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ABSTRACT OF THE DISSERTATION
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This dissertation studies econometric questions in the context of three different methods

that are frequently used by empirical economists.

Chapter 1 provides a short introduction to the contexts, questions, methods and results

studied in Chapter 2 to Chapter 4.

Chapter 2 studies a nonparametric hedonic equilibrium model in which certain product

characteristics are unobserved. Unlike most previously studied hedonic models, both the

observed and unobserved agent heterogeneities enter the structural functions nonparamet-

rically. Prices are endogenously determined in equilibrium. Using both within-market and

cross-market price variation, I show that all the structural functions of the model are non-

parametrically identified up to normalization. In particular, the unobserved product quality

function is identified if the relative prices of the agent characteristics differ in at least two

ii



markets. Following the constructive identification strategy, I provide easy-to-implement se-

ries minimum distance estimators of the structural functions and derive their uniform rates

of convergence. To illustrate the estimation procedure, I estimate the unobserved efficiency

of American full-time workers as a function of age and unobserved ability.

Chapter 3 studies the averaging GMM estimator that combines a conservative GMM

estimator based on valid moment conditions and an aggressive GMM estimator based on both

valid and possibly misspecified moment conditions, where the weight is the sample analog

of an infeasible optimal weight. We establish asymptotic theory on uniform approximation

of the upper and lower bounds of the finite-sample risk difference between two estimators,

which is used to show that the averaging estimator uniformly dominates the conservative

estimator by reducing the risk under any degree of misspecification. Extending seminal

results on the James-Stein estimator, the uniform dominance is established in non-Gaussian

semiparametric nonlinear models. The simulation results support our theoretical findings.

Chapter 4 examines properties of permutation tests in the context of synthetic control.

Permutation tests are frequently used method of inference for synthetic control when the

number of potential control units is small. We show that the size of permutation tests may

be distorted. Several alternative methods are discussed.
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Chapter 1

Introduction
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This dissertation studies econometric questions in the context of three different methods

that are frequently used by empirical economists.

Chapter 2 provides a new structural method that accounts for potential equilibrium

effects in the construction of counterfactual outcome distributions when the composition of

the agents in the market is substantially altered by policies or social changes. One application

of such counterfatual distributions is in earning inequality. Suppose the college education

expanded such that the number of college graduates in the labor force surged, what would

be the counterfactual earning distribution for workers of all education levels? This question

is very important because the same policy might affect different workers differently. If more

college educated workers entered the labor force, then the market price of college education

would be likely to drop, and the prices of other education levels would be likely to rise (at

least relatively). As a result, the labor supply and demand choice of everyone, including both

the workers and the firms, would be changing. So it is essential to allow the prices and agents’

choices to adjust in an equilibrium framework. Currently available methods in the literature,

however, essentially exclude equilibrium effects (e.g., DiNardo, Fortin, and Lemieux, 1996).

On the contrary, my approach is to use a two-sided, competitive equilibrium model with

heterogenous workers and firms. Each worker chooses how much time to work, given the

market prices and her own efficiency. A big challenge here is that worker efficiency is usually

not observed by researchers. A unique feature or my approach is that I allow worker efficiency

to be a completely nonparametric function of workers’ observable attributes and unobservable

ability. I show that this unobserved worker efficiency function can be nonparametrically

identified up to normalization, along with other structural functions of the model. This
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identification analysis permits counterfactual predictions. The main idea of identification is

that I use both within-market and cross-market variation in observed equilibrium earnings

and working time to recover the unobserved worker efficiency. In addition to identification

analysis, I provide an easy-to-implement, least square type estimation procedure that echoes

each step of the identification strategy, and derive the rates of convergence of the estimators.

Moreover, I also apply the procedure to the data from American Time Use Survey (ATUS)

to estimate the efficiency function of full-time American workers. This paper is the first to

provide a structural method for constructing counterfactual earning distributions (or other

outcome distributions) that accounts for both equilibrium effects and unobserved worker

efficiency (or in general, unobserved product quality) in a nonparametric setting.

Chapter 3 was motivated by a trade-off often faced by empirical researchers, that some

invalid instrumental variables may contain useful information that helps with the estimation

of the parameters of interest. Conservative researchers may choose to use only the valid in-

strumental variables. But we provide an averaging GMM estimator that allows researchers

to delibrately use the information contained in the potentially invalid instrumental variables

to improve the point estimation. This averaging GMM estimator also applies to other gen-

eralized method of moments models. The proposed averaging GMM estimator is a weighted

average of the conservative estimator that uses only the valid moment conditions and the ag-

gressive estimator that uses both valid and potentially misspecified moment conditions, with

the weight being the sample analog of an infeasible optimal weight. By characterizing the

asymptotic behaviors of the bounds of the finite-sample risk difference between the two esti-

mators, we show that the averaging GMM estimator has smaller risk than the conservative

3



estimator under any degree of misspecification.

Chapter 4 investigates the inference methods for synthetic control. Synthetic control is

a popular method for treatment effect estimation in comparative studies and the inference

is often done using permutation tests. We examin the size properties of the permutation

tests for a synthetic control method and find that the size of the permutation tests could be

distorted. And we discuss two alternative inference methods that correct the size distortion

under a factor model framework.

4



Chapter 2

Identification and Estimation of
Nonparametric Hedonic Equilibrium
Model with Unobserved Quality
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2.1 Introduction

Counterfactual distributions are indispensable components for the evaluation of distribu-

tional effects of large-scale policy interventions or social changes; they can also be used to

measure the values of public good or natural resources. For example, labor economists might

be interested in constructing the counterfactual wage distribution in 1988 had there been no

de-unionization or decline in real minimum wage during the 1979-1988 period to evaluate

the effect of labor market institutions on inequality (see DiNardo, Fortin, and Lemieux, 1996

for details). Another application of interest would be to measure heterogenous willingness

to pay for clean air as exhibited in housing prices (e.g., Sieg, Smith, Banzhaf, and Walsh,

2004, and Chay and Greenstone, 2005).

Three features should be acknowledged in the counterfactual distributional analysis.

First, large-scale interventions usually affect a substantial proportion of the agents (e.g.,

DiNardo, Fortin, and Lemieux, 1996, and Chernozhukov, Fernández-Val, and Melly, 2013),

hence the importance of accounting for the equilibrium effects is of first order (e.g., Sieg,

Smith, Banzhaf, and Walsh, 2004). Second, some product characteristics might not be ob-

served by researchers and their importance in price determination is widely recognized (e.g.,

Berry, Levinsohn, and Pakes, 1995), workers’ efficiency being an important example. Third,

there is considerable observed and unobserved heterogeneity among the agents. Ignoring

any of them (e.g., ignoring changes in return to college education as more college graduates

entered the labor force and other factors remained constant) is likely to result in biased

counterfactual predictions.

6



This paper is the first to provide an economic model and an econometric method that

admits all these features in a nonparametric setting. In this paper, I study a hedonic equi-

librium model with unobserved product quality. I show that the quality function, together

with all the other structural functions of the model, can be nonparametrically identified. I

also provide easy-to-implement estimators for the structural functions and an algorithm to

solve the counterfactual equilibrium. In contrast to widely used distributional decomposition

methods, the counterfactuals thus constructed account for equilibrium effects of large-scale

interventions.

I incorporate unobserved product quality captured by a structural quality function e(x, a)

into standard hedonic equilibrium models (e.g., Heckman, Matzkin, and Nesheim, 2010),

which have been used to analyze the market equilibria of differentiated products with het-

erogenous agents. Let zmi denote the effective amount of the product traded between seller-

buyer pair i in market m upon which the payment is determined, and assume that

zmi ≡ hmi · e(xmi , ami ), (2.1.1)

where hmi represents observed quantity, vector xmi and scalar ami represent the seller’s ob-

served and unobserved heterogeneity, respectively. I relax the restriction in standard hedonic

equilibrium models that e(x, a) ≡ 1 by allowing the functional form of the quality function

(and hence, the values of e(xmi , ami ) and zmi ) to be unknown to researchers.

I demonstrate how to nonparametrically identify the structural quality function e(x, a),

7



along with the structural marginal (dis)utility functions of sellers and buyers.1 The identi-

fication strategy consists of three steps. First, I show that the reduced form (equilibrium

outcome) payment function Im(x, a) and quantity function hm(x, a) are nonparametrically

identified within each market m using the method developed in Matzkin (2003). Second,

I exploit within- and cross-market variation in the reduced form functions to identify the

unobserved quality function up to normalization. Specifically, equation (2.1.1) indicates

that quantity and quality are substitutes in determining the payment. As a result, varia-

tion in quality is manifested inversely in the variation in quantity among sellers who receive

the same payment within the same market. Moreover, since quantity is optimally chosen

by sellers, it suffers from an endogeneity problem. The different distributions of observed

agent characteristics across markets serve as aggregate supply or demand shifters that in-

duce cross-market variation in the payment functions, which facilitates the full identification

of the quality function. The identification requirement boils down to a rank condition on

the payment functions, which requires that relative prices of the agent characteristics vary

across markets.2 Finally, the third step utilizes the agents’ first-order conditions to identify

the marginal utility functions, in the spirit of the second step of Rosen (1974)’s method.3

1This paper focuses on the supply side, since the identification and estimation of the demand side struc-
tural functions is completely symmetric.

2To focus on the key identification problem that arises because of unobserved quality, I concentrate on
the scalar-valued quality function e(x, a) in the main text. It is, however, easy to extend the argument to a
vector-valued quality function e(x, a) captured by a single-index structure as in Epple and Sieg (1999) and
Sieg, Smith, Banzhaf, and Walsh (2004). I elaborate this extension in Appendix 2.C. Recent work by Cher-
nozhukov, Galichon, and Henry (2014) and Nesheim (2015) discussed identification of hedonic equilibrium
models with vector-valued unobserved agent characteristics, while still assuming that all product charac-
teristics are observed. Extending the model in this paper to account for vector-valued unobserved product
quality that is more general than the single-index structure is an interesting topic for future research.

3Unlike Rosen (1974), the estimation procedure introduced in Section 2.4.1 does not require explicitly
estimating the price schedule functions.
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The constructive identification strategy suggests an easy-to-implement series estimation

procedure. I derive uniform rates of convergence of the estimators and demonstrate the

procedure by estimating the unobserved efficiency of American full-time workers using data

from the 2015 American Time Use Survey (ATUS).4

The literature on the identification and estimation of hedonic equilibrium models is vast.

In his seminal work, Rosen (1974) originated a two-step method, of which the first step

obtains the hedonic price function and its derivatives by fitting a parametric regression of

prices on product characteristics, and the second step combines the hedonic price function

and agents’ first-order conditions to recover the preference and production parameters. Eke-

land, Heckman, and Nesheim (2004) considered the identification of a nonparametric hedonic

equilibrium model with additive marginal utility and marginal production functions using

single market data. Heckman, Matzkin, and Nesheim (2010) formalized the argument in

Brown and Rosen (1982), Epple (1987) and Kahn and Lang (1988) that, in general, cross-

market variation in price functions is necessary to nonparametrically identify the structural

functions. They then focused on the sufficient restrictions for the identification using single

market data, and generalized Rosen (1974)’s two-step method to a nonparametric setting.

This paper builds on the work of Heckman, Matzkin, and Nesheim (2010) and advances

the literature in two ways. First, it allows product quality to be unobserved by researchers,

which captures a crucial feature of many applications. It extends Heckman, Matzkin, and

4I also propose an algorithm to solve for the counterfactual equilibrium of the model in Appendix 2.A. It
is based on the equilibrium condition and Chiappori, McCann, and Nesheim (2010)’s insight that hedonic
equilibrium models are mathematically equivalent to an optimal transportation problem. A simple simulation
experiment indicates that the numerical equilibrium solution is stable with regard to the estimation errors
in the structural functions.
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Nesheim (2010)’s method by adding one step at the beginning, which nonparametrically

identifies the unobserved quality function e(x, a). Second, this paper is the first to present

a nonparametric estimation procedure and to provide convergence rates for the structural

functions in hedonic equilibrium models using multiple market data.

The counterfactual analysis enabled by this model is closely related to an extensive liter-

ature on distributional decomposition methods (elegantly reviewed in Fortin, Lemieux, and

Firpo (2011)), which aims to evaluate the distributional effects of policy interventions or

historical changes. Several methods have been proposed, including the imputation method

(Juhn, Murphy, and Pierce, 1993), the reweighting method (DiNardo, Fortin, and Lemieux,

1996), the quantile regression-based method (Machado and Mata, 2005), the re-centered

influence function method (Firpo, Fortin, and Lemieux, 2009), among many others (e.g.,

Fessler, Kasy, and Lindner, 2013, and Fessler and Kasy, 2016). Moreover, Rothe (2010)

and Chernozhukov, Fernández-Val, and Melly (2013) considered inference in the context of

distributional decomposition. This literature is based on the “selection on observables” as-

sumption, which excludes general equilibrium effects. On the contrary, this paper establishes

an equilibrium model, which allows the prices of agent characteristics (e.g., the returns to

college education) to change in response to changes in the distribution of the characteristics

in the population (e.g., as more college graduates enter the labor force).

Characteristic-based demand models in industrial organization and marketing permit

unobserved product characteristic as well. This immense literature dates back at least to

Berry (1994) and Berry, Levinsohn, and Pakes (1995) and includes Rossi, McCulloch, and

Allenby (1996), Nevo (2001), Petrin (2002), Berry, Levinsohn, and Pakes (2004), Bajari
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and Benkard (2005), Berry and Pakes (2007), and many others.5 The econometric methods

used to analyze characteristic-based demand models are reviewed by Ackerberg, Benkard,

Berry, and Pakes (2007).6 Characteristic-based demand models often assume additively

separable utility functions and parametric distributions for the random error terms, which

facilitates the identification and estimation using market level data. In this paper, however,

the utility functions are nonparametrically identified and estimated, and the estimators are

of least-square type (and hence easy to implement). Moreover, this paper investigates how

individual level data can be used to predict individual level counterfactual outcomes, which

permits richer counterfactual analyses.

The rest of this chapter is organized as follows. Section 2.2.1 sets up the model and

describes some important properties of the equilibrium; Section 2.2.2 discusses several ap-

plications to which my model and method can be applied for counterfactual policy analysis.

Section 2.3 explains the nonparametric identification of the structural functions of the model.

The key step is the identification of the unobserved quality function; the intuition and formal

results of this step are given in Section 2.3.2. Section 2.4.1 describes the series estimators,

and Section 2.4.2 derives their uniform rates of convergence. An illustration of the estimation

procedure using the 2015 ATUS data is given in Section 2.5. Section 2.6 points out several

directions for future research and concludes the paper. The algorithm to solve for the coun-

terfactual equilibrium, a few complementary results and most of the proofs are collected in

5The utility functions in Bajari and Benkard (2005) and Berry and Pakes (2007) are closer to those in
this paper, where only the characteristics of the products bear utility, but not the products per se. The
consumers’ utility functions in models of Berry, Levinsohn and Pakes (1995) type have independently and
identically distributed random error terms, which represent taste for products for reasons besides product
characteristics.

6The estimation of production functions, dynamic models and other issues are also reviewed.
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Appendices.

2.2 Model

The hedonic equilibrium model with unobserved quality studied in this paper extends the

model of Heckman, Matzkin, and Nesheim (2010) by allowing some product characteristics

to be unobserved by researchers. Section 2.2.1 introduces the model and discusses its prop-

erties that facilitate identifying the structural functions and solving for the counterfactual

equilibrium of the model.7 Section 2.2.2 describes two markets (labor and housing markets)

in which the model and the econometric method provided in this paper could be applied to

analyze the distributional effects of counterfactual interventions.

2.2.1 Model Setup and Properties of Equilibrium

The model analyzed in this paper pertains to competitive markets (indexed by m ∈M) of a

product (good or service), of which the quantity is observed by researchers but quality is not.

Each seller and buyer only trades once, and chooses the effective amount z, where z ∈ Z.

I assume that Z ⊂ R is compact. Let Pm(z) be a twice continuously differentiable price

schedule function defined on Z. Then the value of Pm(z) is the payment for an effective

amount z of the product in market m.

The following is the key assumption of this model, and distinguishes it from other hedonic

equilibrium models (e.g., Heckman, Matzkin, and Nesheim, 2010).

7Parallel discussion for hedonic equilibrium models without unobserved quality can be found in Heckman,
Matzkin, and Nesheim (2010), Ekeland, Heckman, and Nesheim (2004) and Ekeland (2010).
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Assumption 2.2.1. Suppose that the unobserved effective amount z of the product is de-

termined by the unobserved quality e and observed quantity h in a multiplicative way, i.e.,

z = h · e.

Assumption 2.2.1 implies that quantity h and quality e are substitutes in production.

Existing hedonic equilibrium models (e.g., Heckman, Matzkin, and Nesheim, 2010) assume

that e ≡ 1, hence z is observed. But this paper allows quality e and z to be unknown to

researchers.

Sellers and buyers both observe quality. As a result, there is no principal-agent problem

in this model.

Each seller’s quality e is exogenously determined by a quality function e(x, a), where

the dx × 1 vector x is the seller’s observed characteristics, and the scalar a is the seller’s

unobserved characteristic. Sellers have quasilinear utility Pm(z)−U(h, x, a), where U(h, x, a)

is the disutility that a seller with characteristics (x, a) endures by producing the product of

quantity h ∈ H (the set H ⊂ R is compact).8 The population of sellers in market m is

described by the density fmx,a, which is assumed to be differentiable and strictly positive

on the compact sets X × A ⊂ Rdx+1. Sellers may choose not to trade, then they obtain

reservation utility V0.

Each buyer has a utility function R(z, y, b), where the dy × 1 vector y is the buyer’s

observed characteristics and the scalar b is the buyer’s unobserved characteristic. The pop-

ulation of buyers in market m is described by the density fmy,b, which is assumed to be

8I concentrate on scalar-valued quantity h in the main text. But it is easy to extend the argument to
a vector-valued h captured by a single-index structure as those in Epple and Sieg (1999) and Sieg, Smith,
Banzhaf, and Walsh (2004). I elaborate the identification of the quality function e(x, a) under this extension
in Appendix 2.C.
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differentiable and strictly positive on the compact set Y ×B ⊂ Rdy+1. If a buyer chooses not

to participate, she gets reservation utility S0.

For the structural functions e(x, a), U(h, x, a) and R(z, y, b), assume the following as-

sumptions hold.

Assumption 2.2.2. Suppose that buyers’ utility function R(z, y, b), sellers’ disutility func-

tion U(h, x, a) and quality function e(x, a) are all twice continuously differentiable with re-

spect to all arguments on their respective supports. Also suppose that e(x, a) is bounded below

away from zero.

Assumption 2.2.3. Suppose that Uh > 0, Ua < 0, Uha < 0 and Uhh > 0 for all (h, x, a) ∈

H × X × A, and suppose that Rz > 0, Rb > 0, Rzb > 0 and Rzz < 0 for all (z, y, b) ∈ Z ×

Y × B.

Assumption 2.2.4. Suppose ea > 0, that is, the quality function is strictly increasing in

the unobserved characteristic of the seller, for all (x, a) ∈ X ×A.

If reservation utilities V0 and S0 are sufficiently small, then sellers and buyers always

participate.9 In addition, similar to the discussion in Heckman, Matzkin, and Nesheim (2010)

and Chiappori, McCann, and Nesheim (2010), Assumptions 2.2.2-2.2.4 (Spence-Mirrlees type

single-crossing condition) are sufficient for each seller and buyer who participates to have a

unique interior optimum.

A seller with characteristics (x, a) in market m chooses h ∈ H, a quantity supplied, to

9Allowing for binding reservation utilities serves as an important topic for future research.
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maximize

max
h∈H

Pm(h · e(x, a))− U(h, x, a).

Since quality e(x, a) is fixed for seller (x, a), choosing h ∈ H is equivalent to choosing

z ∈ Z. Under Assumptions 2.2.2-2.2.4, there exists an effective amount supply function

zs ≡ sm(x, a) (hence a quantity supply function hm(x, a) ≡ sm(x, a)/e(x, a)) that satisfies

the seller’s first-order condition (FOC)

Pm
z (sm(x, a)) · e(x, a)− Uh

(
sm(x, a)

e(x, a)
, x, a

)
= 0. (2.2.1)

Applying the Implicit Function Theorem (Hildebrandt and Graves, 1927) to equation (2.2.1)

gives rise to

∂zs

∂a
=

∂sm(x, a)

∂a
=
eUha − Pm

z eea − Uhhhmea
Pm
zze

2 − Uhh
, (2.2.2)

where the arguments of the functions on the right-hand side of equation (2.2.2) are suppressed

for simplicity. By Assumptions 2.2.2 and 2.2.3 and the FOC in equation (2.2.1), Pm
z > 0.

Then Assumptions 2.2.2-2.2.4 imply that sm(x, a) is strictly increasing in a.10 Then the

inverse effective amount supply function a = (sm)−1(x, z) exists and satisfies

∂(sm)−1(x, z)

∂zs
=

Pm
zze

2 − Uhh
eUha − Pm

z eea − Uhhhmea
.

10As discussed later, equations (2.2.6) and (2.2.7) imply that Pmzze2 − Uhh < 0.
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The payment received by seller (x, a) in market m is then determined by

Im(x, a) = Pm(sm(x, a)) = Pm(hm(x, a) · e(x, a)). (2.2.3)

Note that the payment function Im(x, a) is also strictly increasing in a. But since hm(x,

a) = sm(x, a)/e(x, a), the quantity function hm(x, a) is not necessarily monotonic in a.

Similar argument applies to the buyers. Each buyer chooses z ∈ Z to maximize

max
z∈Z

R(z, y, b)− Pm(z).

There exists an effective amount demand function zd ≡ dm(y, b) that satisfies the buyers’

FOC

Rz(d
m(y, b), y, b)− Pm(dm(y, b)) = 0, (2.2.4)

and an inverse effective amount demand function b = (dm)−1(y, z) that satisfies

∂(dm)−1(y, z)

∂zd
=

Rzb

Pm
zz −Rzz

.

Define the range of equilibrium effective amount supplied

Zs = {z ∈ Z: there exists a market m ∈M and some

(x, a) ∈ X ×A such that in equilibrium z = hm(x, a) · e(x, a)},
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and the range of equilibrium effective amount demanded

Zd = {z ∈ Z: there exists a market m ∈M and some

(y, b) ∈ Y × B such that in equilibrium z = dm(y, b)}.

In a unique interior equilibrium, the density of effective amount supplied zs equals that of

effective amount demanded zd for all z ∈ Z. Using standard change-of-variables formula,

this requires Zs = Zd and

ˆ
X
fmx,a

(
x, (sm)−1(x, z)

) ∂(sm)−1(x, z)

∂zs
dx

=

ˆ
Y
fmy,b
(
y, (dm)−1(y, z)

) ∂(dm)−1(y, z)

∂zd
dy, (2.2.5)

for ∀z ∈ Zs ∩ Zd.

Figure 2.1 illustrates the market equilibrium. Under the price schedule function Pm, each

seller (x, a) (drawn from distribution fmx,a) chooses her optimal effective amount supplied zs.

The distribution of zs is represented by the green line in the figure. Similarly, each buyer

(y, b) (drawn from distribution fmy,b) chooses her optimal effective amount demanded zd. The

distribution of zd is represented by the blue line in the figure. If the green density equals

the blue density for ∀z ∈ Z, then the market is in equilibrium.

On the contrary, Figure 2.2 illustrates a case where the market is not in equilibrium.

For example, sellers who are willing to supply the effective amount z1 outnumber the buyers

who demand z1, and more buyers than sellers are willing to trade effective amount z2. This
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mismatch between supply and demand will drive the price schedule function Pm to adjust

to clear the market.

Following Chiappori, McCann, and Nesheim (2010), the equilibrium of this model is

defined as follows.

Definition 2.2.1. (Equilibrium) Let µm be a joint density on the space of effective amount

z, characteristics (x, a) of sellers and (y, b) of buyers. A pair (µm, Pm) is an equilibrium if:

(i) the marginal of µm with respect to (x, a) equals fmx,a, and that with respect to (y, b)

equals fmy,b (market clears); and

(ii) if (z, x, a, y, b) is in the support of µm, then z = sm(x, a) = dm(y, b) (agents optimize).

By the argument provided in Chiappori, McCann, and Nesheim (2010) (also in Ekeland

(2010) and Heckman, Matzkin, and Nesheim (2010)), Assumptions 2.2.2-2.2.4 are sufficient

for the equilibrium to exist and to be unique and pure. A pure equilibrium means that each

seller matches to a single buyer, and each pair chooses a single effective amount z.

Note that the effective amount supply function sm(x, a) and demand function dm(y, b)

have a superscript m, since they both depend on the market-specific price schedule function

Pm. And price schedule function Pm is itself an equilibrium outcome, which in turn depends

on the market primitives (fmx,a, f
m
y,b, U, e, R). To see this more clearly, substitute ∂(sm)−1(x,z)

∂zs

and ∂(dm)−1(y,z)
∂zd

, rearrange equation (2.2.5) and suppress the arguments of the functions, one

gets

Pm
zz (z) =

´
Y
fmy,b
Rzb

Rzzdy +
´
X

fmx,a
−(Uhae−Pmz eea−Uhhhmea)

Uhhdx´
Y
fmy,b
Rzb

dy +
´
X

e2fmx,a
−(Uhae−Pmz eea−Uhhhmea)

dx
. (2.2.6)

Equation (2.2.6) implies that the curvature of the price schedule function Pm can be regarded
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as a weighted average of the curvatures of the sellers’ disutility and the buyers’ utility func-

tions. Assumptions 2.2.2 and 2.2.3 imply that the second-order condition (SOC)11

Rzz · e2 − Uhh < 0 (2.2.7)

holds for all (h, x, a) ∈ H×X ×A and all (z, y, b) ∈ Z × Y × B. Together, equation (2.2.6)

and equation (2.2.7) imply Pm
zze

2 − Uhh < 0.

Since the structural functions (U, e, R) remain invariant across markets, equation (2.2.6)

implies that cross-market variation in the price schedule functions Pm is driven by that in

the distributions fmx,a and fmy,b. As a result, cross-market variation in other reduced form

(equilibrium outcome) functions, such as sm, dm, hm and Im, also depends on that in fmx,a

and fmy,b. Throughout this paper, I summarize this dependence using the superscript m.

In the same market, all sellers and buyers face the same price schedule function Pm,

so sellers with the same characteristics (x, a) always choose the same quantity hm(x, a) to

supply. Without restrictions on sellers’ marginal disutility function Uh(h, x, a), its identifi-

cation using single market data is obstructed by this endogeneity problem. With multiple

market data, however, the distributions fmx,a and fmy,b serve as aggregate supply or demand

shifters (i.e., instruments) that induce variation in Pm (and hence hm(x, a)) while maintain-

ing individual values of (x, a). In practice, multiple markets could be geographically isolated

locations, or repeated observations of the same market over time.

Chiappori, McCann, and Nesheim (2010) showed that the classic hedonic equilibrium

11SOC of a pair-wise surplus maximization problem.
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model is mathematically equivalent to a stable matching problem and to an optimal trans-

portation problem. The same argument applies to the model in this paper as well, since

quality is observable to both sellers and buyers. This insight suggests an algorithm for

solving for the counterfactual equilibria, which is provided in Appendix 2.A.

Figure 2.1: Equilibrium

The green line illustrates the distribution of the optimal effective labor supply zs under the price schedule
function Pm in market m, as a function of sellers’ observed characteristics x and unobserved characteristic a,
which follow the distribution fmx,a. Similarly, the blue line illustrates the distribution of the optimal effective
labor demand zd under the same price schedule function Pm in market m, as a function of buyers’ observed
characteristics y and unobserved characteristic b, which follow the distribution fmy,b. As is shown in this
figure, when the distributions of zs and zd are the same, the market clears.
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2.2.2 Applications

In this section, I discuss two markets to which the model just introduced could be applied

to conduct counterfactual distributional analysis. In these examples, the unobserved quality

of product plays a key role in determining the payment.

2.2.2.1 Labor Markets

In labor markets, workers are the sellers, and (single-employed) firms are the buyers.12 Both

workers and firms exhibit considerable heterogeneity. Workers differ in observed charac-

teristics x (e.g., age, education and skills) and unobserved characteristic a (e.g., ability).

Likewise, employers differ in observed characteristics y (e.g., capital stock) and unobserved

characteristic b (e.g., productivity). For a worker with characteristics (x, a), her efficiency

is given by the function e(x, a), which is the same across markets and is unknown to re-

searchers.13 On the other hand, distributions of agent heterogeneity (fmx,a and fmy,b) could

vary among markets, which induce market-specific earnings schedule functions Pm(z). As a

result, workers with the same characteristics may choose to work different amount of time

hm(x, a) and make different earnings Im(x, a) in different markets. Workers’ working time

and efficiency are substitutes in production, and firms care about how much work is done,

but not the working time in itself.14 Therefore, earnings depend on the effective amount

12It is also helpful to think of the buyers as job positions.
13Firms know z and e(x, a) by looking at how much work the worker gets done.
14Ideally, researchers would want to measure the actual time workers spend in working. The required

working time written on the contract deviates from the actual time, since workers could shirk or work
over-time.
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of labor z via the earnings schedule functions Pm(z), but not on working time hm(x, a) or

efficiency e(x, a) per se.

The model in this paper could be used to answer various counterfactual questions that

labor economists are interested in. For example, to understand the distributional effects

of the changes in labor market institutions during 1979-1988, one may want to construct

counterfactual earnings distribution in 1988 had there been no de-unionization since 1979

(e.g., DiNardo, Fortin, and Lemieux, 1996). This corresponds to the equilibrium earnings

of a market in which workers’ union status (one element of x) had remained what it was in

1979 and other agent characteristics (other variables in (x, a, y, b)) had shifted to their 1988

values.

2.2.2.2 Housing Markets

In housing markets, renters are the buyers, and rental companies (or landlords) are the

sellers.15 Renters’ observed characteristics y include income and family structure, and their

unobserved characteristic b may be preference over amenities. Rental companies diversify in

their characteristics (x, a) as well. For a rental company (x, a), the quality of its apartments

is given by e(x, a), which does not depend on which neighborhoodm the rental company is in

and is unknown to researchers. However, varying composition of renters and rental companies

(fmy,b and fmx,a) across neighborhoods result in neighborhood-specific rental price schedule

functions Pm(z), which in turn prompt rental companies with the same characteristics to

offer apartments with different sizes hm(x, a) (e.g., square footage) across neighborhoods.

15I focus on housing rental markets, but the same logic applies to housing sale markets.
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Rental payments Im(x, a) depend on the effective amount of housing z via Pm(z), but not

directly on the sizes.

A number of interesting counterfactual questions in housing markets could be analyzed

using the model in this paper. For example, one may be interested in the distributional effects

on housing prices if some public good (e.g., improvement in air quality) were provided.16 The

public good enhances effective amount of housing for all apartments (by all rental companies)

in the neighborhood, and it is manifested in increased value of e(x, a) for any given (x, a).

Therefore, the counterfactual analysis could be conducted by solving the new equilibrium

with a higher quality function e(x, a) estimated using data for neighborhoods with more

public good.

2.3 Identification

This section explains identification of the reduced form (equilibrium outcome) functions

and the structural functions of the model. The analysis in this section assumes that seller

characteristics x, buyer characteristics y, equilibrium payment I and equilibrium quantity h

in all markets are observed. The effective amount z, however, is unknown to researchers.

The identification consists of three steps. First, identify the reduced form payment func-

tions Im(x, a) and the quantity functions hm(x, a) using single market data. This step

employs an existing method (Matzkin, 2003) and facilitates the identification of structural

functions. Second, exploit the variation of the payment and quantity functions within and

16Harrison and Rubinfeld (1978) and Chay and Greenstone (2005) used housing prices to evaluate
willingness-to-pay for clean air. Another example is predicting the effects of cleaning up a hazardous waste
site on the distribution of housing prices (Stock, 1991).
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across markets to identify the quality function e(x, a). This is the key step, and I will provide

both graphical illustration of intuition and general results. The key identification condition

requires that the relative returns to sellers’ characteristics differ across markets. Finally,

combine the functions identified from the first two steps and sellers’ FOC to recover sellers’

marginal disutility function Uh(h, x, a). To overcome the endogeneity problem of h, this fi-

nal step requires multiple market data as well. Section 2.3.1, 2.3.2 and 2.3.3 elaborate these

steps, respectively.

This section focuses on the quality function e(x, a) and sellers’ marginal disutility function

Uh(h, x, a). The identification of buyers’ marginal utility function Rz(z, y, b) can be achieved

via the same method as that used for Uh(h, x, a), and is briefly discussed in Section 2.3.4.

Although fmx,a and fmy,b are also primitives of the model and serve as aggregate supply or

demand shifters that generate cross-market variation in equilibria, their identification is

straightforward. The convergence rate results in Section 2.4.2 account for the fact that they

need to be estimated.

2.3.1 Identification of Payment Functions Im(x, a) and Quantity Func-

tions hm(x, a) Using Single Market Data

In each market m, there is a payment function Im(x, a) and a quantity function hm(x, a) in

equilibrium. This section uses the method developed by Matzkin (2003) to identify these

reduced form functions using data from their own markets.

Assumption 2.3.1. Suppose that x ⊥⊥ a and y ⊥⊥ b within each market m ∈M.17

17Like Heckman, Matzkin, and Nesheim (2010), because a enters the quality function and sellers’ marginal
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Assumption 2.3.2. Suppose that the sellers’ unobserved characteristic a follows the uniform

distribution U [0, 1] in all markets.

Assumption 2.3.2 may seem restrictive at first glance. But an equivalent interpretation is

that a is the quantile of the seller’s unobserved characteristic. Based on this interpretation,

Assumption 2.3.2 requires that the sellers’ unobserved characteristic has the same distribu-

tion (probably unknown) across all markets.18 In Appendix 2.B, I relax this requirement

to allow for a finite number of types of markets: markets of the same type have the same

distribution of a, yet markets of different types have different distributions of a. The method

discussed in the main text can be applied to each type without modification, as long as the

type of each market is known and each type has multiple markets.19 Assumption 2.3.2 is

also a normalization that facilitates identification of nonseparable functions like Im(x, a) (see

Matzkin, 2003 for details).20 But this normalization does not affect counterfactuals.

Lemma 2.3.1. Under Assumptions 2.2.1-2.3.2, the payment function Im(x, a) is strictly

increasing in the seller’s unobserved characteristic a, and Im(x, a) is nonparametrically iden-

tified within each market m.

Proof. By the payment equation (2.2.3), Im(x, a) is strictly increasing in a if Pm is strictly

increasing in z and sm is strictly increasing in a. Given the sellers’ FOC in equation (2.2.1),

disutility function nonparametrically, this independence assumption is much weaker than it would be if a
entered additively.

18To see this clearly, suppose that Fa is the distribution function of a, and suppose Ũ(h, x, a) and ẽ(x, a)
are the "real" supply side structural functions. Then, based on the quantile interpretation, the supply side
structural functions identified in this paper are compounds of Fa and the "real" structural functions. That
is, U(h, x, a) = Ũ

(
h, x, F−1a (a)

)
and e(x, a) = ẽ

(
x, F−1a (a)

)
. Therefore, Assumption 7 implicitly requires

that Fa is invariant across markets.
19One example of such market level heterogeneity might be large cities v.s. small cities.
20One could normalize the distribution of a to any other distributions.
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Assumptions 2.2.2 and 2.2.3 guarantee that Pm
z > 0. On the other hand, by the SOC in

equation (2.2.7) and the equilibrium condition in equation (2.2.6), we have Pm
zz ·e2−Uhh < 0.

Then the expression of ∂sm(x, a)/∂a in equation (2.2.2) is positive under Assumptions 2.2.3

and 2.2.4 and the setup of the model. This proves the first statement of the lemma.

Given the strict monotonicity of Im(x, a) and Assumption 2.3.2, the identification of

Im(x, a) follows the same argument as in Matzkin (2003) (Specification I). In particular, by

monotonicity, Assumptions 2.3.1 and 2.3.2, we have

FIm|xm=x (Im(x, a)) = Fam(a) = a.

Then

Im(x, a) = F−1
Im|xm=x(a),

where F−1
Im|xm=x is the inverse function of the conditional distribution function FIm|xm=x with

respect to Im.

Corollary 2.3.2. Under the conditions for Lemma 2.3.1, the partial derivatives of the pay-

ment function Imxj(x, a) (j = 1, . . . , dx) and Ima (x, a) are nonparametrically identified within

each market m.

Once one identifies the payment function Im, she can invert it with respect to a to obtain

a = (Im)−1(x, I). Now that a is known, it is easy to identify the quantity function hm(x, a).

Unlike Im(x, a), monotonicity is not necessary for identification of hm(x, a).

Lemma 2.3.3. Under the conditions for Lemma 2.3.1, the quantity function hm(x, a) is

26



nonparametrically identified within each market m. Moreover, its partial derivatives hmxj(x, a)

(j = 1, . . . , dx) and hma (x, a) are nonparametrically identified within each market m as well.

Note that the functional forms of Im(x, a) and hm(x, a) vary from market to market due

to the cross-market variation in fmx and fmy , and they are identified within each market.

Their variation within and across markets reveals enough information to identify the quality

function e(x, a).

2.3.2 Identification of Quality Function e(x, a) Using Multiple Mar-

ket Data

This section explains how to use within- and cross-market variation in the reduced form

functions to identify the structural quality function e(x, a). Section 2.3.2.1 illustrates the

intuition for scalar-valued x. The intuition applies to vector-valued x as well. Section 2.3.2.2

gives general results.

Since quality e and effective amount z are both unobserved, one can always re-scale the

price schedule function to make two quality functions observationally equivalent. So we need

the following normalization.

Assumption 2.3.3. Suppose that for a known fixed vector (x̄, ā) ∈ X ×A, we have e(x̄, ā) =

1.

The vector (x̄, ā) corresponds to a normalization seller, and the quality of other sellers

will be expressed as ratio relative to her.
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2.3.2.1 Intuition

This section illustrates the intuition for identifying the unobserved quality function e(x, a)

for scalar-valued x. The interpretation of the key identification condition is that relative

returns to sellers’ characteristics differ across markets.

Recall the payment equation (2.2.3),

Im(x, a) = Pm(sm(x, a)) = Pm(hm(x, a) · e(x, a)).

Since all sellers in the same market face the same price schedule function Pm(z), those sellers

who receive the same payment must have sold the same effective amount z of the product.

In other words, if Imi = Imj for two sellers i and j in the same market m, then

hm(xmi , a
m
i ) · e(xmi , ami ) = hm(xmj , a

m
j ) · e(xmj , amj ),

which implies

e(xmi , a
m
i )

e(xmj , a
m
j )

=
hm(xmj , a

m
j )

hm(xmi , a
m
i )
. (2.3.1)

That is, the quality ratio between sellers who receive the same payment in the same market

equals the inverse ratio of their quantities.

This is illustrated by Figure 2.3. The solid green line in Step 1 of Figure 2.3 represents

the iso-payment curve in Market 1 that contains the normalization seller (x̄, ā). By equa-

tion (2.3.1), the quality of any seller (x1, a1) on the same iso-payment curve can be identified
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as

e(x1, a1) =
h1(x̄, ā)

h1(x1, a1)
.

The same argument applies to other iso-payment curves in Market 1, which are represented

by dashed green lines in Step 1. For example, for sellers (x̃, ã) and (x2, a2) on another

iso-payment curve, we get

e(x2, a2)

e(x̃, ã)
=

h1(x̃, ã)

h1(x2, a2)
. (2.3.2)

Since iso-payment curves in the same market are disjoint, neither e(x2, a2) nor e(x̃, ã) could

be identified relative to the normalization seller (x̄, ā). The dashed green lines in Step 1

indicate that the quality of the sellers on those iso-payment curves are not identified yet.

This is the most one can get from variation of reduced form functions in one market.

With data from another market, however, it is possible to connect the disjoint iso-payment

curves. Suppose that in Market 2, there is an iso-payment curve that contains both (x̄, ā)

and (x2, a2), then

e(x2, a2) =
h2(x̄, ā)

h2(x2, a2)
. (2.3.3)

Combining equation (2.3.2) and equation (2.3.3), we now can identify the quality for seller

(x̃, ã) as

e(x̃, ã) =
h1(x2, a2)

h1(x̃, ã)
· h

2(x̄, ā)

h2(x2, a2)
.

Once e(x̃, ã) is identified, so is the quality of other sellers on the same iso-payment curve.

In Step 2 of Figure 2.3, the iso-payment curve in Market 2 is represented by the solid

blue line. It connects the Market 1 iso-payment curve that contains (x̄, ā) with the one that
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contains (x̃, ã), and thus helps determine the quality level of the latter. In Step 3 of Figure

2.3, the latter becomes solid green as the quality of those sellers are identified. Step 4 shows

that by applying this idea recursively to the iso-payment curves from the two markets that

cross with each other, one will be able to identify the quality of all sellers with characteristics

in the support of their distribution.

As suggested by Figure 2.3, the key identification condition is that for any seller char-

acteristics (x, a), one could find two markets that have iso-payment curves with different

slopes. Otherwise, all the iso-payment curves are disjoint, and it is impossible to connect a

seller (x, a) with the normalization seller (x̄, ā) if they do not belong to the same iso-payment

curve.

Note that the slope of an iso-payment curve can be expressed in terms of the partial

derivatives of the payment function, then the identification condition is

I1
x(x, a)

I1
a(x, a)

6= I2
x(x, a)

I2
a(x, a)

,

for ∀(x, a) ∈ X × A, scalar-valued x and two markets. This condition is also equivalent to

that the matrix  I1
a(x, a) −I1

x(x, a)

I2
a(x, a) −I2

x(x, a)


has full column rank.

This key condition is easy to understand. Partial derivatives of the payment functions

represent the equilibrium market returns to respective seller characteristics. For example,

30



Imx (x, a) could represent labor market return to education, and Ima (x, a) to ability. Then

the identification condition requires that the relative equilibrium returns to education and

to ability differ in at least two markets. This in turn requires that cross-market variation in

fmx and fmy is sufficiently rich to induce such cross-market variation in equilibria.

2.3.2.2 General Results

It is not hard to generalize the intuition explained in Section 2.3.2.1 to vector-valued x.

This section formalizes this intuition and gives general results on the identification of the

unobserved quality function e(x, a).

When x is vector-valued (dx > 1), the key identification condition is still that relative

market returns to seller characteristics differ in at least two markets. Without loss of gen-

erality, one could measure returns as relative to that to the unobserved characteristic a.

Suppose Ima (x, a) 6= 0 and Im′a (x, a) 6= 0 for markets m and m′. Then it is required that

(
Imx1(x, a)

Ima (x, a)
, . . . ,

Imxdx (x, a)

Ima (x, a)
, 1

)
6=

(
Im
′

x1
(x, a)

Im′a (x, a)
, . . . ,

Im
′

xdx
(x, a)

Im′a (x, a)
, 1

)
. (2.3.4)

These are just the gradient vectors of the payment functions Im(x, a) and Im′(x, a).

Cross-market variation in equilibria is crucial for identifying the quality function. The

following assumption requires that neither sellers nor buyers move across markets on a large

scale. Otherwise, the distributions fmx and fmy will tend to equalize across markets, which

diminishes the cross-market variation.

Assumption 2.3.4. Suppose that the sellers and buyers do not move across markets.
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In order to state the formal identification condition and the theorem, I need some no-

tation. Let ∇xI
m(x, a) denote the dx × 1 vector of the derivatives of Im(x, a) with respect

to (x1, . . . , xdx)
′, let ∇xh

m(x, a) denote those of hm(x, a) and let ∇xe(x, a) denote those of

e(x, a). For any integer d, let Id denote a d× d identity matrix.

Assumption 2.3.5. Suppose that there exist M markets such that the (Mdx) × (dx + 1)

matrix B(x, a) defined as

B(x, a) ≡


Idx ⊗ I1

a(x, a) −∇xI
1(x, a)

...
...

Idx ⊗ IMa (x, a) −∇xI
M(x, a)


has full column rank for all (x, a) ∈ X ×A.21

It only takes some basic algebra to see that if equation (2.3.4) holds for all (x, a) ∈ X ×A,

then Assumption 2.3.5 is satisfied. Moreover, if Assumption 2.3.5 holds, there could be more

than two markets satisfying equation (2.3.4).

Define the (Mdx)× 1 vector A(x, a) as

A(x, a) ≡


[h1
a(x, a)∇xI

1(x, a)− I1
a(x, a)∇xh

1(x, a)] /h1(x, a)

...[
hMa (x, a)∇xI

M(x, a)− IMa (x, a)∇xh
M(x, a)

]
/hM(x, a)

 .

21Note that a necessary condition for B(x, a) to have full column rank is that there are dx + 1 linearly
independent rows in B(x, a). Therefore we need at least two markets. But when data from more markets is
available, and multiple combinations of rows satisfy the requirement, we get over-identification.
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And define dx + 1 real-valued functions g1(x, a), . . . , gdx+1(x, a) as

(g1(x, a), . . . , gdx+1(x, a))′ ≡ [B(x, a)′B(x, a)]−[B(x, a)′A(x, a)],

where the superscript “−” indicates the generalized inverse of a matrix.

Theorem 2.3.4. Suppose that Assumptions 2.3.3-2.3.5 and the conditions for Lemma 2.3.1

are satisfied. The quality function is then nonparametrically identified on X ×A as

e(x, a) = exp

(
dx∑
j=1

ˆ xj

x̄j

gj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)dsj +

ˆ a

ā

gdx+1(x, t)dt

)
,(2.3.5)

where x̄j (j = 1, . . . , dx) and ā are coordinates of the normalization vector (x̄, ā).

Proof. Suppose that all the functions involved are continuously differentiable. Then, taking

the partial derivatives of the payment equation (2.2.3) yields

∇xI
m(x, a) = Pm

z (hm(x, a) · e(x, a)) · [∇xh
m(x, a)e(x, a) + hm(x, a)∇xe(x, a)] ,

Ima (x, a) = Pm
z (hm(x, a) · e(x, a)) · [hma (x, a)e(x, a) + hm(x, a)ea(x, a)] . (2.3.6)

Provided that Ima (x, a) 6= 0 and hm(x, a) 6= 0, one may take the ratios of the first dx equations

to the last equation. One then obtains dx equations of the same form:

∇xI
m(x, a)

Ima (x, a)
=
∇xh

m(x, a)e(x, a) + hm(x, a)∇xe(x, a)

hma (x, a)e(x, a) + hm(x, a)ea(x, a)
=

∇xhm(x,a)
hm(x,a)

+ ∇xe(x,a)
e(x,a)

hma (x,a)
hm(x,a)

+ ea(x,a)
e(x,a)
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=⇒ Ima (x, a)
∇xe(x, a)

e(x, a)
−∇xI

m(x, a)
ea(x, a)

e(x, a)

= [hma (x, a)∇xI
m(x, a)− Ima (x, a)∇xh

m(x, a)] /hm(x, a), (2.3.7)

for all m ∈ M and all (x, a) ∈ X × A. Stack equation (2.3.7) for all markets, one gets a

system of equations

B(x, a) ·
(
∇xe(x, a)′

e(x, a)
,
ea(x, a)

e(x, a)

)′
= A(x, a), (2.3.8)

for all (x, a) ∈ X × A. Suppose that Assumption 2.3.5 is satisfied. Then, there is a unique

solution of ea(x, a)/e(x, a) and exj(x, a)/e(x, a) (j = 1, . . . , dx) for all (x, a) ∈ X × A.22

Define a system of differential equations in an unknown function ε(x, a) as follows

(
∇xε(x, a)′

ε(x, a)
,
εa(x, a)

ε(x, a)

)′
= [B(x, a)′B(x, a)]−1[B(x, a)′A(x, a)], (2.3.9)

which depends only on the identified reduced form functions Im(x, a), hm(x, a) and their

derivatives. Then the identification of the quality function e(x, a) amounts to a unique

solution to the differential equations in (2.3.9).

First fix (x2, . . . , xdx , a) = (x̄2, . . . , x̄dx , ā), and only consider the first equation in (2.3.9).

Note that

ex1(x1, x̄2, . . . , x̄dx , ā)

e(x1, x̄2, . . . , x̄dx , ā)
=
d log (e(x1, x̄2, . . . , x̄dx , ā))

dx1

= g1(x1, x̄2, . . . , x̄dx , ā).

22In fact, it also requires that the vector A(x, a) lies in the space spanned by the column vectors of B(x, a)
for all (x, a) ∈ X ×A, but it is implied by Assumption 2.2.1.
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Then,

log (e(x1, x̄2, . . . , x̄dx , ā)) =

ˆ x1

x̄1

g1(s1, x̄2, . . . , x̄dx , ā)ds1 + log (e(x̄, ā))

=

ˆ x1

x̄1

g1(s1, x̄2, . . . , x̄dx , ā)ds1, (2.3.10)

for all x1 ∈ X1, where the second equality holds by Assumption 2.3.3. Then, consider the

second equation in (2.3.9). Similarly, for any given x1 ∈ X1 and fixed (x3, . . . , xdx , a) =

(x̄3, . . . , x̄dx , ā), we have

ex2(x1, x2, x̄3, . . . , x̄dx , ā)

e(x1, x2, x̄3, . . . , x̄dx , ā)
=
d log (e(x1, x2, x̄3, . . . , x̄dx , ā))

dx2

= g2(x1, x2, x̄3, . . . , x̄dx , ā),

which implies

log (e(x1, x2, x̄3, . . . , x̄dx , ā))

=

ˆ x2

x̄2

g2(x1, s2, x̄3, . . . , x̄dx , ā)ds2 + log (e(x1, x̄2, . . . , x̄dx , ā))

=

ˆ x2

x̄2

g2(x1, s2, x̄3, . . . , x̄dx , ā)ds2 +

ˆ x1

x̄1

g1(s1, x̄2, . . . , x̄dx , ā)ds1,

for all (x1, x2) ∈ X1 × X2. Continue to integrate over (x3, . . . , xdx , a) once at a time in this

manner, one will eventually obtain the solution to the initial value problem in equation (2.3.9)

and e(x̄, ā) = 1 as

e(x, a) = exp

(
dx∑
j=1

ˆ xj

x̄j

gj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)dsj +

ˆ a

ā

gdx+1(x, t)dt

)
.
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Moreover, this solution is unique by the first fundamental theorem of calculus. This com-

pletes the proof of the theorem.

Define the range of equilibrium effective amount supplied in market m as

Zms = {z ∈ Z: there exists some (x, a) ∈ X ×A in market

m ∈M such that in equilibrium z = hm(x, a) · e(x, a)}.

Corollary 2.3.5. Under the conditions for Theorem 2.3.4, the unobserved effective amount

z = hm(x, a) · e(x, a) is identified.

Corollary 2.3.6. Under the conditions for Theorem 2.3.4, the price schedule function Pm(z)

for market m ∈M is nonparametrically identified on Zms .

Proof. Assumption 2.2.1, earnings equation (2.2.3), Lemmas 2.3.1 and 2.3.3, and Theorem

2.3.4 together imply the result.

2.3.3 Identification of Sellers’ Marginal Disutility Function Uh(h, x, a)

Using Multiple Market Data

The next important result is the identification of the marginal disutility function Uh. Before

stating the theorem, define the equilibrium support for sellers’ marginal disutility function

as:

HXA = {(h, x, a) ∈ H ×X ×A: there exists a market m ∈M and
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some (x, a) ∈ X ×A such that in equilibrium h = hm(x, a)}.

If |M| = 1, then HXA is degenerate since h is endogenous. As discussed in Section

2.2.1, different distributions fmx and fmy serve as aggregate supply or demand shifters (i.e.,

instruments) that induce variation in Pm (and hence hm(x, a)) while maintaining individual

values of (x, a). The richer the variation in fmx and fmb , the larger the set HXA will be.

Theorem 2.3.7. Under the conditions for Theorem 2.3.4, the sellers’ marginal disutility

function Uh(h, x, a) is nonparametrically identified on HXA.

Proof. The result follows from Theorem 2.3.4, Corollary 2.3.6, and the sellers’ FOC

Pm
z (hm(x, a) · e(x, a)) · e(x, a) = Uh(h

m(x, a), x, a)

in each market m ∈M.

2.3.4 Identification of Buyers’ Marginal Utility Function Rz(z, y, b)

Using Multiple Market Data

Identifying buyers’ marginal utility function Rz(z, y, b) and the effective amount demand

function dm(y, b) makes little difference from Heckman, Matzkin, and Nesheim (2010)’s

method. The only tweak stems from the fact that z is not directly observed. Once one

recovers z from the supply side, Heckman, Matzkin, and Nesheim (2010)’s method can be

applied without modification. The relevant definition, assumption and results are given

below.
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Define the equilibrium support for buyers’ marginal utility function Rz(z, y, b) as:

ZYB = {(z, y, b) ∈ Z × Y × B: there exists a market m ∈M

and some (x, a) ∈ X ×A such that z = dm(y, b)

and z = hm(x, a) · e(x, a) in equilibrium}.

Assumption 2.3.6. Suppose that the buyers’ unobserved characteristic b follows the uniform

distribution U [0, 1] in all markets.

Lemma 2.3.8. (Heckman, Matzkin, and Nesheim 2010 Theorem 4.1) Under As-

sumption 2.3.6 and the conditions for Theorem 2.3.4, the buyers’ marginal utility function

Rz(z, y, b) is nonparametrically identified on ZYB.23

2.4 Estimation

This section provides an estimation procedure for the structural functions. Section 2.4.1

describes the estimation procedure step by step, and in Section 2.4.2 I derive the uniform

rates of convergence for the estimators.

2.4.1 Series Estimation of Structural Functions

The estimators introduced in this section are premised on the following data structure.

Suppose that linked seller-buyer data for M independent markets are available. Within

23In labor markets, if the firms’ revenue is observed by researchers, then the function R(z, y, b) is also
nonparametrically identified under the conditions of Lemma 3.
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each market m, suppose that there are Nm seller-buyer pairs, and each pair is indexed by i.

Researchers observe which seller is matched with which buyer. For each pair i (i = 1, . . . , Nm

and m = 1, . . . ,M), researchers observe (Imi , x
m
i , h

m
i , y

m
i ).24

Assumption 2.4.1. Suppose {(Imi , xmi , hmi , ymi )}Nm

i=1 are i.i.d. for m = 1, . . . ,M .

Assumption 2.4.2. For notational simplicity, suppose that the sample sizes from all the

markets are equal, i.e., N1 = N2 = · · · = NM = N .

In the rest of this chapter, I maintain Assumptions 2.2.1-2.4.2. Assumption 2.4.2 is not

essential for deriving the convergence rates, but relaxing it will complicate the notation and

will not provide any new insights. In principle, even though the sample sizes from all the

markets are the same, one still could use market-specific numbers of series basis functions

kmQ,N , kmI,N and kmh,N to estimate âm, Îm(x, a) and ĥm(x, a) respectively within each market.

To keep the notation simple, however, I assume that one uses the same tuning parameters

for all markets for the rest of the chapter, i.e., kmQ,N = kQ,N , kmI,N = kI,N and kmh,N = kh,N .

All the convergence rate results in Section 2.4.2 hold if one relaxes this assumption.25

For any vector v, let ‖v‖ ≡ (v′v)1/2 denote its Euclidean norm; for any matrix A, let

‖A‖ ≡ [trace(A′A)]1/2 denote its Euclidean norm.

The estimation of the structural functions (Uh, e, Rz) follows the steps suggested by the

identification strategy. I start with the within market estimation of two reduced form func-

tions, namely, the payment function Im(x, a) and the quantity function hm(x, a), as well as

their partial derivative functions for each market. Then in light of the proof of Theorem

24In labor markets, it is possible that the employers’ revenue Rmi is also observed in the data.
25With minor changes in notation to accommodate market-specific tuning parameters.
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2.3.4, the quality function e(x, a) can be estimated by first solving an estimated version of

the equations (2.3.8) and then integrating over x and a. Finally, sellers’ marginal disutility

function Uh(h, x, a) can be estimated by a series minimum distance (MD) estimator using

the sellers’ FOCs.

Following the identification steps in Section 2.3, this section describes the steps for esti-

mating e(x, a) and Uh(h, x, a) in details. The steps for the buyers’ marginal utility function

Rz(z, y, b) are similar and will be briefly summarized at the end.

2.4.1.1 Estimation of Payment Functions Im(x, a) and Quantity Functions hm(x, a)

Using Single Market Data

Let me first clarify some notation used in this section: Im(x, a) and hm(x, a) indicate the

reduced form functions; Im (or hm, xm, or am) is a random variable, denoting the payment

received by (or the quantity supplied by, the observed characteristics of, or the unobserved

characteristic of) a randomly chosen seller from market m; and Imi (or hmi , xmi , or ami )

represents the observed payment (or the observed quantity, the observed characteristics, or

the unobserved characteristic) value of a specific seller i in market m.

In Section 2.2.1, I showed that the payment function Im(x, a) is strictly increasing in a

under Assumptions 2.2.1-2.2.4. Recall that am is the conditional quantile of the payment Im

given observed characteristics xm of the seller in market m. That is

FIm|xm=x(I
m(x, a)) = Fam(a) = a.
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Use a series of basis functions ΛkQ,N (x) ≡ (λ1(x), . . . , λkQ,N (x))′ to approximate the indicator

function I(Im ≤ Imi ) , where kQ,N is the number of basis functions. Then one can estimate

ami , the conditional quantile of Im given xm by

âmi ≡ F̂Im|xm=xmi
(Imi )

≡ ΛkQ,N (xmi )′

(
N∑
j=1

ΛkQ,N (xmj )ΛkQ,N (xmj )′

)−( N∑
j=1

ΛkQ,N (xmj )I(Imj ≤ Imi )

)
.(2.4.1)

Note that the tuning parameter kQ,N might depend on the sample size N . Here, âmi serves

as a generated regressor when we estimate functions Im(x, a) and hm(x, a).

Use a series of basis functions ΦkI,N (x, a) ≡ (φ1(x, a), . . . , φkI,N (x, a))′ to approximate

the unknown payment function Im(x, a), where kI,N is the number of basis functions. Then,

the estimated series coefficients for the payment function Im(x, a) are the solution to the

following least square problem

ξ̂mI,kI,N ≡ arg min
ξ∈RkI,N

N∑
i=1

(
Imi − ΦkI,N (xmi , â

m
i )′ξ

)2
.

Therefore, the estimated payment function is

Îm(x, a) ≡ ΦkI,N (x, a)′ξ̂mI,kI,N . (2.4.2)

Note that there is an explicit solution for ξ̂mI,kI,N ,

ξ̂mI,kI,N =

(
N∑
i=1

ΦkI,N (xmi , â
m
i )ΦkI,N (xmi , â

m
i )′

)−( N∑
i=1

ΦkI,N (xmi , â
m
i )Imi

)
. (2.4.3)
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Because ΦkI,N (x, a) is a series of known functions, their first-order derivatives are also known.

Therefore, the series estimator of the partial derivatives of Im(x, a) can be obtained imme-

diately

Îmxj(x, a) ≡
(
∂φ1(x, a)

∂xj
, . . . ,

∂φkI,N (x, a)

∂xj

)
ξ̂mI,kI,N , (2.4.4)

for j = 1, . . . , dx, and

Îma (x, a) ≡
(
∂φ1(x, a)

∂a
, . . . ,

∂φkI,N (x, a)

∂a

)
ξ̂mI,kI,N . (2.4.5)

Similarly, use the series of basis functions Φkh,N (x, a) ≡ (φ1(x, a), . . . , φkh,N (x, a))′ to approx-

imate the unknown quantity function hm(x, a).

Then the estimated series coefficients for the quantity function hm(x, a) is

ξ̂mh,kh,N ≡

(
N∑
i=1

Φkh,N (xmi , â
m
i )Φkh,N (xmi , â

m
i )′

)−( N∑
i=1

Φkh,N (xmi , â
m
i )hmi

)
. (2.4.6)

Therefore, the estimated quantity function and its first-order derivatives are

ĥm(x, a) ≡ Φkh,N (x, a)′ξ̂mh,kh,N , (2.4.7)

ĥma (x, a) ≡
(
∂φ1(x, a)

∂a
, . . . ,

∂φkh,N (x, a)

∂a

)
ξ̂mh,kh,N , (2.4.8)

and

ĥmxj(x, a) ≡
(
∂φ1(x, a)

∂xj
, . . . ,

∂φkh,N (x, a)

∂xj

)
ξ̂mh,kh,N . (2.4.9)
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for j = 1, . . . , dx.

2.4.1.2 Estimation of Quality Function e(x, a) Using Multiple Market Data

Just like the identification strategy, estimating the quality function e(x, a) starts with the sys-

tem of equations (2.3.8). Replace Im(x, a), hm(x, a) and their derivatives in equation (2.3.8)

(i.e., in the expressions of B(x, a) and A(x, a)) with their counterparts estimated in Sec-

tion 2.4.1.1. Use the series of basis functions Φkxj,MN
(x, a) = (φ1(x, a), . . . , φkxj,MN

(x, a))′

to approximate exj(x, a)/e(x, a) and Φka,MN
(x, a) = (φ1(x, a), . . . , φka,MN

(x, a))′ to approxi-

mate ea(x, a)/e(x, a). Let the series coefficients be βxj ,kxj,MN
(j = 1, . . . , dx) and βa,ka,MN

,

respectively. And let βMN ≡ (β′x1,kx1,MN
, . . . , β′xdx ,kxdx ,MN

, β′a,ka,MN
)′. Then, for each seller i

and each market m, one obtains an estimated version of the equations (2.3.8) as follows:

B̂m(xmi , â
m
i ) ·



Φkx1,MN
(xmi , â

m
i )′β̂x1,kx1,MN

...

Φkxdx ,MN
(xmi , â

m
i )′β̂xdx ,kxdx ,MN

Φka,MN
(xmi , â

m
i )′β̂a,ka,MN


= Âm(xmi , â

m
i ),

where the dx × (dx + 1) matrix B̂m(xmi , â
m
i ) is

B̂m(xmi , â
m
i ) ≡

(
Idx ⊗ Îma (xmi , â

m
i ) , −∇xÎ

m(xmi , â
m
i )
)
,
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and the dx × 1 vector Âm(xmi , â
m
i ) is

Âm(xmi , â
m
i ) ≡

[
ĥma (xmi , â

m
i )∇xÎ

m(xmi , â
m
i )− Îma (xmi , â

m
i )∇xĥ

m(xmi , â
m
i )
]/

ĥm(xmi , â
m
i ).

Therefore, the estimated series coefficients are the solutions to the following least square

problem

β̂MN ≡ arg min
β

M∑
m=1

N∑
i=1

LS(xmi , â
m
i ; β),

where

LS(xmi , â
m
i ; β) ≡

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
B̂m(xmi , â

m
i ) ·



Φkx1,MN
(xmi , â

m
i )′βx1

...

Φkxdx ,MN
(xmi , â

m
i )′βxdx

Φka,MN
(xmi , â

m
i )′βa


− Âm(xmi , â

m
i )

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

.

There is an explicit expression for β̂MN as follows:

β̂MN = Ŝ−ΦΦŜΦA,

where

ŜΦΦ ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΦ(xmi , â
m
i )′ŜΦ(xmi , â

m
i ), (2.4.10)
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ŜΦA ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΦ(xmi , â
m
i )′Âm(xmi , â

m
i ). (2.4.11)

In equations (2.4.10) and (2.4.11),

ŜΦ(xmi , â
m
i ) ≡

(
ŜΦ,1(xmi , â

m
i ) , ŜΦ,2(xmi , â

m
i )
)
,

where

ŜΦ,1(xmi , â
m
i ) ≡


Φkx1,MN

(xmi , â
m
i )′ 0

. . .

0 Φkxdx ,MN
(xmi , â

m
i )′

⊗ Î
m
a (xmi , â

m
i ),

ŜΦ,2(xmi , â
m
i ) ≡ −∇xÎ

m(xmi , â
m
i )⊗ Φka,MN

(xmi , â
m
i )′.

Then the estimated ratios of the quality function are



êx1 (x,a)

e(x,a)
≡ ĝ1(x, a) = Φkx1,MN

(x, a)′β̂x1,kx1,MN
,

...
...

̂exdx (x,a)

e(x,a)
≡ ĝdx(x, a) = Φkxdx ,MN

(x, a)′β̂xdx ,kxdx ,MN
,

êa(x,a)
e(x,a)

≡ ĝdx+1(x, a) = Φka,MN
(x, a)′β̂a,ka,MN

.

(2.4.12)

By replacing the relevant ratios of the quality function in equation (2.3.5) with their estima-
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tors given in equation (2.4.12), one obtains the estimator of the quality function

ê(x, a) = exp

(
dx∑
j=1

ˆ xj

x̄j

ĝj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)dsj +

ˆ a

ā

ĝdx+1(x, t)dt

)

= exp

(
dx∑
j=1

ˆ xj

x̄j

[
Φkxj,MN

(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)′β̂xj ,kxj,MN

]
dsj

+

ˆ a

ā

[
Φka,MN

(x, t)′β̂a,ka,MN

]
dt

)
. (2.4.13)

2.4.1.3 Estimation of Sellers’ Marginal Disutility Function Ûh(h, x, a) Using Mul-

tiple Market Data

Estimation of the sellers’ marginal disutility function starts from the partial derivatives of

the payment equation (2.3.6). Combined with the sellers’ FOC in equation (2.2.1), they

imply that for ∀(x, a) ∈ X ×A,


∇xI

m(x, a) =
[
∇xh

m(x, a) + hm(x, a)∇xe(x,a)
e(x,a)

]
· Uh(hm(x, a), x, a),

Ima (x, a) =
[
hma (x, a) + hm(x, a) ea(x,a)

e(x,a)

]
· Uh(hm(x, a), x, a).

(2.4.14)

Now, use a series of basis functions ΨkU,MN
(h, x, a) ≡ (ψ1(h, x, a), . . . , ψkU,MN

(h, x, a))′ to

approximate the unknown marginal disutility function. Then, one wants to choose the series

coefficients γ̂kU,MN
to minimize the sum of the squared distances between the left-hand sides

and the right-hand sides of the equations (2.4.14). Specifically, define

Gx,MN(hmi , x
m
i , â

m
i ; γ)
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≡

[
∇xĥ

m(xmi , â
m
i ) + ĥm(xmi , â

m
i )

̂∇xe(xmi , â
m
i )

e(xmi , â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′γ −∇xÎ

m(xmi , â
m
i ),

and

Ga,MN(hmi , x
m
i , â

m
i ; γ)

≡

[
ĥma (xmi , â

m
i ) + ĥm(xmi , â

m
i )

̂ea(xmi , â
m
i )

e(xmi , â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′γ − Îma (xmi , â

m
i ).

And the minimum distance (MD) estimator of the series coefficients are defined as

γ̂kU,MN
≡ arg min

γ∈RkU,MN

M∑
m=1

N∑
i=1

∥∥∥∥∥∥∥∥
 Gx,MN(hmi , x

m
i , â

m
i ; γ)

Ga,MN(hmi , x
m
i , â

m
i ; γ)


∥∥∥∥∥∥∥∥

2

.

The estimator γ̂kU,MN
has a closed-form expression given by

γ̂kU,MN
= Ŝ−ΨΨŜΨI

where

ŜΨΨ ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′ŜΨ(hmi , x

m
i , â

m
i ), (2.4.15)

ŜΨI ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′ŜI(h

m
i , x

m
i , â

m
i ). (2.4.16)
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In equations (2.4.15) and (2.4.16), the (dx + 1)× kU,MN matrix ŜΨ(hmi , x
m
i , â

m
i ) is

ŜΨ(hmi , x
m
i , â

m
i ) ≡


[
∇xĥ

m(xmi , â
m
i ) + ĥm(xmi , â

m
i )

̂∇xe(xmi ,âmi )

e(xmi ,â
m
i )

]
⊗ΨkU,MN

(hmi , x
m
i , â

m
i )′[

ĥma (xmi , â
m
i ) + ĥm(xmi , â

m
i )

̂ea(xmi ,â
m
i )

e(xmi ,â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′



and the (dx + 1)× 1 vector ŜI(hmi , xmi , âmi ) ≡ (∇xÎ
m(xmi , â

m
i )′, Îma (xmi , â

m
i ))′. As a result, the

estimated sellers’ marginal disutility function is

Ûh(h, x, a) ≡ ΨkU,MN
(h, x, a)′γ̂kU,MN

.

The steps described in Sections 2.4.1.1-2.4.1.3 complete the estimation of the supply side

structural functions (e, Uh).

2.4.1.4 Estimation of Buyers’ Marginal Utility Function R̂z(z, y, b) Using Multi-

ple Market Data

The buyers’ marginal utility function Rz can be estimated by similar steps. First, within

each market m, estimate the conditional quantile bmi of the payment Imi using a formula

similar to equation (2.4.1). The unobserved effective amounts can also be estimated as

ẑmi ≡ hmi · ê(xmi , âmi ), since researchers observe which seller is matched with which buyer.

Second, estimate the reduced form payment function Im(y, b) and effective amount demand

function dm(y, b) using the generated regressor b̂mi and generated dependent variable ẑmi from

the single market m. Third, taking the partial derivatives of the payment equation for the
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buyers yields

∇yI
m(y, b) = Pm

z (dm(y, b)) · ∇yd
m(y, b),

Ima (y, b) = Pm
z (dm(y, b)) · dma (y, b).

Combine these equations with the buyers’ FOC in equation (2.2.4), and use a series

of basis functions ΘkN (z, y, b) ≡ (θ1(z, y, b), . . . , θkN (z, y, b)) to approximate the unknown

buyers’ marginal utility function Rz(z, y, b). Then, the function can be estimated by an MD

estimator similar to that in Section 2.4.1.3. Moreover, if the buyers’ utility values Rm
i are

observed,26 then the second and third steps are not necessary. The series estimation of R

and its derivative functions boils down to a linear regression of Rm
i on ΘkN (ẑmi , y

m
i , b̂

m
i ) using

multiple market data.

2.4.2 Uniform Rates of Convergence of Structural Function Esti-

mators

In this section and Appendix 2.D, C denotes a sufficiently large, generic positive constant,

and c denotes a sufficiently small, generic positive constant, both of which may take different

values in different uses.

26For example, firm revenue in labor markets.
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2.4.2.1 Unobserved Heterogeneity Estimators âmi

This subsection derives the convergence rates of the within market series estimators of the

conditional quantile ami given in equation (2.4.1).

Assumption 2.4.3. Suppose that FIm|xm(I|x) ≡ FIm|xm=x(I) is continuously differentiable

of order d1 > dx on the support with derivatives uniformly bounded in I and x.

Define

νa,N ≡
(
kQ,N
N

+ k
1−2d1/dx
Q,N

)1/2

.

And I will assume that kQ,N/N → 0 and kQ,N .

Theorem 2.4.1. Suppose that Assumption 2.4.3 is satisfied. Then,

N∑
i=1

|âmi − ami |2/N = O
(
ν2
a,N

)
.

2.4.2.2 Payment Function Estimators Îm(x, a) and Quantity Function Estima-

tors ĥm(x, a)

This subsection derives the convergence rates of the within market series estimators of the

reduced form payment functions Im(x, a) and quantity functions hm(x, a) and their first-

order derivatives.

Assumption 2.4.4. Suppose that X and Y are Cartesian products of closed intervals.
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Assumption 2.4.5. Suppose that Φk(x, a) = Φ1,k1(x1) � · · ·� Φdx,kdx
(xdx) � Φa,ka(a). This

implies that k = ka ·
∏dx

j=1 kj.

In Assumption 2.4.5, if k denotes the number of series basis functions used to approximate

an unknown function of (x, a) (or of (h, x, a)), then let kh, kj and ka denote the numbers of

series basis functions used to approximate the h component, xj component and a component

in the Cartesian space, respectively.

Let ζ0(k) ≡ k, ζa(k) ≡ k2
ak, and ζj(k) ≡ k2

jk.

Assumption 2.4.6. Suppose that for all m ∈ M, Im(x, a) and hm(x, a) are continuously

differentiable of order d ≥ 2 on the support.27

For a function l(x, a) : X × A → R, define the norm |l|δ as |l|δ ≡ max|µ|≤δ sup(x,a)∈X×A

|∂µl(x, a)/∂xµ11 · · · ∂x
µdx
dx
∂aµa |, with µ1 + · · ·+ µdx + µa = µ (µ1, . . . , µdx , µa are integers).

One implication of Assumptions 2.3.1, 2.3.2 and 2.4.6 is that there exist some positive

constants BI and Bhu such that for all m ∈M, |Im|2 ≤ BI , and |hm|2 ≤ Bhu.

Suppose that the following assumption about the approximation error by the basis func-

tions holds.

Assumption 2.4.7. Suppose that for a positive integer δI ≥ 1, there exist a constant αI > 0

and pseudo-true series coefficients ξm0,I,kI ∈ RkI such that |Im − Φ′kIξ
m
0,I,kI
|δI ≤ Ck−αII for all

positive integers kI . Suppose as well that for a positive integer δh ≥ 1, there exist a constant

αh > 0 and pseudo-true series coefficients ξm0,h,kh ∈ Rkh such that |hm−Φ′khξ
m
0,h,kh
|δh ≤ Ck−αhh

for all positive integers kh.28

27Without loss of generality, here I assume that d is the same across all markets m ∈M.
28Without loss of generality, here I assume that αI and αh are the same across all markets m ∈M.
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Let lm(x, a) denote either the payment function Im(x, a) or the quantity function hm(x, a).

Let l̂m(x, a) denote the series estimator of lm(x, a) defined in equation (2.4.2) or equa-

tion (2.4.7), and let l̂mxj(x, a) (j = 1, . . . , dx) and l̂ma (x, a) denote the series estimators of the

first-order derivatives of lm(x, a) defined in equation (2.4.4), equation (2.4.5), equation (2.4.8)

or equation (2.4.9).

Define

νl,N ≡ ζ0(kl,N)
(
νa,N + k−αll,N

)
,

νlj ,N ≡ ζj(kl,N)
(
νa,N + k−αll,N

)
,

νla,N ≡ ζa(kl,N)
(
νa,N + k−αll,N

)
.

And I will assume that νl,N → 0, νlj ,N → 0 and νla,N → 0 as N → ∞ for the rest of the

chapter. Moreover, note that νl,N = O(νlj ,N), and νl,N = O(νla,N).

Theorem 2.4.2. Suppose that Assumptions 2.4.4-2.4.7 and the conditions of Theorem 2.4.1

are satisfied. Suppose as well that the numbers of series basis functions used to approximate

each component in kl,N all increase to infinity with N , and
√
kl,Nνa,Nζa(kl,N) → 0 as N →

∞. Then

sup
(x,a)∈X×A

|l̂m(x, a)− lm(x, a)| = Op (νl,N) .
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Theorem 2.4.3. Suppose that the conditions for Theorem 2.4.2 are satisfied . Then

sup
(x,a)∈X×A

∣∣∣l̂mxj(x, a)− lmxj(x, a)
∣∣∣ = Op

(
νlj ,N

)
,

and

sup
(x,a)∈X×A

∣∣∣l̂ma (x, a)− lma (x, a)
∣∣∣ = Op (νla,N) .

Since âmi is used as a generated regressor,29 the convergence rates of the reduced form

functions and their derivatives depend on the estimation errors of âmi as well as on the series

approximation errors of the functions themselves.

2.4.2.3 Quality Function Estimator ê(x, a)

This subsection derives the convergence rates of the cross-market series estimators of the

quality function e(x, a) and its first-order derivative ratios.

Assumption 2.4.8. Suppose that for a positive integer δe ≥ 0, there exist a constant αe > 0

and pseudo-true series coefficients β0,xj ,kxj
∈ Rkxj (for j = 1, . . . , dx) and β0,a,ka ∈ Rka such

that |exj/e−Φ′kxj
β0,xj ,kxj

|δe ≤ Ck−αexj
and |ea/e−Φ′kaβ0,a,ka|δe ≤ Ck−αea for all positive integers

kxj (j = 1, . . . , dx) and ka.

Define

SΦΦ ≡ (MN)−1

M∑
m=1

N∑
i=1

SΦ(xmi , a
m
i )′SΦ(xmi , a

m
i ),

29Recall equations (2.4.3) and (2.4.6).
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where

SΦ(xmi , a
m
i ) ≡ (SΦ,1(xmi , a

m
i ) , SΦ,2(xmi , a

m
i )) ,

SΦ,1(xmi , a
m
i ) ≡


Ima (xmi , a

m
i )Φkx1,MN

(xmi , a
m
i )′ 0

. . .

0 Ima (xmi , a
m
i )Φkxdx ,MN

(xmi , a
m
i )′

 ,

and

SΦ,2(xmi , a
m
i ) ≡ −∇xI

m(xmi , a
m
i )⊗ Φka,MN

(xmi , a
m
i )′.

Assumption 2.4.9. Suppose that there exist some positive constants Beu and Bel such that

the quality function e(x, a) satisfies |e|2 ≤ Beu and |e|0 ≥ Bel.

Assumption 2.4.10. Suppose:

(i) λmin (E(SΦΦ)) ≥ c > 0;

(ii) There exists some positive constant Bhl such that for all m ∈M, |hm|0 ≥ Bhl.

For j = 1, . . . , dx, define

νej ,M,N ≡ ζ0(kxj ,MN)

[
dx∑
j=1

νhj ,N + νha,N +
dx∑
j=1

νIj ,N + νIa,N + k−αea,MN +
dx∑
j=1

k−αexj ,MN

]
,

and

νea,M,N ≡ ζ0(ka,MN)

[
dx∑
j=1

νhj ,N + νha,N +
dx∑
j=1

νIj ,N + νIa,N + k−αea,MN +
dx∑
j=1

k−αexj ,MN

]
.
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And I will assume that νej ,M,N → 0 (j = 1, . . . , dx) and νea,M,N → 0 as N →∞ for the rest

of the chapter.

Lemma 2.4.4. Suppose that Assumptions 2.4.8-2.4.10 and the conditions of Theorems 2.4.1-

2.4.3 are satisfied. Suppose as well that the numbers of series basis functions kxj ,MN →∞,

ν2
a(σN)

(
ζ2
a(kxj ,MN) + ζ2

a(ka,MN)
)
→ 0, νa,N(ζa(kxj ,MN)+ζa(ka,MN))(ζ0(kxj ,MN)+ζ0(ka,MN))→

0, [νla,Nζ0(kxj ,MN) + ζ0(ka,MN)νlj ,N ](ζ0(kxj ,MN) + ζ0(ka,MN))→ 0 for j = 1, . . . , dx, ka,MN →

∞, and [ζ2
0

(
maxj=1,...,dx kxj ,MN

)
+ ζ2

0 (ka,MN)](maxj=1,...,dx kxj ,MN + ka,MN)/(MN) → 0 as

N →∞. Then

∥∥∥β̂MN − β0,MN

∥∥∥ = Op

(
dx∑
j=1

νhj ,N + νha,N +
dx∑
j=1

νIj ,N + νIa,N + k−αea,MN +
dx∑
j=1

k−αexj ,MN

)
.

Theorem 2.4.5. Suppose that the conditions for Lemma 2.4.4 are satisfied. Then, for

j = 1, . . . , dx

sup
(x,a)∈X×A

∣∣∣ ̂exj(x, a)/e(x, a)− exj(x, a)/e(x, a)
∣∣∣ = Op

(
νej ,M,N

)
,

and

sup
(x,a)∈X×A

∣∣∣ ̂ea(x, a)/e(x, a)− ea(x, a)/e(x, a)
∣∣∣ = Op (νea,M,N) .

Theorem 2.4.6. Suppose that the conditions for Theorem 2.4.5 are satisfied. Then
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sup
(x,a)∈X×A

|ê(x, a)− e(x, a)| = Op

(
dx∑
j=1

νej ,M,N + νea,M,N

)
.

The convergence rates of the quality function and its derivative ratios depend on the esti-

mation errors of the reduced form functions and the series approximation errors of the quality

function itself. Note that the estimation errors in âmi affect the estimation errors of exj(x,

a)/e(x, a), ea(x, a)/e(x, a) and e(x, a) only through Îm, ĥm and their partial derivatives.

2.4.2.4 Sellers’ Marginal Disutility Function Estimator Ûh(h, x, a)

This subsection derives the convergence rate of the cross-market series estimator of the

sellers’ marginal disutility function Uh(h, x, a).

For a function l(h, x, a): H × X × A → R, define the norm |l|δ as |l|δ ≡ max|µ|≤δ

sup(h,x,a)∈H×X×A |∂µl(x, a)/∂hµh∂xµ11 · · · ∂x
µdx
dx
∂aµa |, with µh + µ1 + · · · + µdx + µa = µ (µh,

µ1, . . . , µdx , µa are integers).

Assumption 2.4.11. Suppose that for a positive integer δU ≥ 0, there exist a constant

αU > 0 and pseudo-true series coefficients γ0,kU ∈ RkU such that |Uh−Ψ′kUγ0,kU |δU ≤ Ck−αUU

for all positive integers kU .

Assumption 2.4.12. Suppose that there exists some positive constant BU such that |Uh|1 ≤

BU .

Assumption 2.4.13. Suppose that Ψk(h, x, a) = Ψh,kh(h) � Ψ1,k1(x1) � · · ·� Ψdx,kdx
(xdx) �

Ψa,ka(a). This implies that k = kh · ka ·
∏dx

j=1 kj.

56



Assumption 2.4.14. Suppose that H is a compact set and the cross-market variation in fmx

and fmy is rich enough that the equilibrium cross-market joint density of (h, x, a) is bounded

away from zero.

Define

SΨΨ ≡ (MN)−1

M∑
m=1

N∑
i=1

SΨ(hmi , x
m
i , a

m
i )′SΨ(hmi , x

m
i , a

m
i ),

where

SΨ(hmi , x
m
i , a

m
i ) ≡


[
∇xh

m(xmi , a
m
i ) + hm(xmi , a

m
i )
∇xe(xmi ,ami )

e(xmi ,a
m
i )

]
⊗ΨkU,MN

(hmi , x
m
i , a

m
i )′[

hma (xmi , a
m
i ) + hm(xmi , a

m
i )

ea(xmi ,a
m
i )

e(xmi ,a
m
i )

]
ΨkU,MN

(hmi , x
m
i , a

m
i )′

 .

Assumption 2.4.15. Suppose that λmin (E(SΨΨ)) ≥ c > 0.

Lemma 2.4.7. Suppose that Assumptions 2.4.11-2.4.15 and the conditions for Theorem

2.4.5 are satisfied. Suppose as well that kU,MN → ∞,
√
kU,MNνa,Nζa(kU,MN) → 0, kU,MN

νej ,N → 0 and kU,MNνea,N → 0 as N →∞. Then

∥∥γ̂kU,MN
− γ0,kU,MN

∥∥ = Op

(
νea,M,N +

dx∑
j=1

νej ,M,N + k−αUU,MN

)
.

In addition, define

νUh,M,N ≡ ζ0(kU,MN)

[
νea,M,N +

dx∑
j=1

νej ,M,N + k−αUU,MN

]
.

And I will assume that νUh,M,N → 0 as N →∞ for the rest of the chapter.
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Theorem 2.4.8. Suppose that the conditions of Lemma 2.4.7 are satisfied. Then

sup
(h,x,a)∈H×X×A

∣∣∣Ûh(h, x, a)− Uh(h, x, a)
∣∣∣ = Op (νUh,M,N) .

The convergence rate of the sellers’ marginal disutility function depends on the estimation

errors of the quality function and on the series approximation error of the sellers’ marginal

disutility function itself. Note that the estimation errors of âmi and the reduced form functions

and their derivatives directly affect the convergence rate of the sellers’ marginal disutility

function, but they are dominated by the estimation errors of the quality function and its

derivatives.

2.5 Empirical Illustration in Labor Markets

In this section, I apply the estimation procedure provided in Sections 2.4.1 to estimate the

efficiency (quality) function e in labor markets. Section 2.5.1 introduces the data set, and

Section 2.5.2 estimates the workers’ unobserved efficiency function.

2.5.1 Data: the 2015 American Time Use Survey

The data set I use is the American Time Use Survey (ATUS, see Hofferth, Flood, and

Sobek, 2013 for details). The ATUS randomly chooses one individual from a subsample of

the households that are completing their participation in the Current Population Survey

(CPS) and asks them to recall their time spent, minute by minute, on various activities

within a randomly picked 24-hour period in the past. The ATUS classifies activities into 17
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major categories and many more sub-categories, and provides a quite precise measure of the

time that workers actually spent in working.30

I consider the 2015 ATUS respondents,31 and focus on full-time workers in the three

largest cities: New York, Los Angeles and Chicago32. After dropping observations on Satur-

days and Sundays and making some other minor adjustments, I end up with a sample of 92

workers in New York, 74 workers in Los Angeles, and 55 workers in Chicago.

I use the time spent in the “working” sub-category of the ATUS as the measure of working

time hmi , the weekly earnings in the CPS as the measure of earnings Imi , and the age reported

in the CPS as the observed characteristic xmi of the workers.33

Figure 2.4 shows the scatter plots of working time per day and weekly earnings of each

worker in the three cities. Within- and cross-market variation appears prominent: (i) both

working time and earnings vary substantially within all the markets; (ii) for the same working

time, earnings in New York tend to be higher than those in Los Angeles, which in turn, tend

to be higher than those in Chicago. In fact, the median of the earnings-to-working-time

ratio is 2.47 for the workers in New York, 2.03 in Los Angeles, and 1.62 in Chicago. Such

30Major categories include working and work-related activities, household activities, education, traveling
and others. For working and work-related activities, it further breaks down to working, looking for a job,
eating and drinking on the job (e.g., lunch breaks), security procedures, and so on. I use the time spent in
the working sub-category as the measure of working time.

31The data were obtained via ATUS-X Extract Builder: Sandra L. Hofferth, Sarah M. Flood, and Matthew
Sobek. 2013. American Time Use Survey Data Extract System: Version 2.4 [Machine-readable database].
Maryland Population Research Center, University of Maryland, College Park, Maryland, and Minnesota
Population Center, University of Minnesota, Minneapolis, Minnesota.

32To be precise, the three largest metro areas: New York-Newark-Bridgeport (NY-NH-CT-PA), Los
Angeles-Long Beach-Riverside (CA), and Chicago-Naperville-Michigan City (IL-IN-WI).

33Individuals in the ATUS can be linked to their observations in the CPS to obtain rich demographic
information. In this illustration, I use age as the only observed characteristic for simplicity. The application
to more observed variables poses no theoretical problem, but it may take more computing time.
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within- and cross-market variation is crucial for the identification of the unobserved efficiency

function.

2.5.2 Estimation of Unobserved Efficiency Function

With the observed data (Imi , h
m
i , x

m
i ) from the three cities, one is able to estimate the effi-

ciency function e(x, a).

As discussed in Sections 2.2.1 and 2.3, distributions fmx of workers’ observed characteristic

xmi (age) serve as aggregate instruments that induce cross-market variation in the earnings

functions. Figure 2.5 plots the kernel estimated densities of the workers’ age distributions

in the three cities. It shows that in the 2015 ATUS sample, full-time workers in Chicago

are slight younger than in the other two cities. The age distributions in Los Angeles and

Chicago are slightly more dispersed than that in New York.

Such variation in the distributions fmx appears to be sufficient to generate adequate

variation in the earnings functions. Figure 2.6 draws representative iso-earnings curves for

the three cities on the support X ×A = [25, 65]× [0.05, 0.95]. Recall that Assumption 2.3.5

for identifying the efficiency function requires that the iso-earnings curves from at least two

cities have different slopes. For each value of (x, a) on the support, this is the case, except

in the very small region with a > 0.9 and x ∈ [35, 55]. This suggests that Assumption 2.3.5

is satisfied. Moreover, using estimated derivatives of the earnings functions Îmx (x, a) and

Îma (x, a), m = 1, . . . ,M , I compute B̂(x, a), the estimate of the coefficient matrix B(x, a)

defined in Assumption 2.3.5 for a grid of (x, a) values on the support X×A. The determinants

of B̂(x, a)′B̂(x, a) for all these (x, a) values are bounded well away from zero. This indicates
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that the matrix B(x, a) has full column rank. As a result, I am convinced that the key

identification condition for the efficiency function e(x, a) is satisfied.

The normalization worker I choose is (x̄, ā) ≡ (25, 0). I used the tensor product of

quadratic polynomials of x and a to approximate ex(x, a)/e(x, a) and ea(x, a)/e(x, a).34 With

the two estimated ratio functions, one could obtain the estimates of the efficiency function

defined as in equation (2.4.13). Figure 2.7 plots the estimated efficiency function ê(x, a) on

the support X ×A.

Figure 2.7 presents a prominent and interesting pattern of the efficiency function. For

workers with the same level of unobserved characteristic a (“ability”), efficiency first increases

with age, and then decreases. For workers of the same age, efficiency increases with a. At

age 25, workers with the highest ability do not exhibit much higher efficiency than their

lower ability peers. As they mature, however, their efficiency could be much higher than

their peers with the lowest ability.35

2.6 Conclusion and Extensions

In this paper, I study the identification and estimation of a nonparametric hedonic equilib-

rium model with unobserved quality. I explain how to use within- and cross-market variation

in equilibrium prices and quantities to identify and estimate the structural functions of the

34That is, I approximate the two ratio functions using β0 + β1x + β2x
2 + β4a + β5zx + β6ax

2 + β7a
2 +

β8a
2x+ β9a

2x2. There is no obvious rule for how one should determine the order of the polynomials for the
efficiency function or for the other structural functions in this model. This may serve as a topic for further
research.

35Since I only control for age and neglect the dynamic perspective of the workers, one should be cautious
when interpreting this estimate. But this issue will be investigated in future research, and an in-depth
empirical analysis is beyond the scope of this section.
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model. Using the estimated structural functions and the equilibrium-solving algorithm sug-

gested in this paper, researchers could solve the counterfactual equilibrium to analyze the

distributional effects of policy interventions. In contrast to other widely used methods, the

counterfactuals thus constructed account for unobserved quality and equilibrium effects of

policy interventions in a nonparametric setting. Yet several directions of extension are worth

more research.

First, asymptotic distribution results are necessary for conducting inference on the struc-

tural functions and the counterfactuals. In addition, providing an easy-to-implement, data-

driven method to determine the tuning parameters for each step of the estimation procedure

is relevant to empirical work.

Second, in this paper I assume that agents’ unobserved heterogeneity is scalar-valued,

which might restrict its applicability (e.g., Roy model is excluded). Chernozhukov, Galichon,

and Henry (2014) considered the identification of hedonic equilibrium models with multidi-

mensional unobserved heterogeneity among agents. It might be an interesting research topic

to see whether one can extend their method to models with unobserved product characteris-

tic. Another related possible extension is to allow for multidimensional unobserved product

characteristics that is more general than the single-index model discussed in Appendix 2.C.

Multidimensional quality could be important for a variety of empirical questions.36

Third, the results in this paper are based on the assumption that agents’ observed and

unobserved heterogeneities are independent of each other in each market. While this could

be a very restrictive assumption for scenarios in which agents select their own observed

36For example, Halket, Nesheim and Oswald (2015) found that the English Housing Survey data rejects
unidimensional unobserved housing quality assumption.
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characteristics, it might be possible to relax it by controlling on some additional variables.

Fourth, it is necessary to re-examine the identification results under alternative data

structures. For example, what can be identified if a positive proportion of workers choose

not to work at all?37 Another example is that quantity only has discrete support in the data

(e.g., full-time v.s. part-time work, number of bedrooms in a house). Moreover, assuming

that one seller is matched with one buyer might not capture certain decisions they make

(e.g., firm size) or over-simplify the production process (e.g., no complementarity among

workers).38

Finally, the current static model might give biased estimates and counterfactuals if in

fact agents optimize over a longer horizon.39 Investigating identification of a dynamic model

will be an important topic for future research.

37Chiappori, McCann, and Nesheim (2010) showed the existence of equilibrium if agents had potentially
binding outside options.

38Proper frameworks to analyze (non-)identification of these complications remain a question.
39For example, efficiency might be under-estimated for young workers and over-estimated for experienced

workers, if young workers choose to work extra time to enhance human capital.
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Figure 2.2: Off Equilibrium

The green line illustrates the distribution of the optimal effective labor supply zs under the price schedule
function Pm in market m, as a function of sellers’ observed characteristics x and unobserved characteristic a,
which follow the distribution fmx,a. Similarly, the blue line illustrates the distribution of the optimal effective
labor demand zd under the same price schedule function Pm in market m, as a function of buyers’ observed
characteristics y and unobserved characteristic b, which follow the distribution fmy,b. As is shown in this
figure, when the distributions of zs and zd are different (for example, density of the effective labor supply is
larger than that of the demand at z1, and is the opposite at z2), the market is off equilibrium and the price
schedule function Pm will adjust.
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Figure 2.3: Identification of e(x, a) in Two Markets

Green lines (solid and dashed) illustrate the disjoint iso-payment curves in Market 1 and blue lines (solid and
dashed) illustrate the disjoint iso-payment curves in Market 2. The quality e(x̄, ā) is normalized to be one.
In each market, the relative qualities for sellers on the same iso-payment curves can be identified, but not
for those on different iso-payment curves. For example, e(x1, a1)/e(x̄, ā) and e(x2, a2)/e(x̃, ã) are identified
from Market 1 (illustrated in Step 1), but not e(x2, a2)/e(x̄, ā). From Market 2, however, e(x2, a2)/e(x̄, ā)
can be identified (illustrated in Step 2). As a result, e(x2, a2)/e(x̄, ā) can be identified using the data from
both markets (illustrated in Step 3). This idea could be applied repeatedly to identify the quality function
e(x, a) (illustrated in the last panel). The identification requires a rank condition on the derivatives of the
payment functions Im(x, a) across markets. As is shown in the figure, this condition can be understood as
requiring that the slopes of the iso-payment curves across markets are different.
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Figure 2.4: Scatter Plots of Weekly Earnings and Working Time in the Three Cities
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Figure 2.5: Distributions of Age in the Three Cities

For ease of illustration, age is used as the single observed characteristic (x) of the workers. This figure shows
that there is decent cross-market variation in the distributions of x, which drives (partially) the cross-market
variation in the equilibrium payment functions.
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Figure 2.6: Iso-Earnings Curves in the Three Cities

This figure shows representative iso-earnings curves for the three cities, on the support of age (x) and “ability”
(a). For majority of the support, the iso-earnings curves from at least two markets cross. This suggests that
the identification condition for the efficiency function e(x, a) is satisfied.
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Figure 2.7: Estimated Efficiency Function e(x, a)

Estimated worker efficiency function increases with “ability” (a), and is hump-shaped with age (x).
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Appendix

2.A Solving for Counterfactual Equilibrium

This section suggests an algorithm to numerically solve for counterfactual equilibrium, as

there is in general no closed-form solution to hedonic equilibrium models. This algorithm

can be applied to analyze the distributional effects of a wide range of interventions. Take

labor markets as example, an expansion of higher education may change education level from

xmi to x̃mi for a large number of workers; new investment projects may increase firms’ capital

stock from ymi to ỹmi ; or advances in total factor productivity may give rise to a new revenue

function R̃ instead of R. Establishing counterfactual distributions of worker earnings Ĩmi

(or labor supply h̃mi ) constitutes a vital part of welfare analysis of interventions like these

and helps understanding sources of earnings inequality (or other questions concerning labor

supply h̃mi ).

To fix idea, suppose we are under the first intervention, namely, xmi is replaced by x̃mi

(for all i = 1, . . . , Nm, m = 1, . . . ,M). And suppose that the estimates of the other market

primitives, i.e. the structural functions (Ûh, ê, R̂), the unobserved worker characteristic âmi ,

and the firm characteristics (ymi , b̂
m
i ), have been obtained using the estimation procedure
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provided in Section 2.4.1 and will remain constant under the intervention.40 The equilibrium

is solved for each market m separately.

2.A.1 Algorithm to Solve for Counterfactual Equilibrium

The algorithm consists of two steps:

1. Obtain the general solution to the ODE in equation (2.2.6) that characterizes the

equilibrium.

2. Determine the initial value condition of the ODE in equation (2.2.6) by solving the

optimal transportation problem, which is mathematically equivalent to the hedonic

equilibrium model.

To implement the first step, let us take a closer look at the equilibrium condition in equa-

tion (2.2.6). It is a first-order ODE in the first-order derivative of the earnings schedule

function Pm
z . Given any Pm

z function and any value z ∈ Z, the right-hand side of equa-

tion (2.2.6) can be approximated numerically. In particular, the first term of the numerator

can be approximated as
Nm∑
i=1

R̂zz (z, ymi , b
∗(z, ymi ))

R̂zb (z, ymi , b
∗(z, ymi ))

,

where R̂zz and R̂zb are the second-order derivatives associated with the estimated revenue

function R̂, and b∗(z, y) is the inverse effective labor demand function that satisfies firms’

40Under multiple concurrent interventions, researchers may also replace ymi and/or one or more estimated
structural functions with their "tilde" counterparts. The algorithm described in this section still applies.
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FOC under the given Pm
z function. That is,

Pm
z (z) = R̂z (z, y, b∗(z, y)) .

Similarly, the first term of the denominator can be approximated as

Nm∑
i=1

1

R̂zb (z, ymi , b
∗(z, ymi ))

.

On the other hand, define the inverse effective labor supply function a∗(z, x) that satisfies

workers’ FOC under the given Pm
z function

Pm
z (z) = Ûh

(
z

ê (x, a∗(z, x))
, x, a∗(z, x)

)
/ê (x, a∗(z, x)) .

Thus, the second term of the numerator can be numerically approximated as

Nm∑
i=1

−Ûhh
(

z
ê(x,a∗(z,x))

, x, a∗(z, x)
)

T1(z, x)− T2(z, x)− T3(z, x)
,

and the second term of the denominator can be approximated as

Nm∑
i=1

− [ê (x, a∗(z, x))]2

T1(z, x)− T2(z, x)− T3(z, x)
,

where

T1(z, x) ≡ Ûha

(
z

ê (x, a∗(z, x))
, x, a∗(z, x)

)
ê (x, a∗(z, x)) ,
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T2(z, x) ≡ Pm
z (z)ê (x, a∗(z, x)) êa (x, a∗(z, x)) ,

T3(z, x) ≡ Ûhh

(
z

ê (x, a∗(z, x))
, x, a∗(z, x)

)
z

ê (x, a∗(z, x))
êa (x, a∗(z, x)) ,

and êa, Ûhh and Ûha are the partial derivatives associated with the estimated efficiency

function ê and marginal disutility function Ûh, respectively.

Therefore, replacing the four components of the right-hand side of the equilibrium con-

dition in equation (2.2.6) with their numerical approximation above, one could numerically

solve the ODE for its general solution. That is, for each value Pm
z,0 ∈ R, we get a different

function Pm
z such that Pm

z satisfies equation (2.2.6) and Pm
z (z0) = Pm

z,0 for a fixed value

z0 ∈ Z.41

The next step, therefore, is to determine the value Pm
z,0. Without loss of generality,

one could let z0 = 0. Chiappori, McCann, and Nesheim (2010) showed that the hedonic

equilibrium model is mathematically equivalent to an optimal transportation problem. Note

that this equivalence holds even when quality is unobserved (by researchers) as long as z is

observed by both sellers and buyers. Therefore, the algorithm they proposed to solve the

optimal transportation problem can be employed to solve for the equilibrium of my model.

With the general solution of the ODE obtained in the first step, one only needs to optimize

over a one-dimensional parameter Pm
z,0 to solve the optimal transportation problem.42 Other

41Matlab provides toolboxes that quickly deliver numerical solutions to first-order ODEs.
42In fact, instead of solving the optimal transportation problem directly, they suggested solving the dual

problem, a constrained linear programing problem (equation (42) in their paper). They did not have the
first step and used a series expansion to approximate the unknown equilibrium price schedule function.
Therefore, they needed to optimize over multidimensional series coefficients. Please refer to their paper for
details. Depending on the sample size, the shape of the equilibrium price schedule function, and the ranges
of the series coefficients, among other factors, my algorithm might be faster or slower than theirs. Further
research is needed to investigate the situations to which each algorithm is suited.
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equilibrium outcomes, such as Ĩmi and h̃mi , can be constructed as a result.43

2.A.2 Stability of Numerical Equilibrium Solutions

Cautious researchers might be interested in the stability of numerical equilibrium solutions

of the model. Two sources of errors might contribute to the difference between the numerical

solution and the true counterfactual equilibrium: estimation errors in the estimation of the

market primitives and numerical errors in the implementation of the algorithm described in

Section 2.A.1. If the mapping from the market primitives to the equilibrium outcomes is not

continuous, then the numerical equilibrium solution will be unstable with respect to these

errors.

To examine the stability of the numerical equilibrium solutions, I conduct a small-scale

simulation experiment. I implement the algorithm in Section 2.A.1 to solve for the equi-

librium in a market with 1000 worker-firm pairs.44 The first panel of Figure 2.8 shows the

(kernel estimated) equilibrium densities of effective labor supply zs and demand zd when I

use the true structural functions. The second panel shows the (kernel estimated) equilib-

rium densities of zs and zd when I perturb the structural functions by them with multiplying

normal random variables with mean 1 and standard deviation 0.01.45 The third and fourth

panels show the cases when the standard deviations of the perturbations are 0.05 and 0.1,

43With the first-order derivative function Pmz , one may let Pm(0) ≡ 0 to determine the level of the price
schedule function Pm.

44I assume that x and y follow beta distributions, that is, xi ∼ β(9, 1) and yi ∼ β(1, 9). I also assume that
U(h, x, a) =

[
h2x1 + (1− a)1

]1, e(x, a) = x0.7a0.5 and R(z, y, b) = z1/2y1/2b1/2.
45In the interim steps of the algorithm, every time I need to evaluate a structural function, I compute the

true value and multiply it by a new normal random variable.
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respectively.

Figure 2.8 has two important implications. First, even though I approximate the integrals

in the equilibrium condition in equation (2.2.6) with sample averages and approximate the

integrals in the constraints of the optimal transportation problem with quadratures (details

in Chiappori, McCann, and Nesheim, 2010), the algorithm in Section 2.A.1 is still able to

deliver a very precise numerical equilibrium solution. This is illustrated by the estimated

densities of zs and zd, which trace each other very closely in the first panel. Second, the

mapping from the structural functions to the equilibrium is likely to be continuous; other-

wise, small perturbations in the structural functions would result in large changes in the

equilibrium quantities or even render the equilibrium non-solvable. However, the last three

panels of Figure 2.8 show the contrary. With moderately sized perturbations to the struc-

tural functions, I still obtain equilibrium solutions that closely resemble the one obtained

using the true structural functions.

2.B Market Level Heterogeneity

In the main text of this paper, I assume that efficiency function e(x, a) takes the same value

for all workers with the characteristics (x, a) across markets. This implies that a worker with

ath quantile of unobserved characteristic in one market will have the same efficiency as a

worker with ath quantile of unobserved characteristic in another market (given that their x’s

are the same). If the markets (cities, counties, etc. depending on specific applications under

investigation) are comparable with each other in terms of the distributions of workers’ un-
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observed characteristics, then this is a plausible assumption. In many applications, however,

this may not be true. The distribution of workers’ unobserved characteristics in Manhattan,

New York may well be different from that in Manhattan, Kansas. My model and all the

results still apply if there are finite types of markets. As long as the type of each market is

observed (or can be estimated based on some market level observables), then all the results

in this paper apply within each market type. One important practical implication is that

we may allow large cities to have a different efficiency function from small cities. So long

as we have multiple cities of the same type in our sample, then the efficiency functions can

be identified and estimated separately. Accommodating this generality formally provides no

extra insight, but induces notational complexity.

2.C Multidimensional Quality with Single Index Struc-

ture

In this section, I relax the assumption that hm and e are single-dimensional. Let the constant

L > 1 denote the dimensional of hm and e. Let hm(x, a) ≡ (hm1 (x, a), . . . , hmL (x, a))′ and e(x,

a) ≡ (e1(x, a), . . . , eL(x, a))′. Assume that the coordinates of h and e enter the price schedule

function collectively in a single index. Recall Assumption 2.2.1 and the payment equation

(2.2.3) in market m, then we have

Im(x, a) = Pm (hm1 (x, a) · e1(x, a) + · · ·+ hmL (x, a)eL(x, a)) , (2.C.1)
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for all m ∈ M and all (x, a) ∈ X × A. Taking the partial derivatives with suppressed

arguments gives us:


∇xI

m(x, a) = Pm
z · [∇xh

m
1 e1 + hm1 ∇xe1 + · · ·+∇xh

m
L eL + hmL∇xeL] ,

∂Im

∂a
(x, a) = Pm

z ·
[
∂hm1
∂a
e1 + hm1

∂e1
∂a

+ · · ·+ ∂hmL
∂a
eL + hmL

∂eL
∂a

]
.

Provided that ∂Im(x, a)/∂a 6= 0, we may take the ratio of the first equation to the last

equation:
∂Im

∂x1
∂Im

∂a

=

∂hm1
∂x1

+ hm1
∂e1
∂x1
/e1 + · · ·+ ∂hmL

∂x1

eL
e1

+ hmL
∂eL
∂x1

/e1

∂hm1
∂a

+ hm1
∂e1
∂a
/e1 + · · ·+ ∂hmL

∂a
eL
e1

+ hmL
∂eL
∂a
/e1

,

which implies

∂Im

∂a
hm1

∂e1

∂x1

/e1 −
∂Im

∂x1

hm1
∂e1

∂a
/e1 + · · ·+ ∂Im

∂a
hmL

∂eL
∂x1

/e1 −
∂Im

∂x1

hmL
∂eL
∂a

/e1

+

(
∂Im

∂a

∂hm2
∂x1

− ∂Im

∂x1

∂hm2
∂a

)
e2

e1

+ · · ·+
(
∂Im

∂a

∂hmL
∂x1

− ∂Im

∂x1

∂hmL
∂a

)
eL
e1

=
∂Im

∂x1

∂hm1
∂a
− ∂Im

∂a

∂hm1
∂x1

. (2.C.2)

Taking the ratio of the second equation to the last equation:

∂Im

∂x2
∂Im

∂a

=

∂hm1
∂x2

+ hm1
∂e1
∂x2
/e1 + · · ·+ ∂hmL

∂x2

eL
e1

+ hmL
∂eL
∂x2

/e1

∂hm1
∂a

+ hm1
∂e1
∂a
/e1 + · · ·+ ∂hmL

∂a
eL
e1

+ hmL
∂eL
∂a
/e1

,

which implies

∂Im

∂a
hm1

∂e1

∂x2

/e1 −
∂Im

∂x2

hm1
∂e1

∂a
/e1 + · · ·+ ∂Im

∂a
hmL

∂eL
∂x2

/e1 −
∂Im

∂x2

hmL
∂eL
∂a

/e1
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+

(
∂Im

∂a

∂hm2
∂x2

− ∂Im

∂x2

∂hm2
∂a

)
e2

e1

+ · · ·+
(
∂Im

∂a

∂hmL
∂x2

− ∂Im

∂x2

∂hmL
∂a

)
eL
e1

=
∂Im

∂x2

∂hm1
∂a
− ∂Im

∂a

∂hm1
∂x2

. (2.C.3)

By the same token, we could get another (dx − 2) equations like (2.C.2) and (2.C.3). After

some rearrangement, we get

Bm(x, a)

(
∇e1(x, a)′

e1(x, a)
, . . . ,

∇eL(x, a)′

e1(x, a)
,
e2(x, a)

e1(x, a)
, . . . ,

eL(x, a)

e1(x, a)

)′
= Am(x, a). (2.C.4)

In the above equation, for l = 1, . . . , L, the (dx + 1)× 1 vector ∇el(x, a) is defined as

∇el(x, a) ≡
(
∇xel(x, a)′,

∂el(x, a)

∂a

)′
;

the dx × 1 vector Am(x, a) is defined as

Am(x, a) ≡ ∂hm1 (x, a)

∂a
∇xI

m(x, a)− ∂Im(x, a)

∂a
∇xh

m
1 (x, a);

and the dx × (dxL+ 2L− 1) matrix Bm(x, a) is defined as

Bm(x, a) ≡
(
Bm

1 (x, a), . . . , Bm
L (x, a), Bm

L+1(x, a)
)
,

in which for l = 1, . . . , L, the dx × (dxL+ L) matrix Bm
l (x, a) is

Bm
l (x, a) ≡

(
∂Im(x, a)

∂a
hml (x, a)Idx ,−hml (x, a)∇xI

m(x, a)

)
,
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and the dx × (L− 1) matrix Bm
L+1(x, a) is

Bm
L+1(x, a) ≡

(
Bm
L+1,2, . . . , B

m
L+1,L

)
,

where for l′ = 2, . . . , L

Bm
L+1,l′ ≡

∂Im(x, a)

∂a
∇xh

m
l′ (x, a)− ∂hml′ (x, a)

∂a
∇xI

m(x, a)

If we stack the equations like (2.C.4) for all markets, we get a system of Mdx equations with

dxL+ 2L− 1 unknowns for all (x, a) ∈ X ×A,

B̃(x, a)

(
∇e1(x, a)′, . . . ,∇eL(x, a)′,

e2(x, a)

e1(x, a)
, . . . ,

eL(x, a)

e1(x, a)

)′
= Ã(x, a), (2.C.5)

where

B̃(x, a) ≡
(
B1(x, a)′, . . . , BM(x, a)′

)′
,

and

Ã(x, a) ≡
(
A1(x, a)′, . . . , AM(x, a)′

)′
.

Therefore, there exists a unique solution of (∇e1(x, a)′, . . . ,∇eL(x, a)′, e2(x,a)
e1(x,a)

, . . . , eL(x,a)
e1(x,a)

)′

if the matrix B̃(x, a) has full column rank. A necessary condition for this is that M ≥

L + (2L− 1)/dx. The full-column-rank condition here has a similar gradient interpretation

as in Section 2.3.2.2, but I will not fully elaborate it.

By normalize e1(x̄, ā) = 1, and solving the ordinary differential equations for each el(x, a)
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(l = 1, . . . , L) with the steps described in the proof of Theorem 2.3.4, one can recover all the

quality functions el(x, a) (l = 1, . . . , L).

Finally, note that with large M , one might get over-identification as well.

2.D Proofs of the Theorems in Section 2.4.2

2.D.1 Proof of the Theorem in Section 2.4.2.1

This section provides the proof of Theorem 2.4.1. But some notation is needed first.

Let Λm
i ≡ ΛkQ,N (xmi ), ωij ≡ I(Imj ≤ Imi ) − FIm|xm(Imi |xmj ) (i, j = 1, . . . , N) and Ŵm ≡∑N

i=1 Λm
i Λm′

i /N .

Lemma 2.D.1. For xm ≡ (xm1 , . . . , x
m
N) and kQ,N × 1 vectors of functions bi(xm) (i =

1, . . . , N), if
∑N

i=1 bi(x
m)′Ŵmbi(x

m)/N = Op(rN), then

N∑
i=1

[
bi(x

m)′
N∑
j=1

Λm
j ωij/

√
N

]2

/N = Op(rN).

Proof. This lemma is the same as Lemma S.1 in Imbens and Newey (2009), only with the

notation adapted to that in this paper.

Lemma 2.D.2. Suppose that Assumption 2.4.3 is satisfied, then there exists C such that for

each I there is ρ(I) with supx∈X |FIm|xm(I|x)− Λk(x)′ρ(I)| ≤ Ck−d1/dx.

Proof. This lemma is the same as Lemma S.2 in Imbens and Newey (2009),46 only with the

notation adapted to that in this paper.

46It is a reiteration of Theorem 8 (p. 90) in Lorentz (1986).
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Proof of Theorem 2.4.1

This theorem is the same as Lemma 11 in Imbens and Newey (2009), only with the notation

adapted to that in this paper.

2.D.2 Proofs of the Theorems in Section 2.4.2.2

In the rest of this subsection, I will suppress the superscript m for functions and variables

for notational simplicity. The results in Section 2.4.1.1 and the proofs in this subsection hold

regardless of the market index m.

Recall that lm(x, a) denotes either the payment function Im(x, a) or the quantity func-

tion hm(x, a) in a market m. Let l ≡ (lm(x1, a1), . . . , lm(xN , aN))′, l̃ ≡ (lm(x1, â1), . . . ,

lm(xN , âN))′, Φi ≡ Φkl,N (xi, ai), Φ̃i ≡ Φkl,N (xi, âi), Φ ≡ (Φ1, . . . ,ΦN)′, Φ̃ ≡ (Φ̃1, . . . , Φ̃N)′,

Q ≡ E(ΦiΦ
′
i), Q̄ ≡ Φ′Φ/N , and Q̃ ≡ Φ̃′Φ̃/N . Without loss of generality, we can set Q = Ikl,N ,

the kl,N × kl,N identity matrix, as in Newey (1997). Note that the estimated series coeffi-

cients in equation (2.4.3) and equation (2.4.6) can be written with this notation as ξ̂l,kl,N ≡

Q̃−Φ̃′l/N . Finally, let ξ̃l,kl,N ≡ Q̃−Φ̃′l̃/N .

Recall that the estimated series coefficients ξ̂l,kl,N take least square forms. So the proof

in this subsection proceeds in three steps: (i) to show that the “denominator” of the esti-

mated series coefficients converges in probability to a constant matrix; (ii) to find out the

rate at which the “numerator” converges to its probability limit, hence the estimated series

coefficients converge to the pseudo-true series coefficients at the same rate; (iii) to obtain

the convergence rates for l̂(x, a) and its derivatives using the results in step (ii), the compact
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support assumption, and the assumptions on the approximation errors by the series basis

functions. In what follows, Lemma 2.D.4 presents step (i), Lemma 2.D.5 presents step (ii),

and step (iii) is given by Theorems 2.4.2 and 2.4.3.

Lemma 2.D.3. Suppose that Assumptions 2.4.4 and 2.4.5 are satisfied. Then, sup(x,a)∈X×A

‖Φk(x, a)‖ ≤ Cζ0(k), sup(x,a)∈X×A ‖∂Φk(x, a)/∂xj‖ ≤ Cζj(k) and sup(x,a)∈X×A ‖∂Φk(x, a)/

∂a‖ ≤ Cζa(k).

Proof. Under the maintained Assumptions 2.3.1 and 2.3.2, the joint density of (x, a) is

bounded away from zero. Combine this with Assumption 2.4.5, then the results follow from

equations (3.13)-(3.16) in Andrews (1991).

Lemma 2.D.4. Suppose that the conditions of Theorem 2.4.1 and Lemma 2.D.3 are sat-

isfied. Suppose as well that the numbers of series basis functions used to approximate each

component in kl,N all increase to infinity with N , and
√
kl,Nνa,Nζa(kl,N) → 0. Then, the

following results hold:

(i) ‖Φ̃− Φ‖2/N = Op
(
ν2
a,Nζ

2
a(kl,N)

)
;

(ii) ‖Q̄−Q‖ = Op
(
ζ0(kl,N)

√
kl,N/N

)
;

(iii) ‖Q̃− Q̄‖ = Op
(
ν2
a,Nζ

2
a(kl,N) +

√
kl,Nνa,Nζa(kl,N)

)
;

(iv) λmin(Q̃) ≥ c > 0, λmin(Q̄) ≥ c > 0 with probability approaching 1, where λmin denotes

the minimum eigenvalues of a symmetric matrix.

Proof. For (i), consider a mean value expansion for i ∈ {1, . . . N},

Φ̃i = Φi +
∂Φkl,N

∂a
(xi, ãi) · (âi − ai),
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where ãi lies between âi and ai. Since âi and ai are in [0, 1], so is ãi. By Lemma 2.D.3,

‖∂Φkl,N (xi, ãi)/∂a‖ ≤ Cζa(kl,N). Then by Cauchy-Schwarz inequality, ‖Φ̃i−Φi‖ ≤ Cζa(kl,N)

|âi − ai|. Together with Theorem 2.4.1, this implies

‖Φ̃− Φ‖2/N =
N∑
i=1

‖Φ̃i − Φi‖2/N = Op
(
ν2
a,Nζ

2
a(kl,N)

)
.

So (i) holds.

For (ii), let Ijl denote the (j, l)-element of an identity matrix. Note that E(φj(x, a)

φl(x, a)) = Ijl, then

E
[
‖Q̄−Q‖2

]
= E

∥∥∥∥∥N−1

n∑
i=1

ΦiΦ
′
i −Q

∥∥∥∥∥
2


= E

kl,N∑
j=1

kl,N∑
l=1

(
N−1

n∑
i=1

φj(xi, ai)φl(xi, ai)− Ijl

)2


≤ N−1E

kl,N∑
j=1

φ2
j(xi, ai)

kl,N∑
l=1

φ2
l (xi, ai)


≤ N−1ζ2

0 (kl,N)tr(Ikl,N )

= ζ2
0 (kl,N)kl,N/N.

So (ii) follows by the Markov’s inequality.

For (iii), by the triangular inequality and the Cauchy-Schwarz inequality,

‖Q̃− Q̄‖ ≤
N∑
i=1

‖Φ̃iΦ̃
′
i − ΦiΦ

′
i‖/N
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≤
N∑
i=1

‖Φ̃i − Φi‖2/N + 2

(
N∑
i=1

‖Φ̃i − Φi‖2/N

)1/2( N∑
i=1

‖Φi‖2/N

)1/2

.

Moreover, by the Markov’s inequality

N∑
i=1

‖Φi‖2/N = Op
(
E
(
‖Φi‖2

))
= Op (tr(Q)) = Op

(
tr(Ikl,N )

)
= Op (kl,N) . (2.D.1)

So the result follows from (i).

For (iv), by the definition of ζ0(kl,N) and ζa(kl,N), and the fact that νa,N converges to zero

slower than N−1/2, we have that
√
kl,Nνa,Nζa(kl,N) → 0 implies ζ0(kl,N)

√
kl,N/N → 0 and

ν2
a,Nζ

2
a(kl,N)→ 0. Therefore by (ii) and (iii), we have that ‖Q̄−Q‖ p.−→ 0 and ‖Q̃−Q̄‖ p.−→ 0.

By the same argument following equation (A.1) in Newey (1997), |λmin(Q̄) − λmin(Q)| and

|λmin(Q̃) − λmin(Q̄)| are bounded by ‖Q̄ − Q‖ and ‖Q̃ − Q̄‖, respectively. Since Q ≡ Ikl,N ,

λmin(Q̄)
p.−→ 1 and λmin(Q̃)

p.−→ 1. So the result follows.

Lemma 2.D.5. Suppose that Assumptions 2.4.6 and 2.4.7, and the conditions of Theorem

2.4.1 and Lemma 2.D.4 are satisfied. Then, the following results hold:

(i) ‖ξ̂l,kl,N − ξ̃l,kl,N‖ = Op (νa,N) ;

(ii) ‖ξ̂l,kl,N − ξl,0,kl,N‖ = Op
(
k−αll,N

)
.

Proof. For (i), consider a mean value expansion for i ∈ {1, . . . N},

l(xi, âi) = l(xi, ai) +
∂l

∂a
(xi, ãi) · (âi − ai),

where ãi lies between âi and ai and might take a different value from that in the proof
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of Lemma 2.D.4. Since âi and ai are in [0, 1], so is ãi. Together with Assumptions 2.4.4

and 2.4.6, this implies that |∂l(xi, ãi)/∂a| ≤ C. Moreover, by Lemma 2.D.4, we have that

λmin(Q̃) ≥ c with probability 1, so

∥∥∥Q̃1/2(ξ̂l,kl,N − ξ̃l,kl,N )
∥∥∥2

= (l − l̃)′Φ̃Q̃−Φ̃′(l − l̃)/N2

≤ C‖l̃ − l‖2/N

≤ C
N∑
i=1

|âi − ai|2/N,

Then (i) holds by Theorem 2.4.1 and Lemma 2.D.4 (iv).

Similarly, for (ii), by the definition of ξ̃l,kl,N ,

∥∥∥Q̃1/2(ξ̃l,kl,N − ξl,0,kl,N )
∥∥∥2

=
∥∥∥Q̃1/2(ξ̃l,kl,N − Q̃−Φ̃′Φ̃ξl,0,kl,N/N)

∥∥∥2

= (l̃ − Φ̃ξl,0,kl,N )′Φ̃Q̃−Φ̃′(l̃ − Φ̃ξl,0,kl,N )/N2

≤ C‖l̃ − Φ̃ξl,0,kl,N‖2/N

≤ C

(
sup

(x,a)∈X×A
|l(x, a)− Φkl,N (x, a)′ξl,0,kl,N |2

)
= Op

(
k−2αl
l,N

)
,

where the last equality holds by Assumption 2.4.7. Therefore the result holds by Lemma

2.D.4 (iv).
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Proof of Theorem 2.4.2

Proof. By the definition of ζ0(kl,N) and ζa(kl,N), the condition k
3/2
l,N k

2
a,l,Nνa,N → 0 implies

that
√
kl,Nζa(kl,N)νa,N → 0.

By the triangular inequality,

sup
(x,a)∈X×A

|l̂(x, a)− l(x, a)|

≤ sup
(x,a)∈X×A

|Φkl,N (x, a)′(ξ̂l,kl,N − ξl,0,kl,N )|+ sup
(x,a)∈X×A

|Φkl,N (x, a)′ξl,0,kl,N − l(x, a)|

= Op
(
ζ0(kl,N)

(
νa,N + k−αll,N

))
+Op

(
k−αll,N

)
= Op

(
ζ0(kl,N)

(
νa,N + k−αll,N

))
,

The first equality holds by the Cauchy-Schwarz inequality, Assumption 2.4.7, and Lemmas

2.D.3 and 2.D.5. The second equality holds since ζ0(kl,N)→∞ as N →∞. This completes

the proof.

Proof of Theorem 2.4.3

Proof. For j = 1, . . . , dx, by the triangular inequality,

sup
(x,a)∈X×A

∣∣∣l̂mxj(x, a)− lmxj(x, a)
∣∣∣

≤ sup
(x,a)∈X×A

∣∣∣∣ ∂∂xjΦkl,N (x, a)′(ξ̂l,kl,N − ξl,0,kl,N )

∣∣∣∣
+ sup

(x,a)∈X×A

∣∣∣∣lmxj(x, a)− ∂

∂xj
Φkl,N (x, a)′ξl,0,kl,N

∣∣∣∣
= Op

(
ζj(kl,N)

(
νa,N + k−αll,N

))
+Op

(
k−αll,N

)

86



= Op
(
ζj(kl,N)

(
νa,N + k−αll,N

))
.

The first equality holds by the Cauchy-Schwarz inequality, Assumption 2.4.7, and Lemmas

2.D.3 and 2.D.5. The second equality holds by that ζj(kl,N) → ∞ as N → ∞. This

completes the proof of the first statement. The proof of the second statement follows the

same argument.

2.D.3 Proofs of the Theorems in Section 2.4.2.3

This subsection proceeds with the same steps as in Appendix 2.D.2. In the rest of the proof,

I will spell out the superscripts of the market index m.

Define

S̄ΦΦ ≡ (MN)−1

M∑
m=1

N∑
i=1

S̄Φ(xmi , â
m
i )′S̄Φ(xmi , â

m
i ).

In this equation,

S̄Φ(xmi , â
m
i ) ≡

(
S̄Φ,1(xmi , â

m
i ) , S̄Φ,2(xmi , â

m
i )
)
,

where

S̄Φ,1(xmi , â
m
i ) ≡


Φkx1,MN

(xmi , â
m
i )′ 0

. . .

0 Φkxdx ,MN
(xmi , â

m
i )′

⊗ I
m
a (xmi , â

m
i ),
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and

S̄Φ,2(xmi , â
m
i ) ≡ −∇xI

m(xmi , â
m
i )⊗ Φka,MN

(xmi , â
m
i )′.

Lemma 2.D.6. Suppose that Assumption 2.4.6, and the conditions of Theorems 2.4.1 and

2.4.3 and Lemma 2.D.3 are satisfied. Suppose as well that the numbers of series basis func-

tions used to approximate each component in kxj ,MN (j = 1, . . . , dx) and ka,MN all increase

to infinity with N , νa,N(ζa(kxj ,MN) + ζa(ka,MN)) → 0, ka,MN +
∑dx

j=1 kxj ,MN → 0, (νIa,N∑dx
j=1 kxj ,MN + ka,MN

∑dx
j=1 νIj ,N)→ 0. Then

(i)

‖S̄ΦΦ − SΦΦ‖

= Op

(
ν2
a,N

dx∑
j=1

(
ζ2
a(kxj ,MN) + ζ2

a(ka,MN)
)

+νa,N

[
dx∑
j=1

(
ζa(kxj ,MN) + ζa(ka,MN)

)](
ka,MN +

dx∑
j=1

kxj ,MN

)1/2
 ;

(ii)

‖ŜΦΦ − S̄ΦΦ‖

= Op

(ν2
Ia,N

dx∑
j=1

kxj ,MN + ka,MN

dx∑
j=1

ν2
Ij ,N

)1/2(
ka,MN +

dx∑
j=1

kxj ,MN

)1/2
 ;

(iii) λmin(ŜΦΦ) ≥ c, λmin(S̄ΦΦ) ≥ c and λmin(SΦΦ) ≥ c with probability approaching 1,

where λmin denotes the minimum eigenvalue of a symmetric matrix.

Proof. To prove (i), some preliminary results are needed. For j = 1, . . . , dx, consider the
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mean value expansion

Ima (xmi , â
m
i )Φkxj,MN

(xmi , â
m
i )′ − Ima (xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′

= Imaa(x
m
i , ã

m
i )Φkxj,MN

(xmi , ã
m
i )′(âmi − ami )

+Ima (xmi , ã
m
i )

∂

∂a
Φkxj,MN

(xmi , ã
m
i )′(âmi − ami ),

where ãmi is between ami and âmi , so it must be in [0, 1]. By Lemma 2.D.3, Assumption 2.4.6,

the triangular inequality, and the Cauchy-Schwarz inequality, we get

‖Ima (xmi , â
m
i )Φkxj,MN

(xmi , â
m
i )′ − Ima (xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′‖2

≤ C
(
ζ2

0 (kxj ,MN) + ζ2
a(kxj ,MN)

)
|âmi − ami |2

≤ Cζ2
a(kxj ,MN)|âmi − ami |2. (2.D.2)

By the same token, we have that for j = 1, . . . , dx,

‖Imxj(x
m
i , â

m
i )Φka,MN

(xmi , â
m
i )′ − Imxj(x

m
i , a

m
i )Φka,MN

(xmi , a
m
i )′‖2

≤ C
(
ζ2

0 (ka,MN) + ζ2
a(ka,MN)

)
|âmi − ami |2

≤ Cζ2
a(ka,MN)|âmi − ami |2. (2.D.3)

Equation (2.D.2) implies that

∥∥S̄Φ,1(xmi , â
m
i )− SΦ,1(xmi , a

m
i )
∥∥2
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=
dx∑
j=1

‖Ima (xmi , â
m
i )Φkxj,MN

(xmi , â
m
i )′ − Ima (xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′‖2

≤ C |âmi − ami |2
dx∑
j=1

ζ2
a(kxj ,MN).

And equation (2.D.3) implies that

∥∥S̄Φ,2(xmi , â
m
i )− SΦ,2(xmi , a

m
i )
∥∥2

=
dx∑
j=1

‖Imxj(x
m
i , â

m
i )Φka,MN

(xmi , â
m
i )′ − Imxj(x

m
i , a

m
i )Φka,MN

(xmi , a
m
i )′‖2

≤ Cdx|âmi − ami |2ζ2
a(ka,MN).

As a result,

∥∥S̄Φ(xmi , â
m
i )− SΦ(xmi , a

m
i )
∥∥2

=
∥∥S̄Φ,1(xmi , â

m
i )− SΦ,1(xmi , a

m
i )
∥∥2

+
∥∥S̄Φ,2(xmi , â

m
i )− SΦ,2(xmi , a

m
i )
∥∥2

= C|âmi − ami |2
dx∑
j=1

(
ζ2
a(kxj ,MN) + ζ2

a(ka,MN)
)
. (2.D.4)

On the other hand, by Lemma 2.D.3, Assumption 2.4.6 and the Cauchy-Schwarz inequality,

we have

‖SΦ,1(xmi , a
m
i )‖2 =

dx∑
j=1

∥∥∥Ima (xmi , a
m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2

≤
dx∑
j=1

|Ima (xmi , a
m
i )|2 ·

∥∥∥Φkxj,MN
(xmi , a

m
i )
∥∥∥2
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= Op

(
dx∑
j=1

kxj ,MN

)
.

In this expression, the inequality holds by the Cauchy-Schwarz inequality. The second equal-

ity holds because I set the basis functions to be orthonormal without loss of generality, and

hence for j = 1, . . . , dx,

E
(∥∥∥Φkxj,MN

(xmi , a
m
i )
∥∥∥2
)

= tr(Ikxj,MN
) = kxj ,MN .

Then by the Markov’s inequality,

∥∥∥Φkxj,MN
(xmi , a

m
i )
∥∥∥2

= Op
(
kxj ,MN

)
. (2.D.5)

By similar argument, we also have

∥∥Φka,MN
(xmi , a

m
i )
∥∥2

= Op (ka,MN) , (2.D.6)

which implies that

‖SΦ,2(xmi , a
m
i )‖2 = Op (ka,MN) .

As a result,

‖SΦ(xmi , a
m
i )‖2 = ‖SΦ,1(xmi , a

m
i )‖2 + ‖SΦ,2(xmi , a

m
i )‖2

= Op

(
ka,MN +

dx∑
j=1

kxj ,MN

)
. (2.D.7)
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Now consider (i),

‖S̄ΦΦ − SΦΦ‖

= (MN)−1

M∑
m=1

N∑
i=1

∥∥S̄Φ(xmi , â
m
i )′S̄Φ(xmi , â

m
i )− SΦ(xmi , a

m
i )′SΦ(xmi , a

m
i )
∥∥

≤ (MN)−1

M∑
m=1

N∑
i=1

∥∥S̄Φ(xmi , â
m
i )− SΦ(xmi , a

m
i )
∥∥2

+2(MN)−1

M∑
m=1

N∑
i=1

(∥∥S̄Φ(xmi , â
m
i )− SΦ(xmi , a

m
i )
∥∥2
)1/2 (

‖SΦ(xmi , a
m
i )‖2)1/2

,

where the inequality holds by the triangular inequality and the Cauchy-Schwarz inequality.

Combine this result with Theorem 2.4.1, equation (2.D.4) and equation (2.D.7), we get

‖S̄ΦΦ − SΦΦ‖

= Op

(
ν2
a,N

dx∑
j=1

(
ζ2
a(kxj ,MN) + ζ2

a(ka,MN)
)

+νa,N

[
dx∑
j=1

(
ζa(kxj ,MN) + ζa(ka,MN)

)](
ka,MN +

dx∑
j=1

kxj ,MN

)1/2
 .

So (i) holds.

To prove (ii), some preliminary results are necessary. Note that the Cauchy-Schwarz

inequality, Theorem 2.4.3, equation (2.D.5) and equation (2.D.6) imply that

∥∥∥(Îmxj(xmi , âmi )− Imxj(x
m
i , â

m
i )
)

Φka,MN
(xmi , â

m
i )
∥∥∥′2

≤
∣∣∣Îmxj(xmi , âmi )− Imxj(x

m
i , â

m
i )
∣∣∣2 · ∥∥Φka,MN

(xmi , â
m
i )
∥∥2

= Op
(
ν2
Ij ,N

ka,MN

)
,
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for j = 1, . . . , dx, and

∥∥∥(Îma (xmi , â
m
i )− Ima (xmi , â

m
i )
)

Φkxj,MN
(xmi , â

m
i )′
∥∥∥2

≤
∣∣∣Îma (xmi , â

m
i )− Ima (xmi , â

m
i )
∣∣∣2 · ∥∥∥Φkxj,MN

(xmi , â
m
i )
∥∥∥2

= Op
(
ν2
Ia(σN , kI,N)kxj ,MN

)
.

They further imply that

∥∥∥ŜΦ,1(xmi , â
m
i )− S̄Φ,1(xmi , â

m
i )
∥∥∥2

=
dx∑
j=1

∥∥∥(Îma (xmi , â
m
i )− Ima (xmi , â

m
i )
)

Φkxj,MN
(xmi , â

m
i )′
∥∥∥2

= Op

(
ν2
Ia(σN , kI,N)

dx∑
j=1

kxj ,MN

)
,

and

∥∥∥ŜΦ,2(xmi , â
m
i )− S̄Φ,2(xmi , â

m
i )
∥∥∥2

=
dx∑
j=1

∥∥∥(Îmxj(xmi , âmi )− Imxj(x
m
i , â

m
i )
)

Φka,MN
(xmi , â

m
i )′
∥∥∥2

= Op

(
ka,MN

dx∑
j=1

ν2
Ij ,N

)
.

As a result,

∥∥∥ŜΦ(xmi , â
m
i )− S̄Φ(xmi , â

m
i )
∥∥∥2
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=
∥∥∥ŜΦ,1(xmi , â

m
i )− S̄Φ,1(xmi , â

m
i )
∥∥∥2

+
∥∥∥ŜΦ,2(xmi , â

m
i )− S̄Φ,2(xmi , â

m
i )
∥∥∥2

= Op

(
ν2
Ia,N

dx∑
j=1

kxj ,MN + ka,MN

dx∑
j=1

ν2
Ij ,N

)
. (2.D.8)

On the other hand, by the fact that âmi ∈ [0, 1], Lemma 2.D.3, Assumption 2.4.6, the

Cauchy-Schwarz inequality, and that the basis functions are orthonormal, we have

∥∥S̄Φ,1(xmi , a
m
i )
∥∥2

= Op

(
dx∑
j=1

kxj ,MN

)
,

∥∥S̄Φ,2(xmi , a
m
i )
∥∥2

= Op (ka,MN) .

As a result

∥∥S̄Φ(xmi , a
m
i )
∥∥2

=
∥∥S̄Φ,1(xmi , a

m
i )
∥∥2

+
∥∥S̄Φ,2(xmi , a

m
i )
∥∥2

= Op

(
ka,MN +

dx∑
j=1

kxj ,MN

)
. (2.D.9)

Now consider (ii),

‖ŜΦΦ − S̄ΦΦ‖

= (MN)−1

M∑
m=1

N∑
i=1

∥∥∥ŜΦ(xmi , â
m
i )′ŜΦ(xmi , â

m
i )− S̄Φ(xmi , a

m
i )′S̄Φ(xmi , a

m
i )
∥∥∥

≤ (MN)−1

M∑
m=1

N∑
i=1

∥∥∥ŜΦ(xmi , â
m
i )− S̄Φ(xmi , a

m
i )
∥∥∥2

+2(MN)−1

M∑
m=1

N∑
i=1

(∥∥∥ŜΦ(xmi , â
m
i )− S̄Φ(xmi , a

m
i )
∥∥∥2
)1/2 (∥∥S̄Φ(xmi , a

m
i )
∥∥2
)1/2

,
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where the inequality holds by the triangular inequality and the Cauchy-Schwarz inequality.

Combine this result with equation (2.D.8) and equation (2.D.9), we get

‖ŜΦΦ − S̄ΦΦ‖

= Op

((
ν2
Ia,N

dx∑
j=1

kxj ,MN + ka,MN

dx∑
j=1

ν2
Ij ,N

)

+

(
ν2
Ia,N

dx∑
j=1

kxj ,MN + ka,MN

dx∑
j=1

ν2
Ij ,N

)1/2(
ka,MN +

dx∑
j=1

kxj ,MN

)1/2


= Op

(ν2
Ia,N

dx∑
j=1

kxj ,MN + ka,MN

dx∑
j=1

ν2
Ij ,N

)1/2(
ka,MN +

dx∑
j=1

kxj ,MN

)1/2
 .

So (ii) holds.

To prove (iii), note that

E
[
‖SΦΦ − E(SΦΦ)‖2

]
≤

dx∑
j=1

E
[
(MN)−1 (Ima (xmi , a

m
i ))4

∥∥∥Φkxj,MN
(xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]

+2
dx∑
j=1

E
[
(MN)−1 (Ima (xmi , a

m
i ))2

(
Imxj(x

m
i , a

m
i )
)2 ∥∥∥Φka,MN

(xmi , a
m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]

+E

( dx∑
j=1

(
Imxj(x

m
i , a

m
i )
)2
)2 ∥∥Φka,,N (xmi , a

m
i )Φka,MN

(xmi , a
m
i )′
∥∥2


≤ B4

I

dx∑
j=1

E
[
(MN)−1

∥∥∥Φkxj,MN
(xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]

+2B4
I

dx∑
j=1

E
[
(MN)−1

∥∥∥Φka,MN
(xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]

+d2
xB

4
IE
[∥∥Φka,,N (xmi , a

m
i )Φka,MN

(xmi , a
m
i )′
∥∥2
]
, (2.D.10)
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where the first inequality holds by the definition of SΦΦ, Assumption 2.4.1, and that the

second moment of a random variable is no less than its variance; the second inequality holds

by Assumption 2.4.6. Recall that I assume the series basis functions are orthonormal (i.e.

Q = I), then by Lemma 2.D.3, we have that for j = 1, . . . , dx,

E
[
(MN)−1

∥∥∥Φkxj,MN
(xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]

= (MN)−1E

kxj,MN∑
k=1

φ2
k(x

m
i , a

m
i )

kxj,MN∑
l=1

φ2
l (x

m
i , a

m
i )


≤ (MN)−1ζ2

0 (kxj ,MN)tr(Ikxj,MN
)

= ζ2
0 (kxj ,MN)kxj ,MN/(MN). (2.D.11)

By the same token,

E
[
(MN)−1

∥∥∥Φka,MN
(xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]
≤ ζ2

0 (kxj ,MN)ka,MN/(MN), (2.D.12)

E
[
(MN)−1

∥∥∥Φka,MN
(xmi , a

m
i )Φkxj,MN

(xmi , a
m
i )′
∥∥∥2
]
≤ ζ2

0 (ka,MN)kxj ,MN/(MN), (2.D.13)

and

E
[
(MN)−1

∥∥Φka,MN
(xmi , a

m
i )Φka,MN

(xmi , a
m
i )′
∥∥2
]
≤ ζ2

0 (ka,MN)ka,MN/(MN). (2.D.14)

Plug the bounds in equations (2.D.11)-(2.D.14) into equation (2.D.10), we get

E
[
‖SΦΦ − E(SΦΦ)‖2

]
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≤
[
ζ2

0

(
max

j=1,...,dx
kxj ,MN

)
+ ζ2

0 (ka,MN)

](
max

j=1,...,dx
kxj ,MN + ka,MN

)/
(MN).

Then by the Markov’s inequality,

‖SΦΦ − E(SΦΦ)‖

= Op

(√[
ζ2

0

(
max

j=1,...,dx
kxj ,MN

)
+ ζ2

0 (ka,MN)

](
max

j=1,...,dx
kxj ,MN + ka,MN

)/
(MN)

)
.

Since νa,N converges to zero at a slower rate than N−1/2, νa,N(ζa(kxj ,MN) + ζa(ka,MN))→ 0

and ka,MN +
∑dx

j=1 kxj ,MN → 0 imply that [ζ2
0

(
maxj=1,...,dx kxj ,MN

)
+ ζ2

0 (ka,MN)](maxj=1,...,dx

kxj ,MN + ka,MN)/(MN)→ 0. As a result, ‖SΦΦ − E(SΦΦ)‖ = op(1).

Note that νa,N(ζa(kxj ,MN) + ζa(ka,MN)) → 0 implies ν2
a,N(ζ2

a(kxj ,MN) + ζ2
a(ka,MN)) → 0.

Then by result (i), we have ‖S̄ΦΦ−SΦΦ‖ = op(1). Moreover, by result (ii), and the conditions

that the numbers of series basis functions used to approximate each component in kxj ,MN

(j = 1, . . . , dx) and ka,MN all increase to infinity with N , (νIa,N
∑dx

j=1 kxj ,MN + ka,MN

∑dx
j=1

νIj ,N)→ 0 for j = 1, . . . , dx, ka,MN +
∑dx

j=1 kxj ,MN → 0, we have ‖ŜΦΦ− S̄ΦΦ‖ = op(1). Then

(iii) follows by the same argument for the proof of Lemma 2.D.4(iv). This completes the

proof of the lemma.

Define

S̄ΦA ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΦ(xmi , â
m
i )′Ām(xmi , â

m
i ),

S̄0,ΦA ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΦ(xmi , â
m
i )′Ām0 (xmi , â

m
i ),
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Ŝ0,ΦA ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΦ(xmi , â
m
i )′Âm0 (xmi , â

m
i ),

where

Ām(xmi , â
m
i ) ≡ [hma (xmi , â

m
i )∇xI

m(xmi , â
m
i )− Ima (xmi , â

m
i )∇xh

m(xmi , â
m
i )] /hm(xmi , â

m
i ),

Ām0 (xmi , â
m
i ) ≡


Ima (xmi , â

m
i )Φkx1,MN

(xmi , â
m
i )′β0,x1,kx1,MN

...

Ima (xmi , â
m
i )Φkxdx ,MN

(xmi , â
m
i )′β0,xdx ,kxdx ,MN


−∇xI

m(xmi , â
m
i )⊗

[
Φka,MN

(xmi , â
m
i )′β0,a,ka,MN

]
,

Âm0 (xmi , â
m
i ) ≡


Îma (xmi , â

m
i )Φkx1,MN

(xmi , â
m
i )′β0,x1,kx1,MN

...

Îma (xmi , â
m
i )Φkxdx ,MN

(xmi , â
m
i )′β0,xdx ,kxdx ,MN


−∇xÎ

m(xmi , â
m
i )⊗

[
Φka,MN

(xmi , â
m
i )′β0,a,ka,MN

]
.

Now we need some intermediate coefficients which help analyze the estimated series coeffi-

cients for the quality function. Define

β̄MN ≡
(
β̄′x1,kx1,MN

, . . . , β̄′xdx ,kxdx ,MN
, β̄′a,ka,MN

)′
≡ Ŝ−ΦΦS̄ΦA,

β̄0,MN ≡
(
β̄′0,x1,kx1,MN

, . . . , β̄′0,xdx ,kxdx ,MN
, β̄′0,a,ka,MN

)′
≡ Ŝ−ΦΦS̄0,ΦA.
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And with some standard algebra, we get

β0,MN ≡
(
β′0,x1,kx1,MN

, . . . , β′0,xdx ,kxdx ,MN
, β′0,a,ka,MN

)′
≡ Ŝ−ΦΦŜ0,ΦA.

Moreover,

β̂MN ≡
(
β̂′x1,kx1,MN

, . . . , β̂′xdX ,kxdx ,MN
, β̂′a,ka,MN

)′
.

Note that if we let ŜΦ denote the stack of ŜΦ(xmi , â
m
i ) for all i ∈ {1, . . . , N} and all m ∈

{1, . . . ,M}, then ŜΦΦ = Ŝ ′ΦŜΦ/(MN). Let S̄A, S̄0,A and Ŝ0,A denote the similar stacks of

Ām(xmi , â
m
i ), Ām0 (xmi , â

m
i ) and Âm0 (xmi , â

m
i ), respectively. Then S̄ΦA = Ŝ ′ΦS̄A/(MN), S̄0,ΦA =

Ŝ ′ΦS̄0,A/(MN) and Ŝ0,ΦA = Ŝ ′ΦŜ0,A/(MN). Then we have the following lemma.

Lemma 2.D.7. Suppose that Assumptions 2.4.8-2.4.10, and the conditions of Theorem 2.4.2

and Lemma 2.D.6 are satisfied. Then

(i)
∥∥∥β̂MN − β̄MN

∥∥∥ = Op
(∑dx

j=1 νhj ,N + νha,N +
∑dx

j=1 νIj ,N + νIa,N

)
;

(ii)
∥∥β̄MN − β̄0,MN

∥∥ = Op
(
k−αea,MN +

∑dx
j=1 k

−αe
xj ,MN

)
;

(iii)
∥∥β̄0,MN − β0,MN

∥∥ = Op
(
νIa,N +

∑dx
j=1 νIj ,N

)
.

Proof. For (i), by Theorems 2.4.2 and 2.4.3, and the conditions that νl,N → 0, νlj ,N → 0

and νla,N → 0 (l = Im or l = hm), we have that |Îm − Im|1
p.−→ 0 and |ĥm − hm|1

p.−→ 0 for

m = 1, . . . ,M .

Some notation is necessary before I proceed with the proof. Let Im (m = 1, . . . ,M)

denote a set of functions I: Rdx+1 → R such that each function in Im is continuously
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differentiable of order one. Similarly, let Hm (m = 1, . . . ,M) denote a set of functions

h: Rdx+1 → R such that each function in Hm is continuously differentiable of order one.

For any functions (I, h) ∈ Im ×Hm, define dx functionals Γ
(j)
x,a(I, h) indexed by (x, a) ∈

X ×A and j ∈ {1, . . . , dx} as follows:

Γ(j)
x,a(I, h) ≡ Ixj(x, a)

ha(x, a)

h(x, a)
− Ia(x, a)

hxj(x, a)

h(x, a)
.

Note that

Âm(xmi , â
m
i ) =

(
Γ

(1)
xmi ,â

m
i

(Îm, ĥm), . . . ,Γ
(dx)
xmi ,â

m
i

(Îm, ĥm)

)′
,

and

Ām(xmi , â
m
i ) =

(
Γ

(1)
xmi ,â

m
i

(Im, hm), . . . ,Γ
(dx)
xmi ,â

m
i

(Im, hm)

)′
.

In what follows, I will omit the explicit dependence of Γ(j) on (x, a), and the results in this

proof hold uniformly for all (x, a) ∈ X × A. In particular, since âmi ∈ [0, 1], it must be the

case that (xmi , â
m
i ) ∈ X ×A. Let ∆Im ≡ Îm − Im and ∆hm ≡ ĥm − hm. Then we have

∥∥∥Âm(xmi , â
m
i )− Ām(xmi , â

m
i )
∥∥∥2

=
dx∑
j=1

∣∣∣Γ(j)(Îm, ĥm)− Γ(j)(Im, hm)
∣∣∣2

=
dx∑
j=1

∣∣DΓ(j)(Im, hm; ∆Im,∆hm) +RΓ(j)(Im, hm; ∆Im,∆hm)
∣∣2

≤ C

(
dx∑
j=1

∣∣DΓ(j)(Im, hm; ∆Im,∆hm)
∣∣2

+
dx∑
j=1

∣∣RΓ(j)(Im, hm; ∆Im,∆hm)
∣∣2) , (2.D.15)
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where the inequality holds by the triangular inequality. In equation (2.D.15), the first terms

of the summands are linear functionals with

|DΓ(j)(Im, hm; ∆Im,∆hm)|

=

∣∣∣∣hmahm∆Imxj +
Imxj
hm

∆hma −
Imxjh

m
a

(hm)2
∆hm

−
hmxj
hm

∆Ima −
Ima
hm

∆hmxj +
Ima h

m
xj

(hm)2
∆hm

∣∣∣∣
≤ C (|∆Im|1 + |∆hm|1) , (2.D.16)

where the inequality holds by Assumptions 2.4.6 and 2.4.10(ii), and the triangular inequality.

And in equation (2.D.15), the second terms of the summands are nonlinear functionals with

|RΓ(j)(Im, hm; ∆Im,∆hm)|

=

∣∣∣∣ 1

(hm)2(hm + ∆hm)

[
(hm)2

(
∆Imxj∆h

m
a −∆Ima ∆hmxj

)
+ (Imxjh

m
a − Ima hmxj)(∆h

m)2

−hm(Imxj∆h
m
a + hma ∆Imxj − I

m
a ∆hmxj − h

m
xj

∆Ima )∆hm
]∣∣∣

≤ C
(
|∆Im|21 + |∆hm|21

)
, (2.D.17)

where the inequality holds by Assumptions 2.4.6 and 2.4.10(ii), the triangular inequality,

and the Cauchy-Schwarz inequality.

By the consistency of Îm, ĥm and their derivatives, equation (2.D.16) and equation (2.D.17)

imply that |RΓ(j)(Im, hm; ∆Im,∆hm)| = o
(
|DΓ(j)(Im, hm; ∆Im,∆hm)|

)
. Then combine
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equation (2.D.15), equation (2.D.16) and Assumptions 2.4.6 and 2.4.10(ii), we get

∥∥∥Âm(xmi , â
m
i )− Ām(xmi , â

m
i )
∥∥∥2

= Op

(
dx∑
j=1

∣∣DΓ(j)(Im, hm; ∆Im,∆hm)
∣∣2)

= Op

(
dx∑
j=1

ν2
hj ,N

+ ν2
ha,N + ν2

ha,N +
dx∑
j=1

ν2
Ij ,N

+ ν2
Ia,N

)

= Op

(
dx∑
j=1

ν2
hj ,N

+ ν2
ha,N +

dx∑
j=1

ν2
Ij ,N

+ ν2
Ia,N

)
.

Recall that this result holds for all i ∈ {1, . . . , N} and all m ∈ {1, . . . ,M}. By Lemma

2.D.6(iii), we have that λmin(ŜΦΦ) ≥ c with probability approaching 1, then we have

∥∥∥Ŝ1/2
ΦΦ

(
β̂MN − β̄MN

)∥∥∥2

=
(
ŜA − S̄A

)′
ŜΦŜ

−
ΦΦŜ

′
Φ

(
ŜA − S̄A

)
/(MN)2

≤ C
(
ŜA − S̄A

)′ (
ŜA − S̄A

)
/(MN)

= Op

(
dx∑
j=1

ν2
hj ,N

+ ν2
ha,N +

dx∑
j=1

ν2
Ij ,N

+ ν2
Ia,N

)
.

So (i) holds by Lemma 2.D.6(iii).

For (ii), consider

∥∥Ām(xmi , â
m
i )− Ām0 (xmi , â

m
i )
∥∥2

=
dx∑
j=1

∣∣∣∣Imxj(xmi , âmi )
hma (xmi , â

m
i )

hm(xmi , â
m
i )
− Ima (xmi , â

m
i )Φkxj,MN

(xmi , â
m
i )′β0,xj ,kxj,MN
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−Ima (xmi , â
m
i )
hmxj(x

m
i , â

m
i )

hm(xmi , â
m
i )

+ Imxj(x
m
i , â

m
i )Φka,MN

(xmi , â
m
i )′β0,a,ka,MN

∣∣∣∣∣
2

=
dx∑
j=1

∣∣∣∣Ima (xmi , â
m
i )

[
exj(x

m
i , â

m
i )

e(xmi , â
m
i )
− Φkxj,MN

(xmi , â
m
i )′β0,xj ,kxj,MN

]

−Imxj(x
m
i , â

m
i )

[
ea(x

m
i , â

m
i )

e(xmi , â
m
i )
− Φka,MN

(xmi , â
m
i )′β0,a,ka,MN

]∣∣∣∣2
= Op

(
dx∑
j=1

k−2αe
xj ,MN + k−2αe

a,MN

)
.

where the second equality holds by equation (2.3.7); the third equality holds by Assumptions

2.4.6 and 2.4.8, the triangular inequality and the Cauchy-Schwarz inequality. By the same

argument as in the proof of (i), we have

∥∥∥Ŝ1/2
ΦΦ

(
β̄MN − β̄0,MN

)∥∥∥2

= Op

(
k−2αe
a,MN +

dx∑
j=1

k−2αe
xj ,MN

)
.

So (ii) holds by Lemma 2.D.6(iii).

For (iii), note that

∥∥∥Ām0 (xmi , â
m
i )− Âm0 (xmi , â

m
i )
∥∥∥2

=
dx∑
j=1

∣∣∣(Ima (xmi , â
m
i )− Îma (xmi , â

m
i )
)

Φkxj,MN
(xmi , â

m
i )′β0,xj ,kxj,MN

−
(
Imxj(x

m
i , â

m
i )− Îmxj(x

m
i , â

m
i )
)

Φka,MN
(xmi , â

m
i )′β0,a,ka,MN

∣∣∣2
=

dx∑
j=1

∣∣∣∣(Ima (xmi , â
m
i )− Îma (xmi , â

m
i )
)[

Φkxj,MN
(xmi , â

m
i )′β0,xj ,kxj,MN

−
exj(x

m
i , â

m
i )

e(xmi , â
m
i )

]
+
(
Ima (xmi , â

m
i )− Îma (xmi , â

m
i )
) exj(xmi , âmi )

e(xmi , â
m
i )

−
(
Imxj(x

m
i , â

m
i )− Îmxj(x

m
i , â

m
i )
)[

Φka,MN
(xmi , â

m
i )′β0,a,ka,MN

− ea(x
m
i , â

m
i )

e(xmi , â
m
i )

]
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−
(
Imxj(x

m
i , â

m
i )− Îmxj(x

m
i , â

m
i )
) ea(xmi , âmi )

e(xmi , â
m
i )

∣∣∣∣2
= Op

(
ν2
Ia,N

dx∑
j=1

k−2αe
xj ,MN + ν2

Ia,N + k−2αe
a,MN

dx∑
j=1

ν2
Ij ,N

+
dx∑
j=1

ν2
Ij ,N

)

= Op

(
ν2
Ia,N +

dx∑
j=1

ν2
Ij ,N

)
,

where the third equality holds by Theorem 2.4.3, Assumptions 2.4.8 and 2.4.9, the triangular

inequality and the Cauchy-Schwarz inequality; the fourth equality holds by that ka,MN →∞

and kxj ,MN →∞. By the same argument as in the proof of (i), we have

∥∥∥Ŝ1/2
ΦΦ

(
β̄0,MN − β0,MN

)∥∥∥2

= Op

(
ν2
Ia,N +

dx∑
j=1

ν2
Ij ,N

)
.

So (iii) holds by Lemma 2.D.6(iii). This completes the proof of the lemma.

Proof of Lemma 2.4.4

Proof. By the triangular inequality, we have

∥∥∥(β̂MN − β0,MN

)∥∥∥
≤

∥∥∥(β̂MN − β̄MN

)∥∥∥+
∥∥(β̄MN − β̄0,MN

)∥∥+
∥∥(β̄0,MN − β0,MN

)∥∥ .
So the result follows by Lemma 2.D.7.
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Proof of Theorem 2.4.5

Proof. By the triangular inequality, for j = 1, . . . , dx,

sup
(x,a)∈X×A

∣∣∣∣∣ ̂exj(x, a)

e(x, a)
−
exj(x, a)

e(x, a)

∣∣∣∣∣
≤ sup

(x,a)∈X×A

∣∣∣Φkxj,MN
(x, a)′

(
β̂kxj,MN

− β0,xj ,kxj,MN

)∣∣∣
+ sup

(x,a)∈X×A

∣∣∣∣Φkxj,MN
(x, a)′β0,xj ,kxj,MN

−
exj(x, a)

e(x, a)

∣∣∣∣ .
Then the result follows by Lemma 2.4.4, 2.D.3, Assumption 2.4.8, the triangular inequality

and the Cauchy-Schwarz inequality.

The uniform convergence rate of ̂ea(x, )/e(x, a) holds by the same argument.

Proof of Theorem 2.4.6

Proof. By Assumption 2.4.4, Theorem 2.4.5 and the conditions that for j = 1, . . . , dx,

νej ,M,N → 0 and νea,M,N → 0, then we have

ˆ xj

x̄j

̂exj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)

e(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)
dsj −

ˆ xj

x̄j

exj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)

e(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)
dsj

= Op

(∣∣∣∣∣ ̂exj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)

e(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)
−
exj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)

e(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)

∣∣∣∣∣
)

= Op

(
sup

(x,a)∈X×A

∣∣∣∣∣ ̂exj(x, a)

e(x, a)
−
exj(x, a)

e(x, a)

∣∣∣∣∣
)

= op(1), (2.D.18)
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and

ˆ a

ā

êa(x, t)

e(x, t)
dt−

ˆ a

ā

ea(x, t)

e(x, t)
dt

= Op

(∣∣∣∣∣ êa(x, t)e(x, t)
− ea(x, t)

e(x, t)

∣∣∣∣∣
)

= Op

(
sup

(x,a)∈X×A

∣∣∣∣∣ ̂ea(x, a)

e(x, a)
− ea(x, a)

e(x, a)

∣∣∣∣∣
)

= op(1). (2.D.19)

Let J denote a set of functions J : Rdx+1 → R. Define a family of functionals Ξx,a(J) indexed

by (x, a) ∈ X ×A as follows

Ξx,a(J) ≡ exp(J(x, a)).

Let

Ĵ(x, a) ≡
dx∑
j=1

ˆ xj

x̄j

̂exj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)

e(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)
dsj +

ˆ a

ā

êa(x, t)

e(x, t)
dt,

J(x, a) ≡
dx∑
j=1

ˆ xj

x̄j

gj(x1, . . . , xj−1, sj, x̄j+1, . . . , x̄dx , ā)dsj +

ˆ a

ā

gdx+1(x, t)dt.

Then it is easy to see that ê(x, a) = Ξx,a

(
Ĵ
)
and e(x, a) = Ξx,a (J). In what follows, I will

omit the explicit dependence of Ξ on (x, a), and the results in this proof hold uniformly for

all (x, a) ∈ X ×A. Let ∆J ≡ Ĵ − J , then we have

ê− e = Ξ (J + ∆J)− Ξ (J)

= DΞ(J ; ∆J) +RΞ(J ; ∆J).
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The first term in this decomposition is a linear functional with

sup
(x,a)∈X×A

|DΞ(J ; ∆J)| ≡ sup
(x,a)∈X×A

| exp(J)∆J | ≤ C|∆J |0,

where the inequality holds since X × A is compact by Assumption 2.4.4. And the second

term in the decomposition is a nonlinear functional with

sup
(x,a)∈X×A

|RΞ(J ; ∆J)| = o (|∆J |0) .

Then by the triangular inequality,

sup
(x,a)∈X×A

|ê(x, a)− e(x, a)| ≤ C|∆J |0 + o (|∆J |0)

= Op

(
C sup

(x,a)∈X×A

∣∣∣∣∣
ˆ a

ā

(
êa(x, t)

e(x, t)

)
dt−

ˆ a

ā

ea(x, t)

e(x, t)
dt

∣∣∣∣∣
+C sup

(x,a)∈X×A

∣∣∣∣∣
ˆ x

x̄

(
êx(s, ā)

e(s, ā)

)
ds−

ˆ x

x̄

ex(s, ā)

e(s, ā)
ds

∣∣∣∣∣
)
.

And the result follows by equation (2.D.18), equation (2.D.19) and Theorem 2.4.5.

2.D.4 Proofs of the Theorems in Section 2.4.2.4

This subsection proceeds with the same steps as in Appendix 2.D.2.

Lemma 2.D.8. Suppose that Assumption 2.4.13 and the conditions for Theorem 2.4.1 are

satisfied. Then, sup(h,x,a)∈H×X×A ‖Ψk(h, x, a)‖ ≤ Cζ0(k), sup(h,x,a)∈H×X×A ‖∂Ψk(h, x, a)/

∂h‖ ≤ Cζh(k), sup(h,x,a)∈H×X×A ‖∂Ψk(h, x, a)/∂xj‖ ≤ Cζj(k) and sup(h,x,a)∈H×X×A ‖∂Ψk(h, x, a)/
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∂a‖ ≤ Cζa(k).

Proof. This lemma holds by the same argument as Lemma 2.D.3.

Define

S̄ΨΨ ≡ (MN)−1

M∑
m=1

N∑
i=1

S̄ ′Ψ(hmi , x
m
i , â

m
i )S̄Ψ(hmi , x

m
i , â

m
i ),

where

S̄Ψ(hmi , x
m
i , â

m
i ) ≡


[
∇xh

m(xmi , â
m
i ) + hm(xmi , â

m
i )
∇xe(xmi ,âmi )

e(xmi ,â
m
i )

]
⊗ΨkU,MN

(hmi , x
m
i , â

m
i )′[

hma (xmi , â
m
i ) + hm(xmi , â

m
i )

ea(xmi ,â
m
i )

e(xmi ,â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′

 .

Lemma 2.D.9. Suppose that Assumptions 2.4.12, 2.4.13 and 2.4.15, and the conditions for

Theorem 2.4.5 are satisfied. Suppose as well that the numbers of series basis functions used

to approximate each component in kU,MN all increase to infinity with N ,
√
kU,MNνa(σN)

ζa(kU,MN)→ 0, kU,MNνej ,M,N → 0 for j = 1, . . . , dx, and kU,MNνea,M,N → 0. Then

(i) ‖S̄ΨΨ − SΨΨ‖ = Op
(
ν2
a,Nζ

2
a(kU,MN) +

√
kU,MNνa(σN)ζa(kU,MN)

)
;

(ii) ‖ŜΨΨ − S̄ΨΨ‖ = Op
(
kU,MN

[∑dx
j=1 νej ,M,N + νea,M,N

])
;

(iii) λmin(ŜΨΨ) ≥ c, λmin(S̄ΨΨ) ≥ c and λmin(SΨΨ) ≥ c with probability approaching 1,

where λmin denotes the minimum eigenvalue of a symmetric matrix.

Proof. To prove (i), some preliminary results are needed. For j = 1, . . . , dx, consider the

mean value expansion

[
hmxj(x

m
i , â

m
i ) + hm(xmi , â

m
i )
exj(x

m
i , â

m
i )

e(xmi , â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′

−
[
hmxj(x

m
i , a

m
i ) + hm(xmi , a

m
i )
exj(x

m
i , a

m
i )

e(xmi , a
m
i )

]
ΨkU,MN

(hmi , x
m
i , a

m
i )′
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=

[
hmxja(x

m
i , ã

m
i ) + hma (xmi , ã

m
i )
exj(x

m
i , ã

m
i )

e(xmi , ã
m
i )

+ hm(xmi , ã
m
i )
exja(x

m
i , ã

m
i )

e(xmi , ã
m
i )

−hm(xmi , ã
m
i )
exj(x

m
i , ã

m
i )ea(x

m
i , ã

m
i )

[e(xmi , ã
m
i )]2

]
·ΨkU,MN

(hmi , x
m
i , ã

m
i )′(âmi − ami )

+

[
hmxj(x

m
i , ã

m
i ) + hm(xmi , ã

m
i ) ·

exj(x
m
i , ã

m
i )

e(xmi , ã
m
i )

]
· ∂
∂a

ΨkU,MN
(hmi , x

m
i , ã

m
i )′(âmi − ami ),

where ãmi is between ami and âmi , so it must be in [0, 1]. Note that ãmi might take a different

value from the previous uses. By Lemma 2.D.8, Assumptions 2.4.6, 2.4.9 and 2.4.10(ii), the

triangular inequality, and the Cauchy-Schwarz inequality, we get

∥∥∥∥[hmxj(xmi , âmi ) + hm(xmi , â
m
i )
exj(x

m
i , â

m
i )

e(xmi , â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′

−
[
hmxj(x

m
i , a

m
i ) + hm(xmi , a

m
i )
exj(x

m
i , a

m
i )

e(xmi , a
m
i )

]
ΨkU,MN

(hmi , x
m
i , a

m
i )′
∥∥∥∥2

≤ C|âmi − ami |2
(
ζ2

0 (kU,MN) + ζ2
a(kU,MN)

)
≤ C|âmi − ami |2ζ2

a(kU,MN). (2.D.20)

By the same token,

∥∥∥∥[hma (xmi , â
m
i ) + hm(xmi , â

m
i )
ea(x

m
i , â

m
i )

e(xmi , â
m
i )

]
ΨkU,MN

(hmi , x
m
i , â

m
i )′

−
[
hma (xmi , a

m
i ) + hm(xmi , a

m
i )
ea(x

m
i , a

m
i )

e(xmi , a
m
i )

]
ΨkU,MN

(hmi , x
m
i , a

m
i )′
∥∥∥∥2

≤ C|âmi − ami |2
(
ζ2

0 (kU,MN) + ζ2
a(kU,MN)

)
≤ C|âmi − ami |2ζ2

a(kU,MN). (2.D.21)
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Equation (2.D.20) and equation (2.D.21) imply that

∥∥S̄Ψ(hmi , x
m
i , â

m
i )− SΨ(hmi , x

m
i , a

m
i )
∥∥2

≤ C|âmi − ami |2ζ2
a(kU,MN). (2.D.22)

Without loss of generality, I can set the basis functions to be orthonormal. So

(
E
(∥∥ΨkU,MN

(hmi , x
m
i , a

m
i )
∥∥2
))

= tr
(
IkU,MN

)
= kU,MN .

Then by the Markov’s inequality, we have

∥∥ΨkU,MN
(hmi , x

m
i , a

m
i )
∥∥2

= Op (kU,MN) . (2.D.23)

This implies, together with Lemma 2.D.8, Assumptions 2.4.6, 2.4.9 and 2.4.10(ii), and the

Cauchy-Schwarz inequality, that

∥∥SΨ,kU,MN ,x(x
m
i , a

m
i )
∥∥2

= Op (kU,MN) . (2.D.24)

Now consider (i),

‖S̄ΨΨ − SΨΨ‖ = (MN)−1

M∑
m=1

N∑
i=1

∥∥S̄Ψ(hmi , x
m
i , â

m
i )′S̄Ψ(hmi , x

m
i , â

m
i )

−SΨ(hmi , x
m
i , a

m
i )′SΨ(hmi , x

m
i , a

m
i )‖

= (MN)−1

M∑
m=1

N∑
i=1

∥∥S̄Ψ(hmi , x
m
i , â

m
i )− SΨ(hmi , x

m
i , a

m
i )
∥∥2
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+2(MN)−1

M∑
m=1

N∑
i=1

(∥∥S̄Ψ(hmi , x
m
i , â

m
i )− SΨ(hmi , x

m
i , a

m
i )
∥∥2
)1/2

(∥∥SΨ,kU,MN
(xmi , a

m
i )
∥∥2
)1/2

,

where the inequality holds by the triangular inequality and the Cauchy-Schwarz inequality.

Combine this result with Theorem 2.4.1, equation (2.D.22) and equation (2.D.24), we get

‖S̄ΨΨ − SΨΨ‖ = Op
(
ν2
a,Nζ

2
a(kU,MN) +

√
kU,MNνa(σN)ζa(kU,MN)

)
.

So (i) holds.

To prove (ii), some preliminary results are necessary. Recall that Hm (m = 1, . . . ,M)

denotes a set of functions h: Rdx+1 → R such that each function in Hm is continuously

differentiable of order one; and that J denotes a set of functions J : Rdx+1 → R.

For any functions (h, J) ∈ Hm × J , define a family of functionals Υ
(j)
x,a(h, J) indexed by

(x, a) ∈ X ×A and j ∈ {1, . . . , dx} as follows:

Υ(j)
x,a(h, J) ≡ hxj(x, a) + h(x, a)

exj(x, a)

e(x, a)
. (2.D.25)

And define another family of functionals Υ
(a)
x,a(h, J) indexed by (x, a) ∈ X ×A as follows:

Υ(a)
x,a(h, J) ≡ ha(x, a) + h(x, a)

ea(x, a)

e(x, a)
. (2.D.26)
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Note that

ŜΨ(hmi , x
m
i , â

m
i ) =

(
Υ

(1)
xmi ,â

m
i

(
ĥm,

êx1
e

)
, . . . ,Υ

(dx)
xmi ,â

m
i

(
ĥm,

êxdx
e

)
,Υ

(a)
xmi ,â

m
i

(
ĥm,

êa
e

))′
⊗ΨkU,MN

(hmi , x
m
i , â

m
i )′,

and

S̄Ψ(hmi , x
m
i , â

m
i ) =

(
Υ

(1)
xmi ,â

m
i

(
hm,

ex1
e

)
, . . . ,Υ

(dx)
xmi ,â

m
i

(
hm,

exdx
e

)
,Υ

(a)
xmi ,â

m
i

(
hm,

ea
e

))′
⊗ΨkU,MN

(hmi , x
m
i , â

m
i )′.

In what follows, I will omit the explicit dependence of Υ(j) and Υ(a) on (x, a), and the results

in this proof hold uniformly for all (x, a) ∈ X × A. In particular, since âmi ∈ [0, 1], it must

be the case that (xmi , â
m
i ) ∈ X × A. Let ∆hm ≡ ĥm − hm, let ∆

(
exj
e

)
≡ êxj

e
− exj

e
for

j = 1, . . . , dx, and let ∆
(
ea
a

)
≡ êa

e
− ea

e
. Then we have

∥∥∥ŜΨ(hmi , x
m
i , â

m
i )− S̄Ψ(hmi , x

m
i , â

m
i )
∥∥∥2

≤

[
dx∑
j=1

∣∣∣∣Υ(j)

(
ĥm,

êxj
e

)
−Υ(j)

(
hm,

exj
e

)∣∣∣∣2

+

∣∣∣∣Υ(a)

(
ĥm,

êa
e

)
−Υ(a)

(
hm,

ea
e

)∣∣∣∣2
]
·
∥∥ΨkU,MN

(hmi , x
m
i , â

m
i )
∥∥2
, (2.D.27)

where the inequality holds by the Cauchy-Schwarz inequality. By the same argument as for
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equation (2.D.23), we have

∥∥ΨkU,MN
(hmi , x

m
i , â

m
i )
∥∥2

= Op (kU,MN) . (2.D.28)

Moreover,

∣∣∣∣Υ(j)

(
ĥm,

êxj
e

)
−Υ(j)

(
hm,

exj
e

)∣∣∣∣2
=

∣∣∣DΥ(j)
(
hm,

exj
e
; ∆hm,∆

(exj
e

))
+RΥ(j)

(
hm,

exj
e
; ∆hm,∆

(exj
e

))∣∣∣2
≤ C

∣∣∣DΥ(j)
(
hm,

exj
e
; ∆hm,∆

(exj
e

))∣∣∣2
+C

∣∣∣RΥ(j)
(
hm,

exj
e
; ∆hm,∆

(exj
e

))∣∣∣2 , (2.D.29)

where the inequality holds by the triangular inequality. In equation (2.D.29), the first term

is a linear functional with

∣∣∣DΥ(j)
(
hm,

exj
e
; ∆hm,∆

(exj
e

))∣∣∣ =
∣∣∣∆hmxj − hm∆

(exj
e

)
−∆hm

exj
e

∣∣∣
≤ C

(
|∆hm|1 +

∣∣∣∆exj
e

∣∣∣
0

)
, (2.D.30)

where the inequality holds by Assumptions 2.4.6, 2.4.9 and 2.4.10(ii), and the triangular

inequality. And the second term in equation (2.D.29) is a nonlinear functional with

∣∣∣RΥ(j)
(
hm,

exj
e
; ∆hm,∆

(exj
e

))∣∣∣ =
∣∣∣∆hm∆

(exj
e

)∣∣∣
≤ C

(
|∆hm|0 ·

∣∣∣∆(exj
e

)∣∣∣
0

)
, (2.D.31)
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where the inequality holds by Assumptions 2.4.6, 2.4.9 and 2.4.10(ii), the triangular inequal-

ity, and the Cauchy-Schwarz inequality.

By the consistency of ĥm, ĥmxj and
êxj
e
, equation (2.D.30) and equation (2.D.31) imply

that |RΥ(j)(hm,
exj
e
; ∆hm,∆(exj/e))| = o(|DΥ(j)(hm,

exj
e
; ∆hm,∆(exj/e))|). Then combine

equation (2.D.29), equation (2.D.30), Assumptions 2.4.6 and 2.4.10, we get

∣∣∣∣Υ(j)

(
ĥm,

êxj
e

)
−Υ(j)

(
hm,

exj
e

)∣∣∣∣2 = Op
(
ν2
hj ,N

+ ν2
ej ,M,N

)
= Op

(
ν2
ej ,M,N

)
,(2.D.32)

for j = 1, . . . , dx. By the same token, we have

∣∣∣∣Υ(a)

(
ĥm,

êa
e

)
−Υ(a)

(
hm,

ea
e

)∣∣∣∣2 = Op
(
ν2
ea,M,N

)
. (2.D.33)

Together, equation (2.D.27), equation (2.D.28), equation (2.D.32) and equation (2.D.33)

imply that

∥∥∥ŜΨ(hmi , x
m
i , â

m
i )− S̄Ψ(hmi , x

m
i , â

m
i )
∥∥∥2

= Op

(
kU,MN

[
dx∑
j=1

ν2
ej ,M,N + ν2

ea,M,N

])
.(2.D.34)

On the other hand, by equation (2.D.28), Assumptions 2.4.12 and 2.4.15, and the Cauchy-

Schwarz inequality, we have

∥∥S̄Ψ,kN ,x(x
m
i , a

m
i )
∥∥2

= Op (kU,MN) . (2.D.35)
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Now consider (ii),

‖ŜΨΨ − S̄ΨΨ‖ = (MN)−1

M∑
m=1

N∑
i=1

∥∥∥ŜΨ(hmi , x
m
i , a

m
i )′ŜΨ(hmi , x

m
i , a

m
i )

−S̄Ψ(hmi , x
m
i , â

m
i )′S̄Ψ(hmi , x

m
i , â

m
i )
∥∥

= (MN)−1

M∑
m=1

N∑
i=1

∥∥∥ŜΨ(hmi , x
m
i , a

m
i )− S̄Ψ(hmi , x

m
i , â

m
i )
∥∥∥2

+2(MN)−1

M∑
m=1

N∑
i=1

(∥∥∥ŜΨ(hmi , x
m
i , a

m
i )− S̄Ψ(hmi , x

m
i , â

m
i )
∥∥∥2
)1/2

(∥∥S̄Ψ,kU,MN
(xmi , a

m
i )
∥∥2
)1/2

,

where the inequality holds by the triangular inequality and the Cauchy-Schwarz inequality.

Combine this result with equation (2.D.34) and equation (2.D.35), we get

‖ŜΨΨ − S̄ΨΨ‖ = Op

(
kU,MN

[
dx∑
j=1

νej ,M,N + νea,M,N

])
.

So (ii) holds.

To prove (iii), note that

E
[
‖SΨΨ − E(SΨΨ)‖2] ≤ dx∑

j=1

E

[
(MN)−1

(
hmxj(x

m
i , a

m
i ) + hm(xmi , a

m
i )
exj(x

m
i , a

m
i )

e(xmi , a
m
i )

)2

·
∥∥ΨkU,MN

(hmi , x
m
i , a

m
i )ΨkU,MN

(hmi , x
m
i , a

m
i )′
∥∥2
]

+E

[
(MN)−1

(
hma (xmi , a

m
i ) + hm(xmi , a

m
i )
ea(x

m
i , a

m
i )

e(xmi , a
m
i )

)2

·
∥∥ΨkU,MN

(hmi , x
m
i , a

m
i )ΨkU,MN

(hmi , x
m
i , a

m
i )′
∥∥2
]

≤ CE
[∥∥ΨkU,MN

(hmi , x
m
i , a

m
i )ΨkU,MN

(hmi , x
m
i , a

m
i )′
∥∥2
]
, (2.D.36)
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where the first inequality holds by the definition of SΨΨ, Assumption 2.4.1, and that the

second moment of a random variable is no less than its variance; the second inequality holds

by Assumptions 2.4.6, 2.4.9 and 2.4.10(ii). Recall that I assume the series basis functions

are orthonormal, then by Lemma 2.D.8, we have

E
[∥∥ΨkU,MN

(hmi , x
m
i , a

m
i )ΨkU,MN

(hmi , x
m
i , a

m
i )′
∥∥2
]

= (MN)−1E

kU,MN∑
k=1

ψ2
k(h

m
i , x

m
i , a

m
i )

kU,MN∑
l=1

ψ2
l (h

m
i , x

m
i , a

m
i )


≤ (MN)−1ζ2

o (kU,MN)tr(IkU,MN
)

= ζ2
o (kU,MN)kU,MN/(MN). (2.D.37)

Plug the bounds in equation (2.D.37) into equation (2.D.36), then we get

E
[
‖SΨΨ − E(SΨΨ)‖2] ≤ Cζ2

o (kU,MN)kU,MN/(MN).

Then by the Markov’s inequality,

‖SΨΨ − E(SΨΨ)‖ = Op
(
ζo(kU,MN)

√
kU,MN/(MN)

)
.

Again, since νa(σN) converges to zero at a slower rate thanN−1/2,
√
kU,MNνa(σN)ζa(kU,MN)→

0 implies ζ2
o (kU,MN)kU,MN/(MN)→ 0. As a result, ‖SΨΨ − E(SΨΨ)‖ = op(1).

Note that
√
kU,MNνa(σN)ζa(kU,MN)→ 0 implies ν2

a,Nζ
2
a(kU,MN)→ 0. Then by result (i),

we have ‖ŜΨΨ − S̄ΨΨ‖ = op(1). Moreover, by result (ii), the conditions that the numbers of
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series basis functions used to approximate each component in kU,MN all increase to infinity

with N , kU,MNνej ,M,N → 0 for j = 1, . . . , dx, and kU,MNνea,M,N → 0, we have ‖S̄ΨΨ−SΨΨ‖ =

op(1). Then (iii) follows by the same argument for the proof of Lemma 2.D.4(iv). This

completes the proof of the lemma.

Define

S̄ΨI ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′S̄I(h

m
i , x

m
i , â

m
i ),

S̄0,ΨI ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′S̄0,I(h

m
i , x

m
i , â

m
i ),

S̃0,ΨI ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′S̃0,I(h

m
i , x

m
i , â

m
i ),

Ŝ0,ΨI ≡ (MN)−1

M∑
m=1

N∑
i=1

ŜΨ(hmi , x
m
i , â

m
i )′Ŝ0,I(h

m
i , x

m
i , â

m
i ),

where

S̄I(h
m
i , x

m
i , â

m
i ) ≡

(
∇xI

m(xmi , â
m
i )′, Ima (xmi , â

m
i )

)′
,

S̄0,I(h
m
i , x

m
i , â

m
i ) ≡

 ∇xh
m(xmi , â

m
i ) + hm(xmi , â

m
i )
∇xe(xmi ,âmi )

e(xmi ,â
m
i )

hma (xmi , â
m
i ) + hm(xmi , â

m
i )

ea(xmi ,â
m
i )

e(xmi ,â
m
i )


⊗
[
ΨkU,MN

(hm(xmi , â
m
i ), xmi , â

m
i )′γ0,kU,MN

]
,

S̃0,I(h
m
i , x

m
i , â

m
i ) ≡

 ∇xh
m(xmi , â

m
i ) + hm(xmi , â

m
i )
∇xe(xmi ,âmi )

e(xmi ,â
m
i )

hma (xmi , â
m
i ) + hm(xmi , â

m
i )

ea(xmi ,â
m
i )

e(xmi ,â
m
i )


⊗
[
ΨkU,MN

(hmi , x
m
i , â

m
i )′γ0,kU,MN

]
,
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Ŝ0,I(h
m
i , x

m
i , â

m
i ) ≡

 ∇xĥ
m(xmi , â

m
i ) + ĥm(xmi , â

m
i )

̂∇xe(xmi ,âmi )

e(xmi ,â
m
i )

ĥma (xmi , â
m
i ) + ĥm(xmi , â

m
i )

̂ea(xmi ,â
m
i )

e(xmi ,â
m
i )


⊗
[
ΨkU,MN

(hmi , x
m
i , â

m
i )′γ0,kU,MN

]
.

Now we need some intermediate coefficients which help analyze the estimated series coeffi-

cients for the sellers’ marginal disutility function. Define

γ̄kU,MN
≡ Ŝ−ΨΨS̄ΨI ,

γ̄0,kU,MN
≡ Ŝ−ΨΨS̄0,ΨI ,

γ̃0,kU,MN
≡ Ŝ−ΨΨS̃0,ΨI .

And with some standard algebra, we get

γ0,kU,MN
≡ Ŝ−ΨΨŜ0,ΨI .

Note that if we let ŜΨ denote the stack of ŜΨ(hmi , x
m
i , â

m
i ) for all i ∈ {1, . . . , N} and all m ∈

{1, . . . ,M}, then ŜΨΨ = Ŝ ′ΨŜΨ/(MN). Let S̄I , S̄0,I , S̃0,I and Ŝ0,I denote the similar stacks of

S̄I(h
m
i , x

m
i , â

m
i ), S̄0,I(h

m
i , x

m
i , â

m
i ), S̃0,I(h

m
i , x

m
i , â

m
i ) and Ŝ0,I(h

m
i , x

m
i , â

m
i ), respectively. Then

S̄ΨI = Ŝ ′ΨS̄I/(MN), S̄0,ΨI = Ŝ ′ΨS̄0,I/(MN), S̃0,ΨI = Ŝ ′ΨS̃0,I/(MN) and Ŝ0,ΨI = Ŝ ′ΨŜ0,I/

(MN). Then we have the following lemma.

Lemma 2.D.10. Suppose that Assumption 2.4.11 and the conditions of Lemma 2.D.9 are

satisfied. Then
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(i) ‖γ̂kU,MN
− γ̄kU,MN

‖ = Op
(∑dx

j=1 νIj ,N + νIa,N

)
;

(ii) ‖γ̄kU,MN
− γ̄0,kU,MN

‖ = Op
(
k−αUU,MN

)
;

(iii) ‖γ̄0,kU,MN
− γ̃0,kU,MN

‖ = Op
(
k−αUU,MN + νa(σN)

)
;

(iv) ‖γ̃0,kU,MN
− γ0,kU,MN

‖ = Op
(
νea,M,N +

∑dx
j=1 νej ,M,N

)
.

Proof. For (i), consider

∥∥∥Ŝ1/2
ΨΨ

(
γ̂kU,MN

− γ̄kU,MN

)∥∥∥2

=
(
ŜI − S̄I

)′
ŜΨŜ

−
ΨΨŜ

′
Ψ

(
ŜI − S̄I

)
/(MN)2

≤ C
(
ŜI − S̄I

)′ (
ŜI − S̄I

)
/(MN)

= Op

(
dx∑
j=1

ν2
Ij ,N

+ ν2
Ia,N

)
, (2.D.38)

where the second equality holds by Theorem 2.4.3. So (i) holds by Lemma 2.D.9(iii).

For (ii), note that equation (2.4.14) implies for j = 1, . . . , dx,

Imxj(x
m
i , â

m
i ) =

[
hmxj(x

m
i , â

m
i ) + hm(xmi , â

m
i )
exj(x

m
i , â

m
i )

e(xmi , â
m
i )

]
Uh (hm(xmi , â

m
i ), xmi , â

m
i ) .

Then

∥∥S̄I(hmi , xmi , âmi )− S̄0,I(h
m
i , x

m
i , â

m
i )
∥∥2

≤

(
dx∑
j=1

∣∣∣∣hmxj(xmi , âmi ) + hm(xmi , â
m
i )
exj(x

m
i , â

m
i )

e(xmi , â
m
i )

∣∣∣∣2

+

∣∣∣∣hma (xmi , â
m
i ) + hm(xmi , â

m
i )
ea(x

m
i , â

m
i )

e(xmi , â
m
i )

∣∣∣∣2
)

·
∣∣Uh (hm(xmi , â

m
i ), xmi , â

m
i )−ΨkU,MN

(hm(xmi , â
m
i ), xmi , â

m
i )′γ0,kU,MN

∣∣2
≤ Ck−2αU

U,MN ,
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where the first inequality holds by the Cauchy-Schwarz inequality; the second inequality

holds by Assumptions 2.4.6, 2.4.9, 2.4.10(ii) and 2.4.11. As a result,

∥∥∥Ŝ1/2
ΨΨ

(
γ̄kU,MN

− γ̄0,kU,MN

)∥∥∥2

=
(
S̄I − S̄0,I

)′
ŜΨŜ

−
ΨΨŜ

′
Ψ

(
S̄I − S̄0,I

)
/(MN)2

≤ C
(
S̄I − S̄0,I

)′ (
S̄I − S̄0,I

)
/(MN)

= Op
(
k−2αU
U,MN

)
.

So (ii) holds by Lemma 2.D.9(iii).

For (iii), consider the mean value expansion

Uh(h
m(xmi , â

m
i ), xmi , â

m
i )− Uh(hmi , xmi , âmi )

= Uh(h
m(xmi , â

m
i ), xmi , â

m
i )− Uh(hm(xmi , a

m
i ), xmi , â

m
i )

= Uhh(h̃
m
i , x

m
i , â

m
i )hma (xmi , ã

m
i )(âmi − ami ). (2.D.39)

Then we have

∣∣ΨkU,MN
(hm(xmi , â

m
i ), xmi , â

m
i )′γ0,kU,MN

−ΨkU,MN
(hmi , x

m
i , â

m
i )′γ0,kU,MN

∣∣2
≤

∣∣Uh(hm(xmi , â
m
i ), xmi , â

m
i )−ΨkU,MN

(hm(xmi , â
m
i ), xmi , â

m
i )′γ0,kU,MN

∣∣2
+
∣∣Uh(hmi , xmi , âmi )−ΨkU,MN

(hmi , x
m
i , â

m
i )′γ0,kU,MN

∣∣2
+ |Uh(hm(xmi , â

m
i ), xmi , â

m
i )− Uh(hmi , xmi , âmi )|2

≤ C
(
k−2αU
U,MN + |âmi − ami |2

)
,
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where the first inequality holds by the triangular inequality and the Cauchy-Schwarz in-

equality; the second inequality holds by Assumptions 2.4.6, 2.4.10(ii), 2.4.11, 2.4.12, and

equation (2.D.39). This implies that

∥∥∥S̄0,I(h
m
i , x

m
i , â

m
i )− S̃0,I(h

m
i , x

m
i , â

m
i )
∥∥∥2

≤ C
∣∣ΨkU,MN

(hm(xmi , â
m
i ), xmi , â

m
i )′γ0,kU,MN

−ΨkU,MN
(hmi , x

m
i , â

m
i )′γ0,kU,MN

∣∣2
≤ Op

(
k−2αU
U,MN + |âmi − ami |2

)
.

Together with Theorem 2.4.1, this implies that

∥∥∥Ŝ1/2
ΨΨ

(
γ̄0,kU,MN

− γ̃0,kU,MN

)∥∥∥2

=
(
S̄0,I − S̃0,I

)′
ŜΨŜ

−
ΨΨŜ

′
Ψ

(
S̄0,I − S̃0,I

)
/(MN)2

≤ C
(
S̄0,I − S̃0,I

)′ (
S̄0,I − S̃0,I

)
/(MN)

= Op
(
k−2αU
U,MN + ν2

a,N

)
.

So (iii) holds by Lemma 2.D.9(iii).

For (iii), recall the definitions of the functionals in equation (2.D.25) and equation (2.D.26).

Together with the Cauchy-Schwarz inequality, they imply that
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i )− Ŝ0,I(h

m
i , x

m
i , â
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(
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e
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+
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(
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)
−Υ(a)

(
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]

·
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∥∥2
. (2.D.40)
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In equation (2.D.40),

∥∥ΨkU,MN
(hmi , x

m
i , â

m
i )′γ0,kU,MN

∥∥2 ≤
∥∥Uh(hmi , xmi , âmi )−ΨkU,MN

(hmi , x
m
i , â

m
i )′γ0,kU,MN

∥∥2

+ ‖Uh(hmi , xmi , âmi )‖2

≤ Ck−2αU
U,MN +BU , (2.D.41)

where the first inequality holds by the triangular inequality and the Cauchy-Schwarz in-

equality; the second inequality holds by Assumptions 2.4.11 and 2.4.12. Together, equa-

tion (2.D.32), equation (2.D.33), equation (2.D.40), equation (2.D.41) and Lemma 2.D.9(iii)

imply

∥∥∥Ŝ1/2
ΨΨ

(
γ̃0,kU,MN

− γ0,kU,MN

)∥∥∥2

=
(
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ŜΨŜ

−
ΨΨŜ

′
Ψ

(
S̃0,I − Ŝ0,I

)
/(MN)2

≤ C
(
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)′ (
S̃0,I − Ŝ0,I

)
/(MN)

= Op

(
ν2
ea,M,N +

dx∑
j=1

ν2
ej ,M,N

)
.

So (iv) holds.

Proof of Lemma 2.4.7

Proof. By the triangular inequality, we have

∥∥γ̂kU,MN
− γ0,kU,MN

∥∥
≤

∥∥γ̂kU,MN
− γ̄kU,MN

∥∥+
∥∥γ̄kU,MN

− γ̄0,kU,MN

∥∥+
∥∥γ̃0,kU,MN

− γ0,kU,MN

∥∥ .
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So the result follows by Lemma 2.D.10.

Proof of Theorem 2.4.8

Proof. By the triangular inequality,

sup
(h,x,a)

∣∣∣Ûh(h, x, a)− Uh(h, x, a)
∣∣∣

≤ sup
(h,x,a)

∣∣ΨkU,MN
(h, x, a)′

(
γ̂kU,MN

− γ0,kU,MN

)∣∣
+ sup

(h,x,a)

∣∣ΨkU,MN
(h, x, a)′γ0,kU,MN

− Uh(h, x, a)
∣∣

= Op

(
ζ0(kU,MN)

[
νea,M,N +

dx∑
j=1

νej ,M,N + k−αUU,MN

])
+Op

(
k−αUU,MN

)
= Op

(
ζ0(kU,MN)

[
νea,M,N +

dx∑
j=1

νej ,M,N + k−αUU,MN

])
,

where the inequality holds by the triangular inequality; the equality holds by Lemmas 2.4.7

and 2.D.8, Assumption 2.4.11, and the Cauchy-Schwarz inequality. So the result holds.
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Figure 2.8: Numerically Solved Equilibrium Using True and Perturbed Structural Functions

The first panel shows the equilibrium densities of effective labor supply zs and demand zd when solving the
equilibrium using the true structural functions. The following three panels show the equilibrium when the
structural function values are perturbed by multiplying random variables drawn fromN (1, 0.011), N (1, 0.051)
and N (1, 0.11), respectively. The perturbed equilibria are very close to the true one. This suggests that the
equilibrium is a continuous mapping from the structural functions, and that the algorithm approximates the
equilibrium well.
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Chapter 3

Uniform Asymptotic Risk of Averaging
GMM Estimator Robust to
Misspecification
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3.1 Introduction

We are interested in estimating some finite dimensional parameter θ0 ∈ Rdθ which is uniquely

identified by the moment restrictions

EF [g1(W, θ0)] = 0r1×1 (3.1.1)

for some known vector functions g1 (·) :W×Θ→Rr1 , where Θ is a compact subset of Rdθ ,W is

a random vector with supportW and joint distribution F , and EF [·] denotes the expectation

operator under F . Suppose we have i.i.d. data {Wi}ni=1, where Wi has distribution F for

any i = 1, . . . , n.1 Let g1(θ) = n−1
∑n

i=1 g1(Wi, θ). One efficient GMM estimator for θ0 is

θ̂1 = arg min
θ∈Θ

g1(θ)′(Ω1)−1g1(θ), (3.1.2)

where Ω1 = n−1
∑n

i=1 g1(Wi, θ̃1)g1(Wi, θ̃1)′ − g1(θ̃1)g1(θ̃1)′ is the efficient weighting matrix

with some preliminary consistent estimator θ̃1.2 In a linear instrumental variable (IV) ex-

ample, Yi = X ′iθ0 + Ui where the IV Z1,i ∈ Rr1 satisfies EF [Z1,iUi] = 0r1×1. The moments in

(3.1.1) hold with g1(Wi, θ0) = Z1,i(Yi −X ′iθ0) and θ0 is uniquely identified if EF [Z1,iX
′
i] has

full column rank. Under certain regularity conditions, it is well-known that θ̂1 is consistent

and achieves the lowest asymptotic variance among GMM estimators based on the moments

1The main theory of the paper can be easily extended to time series models with dependent data, as long
as the preliminary results in Lemma 3.B.1 hold.

2For example, θ̃1 could be the GMM estimator similar to θ̂1 but with an identity weighting matrix, see
(3.B.11) in the Appendices.
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in (3.1.1), see Hansen (1982).

If one has additional moments EF [g∗(Wi, θ0)] = 0r∗×1 for some known function g∗(·) :

W×Θ→Rr∗ , imposing them together with (3.1.1) can further reduce the asymptotic variance

of the GMM estimator. However, if these additional moments are misspecified in the sense

that EF [g∗(Wi, θ0)] 6= 0r∗×1, imposing EF [g∗(Wi, θ0)] = 0r∗×1 may result in inconsistent

estimation. The choice of moment conditions is routinely faced by empirical researchers.

Take the linear IV model for example. One typically starts with a large number of candidate

IVs but only has confidence that a small number of them are valid, denoted by Z1,i. The

rest of them, denoted by Z∗i , are valid only under certain economic hypothesis that yet to

be tested. In this example, g∗(Wi, θ0) = Z∗i (Yi − X ′iθ0). In contrast to the conservative

estimator θ̂1, an aggressive estimator θ̂2 always imposes EF [g∗(Wi, θ0)] = 0r∗×1 regardless

of its validity. Let g2(Wi, θ) = (g1(Wi, θ)
′, g∗(Wi, θ)

′)′ and g2(θ) = n−1
∑n

i=1 g2(Wi, θ). The

aggressive estimator θ̂2 takes the form

θ̂2 = arg min
θ∈Θ

g2(θ)′(Ω2)−1g2(θ), (3.1.3)

where Ω2 is constructed in the same way as Ω1 except that g1(Wi, θ) is replaced by g2(Wi, θ).3

Because imposing EF [g∗(Wi, θ0)] = 0r∗×1 is a double-edged sword, a data-dependent

decision usually is made to choose between θ̂1 and θ̂2. To study such a decision and the

subsequent estimator, let

δF = EF [g∗(Wi, θ0)] ∈ Rr∗ . (3.1.4)

3See the first line of equations (3.B.15) for the definition of Ω2.
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The pre-testing approach tests the null hypothesis H0 : δF = 0r∗×1 and constructs an esti-

mator

θ̂pre = 1{Tn > cα}θ̂1 + 1{Tn ≤ cα}θ̂2 (3.1.5)

for some test statistic Tn with the critical value cα at the significance level α. One popular test

is the J-test, see Hansen (1982), and cα is the 1− α quantile of the chi-squared distribution

with degree of freedom r2−dθ where r2 = r1 +r∗. Because the power of this test against most

fixed alternative is 1, θ̂pre equals θ̂1 with probability 1 asymptotically (n → ∞) for these

fixed misspecified model where δF 6= 0r∗×1. Thus, it seems that θ̂pre is immune to moment

misspecification. However, we care about the finite-sample mean squared error (MSE) of

θ̂pre in practice and this standard pointwise asymptotic analysis (δF is fixed and n → ∞)

provides a poor approximation to the former.4 To see the comparison between θ̂pre and θ̂1,

the dashed line in Figure 3.1 plots the finite-sample (n = 250) MSE of θ̂pre while the MSE

of θ̂1 is normalized to be 1. For some values of δF , the MSE of θ̂pre is larger than that of θ̂1,

sometimes by 40%.

The goal of this paper is twofold. First, we propose a data-dependent averaging of θ̂1

and θ̂2 that takes the form

θ̂eo = (1− ω̃eo)θ̂1 + ω̃eoθ̂2 (3.1.6)

where ω̃eo ∈ [0, 1] is a data-dependent weight specified in (3.4.7) below. The subscript in

ω̃eo is short for empirical optimal because this weight is an empirical analog of an infeasible

4The poor approximation of the pointwise asymptotics to the finite sample properties of the pre-test
estimator has been noted in Shibata (1986), Pötscher (1991), Kabaila (1995, 2009) and Leeb and Pötscher
(2005, 2008), among others.
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optimal weight ω∗F defined in (3.4.3) below. We plot the finite-sample MSE of this averaging

estimator as the solid line in Figure 3.1. This averaging estimator is robust to misspecification

in the sense that the solid line is below 1 for all values of δF , in contrast to the bump in the

dashed line that represents the pre-test estimator. Second, we develop a uniform asymptotic

theory to justify the finite-sample robustness of this averaging estimator. We show that

this averaging estimator dominates the conservative estimator uniformly over a large class

of models with different degrees of misspecification.5 The standard asymptotic theory is

pointwise and fails to reveal the fragile nature of the pre-test estimator. A stronger uniform

notion of robustness is crucial for this model. Furthermore, we quantify the upper and

lower bounds of the asymptotic risk differences between the averaging estimator and the

conservative estimator.6

The rest of the chapter is organized as follows. Section 3.2 discusses the literatures re-

lated to our paper. Section 3.3 defines the parameter space over which the uniform result

is established and defines uniform dominance. Section 3.4 introduces the averaging weight.

Section 3.5 provides an analytical representation of the bounds of the asymptotic risk dif-

ferences and applies it to show that the averaging GMM estimator uniformly dominates the

conservative estimator. Section 3.6 studies the upper bound of the asymptotic risk difference

in a local misspecification framework. Section 3.7 investigates the finite sample performance

of our averaging estimator using Monte Carlo simulations. Section 3.8 concludes. Proofs

and technical arguments are given in the Appendices.

5The uniform dominance is established under the truncated weighted loss function which is defined in
(3.3.7) below.

6The lower and upper bounds of asymptotic risk difference are defined in (3.3.9) below.
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Notation. Let C > 1 be generic positive constant whose value does not depend on

the joint distribution F or the sample size. a ≡ b means a is defined as b. For any real

matrix A, we use ||A|| to denote the Frobenius norm of A. If A is a real square matrix,

we use tr(A) denote the trace of A, and ρmin(A) and ρmax(A) to denote the smallest and

largest eigenvalues of A, respectively. For any positive integers d1 and d2, Id1 and 0d1×d2

stand for the d1 × d1 identity matrix and d1 × d2 zero matrix, respectively. Let vec (·)

denotes vectorization of a matrix and vech (·) denotes the half vectorization of a symmetric

matrix. Let R = (−∞,+∞), R+ = [0,+∞), R∞ = R ∪ {±∞} and R+,∞ = R+∪{+∞}.

For any positive integers d and any set S, Sd denotes the Cartesian product of d many sets:

S1× · · · × Sd with Sj = S for j = 1, . . . , d. For any set S, int(S) denotes the interior of

S. We use {n} to denote the set of natural numbers and {pn} = {pn : n ≥ 1} denote a

subsequence of {n}. For any (possibly random) positive sequences {an}∞n=1 and {bn}∞n=1,

an = Op(bn) means that limc→∞ lim supn Pr (an/bn > c) = 0; an = op(bn) means that for all

ε > 0, limn→∞ Pr (an/bn > ε) = 0. Let "→p" and "→d" stand for convergence in probability

and convergence in distribution, respectively.

3.2 Related Literature

In this section, we discuss some related literature. Our uniform dominance result is related

to the Stein’s phenomenon (Stein, 1956) in parametric models. The James-Stein (JS) esti-

mator (James and Stein, 1961) is shown to dominate the maximum likelihood estimator in

exact normal sampling. Hansen (2016) considers local asymptotic analysis of the JS-type
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averaging estimator in general parametric models and substantially extends its application

in econometrics. The present paper focuses on the uniformity issue and studies the Stein’s

phenomenon in non-Gaussian semiparametric nonlinear models. The proposed averaging

estimator is not a mimic of the JS-type estimator for moment-based models and we find its

finite-sample risk compares favorably to that of the latter. The asymptotic results are de-

veloped along drifting sequences of data generating processes (DGPs) with different degrees

of misspecification. This class of DGPs include the crucial n−1/2 local sequences that are

considered by Hjort and Claeskens (2003), Liu (2015), Hansen (2007, 2015, 2016), DiTraglia

(2016) for various averaging estimators, as well as some more distant sequences. The the-

oretical results glue all sequences together and show that they are sufficient to provide a

uniform approximation of the finite-sample risk differences. The proof uses the techniques

developed in Andrews and Guggenberger (2006) and Andrews, Cheng, and Guggenberger

(2011) for uniform size control for inference in non-standard problems.

Measured by the MSE, the post-model-selection estimator based on consistent model

selection procedure usually does better than the unrestricted estimator in part of the pa-

rameter space and worse than the latter in other part of the parameter space. One standard

example is the Hodge’s estimator, whose scaled maximal MSE diverges to infinity with the

growth of the sample size (see, e.g., Lehmann and Casella, 1998). Similar unbounded risk

results for other post-model-selection estimators are established in Yang (2005) and Leeb and

Pötscher (2008). The post-model-selection estimator has unbounded (scaled) maximal MSE

because it is based on a non-smooth transition rule between the restricted and unrestricted

estimators and a consistent model selection procedure is employed in the transition rule.
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However, the averaging estimator proposed in this paper is based on a smooth combination

of the restricted and unrestricted estimators and no model selection procedure is used in the

smooth combination. Hence our averaging estimator is essentially different from the post-

model-selection estimator and the uniform dominance result established in this paper does

not contradict the unbounded risk property of the post-model-selection estimator found in

Yang (2005) and Leeb and Pötscher (2008).

The estimator proposed in this paper is a frequentist model averaging (FMA) estima-

tor. FMA estimators have received much attention in recent years. Important works include

Buckland, Burnham, and Augustin (1997), Hjort and Claeskens (2003, 2006), Leung and Bar-

ron (2006), Claeskens and Carroll (2007), Hansen (2007, 2015), Hansen and Racine (2012),

Cheng and Hansen (2015) and Lu and Su (2015), to name only a few. Uniform asymp-

totic properties are important for frequentist estimators when standard pointwise asymp-

totic properties fail to capture their finite-sample behaviors. Our paper provides a uniform

asymptotic framework to compare different FMA estimators in moment-based models.

Recently, DiTraglia (2016) and Hansen (2015) both consider averaging estimators that

combine the ordinary least squares (OLS) estimator and the two-stage-least-squares (2SLS)

estimator in linear IV models. In linear IV models with homoskedastic errors, our conserva-

tive estimator becomes the 2SLS estimator, and our aggressive estimator using both the IVs

and the endogenous variables becomes the OLS estimator7. However, the averaging weight

is different from those in DiTraglia (2016) and Hansen (2015) and we study it in a different

7Consider the linear IV model Yi = X ′iθ0 + ui with instruments Zi. The aggressive estimator is equiv-
alent to the OLS estimator because (X ′P[X,Z]X)−1X ′P[X,Z]Y = (X ′X)−1X ′Y , where Y = (Y1, . . . , Yn)′,
X = (X1, . . . , Xn)′, Z = (Z1, . . . , Zn)′ and P[X,Z] = (X,Z) [(X,Z)′(X,Z)]

−1
(X,Z)′ denotes the projection

matrix.
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asymptotic framework.

There is a large literature studying the validity of GMM moment conditions. Many

methods can be applied to detect the validity, including the over-identification tests (see,

e.g., Sargan, 1958; Hansen, 1982; and Eichenbaum, Hansen, and Singleton, 1988), the infor-

mation criteria (see, e.g., Andrews, 1999; Andrews and Lu, 2001; Hong, Preston, and Shum,

2003), and the penalized estimation methods (see, e.g., Liao, 2013 and Cheng and Liao,

2015). Recently, misspecified moments and their consequences are considered by Ashley

(2009), Berkowitz, Caner, and Fang (2012), Conley, Hansen, and Rossi (2012), Doko Tcha-

toka and Dufour (2008, 2014), Guggenberger (2012), Nevo and Rosen (2012), Kolesár, Chetty,

Friedman, Glaeser, and Imbens (2015), Small (2007), Kang, Zhang, Cai, and Small (2016)

among others. Moon and Schorfheide (2009) explore over-identifying moment inequalities to

reduce the MSE. This paper contributes to this literature by providing new uniform results

for potentially misspecified semiparametric models.

3.3 Parameter Space and Uniform Dominance

Let g2,j(w, θ) (j = 1, . . . , r2) denote the j-th component function of g2(w, θ). We assume

that g2,j(w, θ) for j = 1, . . . , r2 is twice continuously differentiable with respect to θ for any

w ∈ W . The first and second order derivatives of g2(w, θ) with respect to θ are denoted by

g2,θ(w, θ) ≡


∂g2,1(w,θ)

∂θ′

...

∂g2,r2 (w,θ)

∂θ′

 and g2,θθ(w, θ) ≡


∂2g2,1(w,θ)

∂θ∂θ′

...

∂2g2,r2 (w,θ)

∂θ∂θ′


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respectively.8 Let F be a set of distribution functions of W . For k = 1 and 2, define

the expectation of the moment functions, the Jacobian matrix and the variance-covariance

matrix as

Mk,F ≡ EF [gk(W, θF )] , Gk,F ≡ EF [gk,θ(W, θF )] and Ωk,F ≡ VarF [gk(W, θF )] (3.3.1)

for any F ∈ F respectively, where θF denotes the solution of the moment restrictions

EF [g1(W, θ)] = 0r1×1. The unique identification of θ0 by (3.1.1) ensures that θ0 = θF . The

moments above exist by Assumption 3.3.2 below. We consider the risk difference between

two estimators uniformly over F ∈ F that satisfies Assumptions 3.3.1-3.3.3 below.

Let QF (θ) ≡ EF [g2(W, θ)]′Ω−1
2,FEF [g2(W, θ)] for any θ ∈ Θ which denotes the population

criterion of the GMM estimation in (3.1.3). For any θ ∈ Θ, define Bc
ε(θ) = {θ′ ∈ Θ :

||θ′ − θ|| ≥ ε}.

Assumption 3.3.1. The following conditions hold for any F ∈ F :

(i) EF [g1(W, θF )] = 0r1×1 for some θF ∈ int(Θ);

(ii) for any ε > 0 there is η1,ε > 0 such that inf
θ∈Bcε(θF )

||EF [g1(W, θ)] || ≥ η1,ε;

(iii) there is θ∗F ∈ int(Θ) such that for any ε > 0 there is η2,ε > 0 with

inf
θ∈Bcε(θ∗F )

QF (θ)−QF (θ∗F ) ≥ η2,ε;

(iv) ||G′2,FΩ−1
2,F δ2,F || ≥ C−1 ‖δ2,F‖, where δ2,F = (01×r1 , δ

′
F )′.

8By definition, g1,θ(w, θ) and g1,θθ(w, θ) are the leading r1 × dθ and (r1dθ)× dθ submatrices of g2,θ(w, θ)
and g2,θθ(w, θ) respectively.
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Assumptions 3.3.1.(i)-(ii) require that the true unknown parameter θF is uniquely identi-

fied by the moment conditions EF [g1(W, θF )] = 0r1×1. Assumption 3.3.1.(iii) implies that a

pseudo true value θ∗F is identified by the unique minimizer of the population GMM criterion

QF (θ) under possible misspecification. Assumption 3.3.1.(iv) requires that δ2,F does not lie

in the right null space of the matrix G′2,FΩ−1
2,F , which rules out the special case that θF may

be consistently estimable even with severely misspecified moment conditions.

Assumption 3.3.2. The following conditions hold for any F ∈ F :

(i) EF [supθ∈Θ (||g2(W, θ)||2+γ + ||g2,θ(W, θ)||2+γ + ||g2,θθ(W, θ)||2+γ)] ≤ C for some γ > 0;

(ii) ρmin(Ω2,F ) ≥ C−1;

(iii) ρmin(G′1,FG1,F ) ≥ C−1.

Assumption 3.3.2.(i) imposes 2 + γ finite moment conditions on the GMM moment func-

tions and their first and second derivatives. Assumptions 3.3.2.(ii) and 3.3.2.(iii) are impor-

tant sufficient conditions for the local identification of the unknown parameter in GMM with

valid moment conditions.

Uniform dominance is of interest only if we allow for different degrees of misspecification in

the parameter space. If we only allow for correctly specified models or severely misspecified

models, the desired dominance results hold trivially following a pointwise analysis. The

next assumption states that the parameter space contains a continuous perturbation from

correctly specified models to misspecified models and it forms a closed set. Write

vF = (vec(G2,F )′, vech(Ω2,F )′, δ′F ) (3.3.2)
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for any F ∈ F . It is clear that vF includes the Jacobian matrix, the variance-covariance

matrix, and the measure of misspecification of the moment conditions EF [g∗(Wi, θF )] = 0r∗×1.

Let vF = (vec(G2,F )′, vech(Ω2,F )′) for any F ∈ F .

Assumption 3.3.3. (i) The set Λ ≡ {vF : F ∈ F} is closed; (ii) for any F ∈ F with

δF = 0r∗×1, there exists a constant εF > 0 such that for any δ̃ ∈ Rr∗ with 0 ≤ ||δ̃|| < εF ,

there is F̃ ∈ F with δF̃ = δ̃ and
∥∥vF − vF̃∥∥ ≤ C||δ̃||κ for some κ > 0.

Assumption 3.3.3.(i) is useful to show that the asymptotic risk of the GMM estimator

has a well-defined upper bound which can be represented by vF for F ∈ F and some other

nuisance parameter which measures the asymptotic degree of misspecification of the moment

conditions. Assumption 3.3.3.(ii) requires that for any F ∈ F such that EF [g2(W, θF )] = 0r∗×1

is valid, there are many DGPs F̃ ∈ F which are close to F . Here the closeness of any two

DGPs F and F̃ are measured by the distance between vF and vF̃ . This condition ensures

that the aforementioned upper bound of the asymptotic risk is also a lower bound, and hence

it is useful to derive the exact expression of the asymptotic risk of GMM estimator.

Example 3.3.1. (Linear IV Model) We study a simple linear IV model and provide a

set of simple conditions that imply Assumptions 3.3.1, 3.3.2 and 3.3.3. The parameters of

interest θ0 are the coefficients of the endogenous regressors Xi in

Yi = X ′iθ0 + Ui, where EF ∗ [Z1,iUi] = 0r1×1 (3.3.3)

with some valid instruments Z1,i ∈ Rr1, where F ∗ denotes the joint distribution of (X ′i, Z
′
1,i, V

′
i , Ui)

and Vi is a r∗ × 1 random vector. In addition, we have some potentially misspecified IVs
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Z∗i ∈ Rr∗. In a reduced form equation obtained by projecting Z∗i on Ui, we can write

Z∗i = Uiδ0 + Vi, where EF ∗ [UiVi] = 0r∗×1, (3.3.4)

where δ0 is a r∗ × 1 real vector which characterizes the degree of misspecification. These ad-

ditional IVs are valid only if δ0 = 0r∗×1. Without loss of generality, we assume EF ∗ [U2
i ] = 1

such that EF [g∗(Wi, θ0)] = EF ∗ [Z∗i Ui] = δ0 as in (3.1.4), where F denotes the joint distri-

bution of Wi = (Yi, Z
′
1,i, Z

∗′
i , X

′
i) which is determined by θ0, δ0 and F ∗ through the linear

structures in (3.3.3) and (3.3.4).

Let F∗ denote a class of distributions containing F ∗, and let Θ and ∆δ denote the pa-

rameter spaces of θ0 and δ0 respectively. Let F denote a class of distributions F induced by

any θ0 ∈ Θ, any δ0 ∈ ∆δ and any F ∗ ∈ F∗. The Jacobian matrices are

G1,F = −EF [Z1,iX
′
i] and G2,F =

 −EF [Z1,iX
′
i]

−EF [Z∗iX
′
i]

 . (3.3.5)

The variance-covariance matrix is

Ω2,F = EF [Z2,iZ
′
2,i(Yi −X ′iθ0)2]− EF [(Yi −X ′iθ0)Z2,i]EF [(Yi −X ′iθ0)Z ′2,i], (3.3.6)

where Z2,i = (Z ′1,i, Z
∗′
i )′. By definition, Ω1,F is the leading r1 × r1 submatrix of Ω2,F .

Assumption 3.3.4. For any θ0 ∈ Θ, any δ0 ∈ ∆δ and any F ∗ ∈ F∗, we have:

(i) EF ∗ [Z1,iUi] = 0r1×1, EF ∗ [U2
i ] = 1 and EF ∗ [UiVi] = 0r∗×1;
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(ii) ρmin(G′1,FG1,F ) ≥ C−1 and ρmin(Ω2,F ) ≥ C−1;

(iii) EF ∗ [||Xi||4+γ + Ui
4+γ] + EF [||Z2,i||4+γ] ≤ C for some γ > 0;

(iv) ||G′2,FΩ−1
2,F δ2,0|| ≥ C−1 ‖δ2,0‖, where δ2,0 = (01×r1 , δ

′
0)′;

(v) {(vec(G2,F )′, vech(Ω2,F )′, δ′0) : θ0 ∈ Θ, δ0 ∈ ∆δ and F ∗ ∈ F∗} is closed.

Let θ∗F = −(G′2,FΩ−1
2,FG2,F )−1G′2,FΩ−1

2,FEF [Z2,iYi] which is well defined by Assumptions

3.3.4.(ii)-(iii).

Lemma 3.3.2. Suppose that {Wi}ni=1 are i.i.d. and generated by the linear model (3.3.3)

and (3.3.4) with: (i) θ0, θ∗F ∈ int(Θ) and Θ is compact; (ii) ∆δ = [−C,C]r
∗; and (iii) θ0, δ0

and F∗ satisfy Assumption 3.3.4. Then, F satisfies Assumptions 3.3.1, 3.3.2 and 3.3.3.

For the linear IV model, Lemma 3.3.2 provides simple conditions on θ0, δ0 and F∗ on

which uniformity results are subsequently established.

Now we get back to the general set up. For a generic estimator θ̂ of θ, consider a weighted

quadratic loss function

`(θ̂, θ) = n(θ̂ − θ)′Υ(θ̂ − θ), (3.3.7)

where Υ is a dθ × dθ pre-determined positive definite matrix. For example, if Υ = Idθ ,

EF [`(θ̂)] is the MSE of θ̂. If Υ = (Σ1,F −Σ2,F )−1 where Σk,F (k = 1, 2) are defined in (3.4.4),

the weighting matrix Υ first rescales θ̂ by the scale of variance reduction. If Υ = EF [XiX
′
i]

for regressors Xi, EF [`(θ̂)] is the MSE of X ′i θ̂, an estimator of X ′iθ. For ease of notation, we

suppress the dependence of the loss function on θ and write it as `(θ̂) for any estimator θ̂.

Whenever the expectation operator EF [·] is taken on the loss function `(θ̂), it is understood
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that the parameter of interest, i.e. θ in the definition of `(θ̂, θ) in (3.3.7), is θF which is

defined through the moment restrictions (3.1.1).

Below we compare the averaging estimator θ̂eo and the conservative estimator θ̂1. We are

interested in the bounds of the finite sample risk difference

RDn(θ̂eo, θ̂1)=inf
F∈F

EF [`(θ̂eo)− `(θ̂1)],

RDn(θ̂eo, θ̂1)=sup
F∈F

EF [`(θ̂eo)− `(θ̂1)]. (3.3.8)

We investigate these finite-sample objects by asymptotic analysis with n1/2(θ̂ − θF ) in `(θ̂)

replaced by its asymptotic distribution. To apply the bounded convergence theorem, we

approximate `(θ̂) with the trimmed loss `ζ(θ̂) ≡ min{`(θ̂), ζ} and consider arbitrarily large

trimming (ζ →∞). As such, the finite-sample bounds in (3.3.8) are approximated by

AsyRD(θ̂eo, θ̂1)=lim
ζ→∞

lim inf
n→∞

inf
F∈F

EF [`ζ(θ̂eo)− `ζ(θ̂1)] and

AsyRD(θ̂eo, θ̂1)=lim
ζ→∞

lim sup
n→∞

sup
F∈F

EF [`ζ(θ̂eo)− `ζ(θ̂1)], (3.3.9)

which are called lower and upper bounds of asymptotic risk difference respectively in this

paper. The averaging estimator θ̂eo asymptotically uniformly dominates the conservative

estimator θ̂1 if

AsyRD(θ̂eo, θ̂1) < 0 and AsyRD(θ̂eo, θ̂1) ≤ 0. (3.3.10)

The bounds of the asymptotic risk difference build the uniformity over F ∈ F into

the definition by taking infF∈F and supF∈F before lim infn→∞ and lim supn→∞ respectively.
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Uniformity is crucial for the asymptotic results to give a good approximation to their finite-

sample counterparts. These uniform bounds are different from pointwise results which are

either obtained under a fixed DGP or a particular sequence of drifting DGP. The sequence

of DGPs {Fn} along which the supremum or the infimum are approached often varies with

the sample size.9 Therefore, to determine the bounds of the asymptotic risk difference, one

has to derive the asymptotic distributions of these estimators under various sequences {Fn}.

Under {Fn}, the observations {Wn,i}ni=1 form a triangular array. For notational simplicity,

Wn,i is abbreviated to Wi.

To study the bounds of asymptotic risk difference, we consider sequences of DGPs {Fn}

such that δFn satisfies

(i) n1/2δFn → d ∈ Rr∗ or (ii) ||n1/2δFn|| → ∞. (3.3.11)

Case (i) models mild misspecification, where δFn is a n−1/2-local deviation from 0r∗×1. Case

(ii) includes the severe misspecification where ‖δFn‖ is bounded away from 0 as well as the

intermediate case in which δFn → 0 and ||n1/2δFn|| → ∞. To obtain a uniform approximation,

all of these sequences are necessary. Once we study the bounds of asymptotic risk difference

along each of these sequences, we show that we can glue them together to obtain the bounds

of asymptotic risk difference.

9In the rest of the chapter, we use {Fn} to denote {Fn ∈ F : n = 1, 2, ...}.
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3.4 Averaging Weight

We start by deriving the joint asymptotic distribution of θ̂1 and θ̂2 under different degrees

of misspecification. We consider sequences of DGPs {Fn} such that (i) n1/2δFn → d ∈ Rr∗ or

||n1/2δFn|| → ∞; and (ii) G2,Fn , Ω2,Fn and M2,Fn converges to G2,F , Ω2,F and M2,F for some

F ∈ F . 10

For k = 1, 2, define

Γk,F = −
(
G′k,FΩ−1

k,FGk,F

)−1
G′k,FΩ−1

k,F . (3.4.1)

Let Z2,F denote a zero mean normal random vector with variance-covariance matrix Ω2,F

and Z1,F denote its first r1 components.

Lemma 3.4.1. Suppose Assumptions 3.3.1 and 3.3.2 hold. Consider any sequence of DGPs

{Fn} such that vFn → vF for some F ∈ F , and n1/2δFn → d for d ∈ Rr∗
∞.

(a) If d ∈ Rr∗, then

 n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

→d

 ξ1,F

ξ2,F

 ≡
 Γ1,FZ1,F

Γ2,F (Z2,F + d0)

 ,

where d0 = (01×r1 , d
′)′.

(b) If ||d|| =∞, then n1/2(θ̂1 − θFn)→d ξ1,F and ||n1/2(θ̂2 − θFn)|| →p ∞.

10The requirement on the convergence of G2,Fn
, Ω2,Fn

and M2,Fn
is not restrictive as it seems to be.

Lemma 3.B.7 in Appendix 3.B shows that the sequences G2,Fn
, Ω2,Fn

and M2,Fn
have subsequences which

respectively converge to G2,F , Ω2,F and M2,F for some F ∈ F . The general result on the lower and upper
bounds of the asymptotic risk difference, Lemma 3.C.6 in Appendix 3.C, only requires to consider the
subsequence {Fpn} such that G2,Fpn

, Ω2,Fpn
and M2,Fpn

are convergent, where {pn} is a subsequence of
{n}. The asymptotic properties of the GMM estimators established in this section under the full sequence
of DGPs {Fn} holds trivially for its subsequence.
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Given the joint asymptotic distribution of θ̂1 and θ̂2, it is straightforward to study θ̂(ω) =

(1− ω)θ̂1 + ωθ̂2 if ω is deterministic. Following Lemma 3.4.1.(a),

n1/2(θ̂(ω)− θFn)→d ξF (ω) ≡ (1− ω)ξ1,F + ωξ2,F (3.4.2)

for n1/2δFn → d, where d ∈ Rr∗ . In Appendix 3.B, a simple calculation shows that E[`(ξF (ω))]

is minimized at the infeasible optimal weight

ω∗F ≡
tr(Υ (Σ1,F − Σ2,F ))

d′0
(
Γ2,F − Γ∗1,F

)′
Υ
(
Γ2,F − Γ∗1,F

)
d0 + tr(Υ (Σ1,F − Σ2,F ))

, (3.4.3)

where Υ is the matrix specified in the loss function,

Σk,F ≡
(
G′k,FΩ−1

k,FGk,F

)−1 for k = 1, 2 and Γ∗1,F ≡ [Γ1,F ,0dθ×r∗ ] . (3.4.4)

To gain some intuition, consider the case where Υ = Idθ such that the MSE of θ̂(ω) is

minimized at ω∗F . In this case, the infeasible optimal weight ω∗F yields the ideal bias and

variance trade off. However, the bias depends on d, which cannot be consistently estimated.

Hence, ω∗F cannot be consistently estimated. Our solution to this problem is to construct an

empirical analog of ω∗F based on an inconsistent but unbiased estimator of d, such that the

resulting averaging estimator reduces the MSE for any value of d.

The empirical analog of ω∗F is constructed as follows. First, for k = 1 and 2, replace Σk,F
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by its consistent estimator Σ̂k ≡ (Ĝ′kΩ̂
−1
k Ĝk)

−1,11 where

Ĝk ≡ n−1

n∑
i=1

gk,θ(Wi, θ̂1) and Ω̂k ≡ n−1

n∑
i=1

gk(Wi, θ̂1)gk(Wi, θ̂1)′ − gk(θ̂1)gk(θ̂1)′. (3.4.5)

Note that Ĝk and Ω̂k are based on the conservative GMM estimator θ̂1. Second, replace

(Γ2,F − Γ∗1,F )d0 by its asymptotically unbiased estimator n1/2(θ̂2 − θ̂1) because

n1/2(θ̂2 − θ̂1)→d (Γ2,F − Γ∗1,F ) (Z2,F + d0) , (3.4.6)

for d0 = (01×r1 , d
′)′ and d ∈ Rr∗ following Lemma 3.4.1(a). Then then empirical optimal

weight takes the form

ω̃eo ≡
tr(Υ(Σ̂1 − Σ̂2))

n(θ̂2 − θ̂1)′Υ(θ̂2 − θ̂1) + tr(Υ(Σ̂1 − Σ̂2))
, (3.4.7)

and the averaging GMM estimator takes the form

θ̂eo = (1− ω̃eo)θ̂1 + ω̃eoθ̂2. (3.4.8)

Next we consider the asymptotic distribution of θ̂eo under different degrees of misspeci-

fication.

Lemma 3.4.2. Suppose that Assumptions 3.3.1-3.3.3 hold. Consider {Fn} such that vFn →

vF for some F ∈ F , and n1/2δFn → d for d ∈ Rr∗
∞.

11The consistency of Σ̂k is proved in Lemma 3.4.2.
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(a) If d ∈ Rr∗, then

ω̃eo →d ωF ≡
tr(Υ(Σ1,F − Σ2,F ))

(Z2,F + d0)′(Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )(Z2,F + d0) + tr(Υ(Σ1,F − Σ2,F ))

and

n1/2(θ̂eo − θFn)→d ξF ≡ (1− ωF )ξ1,F + ωF ξ2,F .

(b) If ||d|| =∞, then ω̃eo →p 0 and n1/2(θ̂eo − θFn)→d ξ1,F .

To study the bounds of asymptotic risk difference between θ̂eo and θ̂1, it is important to

take into account the data-dependent nature of ω̃eo. Unlike Σ̂1 and Σ̂2, the randomness in

ω̃eo is non-negligible in the mild misspecification case (a) of Lemma 3.4.2. In consequence,

θ̂eo does not achieve the same bounds of asymptotic risk difference as the ideal averaging

estimator (1 − ω∗F )θ̂1 + ω∗θ̂2 does. Nevertheless, below we show that θ̂eo is insured against

potentially misspecified moments because it uniformly dominates θ̂1.

3.5 Bounds of Asymptotic Risk Difference under Mis-

specification

In this section, we study the bounds of the asymptotic risk difference defined in (3.3.9). Note

that the asymptotic distributions of θ̂1 and θ̂eo in Lemma 3.4.1 and 3.4.2 only depend on d,

G2,F and Ω2,F . For notational convenience, define

hF,d = (d′, vec(G2,F )′, vech(Ω2,F )′) (3.5.1)
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for any F ∈ F and any d ∈ Rr∗
∞. For the mild misspecification case, define the parameter

space of hF,d as

H = {hF,d : d ∈ Rr∗ and F ∈ F with δF = 0r∗×1} (3.5.2)

where δF is defined by (3.1.4) for a given F .

Theorem 3.5.1. Suppose that Assumptions 3.3.1-3.3.3 hold. The bounds of the asymptotic

risk difference satisfy

AsyRD(θ̂eo, θ̂1)= max

{
sup
h∈H

[g(h)] , 0

}
,

AsyRD(θ̂eo, θ̂1)= min

{
inf
h∈H

[g(h)] , 0

}
,

where g(h) ≡ E[ξ
′
FΥξF − ξ′1,FΥξ1,F ].

To show that θ̂eo uniformly dominates θ̂1, Theorem 3.5.1 implies that it is sufficient to

show that infh∈H [g(h)] < 0 and suph∈H [g(h)] ≤ 0. We can investigate infh∈H g(h) and

suph∈H g(h) by simulating g(h). In practice, we replace G2,F and Ω2,F by their consistent

estimators and plot g(h) as a function of d. Even if the uniform dominance condition does

not hold, min {infh∈H [g(h)] , 0} and max {suph∈H [g(h)] , 0} quantify the most- and least-

favorable scenarios for the averaging estimator.

We call E[ξ
′
FΥξF ] and E

[
ξ′1,FΥξ1,F

]
the asymptotic risks of θ̂eo and θ̂1 such that g(h)

represents the asymptotic risk difference. For any given h, Figure 3.2 uses simulation to

demonstrate that these asymptotic risks provide good approximations to the finite-sample
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risks EF [`ζ(θ̂eo)] and EF [`ζ(θ̂1)]. Figure 3.2 normalizes the finite-sample risk of θ̂1 to be 1 in all

cases and plots the (simulated) asymptotic risks and finite-sample risks of two estimators:

one is the averaging estimator θ̂eo and one is the pre-test GMM estimator based on the

over-identification J-test with significance level 0.01.12 The asymptotic risk for this pre-test

estimator is given by (3.E.2) in the Appendices. It is clear that the finite sample risk and

the (simulated) asymptotic risk are fairly close and the averaging GMM estimator uniformly

dominates the conservatives estimator while the pre-test estimator does not.

Theorem 3.5.2. Let AF ≡ Υ (Σ1,F − Σ2,F ). Suppose that Assumptions 3.3.1-3.3.3 hold. If

tr(AF ) > 0 and tr(AF ) ≥ 4ρmax(AF ) for any F ∈ F , we have

AsyRD∗(θ̂eo, θ̂1) < 0 and AsyRD∗(θ̂eo, θ̂1) = 0.

Thus, θ̂eo uniformly dominates θ̂1.

Theorem 3.5.2 indicates that: (i) there exists ε1 < 0 and some finite integer nε1 such that

the minimum risk difference between θ̂eo and θ̂1 is less than ε1 for any n larger than nε1 ;

(ii) for any ε2 > 0, there exists a finite integer nε2 such that the maximum risk difference

between θ̂eo and θ̂1 is less than ε2 for any n larger than nε2 . The pre-test estimator fails to

satisfy both properties (i) and (ii) above at the same time. Consider the pre-test estimator

based on the J-test for example.13 Consider three different scenarios: (a) the critical value is

12For the finite-sample results, δFn = c0n
−1/21r∗×1 where c0 is a scale from 0 to 20. The finite sample risks

are calculated using 100,000 simulated samples and the asymptotic risks are simulated by drawing 10,000
normal random vectors with mean zero and variance-covariance Ω̂2 in each simulated sample. No truncation
is applied to the finite-sample risk.

13See Section 3.E in the Appendices for definition and analysis of this estimator.
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fixed for any sample size; (b) the critical value diverges to infinity; and (c) the critical value

converges to zero. In the pointwise asymptotic framework, the J-test based on the critical

values in (a), (b) and (c) leads to inconsistent (but conservative) model selection, consistent

model selection and no model selection results respectively. The pre-test estimator based on

the J-test violates property (ii) in scenarios (a) and (b), and violates property (i) in scenario

(c).

To shed light on the sufficient conditions in Theorem 3.5.2, let us consider a scenario

similar to the James-Stein estimator: Σ1,F = σ2
1,F Idθ , Σ2,F = σ2

2,F Idθ , and Υ = Idθ . In this

case, the sufficient conditions become σ1,F > σ2,F and dθ ≥ 4. The first condition tr(AF ) > 0,

which is reduced to σ1,F > σ2,F , requires that the additional moments EF [g∗(Wi, θF )] = 0 are

non-redundant in the sense that they lead to a more efficient estimator of θF . The second

condition tr(AF ) ≥ 4ρmax(AF ), which is reduced to dθ ≥ 4, requires that we are interested in

the total risk of several parameters rather than that of a single one. In a more general case

where Σ1,F and Σ2,F are not proportional to the identity matrix, the sufficient conditions are

reduced to Σ1,F > Σ2,F and dθ ≥ 4 under the choice Υ = (Σ1,F −Σ2,F )−1, which rescales θ̂ by

the variance reduction Σ1,F − Σ2,F . In a simple linear IV model (Example 3.3.1) where Z∗i

is independent of Z1,i and the regression error Ui is homoskedastic conditional on the IVs,

Σ1,F > Σ2,F requires that EF ∗ [Z∗iX ′i] and EF ∗ [Z∗i Z∗′i ] both have full rank.

Note that these conditions are sufficient but not necessary. If these sufficient conditions

do not hold, we can still simulate the upper bounds in Theorem 3.5.1 to check the uniform

dominance condition. In fact, simulation studies in the next session show that in many

cases θ̂eo has a smaller finite-sample risk than θ̂1 even if these sufficient conditions are vi-
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olated. Nevertheless, these analytical sufficient conditions can be checked easily before the

simulation-based methods are adopted.

3.6 Local Uniform Dominance

In the previous section, we provide a general framework for comparison of two GMM esti-

mators. The moment conditions in this framework can be correctly specified (i.e. ‖δF‖ = 0),

locally misspecified (i.e. ‖δF‖ is close to zero), or severely misspecified (‖δF‖ > C). One may

argue that the uniform dominance result in Theorem 3.5.2 is weak because in finite samples,

the maximum risk difference between θ̂eo and θ̂1 may be larger than zero for all n although

it converges to zero as n goes to infinity. A more favorable and stronger dominance result

would be

AsyRD(θ̂eo, θ̂1) < 0, (3.6.1)

which implies that the maximum risk difference between θ̂eo and θ̂1 is bounded away from

zero for all large n. This strong result is impossible if the set of DGPs F is large such

that the DGPs under which the extra moment conditions become severely misspecified are

included. On the other hand, (3.6.1) can be established if we only consider the DGPs under

which the extra moment condition are correctly specified or locally misspecified.

Assumption 3.6.1. For each n, Fn is a set of DGPs such that for any F ∈ Fn:

(i) EF [g1(W, θF )] = 0r1×1 for some θF ∈ int(Θ) where Θ is a compact subset of Rdθ ;

(ii) for any ε > 0 there is η1,ε > 0 such that inf
θ∈Bcε(θF )

||EF [g1(W, θ)] || ≥ η1,ε;

(iii) EF [g2(W, θF )] = n−1/2dF for some dF ∈ Rr∗;
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(iv) Assumption 3.3.2 holds for F ;

(v) Λ ≡ {vF : F ∈ Fn for some n} is closed;

(vi) ‖dF‖ ≤ D for some fixed constant D.

Assumption 3.6.1.(i) and (ii) are the same as Assumptions 3.3.1.(i)-(ii), which ensures the

unique identification of θF . Assumptions 3.3.1.(iii)-(iv) are not needed here as the aggressive

GMM estimator θ̂2 is n1/2-consistent for any F ∈ Fn under Assumption 3.6.1.(iii) (and other

conditions in this assumption). Assumption 3.3.2 contains some regularity conditions for

showing the asymptotic properties of the GMM estimator and it is maintained in Assumption

3.6.1.(iv). Assumption 3.6.1.(v) is a reduced version of Assumption 3.3.3.(i). Assumption

3.6.1.(vi) is an important condition to show the local uniform dominance result.

To introduce the local uniform dominance result, we define

HD = {hF,d : d ∈ Rr∗ with ‖d‖ ≤ D and F ∈ Fn for some n}. (3.6.2)

In the local misspecification framework, the set of DGPs Fn may change with the sample

size n. The upper bound of the finite sample risk difference between θ̂eo and θ̂1 should be

defined as

RDn(θ̂eo, θ̂1) = sup
F∈Fn

EF [`ζ(θ̂eo)− `ζ(θ̂1)], (3.6.3)

which is approximated by

AsyRD(θ̂eo, θ̂1) = lim
ζ→∞

lim sup
n→∞

sup
F∈Fn

EF [`ζ(θ̂eo)− `ζ(θ̂1)]. (3.6.4)
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To show the strong uniform dominance result, it is sufficient to study the upper bound of

the risk difference AsyRD(θ̂eo, θ̂1).

Lemma 3.6.1. Suppose that Assumption 3.6.1 hold. The bounds of the asymptotic risk

difference satisfy

AsyRD(θ̂eo, θ̂1) ≤ sup
h∈HD

[g(h)] , (3.6.5)

where g(h) = E[ξ
′
FΥξF − ξ′1,FΥξ1,F ].

Lemma 3.6.1 provides a upper bound to the maximum risk difference between θ̂eo and θ̂1.

The criterion function g(h) in (3.6.5) is the same as its counterpart in Theorem 3.5.1. The

upper bound AsyRD(θ̂eo, θ̂1)in (3.6.5) is not necessarily larger than zero, which is different

from the results established in Theorem 3.5.1. To show the local uniform dominance result

in (3.6.1), it is sufficient to show that suph∈HD [g(h)] is bounded away from zero which is

proved in the following Theorem.

Theorem 3.6.2. Suppose that Assumption 3.6.1 hold. If tr(AF ) > 0 and tr(AF ) ≥ 4ρmax(AF )

for any F ∈ F , we have suph∈HD [g(h)] < 0 for any finite constant D.

Combining the results in Lemma 3.6.1 and Theorem 3.6.2, we immediately obtain (3.6.1).

The sufficient conditions to ensure that the upper bound suph∈HD [g(h)] is bounded away

from zero are the same as those in Theorem 3.5.2.
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3.7 Simulation Studies

In this section, we investigate the finite sample performance of our averaging GMM estimator

in linear IV models. In addition to the empirical optimal weight ω̃eo, we consider two other

averaging estimators based on the JS type of weights. The first one is based on the positive

part of the JS weight14:

ωP,JS = 1−

(
1− tr(Â)− 2ρmax(Â)

n(θ̂2 − θ̂1)′H(θ̂2 − θ̂1)

)
+

(3.7.1)

where (x)+ = max {0, x} and Â is the estimator of A using Σ̂k for k = 1, 2. The second one

uses the restricted JS weight

ωR,JS = (ωP,JS)+ . (3.7.2)

By construction, ωP,JS ≤ 1 and 0 ≤ ωR,JS ≤ 1. We compare the finite-sample MSEs of these

three averaging estimators, the conservative GMM estimator θ̂1, and the pre-test GMM

estimator based on the J-test. The finite-sample MSE of the conservative GMM estimator

is normalized to be 1.

In Theorem 3.5.2, the sufficient condition for the uniform dominance is tr(A) ≥ 4ρmax(A).

When this condition is not satisfied, however, it is still possible that our averaging GMM

estimator has a smaller risk than the conservative GMM estimator. Therefore we consider

two models in simulation studies. In the first model, tr(A) ≥ 4ρmax(A) and hence the

14This formula is a GMM analog of the generalized JS type shrinkage estimator in Hansen (2016) for
parametric models. The shrinkage scalar τ is set to tr(Â)− 2λmax(tr(Â)) in a fashion similar to the original
JS estimator.
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sufficient condition in Theorem 3.5.2 is satisfied. In the second model 2ρmax(A) < tr(A) <

4ρmax(A), which means that the sufficient condition in Theorem 3.5.2 does not hold. In

each model, we consider four sample sizes, n = 50, 100, 250, 500, and use 100,000 simulation

repetitions.

3.7.1 Simulation in Model 1

Our first simulation model is

Yi =
6∑
j=1

θjXj,i + εi, (3.7.3)

where Xj,i are generated by

Xj,i = βj(Zj,i + Zj+6,i) + Zj+12,i + uj,i for j = 1, ..., 6. (3.7.4)

We draw i.i.d. random vectors (Z1,i, ..., Z18,i, u1,i, ..., u6,i, εi)
′ from normal distributions with

mean zero and variance-covariance matrix diag(I18×18,Σ7×7), where

Σ7×7 =

 I6×6 0.25× 16×1

0.25× 11×6 1

 . (3.7.5)

We set (θ1, ..., θ6) = 2.5 × 11×6 and (β1, ..., β6) = 0.5 × 11×6. The observed data are Wi =

(Yi, X1,i, ..., X6,i, Z1,i, ..., Z12,i, Z̃13,i, ..., Z̃18,i)
′, where

Z̃j,i = Zj,i + n−1/2djεi, for j = 13, ..., 18. (3.7.6)
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In the main regression equation (3.7.3), all regressors are endogenous because E(Xj,iεi) = 0.25

for j = 1, ..., 6. The instruments (Z1,i, ..., Z12,i)
′ are valid and (Z̃13,i, ..., Z̃18,i)

′ are misspecified

because E(Z̃j,iεi) = n−1/2dj for j = 13, ..., 18. In the simulation studies, we consider d =

(d13, ..., d18) = c0 × 11×6 where c0 is a scalar that takes values on the grid points between 0

and 20 with the grid length 0.1.

Figure 3.3 presents the MSEs of various estimators of the parameters in (3.7.3). Our

findings in model 1 are summarized as follows. First, the averaging GMM estimator θ̂eo has

smaller MSE than θ̂1 uniformly over d in all sample sizes considered, which is predicted by

our theory because the key sufficient condition is satisfied in this model. Second, the pre-test

GMM estimator does not dominate the conservative GMM estimator θ̂1. When the location

parameter c0 is close to zero, the pre-test GMM estimator has relative MSE as low as 0.4.

However, its relative MSE is above 1 when c0 is around 5. Third, among the three averaging

estimators, the one based on ω̃eo has the smallest MSE. Fourth, the positive JS averaging

estimator has relative MSE above 1 when the sample size is small, e.g., n = 50 and n = 100,

and it has relative MSE below 1 when the sample size becomes slightly large. Fifth, it is

interesting to see that as the sample size grows, the finite sample MSEs of the positive and

restricted JS averaging estimators converge to that of the averaging estimator based on ω̃eo.

3.7.2 Simulation in Model 2

The second model is

Yi =
6∑
j=1

θjXj,i + εi, (3.7.7)
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where X1,i, X2,i and X3,i are exogenous variables generated by

X1,i = 3−1/2(Z1,i+Z2,i+Z4,i), X2,i = 3−1/2(Z2,i+Z3,i+Z6,i), X3,i = 3−1/2(Z3,i+Z1,i+Z8,i),

(3.7.8)

and Xj,i (j = 4, 5, 6) are generated by

Xj,i = βj(Zj,i + Zj+3,i) + Zj+6,i + uj,i for j = 4, 5, 6. (3.7.9)

We draw i.i.d. random vectors (Z1,i, ..., Z12,i, u4,i, ..., u6,i, εi)
′ from normal distributions with

mean zero and variance-covariance matrix diag(I12×12,Σ4×4), where

Σ4×4 =

 I3×3 0.25× 13×1

0.25× 11×3 1

 . (3.7.10)

The observed data are Wi = (Yi, X1,i, ..., X6,i, Z4,i, ..., Z9,i, Z̃4,i, ..., Z̃6,i)
′, where

Z̃j,i = Zj+6,i + n−1/2djεi for j = 4, 5, 6. (3.7.11)

We set (θ1, ..., θ6) = 2.5× 11×6 and (β4, ..., β6) = 0.5× 11×3. In this model, Xj,i (j = 4, 5, 6)

are endogenous regressors, (Z4,i, ..., Z9,i)
′ are valid IVs, and (Z̃4,i, ..., Z̃6,i)

′ are misspecified

IVs. In the simulation, we consider d = (d4, ..., d6) = c0×11×3 where c0 is a scalar that takes

values on the grid points between 0 and 20 with grid length 0.1.

Our findings in Figure 3.4 are summarized as follows. First, even though the sufficient

condition in Theorem 3.5.1(c) is not satisfied, the averaging estimator based on ω̃eo has a
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smaller MSE than θ̂1 uniformly over d in all sample sizes considered. Moreover, its MSE

is much smaller than that of the other two averaging estimators. Second, the properties

of the pre-test estimator are similar to those in model 1. That is, it does not dominate

the conservative estimator. Third, the averaging estimator using ωP,JS has very large and

unstable MSE when the sample size is small (e.g., n = 50 and 100). When the sample size

is 50, its MSE is above 1.5 and hence does not show up in the first panel of Figure 3. When

the sample size becomes slightly large, (e.g., n = 250 and 500), the positive JS averaging

estimator has larger MSE than θ̂1 when the location parameter c0 is close to zero. Fourth,

the averaging estimator using ωR,JS has almost identical MSE as θ̂1 when the sample size is

small (e.g., n = 50 and 100), and its relative MSE becomes slightly lower than 1 when c0 is

close to zero and the sample size is large (e.g., n = 250 and 500).

3.8 Conclusion

This paper studies the averaging GMM estimator that combines the conservative estimator

and the aggressive estimator with a data-dependent weight. The averaging weight is the

sample analog of an optimal non-random weight. We provide a sufficient class of drifting

DGPs under which the pointwise asymptotic results combine to yield uniform approxima-

tions to the finite-sample risk difference between two estimators. Using this asymptotic

approximation, we show that the proposed averaging GMM estimator uniformly dominates

the conservative GMM estimator.

Inference based on the averaging estimator is an interesting and challenging problem. In
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addition to the uniform validity, a desirable confidence set should have smaller volume than

that obtained from the conservative moments alone. We leave the inference issue to future

investigation.
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Figure 3.1: Finite Sample (n=250) MSEs of the Pre-test and the Averaging GMM
Estimators

Note: The Pre-test estimator is based on the J-test with a norminal size 0.01. The location parameter in
the horizontal axis is δF multiplied by n−1/2. Details of the simulation design for Figure 3.1 is provided in
Subsection 3.7.1.
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Figure 3.2: The Finite Sample Risk and the (Simulated) Asymptotic Risk

Note: The finite-sample and (simulated) asymptotic risk of the averaging GMM estimator are represented
by "GMMA-FRisk" and "GMMA-SRisk", respectively. The finite-sample and (simulated) asymptotic risk
of the pre-test GMM estimator are represented by "GMMP-FRisk" and "GMMP-SRisk", respectively.
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Figure 3.3: Finite Sample MSEs of the Averaging Estimators in Model 1

Note: "Pre-test(0.01)" refers to the pre-test GMM estimator based on the J-test with nominal size 0.01;
"Plug-opt" refers to the averaging GMM estimator based on the empirical optimal weight ; "Posi-JS" and
"ReSt-JS" refer to the averaging estimators based on the positive part of the JS weight and the restricted
JS weight, respectively.
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Figure 3.4: Finite Sample Risks of the Averaging Estimators in Model 2

Note: "Pre-test(0.01)" refers to the pre-test GMM estimator based on the J-test with nominal size 0.01;
"Plug-opt" refers to the averaging GMM estimator based on the empirical optimal weight ; "Posi-JS" and
"ReSt-JS" refer to the averaging estimators based on the positive part of the JS weight and the restricted
JS weight, respectively.
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Appendix

3.A Proof of the Results in Section 3.3

Proof of Lemma 3.3.2. By Assumption 3.3.4.(i) and the definition of G1,F ,

EF [g1(Wi, θ)] = EF ∗ [Z1,i(Ui −X ′i(θ − θ0))] = G1,F (θ − θ0), (3.A.1)

which together with Assumption 3.3.4.(ii) implies that θF = θ0 and EF [g1(Wi, θF )] = 0r1×1.

Also θF ∈ int(Θ) holds by θF = θ0 and Condition (i) of the Lemma. This verifies Assumption

3.3.1.(i). For any θ ∈ Θ with ||θ − θF || ≥ ε,

‖EF [g1(Wi, θ)]‖ = ‖G1,F (θF − θ)‖ ≥ (ρmin(G′1,FG1,F ))1/2 ‖θF − θ‖ ≥ C−1/2ε (3.A.2)

where the first inequality is by the Cauchy-Schwarz inequality, the second inequality is by

Assumption 3.3.4.(ii). This verifies Assumption 3.3.1.(ii). By the definitions of G2,F and

Ω2,F , and Assumption 3.3.4.(iii),

∥∥G′2,FG2,F

∥∥ ≤ C and ‖Ω2,F‖ ≤ C. (3.A.3)
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As G′2,F =
(
G′1,F , G

′
r∗,F

)
where Gr∗,F = −δ0EF ∗ [UiX ′i]− EF ∗ [ViX ′i], we have

G′2,FG2,F = G′1,FG1,F +G′r∗,FGr∗,F , (3.A.4)

which implies that

ρmin(G′2,FG2,F ) ≥ ρmin(G′1,FG1,F ). (3.A.5)

To show Assumption 3.3.1.(iii), we write

QF (θ) = EF [Z2,i(Yi −X ′iθ)]′Ω−1
2,FEF [Z2,i(Yi −X ′iθ)]

= θ′G′2,FΩ−1
2,FG2,F θ + 2θ′G′2,FΩ−1

2,FBF +B′FΩ−1
2,FBF , (3.A.6)

where BF = EF [Z2,iYi]. It is clear that QF (θ) is minimized at θ∗F as G′2,FΩ−1
2,FG2,F is non-

singular by (3.A.5) and Assumption 3.3.4.(ii). For any θ ∈ Θ with ||θ − θ∗F || ≥ ε,

QF (θ)−QF (θ∗F ) = (θ − θ∗F )′G′2,FΩ−1
2,FG2,F (θ − θ∗F )

≥ ρmin(G′2,FΩ−1
2,FG2,F ) ‖θ − θ∗F‖

2

≥ C−2 ‖θ − θ∗F‖
2 ≥ C−2ε2, (3.A.7)

where the second inequality is by Assumption 3.3.4.(ii), (3.A.5) and (3.A.3). Assumption

3.3.1.(iv) is imposed in Assumption 3.3.4.(iv).

To verify Assumption 3.3.2, note that g2(Wi, θ) = Z2,i(Ui − X ′i(θ − θ0)), g2,θ(Wi, θ) =

−Z2,iX
′
i and g2,θθ(Wi, θ) = 0(r2dθ)×dθ . Assumption 3.3.2.(i) follows by Assumption 3.3.4.(iii)
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and the assumption that Θ is bounded. Assumptions 3.3.2(ii)-(iii) follow from Assumption

3.3.4.(ii).

We next verify 3.3.3. By definition,

vF = (vec(G2,F )′, vech(Ω2,F )′, δ0) . (3.A.8)

Hence Assumption 3.3.3.(i) holds by Assumption 3.3.4.(v). Consider any F ∈ F induced

by δ0, θ0 and F ∗ with δF = 0r∗×1. Let εF in Assumption 3.3.3.(ii) to be εF = C where C

is specified in Condition (ii) of the lemma. For any δ̃ ∈ Rr∗ with 0 ≤ ||δ̃|| < εF , we have

δ̃ ∈ [−C,C]r
∗ . Let F̃ be the distribution induced by δ̃, θ0 and F ∗. By definition,

G2,F̃ =

 −EF ∗ [Z1,iX
′
i]

−δ̃EF ∗ [UiX ′i]− EF ∗ [ViX ′i]

 and G2,F =

 −EF ∗ [Z1,iX
′
i]

−EF ∗ [ViX ′i]

 (3.A.9)

which together with the Cauchy-Schwarz inequality, the Hölder inequality and Assumption

3.3.4.(iii) implies that

||G2,F̃ −G2,F || = ||δ̃EF ∗ [UiX ′i]|| ≤ C||δ̃||. (3.A.10)

By definition θF̃ = θ0 = θF . Hence

EF̃ [Z1,iZ
′
1,i(Yi −X ′iθF̃ )2] = EF ∗ [Z1,iZ

′
1,iU

2
i ] = EF [Z1,iZ

′
1,i(Yi −X ′iθF )2]. (3.A.11)
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Under F̃ ,

EF̃ [Z1,iZ
′
r∗,i(Yi −X ′iθF̃ )2] = EF ∗ [Z1,i(Uiδ̃ + Vi)

′U2
i ]

= EF ∗ [U3
i Z1,i]δ̃

′ + EF ∗ [U2
i Z1,iV

′
i ], (3.A.12)

and

EF̃ [Zr∗,iZ
′
r∗,i(Yi −X ′iθF̃ )2]

= EF ∗ [(Uiδ̃ + Vi)(Uiδ̃ + Vi)
′U2
i ]

= EF ∗ [U4
i ]δ̃δ̃′ + δ̃EF ∗ [U3

i V
′
i ] + EF ∗ [U3

i Vi]δ̃
′ + EF ∗ [U2

i ViV
′
i ]. (3.A.13)

While under F ,

EF [Z1,iZ
′
r∗,i(Yi −X ′iθF )2] = EF ∗ [U2

i Z1,iV
′
i ] and

EF [Zr∗,iZ
′
r∗,i(Yi −X ′iθF )2] = EF ∗ [U2

i ViV
′
i ]. (3.A.14)

Collecting the results in (3.A.11), (3.A.12), (3.A.13) and (3.A.14), we get

∥∥EF̃ [Z2,iZ
′
2,i(Yi −X ′iθF̃ )2]− EF [Z2,iZ

′
2,i(Yi −X ′iθF )2]

∥∥
≤
∥∥∥EF ∗ [U3

i Z1,i]δ̃
′
∥∥∥+

∥∥∥EF ∗ [U4
i ]δ̃δ̃′

∥∥∥+
∥∥∥δ̃EF ∗ [U3

i V
′
i ]
∥∥∥+

∥∥∥EF ∗ [U3
i Vi]δ̃

′
∥∥∥

≤ C(||δ̃||2 + ||δ̃||) ≤ C||δ̃||, (3.A.15)

where the first inequality is by the triangle inequality, the second inequality is by the Cauchy-
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Schwarz inequality, the Hölder inequality and Assumption 3.3.4.(iii), and the last inequality

is by ||δ̃|| ≤ C. Next note that

EF̃ [Z2,i(Yi −X ′iθF̃ )] =

 EF ∗ [Z1,iUi]

δ̃

 and EF [Z2,i(Yi −X ′iθF )] =

 EF ∗ [Z1,iUi]

0r∗×1


(3.A.16)

which implies that

∥∥∥∥∥∥∥∥
EF̃ [Z2,i(Yi −X ′iθF̃ )]EF̃ [Z ′2,i(Yi −X ′iθF̃ )]

−EF [Z2,i(Yi −X ′iθF )]EF [Z ′2,i(Yi −X ′iθF )]

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥
 0r1×r1 EF ∗ [Z1,iUi]δ̃

′

δ̃EF ∗ [Z ′1,iUi] δ̃δ̃′


∥∥∥∥∥∥∥∥

≤
∥∥∥EF ∗ [Z1,iUi]δ̃

′
∥∥∥+

∥∥∥δ̃EF ∗ [Z ′1,iUi]∥∥∥+ ||δ̃||2

≤ C(||δ̃||2 + ||δ̃||) ≤ C||δ̃||, (3.A.17)

where the first inequality is by the triangle inequality, the second inequality is by the Cauchy-

Schwarz inequality, the Hölder inequality and Assumption 3.3.4.(iii), and the last inequality

is by ||δ̃|| ≤ C. By the definition of Ω2,F in (3.3.6), we can use the triangle inequality and

the results in (3.A.15) and (3.A.17) to deduce that

∥∥∥Ω2,F̃ − Ω2,F

∥∥∥ ≤ C||δ̃||, (3.A.18)

which combined with (3.A.10) implies that ||vF − vF̃ || ≤ C||δ̃||. This verifies Assumption
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3.3.3.(ii) with κ = 1.

3.B Proof of the Results in Section 3.4

Let µn(g2(W, θ)) = n−1/2
∑n

i=1(g2(Wi, θ)− EFn [g2(Wi, θ)]).

Lemma 3.B.1. Suppose that Assumption 3.3.2.(i) holds and Θ is compact. Then we have

(i) supθ∈Θ ‖g2(θ)− EFn [g2(Wi, θ)]‖ = op(1);

(ii) supθ∈Θ ‖n−1
∑n

i=1 g2(Wi, θ)g2(Wi, θ)
′ − EFn [g2(Wi, θ)g2(Wi, θ)

′]‖ = op(1);

(iii) supθ∈Θ ‖n−1
∑n

i=1 g2,θ(Wi, θ)− EFn [g2,θ(Wi, θ)]‖ = op(1);

(iv) µn(g2(W, θ)) is stochastic equicontinuous over θ ∈ Θ;

(v) Ω
−1/2
2,Fn

µn(g2(W, θFn))→d N(0r2×1, Ir2).

Proof of Lemma 3.B.1. See Lemma 11.3-11.5 of Andrews and Cheng (2013).

Define M2,F (θ) = EF [g2(W, θ)], G2,F (θ) = EF [g2,θ(W, θ)] and Ω2,F (θ) =VarF [g2(W, θ)]

for any θ ∈ Θ. The next lemma shows that M2,F (·), G2,F (·) and Ω2,F (·) are Lipschitz

continuous uniformly over F ∈ F .

Lemma 3.B.2. Under Assumption 3.3.2.(i), for any F ∈ F and any θ1, θ2 ∈ Θ, we have:

(i) ‖M2,F (θ1)−M2,F (θ2)‖ ≤ C ‖θ1 − θ2‖;

(ii) ‖G2,F (θ1)−G2,F (θ2)‖ ≤ C ‖θ1 − θ2‖;

(iii) ‖Ω2,F (θ1)− Ω2,F (θ2)‖ ≤ C ‖θ1 − θ2‖.
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Proof of Lemma 3.B.2. (i) Let g2,j(w, θ) denote the j-th (j = 1, . . . , r2) component of g2(w, θ).

By the mean value expansion,

g2,j(w, θ1)− g2,j(w, θ2) = g2,j,θ(w, θ̃1,2)(θ1 − θ2) (3.B.1)

for any j = 1, . . . , r2, where θ̃1,2 is some vector between θ1 and θ2. By (3.B.1) and the

Cauchy-Schwarz inequality

|EF [g2,j(w, θ1)− g2,j(w, θ2)]| ≤ EF
[
sup
θ∈Θ
‖g2,θ(W, θ)‖

]
‖θ1 − θ2‖ , (3.B.2)

for any j = 1, . . . , r2. By Assumption 3.3.2.(i), (3.B.2) and the triangle inequality, we deduce

that

‖M2,F (θ1)−M2,F (θ2)‖ ≤
√
r2EF

[
sup
θ∈Θ
‖g2,θ(W, θ)‖

]
‖θ1 − θ2‖ ≤ C

√
r2 ‖θ1 − θ2‖ (3.B.3)

which immediately proves the claim in (i). The claim in (ii) follows by similar argument and

its proof is omitted.

(iii) By the mean value expansion,

g2,j1(w, θ1)g2,j2(w, θ1)− g2,j1(w, θ2)g2,j2(w, θ2)

=
[
g2,j1,θ(w, θ̃1,2)g2,j2(w, θ̃1,2) + g2,j1(w, θ̃1,2)g2,j2,θ(w, θ̃1,2)

]
(θ1 − θ2) (3.B.4)

for any j1, j2 = 1, . . . , r2, where θ̃1,2 is some vector between θ1 and θ2 and may take different
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values from the θ̃1,2 in (3.B.1). By (3.B.4), the triangle inequality and the Cauchy-Schwarz

inequality

|EF [g2,j1(w, θ1)g2,j2(w, θ1)− g2,j1(w, θ2)g2,j2(w, θ2)]|

≤ 2EF
[
sup
θ∈Θ
‖g2(W, θ)‖ ‖g2,θ(W, θ)‖

]
‖θ1 − θ2‖

≤ EF
[
sup
θ∈Θ

(‖g2(W, θ)‖2 + ‖g2,θ(W, θ)‖2)

]
‖θ1 − θ2‖ (3.B.5)

for any j1, j2 = 1, . . . , r2, where the second inequality is by the simple inequality that |ab| ≤

(a2 + b2)/2. By (3.B.5) and Assumption 3.3.2.(i),

‖EF [g2(W, θ1)g2(W, θ1)′ − g2(W, θ2)g2(W, θ2)′]‖

≤ r2EF
[
sup
θ∈Θ

(‖g2(W, θ)‖2 + ‖g2,θ(W, θ)‖2)

]
‖θ1 − θ2‖

≤ r2C ‖θ1 − θ2‖ . (3.B.6)

Using the triangle inequality, and the inequality in (3.B.2), we deduce that

|EF [g2,j1(w, θ1)]EF [g2,j2(w, θ1)]− EF [g2,j1(w, θ2)]EF [g2,j2(w, θ2)]|

≤ |EF [g2,j1(w, θ1)− g2,j1(w, θ2)]EF [g2,j2(w, θ1)]|

+ |EF [g2,j1(w, θ2)]EF [g2,j2(w, θ2)− g2,j2(w, θ1)]|

≤ 2EF
[
sup
θ∈Θ
‖g2(W, θ)‖

]
EF
[
sup
θ∈Θ
‖g2,θ(W, θ)‖

]
‖θ1 − θ2‖ (3.B.7)
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for any j1, j2 = 1, . . . , r2. By (3.B.7) and Assumption 3.3.2.(i),

‖EF [g2(w, θ1)]EF [g2(w, θ1)′]− EF [g2(w, θ2)]EF [g2(w, θ2)′]‖ ≤ 2r2C
2 ‖θ1 − θ2‖ . (3.B.8)

By the definition of Ω2,F (θ), the triangle inequality and the results in (3.B.6) and (3.B.8)

‖Ω2,F (θ1)− Ω2,F (θ2)‖ ≤ r2(C + 2C2) ‖θ1 − θ2‖ , (3.B.9)

which immediately proves the claim in (iii).

Lemma 3.B.3. Suppose that Assumptions 3.3.1.(i), 3.3.1.(ii) and 3.3.2.(i) hold. Then for

any sequence of DGPs {Fn}, we have

θ̃1 − θFn = o(1) and Ω2 = Ω2,Fn + op(1), (3.B.10)

where θ̃1 is a preliminary estimator defined as

θ̃1 = arg min
θ∈Θ

g1(θ)′g1(θ). (3.B.11)

Proof of Lemma 3.B.3. By Lemma 3.B.1.(i),

g2(θ) = M2,Fn(θ) +

[
n−1

n∑
i=1

g2(Wi, θ)−M2,Fn(θ)

]
= M2,Fn(θ) + op(1), (3.B.12)

uniformly over θ ∈ Θ. As g1(W, θ) is a subvector of g2(W, θ), by (3.B.12) and Assumption
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3.3.2.(i),

g1(θ)′g1(θ) = M1,Fn(θ)′M1,Fn(θ) + op(1) (3.B.13)

uniformly over θ ∈ Θ. By Assumptions 3.3.1.(i)-(ii) and Fn ∈ F , M1,Fn(θ)′M1,Fn(θ) is

uniquely minimized at θFn , which together with the uniform convergence in (3.B.13) implies

that

θ̃1 − θFn →p 0. (3.B.14)

To show the consistency of Ω2, note that

Ω2 = n−1

n∑
i=1

g2(Wi, θ̃1)g2(Wi, θ̃1)′ − g2(θ̃1)g2(θ̃1)′

= EFn [g2(W, θ̃1)g2(W, θ̃1)′]−M2,Fn(θ̃1)′M2,Fn(θ̃1) + op(1)

= Ω2,Fn(θ̃1) + op(1) = Ω2,Fn + op(1), (3.B.15)

where the first equality is by the definition of Ω2, the second equality holds by (3.B.12),

Lemma 3.B.1.(ii) and Assumption 3.3.2.(i), the third equality follows from the definition

of Ω2,Fn(θ), and the last equality holds by Lemma 3.B.2.(iii) and (3.B.14). This shows the

consistency of Ω2.

Lemma 3.B.4. Suppose that Assumptions 3.3.1.(i)-(ii) and 3.3.2 hold. Then for any

sequence of DGPs {Fn}, we have

n1/2(θ̂1 − θFn) = Γ1,Fnµn(g1(W, θFn)) + op(1), (3.B.16)
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where Γ1,Fnµn(g1(W, θFn)) = Op(1).

Proof of Lemma 3.B.4. As g1(θ) is a subvector of g2(θ), and Ω1,n is a submatrix of Ω2,n,

using (3.B.12), (3.B.15) and Assumptions 3.3.2.(i)-(ii), we have

g1(θ)′(Ω1)−1g1(θ) = M1,Fn(θ)′Ω−1
1,Fn

M1,Fn(θ) + op(1), (3.B.17)

uniformly over Θ. By Assumptions 3.3.2.(i)-(ii),

C−1 ≤ ρmin(Ω−1
1,Fn

) ≤ ρmax(Ω−1
1,Fn

) ≤ C (3.B.18)

which together with Assumptions 3.3.1.(i)-(ii) implies thatM1,Fn(θ)′Ω−1
1,Fn

M1,Fn(θ) is uniquely

minimized at θFn . By the standard arguments for the consistency of an extremum estimator,

we have

θ̂1 − θFn = op(1). (3.B.19)

Using (3.B.19), Lemma 3.B.1.(iv) and Assumption 3.3.2.(i), we have

g1(θ̂1)=g1(θFn) +
[
M1,Fn(θ̂1)−M1,Fn(θFn)

]
+ op(n

−1/2)

=g1(θFn) + [G1,Fn(θFn) + op(1)] (θ̂1 − θFn) + op(n
−1/2). (3.B.20)

Similarly,

n−1

n∑
i=1

g1,θ(Wi, θ̂1) = G1,Fn(θ̂1) + op(1) = G1,Fn + op(1), (3.B.21)

where the first equality follows from Lemma 3.B.1.(iii) and the second equality follows by
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(3.B.19) and Lemma 3.B.2.(ii). From the first order condition for the GMM estimator θ̂1,

we deduce that

0 =

[
n−1

n∑
i=1

g1,θ(Wi, θ̂1)

]′
(Ω1)−1g1(θ̂1)

= (G′1,FnΩ−1
1,Fn

+ op(1))
[
g1(θFn) + (G1,Fn + op(1))(θ̂1 − θFn) + op(n

−1/2)
]

(3.B.22)

where the second equality follows from Assumptions 3.3.2.(i)-(ii), (3.B.15), (3.B.20) and

(3.B.21). By (3.B.22), EFn [g1(W, θFn)] = 0 and Assumption 3.3.2,

n1/2(θ̂1 − θFn) = (Γ1,Fn + op(1))µn(g1(W, θFn)) + op(1). (3.B.23)

By Assumptions 3.3.2 and Lemma 3.B.1.(v), Γ1,Fn = O(1) and µn(g1(W, θFn)) = op(1), which

together with (3.B.23) implies that

n1/2(θ̂1 − θFn) = Γ1,Fnµn(g1(W, θFn)) + op(1),

where Γ1,Fnµn(g1(W, θFn)) = Op(1). This finishes the proof.

Lemma 3.B.5. Suppose that Assumptions 3.3.1.(iii) and 3.3.2.(i)-(ii) hold. Then for any

sequence of DGPs {Fn}, we have

θ̂2 − θ∗Fn = op(1), (3.B.24)
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where θ∗Fn denotes the minimizer of QFn(θ) ≡M2,Fn(θ)′Ω−1
2,Fn

M2,Fn(θ).

Proof of Lemma 3.B.5. By (3.B.12), (3.B.15) and Assumptions 3.3.2.(i)-(ii), we have

g2(θ)′(Ω2)−1g2(θ) = M2,Fn(θ)′Ω−1
2,Fn

M2,Fn(θ) + op(1) = QFn(θ) + op(1) (3.B.25)

uniformly over Θ. By Assumption 3.3.1.(iii), QFn(θ) is uniquely minimized at θ∗Fn . The

consistency result θ̂2 − θ∗Fn →p 0 follows from standard arguments for the consistency of an

extremum estimator.

Lemma 3.B.6. Suppose that Assumptions 3.3.1.(i)-(ii) and 3.3.2.(i)-(ii) hold. Consider

any sequence of DGPs {Fn} such that δFn = o(1). Then we have

θ̂2 − θFn = op(1). (3.B.26)

If we further have Assumption 3.3.2.(iii), then

n1/2(θ̂2 − θFn) = (Γ2,Fn + op(1))
{
µn(g2(W, θFn)) + n1/2δ0,Fn

}
+ op(1), (3.B.27)

where Γ2,Fn = −
(
G′2,FnΩ−1

2,Fn
G2,Fn

)−1
G′2,FnΩ−1

2,Fn
and δ0,Fn = (0r1×1, δ

′
Fn

)′.

Proof of Lemma 3.B.6. By the definition of θ̂2,

g2(θ̂2)′(Ω2)−1g2(θ̂2) ≤ g2(θFn)′(Ω2)−1g2(θFn), (3.B.28)
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which implies that

||g2(θ̂2)||2 ≤ ρmax(Ω2)ρ−1
min(Ω2) ‖g2(θFn)‖2 . (3.B.29)

By (3.B.15) and Assumptions 3.3.2.(i)-(ii),

C−1 ≤ ρmin(Ω2) ≤ ρmax(Ω2) ≤ C (3.B.30)

with probability approaching 1. By Lemma 3.B.1.(i), M1,Fn(θFn) = 0r1×1 and δFn = o(1),

‖g2(θFn)‖2 = op(1) (3.B.31)

which combined with (3.B.29) and (3.B.30) implies that

||g2(θ̂2)|| = op(1). (3.B.32)

Moreover, by (3.B.32), Lemma 3.B.1.(i) and the triangle inequality,

||M2,Fn(θ̂2)|| ≤ ||g2(θ̂2)−M2,Fn(θ̂2)||+ ||g2(θ̂2)|| = op(1) (3.B.33)

which immediately implies that

||M1,Fn(θ̂2)|| = op(1). (3.B.34)

The claimed result follows by (3.B.34) and the unique identification of θFn maintained by
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Assumptions 3.3.1.(i)-(ii).

Using θ̂2 − θFn = op(1), Lemma 3.B.1.(iv) and Assumption 3.3.2.(i), we have

g2(θ̂2)=g2(θFn) +
[
M2,Fn(θ̂2)−M2,Fn(θFn)

]
+ op(n

−1/2)

=g2(θFn) + [G2,Fn(θFn) + op(1)] (θ̂2 − θFn) + op(n
−1/2). (3.B.35)

Similarly,

n−1

n∑
i=1

g2,θ(Wi, θ̂2) = G2,Fn(θ̂2) + op(1) = G2,Fn(θFn) + op(1), (3.B.36)

where the first equality follows from Lemma 3.B.1.(iii) and the second equality follows by

θ̂2−θFn = op(1) and Lemma 3.B.2.(ii). From the first order condition for the GMM estimator

θ̂2, we deduce that

0 =

[
n−1

n∑
i=1

g2,θ(Wi, θ̂2)

]′
(Ω2)−1g2(θ̂2)

= (G′2,FnΩ−1
2,Fn

+ op(1))
[
g2(θFn) + (G2,Fn + op(1))(θ̂2 − θFn) + op(n

−1/2)
]

(3.B.37)

where the second equality follows from Assumptions 3.3.2.(i)-(ii), (3.B.15), (3.B.35) and

(3.B.36). By (3.B.37) and Assumption 3.3.2,

n1/2(θ̂2 − θFn) = (Γ2,Fn + op(1))
{
µn(g2(W, θFn)) + n1/2EFn [g2(W, θFn)]

}
+ op(1), (3.B.38)

where Γ2,Fn = −
(
G′2,FnΩ−1

2,Fn
G2,Fn

)−1
G′2,FnΩ−1

2,Fn
.
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Lemma 3.B.7. Under Assumptions 3.3.2.(i) and 3.3.3.(i), for any sequence of DGPs {Fpn}

with Fpn ∈ F where {pn} is a subsequence of {n}, there is a subsequence {p∗n} of {pn} such

that vFp∗n (θFp∗n )→ vF (θF ) as p∗n →∞, where F ∈ F .

Proof of Lemma 3.B.7. Recall that Λ = {vF : F ∈ F}. By Assumptions 3.3.2.(i) and

3.3.3.(i), Λ is compact. Hence for any sequence
{
vFpn (θFpn )

}
in Λ, it has a convergent

subsequence {vFp∗n (θFp∗n )} such that vFp∗n (θFp∗n )→ vF (θF ) as p∗n →∞, where F ∈ F .

Lemma 3.B.8. Suppose that Assumptions 3.3.1.(i)-(ii) and 3.3.2 hold. Consider any se-

quence of DGPs {Fn} such that vFn → vF for some F ∈ F , and n1/2δFn → d for d ∈ Rr∗.

Then  n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

→d

 ξ1,F

ξ2,F

 ≡
 Γ1,FZ1,F

Γ2,F (Z2,F + d0)

 ,

where d0 = (01×r1 , d
′)′.

Proof of Lemma 3.B.8. In the proof, we use

G2,Fn → G2,F and Ω2,Fn → Ω2,F (3.B.39)

for some F ∈ F , which is assumed in the lemma. Under Assumptions 3.3.1.(i)-(ii) and 3.3.2,

for the sequence of DGPs {Fn} considered in the lemma, we can apply Lemma 3.B.4 and

Lemma 3.B.6 to deduce that

 n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

 =

 Γ1,Fnµn(g1(W, θFn))

(Γ2,Fn + op(1))
{
µn(g2(W, θFn)) + n1/2δ0,Fn

}
+ op(1), (3.B.40)
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where δ0,Fn = (0r1×1, δ
′
Fn

)′. By (3.B.39) and Assumption 3.3.2, we have

Γ1,Fn = Γ1,F + o(1) and Γ2,Fn = Γ2,F + o(1) (3.B.41)

where Γk,F = −
(
G′k,FΩ−1

k,FGk,F

)−1
G′k,FΩ−1

k,F for k = 1, 2. Collecting the results in Lemma

3.B.1.(v), (3.B.40) and (3.B.41), and then applying the continuous mapping theorem (CMT),

we have  n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

→d

 Γ∗1,F

Γ2,F

 (Z2,F + d0) , (3.B.42)

where Z2,F ∼ N(0r2×1,Ω2,F ), Γ∗1,F = (Γ1,F ,0dθ×r∗) and d0 = (01×r1 , d
′)′. The claimed result

follows from (3.B.42) and the definitions of Γ∗1,F and Z2,F .

Proof of Lemma 3.4.1. The claimed result in Part (a) has been proved in Lemma 3.B.8.

We next consider the case that n1/2δFn → d with ||d|| = ∞. Note that the results in

(3.B.27) and (3.B.41) do not depend on ||d|| < ∞ or ||d|| = ∞. Using (3.B.27), (3.B.41),

Lemma 3.B.1.(v) and the CMT, we have

n1/2(θ̂1 − θFn)→d Γ1,FZ1,F . (3.B.43)

To study the properties of θ̂2, we have to consider two separate scenarios: (1) δFn = o(1);

and (2) ‖δFn‖ > C−1. In scenario (1), Assumption 3.3.2, Lemma 3.B.1.(v) and Lemma 3.B.6

imply that

n1/2(θ̂2 − θFn) = (Γ2,Fn + op(1))n1/2δFn +Op(1). (3.B.44)
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By Assumption 3.3.1.(iv) and ||n1/2δFn|| → ∞,

nδ′FnΓ′2,FnΓ2,FnδFn ≥ C−2nδ′FnδFn →∞ (3.B.45)

which together with (3.B.44) implies that ||n1/2(θ̂2 − θFn)|| →p ∞.

Finally, we consider the scenario (2) where ‖δFn‖ > C−1. By Assumption 3.3.1.(iv),

||G′2,FnΩ−1
2,Fn

δFn|| > C−1 ‖δFn‖ > C−2. (3.B.46)

As θ∗Fn is the minimizer of QFn(θ), it has the following first order condition

0dθ×1 = G2,Fn(θ∗Fn)′Ω−1
2,Fn

M2,Fn(θ∗Fn), (3.B.47)

which implies that

G′2,FnΩ−1
2,Fn

δFn = G2,Fn(θFn)′Ω−1
2,Fn

M2,Fn(θFn)−G2,Fn(θ∗Fn)′Ω−1
2,Fn

M2,Fn(θ∗Fn)

=
[
G2,Fn(θFn)−G2,Fn(θ∗Fn)

]′
Ω−1

2,Fn
M2,Fn(θFn)

+G2,Fn(θFn)′Ω−1
2,Fn

[
M2,Fn(θFn)−M2,Fn(θ∗Fn)

]
. (3.B.48)

By Lemma 3.B.2, the Cauchy-Schwarz inequality and Assumption 3.3.2.(i)-(ii), we have

∥∥∥[G2,Fn(θFn)−G2,Fn(θ∗Fn)
]′

Ω−1
2,Fn

M2,Fn(θFn)
∥∥∥

≤
∥∥G2,Fn(θFn)−G2,Fn(θ∗Fn)

∥∥∥∥Ω−1
2,Fn

M2,Fn(θFn)
∥∥
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≤ C
∥∥θFn − θ∗Fn∥∥ , (3.B.49)

where C is a fixed constant. Similarly, we have

∥∥G2,Fn(θFn)′Ω−1
2,Fn

[
M2,Fn(θFn)−M2,Fn(θ∗Fn)

]∥∥
≤
∥∥M2,Fn(θFn)−M2,Fn(θ∗Fn)

∥∥∥∥Ω−1
2,Fn

G2,Fn(θFn)
∥∥

≤ C
∥∥θFn − θ∗Fn∥∥ . (3.B.50)

Combining the results in (3.B.48), (3.B.49) and (3.B.50), and using the triangle inequality,

we have ∥∥θFn − θ∗Fn∥∥ ≥ C (3.B.51)

for some fixed constant C. Using θ̂2 = θ∗Fn + op(1) (which is proved in Lemma 3.B.5) and

the triangle inequality, we obtain

∥∥∥θ̂2 − θFn
∥∥∥ ≥ ∣∣∣||θ̂2 − θ∗Fn|| −

∥∥θ∗Fn − θFn∥∥∣∣∣ =
∥∥θ∗Fn − θFn∥∥ (1 + op(1)), (3.B.52)

which together with (3.B.51) implies that n1/2||θ̂2 − θFn||→p ∞. This finishes the proof.

Proof for the claim in equation (3.4.3). Consider the case n1/2δFn → d ∈ Rr∗ . By Lemma

3.4.1,

n1/2
[
θ̂(ω)− θFn

]
= n1/2(θ̂1 − θFn) + ω

[
n1/2(θ̂2 − θFn)− n1/2(θ̂1 − θFn)

]
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→d Γ∗1,FZd,2,F + ω(Γ2,F − Γ∗1,F )Zd,2,F . (3.B.53)

This implies that

`(θ̂(ω)) = n
[
θ̂n(ω)− θFn

]′
Υ
[
θ̂n(ω)− θFn

]
→d λF (ω) (3.B.54)

where

λF (ω) = Z ′d,2,FΓ∗′1,FΥΓ∗1,FZd,2,F + 2ωZ ′d,2,F (Γ2,F − Γ∗1,F )′ΥΓ∗1,FZd,2,F

+ ω2Z ′d,2,F (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )Zd,2,F .

Now we consider E[λF (ω)] using the equalities in Lemma 3.B.9 below. First,

E[Z ′d,2,FΓ∗′1,FΥΓ∗1,FZd,2,F ] = tr(ΥΣ1,F ) (3.B.55)

because Γ∗1Zd,2,F = Γ1,FZ1,F and Γ1,FE[Z1,FZ ′1,F ]Γ′1,F = Σ1,F by definition. Second,

E
[
Z ′d,2,F (Γ2,F − Γ∗1,F )′ΥΓ∗1,FZd,2,F

]
= tr(ΥΓ∗1,FE

[
Zd,2,FZ ′d,2,F

]
(Γ2,F − Γ∗1,F )′)

= tr(ΥΓ∗1,F [d0d
′
0 + Ω2,F ] (Γ2,F − Γ∗1,F )′)

= tr(Υ(Σ2,F − Σ1,F )), (3.B.56)
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where the last equality holds by Lemma 3.B.9. Third,

E
[
Z ′d,2,F (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )Zd,2,F

]
= tr(Υ(Γ2,F − Γ∗1,F ) [d0d

′
0 + Ω2,F ] (Γ2,F − Γ∗1,F )′)

= d′0Γ′2,FΥΓ2,Fd0 + tr(Υ(Σ2,F − Σ1,F )) (3.B.57)

by Lemma 3.B.9. Combining the results in (3.B.55)-(3.B.57), we obtain

E[λF (ω)] = tr(ΥΣ1,F )− 2ωtr (Υ (Σ1,F − Σ2,F ))

+ ω2
[
d′0Γ′2,FΥΓ2,Fd0 + tr (Υ (Σ1,F − Σ2,F ))

]
. (3.B.58)

Note that d′0Γ′2,FΥΓ2,Fd0 = d′0(Γ2,F −Γ∗1,F )′Υ(Γ2,F −Γ∗1,F )d0 because Γ∗1,Fd0 = 0dθ . It is clear

that the optimal weight ω∗F in (3.4.3) minimizes the quadratic function of ω in (3.B.58).

Lemma 3.B.9. (a) Γ∗1,Fd0 = 0dθ×1; (b) Γ∗1,FΩ2,FΓ∗1,F = Σ1,F ; (c) Γ∗1,FΩ2,FΓ′2,F = Σ2,F ; (d)

Γ2,FΩ2,FΓ′2,F = Σ2,F .

Proof of Lemma 3.B.9. By construction, Γ∗1,Fd0 = 0dθ×1. For ease of notation, we write Ω2,F

and G2,F as

Ω2,F =

 Ω1,F Ω1r∗

Ωr∗1,F Ωr∗,F

 and G2,F =

 G1,F

Gr∗,F

 . (3.B.59)
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To prove part (b), we have

Γ∗1,FΩ2,FΓ∗1,F = [Γ1,F ,0dθ×r∗ ]

 Ω1,F Ω1r∗

Ωr∗1,F Ωr∗,F

 [Γ1,F ,0dθ×r∗ ]

= Γ1,FΩ1,FΓ′1,F =
(
G′1,FΩ−1

1,FG1,F

)−1
= Σ1,F . (3.B.60)

To show part (c), note that

Γ∗1,FΩ2,FΓ′2,F = − [Γ1,F ,0dθ×r∗ ] Ω2,FΩ−1
2,FG2,F

(
G′2,FΩ−1

2,FG2,F

)−1

= −Γ1,FG1,F

(
G′2,FΩ−1

2,FG2,F

)−1
=
(
G′2,FΩ−1

2,FG2,F

)−1
= Σ2,F (3.B.61)

because −Γ1,FG1,F = Idθ×dθ . Part (d) follows from the definition of Γ2,F .

Proof of Lemma 3.4.2. We first prove the consistency of Ω̂k, Ĝk and Σ̂k for k = 1, 2. By

Lemma 3.4.1, we have θ̂1 = θFn + op(1). Using the same arguments in showing (3.B.15), we

can show that

Ω̂2 = Ω2,Fn + op(1) = Ω2,F + op(1), (3.B.62)

where the second equality is by (3.B.39) which is assumed in the lemma. As Ω̂1 is a submatrix

of Ω̂2, by (3.B.62) we have

Ω̂1 = Ω1,Fn + op(1) = Ω1,F + op(1). (3.B.63)
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By the consistency of θ̂1 and the same arguments used to show (3.B.36), we have

n−1

n∑
i=1

g2,θ(Wi, θ̂1) = G2,Fn(θFn) + op(1) = G2,F + op(1), (3.B.64)

where the second equality is by (3.B.39) which is assumed in the lemma. As n−1
∑n

i=1 g1,θ(Wi, θ̂1)

is a submatrix of n−1
∑n

i=1 g2,θ(Wi, θ̂1), by (3.B.64) we have

n−1

n∑
i=1

g1,θ(Wi, θ̂1) = G1,Fn(θFn) + op(1) = G1,F + op(1). (3.B.65)

From Assumption 3.3.2, (3.B.62), (3.B.63), (3.B.64) and (3.B.65), we see that Ω̂k and Ĝk

are consistent estimators of Ωk,F and Gk,F respectively for k = 1, 2. By the Slutsky theorem,

we know that Σ̂k is a consistent estimator of Σk,F for k = 1, 2.

In the case n1/2δFn → d ∈ Rr∗ , the desired result follows from Lemma 3.4.1, the con-

sistency of Σ̂1,F and Σ̂2,F , and the CMT. In the case ||n1/2δFn|| → ∞, ω̃eo →p 0 because

n1/2||θ̂2 − θ̂1|| →p ∞ and

n1/2(θ̂eo − θFn) = n1/2(θ̂1 − θFn) + ω̃eon
1/2(θ̂2 − θ̂1)

= n1/2(θ̂1 − θFn) +
n1/2(θ̂2 − θ̂1)tr

[
Υ(Σ̂1 − Σ̂2)

]
n(θ̂2 − θ̂1)′Υ(θ̂2 − θ̂1) + tr

[
Υ(Σ̂1 − Σ̂2)

] →d ξ1,F (3.B.66)

by Lemma 3.4.1.
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3.C Proof of the Results in Section 3.5

We first present some generic results on the bounds of asymptotic risk difference between

two estimators under some high-level conditions. Then we apply these generic results to the

two specific estimators we consider in this paper: θ̂eo and θ̂1. The proof uses the subsequence

techniques used to show the asymptotic size of a test in Andrews, Cheng, and Guggenberger

(2011) but we adapt the proof and notations to the current setup and extend results from

test to estimators.

Recall that hF,d = (d′, vec(G2,F )′, vech(Ω2,F )′) and vF = (vec(G2,F )′, vech(Ω2,F )′) for any

F ∈ F and any d ∈ Rr∗
∞. We have defined

H = {hF,d : d ∈ Rr∗ and F ∈ F with δF = 0r∗×1} (3.C.1)

where δF is defined by (3.1.4) for a given F . Define

H∗∞ = {hF,d : d ∈ Rr∗

∞ with ||d|| =∞ and F ∈ F}. (3.C.2)

Let dh = r∗ + dθr2 + (r2 + 1)r2/2. It is clear that hF,d is a dh-dimensional vector.

Condition 3.C.1. (i) For any sequence of DGPs {Fpn} with Fpn ∈ F where {pn} is a

subsequence of {n}, there exists a subsequence {p∗n} of {pn} and some F ∈ F such that

vFp∗n → vF as p∗n →∞; (ii) M1,F (θ) = 0r1×1 has a unique solution at θF ∈ Θ for any F ∈ F ;

(iii) M2,F (·) is uniform equicontinuous over F ∈ F ; (iv) for any subsequence {pn} of {n}, if
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(pn)1/2δFpn → d for d ∈ Rr∗
∞ and vFpn → vF , then

lim
n→∞

EFpn [`ζ(θ̂)] = Rζ(hF,d) and lim
n→∞

EFpn [`ζ(θ̃)] = R̃ζ(hF,d)

where Rζ(hF,d) and R̃ζ(hF,d) are non-negative and bounded from above by ζ for any F ∈ F

and any d ∈ Rr∗
∞; (v) for any F ∈ F with δF = 0r∗×1, there exists a constant εF > 0 such

that for any δ̃ ∈ Rr∗ with 0 ≤ ||δ̃|| < εF , there is F̃ ∈ F with δF̃ = δ̃ and ||vF −vF̃ || ≤ C||δ̃||κ

for some κ > 0; (vi) for any hF,d ∈ H∗∞ and hF,d̃ ∈ H∗∞, we have

Rζ(hF,d) = Rζ(hF,d̃) and R̃ζ(hF,d) = R̃ζ(hF,d̃)

for any ζ > 0.

Condition 3.C.1.(i) requires that for any sequence of {vFpn}, it has a convergent sub-

sequence {vFp∗n} with limit being vF for some F ∈ F . This condition is verified under

Assumptions 3.3.2.(i) and 3.3.3.(i) in Lemma 3.B.7. Condition 3.C.1.(ii) is the unique iden-

tification condition of θF which holds under Assumptions 3.3.1.(i)-(ii). Condition 3.C.1.(iii)

holds under Assumption 3.3.2.(i) by Lemma 3.B.2. Condition 3.C.1.(iv) is a key assumption

to derive an explicit upper bound of asymptotic risk. This condition can be verified by using

Lemma 3.4.1 as we shall show in the proof of Theorem 3.5.1. Condition 3.C.1.(v) enables

us to show that the upper bound we derived for the asymptotic risk is also a lower bound.

This condition is assumed in Assumption 3.3.3.(ii). Condition 3.C.1.(vi) requires that the

asymptotic (truncated) risk of θ̂ (or θ̃) under the subsequences of DGPs {Fpn} satisfying the
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restrictions in Condition 3.C.1.(iv) are identical whenever (pn)1/2δFpn → d with ||d|| = ∞.

This condition holds in the GMM framework when severely misspecified moment condition(s)

in EF [g∗(Wi, θF )] = 0r∗×1 leads to slower than root-n or inconsistent estimation of θF , which

is ensured by Assumption 3.3.1.(iv).

Lemma 3.C.2. Under Conditions 3.C.1.(i) - 3.C.1.(iv), we have

AsyRζ(θ̂) ≤ max

{
sup
h∈H

Rζ(h), sup
h∈H∗∞

Rζ(h)

}
. (3.C.3)

Proof of Lemma 3.C.2. Let {Fn} be a sequence such that

lim sup
n→∞

EFn [`ζ(θ̂)] = lim sup
n→∞

(
sup
F∈F

EF [`ζ(θ̂)]

)
. (3.C.4)

Such a sequence always exists by the definition of supremum. The sequence {EFn [`ζ(θ̂)]:

n ≥ 1} may not converge. However, by the definition of limsup, there exists a subsequence

of {n}, say {pn}, such that {EFpn [`ζ(θ̂)]: n ≥ 1} converges and

lim
n→∞

EFpn [`ζ(θ̂)] = AsyRζ(θ̂). (3.C.5)

Below we show that for any subsequence {pn} of {n} such that {EFpn [`ζ(θ̂)]: n ≥ 1} is

convergent, there exists a subsequence {p∗n} of {pn} such that

lim
n→∞

EFp∗n [`ζ(θ̂)] = Rζ(h) for some h ∈ H or H∗∞ (3.C.6)
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Because limn EFp∗n [`ζ(θ̂)] = limn EFpn [`ζ(θ̂)], which combined with (3.C.5) and (3.C.6) implies

that

AsyRζ(θ̂) = Rζ(h) for some h ∈ H or H∗∞. (3.C.7)

The desired result in (3.C.3) follows immediately by (3.C.7).

To show that there exists a subsequence {p∗n} of {pn} such that (3.C.6) holds, it suffices to

show that for any sequence {Fn} and any subsequence {pn} of {n}, there exists a subsequence

{p∗n} of {pn} for which we have

(p∗n)1/2δFp∗n → d for d ∈ Rr∗

∞ and vFp∗n → vF (3.C.8)

for some F ∈ F . By (3.C.8), we can use Condition 3.C.1.(iv) to deduce that

lim
n→∞

EFp∗n [`ζ(θ̂)] = Rζ(hF,d) (3.C.9)

for the sequence of DGPs {Fp∗n} satisfies (3.C.8). As d ∈ Rr∗
∞, we have either ‖d‖ < ∞ or

‖d‖ =∞. In the first case, ‖d‖ <∞ together with (p∗n)1/2δFp∗n → d and δFp∗n → δF (which is

implied by vFp∗n → vF ) implies that δF = 0r∗×1, which implies that hF,d ∈ H by the definition

of H. In the second case, hF,d ∈ H∗∞ by the definition of H∗∞. We have proved that hF,d in

(3.C.9) belongs either to H or H∗∞ which together with (3.C.9) proves (3.C.6).

Finally, we show that for any sequence {Fn} and any subsequence {pn} of {n}, there exists

a subsequence {p∗n} of {pn} for which (3.C.8) holds. Let δpn,j denote the j-th component

of δpn and p1,n = pn for any n ≥ 1. For j = 1, either (a) lim supn→∞ |p
1/2
j,n δpj,n,j| < ∞; or
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(b) lim supn→∞ |p
1/2
j,n δpj,n,j| = ∞. If (a) holds, then for some subsequence {pj+1,n} of {pj,n},

p
1/2
j+1,nδpj+1,n,j → dj for some dj ∈ R. If (b) holds, then for some subsequence {pj+1,n} of

{pj,n}, p1/2
j+1,nδpj+1,n,j → ∞ or −∞. As r∗ is a fixed positive integer, we can apply the same

arguments successively for j = 1, ..., r∗ to obtain a subsequence {pr∗,n} of {pn} such that

(pr∗,n)1/2δpr∗,n → d ∈ Rr∗
∞. By Condition 3.C.1.(i), we know that there exists a subsequence

{p∗n} of {pr∗,n} such that vp∗n → vF for some F ∈ F , which finishes the proof of (3.C.8).

Lemma 3.C.3. Suppose that Condition 3.C.1.(v) holds. Then (i) for any hF,d ∈ H, there

exists a sequence of DGPs {Fn} with Fn ∈ F such that

n1/2δFn → d, G2,Fn → G2,F and Ω2,Fn → Ω2,F ; (3.C.10)

(ii) for any hF,d ∈ H∗∞, there exists a sequence of DGPs {Fn} with Fn ∈ F such that

n1/2δFpn → d̃ with ||d̃|| =∞, G2,Fpn → G2,F and Ω2,Fpn → Ω2,F (3.C.11)

for any subsequence {pn} of {n}, where d̃ may depend on {pn}.

Proof of Lemma 3.C.3. (i) By the definition of H, we have δF = 0r∗×1 for the F generating

hF,d. Let NεF be the smallest n such that ‖d‖n−1/2 < εF . By Condition 3.C.1.(v), for any

n > NεF we can find a DGP Fn such that

δFn = n−1/2d and ‖vFn − vF‖ ≤ n−κ/2C||d||κ. (3.C.12)
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For any n such that ‖d‖n−1/2 ≥ εF , we let Fn = F . The desired properties in (3.C.10) holds

under the constructed sequence of DGPs {Fn} by (3.C.12), because C is a fixed constant

and κ > 0.

(ii) For any hF,d ∈ H∗∞, we have either δF = 0r∗×1 or ||δF || > 0. We first consider the

case that δF = 0r∗×1. Let 1r∗×1 denote the r∗ × 1 vector of ones. Let NεF be the smallest n

such that (pn)−1/4r∗ < εF . By Condition 3.C.1.(v), for any n > NεF we can find a DGP Fn

such that

δFpn = (pn)−1/41r∗×1 and
∥∥vFpn − vF∥∥ ≤ (pn)−κ/4Cr∗. (3.C.13)

For any n such that (pn)−1/4r∗ ≥ εF , we let Fn = F . The desired properties in (3.C.11) holds

under the constructed sequence of DGPs {Fn} by (3.C.13), because C is a fixed constant

and κ > 0. When ||δF || > 0, we define a trivial sequence of DGPs {Fn} as Fpn = F for any

n. It is clear that (3.C.11) holds trivially in this case.

Lemma 3.C.4. Under Condition 3.C.1, we have

AsyRζ(θ̂) = max

{
sup
h∈H

Rζ(h), sup
h∈H∗∞

Rζ(h)

}
. (3.C.14)

Proof of Lemma 3.C.4. In view of the upper bound in (3.C.3), it is sufficient to show that

AsyRζ(θ̂) ≥ max

{
sup
h∈H

Rζ(h), sup
h∈H∗∞

Rζ(h)

}
. (3.C.15)

First, we note that for any hd,F = (d′, vec(G2,F )′, vech(Ω2,F )′) ∈ H, there exists a sequence

189



{Fn ∈ F : n ≥ 1} such that

n1/2δFn → d ∈ Rr∗ , δFn → 0r∗×1 and vFn → (vec(G2,F )′, vech(Ω2,F )′) (3.C.16)

by Lemma 3.C.3.(i). The sequence EFn [`ζ(θ̂)] may not be convergent, but there exists a

subsequence {pn} of n such that EFpn [`ζ(θ̂)] is convergent and

lim
n→∞

EFpn [`(θ̂)] = lim sup
n→∞

EFn [`(θ̂)]. (3.C.17)

As {pn} is a subsequence of {n}, by (3.C.16)

n1/2δFpn → d ∈ Rr∗ and vFpn → (vec(G2,F )′, vech(Ω2,F )′) (3.C.18)

for some F ∈ F . Moreover, there exists a subsequence {p∗n} of {pn} such that

n1/2δFp∗n → d ∈ Rr∗ and vFp∗n → vF (3.C.19)

for the F in (3.C.18). Hence by (3.C.19) and Condition 3.C.1.(iv), we deduce that

lim
n→∞

EFp∗n [`(θ̂)] = Rζ(hF,d). (3.C.20)

As {p∗n} is a subsequence of {pn}, limn EFp∗n [`(θ̂)] = limn EFpn [`(θ̂)] which combined with
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(3.C.17), (3.C.20) and the definition of AsyRζ(θ̂) implies that

AsyRζ(θ̂) = lim sup
n→∞

sup
F∈F

EF [`ζ(θ̂)] ≥ lim sup
n→∞

EFn [`(θ̂)] = Rζ(hF,d) (3.C.21)

for any hF,d ∈ H.

Second, consider any hd,F = (d′, vec(G2,F )′, vech(Ω2,F )′) ∈ H∗∞. By Lemma 3.C.4.(ii),

there exists a sequence of DGPs {Fn} such that

n1/2δFn → d̃ with ||d̃|| =∞, G2,Fn → G2,F and Ω2,Fn → Ω2,F . (3.C.22)

Using the same arguments in proving (3.C.17) and (3.C.20), we can show that

vp∗n → vF for some F ∈ F (3.C.23)

and

lim sup
n→∞

EFn [`(θ̂)] = lim
n→∞

EFp∗n [`(θ̂)] (3.C.24)

where {p∗n} is a subsequence of {n}. By Lemma 3.C.4.(ii),

(p∗n)1/2δFp∗n → d̃∗ with ||d̃∗|| =∞, (3.C.25)

under the sequence of DGPs
{
Fp∗n
}
. Using (3.C.23), (3.C.25) and Condition 3.C.1.(iv), we

deduce that

lim
n→∞

EFp∗n [`(θ̂)] = Rζ(hF,d̃∗). (3.C.26)
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As ||d̃∗|| =∞ and ||d|| =∞, by Conditions 3.C.1.(vi), we have Rζ(hF,d̃∗) = Rζ(hF,d) which

together with (3.C.24) and (3.C.26) implies that

lim sup
n→∞

EFn [`(θ̂)] = Rζ(hF,d). (3.C.27)

By the definition of AsyRζ(θ̂) and (3.C.27),

AsyRζ(θ̂) = lim sup
n→∞

sup
F∈F

EF [`ζ(θ̂)] ≥ lim sup
n→∞

EFn [`(θ̂)] = Rζ(hF,d) (3.C.28)

for any hF,d ∈ H∗∞. Combining the results in (3.C.21) and (3.C.28), we immediately get

(3.C.14).

Lemma 3.C.5. Under Conditions 3.C.1.(i) - 3.C.1.(iv), the upper and lower bounds of the

asymptotic risk difference between θ̂ and θ̃ satisfy

AsyRD(θ̂, θ̃)≤ lim
ζ→∞

(
max

{
sup
h∈H

[
Rζ(h)− R̃ζ(h)

]
, sup
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]})
, (3.C.29)

AsyRD(θ̂, θ̃)≥ lim
ζ→∞

(
min

{
inf
h∈H

[
Rζ(h)− R̃ζ(h)

]
, inf
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]})
. (3.C.30)

Proof of Lemma 3.C.5. Define

Rζ(H,H
∗
∞) = max

{
sup
h∈H

[
Rζ(h)− R̃ζ(h)

]
, sup
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]}
, (3.C.31)

Rζ(H,H
∗
∞) = min

{
inf
h∈H

[
Rζ(h)− R̃ζ(h)

]
, inf
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]}
. (3.C.32)
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By the definition of AsyRD(θ̂, θ̃), for (3.C.29) it is sufficient to show that for any ζ > 0

lim sup
n→∞

sup
F∈F

EF [`ζ(θ̂)− `ζ(θ̃)] ≤ Rζ(H,H
∗
∞), (3.C.33)

which can be proved using the same arguments in the proof of Lemma 3.C.2 (but replacing

`ζ(θ̂) and Rζ(h) by `ζ(θ̂)− `ζ(θ̃) and Rζ(h)− R̃ζ(h) respectively). Similarly by the definition

of AsyRD(θ̂, θ̃), for (3.C.30) it is sufficient to show that for any ζ > 0

lim inf
n→∞

inf
F∈F

EF [`ζ(θ̂)− `ζ(θ̃)] ≥ Rζ(H,H
∗
∞), (3.C.34)

which can be proved using the same arguments in the proof of Lemma 3.C.2 (but replacing

lim supn, supF∈F , `ζ(θ̂) and Rζ(h) by lim infn, infF∈F , `ζ(θ̂) − `ζ(θ̃) and Rζ(h) − R̃ζ(h)

respectively).

Lemma 3.C.6. Under Condition 3.C.1, the upper and lower bounds of the asymptotic risk

difference between θ̂ and θ̃ have the following representations:

AsyRD(θ̂, θ̃)= lim
ζ→∞

(
max

{
sup
h∈H

[
Rζ(h)− R̃ζ(h)

]
, sup
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]})
, (3.C.35)

AsyRD(θ̂, θ̃)= lim
ζ→∞

(
min

{
inf
h∈H

[
Rζ(h)− R̃ζ(h)

]
, inf
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]})
. (3.C.36)

Proof of Lemma 3.C.6. By Lemma 3.C.5, it is sufficient to show that

lim sup
n→∞

sup
F∈F

EF [`ζ(θ̂)− `ζ(θ̃)] ≥ Rζ(H,H
∗
∞), (3.C.37)
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lim inf
n→∞

inf
F∈F

EF [`ζ(θ̂)− `ζ(θ̃)] ≤Rζ(H,H
∗
∞), (3.C.38)

for any ζ > 0. (3.C.37) can be proved using the same arguments in the proof of Lemma

3.C.4 by replacing `ζ(θ̂) and Rζ(h) by `ζ(θ̂)−`ζ(θ̃) and Rζ(h)−R̃ζ(h) respectively. Similarly,

(3.C.38) can be proved using the same arguments in the proof of Lemma 3.C.4 by replacing

lim supn, supF∈F , `ζ(θ̂) and Rζ(h) by lim infn, infF∈F , `ζ(θ̂) − `ζ(θ̃) and Rζ(h) − R̃ζ(h)

respectively.

Lemma 3.C.7. Under Assumptions 3.3.2.(i) and 3.3.2.(iii), we have

sup
h∈H

E[(ξ′1,FΥξ1,F )2] ≤ C and sup
h∈H

E[(ξ
′
FΥξF )2] ≤ C. (3.C.39)

Proof of Lemma 3.C.7. By definition,

ξ′1,FΥξ1,F = Z ′1,FΓ′1,FΥΓ1,FZ1,F = Z ′1Ω
1/2
1,FΓ′1,FΥΓ1,FΩ

1/2
1,FZ1 (3.C.40)

where Z1 ∼ N(0r1 , Ir1×r1). By Assumptions 3.3.2.(i) and 3.3.2.(iii), and the fact that Υ is a

fixed matrix,

sup
F∈F

ρmax(Ω
1/2
1,FΓ′1,FΥΓ1,FΩ

1/2
1,F ) ≤ C. (3.C.41)

By (3.C.41),

sup
h∈H

E[(ξ′1,FΥξ1,F )2] ≤ sup
h∈H

ρ2
max(Ω

1/2
1,FΓ′1,FΥΓ1,FΩ

1/2
1,F )E[(Z ′1Z1)2] ≤ 3r1C (3.C.42)
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where the second inequality is by E[(Z ′1Z1)2] ≤ 3r1 which is implied by the assumption

that Z1 is a r1-dimensional standard normal random vector. The first inequality in (3.C.39)

follows as the upper bound in (3.C.42) does not depend on F .

By the Cauchy-Schwarz inequality and the simple inequality |ab| ≤ (a2 + b2)/2 (for any

real numbers a and b),

ξ
′
FΥξF ≤ 2

(
Z ′d,2,FΓ∗′1,FΥΓ∗1,FZd,2,F + ω2

FZ ′d,2,FBFZd,2,F
)

= 2
(
Z ′1,FΓ′1,FΥΓ1,FZ1,F + ω2

FZ ′d,2,FBFZd,2,F
)

(3.C.43)

where the equality is by Γ∗1,Fd0 = 0dθ×1 (which is proved in Lemma 3.B.9). By (3.C.43) and

the simple inequality (a+ b)2 ≤ 2(a2 + b2) (for any real numbers a and b),

(ξ
′
FΥξF )2 ≤ 8(Z ′1,FΓ′1,FΥΓ1,FZ1,F )2 + 8(ω2

FZ ′d,2,FBFZd,2,F )2. (3.C.44)

By the first inequality in (3.C.39), we have suph∈H E[(ξ′1,FΥξ1,F )2] ≤ C. Hence by (3.C.44),

to show the second inequality in (3.C.39), it is sufficient to prove that

sup
h∈H

E[(ω2
FZ ′d,2,FBFZd,2,F )2] ≤ C. (3.C.45)

For any F ∈ F , define

BF = (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F ) (3.C.46)
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Recall that we have defined AF = Υ (Σ1,F − Σ2,F ) in Theorem 3.5.2. By the definition,

ω2
FZ ′d,2,FBFZd,2,F =

(tr(AF ))2Z ′d,2,FBFZd,2,F
(Z ′d,2,FBFZd,2,F + tr(AF ))2

= tr(AF )
tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )

Z ′d,2,FBFZd,2,F
Z ′d,2,FBFZd,2,F + tr(AF )

. (3.C.47)

By Lemma 2.1 in Cheng and Liao (2015), tr(AF ) ≥ 0 for any F ∈ F . This together with

Z ′d,2,FDFZd,2,F ≥ 0 implies that

tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )
≤ 1 and

Z ′d,2,FBFZd,2,F
Z ′d,2,FBFZd,2,F + tr(AF )

≤ 1. (3.C.48)

By (3.C.48) and tr(AF ) ≥ 0,

ω2
FZ ′d,2,FBFZd,2,F ≤ tr(AF ) = tr(ΥΣ1,F )− tr(ΥΣ2,F ), (3.C.49)

where the equality is by AF = Υ(Σ1,F − Σ2,F ). By (3.C.49) and the simple inequality

(a+ b)2 ≤ 2(a2 + b2),

E[(ω2
FZ ′d,2,FBFZd,2,F )2] ≤ 2(tr(ΥΣ1,F ))2 + 2(tr(ΥΣ2,F ))2. (3.C.50)

By Assumptions 3.3.2.(i) and 3.3.2.(iii),

ρmin(G′k,FΩ−1
k,FGk,F ) ≥ ρmin(Ω−1

k,F )ρmin(G′k,FGk,F ) = ρmin(G′k,FGk,F )/ρmax(Ωk,F ) ≥ C−1

(3.C.51)
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for k = 1, 2. By (3.C.51) and the definition of Σk,F (k = 1, 2),

ρmax(Σk,F ) = ρ−1
min(G′k,FΩ−1

k,FGk,F ) ≤ C (3.C.52)

for any F ∈ F . As Υ and Σk,F are positive definite symmetric matrix, by the standard trace

inequality (tr(AB) ≤ tr(A)ρmax(B) for Hermitian matrices A ≥ 0 and B ≥ 0),

tr(ΥΣk,F ) ≤ tr(Υ)ρmax(Σk,F ) ≤ C for k = 1, 2, (3.C.53)

for any F ∈ F . Collecting the results in (3.C.50) and (3.C.53), we immediately get (3.C.45).

This finishes the proof.

Lemma 3.C.8. Under Assumptions 3.3.2.(i) and 3.3.2.(iii), we have

lim
ζ→∞

sup
h∈H

[|gζ(h)− g(h)|] = 0 (3.C.54)

where suph∈H [|g(h)|] ≤ C.

Proof of Lemma 3.C.8. First note that

min{x, ζ} − x = (ζ − x)I{x > ζ}. (3.C.55)
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Hence we have

sup
hd,F∈H

∣∣∣E [min{ξ′FΥξF , ζ} − ξ
′
FΥξF

]∣∣∣
≤ sup

hd,F∈H
E
[∣∣∣ζ − ξ′FΥξF

∣∣∣ I{ξ′FΥξF > ζ}
]

≤ ζ sup
hd,F∈H

E
[
I{ξ′FΥξF > ζ}

]
+ sup

hd,F∈H
E
[
ξ
′
FΥξF I{ζ−1 > (ξ

′
FΥξF )−1}

]
≤ 2ζ−1 sup

hd,F∈H
E
[
(ξ
′
FΥξF )2

]
≤ 2Cζ−1 (3.C.56)

where the first inequality is by the Jensen’s inequality, the second inequality is by the Markov

inequality, the third inequality is by the monotonicity of expectation and the last inequality

is by Lemma 3.C.7. Using the same arguments, we can show that

sup
hd,F∈H

∣∣E [min{ξ′1,FΥξ1,F , ζ} − ξ′1,FΥξ1,F

]∣∣ ≤ 2Cζ−1. (3.C.57)

Collecting the results in (3.C.56) and (3.C.57), and applying the triangle inequality, we

deduce that

sup
h∈H

[|gζ(h)− g(h)|] ≤ 4Cζ−1. (3.C.58)

The claimed result in (3.C.54) follows by (3.C.58) as C is a fixed constant.

By the triangle inequality, the Jensen’s inequality and Lemma 3.C.7,

sup
h∈H
|g(h)| ≤ sup

h∈H

∣∣∣E[ξ
′
FΥξF − ξ′1,FΥξ1,F ]

∣∣∣
≤ sup

h∈H
E[ξ
′
FΥξF ] + sup

h∈H
E[ξ′1,FΥξ1,F ] ≤ C
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which finishes the proof of the lemma.

Proof of Theorem 3.5.1. We first apply Lemma 3.C.6 with θ̂ = θeo and θ̃ = θ̂1 to show that

AsyRD(θ̂eo, θ̂1)= lim
ζ→∞

max

{
sup
h∈H

[gζ(h)] , 0

}
, and (3.C.59)

AsyRD(θ̂eo, θ̂1)= lim
ζ→∞

min

{
inf
h∈H

[gζ(h)] , 0

}
. (3.C.60)

Now we verify Condition 3.C.1 under Assumptions 3.3.1-3.3.3. Condition 3.C.1.(i) is

verified by Lemma 3.B.7 under Assumptions 3.3.2.(i) and 3.3.3.(i). Condition 3.C.1.(ii) is

implied by Assumptions 3.3.1.(i) and 3.3.1.(ii). Condition 3.C.1.(iii) is implied by the contin-

uous differentiability of g2(w, θ) with respect to θ for any w ∈ W , Assumptions 3.3.2.(i) and

the dominated convergence theorem (DCT). Condition 3.C.1.(v) is assumed in Assumption

3.3.1.(ii). We next verify Conditions 3.C.1.(iv) and 3.C.1.(vi).

Consider any sequence of DGPs {Fpn} with

(pn)1/2δFpn → d for d ∈ Rr∗

∞ and vFpn → vF (3.C.61)

for some F ∈ F , where {pn} is a subsequence of {n}. First, we consider the case that

d ∈ Rr∗ . By Lemma 3.4.1.(a) and 3.4.2.(a),

(pn)1/2(θ̂1 − θFpn )→d ξ1,F and (pn)1/2(θ̂eo − θFpn )→d ξF (3.C.62)
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which combined with the continuous mapping theorem implies that

`(θ̂1, θFpn )→d ξ
′
1,FΥξ1,F and `(θ̂eo, θFpn )→d ξ

′
FΥξF . (3.C.63)

The function fζ(x) = min {x, ζ} is a bounded continuous function. By (3.C.63) and the

Portmanteau Lemma,

EFpn [`ζ(θ̂eo)]→ E
[
min{ξ′FΥξF , ζ}

]
and EFpn [`ζ(θ̂1)]→ E

[
min{ξ′1,FΥξ1,F , ζ}

]
. (3.C.64)

Second, we consider the case that ‖d‖ =∞. Then under Lemma 3.4.1.(b) and 3.4.2.(b),

(pn)1/2(θ̂1 − θFpn )→d ξ1,F and (pn)1/2(θ̂eo − θFpn )→d ξ1,F . (3.C.65)

Using the same arguments in showing (3.C.64), we get

EFpn [`ζ(θ̂eo)]→ E
[
min{ξ′1,FΥξ1,F , ζ}

]
and EFpn [`ζ(θ̂1)]→ E

[
min{ξ′1,FΥξ1,F , ζ}

]
. (3.C.66)

Define

R̃ζ(hF,d) = E
[
min{ξ′1,FΥξ1,F , ζ}

]
and Rζ(hF,d) =


E[min{ξ′FΥξF , ζ}], ‖d‖ <∞

E
[
min{ξ′1,FΥξ1,F , ζ}

]
, ‖d‖ =∞

.

(3.C.67)

Collecting the results in (3.C.64) and (3.C.66), we deduce that under the sequence of DGPs
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{Fpn} satisfying (3.C.61),

EFpn [`ζ(θ̂eo)]→ Rζ(hF,d) and EFpn [`ζ(θ̂1)]→ R̃ζ(hF,d), (3.C.68)

where Rζ(hF,d) and R̃ζ(hF,d) are non-negative and bounded from above by ζ for any d ∈ Rr∗
∞

and any F ∈ F . This verifies Condition 3.C.1.(iv).

By definition, R̃ζ(hF,d) in (3.C.67) does not depend on d for any F . Moreover, for any d

and d̃ with ||d|| =∞ and ||d̃|| =∞, by the definition of Rζ(hF,d) in (3.C.68),

Rζ(hF,d) = E
[
min{ξ′1,FΥξ1,F , ζ}

]
= Rζ(hF,d̃). (3.C.69)

Hence, Condition 3.C.1.(vi) is also verified.

We next apply Lemma 3.C.6 to get (3.C.59) and (3.C.60) above. By (3.C.67),

Rζ(h)− R̃ζ(h) = E[min{ξ′FΥξF , ζ}]− E[min{ξ′1,FΥξ1,F , ζ}] for any h ∈ H (3.C.70)

and

Rζ(h)− R̃ζ(h) = E
[
min{ξ′1,FΥξ1,F , ζ}

]
− E

[
min{ξ′1,FΥξ1,F , ζ}

]
= 0 for any h ∈ H∗∞.

(3.C.71)

By Lemma 3.C.6, (3.C.70) and (3.C.71), we have

AsyRD(θ̂, θ̃)= lim
ζ→∞

max

{
sup
h∈H

[
Rζ(h)− R̃ζ(h)

]
, sup
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]}
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= lim
ζ→∞

max

{
sup
h∈H

E
[
min{ξ′FΥξF , ζ} −min{ξ′1,FΥξ1,F , ζ}

]
, 0

}
(3.C.72)

and

AsyRD(θ̂, θ̃)= lim
ζ→∞

min

{
inf
h∈H

[
Rζ(h)− R̃ζ(h)

]
, inf
h∈H∗∞

[
Rζ(h)− R̃ζ(h)

]}
= lim
ζ→∞

min

{
inf
h∈H

E
[
min{ξ′FΥξF , ζ} −min{ξ′1,FΥξ1,F , ζ}

]
, 0

}
, (3.C.73)

which proves (3.C.59) and (3.C.60).

We next show that

lim
ζ→∞

max

{
sup
h∈H

[gζ(h)] , 0

}
=max

{
sup
h∈H

[g(h)] , 0

}
, and (3.C.74)

lim
ζ→∞

min

{
inf
h∈H

[gζ(h)] , 0

}
= min

{
inf
h∈H

[g(h)] , 0

}
. (3.C.75)

By Lemma 3.C.8,

lim
ζ→∞

sup
h∈H

[gζ(h)] = sup
h∈H

[g(h)] and lim
ζ→∞

inf
h∈H

[gζ(h)] = inf
h∈H

[g(h)] , (3.C.76)

where suph∈H [g(h)] and infh∈H [g(h)] are finite real numbers. Let f(x) = max(x, 0) and

f(x) = min(x, 0). It is clear that f(x) and f(x) are continuos function on R. The asserted

results in (3.C.74) and (3.C.75) follow by (3.C.76), and the continuity of f(x) and f(x).

202



Proof of Theorem 3.5.2. For any F ∈ F , define

DF = (Γ2,F − Γ∗1,F )′ΥΓ∗1,F . (3.C.77)

Recall that we have defined

AF = Υ (Σ1,F − Σ2,F ) and BF = (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )

in Theorem 3.5.2 and (3.C.46) respectively. By the definition of ξF ,

E[ξ
′
FΥξF ] = tr(ΥΣ1,F ) + 2tr(AF )J1,F + tr(AF )2J2,F (3.C.78)

where

J1,F = E

[
Z ′d,2,FDFZd,2,F

Z ′d,2,FBFZd,2,F + tr(AF )

]
and J2,F = E

[
Z ′d,2,FBFZd,2,F

(Z ′d,2,FBFZd,2,F + tr(AF ))2

]
.

(3.C.79)

We provide a upper bound for J1,F defined in (3.C.79). Let

η(x) =
x

x′BFx+ tr(AF )
, where x = Zd,2. (3.C.80)

Its derivative is

∂η(x)′

∂x
=

1

x′BFx+ tr(AF )
Ir2 −

2BF

(x′BFx+ tr(AF ))2xx
′. (3.C.81)
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Define

DF = (Γ2,F − Γ∗1,F )′ΥΓ∗1,F , (3.C.82)

which satisfies DFZd,2,F = DFZ2,F by construction because the last r∗ rows of Γ∗1,F are zeros.

Applying Lemma 3.B.9 yields

tr (DFΩ2,F ) = tr
(
(Γ2,F − Γ∗1,F )′ΥΓ∗1,FΩ2,F

)
= tr(Υ

(
Γ∗1,FΩ2,FΓ′2,F − Γ∗1,FΩ2,FΓ∗1,F

)
)

= tr(Υ (Σ2,F − Σ1,F )) = −tr(AF ). (3.C.83)

By Lemma 1 of Hansen (2016), which is a matrix version of the Stein’s Lemma (Stein, 1956),

J1 = E (η(Zd,2,F )′DFZd,2,F ) = E (η(Zd,2,F )′DFZd,2,F ) = E
[
tr

(
∂η(Zd,2,F )′

∂x
DFΩ2,F

)]
.

(3.C.84)

Plugging (3.C.80)-(3.C.82) into (3.C.84), we have

J1 =E

[
tr (DFΩ2,F )

Z ′d,2,FBFZd,2,F + tr(AF )

]
− 2E

[
tr
(
BFZd,2,FZ ′d,2,FDFΩ2,F

)(
Z ′d,2,FBFZd,2,F + tr(AF )

)2

]

=E

[
−tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )

]
+ 2E

[
−Z ′d,2,FDFΩ2,FBFZd,2,F(
Z ′d,2,FBFZd,2,F + tr(AF )

)2

]
(3.C.85)

where the second equality is by (3.C.83). By definition,

−Z ′d,2,FDFΩ2,FBFZd,2,F

=−Z ′d,2,F (Γ2,F − Γ∗1,F )′ΥΓ∗1,FΩ2,F (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )Zd,2,F
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= Z ′d,2,F (Γ2,F − Γ∗1,F )′Υ(Σ1,F − Σ2,F )Υ(Γ2,F − Γ∗1,F )Zd,2,F

≤ ρmax(Υ1/2(Σ1,F − Σ2,F )Υ1/2)(Z ′d,2,F (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )Zd,2,F )

= ρmax(AF )Z ′d,2,FBFZd,2,F , (3.C.86)

where the last equality is by ρmax(Υ1/2(Σ1,F−Σ2,F )Υ1/2) = ρmax(Υ(Σ1,F−Σ2,F )). Combining

the results in (3.C.85) and (3.C.86), we get

J1,F ≤E

[
−tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )

]
+ 2E

[
ρmax(AF )Z ′d,2,FBFZd,2,F(
Z ′d,2,FBFZd,2,F + tr(AF )

)2

]

=E

[
−tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )

]

+ 2E

[[
Z ′d,2,FBFZd,2,F + tr(A)

]
ρmax(AF )− tr(AF )ρmax(AF )(

Z ′d,2,FBFZd,2,F + tr(AF )
)2

]

=E

[
2ρmax(AF )− tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )

]
− E

[
2ρmax(AF )tr(AF )(

Z ′d,2,FBFZd,2,F + tr(AF )
)2

]
. (3.C.87)

Next, note that

J2,F =E

[
Z ′d,2,FBFZd,2,F∣∣Z ′d,2,FBFZd,2,F + tr(AF )

∣∣2
]

= E

[
Z ′d,2,FBFZd,2,F + tr(AF )− tr(AF )∣∣Z ′d,2,FBFZd,2,F + tr(AF )

∣∣2
]

=E

[
1

Z ′d,2,FBFZd,2,F + tr(AF )

]
− E

[
tr(AF )∣∣Z ′d,2,FBFZd,2,F + tr(AF )

∣∣2
]
. (3.C.88)
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Combining (3.C.87) and (3.C.88), we obtain that

g(hd,F )=2tr(AF )J1,F + tr(AF )2J2,F

≤2tr(AF )

(
E

[
2ρmax(AF )− tr(AF )

Z ′d,2,FBFZd,2,F + tr(AF )

]
− E

[
2tr(AF )ρmax(AF )∣∣Z ′d,2,FBFZd,2,F + tr(AF )

∣∣2
])

+tr(A)2

(
E

[
1

Z ′d,2,FBFZd,2,F + tr(AF )

]
− E

[
tr(AF )∣∣Z ′d,2,FBFZd,2,F + tr(AF )

∣∣2
])

=E

[
tr(AF ) (4ρmax(AF )− tr(AF ))

Z ′d,2,FBFZd,2,F + tr(AF )

]
− E

[
tr(AF )2 (4ρmax(AF ) + tr(AF ))∣∣Z ′d,2,FBFZd,2,F + tr(AF )

∣∣2
]
.

(3.C.89)

For all G2 and Ω2 such that h = (d, vec(G2)′, vech(Ω2)′) ∈ H, we have G2 = G2,F and

Ω2 = Ω2,F for some F ∈ F by the definition of H. Hence, we have desired result if tr(AF ) > 0

and 4ρmax(AF )− tr(AF ) ≤ 0 for ∀F ∈ F .

3.D Proof of the Results in Section 3.6

Lemma 3.D.1. Suppose that Assumption 3.6.1 holds. Consider {Fn} such that vFn → vF

for some vF ∈ Λ and n1/2δFn → d with ‖d‖ ≤ r
1/2
2 D. We have

lim
ζ→∞

lim
n→∞

EFn [`ζ(θ̂eo)− `ζ(θ̂1)] = g(h)

where g(h) = E
[
ξ
′
FΥξF − ξ′1,FΥξ1,F

]
.

Proof of Lemma 3.D.1. For the sequence of DGPs {Fn} considered in the lemma, by As-
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sumptions 3.6.1.(i), 3.6.1.(ii) and 3.6.1.(iv), we can use Lemma 3.B.8 to deduce that

 n1/2(θ̂1 − θFn)

n1/2(θ̂2 − θFn)

→d

 ξ1,F

ξ2,F

 (3.D.1)

where d0 = (01×r1 , d
′)′. In the proof of Lemma 3.4.2, we have show that

Ω̂k = Ω2,F + op(1) and Ĝk = Gk,F + op(1) (3.D.2)

under vFn → vF , Assumptions 3.6.1.(i), 3.6.1.(ii) and 3.6.1.(iv). By (3.D.2), Assumption

3.6.1.(iv) and the Slutsky Theorem, Σ̂1,F and Σ̂2,F are consistent estimators of Σ1,F and Σ2,F

respectively. By the consistency of Σ̂1,F and Σ̂2,F , the weak convergence in (3.D.1) and the

CMT, we deduce that

n1/2(θ̂eo − θFn)→d ξF . (3.D.3)

Collecting the results in (3.D.1) and (3.D.3), and then applying the CMT and the Portman-

teau Lemma, we get

lim
n→∞

EFn [`ζ(θ̂eo)− `ζ(θ̂1)]→ gζ(h) (3.D.4)

where gζ(h) = E
[
min{ξ′FΥξF , ζ} −min

{
ξ′1,FΥξ1,F , ζ

}]
. The asserted result follows by

Lemma 3.C.8 and (3.D.4).
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Proof of Lemma 3.6.1. Let {Fn} be a sequence such that

lim sup
n→∞

EFn [`ζ(θ̂eo)− `ζ(θ̂1)] = lim sup
n→∞

(
sup
F∈Fn

EF [`ζ(θ̂eo)− `ζ(θ̂1)]

)
. (3.D.5)

Such a sequence always exists by the definition of supremum. The sequence {EFn [`ζ(θ̂eo) −

`ζ(θ̂1)]: n ≥ 1} may not converge. However, by the definition of limsup, there exists a

subsequence of {n}, say {pn}, such that {EFpn [`ζ(θ̂eo)− `ζ(θ̂1)]: n ≥ 1} converges and

lim
n→∞

EFpn [`ζ(θ̂eo)− `ζ(θ̂1)] = lim sup
n→∞

(
sup
F∈Fn

EF [`ζ(θ̂eo)− `ζ(θ̂1)]

)
. (3.D.6)

Below we show that for any subsequence {pn} of {n} such that {EFpn [`ζ(θ̂eo)−`ζ(θ̂1)]: n ≥ 1}

is convergent, there exists a subsequence {p∗n} of {pn} such that

lim
n→∞

EFp∗n [`ζ(θ̂eo)− `ζ(θ̂1)] = Rζ(h) for some h ∈ HD (3.D.7)

Because limn EFp∗n [`ζ(θ̂eo)−`ζ(θ̂1)] = limn EFpn [`ζ(θ̂eo)−`ζ(θ̂1)], which combined with (3.D.6)

and (3.D.7) implies that

lim sup
n→∞

(
sup
F∈Fn

EF [`ζ(θ̂eo)− `ζ(θ̂1)]

)
= Rζ(h) for some h ∈ HD. (3.D.8)

The desired result in (3.6.5) follows immediately by (3.D.8).

To show that there exists a subsequence {p∗n} of {pn} such that (3.D.7) holds, it suffices to

show that for any sequence {Fn} and any subsequence {pn} of {n}, there exists a subsequence
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{p∗n} of {pn} for which we have

(p∗n)1/2δFp∗n → d for ‖d‖ ≤ D and vFp∗n → vF (3.D.9)

for some F ∈ F . By (3.D.9), we can use Lemma 3.D.1 to deduce that

lim
n→∞

EFp∗n [`ζ(θ̂eo)− `ζ(θ̂1)] = Rζ(hF,d) (3.D.10)

for the sequence of DGPs {Fp∗n} satisfies (3.D.9). Moreover, we have hF,d ∈ HD by the

definition of HD, which together with (3.D.10) proves (3.D.7).

Finally, we show that for any sequence {Fn} and any subsequence {pn} of {n}, there exists

a subsequence {p∗n} of {pn} for which (3.D.9) holds. Let δpn,j denote the j-th component of

δpn and p1,n = pn for any n ≥ 1. For j = 1, we have |p1/2
j,n δpj,n,j| ≤ D for any n by Assumption

3.6.1.(vi). Hence there is some subsequence {pj+1,n} of {pj,n}, p1/2
j+1,nδpj+1,n,j → dj for some

|dj| ≤ D. As r∗ is a fixed positive integer, we can apply the same arguments successively

for j = 1, ..., r∗ to obtain a subsequence {pr∗,n} of {pn} such that (pr∗,n)1/2δpr∗,n → d with

‖d‖ ≤ D. By Assumptions 3.3.2.(i) and 3.6.1.(v), Λ is a compact set. Hence, there is a

subsequence {p∗n} of {pr∗,n} such that vFp∗n → vF , which finishes the proof of (3.D.9).

Proof of Theorem 3.6.2. Let τD = D. By (3.C.89) in the proof of Theorem 3.5.2

g(hd,F )≤E

[
tr(AF ) (4ρmax(AF )− tr(AF ))

Z ′d,2,FBFZd,2,F + tr(AF )

]
−E

[
tr(AF )2 (4ρmax(AF ) + tr(AF ))∣∣Z ′d,2,FBFZd,2,F + tr(AF )

∣∣2
]
. (3.D.11)
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By Jensen’s inequality,

E

[
1

Z ′d,2,FBFZd,2,F + tr(AF )

]
≥ 1

tr(d′BFd) + 2tr(AF )
, (3.D.12)

and similarly

E

[
1∣∣Z ′d,2,FBFZd,2,F + tr(AF )

∣∣2
]
≥ 1

|tr(d′BFd) + 2tr(AF )|2
. (3.D.13)

Hence

g(h)≤ tr(AF ) (4ρmax(AF )− tr(AF ))

tr(d′BFd) + 2tr(AF )
− tr(AF )2 (4ρmax(AF ) + tr(AF ))

|tr(d′BFd) + 2tr(AF )|2

≤ tr(AF ) (4ρmax(AF )− tr(AF ))

τ 2
Dρmax(BF ) + 2tr(AF )

− tr(AF )2 (4ρmax(AF ) + tr(AF ))

|τ 2
Dρmax(BF ) + 2tr(AF )|2

. (3.D.14)

As tr(AF ) > 4ρmax(AF ), ρmax(AF ) > 0, ρmax(BF ) < ∞ and τ 2
D < ∞, (3.D.14) immediately

implies that g(h)< 0 for any h ∈ HD.

3.E Asymptotic Risk of the Pre-test GMM Estimator

In this section, we establish similar results in Theorem 3.5.1 for the pre-test GMM estimator

based on the J-test statistic. The pre-test estimator is defined as

θ̂pre = 1{Jn > cα}θ̂1 + 1{Jn ≤ cα}θ̂2, (3.E.1)
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where Jn= ng2(θ̂2)′(Ω̂2)−1g2(θ̂2) and cα is the (1−α)th quantile of the chi-squared distribution

with degree of freedom r2 − dθ.

Theorem 3.E.1. Suppose that Assumptions 3.3.1-3.3.3 hold. The bounds of the asymptotic

risk difference satisfy

AsyRD(θ̂pre, θ̂1)= min

{
inf
h∈H

[gp(h)] , 0

}
,

AsyRD(θ̂pre, θ̂1)= max

{
sup
h∈H

[gp(h)] , 0

}
,

where gp,ζ(h) ≡ E
[
min{ξ′p,FΥξp,F , ζ} −min

{
ξ1,FΥξ′1,F , ζ

}]
and gp(h) ≡ E[ξ

′
p,FΥξp,F−ξ1,FΥξ′1,F ].

Proof of Theorem 3.E.1. The two equalities and inequalities in the theorem follow by the

same arguments in the proof of Theorem 3.5.1 with Lemma 3.4.2 for θ̂eo replaced by Lemma

3.E.2 for θ̂pre, and Lemma 3.C.8 replaced by Lemma 3.E.4. Its proof is hence omitted.

By Definition,

E[ξ
′
p,FΥξp,F ]=E[Z ′d,2,FΓ∗′1,FΥΓ∗1,FZd,2,F ]

+ E[ω2
p,FZ ′d,2,F (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )Zd,2,F ]

+ 2E[ωp,FZ ′d,2,F (Γ2,F − Γ∗1,F )′ΥΓ∗1,FZd,2,F]

= tr(ΥΣ1,F ) + 2E[ωp,FZ ′d,2,F (Γ2,F − Γ∗1,F )′ΥΓ∗1,FZd,2,F]

+ E[ω2
p,FZ ′d,2,F (Γ2,F − Γ∗1,F )′Υ(Γ2,F − Γ∗1,F )Zd,2,F ] (3.E.2)

The asymptotic risk of the pre-test estimator θ̂p in Figure 2 is simulated based on the formula
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in (3.E.2).

The following lemma provides the asymptotic distribution of the pre-test GMM estimator

under various sequence of DGPs, which is used to show Theorem 3.E.1.

Lemma 3.E.2. Suppose that Assumptions 3.3.1-3.3.3 hold. Consider {Fn} such that G2,Fn →

G2,F , Ω2,Fn → Ω2,F and M2,Fn →M2,F for some F ∈ F .

(a) If n1/2δFn → d for some d ∈ Rr∗, then

Jn→d J∞(hd,F ) ≡ (Z2,F + d0)′LF (Z2,F + d0),

where LF ≡ Ω−1
2,F − Ω−1

2,FG2,F

(
G′2,FΩ−1

2,FG2,F

)−1
G′2,FΩ−1

2,F and d0 = (0r1×1, d
′)′, and

n1/2(θ̂pre − θFn)→d ξp,F ≡ (1− ωp,F )ξ1,F + ωp,F ξ2,F

where ωp,F = 1{J∞(hd,F ) ≤ cα}.

(b) If ||n1/2δFn|| → ∞, then ωp,F →p 0 and n1/2(θ̂pre − θFn)→d ξ1,F .

Proof of Lemma 3.E.2. (a) By Assumption 3.3.2.(i), (3.B.35) and (3.B.38),

g2(θ̂2) = g2(θFn) + [G2,Fn(θFn) + op(1)] (θ̂2 − θFn) + op(n
−1/2)

= g2(θFn) +G2,FnΓ2,Fng2(θFn) + op(n
−1/2)

=(Ir2 +G2,FnΓ2,Fn)g2(θFn) + op(n
−1/2), (3.E.3)
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which implies that

Jn = ng2(θFn)′LFng2(θFn) + op(1) (3.E.4)

By n1/2δFn → d and Lemma 3.B.1.(v),

n−1/2Ω
−1/2
2,Fn

g2(θFn) = Ω
−1/2
2,Fn

µn(g2(W, θFn)) + Ω
−1/2
2,Fn

n1/2δFn →d Z+Ω
−1/2
2,F d0 (3.E.5)

where d′0 = (01×r1 , d
′) and Z is a r2 × 1 standard normal random vector. By vFn → vF ,

(3.E.4), (3.E.5) and the CMT,

Jn →d (Z2,F + d0)′LF (Z2,F + d0). (3.E.6)

By Lemma 3.4.1.(a) implies that

n1/2(θ̂1 − θFn)→d ξ1,F and n1/2(θ̂2 − θFn)→d ξ2,F , (3.E.7)

which together with (3.E.6) and the CMT implies that

n1/2(θ̂pre − θFn) = 1{Jn > cα}n1/2(θ̂1 − θFn) + 1{Jn ≤ cα}n1/2(θ̂2 − θFn)

→d (1− ωp,F )ξ1,F + ωp,F ξ2,F , (3.E.8)

which finishes the proof of the claim in (a).

(b) There are two cases to consider: (i) ||δFn|| > C−1; and (ii) ||δFn|| → 0. We first
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consider case (i). As g1(θ̂2) is a subvector of g2(θ̂2),

Jn = ng2(θ̂2)′(Ω̂2)−1g2(θ̂2)

≥ nρ−1
max(Ω̂2)g2(θ̂2)′g2(θ̂2)

≥ nρ−1
max(Ω̂2)g1(θ̂2)′g1(θ̂2). (3.E.9)

By (3.B.51) and (3.B.52),

∥∥∥θ̂2 − θFn
∥∥∥ ≥ C−1 with probability approaching 1, (3.E.10)

which together with Assumption 3.3.1.(ii) and Lemma 3.B.1.(i) implies that

g1(θ̂2) = M1,F (θ̂2) + op(1) ≥ C (3.E.11)

with probability approaching 1. By (3.B.62) and Assumption 3.3.2.(i), we have

ρmax(Ω̂2) ≤ C with probability approaching 1. (3.E.12)

Combining the results in (3.E.9), (3.E.11) and (3.E.12), we deduce that

Jn ≥ nC−1 with probability approaching 1, (3.E.13)
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which immediately implies that

ωp,F = 1{Jn ≤ cα} = 0 (3.E.14)

with probability approaching 1, as cα is a fixed constant. By Lemma 3.4.1.(b), (3.E.14) and

the assumption that Θ is bounded, we have

n1/2(θ̂pre − θFn) = 1{Jn > cα}n1/2(θ̂1 − θFn) + 1{Jn ≤ cα}n1/2(θ̂2 − θFn)

= 1{Jn > cα}n1/2(θ̂1 − θFn) + op(1)→d ξ1,F (3.E.15)

where the convergence in distribution is by the CMT.

We next consider the case that ||δFn|| → 0 and ||n1/2δFn|| → ∞. In the proof of Lemma

3.4.1, we have shown that θ̂2 − θFn = op(1) and (3.E.3) hold in this case. It is clear that

n1/2g2(θFn) = µn(g2(W, θFn) +

 0r1×1

n1/2δFn

 (3.E.16)

which implies that

ng2(θFn)′LFng2(θFn) = [µn(g2(W, θFn)]′LFn [µn(g2(W, θFn)]

+ 2

(
01×r1 n1/2δ′Fn

)
LFn [µn(g2(W, θFn)]

+

(
01×r1 n1/2δ′Fn

)
LFn

(
01×r1 n1/2δ′Fn

)′
. (3.E.17)
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By Lemma 3.B.1.(v) and Assumptions 3.3.2.(i)-(ii),

[µn(g2(W, θFn)]′HFn [µn(g2(W, θFn)] = Op(1). (3.E.18)

We shall show that for any d0 = (01×r1 , d
′)′ for d ∈ Rr∗ with ‖d‖ = 1,

d′0LFnd0 ≥ C−1 (3.E.19)

By definition, LFn has dθ many zero eigenvalues and r2 − dθ many of eigenvalues of ones.

The matrix G2,Fn contains the dθ many eigenvectors of the zero eigenvalues of LFn , because

LFnG2,Fn = 0r2×1 and ρmin(G′2,FnG2,Fn) ≥ C−1. (3.E.20)

Let G⊥,Fn denote the orthogonal complement of G2,Fn with G′⊥,FnG⊥,Fn = Ir2−dθ . Then we

have  G1,Fn

Gr∗,Fn

 a1 +

 G1,⊥,Fn

Gr∗,⊥,Fn

 a2 =

 0r1×1

d

 . (3.E.21)

As ρmin(G′1,FnG1,Fn) ≥ C−1 by Assumptions 3.3.2.(ii), we have

a1 = −(G′1,FnG1,Fn)−1G′1,FnG1,⊥,Fna2 (3.E.22)

and

(Gr∗,⊥,Fn −Gr∗,Fn(G′1,FnG1,Fn)−1G′1,FnG1,⊥,Fn)a2 = d. (3.E.23)
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Let LFn = Gr∗,⊥,Fn − Gr∗,Fn(G′1,FnG1,Fn)−1G′1,FnG1,⊥,Fn . By ρmin(G′1,FnG1,Fn) ≥ C−1, As-

sumptions 3.3.2.(i), (3.E.23) and the Cauchy-Schwarz inequality,

‖d‖2 = a′2LFnL
′
Fna2 ≤ C ‖a2‖2 (3.E.24)

which together with ‖d‖ = 1 implies that

‖a2‖2 ≥ C−1. (3.E.25)

Using (3.E.20), (3.E.21) and (3.E.25), we deduce that

d′0LFnd0 = (G2,Fna1 +G⊥,Fna2)′LFn(G2,Fna1 +G⊥,Fna2)

= a′2G
′
⊥,FnLFnG⊥,Fna2 = ‖a2‖2 ≥ C−1 (3.E.26)

which proves (3.E.19). By (3.E.19),

(
01×r1 n1/2δ′Fn

)
LFn

(
01×r1 n1/2δ′Fn

)′
≥ C−1n||δFn||2 (3.E.27)

which together with n||δFn||2 →∞ implies that

(
01×r1 n1/2δ′Fn

)
LFn

(
01×r1 n1/2δ′Fn

)′
→∞. (3.E.28)

Collecting the results in (3.E.17), (3.E.18) and (3.E.18), we deduce that ng2(θFn)′LFng2(θFn)→
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∞, which together with (3.E.4) implies that

ng2(θFn)′LFng2(θFn)→∞. (3.E.29)

By the Cauchy-Schwarz inequality,

ng2(θ̂2)′Ω−1
2,Fn

g2(θ̂2) ≥ ng2(θFn)′LFng2(θFn)

− (ng2(θFn)′LFng2(θFn))1/2op(n
−1/2) + op(n

−1)

which together with (3.E.29) implies that

ng2(θ̂2)′Ω−1
2,Fn

g2(θ̂2)→p ∞. (3.E.30)

It is clear that

Jn = ng2(θ̂2)′(Ω̂2)−1g2(θ̂2) ≥ ρ−1
max(Ω̂2)ρmin(Ω2,Fn)ng2(θ̂2)′Ω−1

2,Fn
g2(θ̂2) (3.E.31)

which together with Assumptions 3.3.2.(ii), (3.E.12) and (3.E.30) implies that Jn ≥ nC−1

with probability approaching 1. Using the same arguments in showing (3.E.15), we deduce

that

n1/2(θ̂pre − θFn)→d ξ1,F . (3.E.32)

This finishes the proof.
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Lemma 3.E.3. Under Assumptions 3.3.2, we have

sup
h∈H

E[(ξ
′
p,FΥξp,F )2] ≤ C. (3.E.33)

Proof of Lemma 3.E.3. By the same arguments in showing (3.C.44), we have

(ξ
′
p,FΥξp,F )2 ≤ 8(Z ′1,FΓ′1,FΥΓ1,FZ1,F )2 + 8(ω2

p,FZ ′d,2,FBFZd,2,F )2. (3.E.34)

By the first inequality in (3.C.39), we have suph∈H E[(ξ′1,FΥξ1,F )2] ≤ C. Hence by (3.E.34),

to show the inequality in (3.E.33), it is sufficient to prove that

sup
h∈H

E[(ω2
p,FZ ′d,2,FBFZd,2,F )2] ≤ C. (3.E.35)

By definition,

ωp,F = I{J∞(hd,F ) ≤ cα} = I{Z ′d,2,FLFZd,2,F ≤ cα}. (3.E.36)

By the simple inequality (a+ b)2 ≥ a2/2− 2b2,

(z + d0)′LF (z + d0) ≥ d′0LFd0/2− 2z′LF z (3.E.37)

for any z ∈ R, which together with Assumptions 3.3.2 and (3.E.19) implies that

(z + d0)′LF (z + d0) ≥ ‖d‖2 /C − 2z′LF z ≥ ‖d‖2 /C − C ‖z‖2 . (3.E.38)
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Under Assumptions 3.3.2, ‖BF‖ ≤ C for any F ∈ F which together with the simple inequal-

ity (a+ b)2 ≤ 2(a2 + b2) implies that

(z + d0)′BF (z + d0) ≤ 2C(‖d‖2 + ‖z‖2) (3.E.39)

for any z ∈ R. Collecting the results in (3.E.37) and (3.E.39), we get

I{(z + d0)′LF (z + d0) ≤ cα}z′BF z

≤ 2I{‖d‖2 ≤ cαC + C2 ‖z‖2}(‖d‖2 + ‖z‖2)

≤ 2(cαC + (C2 + 1) ‖z‖2) (3.E.40)

which implies that

sup
h∈H

E[(ω2
p,FZ ′d,2,FBFZd,2,F )2] ≤ 4E[(cαC + (C2 + 1)Z ′Z)2]

≤ C(cα + E[(Z ′Z)
2
]) = C(cα + 3r2). (3.E.41)

This finishes the proof.

Lemma 3.E.4. Under Assumptions 3.3.2, we have

lim
ζ→∞

sup
h∈H

[|gp,ζ(h)− gp(h)|] = 0 (3.E.42)

where suph∈H [|gp(h)|] ≤ C.
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Proof of Lemma 3.E.4. The proof follows the same arguments of the proof of 3.C.8 with the

second inequality in (3.C.39) replaced by (3.E.33).

3.F Illustration in Gaussian Location Model

Suppose that we have one observation (X ′1, X
′
2)′ from the normal distribution

 X1

X2

 ∼ N


 θ

θ + d

 , I2k

 (3.F.1)

where θ and d are k × 1 vectors and I2k is a 2k × 2k identity matrix. We are interested in

estimating θ.

Let Υ be the k × k identity matrix. The conservative GMM estimator θ̂1 = X1 has risk

tr(ΥIk) = k. On the other hand, the aggressive GMM estimator is θ̂2 = (X + Y )/2, which

has risk k/2 + ‖d‖2 /4. The empirical optimal weight defined in (3.4.7) becomes

ω̃eo =
2k

2k + (Y −X)′(Y −X)
, (3.F.2)

which together with the conservative and aggressive GMM estimators leads to the averaging

estimator

θ̂eo = X +
k

2k + (Y −X)′(Y −X)
(Y −X). (3.F.3)
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Lemma 3.F.1. The averaging estimator θ̂o defined in (3.F.3) satisfies

E
[
||θ̂eo − θ||2 − ||θ̂1 − θ||2

]
≤ −2k2(k + 4)

(4k + ‖d‖2)2
+ E

[
k(4− k)

2k + (Y −X)′(Y −X)

]
. (3.F.4)

The inequality (3.F.4) shows that the risk of the averaging estimator is strictly smaller

than the conservative estimator if k ≥ 4, for any θ and any d.

Proof of Lemma 3.F.1. By definition

E
[
||θ̂eo − θ||2

]
− E

[
||θ̂1 − θ||2

]
= E

[
k2(Y −X)′(Y −X)

(2k + (Y −X)′(Y −X))2

]
+ 2E

[
k(X − θ)′(Y −X)

2k + (Y −X)′(Y −X)

]
. (3.F.5)

Let X∗ = X − θ, Y = Y − θ and Z∗ = (X∗′, Y ∗′)′. Then we can write

E
[

(X − θ)′(Y −X)

2k + (Y −X)′(Y −X)

]
= E

[
X∗′(Y ∗ −X∗)

2k + (Y ∗ −X∗)′(Y ∗ −X∗)

]
= E

[
Z∗′D1Z

∗

2k + Z∗′D2Z∗

]
(3.F.6)

where

D1 =

 −Ik 0k

Ik 0k

 and D2 =

 Ik −Ik

−Ik Ik

 . (3.F.7)

Note that

E [D1Z
∗Z∗′D′1] = D2 (3.F.8)
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by definition and the Gaussian assumption. Let η(x) = x/(x′D2x+ 2k). Then its derivative

is

∂η(x)′

∂x
=

1

x′D2x+ 2k
Ik −

2

(x′D2x+ 2k)2D2xx
′. (3.F.9)

By Lemma 1 of Hansen (2016), which is a matrix version of the Stein’s Lemma (Stein, 1956),

J1 = E (η(Z∗)′D1Z
∗) = E

[
tr

(
∂η(Z∗)′

∂x
D1

)]
=E

[
tr (D1)

2k + Z∗′D2Z∗

]
−2E

[
tr (D2Z

∗Z∗′D1)

(2k + Z∗′D2Z∗)2

]
= E

[
−k

2k + Z∗′D2Z∗

]
−2E

[
Z∗′D1D2Z

∗

(2k + Z∗′D2Z∗)2

]
= E

[
−k

2k + Z∗′D2Z∗

]
+ 2E

[
Z∗′D2Z

∗

(2k + Z∗′D2Z∗)2

]
= E

[
2− k

2k + Z∗′D2Z∗

]
+ E

[
−4k

(2k + Z∗′D2Z∗)2

]

where fourth equality is by the following result

D1D2 =

 −Ik Ik

Ik −Ik

 = −D2. (3.F.10)

Moreover,

E
[

k2(Y −X)′(Y −X)

(2k + (Y −X)′(Y −X))2

]
= E

[
k2

2k + Z∗′D2Z∗

]
− E

[
2k3

(2k + Z∗′D2Z∗)2

]
(3.F.11)
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which together with (3.F.10) implies that

E
[
||θ̂eo − θ||2

]
− E

[
||θ̂1 − θ||2

]
= E

[
2k(2− k) + k2

2k + Z∗′D2Z∗

]
− E

[
2k3 + 8k2

(2k + Z∗′D2Z∗)2

]
= E

[
k(4− k)

2k + Z∗′D2Z∗

]
− E

[
2k2(k + 4)

(2k + Z∗′D2Z∗)2

]
. (3.F.12)

By Jensen’s inequality,

E
[

2k2(k + 4)

(2k + Z∗′D2Z∗)2

]
≥ 2k2(k + 4)

(2k + E [Z∗′D2Z∗])2
=

2k2(k + 4)

(4k + ‖d‖2)2
. (3.F.13)

The asserted result follows by combining the results in (3.F.12) and (3.F.13).
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Chapter 4

Synthetic Control and Inference
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4.1 Introduction

Synthetic control method, proposed and discussed by Abadie and Gardeazabal (2003) and

Abadie, Diamond, and Hainmueller (2010), is a very useful way of conducting comparison

studies when exact matches are unavailable. Estimation of treatment effects usually takes

the form of comparing outcomes between the treated unit and the control unit. Common

sense suggests that, for the comparison to be meaningful, the control unit needs to be sim-

ilar to the treatment unit in various dimensions. Such a requirement may not be satisfied

in many observational studies. In some cases, availability of panel data makes such compar-

isons reasonable, the difference-in-difference method being a very well-known example. The

difference-in-difference method requires a very specific set of assumptions, i.e., the common

trend assumption, which may not be plausible for many applications. The synthetic control

method offers a sensible generalization of the difference-in-difference. The synthetic control

is a combination of control outcomes, where the combination is manufactured by analyzing

the pre-intervention outcomes.

For the purpose of statistical inference with synthetic control, i.e., confidence interval and

hypothesis testing, various versions of placebo test are often adopted. The idea underlying

the placebo tests is similar to the usual permutation tests, where the critical value of a test

statistic is computed under all possible permutations of the “treatment” assignments in the

control unit. The idea of permutation test is very intuitive and attractive. Applying the

synthetic control method to every potential control unit presumably allows researchers to

assess the distribution of a test statistic under the null hypothesis of no treatment effects, and
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the inference is seemingly exact in the sense that the burden of asymptotic approximation

can be obviated.

The purpose of this paper is very specific. We ask whether the permutation test is a

reasonable idea in the context of the synthetic control method, and argue that the intuitive

appeal of the permutation test is misplaced. The validity of permutation tests usually

requires a certain symmetry assumption, which is often violated in the context of synthetic

control studies. Using Monte Carlo simulations, we document the size distortion of the

permutation tests. We go on to discuss a few alternative methods of inference.

Alberto Abadie kindly pointed out that the placebo test in synthetic control is often

based on randomization inference idea, under which the symmetry restriction is built-in,

while our analysis is predicated on the usual random sampling perspective, which leads to

the violation of symmetry. It would be useful to understand the exact mechanism through

which such difference manifest itself.

4.2 Synthetic Control: An Overview

In this section, we provide an overview of the synthetic control method. We heavily bor-

row discussions in Abadie, Diamond, and Hainmueller (2010) and Doudchenko and Imbens

(2016). Our discussion does address the source of identification, which seems absent in the

current literature, with the exception of Ferman and Pinto (2016), who showed that the es-

timated synthetic control weights will generally not converge to the weights that reconstruct

the factor loadings of the treated unit, even when the number of pre-intervention periods
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goes to infinity.

Consider a panel data with J + 1 cross sectional units observed over the time periods

t = 1, . . . , T . Units j = 1, . . . , J are the control units which do not receive the treatment

in either of the time periods. The unit j = 0 receives no treatment in periods 1, . . . , T0 and

the active treatment in time periods t = T0 + 1, . . . , T . For simplicity, we will often assume

that T = T0 + 1. The outcome variable Yj,t is such that Yj,t = Yj,t (1) if the jth unit receives

treatment in time t, and Yj,t = Yj,t (0) otherwise. Obviously

Yj,t = Yj,t (0) , j = 1, . . . , J ; t = 1, . . . , T,

Y0,t = Y0,t (0) , t = 1, . . . , T0,

Y0,t = Y0,t (1) , t = T0 + 1, . . . , T.

The idea underlying the synthetic control is that if there were some weights1 ω̂1, . . . , ω̂J

such that

Y0,t ≈
J∑
j=1

ω̂jYj,t (4.2.1)

during the pre-intervention periods (t = 1, . . . , T0), then
∑J

j=1 ω̂jYj,t can be used as a (syn-

thetic) control for Y0,t during the post-intervention period (t = T0 + 1, . . . , T ). Abadie, Dia-

mond, and Hainmueller (2010) and Doudchenko and Imbens (2016) discuss various methods

of finding the ω̂’s so that the requirement (4.2.1) is satisfied.

1Doudchenko and Imbens (2016) also consider a slightly general requirement Y0,t ≈ α +
∑J
j=1 wjYj,t.

This is a sensible way to enhance accuracy of synthetic control viewed as a point estimator. It also provides
a link to the difference-in-difference estimator. Because our focus is on inferential aspects of the problem,
we simplify notation and analysis by abstracting away from the intercept term.
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We now present our own understanding/interpretation of the synthetic control method.

Our interpretation is not the only possible one. Doudchenko and Imbens (2016) provide

an in-depth analysis of many possible methods. On the other hand, our interpretation is

helpful for two reasons. First, it makes a concrete interpretation of ω̂’s as estimates of some

pseudo-parameter, say ω∗’s, along with analytic expressions of the ω∗’s, which makes it easy

to understand the potential pitfalls of permutation methods afterwards. Second, it helps us

to motivate a completely different method of inference exploiting a time series variation.

The nature of approximation in (4.2.1) seems to be implicitly related to the asymptotics

where T0 →∞. Abadie, Diamond, and Hainmueller (2010) (p. 504) discusses the theoretical

motivation in the appendix of their paper, and shows that some term “goes to zero as the

number of pretreatment periods increases.”2 The time-series type motivation, which is only

implicit in their discussion, is a little more explicit in the form of the estimator. For example,

a special case of the estimator discussed by Abadie, Diamond, and Hainmueller (2010) (p.

496) solves

min
ω1,...,ωJ

(
Ȳ0 −

J∑
j=1

ωjȲj

)2

(4.2.2)

where Ȳj = T−1
0

∑T0
t=1 Yj,t. Obviously there are multiple solutions, because any ω’s with

Ȳ0 =
∑J

j=1 ωjȲj will minimize the objective function above. Although they do not make it

explicit, Abadie, Diamond, and Hainmueller (2010) avoided the problem by insisting that

ω̂’s be chosen such that some of the other observed characteristic, say Zj,t, also satisfy a

2On the same page, they also assume that their equation (2) is satisfied, i.e., Y0,t =
∑J
j=1 ŵjYj,t for

all t = 1, . . . , T0 in our notation above. Because there are J elements of ŵ’s which is mathematically
impossible if T0 > J . This is a minor problem because the problem disappears if the equality is understood
to hold approximately (in some informal sense).
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requirement similar to (4.2.1).3

In order to understand the role of taking the sample average, it makes sense to consider

the linear factor structure4 as in Abadie, Diamond, and Hainmueller (2010):

Yj,t = Yj,t (0) = αj + θt + γ′jδt + εj,t, t = 1, . . . , T0 (4.2.3)

The factor structure is interesting because it invalidates the usual difference-in-difference

methods. Suppose that θt, δt, and εj,t satisfy strict stationarity. Without loss of generality,

we also assume that E [δt] = 0 and E [εj,t] = 0. We would have Ȳj → αj+E [θt] in probability

as T0 →∞. Assuming that ω∗j satisfy

α0 + E [θt] =
J∑
j=1

ω∗j (αj + E [θt]) , (4.2.4)

we can understand that the population version of the synthetic control
∑J

j=1 ω∗jYj,t is such

that the difference Y0,T0+1 (0)−
∑J

j=1 ω∗jYj,T0+1 (0) is designed to have a mean zero.

Obviously there are multiple possible values of ω∗ that guarantees the zero mean prop-

erty. See Doudchenko and Imbens (2016) for related discussion. In Abadie, Diamond, and

Hainmueller (2010), the non-uniqueness problem seems to be solved by using a side con-

3Abadie, Diamond, and Hainmueller (2010) (Section 2.3) in fact consider the weighted averages Ȳ (m)
j ≡∑

t k
(m)
t Yj,t m = 1, . . . ,M instead of Ȳj = T−10

∑T0

t=1 Yj,t with the understanding that
∑
t k

(m)
t = 1. Because

Ȳ
(m)
j have the same expectation as Ȳj , they would have the same probability limit as long as Ȳ (m)

j converges
in probability to a nonrandom constant. Therefore, their use of multiple weighted averages as discussed in
Abadie, Diamond, and Hainmueller (2010) (Section 2.3) should not be viewed as a way of overcoming the
non-uniqueness problem in the population. Rather, it should be viewed as a device that may stabilize the
finite sample performance.

4Their equation (1) takes the form Yj,t (0) = αj + θ′tZj + γ′jδt + εj,t, so the factor structure in (4.2.3) is a
special case of their equation (1) where Zi = 1, i.e., it is a special case where the Zi does not exist.
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dition using some Zj; their equation (1) takes the form Yj,t (0) = αj + Z ′jθt + γ′jδt + εj,t,

and they proposed minimizing (X0 −Xω)′ V (X0 −Xω) for some positive definite V , where

X0 =
(
Z ′0, Ȳ0

)′ and X is the collection of corresponding objects for the controls.5 The imple-

mentation makes sense as a way of requiring that Z0−
∑J

j=1 ω∗jZj be as close to zero as pos-

sible, i.e., it can be understood to be a reflection of the constraint that Z0−
∑J

j=1 ω∗jZj = 0

as well as E [Y0,T0+1 (0)] −
∑J

j=1 ω∗jE [Yj,T0+1 (0)] = 0. The requirement helps us avoid the

non-uniqueness problem if the dimension of Z is sufficiently large relative to J . If the Z

consists of only a small number of components, the non-uniqueness problem persists.

In order to achieve uniqueness, we may adopt various methods. See Doudchenko and

Imbens (2016). We will consider the method of exact balancing, and minimize
∑J

j=1 ω
2
j

subject to E [Y0,t (0)] =
∑J

j=1 ωjE [Yj,t (0)] and 1 =
∑J

j=1 ωj.
6 We make three observations

on the method of exact balancing. First, the method is probably best motivated when δt = 0.

We can see that

Y0,T0+1 (0)−
J∑
j=1

ωjYj,T0+1 (0)

=

(
α0 −

J∑
j=1

ωjαj

)
+

(
1−

J∑
j=1

ωj

)
θT0+1 +

(
ε0,T0+1 −

J∑
j=1

ωjεj,T0+1

)
(4.2.5)

It is straightforward to see that the constraint E [Y0,t (0)] =
∑J

j=1 ωjE [Yj,t (0)] is equivalent

to α0 =
∑J

j=1 ωjαj. Therefore, the variance of Y0,T0+1 (0) −
∑J

j=1 ωjYj,T0+1 (0) is equal to

5We write X0 and X, instead of X1 and X0 as in Abadie, Diamond, and Hainmueller (2010) (Section
2.3). They also propose using some other linear combinations of Yj,t, . . . , Yj,T0

, in addition to Ȳj , but it does
not affect anything in T0 →∞ asymptotics.

6Abadie, Diamond, and Hainmueller (2010) also impose the positivity restriction, i.e., ωj ≥ 0 for all J .
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(
1 +

∑J
j=1 ω

2
j

)
σ2
ε under the constraints E [Y0,t (0)] =

∑J
j=1 ωjE [Yj,t (0)] and 1 =

∑J
j=1 ωj

if εj,t were i.i.d. over j.7 Here, the σ2
ε denotes the common variance of εj,t. Therefore,

the method of exact balancing may be understood to be a way of minimizing variance of

Y0,T0+1 (0) −
∑J

j=1 ωjYj,T0+1 (0). Second, the motivation is fragile, yet the method is useful

regardless. The simple motivation does not carry over to the case when δt is not fixed at

zero, because we have

Y0,T0+1 (0)−
J∑
j=1

ωjYj,T0+1 (0)

=

(
α0 −

J∑
j=1

ωjαj

)
+

(
1−

J∑
j=1

ωj

)
θT0+1 +

(
γ0 −

J∑
j=1

ωjγj

)′
δT0+1 +

(
ε0,T0+1 −

J∑
j=1

ωjεj,T0+1

)

(4.2.6)

and the minimization requires knowledge of the variance covariance matrix of δt as well as

the variance of εj,t. Regardless, the method of exact balancing does guarantee uniqueness,

and it serves a useful purpose in this regard. Third, a feasible version of the method of exact

balancing is a solution to

min
ω1,...,ωJ

J∑
j=1

ω2
j (4.2.7)

7Note that with Abadie, Diamond, and Hainmueller (2010) equation (1), we get a slightly different version
of (4.2.6):

Y0,T0+1 (0)−
J∑
j=1

ωjYj,T0+1 (0)

=

α0 −
J∑
j=1

ωjαj

+

Z0 −
J∑
j=1

ωjZj

′ θT0+1 +

γ0 − J∑
j=1

ωjγj

′ δT0+1 +

ε0,T0+1 −
J∑
j=1

ωjεj,T0+1

 .

Therefore, the side-condition in their implementation can be understood to be a way of insisting Z0 −∑J
j=1 ω∗jZj = 0, which can be understood to be a counterpart of the “adding-up” condition.
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subject to

Ȳ0 =
J∑
j=1

ωjȲj

and the adding-up condition 1 =
∑J

j=1 ωj.

To summarize, the synthetic control can be understood to be a way of imposing the

restriction E [Y0,t (0)] =
∑J

j=1 ωjE [Yj,t (0)] without explicitly specifying the factor structure

such as the dimension of δt. In fact, it can accommodate even more general nonlinear time

series structure. Other than the crucial requirement that the time series is strictly stationary,

there seems to be no other restriction, which makes it a convenient and attractive method

of estimation.

4.3 Placebo Test and Synthetic Control

We now discuss how placebo tests can be used in the context of synthetic control. For this

purpose, we first present a summary of the placebo test/permutation tests. The tests are

motivated to deal with the case where the number of the treated is small and the number

of controls is relatively large. In order to focus on the salient feature of the tests, we will

consider an extreme case and assume that there is only one treated unit.

The basic intuition underlying the general placebo test can be gleaned by examining a

standard textbook case of randomized treatments. Suppose that there is a cross sectional

data with J + 1 units, where the units j = 1, . . . , J are the control units and the unit j = 0

receives the active treatment. A reasonable estimator of the treatment effect is the difference

Y0− Ȳ , where Y0 is the outcome of the unit j = 0, and Ȳ = J−1
∑J

j=1 denotes the average of
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the outcomes of the controls. Suppose that we are interested in testing whether the treatment

had impact, i.e., suppose that we are interested in such a hypothesis testing. Given that there

is only one treated unit, the standard t-test comparing the difference of the mean outcomes

is not applicable. On the other hand, common sense suggests that we may implement such

a test by “assigning” each control units to fictitious treatments. More precisely, one can

estimate the empirical distribution of Yk − (J − 1)−1∑
j 6=k Yj for k = 1, . . . , J , and use it as

if it were the distribution of the treatment effects under the null hypothesis.8

Implementation of the placebo test with synthetic control requires a bit more notation.

First let ω̂ = (ω̂1, . . . , ω̂J) denote the estimator of ω∗. Although we will later use the es-

timator in (4.2.7) in our Monte Carlo simulations, we do not need to restrict ourselves to

this particular estimator. For now, we can view ω̂ as an output from a blackbox and let

ω∗ denote its probability limit as T0 → ∞. Second, let ω̂(−k) denote the outcome of the

same blackbox except that we use the kth unit as the outcome of the treated unit, and

Yj,t with j 6= k as our control units. The placebo test then uses the empirical distribu-

tion of Yk,T0+1 −
∑

j 6=k ω̂
(−k)
j Yj,T0+1 for k = 1, . . . , J as if it were the distribution of the

treatment effects under the null hypothesis of no treatment effect. If the estimated effect

Y0,T0+1 −
∑J

j=1 ω̂jYj,T0+1 belongs to the extreme tails of the empirical distribution, it is un-

derstood to be the evidence that the null hypothesis is incorrect.

This summary immediately raises two questions about the validity of the placebo test in

the context of synthetic control. First, given that ω’s are estimated, would it affect the finite

8Conley and Taber (2011), who proposed a similar test, cite Bertrand, Duflo, and Mullainathan (2004)
when they discuss placebo tests. Abadie, Diamond, and Hainmueller (2010) reference many other papers
that precede Bertrand, Duflo, and Mullainathan (2004).
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sample properties of the test? Second, does the permutation test have the correct size even

if the true ω’s were used?

The second concern may sound somewhat strange because the placebo test here seems

so intuitive. In order to understand why it is not so straightforward, it helps to recall that

the placebo test is a version of the permutation test, which requires for its validity what

may be called the symmetry assumption. For review of this property, we will borrow the

short discussion in Canay, Romano, and Shaikh (2014). Suppose that a researcher observes

a vector of observations X, whose joint distribution is P . The objective is to test whether

P ∈ P0, where P0 is a collection of probability distributions such that the distribution of

X is equal to that of gX for every g in G, where G is a finite collection of transformations.

The permutation test has the exact size if for the test statistic T (X), the critical value is

taken from the multinomial distribution of T (gX) for every g in G. In the context of the

placebo test above, one can understand X to be the vector (Y1, . . . , YJ), and gX to be the

permutation of the Y s.

We note that the symmetry is not mathematically obvious in the context of synthetic

control. In order for the permutation test to be valid, we need the distribution of Y0,T0+1 −∑J
j=1 ω∗jYj,T0+1 and those of Yk,T0+1 −

∑
j 6=k ω

(−k)
∗,j Yj,T0+1 for k = 1, . . . , J to be identical.

Even for the relatively simple model (4.2.3), the nature of the synthetic control (4.2.6) is

such that the symmetry does not naturally follow. Using the restriction (4.2.4), we may

write

Y0,T −
J∑
j=1

ω∗jYj,T = θT

(
1−

J∑
j=1

ω∗j

)
+

(
γ0 −

J∑
j=1

ω∗jγj

)′
δT +

(
ε0,T −

J∑
j=1

ω∗jεj,T

)
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Even if the first two terms were identically equal to zero over the permutations, we believe

that the third term above is not likely to satisfy the symmetry property. It is because we

believe that under the further restriction that the ε’s have a finite variance, the term can

be symmetric only when they are normally distributed. We in fact argue that normality is

necessary if the distribution of ε0,T − ω′εT is to be symmetric up to normalization, where

εT = (ε1,T , . . . , εJ,T )′ and ω = (ω∗1, . . . , ω∗T )′. This is for the following reason. Suppose

that ε0,T , . . . , εJ,T are i.i.d., and their common distribution is such that the variance is finite

and the characteristic function does not disappear. Also suppose that there exists a random

variable Y such that the distribution of ε0,T−ω′εT is the same as that of cY for some scalar c.

Because the standard deviation of ε0,T − ω′εT is proportional to
√

1 + ω′ω, we may without

loss of generality take c =
√

1 + ω′ω. This implies that the distribution of ω′εT only depends

on ω′ω. In particular, we can take ω such that all the components are zero except for the first

one, and conclude that the distribution of ω′εT is identical to that of
√
ω′ωε1,T . This implies

that εj,T should have a stable distribution.9 Because the only stable distribution with a finite

variance is the normal distribution, the symmetry (up to normalization) can be achieved only

with normality. Note that the third term above arises in an ideal situation where the weights

ω do not need to be estimated and the first two terms completely disappear. Our analysis

suggests that even if we normalize the third term by its standard deviation, the symmetry

can be achieved only with normal distribution. Obviously with normality, we can simply

use the standard normal distribution table, and avoid permutation tests which sometimes

requires a random tie-breaking for size control.

9See Nolan (2003), or https://en.wikipedia.org/wiki/Stable_distribution
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4.4 Monte Carlo

In the previous section, we raised two concerns about the placebo test for use with synthetic

control, i.e., (i) the ω̂ are estimated; and (ii) the symmetry assumption is violated. The

concern about the ω̂ being estimated can be quantitatively assessed by Monte Carlo. Like-

wise, Monte Carlo can answer the quantitative importance of the violation of the symmetry

assumption, which is a sufficient condition but not necessary condition for validity of the

permutation test.

For our Monte Carlo analysis, we adopted a simplified version of the factor model (4.2.3)

Yj,t = αj + θt + γ′jδt + εj,t, t = 1, . . . , T0

such that (i) δt is a scalar; (ii) θt ∼ N (0, 1); (iii) δt ∼ N (0, σ2
δ ); (iv) εj,t ∼ N (0, σ2

ε ) is i.i.d.

over j and t. Our synthetic control did not impose the adding-up condition for simplicity,

i.e., it solved (4.2.7). In matrix notations, our estimator solves

minω′ω s.t. Ȳ ′ω = Ȳ0

It is straightforward to show that the analytic form of the estimator is given by

ω̂ =
Ȳ0

Ȳ ′Ȳ
· Ȳ , (4.4.1)

where Ȳ =
(
Ȳ1, . . . , ȲJ

)′. Because E [Yj,t] = αj, we can see that the population counterpart
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is given by

ω∗ =
α0

α′α
· α, (4.4.2)

where α = (α1, . . . , αJ)′.

We now write

Y0,T −
J∑
j=1

ω̂jYj,T = I + II + III + IV,

where

I =
J∑
j=1

(
α0αj∑J
k=1 α

2
k

− ω̂j

)
αj

II = θT

(
1−

J∑
j=1

α0αj∑J
k=1 α

2
k

)
︸ ︷︷ ︸

II(i)

+ θT

J∑
j=1

(
α0αj∑J
k=1 α

2
k

− ω̂j

)
︸ ︷︷ ︸

II(ii)

III =

(
γ0 −

J∑
j=1

α0αj∑J
k=1 α

2
k

γj

)′
δT︸ ︷︷ ︸

III(i)

+

(
J∑
j=1

(
α0αj∑J
k=1 α

2
k

− ω̂j

)
γj

)′
δT︸ ︷︷ ︸

III(ii)

IV =

(
ε0,T −

J∑
j=1

α0αj∑J
k=1 α

2
k

εj,T

)
︸ ︷︷ ︸

IV (i)

+

(
J∑
j=1

(
α0αj∑J
k=1 α

2
k

− ω̂j

)
εj,T

)
︸ ︷︷ ︸

IV (ii)

.

The sum of the components of ω∗ is equal to
(
α0

∑J
k=1 αk

)/(∑J
k=1 α

2
k

)
, which may or may

not be 1. In our Monte Carlo, we only consider the DGP where the adding-up condition is

satisfied in the population, so the term II(i) is equal to 0.10 We speculate that the placebo

test is used in the hope that (i) Y0,T −
∑J

j=1 ω̂jYj,T is is dominated by the term IV(i) above;

(ii) the four terms I, II(ii), III(ii) and IV(ii) above, which reflect the noise of estimating ω∗

10See Appendix 4.A for discussion of the form of (4.4.1) as well as the adding-up condition.
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Table 4.1: Different DGP’s with Deterministic α’s

DGP No. α’s γ’s Variations
1 α0 = (2J + 1)/3, α1 = 1, · · · , αJ = J γ0 = γ1 = · · · = γJ = 0 1(a), 2(a)
2 α0 = (2J + 1)/3, α1 = 1, · · · , αJ = J γ0 = 2, γ1 = · · · = γJ = 1 1(a), 2(b)
3 α0 = 5/3, α1 = 1, α2 = 2, α3 = · · · = αJ = 0 γ0 = γ1 = · · · = γJ = 0 1(b), 2(a)
4 α0 = 5/3, α1 = 1, α2 = 2, α3 = · · · = αJ = 0 γ0 = 2, γ1 = · · · = γJ = 1 1(b), 2(b)

by ω̂, are ignorable; and (iii) the two terms III(i) and IV(i) more or less satisfy the symmetry

property.11 We argued in the previous section that the term IV(i) is likely to violate the

symmetry property.

In order to assess the impacts of other terms, we consider the following variations in

DGP’s:

1. Vary the values of α’s such that (a) none of the components of ω∗ dominates; (b) only

two of the elements are non-zero.

2. Vary the values of γ’s such that the unbalanced unobservable factors III(i) (a) disap-

pear; and (b) present.

3. Vary T0 such that the estimation errors in the weights are (a) prominent; and (b)

negligible.

Combinations of the first two variations give us four different DGP’s, as shown in Table

4.1.

11Given the i.i.d. assumption on ε, a sufficient condition for approximate symmetry in IV(i) is that∑J
j=1

α0αj∑J
k=1 α

2
k

εj,T is negligible, which is implied if J → ∞ and
∑J
j=1

(
α0αj∑J
k=1 α

2
k

)2
−→ 0. It is probably

difficult to claim that this requirement is satisfied if the estimated weights are zero for most control units.
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We considered four tests: The first one is what might be called a feasible asymmetric

test. Formally, for j = 1, . . . , J , let yj be a T × 1 vector of outcomes for the jth control unit,

and let Y−j be a T × (J − 1) matrix that deletes the jth column from Y . Similar to (4.4.1),

define the leave-one-out synthetic control weights ŵ−j for the jth control unit as:

ω̂−j ≡
Ȳj

Ȳ ′−jȲ−j
· Ȳ−j (4.4.3)

where Ȳ−j is to delete the jth element from Ȳ . For j = 1, . . . , J and k 6= j, let ω̂−j,k

be the element in ω̂−j that corresponds to the kth control unit. Also define ω̂−j,j ≡ 0 for

j = 1, . . . , J . Then for j = 1, . . . , J , we can compute

S (Yj, Y−j) ≡ Yj,T −
J∑
k=1

ω̂−j,kYk,T (4.4.4)

Let S(1), . . . , S(J) be the order statistics of S(Yj, Y−j)’s. We reject H0 if S(Y0, Y ) > S(J(1−α))

or S(Y0, Y ) < S(Jα).

The second test is identical to the first test, except that we use the true value of ω∗, i.e.,

we use

Strue(Y0, Y ) ≡ Y0,T −
J∑
j=1

α0αj∑J
k=1 α

2
k

Yj,T

Strue(Yj, Y−j) ≡ Yj,T −
∑
k=1

αjα−j,k∑J
l=1 α

2
−j,l

Yk,T = Yj,T −
J∑
k 6=j

αjαk∑J
l 6=j α

2
l

Yk,T

and we reject H0 if Strue(Y0, Y ) > Strue,(J(1−α)) or Strue(Y0, Y ) < Strue,(Jα).

The third test is identical to the first test, except that we compare the absolute value
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of S(Y0, Y ) with the order statistic of the absolute values of S(Yj, Y−j)’s. The fourth test is

identical to the second test, except that we compare the absolute value of Strue(Y0, Y ) with

the order statistic of the absolute values of Strue(Yj, Y−j).

For each DGP, we try T0 ∈ {40, 80, 400, 800} and σ2
ε ∈ {.1, 1, 10}. For all designs, we set

α = 10%.

The results are summarized in Tables 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7.12 Although the actual

size of the tests is seemingly close to the nominal size, we do see discrepancies in Tables 4.2

and 4.3. See DGP #2 and #4 there. The size distortion there cannot be attributed to the

noise of estimating ω. First, the problem persists even as T0 approaches unrealistically large

values. Second, the size distortion is similar over the feasible and infeasible versions of the

test. We suspect that the problem is a fundamental problem that may have something to

do with the violation of symmetry.

Our analysis in the previous section indicates that the placebo test does have the size

distortion problem. The results in Tables 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 suggest that the

size problem is potentially bigger in DGP #2 and #4. DGP #2 and #4 differ from #1 and

#3 in that the γ’s are nonzero and the aggregate shock δt plays a role as a consequence.

Therefore, it is of interest to investigate this further source of asymmetry. For this purpose,

we revisit the decomposition (4.2.6) of Y0,T0+1 (0) −
∑J

j=1 ω∗jYj,T0+1 (0), assuming that the

12We set θt = 0 in Tables 4.3, 4.5, 4.7, in order to reflect some of the concerns raised in Appendix 4.A.
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first and second terms are not present13:

Y0,T0+1 (0)−
J∑
j=1

ω∗jYj,T0+1 (0) =

(
γ0 −

J∑
j=1

ω∗jγj

)′
δT0+1 +

(
ε0,T0+1 −

J∑
j=1

ω∗jεj,T0+1

)
.

This implies that the variance of Y0,T0+1 (0)−
∑J

j=1 ω∗jYj,T0+1 (0) can be written as

(
γ0 −

J∑
j=1

α0αj∑J
k=1 α

2
k

γj

)′
Σ(δt)

(
γ0 −

J∑
j=1

α0αj∑J
k=1 α

2
k

γj

)
+ var(ε0,t) +

J∑
j=1

(
α0αj∑J
k=1 α

2
k

)2

var(εj,t)

=

(
γ0 −

J∑
j=1

α0αj∑J
k=1 α

2
k

γj

)′
Σ(δt)

(
γ0 −

J∑
j=1

α0αj∑J
k=1 α

2
k

γj

)
+ var(εj,t)

(
1 +

α2
0∑J

k=1 α
2
k

)

under the assumptions of the DGP, where Σ(δt) is the covariance matrix of the vector δt.

Likewise, the variances of the permutation statistics

(
γj −

J∑
k 6=j

αjαk∑J
k 6=j α

2
k

γk

)′
Σ(δt)

(
γj −

J∑
k 6=j

αjαk∑J
k 6=j α

2
k

γk

)
+ var(εj,t)

(
1 +

α2
j∑J

k 6=j α
2
k

)

This implies that the symmetry assumption is not a very natural assumption. Depending

on the relative magnitudes of γs, we can easily come up with examples that violate the

symmetry. In the examples below, we assume that δt is a scalar.

First, we considered the case where α0 = J , α1 = · · · = αJ = 1, γ0 = 2 and γ1 = · · · =

γJ = 1. We then have

var (S(Y0, Y )) = (J − 2)2var(δt) + (J + 1)var(εj,t),

13This can be done by assuming that α0 =
∑J
j=1 ωjαj and θt = 0.
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var (S(Yj, Y−j)) =
J

J − 1
var(εj,t),

which implies that the severe size distortion can be easily found depending on the magnitudes

of var(δt) and var(εj,t). See Tables 4.8 to 4.13. We note that this is a case where the adding-

up condition is not satisfied; from (4.4.2), we can see that ω∗j = 1, so they do not add up to

1. In Tables 4.9, 4.11, 4.13, we set θt = 0, so the second term in (4.2.6) is still zero. Tables

4.8, 4.10, and 4.12 are for the case where θt ∼ N (0, 1), so it is technically outside the scope

of our earlier analysis.

Second, we considered the case where α0 = α1 = · · · = αJ = 1, γ0 = 2, and γ1 = · · · =

γJ = 1. Then var(S(Y0, Y )) = σ2
δ + 21

20
σ2
ε and var(S(Yj, Y−j)) = 20

19
σ2
ε , which implies that

the severe size distortion can be easily found depending on the magnitudes of var(δt) and

var(εj,t). See Table 4.14 to 4.19. We note that this is a case where the adding-up condition

is satisfied; from (4.4.2), we can see that ω∗j = 1
J
, so they do add up to 1. Therefore, the

second term in (4.2.6) is zero whether θt = 0 or not. We did consider the case with θt = 0

in Tables 4.15, 4.17, and 4.19, for the purpose of providing a similar set of analyses as in

Tables 4.8 - 4.13.

Third, we considered the case where α0 = α1 = · · · = αJ = 1, γj = J − j for j =

0, 1, . . . , 20. Again, we can find cases of severe size distortion depending on the magnitudes

of var(δt) and var(εj,t). See Table 4.20 to 4.25. We note that this is a case where the adding-

up condition is satisfied; from (4.4.2), we can see that ω∗j = 1
J
, so they do add up to 1.

Therefore, the second term in (4.2.6) is zero whether θt = 0 or not. We did consider the

case with θt = 0 in Tables 4.21, 4.23, and 4.25, for the purpose of providing a similar set of
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analyses as in Tables 4.8 - 4.13.

4.5 Possible Alternatives to Placebo Tests

If we take the time series asymptotics (T0 → ∞) seriously, the problem can be avoided by

using the same idea as in Andrews (2003). The hypothesis of no treatment effects can be

understood to be a hypothesis of stationarity of the time series Wt ≡ Y0,t −
∑J

j=1 ω∗jYj,t. In

particular, the researcher is interested whether the distribution ofWT0+1, . . . ,WT is the same

as that ofW1, . . . ,WT0 , for which the Andrews (2003)’s test is well-suited. In the simple case

that we consider where T = T0 + 1, one rejects the null if WT0+1 belongs to the extreme tails

of the empirical distribution of W1, . . . ,WT0 . We conducted Monte Carlo simulations for all

the DGP’s considered in the previous section, and verified that Andrews’ test suffered no

size distortion.14 Andrews (2003)’s test is geared for application in time series, and as such,

robust to certain heteroscedasticity. If the variance of εj,t in (4.2.3) were different across j’s,

most of the available methods exploiting cross sectional variation may need to be used with

caution, as noted by Ferman and Pinto (2016). The end-of-sample instability test being a

test of stationarity of Y0,t −
∑J

j=1 ω∗jYj,t, its validity does not depend on whether the εj,t’s

have identical variances or not. To our knowledge, Ferman and Pinto (2016) were the first

to recognize the usefulness of Andrews’ test in the synthetic control context.

Andrews (2003)’s test utilizes time series variation seriously. When T0 is relatively small,

perhaps the researcher would like to have a procedure that is based on cross section variation.

14The results are available upon request.
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If the factor structure is taken seriously and if the number of factors is a priori known, we

can produce such a procedure by combining the ideas in Conley and Taber (2011) and

Holtz-Eakin, Newey, and Rosen (1988). For simplicity, assume that the model is given by

Yj,t =Yj,t (0) = γjδt + x′j,tβ + εj,t t = 1, 2; j = 1, . . . , J

Y0,t (0) = γ0δt + x′0,tβ + ε0,t

where we normalize δ1 = 1. Let Y0,1 = Y0,1 (0) and Y0,2 = Y0,2 (1) = Y0,2 (0) + η. This is a

case where T0 = 1, and T = 2. We then have

Yj,2
δ2

− Yj,1 =

(
xj,2
δ2

− xj,1
)′
β +

εj,2
δ2

− εj,1 t = 1, 2; j = 1, . . . , J

Under strict exogeneity assumption on x’s, we can consistently estimate (β, δ2) as J → ∞

by using the control group. Now, assume that (εj,1, εj,2) j = 0, 1, 2, . . . are i.i.d., which would

imply

εj,2
δ2

− εj,1 =
Yj,2 − x′j,2β

δ2

−
(
Yj,1 − x′j,1β

)
are i.i.d. A simple modification of Conley and Taber (2011)’s argument establishes that the

distribution of εj,2
δ2
− εj,1 can be consistently estimated by the empirical distribution of

Yj,2 − x′j,2β̂
δ̂2

−
(
Yj,1 − x′j,1β̂

)
j = 1, . . . , J
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where
(
β̂, δ̂2

)
denote Holtz-Eakin, Newey, and Rosen (1988)’s estimator. Therefore, in order

to test that η = η, it suffices to consider a test that rejects whenever

Y0,2 − η − x′0,2β̂
δ̂2

−
(
Y0,1 − x′0,1β̂

)

is in the extreme tails of such empirical distribution. When there are multiple factors, the

idea can be implemented easily by using a generalization of Holtz-Eakin, Newey, and Rosen

(1988), for example, Ahn, Lee, and Schmidt (2013). The idea of combining Holtz-Eakin,

Newey, and Rosen (1988) with Conley and Taber (2011), although straightforward, does not

seem to have been considered elsewhere.

We have considered two alternative methods of inference, one based on T0 →∞ asymp-

totics, and the other one based on J → ∞ asymptotics. In addition to these two methods,

we can also entertain the possibility that if both T0 and J are large, it may be possible to

use the panel technique as in Bai (2009) as well.15 The latter two procedures are based on

the predication that the researcher takes the linear factor structure seriously, so it may be

more powerful than the Andrews (2003)’s test. On the other hand, if a researcher views the

linear factor model as just a toy model16 to illustrate the potential problem of difference-

15If one were to assume that Y0,t (1) = Y0,t (0) + β, the factor model (4.2.3) becomes

Yj,t = αj + θt + γ′jδt + εj,t, t = 1, . . . , T0

Yj,T0+1 = αj + θT0+1 + γ′jδT0+1 + εj,T0+1, j = 1, . . . , J

Y0,T0+1 = β + α0 + θT0+1 + γ′0δT0+1 + ε0,T0+1

Using the pre-treatment data, one can consistently estimate
(
αj , γ

′
j

)
and (θt, δ

′
t) as long as J, T0 →∞. Using

the control outcome for the period t = T0 +1 along with
(
αj , γ

′
j

)
consistently estimated, one can consistently

estimate
(
θT0+1, δ

′
T0+1

)
, which is possible if J → ∞. Combining (α0, γ

′
0) as well as

(
θT0+1, δ

′
T0+1

)
, one can

make an inference of β.
16Indeed Abadie, Diamond, and Hainmueller (2010) (Section 2.2) consider some other model (in addition
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in-difference, then she would probably be hesitant to discard the synthetic control method,

which can in theory accommodate potentially complicated statistical structure that may go

beyond the linear factor model.

4.6 Summary

We considered the performance of the permutation test (placebo test) in the context of

the synthetic control method. The symmetry assumption, one of the crucial condition for

validity of the permutation test, is often violated in synthetic control studies. Using Monte

Carlo simulations, we show that the size of the permutation tests can be distorted. Several

possible alternatives were discussed.

to the factor model) for motivation of the synthetic control.
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Appendix

4.A Adding-Up and Positivity Constraints

As mentioned in a footnote in Section 4.2, Abadie, Diamond, and Hainmueller (2010) in

effect imposes three constraints, i.e., (i) E [Y0,t (0)] =
∑J

j=1 ωjE [Yj,t (0)], (ii) 1 =
∑J

j=1 ωj,

and (iii) ωj ≥ 0 for all j. We argue that the positivity restriction may be reasonable as a way

of improving finite sample properties, but it is unnatural to adopt in placebo calculation.

We first argue that combition of positivity restriction may lead to bias in synthetic control.

For this purpose, consider an example where J = 2 and α0 = 0, α1 = 1, α2 = 2. In order for

the synthetic control to have zero bias, we want to find w ∈ [0, 1] such that

α0 = w × α1 + (1− w)× α2

or

0 = w + 2 (1− w)

which is impossible. Abadie, Diamond, and Hainmueller (2010)’s algorithm amounts to
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minimizing

(α0 − (w × α1 + (1− w)× α2))2

subject to w ∈ [0, 1]. Because

(α0 − (w × α1 + (1− w)× α2))2 = (w + 2 (1− w))2 = (2− w)2

we find that the solution is given by w = 1. In other words, the synthetic control is given

by 1× Y1,T0+1 + 0× Y2,T0+1 = Y1,T0+1. Because

E [Y0,T0+1 − Y1,T0+1] = −1

the synthetic control does not offer an unbiased estimator.

The lack of unbiasedness does not necessarily mean that the positivity restriction should

not be used for estimation. If a researcher is confident that the population counterpart

of the synthetic control does satisfy the positivity restriction, she may want to impose it

for estimaton for the purpose of finite sample property of the synthetic control. We argue

that even though the restriction may serve such a useful purpose, it should be avoided

in calculation of placebo. It is because imposing positivity restriction in the placebo may

artificially introduces bias to the permutation test. This can be seen by calculating the

weights without imposing the positivity, and verifying whether all the weights are in fact

positive. We will use two examples to illustrate this point.
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For this purpose, we will consider a simple specification where

Yj,t = Yj,t (0) = αj + θt + εj,t,

and consider the minimization problem in the population

min
ω
ω′ω

subject to

α′ω = α0

ι′ω = 1,

where α = (α1, . . . , αJ)′ and ι denotes a column vector consisting of ones. Note that the

positivity restriction is not imposed. It is straightforward to show that the solution is

ω =
(ι′ι)α0 − α′ι

α′α · ι′ι− (α′ι)2α +
α′α− (α′ι)α0

α′α · ι′ι− (α′ι)2 ι

Now, consider DGP #3 in Table 4.1, where α0 = 5
3
and α1 = 1, α2 = 2, α3 = 0, . . . , α20 = 0.

We see that

ω =
(20)× 5

3
− 3

5× 20− (3)2α +
5− (3)× 5

3

5× 20− (3)2 ι

=
1

3
α
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On the other hand,

ω−3 =
(19) (0)− 3

5 · 19− (3)2α−3 +
5− (3) (0)

5 · 19− (3)2 ι

= − 3

86
α−3 +

5

86
ι

and the second element of ω−3 is

− 3

86
× 2 +

5

86
= − 1

86
< 0

i.e., the positivity restriction is violated in the placebo calculation.

Let’s now consider DGP #1 in Table 4.1, where α0 = 41
3
and αj = j > 0 for j = 1, . . . , 20.

It is straightforward to show that

ω =
20× 41

3
− 210

2870× 20− 2102
α +

2870− 210× 41
3

2870× 20− 2102
ι

=
1

210
α

so every element is positive, i.e., the positivity restriction is naturally satisfied by the DGP

itself. In placebo calculations, we need to compute the delete-1 version of ω. It is straight-

forward to show that for each αj, we have

ω−j =
19× j − (210− j)

(2870− j2) · 19− (210− j)2α−j +
(2870− j2)− (210− j)× j
(2870− j2) · 19− (210− j)2 ι

=
20j − 210

−20j2 + 420j + 10 430
α−j +

2870− 210j

−20j2 + 420j + 10 430
ι.
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For example, we see that the last six components of ω−1are



−0.01754386

−0.035087719

−0.052631579

−0.070175439

−0.087719298

−0.105263158


so the positivity restriction is violated in ω−1. If the positivity restriction is imposed in

the placebo calculation, it would lead to the bias of the synthetic control for this particular

placebo.

In our Monte Carlo, we set θt = 0 (at least half the times). Examination of (4.2.5)

shows that the role of the adding-up condition is to avoid the bias
(

1−
∑J

j=1 ωj

)
θt, we can

achieve the same purpose in Monte Carlo by setting θt = 0, and not insisting on adding-up in

our Monte Carlo. Equation (4.4.2) reveals that positivity restriction is naturally imposed by

insisting that every element of α is nonnegative in the population. Although we are skeptical

about the role of positivity in the population, it would be natural to make the Monte Carlo

environment as close to the common practice as possible, which is achieved by choosing the

values of α to be nonnegative. The benefit of avoiding the adding-up in our Monte Carlo

is that the positivity is now maintained in the placebo as well. The bias in the placebo is

avoided by the condition θt = 0.
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Table 4.2: Null Rejection Rates of Permutation Tests For DGP’s in Table 4.1, σ2
ε = 0.1 and

θt ∼ N (0, 1)

DGP No. Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

1 Permutation Test 1 0.039 0.0.36 0.040 0.039
Permutation Test 2 0.085 0.090 0.103 0.082
Permutation Test 3 0.041 0.030 0.036 0.040
Permutation Test 4 0.010 0.003 0.005 0.005

2 Permutation Test 1 0.274 0.244 0.243 0.261
Permutation Test 2 0.263 0.254 0.247 0.263
Permutation Test 3 0.321 0.287 0.280 0.298
Permutation Test 4 0.238 0.021 0.211 0.227

3 Permutation Test 1 0.120 0.138 0.174 0.171
Permutation Test 2 0.106 0.115 0.096 0.107
Permutation Test 3 0.106 0.067 0.041 0.048
Permutation Test 4 0.038 0.029 0.035 0.045

4 Permutation Test 1 0.183 0.195 0.219 0.243
Permutation Test 2 0.218 0.206 0.189 0.205
Permutation Test 3 0.375 0.297 0.209 0.202
Permutation Test 4 0.187 0.173 0.170 0.182

Table 4.3: Null Rejection Rates of Permutation Tests For DGP’s in Table 4.1, σ2
ε = 0.1 and

θt ≡ 0

DGP No. Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

1 Permutation Test 1 0.074 0.092 0.093 0.070
Permutation Test 2 0.195 0.232 0.206 0.183
Permutation Test 3 0.087 0.112 0.099 0.076
Permutation Test 4 0.007 0.013 0.015 0.008

2 Permutation Test 1 0.244 0.255 0.257 0.256
Permutation Test 2 0.274 0.288 0.281 0.270
Permutation Test 3 0.366 0.371 0.370 0.377
Permutation Test 4 0.248 0.269 0.270 0.251

3 Permutation Test 1 0.131 0.138 0.156 0.120
Permutation Test 2 0.116 0.129 0.151 0.115
Permutation Test 3 0.146 0.134 0.167 0.123
Permutation Test 4 0.120 0.128 0.160 0.113

4 Permutation Test 1 0.098 0.087 0.132 0.115
Permutation Test 2 0.108 0.107 0.121 0.091
Permutation Test 3 0.268 0.232 0.197 0.157
Permutation Test 4 0.137 0.128 0.155 0.119
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Table 4.4: Null Rejection Rates of Permutation Tests For DGP’s in Table 4.1, σ2
ε = 1 and

θt ∼ N (0, 1)

DGP No. Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

1 Permutation Test 1 0.065 0.059 0.065 0.084
Permutation Test 2 0.094 0.104 0.091 0.114
Permutation Test 3 0.069 0.062 0.071 0.087
Permutation Test 4 0.062 0.058 0.064 0.079

2 Permutation Test 1 0.121 0.120 0.107 0.138
Permutation Test 2 0.131 0.142 0.134 0.152
Permutation Test 3 0.147 0.159 0.142 0.169
Permutation Test 4 0.133 0.136 0.144 0.156

3 Permutation Test 1 0.122 0.128 0.133 0.163
Permutation Test 2 0.171 0.159 0.146 0.187
Permutation Test 3 0.116 0.098 0.094 0.114
Permutation Test 4 0.090 0.083 0.092 0.111

4 Permutation Test 1 0.142 0.145 0.131 0.154
Permutation Test 2 0.161 0.165 0.143 0.179
Permutation Test 3 0.218 0.183 0.123 0.134
Permutation Test 4 0.121 0.132 0.114 0.134

Table 4.5: Null Rejection Rates of Permutation Tests For DGP’s in Table 4.1, σ2
ε = 1 and

θt ≡ 0

DGP No. Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

1 Permutation Test 1 0.074 0.092 0.092 0.070
Permutation Test 2 0.111 0.122 0.108 0.098
Permutation Test 3 0.088 0.112 0.099 0.076
Permutation Test 4 0.067 0.097 0.092 0.070

2 Permutation Test 1 0.125 0.129 0.144 0.104
Permutation Test 2 0.139 0.168 0.150 0.130
Permutation Test 3 0.162 0.174 0.180 0.158
Permutation Test 4 0.145 0.173 0.167 0.143

3 Permutation Test 1 0.128 0.137 0.153 0.124
Permutation Test 2 0.134 0.149 0.169 0.130
Permutation Test 3 0.142 0.141 0.166 0.124
Permutation Test 4 0.153 0.152 0.173 0.134

4 Permutation Test 1 0.120 0.112 0.141 0.117
Permutation Test 2 0.129 0.137 0.150 0.119
Permutation Test 3 0.171 0.151 0.158 0.133
Permutation Test 4 0.139 0.135 0.162 0.118
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Table 4.6: Null Rejection Rates of Permutation Tests For DGP’s in Table 4.1, σ2
ε = 10 and

θt ∼ N (0, 1)

DGP No. Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

1 Permutation Test 1 0.080 0.079 0.088 0.093
Permutation Test 2 0.091 0.105 0.108 0.110
Permutation Test 3 0.092 0.085 0.095 0.112
Permutation Test 4 0.100 0.105 0.107 0.124

2 Permutation Test 1 0.079 0.084 0.089 0.100
Permutation Test 2 0.093 0.110 0.107 0.119
Permutation Test 3 0.106 0.108 0.098 0.124
Permutation Test 4 0.111 0.114 0.120 0.137

3 Permutation Test 1 0.128 0.130 0.131 0.161
Permutation Test 2 0.139 0.139 0.139 0.159
Permutation Test 3 0.113 0.126 0.129 0.151
Permutation Test 4 0.130 0.144 0.139 0.156

4 Permutation Test 1 0.141 0.135 0.129 0.148
Permutation Test 2 0.138 0.141 0.137 0.154
Permutation Test 3 0.150 0.145 0.127 0.153
Permutation Test 4 0.126 0.148 0.127 0.163

Table 4.7: Null Rejection Rates of Permutation Tests For DGP’s in Table 4.1, σ2
ε = 10 and

θt ≡ 0

DGP No. Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

1 Permutation Test 1 0.075 0.092 0.091 0.070
Permutation Test 2 0.087 0.106 0.107 0.077
Permutation Test 3 0.087 0.111 0.097 0.077
Permutation Test 4 0.092 0.125 0.115 0.088

2 Permutation Test 1 0.082 0.093 0.097 0.073
Permutation Test 2 0.101 0.108 0.116 0.085
Permutation Test 3 0.095 0.112 0.104 0.094
Permutation Test 4 0.102 0.131 0.126 0.105

3 Permutation Test 1 0.114 0.145 0.151 0.122
Permutation Test 2 0.134 0.150 0.169 0.130
Permutation Test 3 0.126 0.142 0.172 0.131
Permutation Test 4 0.153 0.152 0.173 0.134

4 Permutation Test 1 0.120 0.147 0.154 0.122
Permutation Test 2 0.134 0.149 0.170 0.126
Permutation Test 3 0.131 0.153 0.165 0.137
Permutation Test 4 0.151 0.157 0.177 0.125
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Table 4.8: Severe Upward Size Distortion 1 (σ2
δ = 0.1 and θt ∼ N (0, 1))

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.972 0.978 0.979 0.986
Permutation Test 2 0.979 0.977 0.979 0.974
Permutation Test 3 0.973 0.983 0.979 0.985
Permutation Test 4 0.984 0.982 0.979 0.976

1 Permutation Test 1 0.927 0.932 0.923 0.898
Permutation Test 2 0.926 0.944 0.929 0.909
Permutation Test 3 0.934 0.938 0.925 0.909
Permutation Test 4 0.934 0.952 0.932 0.917

10 Permutation Test 1 0.765 0.785 0.815 0.797
Permutation Test 2 0.806 0.815 0.839 0.810
Permutation Test 3 0.784 0.803 0.830 0.810
Permutation Test 4 0.820 0.824 0.856 0.818

Table 4.9: Severe Upward Size Distortion 1 (σ2
δ = 0.1 and θt ≡ 0)

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.908 0.924 0.912 0.923
Permutation Test 2 0.909 0.927 0.915 0.929
Permutation Test 3 0.910 0.927 0.919 0.927
Permutation Test 4 0.916 0.936 0.923 0.932

1 Permutation Test 1 0.783 0.790 0.785 0.801
Permutation Test 2 0.804 0.791 0.786 0.807
Permutation Test 3 0.802 0.814 0.797 0.819
Permutation Test 4 0.822 0.801 0.806 0.815

10 Permutation Test 1 0.656 0.684 0.679 0.687
Permutation Test 2 0.692 0.720 0.711 0.694
Permutation Test 3 0.679 0.703 0.708 0.710
Permutation Test 4 0.717 0.736 0.731 0.712
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Table 4.10: Severe Upward Size Distortion 1 (σ2
δ = 1 and θt ∼ N (0, 1))

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.983 0.982 0.985 0.982
Permutation Test 2 0.983 0.977 0.982 0.974
Permutation Test 3 0.987 0.981 0.988 0.982
Permutation Test 4 0.985 0.982 0.983 0.978

1 Permutation Test 1 0.948 0.927 0.945 0.935
Permutation Test 2 0.946 0.938 0.951 0.940
Permutation Test 3 0.952 0.937 0.948 0.939
Permutation Test 4 0.948 0.944 0.953 0.946

10 Permutation Test 1 0.815 0.817 0.818 0.830
Permutation Test 2 0.838 0.847 0.833 0.845
Permutation Test 3 0.825 0.823 0.834 0.843
Permutation Test 4 0.855 0.860 0.842 0.858

Table 4.11: Severe Upward Size Distortion 1 (σ2
δ = 1 and θt ≡ 0)

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.976 0.973 0.974 0.969
Permutation Test 2 0.967 0.971 0.0981 0.973
Permutation Test 3 0.980 0.977 0.976 0.970
Permutation Test 4 0.970 0.971 0.983 0.975

1 Permutation Test 1 0.903 0.918 0.912 0.923
Permutation Test 2 0.909 0.927 0.915 0.929
Permutation Test 3 0.911 0.923 0.919 0.928
Permutation Test 4 0.916 0.936 0.923 0.932

10 Permutation Test 1 0.744 0.767 0.785 0.809
Permutation Test 2 0.804 0.791 0.786 0.807
Permutation Test 3 0.756 0.791 0.806 0.827
Permutation Test 4 0.822 0.801 0.806 0.815
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Table 4.12: Severe Upward Size Distortion 1 (σ2
δ = 10 and θt ∼ N (0, 1))

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.996 0.993 0.995 0.994
Permutation Test 2 0.995 0.993 0.995 0.993
Permutation Test 3 0.997 0.993 0.995 0.994
Permutation Test 4 0.995 0.994 0.995 0.992

1 Permutation Test 1 0.975 0.980 0.978 0.976
Permutation Test 2 0.977 0.978 0.981 0.973
Permutation Test 3 0.977 0.980 0.978 0.980
Permutation Test 4 0.981 0.980 0.983 0.975

10 Permutation Test 1 0.904 0.897 0.916 0.917
Permutation Test 2 0.923 0.915 0.918 0.922
Permutation Test 3 0.907 0.896 0.921 0.924
Permutation Test 4 0.927 0.926 0.922 0.925

Table 4.13: Severe Upward Size Distortion 1 (σ2
δ = 10 and θt ≡ 0)

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.992 0.990 0.989 0.996
Permutation Test 2 0.991 0.992 0.992 0.992
Permutation Test 3 0.993 0.993 0.989 0.996
Permutation Test 4 0.994 0.992 0.993 0.993

1 Permutation Test 1 0.973 0.971 0.973 0.967
Permutation Test 2 0.967 0.971 0.981 0.973
Permutation Test 3 0.977 0.973 0.974 0.968
Permutation Test 4 0.970 0.971 0.983 0.975

10 Permutation Test 1 0.883 0.907 0.912 0.923
Permutation Test 2 0.909 0.927 0.915 0.929
Permutation Test 3 0.891 0.913 0.917 0.926
Permutation Test 4 0.916 0.936 0.923 0.932
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Table 4.14: Severe Upward Size Distortion 2 (σ2
δ = 0.1 and θt ∼ N (0, 1))

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.206 0.192 0.186 0.200
Permutation Test 2 0.203 0.207 0.203 0.216
Permutation Test 3 0.237 0.227 0.212 0.234
Permutation Test 4 0.244 0.246 0.235 0.250

1 Permutation Test 1 0.088 0.091 0.091 0.108
Permutation Test 2 0.097 0.098 0.110 0.122
Permutation Test 3 0.100 0.113 0.099 0.123
Permutation Test 4 0.126 0.130 0.119 0.139

10 Permutation Test 1 0.085 0.080 0.081 0.089
Permutation Test 2 0.085 0.097 0.095 0.108
Permutation Test 3 0.096 0.098 0.092 0.108
Permutation Test 4 0.111 0.120 0.108 0.128

Table 4.15: Severe Upward Size Distortion 2 (σ2
δ = 0.1 and θt ≡ 0)

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.195 0.199 0.200 0.183
Permutation Test 2 0.219 0.225 0.218 0.213
Permutation Test 3 0.217 0.226 0.231 0.218
Permutation Test 4 0.246 0.248 0.252 0.237

1 Permutation Test 1 0.089 0.097 0.103 0.072
Permutation Test 2 0.099 0.112 0.118 0.089
Permutation Test 3 0.099 0.113 0.119 0.097
Permutation Test 4 0.114 0.139 0.134 0.117

10 Permutation Test 1 0.080 0.090 0.089 0.069
Permutation Test 2 0.086 0.098 0.094 0.079
Permutation Test 3 0.090 0.106 0.102 0.080
Permutation Test 4 0.096 0.124 0.119 0.098
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Table 4.16: Severe Upward Size Distortion 2 (σ2
δ = 1 and θt ∼ N (0, 1))

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.562 0.534 0.572 0.545
Permutation Test 2 0.587 0.552 0.590 0.570
Permutation Test 3 0.606 0.578 0.594 0.600
Permutation Test 4 0.616 0.587 0.611 0.620

1 Permutation Test 1 0.207 0.188 0.184 0.202
Permutation Test 2 0.203 0.207 0.203 0.216
Permutation Test 3 0.242 0.219 0.204 0.231
Permutation Test 4 0.244 0.246 0.235 0.250

10 Permutation Test 1 0.091 0.089 0.092 0.107
Permutation Test 2 0.097 0.098 0.110 0.122
Permutation Test 3 0.108 0.114 0.103 0.119
Permutation Test 4 0.126 0.130 0.119 0.139

Table 4.17: Severe Upward Size Distortion 2 (σ2
δ = 1 and θt ≡ 0)

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.568 0.580 0.566 0.583
Permutation Test 2 0.582 0.588 0.582 0.597
Permutation Test 3 0.587 0.612 0.588 0.614
Permutation Test 4 0.602 0.620 0.606 0.626

1 Permutation Test 1 0.199 0.204 0.202 0.186
Permutation Test 2 0.219 0.225 0.218 0.213
Permutation Test 3 0.209 0.225 0.232 0.219
Permutation Test 4 0.246 0.248 0.252 0.237

10 Permutation Test 1 0.097 0.103 0.102 0.075
Permutation Test 2 0.099 0.112 0.118 0.089
Permutation Test 3 0.101 0.121 0.116 0.097
Permutation Test 4 0.114 0.139 0.134 0.117
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Table 4.18: Severe Upward Size Distortion 2 (σ2
δ = 10 and θt ∼ N (0, 1))

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.846 0.849 0.842 0.841
Permutation Test 2 0.851 0.836 0.847 0.855
Permutation Test 3 0.858 0.860 0.853 0.856
Permutation Test 4 0.867 0.848 0.861 0.868

1 Permutation Test 1 0.550 0.543 0.561 0.543
Permutation Test 2 0.587 0.552 0.590 0.570
Permutation Test 3 0.592 0.578 0.587 0.598
Permutation Test 4 0.616 0.587 0.611 0.620

10 Permutation Test 1 0.189 0.178 0.184 0.203
Permutation Test 2 0.203 0.207 0.203 0.216
Permutation Test 3 0.232 0.234 0.204 0.238
Permutation Test 4 0.244 0.246 0.235 0.250

Table 4.19: Severe Upward Size Distortion 2 (σ2
δ = 10 and θt ≡ 0)

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.830 0.854 0.841 0.861
Permutation Test 2 0.848 0.847 0.850 0.867
Permutation Test 3 0.846 0.866 0.854 0.877
Permutation Test 4 0.860 0.857 0.859 0.879

1 Permutation Test 1 0.538 0.576 0.563 0.581
Permutation Test 2 0.582 0.588 0.582 0.597
Permutation Test 3 0.575 0.607 0.584 0.609
Permutation Test 4 0.602 0.620 0.606 0.626

10 Permutation Test 1 0.195 0.207 0.205 0.196
Permutation Test 2 0.219 0.225 0.218 0.213
Permutation Test 3 0.220 0.236 0.229 0.221
Permutation Test 4 0.246 0.248 0.252 0.237
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Table 4.20: Severe Upward Size Distortion 3 (σ2
δ = 0.1 and θt ∼ N (0, 1))

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.423 0.450 0.464 0.470
Permutation Test 2 0.639 0.620 0.648 0.626
Permutation Test 3 0.487 0.527 0.538 0.547
Permutation Test 4 0.609 0.617 0.636 0.635

1 Permutation Test 1 0.245 0.237 0.254 0.268
Permutation Test 2 0.342 0.321 0.351 0.346
Permutation Test 3 0.300 0.311 0.304 0.327
Permutation Test 4 0.358 0.327 0.348 0.353

10 Permutation Test 1 0.129 0.126 0.127 0.152
Permutation Test 2 0.144 0.145 0.151 0.179
Permutation Test 3 0.171 0.166 0.149 0.170
Permutation Test 4 0.167 0.176 0.163 0.191

Table 4.21: Severe Upward Size Distortion 3 (σ2
δ = 0.1 and θt ≡ 0)

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.477 0.469 0.473 0.495
Permutation Test 2 0.654 0.631 0.642 0.658
Permutation Test 3 0.506 0.527 0.553 0.572
Permutation Test 4 0.646 0.627 0.640 0.650

1 Permutation Test 1 0.254 0.263 0.263 0.256
Permutation Test 2 0.342 0.348 0.339 0.351
Permutation Test 3 0.296 0.325 0.319 0.319
Permutation Test 4 0.339 0.362 0.342 0.354

10 Permutation Test 1 0.140 0.129 0.146 0.124
Permutation Test 2 0.165 0.177 0.172 0.152
Permutation Test 3 0.172 0.172 0.173 0.157
Permutation Test 4 0.173 0.191 0.195 0.172

262



Table 4.22: Severe Upward Size Distortion 3 (σ2
δ = 1 and θt ∼ N (0, 1))

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.474 0.532 0.654 0.667
Permutation Test 2 0.865 0.840 0.861 0.858
Permutation Test 3 0.282 0.384 0.604 0.688
Permutation Test 4 0.866 0.841 0.850 0.867

1 Permutation Test 1 0.276 0.317 0.429 0.467
Permutation Test 2 0.639 0.620 0.648 0.626
Permutation Test 3 0.256 0.325 0.469 0.529
Permutation Test 4 0.609 0.617 0.636 0.635

10 Permutation Test 1 0.159 0.167 0.250 0.273
Permutation Test 2 0.342 0.321 0.351 0.346
Permutation Test 3 0.186 0.219 0.304 0.346
Permutation Test 4 0.358 0.327 0.348 0.353

Table 4.23: Severe Upward Size Distortion 3 (σ2
δ = 1 and θt ≡ 0)

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.481 0.557 0.651 0.698
Permutation Test 2 0.873 0.855 0.874 0.892
Permutation Test 3 0.290 0.378 0.616 0.693
Permutation Test 4 0.865 0.856 0.865 0.885

1 Permutation Test 1 0.305 0.349 0.445 0.470
Permutation Test 2 0.654 0.631 0.642 0.658
Permutation Test 3 0.268 0.327 0.493 0.535
Permutation Test 4 0.646 0.627 0.640 0.650

10 Permutation Test 1 0.167 0.194 0.250 0.253
Permutation Test 2 0.342 0.348 0.339 0.351
Permutation Test 3 0.204 0.222 0.323 0.328
Permutation Test 4 0.339 0.362 0.342 0.354
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Table 4.24: Severe Upward Size Distortion 3 (σ2
δ = 10 and θt ∼ N (0, 1))

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.444 0.518 0.662 0.697
Permutation Test 2 0.963 0.954 0.946 0.967
Permutation Test 3 0.093 0.154 0.314 0.413
Permutation Test 4 0.959 0.954 0.950 0.963

1 Permutation Test 1 0.271 0.336 0.497 0.545
Permutation Test 2 0.865 0.840 0.861 0.858
Permutation Test 3 0.131 0.179 0.304 0.402
Permutation Test 4 0.866 0.841 0.850 0.867

10 Permutation Test 1 0.144 0.181 0.284 0.352
Permutation Test 2 0.639 0.620 0.648 0.626
Permutation Test 3 0.141 0.168 0.255 0.350
Permutation Test 4 0.609 0.617 0.636 0.635

Table 4.25: Severe Upward Size Distortion 3 (σ2
δ = 10 and θt ≡ 0)

σ2
ε Test No. T0 = 40 T0 = 80 T0 = 400 T0 = 800

0.1 Permutation Test 1 0.464 0.520 0.657 0.708
Permutation Test 2 0.955 0.953 0.959 0.964
Permutation Test 3 0.123 0.163 0.282 0.399
Permutation Test 4 0.954 0.950 0.953 0.963

1 Permutation Test 1 0.305 0.361 0.500 0.545
Permutation Test 2 0.873 0.855 0.874 0.892
Permutation Test 3 0.150 0.195 0.281 0.375
Permutation Test 4 0.865 0.856 0.865 0.885

10 Permutation Test 1 0.165 0.202 0.287 0.322
Permutation Test 2 0.654 0.631 0.642 0.658
Permutation Test 3 0.165 0.195 0.264 0.318
Permutation Test 4 0.646 0.627 0.640 0.650
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