerbated across groups of talkers that vary in gender, 
age, foreign accent, or dialect (Hillenbrand, Getty, & Clark, 
1995; Lee, Potamianos & Narayana, 1999). As an example, 
local Pittsburghers pronounce their home football team the 
‘Steelers’ with a short /I/ (as in hill) rather than a long /i/ (as 
in heel), departing from the mapping of acoustics to vowel 
categories typical of Standard American English. 

Recent research has demonstrated that the perceptual 
challenge introduced by acoustic variability is met, at least 
in part, by short-term learning, recalibration, or perceptual 

tuning of speech categorization according to regularities 
experienced across short-term speech input. For example, 
the perception of acoustically-ambiguous speech can be 
shifted with presentation of disambiguating supportive 
information, such as lexical information (Kraljic & Samuel, 
2006). In the Steelers example above, knowledge that 
Steelers is a word whereas Stillers is not can lead more /I/-
like speech sounds to be categorized as /i/, even when 
lexical context is no longer available. 

Researchers have described the disambiguating lexical 
information as a potential ‘teacher signal’ that may drive 
adaptive tuning of speech categorization (Norris McQueen, 
& Cutler, 2003), consistent with supervised error-driven 
learning (Idemaru & Holt, 2011; Guediche et al. 2013). By 
this view, the disambiguating information helps to resolve 
the mapping of the ambiguous speech acoustics to a 
phonetic category. In doing so, it generates expectations or 
predictions of input typical of the category. If the 
ambiguous acoustic input is a poor match with predictions, 
it may generate a ‘mismatch’ or ‘error’ that drives 
accommodation of the mismatch and leads to subsequent 
shifts in speech categorization that are apparent even when 
the disambiguating information is no longer available (see 
Guediche et al., 2013 for a review). 

In the present work, we examine this possibility more 
closely in the context of adaptive tuning driven by statistical 
regularities in the input, so-called dimension-based 
statistical learning (Idemaru & Holt, 2011; 2014; Liu & 
Holt, 2015). As an example, in Liu and Holt (2015), 
participants were instructed to respond whether they heard 
set or sat, while listening to the stimuli varying across two 
acoustic dimensions, spectral quality (SQ, related to the 
pattern of formant frequencies) and vowel duration (DU). In 
one block of trials, the majority of sounds (‘exposure’ trials) 
were sampled from the typical English acoustic space 
whereby vowels with formant frequencies (SQ) associated 
with sat tend to have longer DU than those associated with 
set. American English listeners tend to give SQ greater 
‘perceptual weight’ than DU (Liu & Holt, 2015). So, for 
these exposure trials, the most heavily perceptually-
weighted acoustic dimension, SQ, unambiguously signals 
vowel category membership. Moreover, the secondary, DU, 
dimension is correlated with SQ in a manner consistent with 
long-term experience with English. In this case, listeners 
rely upon DU when SQ is perceptually ambiguous on a 

1187



small proportion of ‘test’ trials. In a subsequent block, Liu 
and Holt (2015) introduced an artificial ‘accent’ on the same 
voice. The trials in this block sampled the acoustic space 
with a reversed correlation between the SQ and DU 
dimensions that was not typical in English (i.e., vowels with 
formant frequencies associated with sat had shorter 
durations). As in the first block, listeners' strong reliance on 
SQ was sufficient to lead to successful vowel categorization 
for exposure trials. Yet, experiencing the reversed 
correlation between the acoustic dimensions in short-term 
input resulted in rapid perceptual tuning such that listeners 
down-weighted reliance upon DU in vowel categorization. 
But, when the next block of trials reinstated the typical 
English SQxDU correlation, listeners rapidly returned to 
relying upon DU in vowel categorization. In all, this pattern 
of speech categorization indicates that listeners track the 
regularities among acoustic dimensions. Moreover, the 
effectiveness of acoustic dimensions in signaling speech 
categories is dynamically adjusted according to short-term 
experience with regularities across dimensions. 

Similar to lexically-guided perceptual tuning, this down-
weighting of acoustic dimensions’ contribution to phonetic 
categorization may arise from a mismatch between the 
expected, and actual, acoustic input (Guediche et al., 2013). 
Yet, there are some differences across paradigms. In the 
case of dimension-based statistical learning, the acoustic 
input is not inherently ambiguous. The exposure trials 
always unambiguously signal a category via the dominant 
acoustic dimension (SQ in the case above), regardless of the 
changing correlation between acoustic dimensions across 
blocks, even upon introduction of the ‘accent’. Only the 
relationship of SQ to the secondary dimension DU shifts 
across blocks. In this way, dimension-based statistical 
learning provides an excellent test-bed for addressing the 
generality of supervised learning approaches to adaptive 
tuning in speech categorization. 

In the present studies, we test a specific hypothesis about 
the information available to drive adaptive tuning in 
dimension-based statistical learning. Idemaru and Holt 
(2011) proposed that the primary, heavily perceptually-
weighted acoustic dimension (SQ in the case of Liu and 
Holt, 2015) may serve as a teacher signal to drive 
supervised learning in dimension-based statistical learning. 
Across all blocks, the primary dimension always 
unambiguously signals a phonetic category. A supervised 
learning account would predict that category activation via 
the dominant, unambiguous dimension generates predictions 
about patterns of input typically associated with the 
category, including secondary acoustic dimensions. Upon 
introduction of the accent, the relationship of the secondary 
dimension, DU, falls out of alignment with predictions 
potentially generating a mismatch that drives learning. This 
model leads to a specific prediction: the effectiveness of the 
dominant dimension in unambiguously signaling category 
membership should affect the degree of perceptual tuning 
across acoustic dimensions. 

Here, we test this prediction by manipulating the stimuli 
used by Liu and Holt (2015). We use noise vocoding to 
reduce spectral resolution, and therefore the effectiveness of 
the dominant dimension, SQ, in signaling vowel category 
while preserving DU effectiveness. We expect the relative 
SQ/DU perceptual weights to shift relative to clear speech. 
Correspondingly, we predict that DU’s greater effectiveness 
in noise vocoded speech will lead it to serve as a ‘teacher 
signal’ that will result in down-weighting SQ -- the opposite 
pattern observed by Liu and Holt (2015) for clear speech. 

To test these predictions, we first characterized the 
baseline perceptual weights for clear and noise-vocoded 
speech tokens of set and sat varying across a two-
dimensional acoustic space defined by SQ and DU. With 
this as a foundation, we predict qualitatively different 
patterns of tuning will be apparent across noise-vocoded and 
clear speech as a function of which dimension most 
effectively activates category representation. We predict that 
activation of categories by a dominant acoustic dimension is 
the driving contributor to the perceptual tuning observed in 
dimension-based statistical learning. 

Experiment 1 

Methods 
Participants Twenty-five Carnegie Mellon University 
students (18-27 yrs) participated in the study. They received 
course credit or pay. All reported normal hearing and 
English as the language used at home since age two. 

 

Stimuli The stimuli were based on those of Liu and Holt 
(2015). The stimulus space was defined across a SQ 
(spectral quality) and a DU (duration) dimension with 7 
steps along each dimension creating 49 unique stimuli in a 
two-dimensional acoustic space. This acoustic space served 
as the basis for two stimulus sets: Clear and Noise-vocoded.  
    Clear speech tokens were created from natural 
productions of set and sat by a female native-English 
speaker. SQ was manipulated across the steady-state 
portions of the vowels, spliced from their respective words. 
The first four formant trajectories were extracted in Praat 
(Boersma, 2001), and interpolated in equal steps between /ɛ/ 
and /æ/, then resynthesized to create a 7-step spectral series. 
Vowel steady-state duration varied from 175 milliseconds to 
475 milliseconds. Each of these vowels was then 
concatenated with the same /s/ and /t/ segments to create the 
49-stimulus grid varying from set to sat. 
    The noise-vocoded stimulus set was generated from these 
clear speech tokens, in a manner described previously 
(Hervais-Adelman et al., 2008; Shannon et al., 1995) using 
Praat. The frequency spectrum was divided into four 
logarithmically-spaced analysis bands between 50 and 5500 
Hz and clear speech tokens were filtered by these analysis 
bands. The resulting envelops were applied to band-pass-
filtered noise in the same frequency ranges, thereby 
reducing spectral resolution while preserving duration. 
 

1188



Procedure Seated in front of a computer monitor in a 
sound-attenuated booth, participants heard speech tokens 
diotically over headphones and responded whether the 
stimulus was set (Z key) or sat (M key) on a standard 
keyboard. There was a 1-second pause separating trials and 
no feedback. Visual prompts “SET” and “SAT” aligned 
with the relative position of the response keys. 
    All participants first categorized each of the 49 Noise-
vocoded speech tokens 8 times. These trials were separated 
into four 98-trial blocks, between which participants took 
brief self-timed breaks. Immediately thereafter, they 
completed the same procedure for the clear stimuli. The 
order of noise-vocoded speech and clear speech blocks was 
not counterbalanced because exposure to clear speech can 
influence perception of noise-vocoded speech (Hervais-
Adelman et al., 2008).  

 

Results and Discussion 
Figure 1a shows average percent sat responses, illustrating 
that listeners use both SQ and DU and that the weighting of 
each varies across clear and noise-vocoded speech. To 
quantify these data, dimension weights were calculated as 
the beta-coefficients in a regression model including SQ and 
DU as predictors of category responses for each participant 
(as in Liu & Holt, 2015). Coefficients were normalized to 
sum to one. Figure 1b plots these relative dimension 
weights, averaged across participants. These results 
replicate confirm American English participants rely more 
on SQ (M=.85) than DU (M=.15) in categorizing set and sat 
in clear speech (Liu & Holt, 2015). Crucially, noise 
vocoding shifted reliance away from SQ (M=.35) and 
toward DU (M=.65) in vowel categorization, F(1, 24) = 
56.16, p< 0.001. 

In summary, Experiment 1 establishes that manipulating 
signal quality through noise vocoding shifts the relative 
informativeness of SQ and DU in vowel categorization. In 
noise-vocoded speech, DU is the biggest contributor. 
Notably, the shift in perceptual dimension weighting in 
categorizing clear versus noise-vocoded speech was evident 
within-participants. In line with the proposal advanced by 
Holt and Lotto (2006), the perceptual weighting of the 
acoustic dimensions appears to have varied as a function of 
the dimensions’ relative resolution in the auditory input. The 
fact that listeners quickly switched between these listening 

contexts in the course of the experiment is, itself, a form of 
rapid adaptive tuning of how input maps to speech 
categories. We return to this point in the General 
Discussion. 
    These results set the stage for Experiment 2. As described 
above, we expect dimension-based statistical learning of 
vowels will be qualitatively different across clear and noise-
vocoded speech. Whereas in clear speech SQ is dominant 
and drives category activation, Experiment 1 indicates that 
DU will play a larger role in noise-vocoded speech 
categorization. As such, we predict down-weighting of the 
DU dimension for clear speech and down-weighting of SQ 
for noise-vocoded speech. 
 

Experiment 2 

Methods 
Participants Twenty-five Carnegie Mellon University 
students (18-21 yrs) participated in the study. They received 
course credit or pay. All reported normal hearing and 
English as the language used at home since age two. 

 

Stimuli and Procedure The stimuli were sampled from the 
Experiment 1 stimuli. In a Canonical block, listeners heard 
18 exposure stimuli (filled squares, Figure 2) and 4 test 
stimuli (filled diamonds, triangles, Figure 2) 8 times each in 
a random order. In this block, the sampling of exposure 
stimuli reflected long-term English norms: long DU was 
associated with /æ/-like SQ and short DU was associated 
with /ɛ/-like SQ. Two of the four test stimuli were 
distinguished by SQ (diamonds), with perceptually 
ambiguous DU; the other two test stimuli (triangles) varied 
in DU with SQ ambiguous. Exposure and test stimuli were 
intermixed within a block. Test stimuli measured perceptual 
reliance on SQ or DU. 

 
Figure 2. Experiment 2 stimulus distributions for Canonical 
and Reverse blocks. 
 

    The second block of the experiment involved introduction 
of an artificial ‘accent’ that reversed the SQxDU correlation 
typical of English. In this Reverse block, long DU was 
associated with /ɛ/-like SQ and short DU was associated 
with /æ/-like SQ. The test stimuli were identical to those of 
the Canonical block. Participants were not informed of any 
difference between blocks and simply responded whether 
they had heard set or sat.    
    The Canonical-Reverse block order was repeated for both 
noise-vocoded and clear speech, with the noise-vocoded 
condition preceding the clear condition. Overall, 

Figure 1. (A) Heat maps for vowel categorization across 
clear and noise-vocoded stimuli. (B) Average normalized 
perceptual weights across clear and noise-vocoded stimuli; 
error bars indicate standard error. 
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participants experienced 4 blocks separated by self-time 
breaks. Participants were seated in the same room with the 
same equipment as in Experiment 1 and were given the 
same instructions, except that they were informed of the 
distinction between the clear sounds and ‘degraded’ sounds 
that might be very hard to identify. 

The relative perceptual weighting differences across clear 
and noise-vocoded speech observed in Experiment 1 led us 
to expect different patterns of exposure-stimulus 
categorization for clear and noise-vocoded stimuli. As 
shown in Figure 3, reliance on SQ as a dominant dimension 
in clear speech leads to a different pattern of categorization 
in the Reverse block than for noise-vocoded speech 
categorization reliant upon DU. We predict that this 
difference across conditions will lead to different patterns of 
dimension-based statistical learning. 

 
Figure 3. Expected category activation via exposure 
stimuli, as a function of the perceptual weights observed 
in Experiment 1. 
 
Results and Discussion 
 

Results are plotted in Figure 4. 
 

Clear Speech We first consider listeners’ reliance on the 
dominant SQ dimension in clear speech (diamonds, Figure 
2). There was a significant main effect of SQ, F(1, 24) = 
1419, p < 0.0001, but no interaction between Block and SQ, 
F(1, 24) = 0.561, p = 0.461. Replicating prior research, we 
observed dimension-based statistical learning across the DU 
dimension (triangles, Figure 2) as an interaction between 
Block and DU, F(1, 24) = 56.69, p < 0.001, with a main 
effect of DU, F(1, 24) = 55.04, p < 0.0001. These results 
suggest that as SQ continued to unambiguously signal 
category activation, listeners down-weighted DU upon 
introduction of the ‘accent’ in the Reverse block. The 
pattern of results is the same with analyses utilizing 
generalized linear mixed-effects models as a function of DU 
test stimuli, block, and participant as a random effect, with 
the response set coded as 0 and, sat coded as 1 (DUxBlock 
interaction, β = -2.89, SE = 0.34, p < 0.0001. To further 
investigate this interaction, we constructed models 
separately for each block examining the effects of different 

test stimuli on listeners’ response. In the Canonical block, 
listeners differentially categorized DU test stimuli, β = 3.19, 
SE = 0.33, p < 0.0001. They did not in the Reverse block, β 

= -0.16, SE = 0.21, p = 0.46. 
 

Noise-Vocoded Speech As predicted, and contrary to the 
pattern of results for Clear Speech, we observed evidence of 
dimension-based statistical learning across the SQ 
dimension (triangles, Figure 2) for noise-vocoded speech. 
There was a significant interaction between Block and SQ, 
F(1, 24) = 5.263, p = 0.031 and also an overall main effect 
for SQ, F(1, 24) = 4.377, p = 0.0472. This suggests that in 
the context of noise-vocoded speech DU may have been 
sufficient enough to drive category activation. 
Unexpectedly, there was also evidence of dimension-based 
statistical learning across DU (Block x DU interaction, F(1, 
24) = 8.289, p = 0.01), with a main effect of DU (F(1, 24) = 
89.58, p < 0.001) as well. It is possible that this pattern of 
results emerges due to relatively more equal perceptual 
weightings in the noise-vocoded speech condition, or due to 
individual differences among participant who adopt 
different weighting schemes.  
    This general pattern of results emerges, as well, with 
generalized linear mixed-effects modeling. There was a 
marginally significant interaction between Block and SQ (β 
= -0.60, SE = 0.33, p = 0.066). Further investigation into the 
interaction showed that listeners differentiated the SQ test 
stimuli in the Canonical block, β = -0.77, SE = 0.23, p < 
0.001, but not in the Reverse block β = -0.17, SE = 0.24, p = 
0.471. There was a significant interaction between Block 
and DU, β = -1.11, SE = 0.34, p = 0.001, with significant 
effects in both the Canonical, β = 2.66, SE = 0.27, p < 
0.0001, and Reverse, β = 1.63, SE = 0.23, p < 0.001, blocks.    
Interestingly, weighting of DU was also modulated in the 
paradigm even though it was the primary dimension. We 
return to this point in the General Discussion. 
    Overall, the results clearly indicate a difference in how 
dimension-based statistical learning plays out across clear 
and noise-vocoded speech. For each, there was a clear 
pattern of dimension down-weighting on the secondary 

Figure 4. Results of Experiment 2, percent sat responses as 
a function of block and acoustic dimension. 
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perceptual dimension (DU for clear speech, SQ for noise-
vocoded speech). Additionally, and unexpectedly, we 
observed evidence of down-weighting of the primary 
dimension (DU) in the noise-vocoded speech.  

General Discussion 
By adulthood, the underlying representations for speech 
categorization reflect the long-term experience in one’s 
native language. But to meet the challenge of acoustic 
variability in everyday situations, categorization remains 
flexible such that listeners can adapt to short-term 
regularities that depart from long-term norms. A critical 
challenge is understanding how the system flexibly adapts 
while maintaining long-term representations. There is 
mounting evidence that listeners use a variety of 
information sources to adaptively tune speech categorization 
(e.g., Norris et al. 2003; Bertelson, Vroomen & de Gelder, 
2003; Idemaru & Holt, 2011).  
    Error-driven supervised learning has been explored as a 
potential contributor to the adaptive tuning (Guediche, et al., 
2014; Norris, McQueen & Cutler, 2013; Vroomen, 2007). 
Under this framework, the mismatch between the expected 
and actual acoustic output could generate an error message 
that ‘supervises’ adaptive tuning of the mapping of speech 
to long-term representations. Idemaru & Holt (2011) 
hypothesized that speech categories activated by the primary 
acoustic dimension could generate expectations about the 
typical mapping of secondary dimensions. When these 
expectations are violated, it may generate an error signal 
that can be used to guide speech tuning via supervised 
learning.  
    The current study replicates previous findings on 
dimension-based statistical learning of vowels (Liu & Holt, 
2015) thereby lending evidence that speech categorization is 
tuned via short-term regularities across acoustic dimensions 
experienced in the input (Idemaru & Holt, 2011). 
Additionally, the results are broadly consistent with an 
error-driven supervised learning account.   
    Experiment 1 confirmed Liu and Holt’s (2015) prior 
results demonstrating that English listeners’ primarily rely 
upon spectral quality in categorizing set versus sat in clear 
speech. Experiment 1 also makes the novel contribution that 
perceptual weights among the same listeners rapidly shift in 
the context of noise-vocoded speech. This aligns with Holt 
and Lotto’s (2006) prediction that altering the acoustic 
signal can affect listeners’ perceptual weighting. In the 
current study, using noise-vocoding reduced the spectral 
fine details of the vowels yet left DU intact. Under this 
manipulation, perceptual weights shifted from primary 
reliance on SQ to DU, which became the most informative 
dimension in vowel categorization in noise-vocoded speech. 
Note that this, in and of itself, constitutes a kind of rapid 
adaptive plasticity in how speech input maps to speech 
categories. It is notable that the same participants, in the 
same experimental session, rapidly shifted in the manner of 
mapping from acoustic input to speech categories as a 
function of signal quality (clear, noise-vocoded). 

Experiment 2 demonstrates that this shift in dimensions’ 
perceptual weights has a significant impact on dimension-
based statistical learning. In the context of clear speech for 
which SQ is more effective at signaling category 
membership, listeners down-weighted reliance on the less-
effective, secondary, dimension in response to the reversed 
dimension correlation in the ‘accent.’ Reliance on SQ 
remained stable, even upon introduction of the accent.  

Most important to the goals of the present study, the same 
listeners showed a very different pattern of dimension-based 
statistical learning in the context of noise-vocoded speech 
for which DU is more effective at signaling vowel category. 
In this context, participants down-weighted reliance on SQ, 
the secondary dimension that was unaffected in the context 
of experiencing the artificial accent in clear speech. 
Curiously, there was also evidence of down-weighting for 
DU, the dominant dimension for noise-vocoded speech. In 
this regard, it may be important that SQ and DU were 
relatively more balanced in their contributions to noise-
vocoded, compared to clear speech, vowel categorization. 
Although DU carried greater perceptual weight, its 
dominance over SQ was less (mean difference relative 
weight, 0.3) than the dominance of SQ over DU observed 
for clear speech (mean difference, 0.7). This brings up the 
possibility that dimension-based statistical learning may 
track with the reliability of category activation, or graded 
category activation according to a particular acoustic 
dimension. Relatedly, the smaller relative advantage for the 
dominant dimension in noise-vocoded speech may have led 
listeners to show less ‘allegiance’ to a particular dimension, 
perhaps switching over the course of the experiment. If 
participants (as individuals or as a group) use a mixed 
strategy of primary reliance on DU and SQ in vowel 
categorization, then re-weighting may be observed across 
both dimensions. Future studies could investigate this issue 
by examining a large cohort of listeners’ relationship of 
baseline cue weights with the magnitude of down-weighting 
for each dimension. 

In all, these studies provide preliminary support for the 
prediction that category activation via a dominant dimension 
can drive dimension-based statistical learning across 
acoustic dimensions. In this way, they are consistent with an 
error-driven supervised learning account. Other levels of 
analysis including computational-level Bayesian 
explanation may be able to account for these data (e.g., 
Kleinschmidt & Jaeger, 2015). However, a complication of 
any computational-level account is that it may be 
implemented mechanistically by multiple means. Here, we 
find preliminary support for a specific and neutrally-
plausible mechanistic instantiation of dimension-based 
statistical learning in speech categorization. An appealing 
aspect of this account is that it potentially unites adaptive 
tuning of speech perception driven by lexical, visual, and 
acoustic information (Norris et al., 2003; Bertelson et al., 
2003; Holt & Idemaru, 2011). 
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