
UC Riverside
UCR Honors Capstones 2019-2020

Title
Multimodal MRI Study Using Convolutional Neural Networks for Schizophrenia Classification

Permalink
https://escholarship.org/uc/item/8dm3r21x

Author
Mitchell, Brendan

Publication Date
2021-01-11

Data Availability
The data associated with this publication are within the manuscript.

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8dm3r21x
https://escholarship.org
http://www.cdlib.org/


By 

A capstone project submitted for  
Graduation with University Honors 

University Honors 
University of California, Riverside 

APPROVED  

_______________________________________________ 
Dr.  
Department of  

_______________________________________________ 
Dr. Richard Cardullo, Howard H Hays Jr. Chair, University Honors  



Abstract 



1 
 

INTRODUCTION 

 Schizophrenia (SZ) is a multifaceted, enigmatic disorder of altered brain connectivity that 

affects about one percent of the population and is characterized by cognitive, perceptual, and 

affective deficits.i Such symptoms include hallucinations, delusions, disorganized thought, or 

reduced emotions; however, symptoms and psychopathological course vary from patient to 

patient and often overlaps with other mental disorders such as bipolar disorder (see Fig. 1) and 

attention-deficit hyperactivity disorder (ADHD). ii,iii,iv,v  

 

 

 

 

 

 

For these reasons, the current method of classifying schizophrenia, which is mainly based on 

process of elimination via clinical assessment and the patient’s self-reported experiences, can 

result in significant misdiagnosis and overdiagnosis of schizophrenia. To further elucidate this 

point, a recent Johns Hopkins study revisited the diagnoses of 43 patients for schizophrenia 

spectrum disorder by a specialty early psychosis consultation clinic and concluded that 40 (93%) 

of them were misdiagnosed: 22 (51%) had a different primary psychotic disorder and 18 (42%) 

had no psychotic disorder at all.vi Thus, it is apparent there is a need for a more reliable, 

objective diagnostic tool. 

Fig. 1. Overlapping symptoms of bipolar disorder and schizophrenia. The 
Venn diagram shows the great degree of similarity in symptoms between the 
two neurological disorders (adapted from Keck PE Jr. et al.).  
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Considerable effort has been made in this regard: advanced neuroimaging techniques 

such as magnetic resonance imaging (MRI), in particular, can provide powerful imaging 

information to help better clarify the structural and functional abnormalities associated with 

schizophrenia. MRI is a non-invasive, sensitive imaging modality that can measure both 

structure and function. Structural MRI (sMRI) scans can capture information about brain 

anatomy and morphology of white matter, gray matter, and cerebrospinal fluid. For example, 

McDonald et al. found reduced cortical volume and enlarged lateral ventricles in patients relative 

to controls (see Fig. 2).vii 

 

 

 

 

 

 

Functional MRI (fMRI) scans measure the hemodynamic response via the blood oxygenation 

level dependent (BOLD) signal as an indirect measure of neural activity, capturing information 

about brain function and connectivity. For example, Whitfield-Gabrieli et al. and Garrity et al. 

found abnormal functional connectivity in the default mode network in patients relative to 

controls, in resting-state and task-based fMRI respectively.viii,ix   

Despite MRI being capable of capturing multimodal information, existing studies are 

often focused on single-mode study, which only detects single dimensional information by each 

Fig. 2. T1-weighted MRI scans of schizophrenia patients and neurotypical 
control subjects. Right, schizophrenia (SZ) patient showing enlarged lateral 
ventricles and reduced cortex volume. Left, control subject for structural 
comparison (adapted from McDonald et al.). 
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modality, providing biomarkers that may either be distinct from or shared by other modalities, 

thereby missing potentially crucial differences between subject groups. Due in part by single-

mode study and schizophrenia heterogeneity, the quantitative alterations between patients and 

control groups from these studies are often inconsistent and have not yet provided a diagnostic 

measure that is both sensitive and specific.x,xi,xii,xiii,xiv Consideration of multimodal data may 

unify disparate findings and provide a more comprehensive illustration of altered brain 

connectivity in schizophrenia – taking advantage of the strengths of each modality and their 

complementary relationships.  

Several studies have shown success using multimodal data for schizophrenia 

classification. For example, Guo et al. found that three-way classification of schizophrenia from 

features extracted from fMRI, sMRI, and diffusion tensor imaging (DTI) data performed better 

than one or two modality classification with an accuracy of 86.52%.xv Similarly, Zhuang et al. 

showed that combining features from resting-state fMRI, sMRI, and DTI achieved the best 

performance for schizophrenia classification with an accuracy of 84.29%.xvi And Cetin et al. 

showed that the integration of features extracted from fMRI and magnetoencephalography 

(MEG) data improved schizophrenia classification accuracy over single-mode study.xvii As in 

these three studies, simple machine learning classifiers, like a support-vector machine (SVM), 

are typically used for multimodal classification tasks.  

More recently, however, more complex, deep machine learning methods have been 

gaining a good reputation for extracting informative features from imaging data.xviii Among the 

various deep learning methods, a convolutional neural network (CNN) is a hierarchical model 

that outperforms many other algorithms on image classification tasks.xix Comprised of 

alternating convolutional and pooling layers (see below, Deep Machine Learning with CNNs), 
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CNNs can extract hierarchical features and learn complex patterns from the imaging data for 

improved classification. For example, Liu et al. utilized cascaded CNNs for multimodal 

classification of Alzheimer’s disease (AD) and achieved an accuracy of 93.26% with MRI and 

positron emission tomography (PET) data.xx Although not a schizophrenia classification study, 

their success with AD demonstrates the promise of CNNs for multimodal classification.     

Motivated by the success of the aforementioned studies and the present dominance of 

CNNs in various computer imaging tasks, my Honors Capstone project is focused on improving 

the current, subjective method of diagnosing schizophrenia by employing an objective deep 

learning-based multimodal schizophrenia classification method by CNNs applied to T1-weighted 

structural MRI and resting-state functional MRI scans. Here, I hypothesize that multimodal 

classification will perform better than single-modality classification. 

MATERIALS AND METHODS 

Data Sets 

 All data sets used in this work were obtained from the UCLA Consortium for 

Neuropsychiatric Phenomics LA5c Study (CNP), which are publicly available in the website 

(www.openneuro.org/datasets/ds000030). The primary goal of CNP was to better understand the 

functional and anatomical changes associated with neuropsychiatric disorders by considering 

neuroimaging data, phenotypic information, and clinical and behavioral assessments. The 

participant population consists of 130 control subjects and individuals diagnosed (following 

DSM-IV) with schizophrenia (50 subjects), attention deficit/hyperactivity disorder (43 subjects), 

and bipolar disorder (49 subjects), containing 155 men and 117 women ages between 21 and 50 

years. More information regarding the participants and the study can be found in the Poldrack et 
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al. paper.xxi Participants of this study gave written informed consent and the procedures were 

approved by the Institutional Review Boards at UCLA and the Los Angeles County Department 

of Mental Health.  

 In this work, T1-weighted sMRI and resting-state fMRI data acquired from a 3T Siemens 

Trio scanner was used. The T1-weighted high-resolution anatomical scans (MPRAGE) were 

collected with the following parameters: TR=1.9s, TE=2.26ms, FOV=250mm, matrix=256x256, 

sagittal plane, slice thickness=1mm, and 176 slices. The resting-state fMRI scans lasted 304s and 

the participants were asked to remain relaxed and keep their eyes open—they were not presented 

any stimuli or asked to respond during the scan—and the scans were collected using a T2*-

weighted echoplanar imaging (EPI) sequence with the following parameters: TR=2s, TE=30ms, 

FOV=192mm, matrix=64x64, oblique slice orientation, slice thickness=4mm, 34 slices, and flip 

angle=90°. These neuroimaging data were then preprocessed according to the pipeline outlined 

in the Gorgolewski et al. paper.xxii From these preprocessed images, the T1-weighted sMRI and 

resting-state fMRI images of 50 control subjects and 50 schizophrenia patients were downloaded 

for the purpose of this project.  

 These images were then further preprocessed in Python with NumPy, NiBabel, scikit-

learn, and Nilearn packages to prepare the input for schizophrenia classification via CNNs. T1-

weighted structural images are 3D brain volumes comprised of 2D brain slices, having spatial 

dimensions x, y, and z. Preprocessing steps for T1-weighted sMRI data included: accessing the 

image as a NumPy array (shape:182, 218, 182), performing column-wise standardization, 

assigning class label (0 for control group, 1 for schizophrenia group), concatenating the control 

and patient data (shape:100, 182, 218, 182; where 100 refers to the total number of subjects), and 

stacking, column-wise, the labels from both classes (shape: 100,). Functional MR images, like 
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structural images, have three spatial dimensions x, y, and z, but the 3D volume is acquired over a 

period of time; time is the fourth dimension. Preprocessing steps for the 4D resting-state fMRI 

data included: extracting a brain mask for each image, applying the mask to extract the 

corresponding time series (see Fig. 3), performing column-wise standardization, reshaping the 

2D data arrays to have same shape (152, 74362), assigning class label, concatenating the control 

and patient data (shape:100, 152, 74362), and stacking the labels (shape:100,). After the 

additional preprocessing, the combined data and label arrays for both modalities were randomly 

split into training (n=64), validation (n=16), and testing (n=20) sets for classification. 

   

 

 

 

 

 

Deep Machine Learning with CNNs 

Several of the aforementioned studies relied on regions of interests (ROIs) and/or 

extraction of handcrafted features that are determined by prior hypotheses, which may neglect 

the brain-wide changes associated with schizophrenia, thereby limiting the representation power 

of extracted features. Distinct from these methods, deep CNNs can learn hierarchical features 

and patterns from the voxel intensities of the whole-brain images for classification. CNNs are 

Fig. 3. Transforming 4D fMRI images to 2D data 
arrays. Applying a brain mask will convert the 4D data 
into a restructured 2D data representation, time x voxels 
(adapted from Nilearn documentation).  



7 
 

typically built by stacking alternatively convolutional and pooling layers, a fully connected layer, 

and a softmax classification layer. Here, the first convolutional layer of a CNN extracts basic, 

low-level features from the images, the second convolutional layer accepts the features extracted 

by the first as its inputs to learn more complex features, etc.  

A convolutional layer works by convolving the input image with the learned kernel 

filters, adding a bias term, applying a non-linear activation function, and producing a feature map 

by each filter. Typically, the number of filters in convolutional layers starts low and increases 

with each layer. After each convolutional layer, there is usually a pooling layer. In this work, 

max pooling is used. It works by reducing the feature map along the spatial dimensions by 

replacing each element with their maximum—ideally, keeping the most influential features. 

After stacking several convolutional and max pooling layers, the high-level reasoning in the deep 

CNN is achieved through the fully connected layers. All feature maps are flattened into a 1D 

vector as the inputs of the fully connected layer. The fully connected layer generates the learned 

linear combination of all neurons from the previous layer and passes them through a nonlinear 

activation function. Lastly, a softmax classification layer is fine-tuned by backpropagation to 

predict class probability (ranging from 0 to 1).  

Model Architecture and Implementation 

 For this work, 2D CNNs are used for the 3D structural MR images and 1D CNNs are 

used for the 2D resting-state images. The CNN architecture is comprised of repeated blocks of 

(convolution, convolution, max pooling, dropout), depicted in Fig. 4. Each CNN consists of 4 

blocks, followed by a fully connected layer and a softmax layer. Before each convolution, the 

inputs are padded such that the dimensions of the outputs are equal to that of the inputs. Inspired 

by the success of Sturmfels et al.,xxiii a reverse filter scheme was employed in which the first 
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convolutional layer has the most filters with the purpose of focusing on feature extraction earlier 

in the network. The number of convolution filters were set to 64, 32, 16, 8 for the 4 blocks, 

respectively. For the structural-based 2D CNN, the sizes of convolutional filters were set to 3 × 3 

and max pooling sizes of 2 × 2. And for the functional-based 1D CNN, the sizes of filters were 

set to 3 and max pooling sizes of 2. These layers use the ReLu activation function.xxiv In addition, 

dropout layers are utilized to limit overfitting and improve generalization.     

  

The classification algorithm in this work was implemented with the Keras library in 

Python with TensorFlow backend and experiments were conducted on the Hu Lab Cluster. Since 

the structural and functional images have different dimensions, two CNN models were trained 

separately on their respective training sets to learn features. The outputs from each CNN were 

flattened to 1D vectors and passed through separate fully connected and softmax layers for 

single-mode classification. For multimodal classification, however, the flattened outputs from 

each CNN were concatenated to form a fully connected layer that contains information from both 

modalities, and then passed through a softmax layer (see Fig. 5).  

 

Fig. 4. Convolutional block for CNN architecture. The CNN architecture consists of 4 repeated 
blocks, the layers within a block have the same number of filters and same sizes.   
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Here, the two models train on the labeled images from the control group and patient 

group to learn discriminative features. The validation set was also used during model training to 

evaluate the models. The model architectures and parameters were then modified according to 

the results on the validation set to maximize validation performance (see Fig. 6). After 

determining the best performing model, the model makes predictions on novel, unlabeled 

images. For all experiments, the models are trained ten times using the Adam optimizerxxv and 

sparse categorical cross entropy function (due to label format) for loss computations with  

different random initializations (via Xavier initialization)xxvi over 100 epochs – i.e., the training 

set passes through the models 100 times. For each run, the model weights that achieved the best 

performance on the validation set during training were saved. The best weights were then used 

Fig. 5. Simplified multimodal CNN architecture.  
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when evaluating the model performance on the novel test set. All reported performance metrics 

pertain to the test set unless otherwise specified.  

There are several metrics that can be used to evaluate classification performance. In this 

work, the following metrics were used for comparison: accuracy (ACC), log-loss, precision, 

sensitivity (SEN), specificity (SPE), and area under the curve (AUC) score. Accuracy 

corresponds to the percentage of total images correctly classified. Log-loss measures the 

uncertainty of the prediction and its variation from correct label. Precision measures the number 

of images that are correctly classified as positive (belonging to schizophrenia group) out of the 

total number of positive images. Sensitivity, also referred to as recall, or the true positive rate 

(TPR), measures the number of images correctly classified as positive out of the number of true 

positive (correctly predicts schizophrenia) and false negative images (incorrectly predicts 

control). Specificity, also referred to as the true negative rate (TNR), measures the number of 

images correctly identified as negative (belonging to control group) out of the total number of 

negative images. The AUC score for the receiver operating characteristic (ROC) curve, a plot of 

Fig. 6. Full, deep multimodal CNN model with 4 convolutional blocks. Architecture determined after comparing the performances of 
different configurations.  
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TPR vs FPR, for example, indicates how well the probabilities of positive classes are separated 

from the negative classes. In general, the values of these metrics range from 0 to 1 (or scaled to 0 

to 100%), where values close to 1 represent good performance; the opposite is true when 

referring to loss. It should also be noted that diagnostic tests typically exhibit trade-offs between 

metrics like specificity and sensitivity.   

EXPERIMENTAL RESULTS 

Structural, Functional, and Multimodal Classification results 

The following experiments were performed on the hold-out testing set of 20 subjects to 

compare the classification performances of T1-weighted structural MRI, resting-state functional 

MRI, and multimodal-based models for discriminating schizophrenia (SZ) patients from the 

normal control subjects (NC). The ROC curves were used to visualize the trade-offs between 

specificity and sensitivity of the models by plotting the false positive rate (1–specificity) against 

the true positive rate or sensitivity (see Fig. 7), and to compute the AUC score (see Table 1). In 

addition to plotting the performances from the three MRI-based models, a “no skill” model 

(AUC score of 50%) that makes random predictions or only predicts one class (e.g., only 

predicting schizophrenia) was included for visual comparison. From the graph, all three MRI-

based models performed better than the no skill model (red line), suggesting that these models 

can discriminate between images from each class unlike the no skill model. It is also clear from 

the graph that the multimodal-based classification model (green curve) performs the best and 

most consistently. 
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Table 1 shows the quantitative results of the classification performances for the models. 

From the results shown in the table, structural-based classification achieves the highest test 

accuracy of 75% and highest sensitivity, but at the cost of low specificity. In other words, the 

structural model is great at detecting actual cases of schizophrenia but also has a high rate of 

false positives. Functional-based classification achieves the lowest test accuracy of 55% and 

lowest sensitivity but has the highest specificity. Both the structural and functional-based models 

have reciprocal strengths, sacrificing specificity for better sensitivity, or vice-versa. Multimodal-

based classification achieves a high test accuracy of 70% without the sensitivity-specificity 

trade-off seen with the structural and functional-based models. Furthermore, the multimodal-

based classification achieves the highest AUC score of 80.21% and the lowest loss. Thus, it is 

Fig. 7. ROC curves of structural, functional, and multimodal classifications of SZ 
vs. NC. Red dashed line, performance of “no skill” model that cannot discriminate 
between classes. Blue curve, structural-based model performance. Orange curve, 
functional-based model performance. Green curve, multimodal-based model 
performance. All three MRI models perform better than the no skill model with 
multimodal being the most consistent.  
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clear from these results that multimodal classification performs better than each individual 

modality.    

In addition to graphing ROC curves to compare model performances, Precision-Recall 

(P-R) curves were used to visualize how well the models predict the positive class, schizophrenia 

(see Fig. 8) and to compute AUC scores (see Table 2). As was done for the ROC curve, the no 

skill model was included in the P-R curve for comparison. From the graph, all three MRI-based 

models performed better than the no skill model (red line) and the functional (orange curve) and 

multimodal-based (green curve) models performed better than the structural-based model, with 

multimodal being the most consistent. These observations are confirmed by the calculated AUC 

scores in which the multimodal-based model had the highest AUC score of 86.19% and the 

structural-based model had the lowest score of 62.26%, as in Table 2.  

 

 

 

 
Fig. 8. Precision-recall curves of structural, functional, and multimodal 
classifications of SZ vs. NC. Red dashed line, performance of no skill model. 
Blue curve, structural-based model performance. Orange, functional-based model 
performance. Green, multimodal-based performance. All three MRI-based models 
perform better than the no skill model with multimodal being the most consistent. 
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DISCUSSION 

For my Honors Capstone project, I employed deep CNNs based on multimodal MRI 

scans to classify, or diagnose, schizophrenia. Although my preliminary findings demonstrate that 

multimodal classification performs better and more consistently than single-mode study, there 

are several limitations to my work that should be considered. First, my CNNs were trained on a 

dataset of images from 100 total subjects, which is exceedingly small for a CNN-based 

classification task; typically, CNNs are trained on thousands of images for better representation. 

For this reason, my models were unstable and showed signs of overfitting. Second, using whole-

brain images as the input requires training a large number of parameters and is susceptible to 

noise, increasing computation time and may cause overfitting. Third, the architecture and 

parameters of the CNN model, such as number of layers, types of layers, and size and number of 

filters, may not be optimal for these MR images. Fourth, 2D CNNs were used for 3D sMRI data 

and 1D CNNs for 2D fMRI data, potentially losing rich spatial and temporal information. Fifth, 

only T1-weighted sMRI and resting-state fMRI were used in this work; other modalities such as 

DTI may be included to further improve classification performance. Sixth, randomized splitting 

of data into training, validation, and testing sets resulted in class imbalances (e.g., training set 

had 28 images belonging to schizophrenia group and 36 belonging to control group). Seventh, it 

is difficult to visualize the potentially clinically relevant features that were learned by the CNNs.  

However, there are some suggestions to address these limitations to improve 

classification performance. Since the dataset used in this study was small for effective CNN 

training, it may be beneficial to incorporate other similar datasets to increase sample size and 

augment (e.g. shift and down-sample) the training data to generate additional images. Rather 

than directly using whole-brain images as the input, the images can be divided into smaller, 



15 
 

equal-sized chunks to reduce computation costs which may allow for CNNs to extract more 

relevant features. Several architecture and parameter configurations can be compared to 

determine the best performing model setup. And, instead of using 2D and 1D CNNs, 3D and 2D 

CNNs should be employed to better capture information from the structural and functional 

images, respectively. Other neuroimaging modalities that have been used to characterize 

schizophrenia abnormalities, such as DTI, should also be considered to provide another clinically 

relevant perspective of the brain. Additionally, it would be especially interesting to incorporate 

data from other patient groups such as bipolar disorder and ADHD since they share features with 

schizophrenia. Finally, instead of randomly splitting the whole dataset into training, validation, 

and testing sets, cross-validation techniques can be used to preserve class balance.   

CONCLUSION 

 Today, the collection of multimodal brain images from each subject is becoming 

common practice, paving the way for improved computer vision tasks and medical image 

analyses based on large multimodal datasets. In this paper, a multimodal classification algorithm 

based on deep CNNs is used to predict schizophrenia from structural and functional MRI images. 

The experimental preliminary results demonstrate that multimodal classification achieves better 

performance over each individual modality, having both higher specificity and sensitivity, the 

highest AUC scores, and the lowest log-loss. Thus, the results support the main hypothesis 

driving my project; that is, that multimodal classification does perform better than single-mode 

study. However, as noted above, future work can address the limitations of this project to 

improve schizophrenia classification performance. Additionally, it should be noted, that although 

CNN training and inference is 100% algorithmic, the data used to train the model was labeled by 

humans which can be subjective and prone to bias.  
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