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DISSIPATIVE LENGTH SCALE ESTIMATES FOR TURBULENT

FLOWS - A WIENER ALGEBRA APPROACH

A. BISWAS1, M. S. JOLLY2, V. MARTINEZ3, AND E. S. TITI4

Abstract. In this paper, a lower bound estimate on the uniform radius of
spatial analyticity is established for solutions to the incompressible, forced
Navier-Stokes system on an n-torus. This estimate improves or matches pre-
viously known estimates provided that certain bounds on the initial data are
satisfied. It is argued that for 2D or 3D turbulent flows, the initial data is
guaranteed to satisfy these hypothesized bounds on a significant portion of
the 2D global attractor or the 3D weak attractor. In these scenarios, the esti-
mate obtained for 3D generalizes and improves upon that of [9], while in 2D,
the estimate matches the best known one found in [26]. A key feature in the
approach taken here, is the choice of the Wiener algebra as the phase space,
i.e. the Banach algebra of functions with absolutely convergent Fourier series,
whose structure is suitable for the use of the so-called Gevrey norms.

1. Introduction

The conventional theory of turbulence posits the existence of certain universal
length scales of paramount importance. For instance, according to Kolmogorov,
there exists a dissipation length scale, λd, beyond which the viscous effects dom-
inate the nonlinear coupling. This length scale can be characterized by the ex-
ponential decay of the energy density. Consequently, one expects the dissipation
wave-number, κd = λ−1

d , to majorize the inertial range where energy consumption
is largely governed by the nonlinear effects and dissipation can be ignored.

In [13, 9] it is shown that as characterized by Gevrey norms, the (uniform) radius
of spatial analyticity, here denoted λa, provides a lower bound for the dissipation
length scale, i.e., λa ≤ λd. The space analyticity radius has been well-studied over
the years, especially after the pioneering work of Foias and Temam in [15], where
they presented a novel Gevrey norm approach to establish analyticity of solutions
to NSE in both space and time. An advantage of this approach is that it avoids
having to make cumbersome recursive estimates on derivatives. Consequently, it has
become a standard tool in estimating the analyticity radius for various equations
(cf. [12, 33, 32, 29, 3, 2, 27, 28]).

Kolmogorov’s theory for 3D turbulence asserts that

λd ∼ λε := (ν3/ε)1/4 ,(1.1)

where ν is viscosity and ε is the mean energy dissipation rate per unit mass.
For 3D decaying turbulence, it is shown in [9] that

λa ∼ κ−1
0 (κ0λ̃ε)

4 ,(1.2)
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where λ̃ε is as in (1.1), except that the energy dissipation rate is a supremum in
time rather than an averaged quantity (see (3.11), (3.14)). The more significant
discrepancy is a power of 4 versus a power of 1 in (1.1). Our improvement is
done under the 2/3-power law assumption (3.16) on the energy spectrum for a
forced, turbulent flow, by means of an ensemble average with respect to an invariant
measure. It is valid on a portion of the attractor (weak in the 3D case); the
significance of which is quantified in terms of this measure. Ultimately, we conclude
that

λa &p κ−1
0 (κ0λε)

59/24(1.3)

holds with probability 1−p, where the suppressed constant in the inequality tends to
0 as p → 0. Similarly, a heuristic scaling argument by Kraichnan for 2D turbulence
leads to

λd ∼ λη := (ν3/η)1/6 ,(1.4)

where η is the mean enstrophy dissipation rate per unit mass. We show that if the
2D power law (3.26) for the energy spectrum holds, then

λa &p κ−1
0 (κ0λη)

2(1.5)

up to a logarithm in G.
These improved estimates actually follow from more general bounds on the radius

of analyticity which require the solution to satisfy a certain “smallness” condition.
Those conditions are met under the power law assumptions, when averaged with
respect to an invariant measure. Kukavica [26] achieved the same bound in 2D up
to a logarithmic correction on all of the attractor using complex analytic techniques,
interpolating between Lp norms of the initial data and the complexified solution,
and invoking the theory of singular integrals.

The approach in [26] was actually a modification of the approach in [21], where
it was shown that λd & ν(supt≤T∗/2‖u(t)‖L∞)−1. It is interesting to ask if these
estimates can be obtained by working exclusively in frequency-space using Fourier
techniques, rather than in physical space with the L∞ norm. Indeed, this is an
impetus of our work.

The technique applied here combines the use of Gevrey norms with the semi-
group approach of Weissler [37]. Motivated by recent developments, we work over
a subspace of the Wiener algebra, whose norm is a Sobolev-Gevrey-type norm in ℓ1

(see (2.11)). This norm and approach was applied in [4] to study spatial analyticity
and Gevrey regularity of solutions to the NSE. However, the resulting estimate on
the spatial radius of analyticity was not optimal for large data. This approach is
refined here to obtain a sharper estimate for such data. The advantage of working
in the Wiener algebra, W , i.e. the Banach algebra of functions whose Fourier series
converge absolutely, was explored in [33], where a sharp estimate on the radius
of analyticity was obtained, for instance, for real steady states of the nonlinear
Schrödinger equations. More recently, these ℓ1-based Gevrey norms were also ap-
plied to the Szegö equation in [20] and the quasi-linear wave equation in [22]. In
[20], an essentially sharp estimate on the radius is obtained there as well. While
these works used energy-like approaches, the effectiveness and robustness of W as
a working space to study analyticity has become increasingly clear.

There are several advantages to our approach. First, our method is quite ele-
mentary. Since W is embedded in L∞, we essentially recover the results of [21]
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and [26] without resorting to complex-analytic techniques and the theory of sin-
gular integrals, while furthermore allowing for rougher initial data. Secondly, this
approach also applies to the case 1 < p < ∞, thereby unifying the results of [9],
[15], [21], and [26] . Thirdly, no logarithmic corrections appear in our estimates
initially; they only appear when specializing to the context of 3D or 2D turbulence
(see (3.30)). Finally, the method is rather robust and applies to a wide class of
active and passive scalar equations with dissipation, including the quasigeostrophic
(QG) equations. Note that in the case of QG with supercritical dissipation, the
method will only accommodate subanalytic Gevrey regularity (see [31]).

2. Preliminaries

The Navier-Stokes system in Ω := [0, L]n for n > 1 is given by




ut − ν∆u+ u· ∇u+∇p = F

∇·u = 0

u(x, 0) = u0(x)

(2.1)

where u0 : Ω → Ω and f : Ω× [0, T ) → Ω are given, and p : Ω× [0, T ) → [0, L] and
u : Ω× [0, T ) → Ω are unknown. We assume that u0, u, p, F are all L-periodic and
mean-zero, and that u0 is divergence-free.

We will use the so-called wave-vector form of (2.1), which is simply (2.1) written
in terms of its Fourier coefficients




d
dt û(k, t) = −νκ2

0|k|2û(k, t) +B[~u, ~u](k, t) + f̂(k, t)

k· û(k, t) = 0

û(k, 0) = û0(k),

(2.2)

where k ∈ Zn, ~u : Zn × [0, T ) → Cn such that ~u(t) = (û(k, t))k∈Zn , and f =
PF , where P is the Helmholtz-Leray orthogonal projection, i.e. projection onto
divergence-free vector fields,

P(û(k)eiκ0k·x) =

(
û(k)−

(
k

|k| · û(k)
)

k

|k|

)
eiκ0k·x, (k ∈ Z

n).(2.3)

Recall also that the mean zero condition forces û(0, t) = 0 for all t. The bilinear
term B has Fourier coefficients given by

B[~u,~v](k, t)eiκ0k·x := iκ0P


 ∑

ℓ∈Zn\{~0}

(k· û(ℓ, t))v̂(k − ℓ, t)eiκ0k·x


 ,(2.4)

Note that ~B[~u,~v] will denote the sequence (B[~u,~v](k))k∈Zn .
Observe that

|P̂u(k)| . |û(k)|,(2.5)

and also that the following basic convolution estimate holds

|B[~u,~v](k)| . κ0|k|(|~u| ∗ |~v|)(k) for all k ∈ Z
n.(2.6)

Since we will be working with (2.2), we choose an appropriate sequence space as
our ambient space. Define

K := {(û(k))k∈Zn ∈ (Cn)Z
n

: û(0) = 0, û(k) = û(−k)∗, k· û(k) = 0},(2.7)
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where û(k)∗ = (û1(k), . . . , ûn(k)). For σ ∈ R define

Vσ := {(û(k))k∈Zn ∈ (Cn)Z
n

: ‖~u‖σ < ∞} ∩ K,(2.8)

where

‖~u‖σ := κσ
0

∑

k∈Zn

|k|σ|û(k)|.(2.9)

and ~u denotes an element of (Cn)Z
n

. Observe that when σ = 0, the norm on Vσ

agrees with that on the Wiener algebra, i.e.

(νκ0)
−1‖~u‖0 = ‖u‖W ,(2.10)

where u is the continuous function whose Fourier coefficients are given by û(k). In
fact, we have Vσ ⊂ W ∩K ⊂ V−σ, for all σ ≥ 0.

For ~u ∈ Vσ, we define the (analytic) Gevrey norm of ~u by

‖~u‖λ,σ := κσ
0

∑

k∈Zn

eλκ0|k||k|σ|û(k)|(2.11)

for λ ≥ 0. Observe that λ has the physical dimension of length.
For a time-dependent sequence ~u( · ) such that ~u(t) ∈ Vσ, for all t ≥ 0, we define

the (analytic) Gevrey norm of ~u(t) by

‖~u(t)‖λ(t),σ := κσ
0

∑

k∈Zn

eλ(t)κ0|k||k|σ|û(k, t)|,(2.12)

where λ : R+ → R+ is increasing and sublinear, i.e. λ(s + t) ≤ λ(s) + λ(t) for all
s, t ≥ 0. Observe that

‖u(t)‖W .σ λ(t)ϕ(σ) κ
−σ
0

νκ0
‖~u(t)‖λ(t),σ,(2.13)

for all σ ∈ R and t > 0, where ϕ(σ) = σ if σ < 0 and 0 otherwise.
It is well-known that the Gevrey norm characterizes analyticity, a fact stated

more precisely in the following proposition (cf. [29], [23]):

Proposition 1. Let σ ∈ R.

(1) If ‖~u‖λ,σ < ∞, then u admits an analytic extension on {x+ iy : |y| < λ};
(2) If u has an analytic extension on {x + iy : |y| < λ}, then ‖~u‖λ′,σ < ∞ for

all λ′ < λ.

In particular, if a function has finite Gevrey norm, then the Fourier modes decay
exponentially. Indeed, if ‖~u‖λ,σ < ∞, then

|û(k)| ≤ e−λ|k||k|−σ‖~u‖λ,σ.(2.14)

Definition 1. If u is analytic, then we define

λmax = sup{λ′ > 0 : ‖~u‖λ′,σ < ∞}(2.15)

to be the the maximal (uniform) radius of spatial analyticity of u. Moreover, due
to (2.14) we have λd ≥ λmax.

Remark 2. For convenience, we adopt the following conventions for the rest of the
paper.

(1) We will usually write ~u simply as u, which is the function whose Fourier
series have modes û(k), for k ∈ Zn.
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(2) By u(t) or u(k), or when the context is clear, simply u, we shall mean the
time-dependent sequence ~u(t) = (û(k, t))k∈κ0Z

n , unless otherwise specified.
(3) We will use . to suppress extraneous absolute constants or physical pa-

rameters. In some instances, the dependence of these constants will be
indicated as subscripts on ..

(4) We will also use the notation ∼ to denote that the two-sided relation .

and & holds.

For 1 ≤ q ≤ ∞ and 0 < Tf ≤ ∞, we define

M0 :=
κ−σ
0

νκ0
‖u0‖σ,(2.16)

Mf :=





κ−σ
0

ν2κ3
0

(
νκ2

0

∫ Tf

0
‖f(s)‖qλ(s),σ ds

)1/q
, 1 ≤ q < ∞

κ−σ
0

ν2κ3
0

sup0≤t≤Tf
‖f(t)‖λ(t),σ q = ∞

(2.17)

and

M := M0 +Mf .(2.18)

For any dimension n > 0, the Grashof number is defined as

G :=
κ
n/2
0

ν2κ3
0

sup
0≤t≤Tf

‖f(t)‖L2.(2.19)

Observe that M and G are dimensionless. One can show that when f is time-
independent and has only finitely many modes, i.e. f = Pκ̄f , where

Pκ̄f :=
∑

|k|≤κ̄/κ0

f̂(k)eiκ0k·x,(2.20)

then Mf is comparable to G up to a constant depending on only κ0, κ̄, a fixed
parameter τ , and λf , where λf satisfies

sup
|y|≤λf

‖f( ·+iy)‖L2 < ∞;(2.21)

see Proposition 23 in Appendix.
Now suppose that data u0 and f are given such that M < ∞. Let A be the

Stokes operator, A := −P∆, where P is defined as in (2.3). Then the heat kernel,
eνtA, is the Fourier multiplier defined by

êνtAu(k) := e−νtκ2
0|k|2 û(k),(2.22)

or equivalently, eνtA~u = (e−νtκ2
0|k|2 û(k))k∈Zn . We will use two notions of solutions

to (2.2).

Definition 2. For 0 < T ≤ ∞, a mild solution to (2.2) is any function ~u ∈
C([0, T ];K) such that

∫ t

0

e−ν(t−s)κ2
0|k|2 |B[~u, ~u](k, s)| ds < ∞,(2.23)

for all k ∈ Zn, and

~u(t) = e−νtA~u0 +

∫ t

0

e−ν(t−s)A ~Pf(s) ds−
∫ t

0

e−ν(t−s)A ~B[~u, ~u](s) ds,(2.24)

for all 0 ≤ t ≤ T .
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Definition 3. For 0 < T ≤ ∞, a weak solution to (2.2) is any function ~u ∈
C([0, T ];K) such that

B[~u, ~u](k, t) < ∞(2.25)

for all k ∈ Zn and a.e. t ∈ [0, T ] and

d

dt
û(k, t) = −νκ2

0|k|2û(k, t)−B[û, û](k, t) + f̂(k, t)(2.26)

holds for all k ∈ Zn and a.e. t ∈ [0, T ].

The fact that Definition 3 is equivalent to the usual definition of weak solution
for a periodic flow can be found in [36].

Finally, we define the regularity that we ultimately seek to establish.

Definition 4. A mild or weak solution ~u ∈ C([0, T ];K) of (2.2) is Gevrey regular
if there exists σ ∈ R and sublinear λ : R+ → R+ such that

sup
0≤t≤T

‖~u(t)‖λ(t),σ < ∞.(2.27)

3. Main Theorems

We first state a result for a general force.

Theorem 3. Let 1 < q ≤ ∞ and −1 < σ ≤ 0 and M,Tf be as defined in (2.18).
Suppose that u0 and f are given such that M < ∞. Then for some 0 < T ∗ ≤ Tf ,
there exists a mild solution u ∈ C([0, T ∗];Vσ) to (2.2), which is also a Gevrey
regular weak solution, with radius of analyticity at time T ∗ satisfying

λa & κ−1
0 ·
{
M−1/(1−2|σ|/q′), 1 < q ≤ 2,

M−1/(1−|σ|), 2 ≤ q ≤ ∞,
(3.1)

where 1/q′ := 1 − 1/q. Moreover, there exists a constant C∗ such that if M ≤ C∗,
then one may take T ∗ = Tf . In this case, the solution exists for all 0 ≤ t ≤ Tf and
the radius of analyticity at time t satisfies

λa &
√
νt.(3.2)

In the case where the forcing is time-independent and has finitely many modes,
we can express the estimate on the radius of analyticity in terms of the Grashof
number, provided a “smallness” condition on the solution holds.

Theorem 4. Suppose that f is time-independent and satisfies f = Pκ̄f . If

‖u0‖W . G1/2,(3.3)

then for some 0 < T ∗ < (νκ2
0)

−1, there exists a unique weak solution u ∈ C([0, T ∗], V0)
to (2.1) such that u is Gevrey regular and the radius of analyticity at time T ∗ sat-
isfies

λa &κ̄,κ0
κ−1
0 G−1/2.(3.4)

The following estimate is not as sharp, but holds under a weaker “smallness”
condition.
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Theorem 5. Suppose that f is time-independent and satisfies f = Pκ̄f . If

‖A−3/8u0‖W . κ
−3/4
0 G11/16,(3.5)

where A = −∆ with periodic boundary conditions, is the Stokes operator, then for
some 0 < T ∗ < (νκ2

0)
−1, there exists a weak solution u ∈ C([0, T ∗], V−3/4) to (2.1)

such that u is Gevrey regular and the radius of analyticity at time T ∗ satisfies

λa &κ̄,κ0
κ−1
0 G−59/64.(3.6)

Remark 6. One can also have σ > 0 in Theorem 3 (see its proof in Section 7). In
fact, a more general version of Theorem 4 and 5 is proved in Section 7 (see Theorem
20).

The estimate on λa in Theorem 3 can be compared to the one in [4] when q = 2.
However, in that work their choice of λ(t) (as in the Definition 4) yielded instead
the estimate

λa & κ−1
0 M−2/(1−|σ|),(3.7)

which is less sharp than the corresponding estimate in (3.1) when M is large.
One should also note that if C∗ is too small, then the global attractor in 2D

becomes trivial (cf [6, 30]). Physically, this corresponds to the case of decaying
turbulence. Nevertheless, if M is sufficiently small, then Tf = ∞ is allowed, in
which case the solution exists globally in time with radius that grows without
bound in time as

√
νt.

Uniqueness of weak solutions to (2.1) is guaranteed in two-dimensions, but in
3D is still an open question. There are, however, cases where the uniqueness is
guaranteed in any dimension (see [36] pp. 298-99). In particular, as long as σ ≥ 0,
the solution of Theorem 3 is unique in the class of weak solutions.

In the case where the force is identically zero, one can employ energy techniques
as in [9], [15] and obtain

λa ≥ C
κ−1
0

‖u0‖W
(3.8)

where λa represents the radius of analyticity at some time T ∗ strictly less than
the maximal time of existence. The constant here can be explicitly identified as
C = log(1 + γ)/

√
γ, where γ is the nontrivial solution to

(2γ)−1 log(1 + γ)− (1 + γ)−1 = 0.

Note that (3.8) is precisley the estimate in (3.1) (up to an absolute constant).
The energy approach, however, encounters technical difficulties when one includes
forcing on infinitely many scales. The reader is referred to [31] for additional details.

In [31], the estimates are also done in ℓp for 1 < p < ∞. In particular, when
n = 3, p = 2, σ = 1, the result of [9] is generalized to include forcing on all scales,
and the estimate on the radius is the same as the one derived there (up to an
absolute constant). One can make an argument similar to the one presented in
Section 3.1 that would justify the corresponding assumption on the initial data,
but working on the 3D weak attractor. For background on the weak attractor, see
[7] or [17].

Finally, the techniques used to prove Theorem 4 apply equally well to the vor-
ticity formulation of Navier-Stokes, the case of fractional dissipation, and a wide
class of active and passive scalar equations, including 2D dissipative QG equations,
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(see [31]). These techniques also apply to the case Ω = Rn (see [2]). For more
results on the subcritical QG, see for instance [5], where analyticity is established
for arbitrary initial data in H2, or [11], where a local smoothing effect is exploited
to establish analyticity, or [2], where analytic Gevrey regularity is established for
several other equations as well. For results on the analyticity of solutions for criti-
cal QG equations, see [10] and [24]. For results on the regularity of passive scalar
equations see [34] or [35]. The classical Hilbert space techniques of [15] have also
been successfully applied to the Euler equations (see [27] and [29]).

3.1. Application to Turbulent Flows. In this subsection, we show how our
results in Theorems 4, 5 improves the known estimates for λd for turbulent flows.
While their “smallness” assumptions may not hold on all of the 2D global (3D
weak) attractor, in the context of turbulence, one can expect these conditions to
hold on average, in a precise sense.

The statistical theory of turbulence concerns relations between quantities that
are averaged, either with respect to time or over an ensemble of flows, e.g. results
from repeated experiments. It is remarkable that these two seemingly different
approaches are in fact related.

The mathematical equivalent of a large time average is rigorously expressed in
terms of Banach limits. Following [17], define the space H by

H := {(û(k))k∈Zn ∈ (Cn)Z
n

: ‖~u‖ℓ2 < ∞} ∩ K.(3.9)

Let Φ be a real-valued weakly continuous function onH . Then for any weak solution
u of (2.2) on [0,∞), there exists a probability measure µ for which

〈Φ〉 :=
∫

H

Φ(u) dµ(u) = LimT→∞
1

T

∫ T

0

Φ(u(t)) dt,(3.10)

where Lim is a Hahn-Banach extension of the classical limit. The measure µ is
called a time-average measure of u. Note that neither Lim nor µ are unique. The
use of Lim surmounts the technical difficulty that the limit in the usual sense may
not exist. If u is weak solution to the 2D NSE, then by regularity of such solutions,
one can work in the strong topology on H . Moreover, by uniqueness, one can
show that µ is in fact invariant with respect to the corresponding semigroup, i.e.
µ(E) = µ(S(t)−1E) for all t ≥ 0, for all measurable sets E ⊂ H . Thus, a time
average measure is also a so-called stationary statistical solution of the NSE. For a
more detailed background see [17].

We now specialize to the cases of 3D and 2D turbulence, and interpret the main
theorems in those settings.

3.1.1. 3D Turbulence. The mean energy dissipation rate per unit mass is defined
as

ε := νκ3
0〈‖∇u‖2L2〉 .(3.11)

In 3D, Kolomogorov argued that because one can ignore nonlinear effects in the
dissipation range, the length scale indicating where dissipation is the dominant
effect should depend solely on ε and ν. By a simple dimensional argument, one
then arrives at

λε =

(
ν3

ε

)1/4

.(3.12)
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In other words, according to Kolmogorov, for turbulent flows in 3D, λd ∼ λε with
λε given in (3.12). We will now describe the best known rigorous result in this
direction.

In [9], the radius of analyticity was estimated in terms of εsup as

λa &
(νκ0)

3

εsup
.(3.13)

where

εsup := νκ3
0 sup
0≤t≤T∗/2

‖∇u(t)‖2L2 .(3.14)

represents the largest instantaneous energy dissipation rate (per unit mass) up to
time T ∗/2, and T ∗ is the maximal time of existence of a regular solution. A heuristic
argument is given to support εsup ∼ ε as in [9], then (3.13) becomes

λd & κ−1
0 (κ0λ̃ε)

4 , where λ̃ε =

(
ν3

εsup

)1/4

(3.15)

It is not presently known if εsup remains finite beyond T ∗. Hence, it is not possible
to obtain an estimate of the smallest length scale for an arbitrary weak solution.
In fact, it is not possible to extend these estimates on the weak attractor either
since it is not known whether or not a trajectory, i.e. a weak solution defined for
all t ∈ R, is regular. However, it is well-accepted that statements regarding length
scales in turbulence actually concern “averages” and not specific trajectories (cf.
[14, 16, 18, 1], or [17, 19] for introductory approaches). Indeed, this is the thrust
of our current discussion.

In addition to the dissipation range and wave number, another basic tenet in the
Kolmogorov theory of turbulence is the so-called power law for the energy spectrum.
More specifically, let κ̄ denote the wave number in which energy is injected into
the flow, i.e., f = Pκ̄f . Denote the Kolmogorov wave-number κε := 1/λε. Then
the range of wave-numbers [κ̄, κε] is known as the inertial range in which the effect
of viscosity is negligible. The nonlinear (inertial) term simply transfers the energy
injected into the flow through the inertial range at a rate of ε. Moreover, defining
the quantity

eκ1,κ2
:= κ3

0〈‖(Pκ2
− Pκ1

)u‖2L2〉,

the well-celebrated Kolmogorov’s power law asserts that a turbulent flow must
satisfy the relation

eκ,2κ ∼ ε2/3/κ2/3, for κ ∈ [κ̄, κε].(3.16)

Additionally, it is also known that if the Grashof number is sufficiently small, then
the flow is not turbulent and the attractor in this case consists of only one point.
In view of this discussion, we define a flow to be turbulent if the Kolmogorov power
law holds and the Grashof number is sufficiently large, i.e.

G &

(
κ̄

κ0

)3/2

.(3.17)
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It is shown in [7] that for such a flow one necessarily has the bounds

ν2

κ0

(κ0

κ̄

)5/2
G . 〈‖u‖2L2〉 . ν2

κ0

(κ0

κ̄

)
G,(3.18)

ν2κ0

(κ0

κ̄

)11/4
G3/2 . 〈‖A1/2u‖2L2〉 . ν2κ0

(κ0

κ̄

)1/2
G3/2.(3.19)

The following is the main result of this section which improves upon the estimate
in [9] for 3D turbulent flows.

Theorem 7. Let µ be a time-average measure for a 3D turbulent flow and let
0 < p < 1. There exists a set S ⊂ Aw with µ(S) ≥ 1− p such that

λd(u) &p κ−1
0 (κ0λε)

59/24 for all u ∈ S.

Proof. Recall that Theorem 5 ensures that

λa & κ−1
0 G−59/64,(3.20)

provided that the initial data satisfies

‖A−3/8u0‖W . κ
−3/4
0 G11/16.(3.21)

We argue that (3.21) is guaranteed to hold on a significant portion of the 3D weak
attractor, Aw. We now quantify the likelihood that (3.21) occurs within Aw with
respect to any time-average measure µ.

First, observe that by Proposition 25 with σ = −3/4, one has the inequality

‖A−3/8u‖W . ‖u‖1/4L2 ‖A1/2u‖3/4L2 .(3.22)

Let 0 < p < 1 and define the following sets

Ap :=

{
u ∈ Aw : ‖u‖L2 &

√
2

p
νκ

−1/2
0

(κ0

κ̄

)1/2
G1/2

}

Bp :=

{
u ∈ Aw : ‖A1/2u‖L2 &

√
2

p
νκ

1/2
0

(κ0

κ̄

)1/4
G3/4

}
.

Then by (3.18), (3.19), and Chebyshev’s inequality

µ(Ap) ≤
p

2
and µ(Bp) ≤

p

2
.

We note that the support of µ is contained in Aw (see [17]), so that (3.18) and
(3.19) ensure that these inequalities are not trivial. It follows that

µ((Aw \Ap) ∩ (Aω \Bp)) ≥ 1− p.

This combined with (3.22) implies that

µ

{
u ∈ Aw : ‖A−3/8u0‖W .

√
2

p
νκ

1/4
0 G11/16

}
≥ 1− p.(3.23)

Then Theorem 5 gives

µ
{
u ∈ Aw : λa(u) &p κ−1

0 G−59/64
}
≥ 1− p,(3.24)

where & suppresses a constant which tends to 0 as p → 0. Finally, observe that
(3.19) implies that ε & ν3κ4

0G
3/2, so that (κ0λε)

8/3 . G−1. Therefore

µ
{
u ∈ Aw : λa(u) &p κ−1

0 (κ0λε)
59/24)

}
≥ 1− p,(3.25)

where λa(u) denotes the radius of analyticity of u at time T ∗ = T ∗(u).
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In particular, we have just shown that for any u0 ∈ (Aw \Ap) ∩ (Aω \Bp), the
radius of analyticity for the corresponding solution at time T ∗ is bounded below by

λa &p κ−1
0 (κ0λε)

59/24,

provided that we are in the turbulent scenario described above. �

3.1.2. 2D Turbulence. In the Kraichnan theory of 2D turbulence enstrophy ‖u‖2 is
also dissipated, and it does so at a mean rate per unit mass given by

η = νκ2
0〈|Au|2〉 .

Two key wave numbers are

κη :=
( η

ν2

)1/6
∼
( 〈‖Au‖2L2〉

L2ν2

)1/6

, κσ :=

( 〈‖Au‖2L2〉
〈‖A1/2u‖2L2〉

)1/2

,

where A is the Stokes operator.
It is shown in [6], that if the well-recognized power law

eκ,2κ = 〈‖P2κQκu‖2L2〉 ∼ η2/3

κ2
,(3.26)

holds on over the inertial range [κi, κ̄i] and if

κi ≤ 4κη, 〈‖A1/2Pκi
u‖2L2〉 . 〈‖A1/2Qκi

u‖L2〉, G & (κ̄/κ0)
2,(3.27)

then

ν2κ2
0

(
κ̄

κ0

)−1

G . 〈‖A1/2u‖2L2〉 . ν2κ2
0

(
κ̄

κ0

)
G(lnG)3/2(3.28)

ν2κ4
0

(
κ̄

κ0

)−3/2
G3/2

(lnG)3/2
. 〈‖Au‖2L2〉 . ν2κ4

0

(
κ̄

κ0

)3/2

G3/2(lnG)3/4 .(3.29)

This is to say that on average ‖A1/2u‖L2 is of order νκ0G
1/2 on the global attractor.

As in the 3D case, we can make this precise in terms of probabilities.
First, observe that by the “time-averaged” Brézis-Gallouët inequality (see Propo-

sition 24)

(νκ0)
2〈‖u0‖2W〉 . 〈‖A1/2u0‖2L2〉 (1 + ln (κσ/κ0)) .

Hence, (3.28) and (3.29) imply that

〈‖u0‖2W〉 . LG,

where

L := (κ̄/κ0)(lnG)3/2[1 + ln((κ̄/κ0)
5/2G1/2(lnG)3/4)],

As before, Chebyshev’s inequality then implies

µ

{
u ∈ A : ‖u‖W .

√
L
p
G1/2

}
≥ 1− p,(3.30)

for any 0 < p < 1, provided that either (3.26) and (3.27) hold. Therefore, we can
conclude by Theorem 4 that

µ
{
u ∈ A : λa & κ−1

0 G−1/2
}
≥ 1− p,(3.31)
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where the constant inside depends only on p, κ̄/κ0, and logarithms of G. Since by
(3.29)

λη =

(
ν3

η

)1/6

≤ 1

κ0

(κ0

κ̄

)1/4
G−1/4 ,

we have the following

Theorem 8. Let µ be a time-invariant measure for a 2D turbulent flow and let
0 < p < 1. There exists a set S ⊂ A with µ(S) ≥ 1− p such that

λd(u) &p κ−1
0 (κ0λη)

2 for all u ∈ S.

Remark 9. There are also 3D versions of a time-averaged Brézis-Gallouët inequal-
ity, i.e. Proposition 24, which accomodate the endpoint cases of the Agmon-type
inequality in Proposition 25, namely, σ = −3/2 and σ = −1/2. However, neither of
these cases fit within our discussion. Indeed, in the case σ = −1/2, one must have
some control over the quantity ‖Au‖L2/‖A1/2u‖L2, which is not presently known.
On the other hand, although we do have control over the quantity ‖A1/2u‖L2/‖u‖L2

in 3D, in this case the Brézis-Gallouët inequality will only provide an estimate for
the quantity ‖A−3/4u‖L2, which lies outside of the range σ > −1 allowed by The-
orem 20. Let us lastly note that if one could control ‖Au‖L2/‖A1/2u‖L2, at least
on average, then one could argue as before and apply Theorem 20 to obtain the
estimate λd & κ−1

0 (κ0λε)
7/3.

4. Outline of Proofs of Main Theorems

Following [4], our approach is to use a contraction mapping argument. Fix
0 < T ≤ ∞, σ > −1, and β ≥ 0. Define the spaces

X := {u( · ) ∈ C([0, T ];Vσ) : ‖u‖X < ∞},(4.1)

Y := {u( · ) ∈ C((0, T ];Vσ+β) : ‖u‖Y < ∞},(4.2)

Z := X ∩ Y,(4.3)

where X,Y, Z are equipped with the norms

‖u‖X :=
κ−σ
0

νκ0
· sup
0≤t≤T

‖u(t)‖√νt,σ,(4.4)

‖u‖Y := νβ/2
κ−σ
0

νκ0
· sup
0<t≤T

(t ∧ (νκ2
0)

−1)β/2‖u(t)‖√νt,σ+β ,(4.5)

‖u‖Z := max{‖u‖X, ‖u‖Y },(4.6)

and a ∧ b := min{a, b}. Then X,Y, Z are Banach spaces with Z →֒ X,Y continu-
ously. Observe moreover that these norms are dimensionless.

By the Duhamel principle, the solution u that we seek will be a fixed point of
the operator S defined by

(Su( · ))(t) := e−νtAu0 +

∫ t

0

e−ν(t−s)APf(s) ds

︸ ︷︷ ︸
Φ(t)

−
∫ t

0

e−ν(t−s)AB[u(s), u(s)] ds

︸ ︷︷ ︸
w(t)

.

(4.7)
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In particular, we establish the existence of such a function u in the closed subset
E ⊂ Z given by

E := {u ∈ Z : ‖u− Φ‖Z ≤ C},(4.8)

for some C > 0, which satisifes ‖Φ‖Y ≤ C. To do so, we will invoke the following
existence theorem whose proof can be found in [4].

Theorem 10. Suppose that Φ ∈ Z and that ‖Φ‖Y ≤ C for some C > 0. If w ∈ Z
and ‖w‖Z ≤ (1/3)‖v‖Y whenever u ∈ E and v ∈ Z, for w given by either

w(t) =

∫ t

0

e−ν(t−s)AB[u(s), v(s)] ds or w(t) =

∫ t

0

e−ν(t−s)AB[v(s), u(s)] ds,

(4.9)

then there exists a unique u ∈ E such that

u = Φ−
∫ t

0

e−ν(t−s)AB[u(s), u(s)] ds.(4.10)

The hypotheses of Theorem 10 are verified in Sections 6 and 7. In particular,
in Section 6 we show that Φ ∈ Z and ‖Φ‖Z ≤ C for some C > 0. Consequently,
this shows that E is nonempty. We also show in that section that w ∈ Z whenever
u ∈ E and v ∈ Z. Finally, in Section 7 we deduce sufficient conditions for when
‖w‖Z ≤ (1/3)‖v‖Y .

5. Estimates with Heat Semigroup

In this section we list some preliminary estimates. These estimates concern how

the heat kernel, etA, controls the Gevrey multplier, eλ(t)A
1/2

, where α < 1. The
main idea is that the dissipation effect from the heat kernel is stronger than the
amplication effect from the Gevrey multiplier. This idea will also be used to control
the nonlinear term. However, for the nonlinear term one must exploit in a crucial
way the Banach algebra structure of W in the form of a convolution inequality
(Proposition 14). We sketch this below in Proposition 15. The proofs of all of these
estimates can be found in Sections 5, 6, and 7 of [4], where all physical dimensions
are normalized. We have rescaled them here with the relevant physical parameters,
and constants as well. For additional details, see [31].

Proposition 11. Let ν > 0 and β, λ ≥ 0 and let σ ∈ R. Then

(νt)β/2‖e−νtAu‖λ,σ+β . C11(β)‖u‖λ,σ,(5.1)

holds for t > 0, where

C11(β) = ββ/2.

Proposition 12. Let ν > 0 and σ ∈ R. Let λ : R+ → R+ be sublinear. Then

‖e−ν(t−s)Au‖λ(t),σ ≤ C12(s, t)‖e−(ν/2)(t−s)Au‖λ(s),σ,(5.2)

for all for 0 ≤ s < t, where

C12(s, t) = exp

(
1

2ν

λ(t− s)2

(t− s)

)
(5.3)
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Remark 13. Observe that Proposition 12 identifies a suitable sublinear function
λ(t) with which to establish Gevrey regularity, namely, λ(t) = α

√
νt, for some

scalar α ≥ 0 (see (4.4) and (4.5)). Note that in this case (5.3) becomes

C12(s, t) = C12(α) = eα
2/2.(5.4)

For convenience, we set α = 1.

The following proposition states that the Gevrey norm defined in (2.11) is a
Banach algebra with respect to convolution.

Proposition 14. Let λ, γ ≥ 0. Then

‖u ∗ v‖λ,γ . κ−γ
0 ‖u‖λ,γ‖v‖λ,γ .(5.5)

This allows us to establish the following estimate on the nonlinear term.

Proposition 15. Let λ, γ ≥ 0. Then for any δ ∈ R

‖e−νtAB[u, v]‖λ,δ . C15(δ, γ)κ
1+δ−2γ
0 (νκ2

0t)
−max{0,(1/2)(1+δ−γ)}‖u‖λ,γ‖v‖λ,γ ,

(5.6)

where

C15(δ, γ) = (1 + δ − γ)
max{0,(1/2)(1+δ−γ)}

Proof. Let α = (1/2)(1 + δ − γ). We estimate as follows

‖e−νtAB[u, v]‖λ,δ ≤
∑

k=κ0k
′

k′∈Z
n\{0}

e−νt|k|2eλ|k||k|δ|B[u, v](k)|

.
∑

e−νt|k|2eλ|k||k|δ+1(|u| ∗ |v|(k))

= ‖e−νt|k|2 |k|1+δ−γ‖ℓ∞
∑

eλ|k||k|γ(|u| ∗ |v|(k))

≤
(
1 + δ − γ

2e

)max{0,α}
(νt)−max{0,α}‖|u| ∗ |v|‖λ,γ

. C15(δ, γ)κ
1+δ−2γ
0 (νκ2

0t)
−max{0,α}‖u‖λ,γ‖v‖λ,γ,

where in the second inequality we apply (2.5) and (2.6), while in the last inequality
we apply Proposition 14. �

Remark 16. There is an ℓp-analog of Proposition 15 for 1 < p < ∞. However,
one must restrict the parameter γ according to the dimension n and index p. This
restriction is due to the fact that in general, ℓp lacks the structure of a Banach
algebra for p > 1 (cf. [4]).

6. Estimating Φ and w

First we estimate the term

Φ(t) := e−νtAu0 +

∫ t

0

e−ν(t−s)Af(s) ds(6.1)

in order to show that Φ ∈ Z (see (4.3) and (4.7)).

Lemma 17. Let 1 < q ≤ ∞ and 1/q′ = 1− 1/q. Let σ ∈ R and M be given as in
(2.18). Then for 0 ≤ β < 2/q′ and 0 < T ≤ Tf ,
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(i) ‖Φ‖X . C
(i)

17(q)M , where

C
(i)

17(q) = (1/q′)1/q
′

.

(ii) ‖Φ‖Y . C
(ii)

17 (q, β, λ)M , where

C
(ii)

17 (q, β) =C11(β)C22(βq
′/2, 0)1/q

′

(q′)β/2.

(iii) (νt)β/2‖Φ(t)‖√νt,σ+β ≤ C(t), for 0 < t ≤ Tf , with limt→0+ C(t) = 0, if β > 0.

Proof. Fix T ≤ Tf and let 0 ≤ t ≤ T . Observe that by (2.5)

‖Φ(t)‖√νt,σ . ‖e−νtAu0‖√νt,σ︸ ︷︷ ︸
(A)

+

∫ t

0

‖e−ν(t−s)Af(s)‖√νt,σ ds

︸ ︷︷ ︸
(B)

.

We estimate (A) by applying Proposition 12 with s = 0 and using the fact that
e−νtA is a contractive semigroup for t > 0 so that

‖e−νtAu0‖√νt,σ . ‖e−(ν/2)tAu0‖σ ≤ ‖u0‖σ.(6.2)

Now we estimate (B). Observe again that by contractivity and Proposition 12

‖e−ν(t−s)Af(s)‖√νt,σ . ‖e−(ν/2)(t−s)Af(s)‖√νs,σ.(6.3)

Suppose 1 < q < ∞. Integrating both sides of (6.3) and applying the Hölder
inequality gives

∫ t

0

‖e−ν(t−s)Af(s)‖√νt,σ ds

. (2/q′)1/q
′

(νκ2
0)

−1

(
νκ2

0

∫ Tf

0

‖f(s)‖q√
νs,σ

ds

)1/q

(6.4)

where q, q′ are Hölder conjugates. Adding (6.2), (6.4), normalizing physical dimen-
sions, then taking the supremum proves (i). For q = ∞, make an L1-L∞ Hölder
estimate in (6.3) instead.

To prove (ii), instead let 0 < t ≤ T . Observe that

‖Φ(t)‖√νt,σ+β . ‖e−νtAu0‖√νt,σ+β︸ ︷︷ ︸
(A′)

+

∫ t

0

‖e−ν(t−s)Af(s)‖√νt,σ+β ds

︸ ︷︷ ︸
(B′)

.(6.5)

We estimate (A′) as

‖e−νtAu0‖√νt,σ+β . ‖e−(ν/2)tAu0‖σ+β

. C11(νt/2)
−β/2‖u0‖σ

≤ C11(ν/2)
−β/2(t ∧ ((νκ2

0)/2)
−1)−β/2‖u0‖σ.(6.6)

Similarly, assuming 1 < q < ∞, we can estimate (B′) as

‖e−ν(t−s)Af(s)‖√νt,σ+β . C11e
−(ν/q′)(t−s)κ2

0(ν(t− s)/q′)−β/2‖f(s)‖√νs,σ.(6.7)
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Now integrate both sides of (6.7), apply the Hölder inequality, then Proposition 22
to obtain

(B′) .C11

∫ t

0

e−(ν/q′)(t−s)κ2
0

(ν(t− s)/q′)β/2
‖f(s)‖√νs,σ ds(6.8)

≤C11C
1/q′

22 · (ν/q′)−β/2(t ∧ (νκ2
0)

−1)1/q
′−β/2(νκ2

0)
−1/q κσ

0

ν−2κ−3
0

Mf ,(6.9)

where

C22(c, d) = B(1− c, 1− d) =

∫ 1

0

t−c(1− t)−d dt.(6.10)

An elementary calculation shows that B(1−c, 1) = 1
1−c , which in particular implies

that

C22((βq
′/2), 0) > 1.(6.11)

Also, observe that for any c ≥ 1

(t ∧ (νκ2
0)

−1) ≤ (t ∧ ((νκ2
0)/c)

−1) ≤ c(t ∧ (νκ2
0)

−1).(6.12)

Therefore, by adding (6.6) and (6.9) , then applying (6.11) and (6.12) we obtain

νβ/2
κ−σ
0

νκ0
(t ∧ (νκ2

0)
−1)β/2‖Φ(t)‖√νt,σ+β

. C11C
1/q′

22

(
κ−σ
0

νκ0
‖u0‖σ + (t ∧ (νκ2

0)
−1)1/q

′

(νκ2
0)

1/q′Mf

)
.(6.13)

Using the fact that (t ∧ (νκ2
0)

−1) ≤ (νκ2
0)

−1, then taking the supremum over 0 <
t ≤ T completes the proof of (ii) for 1 < q < ∞.

If q = ∞, then instead make an L1-L∞ Hölder estimate in (6.8), so that (6.9)
becomes ∫ t

0

‖e−ν(t−s)Af(s)‖√νt,σ+β ds

. C11C22· (ν/2)−β/2(t ∧ (νκ2
0/2)

−1)1−β/2 κσ
0

ν−2κ−3
0

Mf ,

Then apply (6.12) again.
Finally, we prove (iii). By Proposition 12 we have

(νt)β/2‖Φ(t)‖√νt,σ+β

. (νt)β/2‖e−(ν/2)tAu0‖σ+β + (νt)β/2
(∫ t

0

‖e−(ν/2)(t−s)Af(s)‖√νs,σ+β ds

)
.

Now consider the projection Pκ onto modes |k| ≤ κ/κ0 with Qκ = I −Pκ. Observe
that

‖e−(ν/2)tAu0‖σ+β ≤ ‖e−(ν/2)tAQκu0‖σ+β + ‖e−(ν/2)tAPκu0‖σ+β

. C11(νt)
−β/2‖Qκu0‖σ + ‖Pκu0‖σ+β.

Similarly

(νt)β/2‖e−(ν/2)(t−s)Af(s)‖√νs,σ+β . C11‖Qκf(s)‖√νs,σ + (νt)β/2‖Pκf(s)‖√νs,σ+β .

Since κ is arbitrary, sending t → 0+ completes the proof.
�
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Corollary 18. Under the same hypotheses as Lemma 17, suppose moreover that

M0 . (Tνκ2
0)

1/q′Mf(6.14)

where T ≤ Tf . Then

(i) ‖Φ‖X . C
(i)

17(q)(Tνκ
2
0)

1/q′Mf ,

(ii) ‖Φ‖Y . C
(ii)

17 (q, β)(Tνκ2
0)

1/q′Mf .

Proof. First, recall (6.3) from the proof of Lemma 17 (i)

‖e−ν(t−s)Af(s)‖√νt,σ . e−(ν/2)(t−s)κ2
0‖f(s)‖√νs,σ.(6.15)

Since s ≤ t, we have e−(ν/4)(t−s)κ2
0 ≤ 1. Thus, by integrating (6.15) and applying

Hölder’s inequality

κ−σ
0

νκ0

∫ t

0

‖e−ν(t−s)Af(s)‖√νt,σ ds . (1/q′)1/q
′

(Tνκ2
0)

1/q′Mf .(6.16)

After normalizing, we add (6.2) to finish the proof of (i).
On the other hand, recall (6.13) in the proof of Lemma 17 (ii), which we rewrite

as

νβ/2
κ−σ
0

νκ0
(t ∧ (νκ2

0)
−1)β/2‖Φ(t)‖√νt,σ+β

. C
(ii)

17

(
M0 + (T ∧ (νκ2

0)
−1)1/q

′

(νκ2
0)

1/q′Mf

)
,(6.17)

for all 0 < t ≤ T . Therefore, (6.14) and the fact that (T ∧ (νκ2
0)

−1) ≤ T proves
(ii). �

The following lemma provides the necessary estimate for

w(t) :=

∫ t

0

e−ν(t−s)AB[u(s), v(s)] ds.(6.18)

Lemma 19. Let σ > −1. Let 0 ≤ β < 1 such that γ = σ + β ≥ 0. Then

‖w‖Z . C19(β)(νκ
2
0)

(1−β)/2(T ∧ (νκ2
0)

−1)(1−β)/2‖u‖Y ‖v‖Y ,
where

C19(β) =max{C22((1− β)/2, β), C22(1/2, β)}

Its proof follows exactly that of Proposition 8.5 in [4]. For additional details see
[31].

7. Proofs of Main Theorems

Proof of Theorem 3. Let σ > −1 and σ− := max{−σ, 0}. Define β = β(σ, q) by

β :=

{
2σ−/q′, 1 < q ≤ 2

σ−, 2 ≤ q ≤ ∞.
(7.1)

Observe that 0 ≤ β < min{2/q′, 1} holds for all 1 < q ≤ ∞. Let X,Y, Z be given
by (4.1), (4.2), (4.3) respectively. Let Φ be defined by (6.1). Then by Lemma 17,
we have Φ ∈ Z and

‖Φ‖Y ≤ C
(ii)

17 M.
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Thus, the set E ⊂ X given by (4.8) becomes

E = {u ∈ Z : ‖u− Φ‖Z ≤ C
(ii)

17 M}.
Obviously, Lemma 19 implies that w ∈ Z whenever u ∈ E and v ∈ Z, where w is
given by (6.18). Hence, by Theorem 10, it suffices to show that ‖w‖Z ≤ (1/3)‖v‖Y ,
whenever u ∈ E and v ∈ Z. We determine sufficient conditions for this to hold.

By Lemma 19 we have

‖w‖Z . C19(β)(νκ
2
0)

(1−β)/2(T ∧ (νκ2
0)

−1)(1−β)/2‖u‖Y ‖v‖Y ,
for any u, v ∈ Y , and in particular, for any u ∈ E. By definition of E, ‖u‖Y ≤
2C

(ii)

17 M whenever u ∈ E, so that

‖w‖Z . C19C
(ii)

17 (νκ2
0)

(1−β)/2(T ∧ (νκ2
0)

−1)(1−β)/2M‖v‖Y .
Thus, to satisfy ‖w‖Z ≤ (1/3)‖v‖Y it suffices to have

C·C19C
(ii)

17 (νκ2
0)

(1−β)/2T (1−β)/2M ≤ 1/3,

for some sufficiently large absolute constant C > 0. In other words, if

T ∗ = (C∗)2/(1−β)(νκ2
0)

−1M−2/(1−β),

where C∗ is given by

C∗ := (1/(3C))(C19C
(ii)

17 )−1,(7.2)

for some large C > 0, then there exists a unique u ∈ E such that u = Φ−w, whose
radius of analyticity at time T ∗ is at least

λa & κ−1
0 M−1/(1−β).

In particular, since u ∈ X with λ(s) =
√
νs, u is Gevrey regular.

On the other hand, if we instead assume that

M . C∗,

then the solution u exists up to time T ∗ = Tf . Hence, λa &
√
νTf .

The proof that u is also a weak solution follows exactly as in [4] (pp. 1184-85).
This completes the proof. �

Proof of Theorems 4 and 5. Let M0 and Mf be given by (2.16) and (2.17), respec-
tively. Let β be given by (7.1). Assume that

M0 . C∗M
(1−β)/(1−β+2/q′)
f ,(7.3)

where

C∗ = (C∗)(2/q
′)/(1−β+2/q′),(7.4)

and C∗ is given by (7.2). Let

T ∗ = (C∗)
q′(νκ2

0)
−1M

−2/(1−β+2/q′)
f .(7.5)

Now let E be given by

E = {u ∈ Z : ‖u− Φ‖Z ≤ C
(ii)

17 C∗M
(1−β)/(1−β+2/q′)
f }.

Since (7.3) holds, by Corollary 18 (with T = T ∗), we know Φ ∈ Z such that

‖Φ‖Y . C
(ii)

17 C∗M
(1−β)/(1−β+2/q′)
f .
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We can now verify the condition ‖w‖Z ≤ (1/3)‖v‖Y for u ∈ E and v ∈ X , directly.
Indeed, proceeding as in the proof of Theorem 3, we know that by Lemma 19

‖w‖Z . C19(νκ
2
0)

(1−β)/2T (1−β)/2‖u‖Y ‖v‖Y ,
for all T ≤ T ∗, whenever u, v ∈ Y . Now observe that for u ∈ E, we have ‖u‖Y ≤
2C

(ii)

17 C∗M
(1−β)/(1−β+2/q′)
f . Hence, by definition of (7.4) and (7.5)

‖w‖Z ≤ C·C19(νκ2
0)

(1−β)/2(T ∗)(1−β)/2C
(ii)

17 C∗M
(1−β)/(1−β+2/q′)
f ‖v‖Y

≤ C·C19C∗C(ii)

17 ‖v‖Y
= (1/3)‖v‖Y ,

where C > 0 is some large absolute constant.
Thus, Theorem 10 furnishes a unique u ∈ E such that the radius of analyticity

at time T ∗ satisfies

λa & κ−1
0 M

−1/(1−β+2/q′)
f .(7.6)

As before, u is also a weak solution.
For Theorem 4, set σ = 0 and q = 2, so that β = 0. Then

λa & κ−1
0 M

−1/2
f ,(7.7)

provided that

M0 . M
1/2
f .(7.8)

For Theorem 5, set σ = −3/4 and q = 59/49, so that β = 15/59. Then

λa & κ−1
0 M

−59/64
f ,(7.9)

provided that

M0 . M
11/16
f(7.10)

Finally, let τ := (νκ2
0)

−1 and λf := κ−1
0 . Observe that for any 0 ≤ s ≤ τ

√
νs ≤

√
ν(νκ2

0)
−1 = κ−1

0 .

Applying Proposition 23 with this choice of τ and λf to (7.7)-(7.10) establishes
the desired lower bound in Theorems 4 and 5. Since V0 ⊂ ℓ2 and C([0, T ∗];V0) ⊂
L∞([0, T ∗]; ℓ2), uniqueness of u as a weak solution follows from a criterion of Lions
(cf. [36] pp. 298-99). �

We have, in fact, just proven the following, more general theorem.

Theorem 20. Let 1 < q ≤ ∞ with 1/q′ = 1 − 1/q, and σ > −1. Let β be given
by (7.1) and M0,Mf be given by (2.16) and (2.17), respectively. Suppose that f
satisfies Mf < ∞. If

M0 . M
(1−β)/(1−β+2/q′)
f ,(7.11)

then there exists T ∗ < Tf and mild solution u ∈ C([0, T ∗];Vσ) to (2.2) such that
u is also a Gevrey regular weak solution, with radius of analyticity at time T ∗

satisfying

λa & κ−1
0 M

−1/(1−β+2/q′)
f .(7.12)
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Remark 21. Observe that Theorem 20 gives some freedom over the assumption
on M0. For instance, if σ ≥ 0 and 1 ≤ q′ < 2, then λa at time T ∗, given by (7.5),
will satisfy the improved estimate

λa & κ−1
0 M

−1/(1+2/q′)
f ,(7.13)

provided that

M0 . M
1/(1+2/q′)
f .(7.14)

If f is time-independent with finitely many modes, then by Proposition 23 we can
replace Mf with G. It would be interesting to know if (7.14) can be established on
average on the global attractor in 2D in the spirit of [6], for σ = 0 and some 1 ≤ q′ <
2, for example, without invoking Brézis-Gallouët and the estimates established by
[6]. Indeed, if q′ = 1, then Theorem 20 yields the estimate λa & G−1/3, which would
recover the estimate for λd predicted by the Kraichnan theory of 2D turbulence (see
[25]).

8. Appendix

We require the following elementary inequality.

Proposition 22. Let b ≥ 0 and 0 ≤ c, d < 1. Then for all t > 0

∫ t

0

e−b(t−s)

(t− s)c(s ∧ b−1)d
ds ≤ C22(c, d)(t ∧ b−1)1−c−d,(8.1)

where C22(c, d) = max{B(1− c, 1 − d),Γ(1 − c)}, where Γ is the gamma function
and B is the beta function.

Proof. Firstly, if b = 0, then set (x ∧ b−1) = x.
Observe that

∫ t

0

e−b(t−s)

(t− s)c(s ∧ b−1)d
ds ≤

∫ t

0

1

(t− s)csd
ds = t−c−d

∫ t

0

(
1− s

t

)−c (s
t

)−d

ds.

Making the change of variables σ = s/t and assuming that bt ≤ 1, we have

t−c−d

∫ t

0

(1− s

t
)−c(

s

t
)−d ds ≤ t1−c−d

∫ 1

0

(1− σ)−cσ−d dσ

= t1−c−d

∫ 1

0

(1− σ)(1−c)−1σ(1−d)−1 dσ

= B(1− c, 1− d)(t ∧ b−1)1−c−d,

where B is given by (6.10).



DISSIPATIVE LENGTH SCALE ESTIMATES 21

On the other hand, if bt > 1 , observe that
∫ t

0

e−b(t−s)

(t− s)c(s ∧ b−1)d
ds = bd

∫ t

0

(t− s)−ce−b(t−s) ds

= bd
∫ t

0

(t− s)−ce−b(t−s) ds

= bd−1 1

b−c

∫ bt

0

σ−ce−σ dσ

≤ (b−1)1−c−d

∫ ∞

0

σ(1−c)−1e−σ dσ

= Γ(1− c)(t ∧ b−1)1−c−d.

�

Now, we prove Proposition 23, which establishes the equivalency (up to a con-
stant) of Mf (see (2.17)) and the Grashof number, G (see (2.19)).

Proposition 23. Let n > 1. Suppose that f is time-independent and satisfies
f = Pκ̄f . Let λf be given such that

sup
|y|≤λf

‖f( ·+iy)‖L2 < ∞,(8.2)

and λ : R+ → R+ satisfy λ(s) ≤ λf whenever 0 ≤ s ≤ τ , for some τ > 0. Then

Mf ∼σ,κ̄,λf ,τ G,(8.3)

where the constants are explicitly identified in (8.6) and (8.7).

Proof of Proposition 23. Let z = x + iy with x ∈ [0, L]n and |y| ≤ λ(s). Then we

can write f(z) =
∑

|k|≤κ̄/κ0
f̂(k)eiκ0k·z. Observe that since κ0 = 2π/L

‖f( ·+iy)‖2L2 =
∑

|k|,|ℓ|≤κ̄/κ0

f̂(k)f̂(ℓ)eκ0(k+ℓ)·y
∫

[0,L]n
eiκ0(k−ℓ)·x dx

= (2π)nκ−n
0

∑

|k|≤κ̄/κ0

|f̂(k)|2e2κ0k·y.

This implies that

e−2κ̄λfκ
−n/2
0 ‖eλ(s)A1/2

f‖ℓ2 . ‖f( ·+iy)‖L2 . κ
−n/2
0 ‖eλ(s)A1/2

f‖ℓ2 ,
for all |y| ≤ λ(s). Hence

1

ν2κ3
0

‖eλ(s)A1/2

f‖ℓ2 ∼κ̄,λf

κ
n/2
0

ν2κ3
0

sup
|y|≤λ(s)

‖f( ·+iy)‖L2.

Now recall the following elementary facts:

• ‖f‖ℓq ≤ ‖f‖ℓp .p,q,κ̄ ‖f‖ℓq for 1 ≤ p < q < ∞;

• ‖f‖ℓp ≤ κ−σ
0 ‖f‖σ ≤

(
κ̄
κ0

)σ
‖f‖ℓp for 1 ≤ p ≤ ∞

These imply that

κ−σ
0

ν2κ3
0

‖f‖λ(s),σ ∼σ,κ̄,λf

κ
n/2
0

ν2κ3
0

‖f( ·+iy)‖L2,(8.4)
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for all |y| ≤ λ(s). Obviously, if we set y = 0, then by the definition of the Grashof
number (see (2.19)), we get

κ−σ
0

ν2κ3
0

sup
0≤s≤τ

‖f‖λ(s),σ ∼σ,κ̄,λf
G.

On the other hand, for 1 ≤ q < ∞, if we take the Lq((0, τ), ds/(νκ2
0)

−1) norm of
(8.4), then

Mf ∼σ,κ̄,λf ,τ
κ
n/2
0

ν2κ3
0

‖f( ·+iy)‖L2,(8.5)

for all |y| ≤ λ(s). Thus, by setting y = 0 in (8.5) and by definition of (2.17), we
deduce that

Mf ∼σ,κ̄,λf ,τ G.

In particular, we have

Cλf ,κ̄,nMf ≤ (νκ2
0τ)

1/qG ≤ CnMf ,(8.6)

where Cn := (2π)n and

Cλf ,κ̄,n := (2π)−n


∑

|k|≤κ̄

1




−1/2

e−2λf κ̄
(κ0

κ̄

)σ
.(8.7)

�

We also made use of a “time-averaged” Brézis-Gallouët-type inequality in 2D and
an Agmon-type inequality in 3D. Our proof of the Brézis-Gallouët-type inequality
mimics that in [8] with an additional step to accomodate time-averages (see (8.9)).
The proof of the Agmon-type inequality follows along the same lines. We supply
both of them here for the sake of completion.

Proposition 24. Let L > 0 and Ω = [0, L]2. Let A be the global attractor of (2.2)
with time-independent forcing f satisfying Pκ̄f = f . Then there exists an absolute
constant C > 0 such that

(νκ0)
2〈‖u‖2W〉 ≤ C〈‖A1/2u‖2L2(Ω)〉

[
1 + ln

(
κ−2
0

〈‖Au‖2L2(Ω)〉
〈‖A1/2u‖2L2(Ω)〉

)]
,(8.8)

for all u ∈ A, where A is the Stokes operator, and 〈 · 〉 denotes an ensemble average
in the sense of (3.10).

Proof. Let uk := |û(k)| for all k ∈ Zn. Fix λ > 0 to be chosen later Observe that
∑

k∈Zd

uk =
∑

|k|≤λ

|k|−1|k|uk

︸ ︷︷ ︸
A

+
∑

|k|>λ

|k|−2|k|2uk

︸ ︷︷ ︸
B

.

Estimate A with Cauchy-Schwarz to get

A ≤


∑

|k|≤λ

|k|−2




1/2
∑

|k|≤λ

|k|2u2
k




1/2

.
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Observe that

∑

|k|≤λ

|k|−2 ≤ C

∫ λ

1

r−1 dr = C logλ.

On the other hand, we estimate B as follows

B ≤


∑

|k|>λ

|k|−4




1/2
∑

|k|>λ

|k|4u2
k




1/2

.

Observe that
∑

|k|>λ

|k|−4 ≤ C

∫ ∞

λ

r−3 dr =
C

2
λ−2.

Combining A and B, so far we have

‖~u‖ℓ1 ≤C(logλ)‖| · |~u‖ℓ2 +
C

2
λ−2‖| · |2~u‖ℓ2 ,

An elementary calculation gives

‖~u‖2ℓ1 ≤2C2(logλ)2‖| · |~u‖ℓ2 +
C2

2
λ−4‖| · |2~u‖2ℓ2.

Taking time-averages, monotonicity and linearity of generalized Banach limits imply

〈‖~u‖2ℓ1〉 ≤C(log λ)〈‖| · |~u‖2ℓ2〉+
C

2
λ−2〈‖| · |2~u‖2ℓ2〉,(8.9)

Now choose λ such that

λ−2 =
〈‖| · |~u‖2ℓ2〉
〈‖| · |2~u‖2ℓ2〉

.

Observe that λ ≥ 1. Therefore, for some absolute constant C > 0,

〈‖~u‖2ℓ1〉 ≤ C〈‖~u‖2ℓ2〉
[
1 + ln

( 〈‖| · |2~u‖2ℓ2〉
〈‖| · |~u‖2ℓ2〉

)]
.

Rescaling with physical units and applying Parseval’s identity completes the proof.
�

Proposition 25. Let Ω := [0, L]3. Suppose that u ∈ H1(Ω) has mean zero. Then

(νκ0)‖Aσ/2u‖W ≤ C25‖u‖
−(σ+1/2)
L2 ‖A1/2u‖σ+3/2

L2 ,(8.10)

for any −3/2 < σ < −1/2, where A is the Stokes operator, and

C25(σ) := max

{
1√

−(2σ + 1)
,

1√
2σ + 3

}
,(8.11)

Proof. Let uk := |û(k)|. Now fix λ > 0 to be chosen later. Observe that
∑

k∈Z3

|k|σuk =
∑

|k|≤λ

|k|σuk

︸ ︷︷ ︸
A

+
∑

|k|≥λ

|k|σ−1|k|uk

︸ ︷︷ ︸
B

.
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For A, we estimate as follows

A ≤
(∫ λ

0

r2σ+2dr

)1/2

‖~u‖ℓ2 ≤ 1√
2σ + 3

λσ+3/2‖~u‖ℓ2 .

For B, we estimate

B ≤


∑

|k|>λ

|k|2(σ−1)




1/2(∑

k∈Z3

|k|2u2
k

)1/2

≤ c

(∫ ∞

λ

r2σ dr

)1/2

‖| · |~u‖ℓ2

≤ c
1√

−(2σ + 1)
λσ+1/2‖| · |~u‖ℓ2 ,

Combining A and B gives

∑

k∈Z3

|k|σuk ≤ max

{
1√

−(2σ + 1)
,

1√
2σ + 3

}(
λσ+3/2‖~u‖ℓ2 + λσ+1/2‖| · |~u‖ℓ2

)
.

Finally, choose

λ :=
‖| · |~u‖ℓ2
‖~u‖ℓ2

.

Therefore

‖Aσ/2u‖W ≤ Cσ‖~u‖−(σ+1/2)
ℓ2 ‖| · |~u‖σ+3/2

ℓ2 ,

Rescaling with physical units and applying Parseval’s identity completes the proof.
�
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