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ABSTRACT OF THE DISSERTATION

The KH-Theory of Complete Simplicial Toric Varieties
and the Algebraic K-Theory of Weighted Projective
Spaces

by

Adam Lucas Massey
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2012

Professor Christian Haesemeyer, Chair

We show that, for a complete simplicial toric variety X, we can determine its homotopy
K-theory (denoted KH-theory) entirely in terms of the torus pieces of open sets forming
an open cover of X. We accomplish this by constructing a simplicial scheme BOTx and
constructing a relationship between the spectrum KH(X) and a certain spectrum determined
by BOTyx. Using our construction of BOTy, we construct conditions under which, given
two complete simplicial toric varieties with the same simplicial structure, we can induce a
morphism from BOTx to BOTy that is, in each degree, component-wise an isogeny. This
allows us to show that, under these conditions, the two spectra KH(X)® Q and KH(Y)® Q
are weakly equivalent. We then apply this result to determine the rational KH-theory of
weighted projective spaces. We next turn our attention to calculating the Fx groups for
complete toric surfaces and 2-dimensional weighted projective spaces. This allows us to
determine K,,(P(a, b, ¢)) ®Q for n < 0, and allows us to conclude that complete toric surfaces
and 2-dimensional weighted projective spaces are Kg-regular. We conclude by determining

conditions under which our approach for dimension 2 works in arbitrary dimensions.
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1 Introduction

One of the most interesting invariants that objects in algebraic geometry have is their alge-
braic K-theory (see Definition 3.77). Just as in the differential geometry setting, K-theory
allows us to classify many important properties of our space (such as isomorphism classes of
vector bundles), and because it is an invariant, this information does not change when we
alter how we view the space (such as by using a different coordinate system, for example). As
a subject, algebraic K-theory is often very challenging; even completely calculating the alge-
braic K-theory of a single point is still an open problem. Algebraic K-theorists usually settle
on calculating the K-theory of an object in terms of the K-theory of a point (equivalently,
in terms of the K-theory of the underlying field, since we define K,,(Spec(k)) = K,,(k) and
Spec(k) is the single point). However, even after doing this, calculating algebraic K-theory
is still extremely difficult, especially when the geometric object we are considering is not

smooth.

One alternative that mathematicians have discovered (introduced in [Weil], and for-
malized in [TT]) is Homotopy Algebraic K-Theory, which we denote by KH-theory
(see Definition 3.85). Homotopy Algebraic K-Theory has many nice properties that
do not hold for general K-theory, such as satisfying the Bass Fundamental Theo-
rem (KH,(A[t,t7']) = KH,(A) ® KH,_,(A) for all n) and respecting A! homotopy
(KH,(X x A') =2 KH,(X) for all n); see [Weil] or see Theorem 3.84. It turns out that
KH-theory agrees with K-theory on smooth geometric objects (see [Weil, Example 1.4] and
[Weil, Proposition 6.10]), and even when dealing with non-smooth objects, these two theories

are still related.

In this paper, we examine the basic properties of complete simplicial toric varieties, and
use these properties to attempt to compute their KH-theory. It turns out that just the
basic knowledge of their simplicial structure is not enough to calculate the KH-theory. The
reason for this is that even if two complete simplicial toric varieties have the same simplicial
structure (see Definition 4.6), these structures might not themselves yield any relationship

between the corresponding varieties. Indeed, given two complete simplicial toric varieties X



and Y, there doesn’t need to be any morphism X — Y even if X and Y have the same

simplicial structure.

The solution to this problem is to add additional conditions to force a relationship between
X and Y. This is done via the construction of the simplicial schemes BOT x and BOTy (see
Definition 4.15). It turns out that these two simplicial schemes will have a relationship if we
assume certain relationships between the fans of X and Y. The main goal of the first half

of this paper is to construct and examine this relationship.

Using this relationship, we can construct a relationship between the KH-theory of ordi-
nary projective space and the KH-theory of any weighted projective space. In particular, if
P(qo, .., qa) is a weighted projective space of dimension d, then the rank of KHgy(P(qo, ..., q4))
is d + 1.

Following the ideas in [CHWW], the K-theory of any toric variety (in particular, any
weighted projective space) over a field of characteristic 0 is obtained as a direct sum of the
KH-theory of that toric variety and another invariant called Fx which will be defined later;
see Definition 3.90 and Theorem 3.94. We obtain the former by the construction discussed
above; the latter turns out to be much more difficult and is handled separately. Using these

ideas, our goal throughout this paper will be to prove the following theorem:

Theorem 1.1. Let P(qo, ..., qq) be any weighted projective space of dimension d over a field

k such that the characteristic of k does not divide the product qo - q1 - - - qq- Then

(a) For every n, we have

KH,(P(qo, -, q4)) ® Q 2 KH,,(P?) ® Q. (1.1)

If the characteristic of k is 0, then we can conclude the following additional results:

(b) Any 2-dimensional weighted projective space P(a,b,c) is Ko-reqular, and for every

n < 0, we have

K,(P(a,b,c)) ® Q 2 K,(P*) ® Q. (1.2)
2



(¢) If our weighted projective space is of the form P(1,1,a), then for n < 0 we can conclude

the stronger statement

K,(P(1,1,a)) = K,(P?). (1.3)

If the characteristic of k is 0 and we assume that our weighted projective space has only

1solated singular points, then we have the following additional results:

(d) Any d-dimensional weighted projective space P(qo, ..., q4) whose singular set consists of

only isolated singular points is Kg-reqular, and for every n < 0, we have

K, (P(qo, - 44)) ® Q = K, (P*) @ Q. (1.4)

(e) If our weighted projective space is of the form P(1,1,...;1,a), then for n < 0 we can

conclude the stronger statement

K,(P(1,1,....1,a)) = K, (P?%. (1.5)

Theorem 1.1 is proven in several stages. Most of our work towards proving Theorem 1.1
is actually done by proving Theorem 4.9; as such, much of this paper will focus on the proof

of (and applications of) Theorem 4.9.

We begin in Section 2 by establishing the basic notation and terminology that we will
use throughout the paper, before moving on to discuss the necessary background work in
Section 3. In Section 3.1, we provide a brief review of the necessary commutative algebra
and algebraic geometry concepts that will be used throughout this paper. In Section 3.2, we
briefly introduce Grothendieck Topologies, and discuss the particular examples that we will
be interested in. We then move on to study simplicial and cosimplicial categories in Section
3.3, model categories in Section 3.4, and homotopy limits in Section 3.5. We then give the
precise definitions and basic properties of algebraic K-theory and KH-theory in Section 3.6

before concluding our background work by introducing transfer arguments in Section 3.7 and

3



descent arguments in Section 3.8. Each of these play a vital role in our construction, and

must all be well understood.

We then, using the background work constructed in Section 3, begin our construction of
the relationship between BOT x and BOTYy, alluded to above, in Section 4. In Section 4.1, we
introduce an example that illustrates our expectations for the general approach. In Section
4.2, we introduce the simplicial scheme associated to a complete simplicial toric variety, and
the basic notion of the simplicial structure of a complete simplicial toric variety; we use these
notions to construct the simplicial scheme BOT x in Section 4.3. Using BOT x, we determine
conditions under which BOT x and BOTy are related, and use that relationship to construct
a relationship between the KH-theories of X and Y, in Section 4.4. We apply these ideas to

weighted projective spaces in Section 4.5.

Finally, we attempt to calculate as many of the Fkx groups as possible in Section 5.
Focusing primarily on the case where the dimension of the toric variety is 2 and the underlying
field has characteristic 0, we begin by calculating the Fx groups for the weighted projective
space P(1,1,2) in Section 5.1 before generalizing the approach to P(1,1,a) in Section 5.2.
In Section 5.3, we prove the Fx Decomposition Theorem for complete toric surfaces and
use it to prove that any complete toric surface (in particular, any dimension 2 weighted
projective space) is Kg-regular. We conclude in Section 5.4 by examining the failure of the
Fk Decomposition Theorem to hold in higher dimensions, before determining additional
conditions on the toric variety that allow a variant of the Fx Decomposition Theorem to
hold. Using this variant, we can again show that, in this case, higher dimensional complete

toric varieties satisfying this extra condition are also Kg-regular.

2 Notations and Terminology

We begin by establishing some notation that we will use throughout the paper to avoid
any confusion, as the terms mentioned here arise in many different forms in the literature
(particularly in the discussion of toric varieties). Note that throughout this paper, unless

otherwise mentioned, we make no assumption on the characteristic of k.
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2.1 Toric Varieties

In this section we establish the notation and basic definitions/results about toric varieties
that we will assume throughout the paper. Much of what we discuss can be found in [Ful],
which is the standard reference on the subject, and [Cox]. One can also find many of the

basics that we assume for this paper discussed in the early sections of [CHWW].

We call X a toric variety if it is a normal variety along with a split algebraic torus
T = G, embedded as a Zariski dense open subset and an action of 7" on X extending the
obvious action of T" on itself. The case in which the torus is not split will not be covered in
this paper.

Let N be a lattice of finite rank, and M = Hom(N,Z) be the dual lattice. We let
Ng = N ®z R and Mg = M ®z R = Hom(Ng, Z). For m € My and n € Ng, we let (m,n)

denote the value of m applied to n.

A rational, strongly convex polyhedral cone ¢ C Ng is a subset of the form

g = Rz(ﬂjl + -4 RZO’Uk (21)

for some vy, ..., v, € N, and if both v and —u are in ¢, then v = 0. In other words, ¢ contains
no lines through the origin. Throughout this paper, when we say cone, we mean a rational,
strongly convex polyhedral cone. We define the dimension of o, denoted dim(c), to be the

dimension of the subspace Span{vy,...,vx} C Ng.

Given a cone o, we define the dual cone o¥ = {m € Mg|(m,n) >0 for n € o}. Much of
our focus will be on ¢¥ N M, which is an abelian monoid under addition of functions, and
is finitely generated by Gordan’s Lemma (see [Ful, Section 1.2, Proposition 1]). We define
the affine toric variety associated to o, which we denote U,, to be U, = Spec (k[o¥ N M]).
Here we need to write o¥ N M multiplicatively; to do that, we write elements of k[o¥ N M]

as k-linear combinations of formal symbols {x™|m € ¢¥ N M}.



Given a cone g, we say that 7 is a face of o, and write 7 < o, if

T ={n € o|(m,n) =0} (2.2)

for some m € ¢V. Notice that any face of a strongly convex polyhedral cone is again a
strongly convex polyhedral cone. We define a facet of o to be a face of codimension 1. A
fan A in Ng is a collection of cones such that if 7 < o and o € A, then 7 € A and such that

if 01,09 € A then 01 Noy < 01 and o1 N oy < 09.

If 7 < 0 C Ng, then we get an inclusion U, — U,, and in fact U, is a principal open
subset of U,. This is because, taking the morphism N — N to be the identity map and
T — o to be inclusion induces a map k[o¥ N M| — k[r¥ N M] which turns out to be
given by inverting finitely many x™; see [Ful, page 18]. Therefore, given any fan A, we can
construct a variety X (A) by taking affine opens U, for all ¢ € A and then, for all 01,05 € A,
gluing U,, and U,, along U,,ns,. Thus, we get that U,, N Uy, = Uyjno,- X(A) is in fact a
toric variety, with Uy as its torus (here 0 denotes the cone consisting only of the origin in
Ng). There is a converse, due to Sumihiro, which says that any toric variety is given by a
fan inside some lattice; see [Sum|. When referring to the toric variety associated to a fan A,
we write X (A); conversely, when given a toric variety X, we denote by Ay its associated

fan and we denote by N¥ the lattice in which Ay lives.

Since any toric variety is determined by a fan, and since any fan determines a toric variety,
one would suspect that a morphism of toric varieties is equivalent to a lattice morphism on
the respective fans, and that is almost the case. Suppose X and Y are two toric varieties,
and Ax and Ay are their respective fans; if we have a lattice morphism that induces a map
¢ : Ax — Ay such that for any cone o € A, p(0) is contained in a cone inside Ay, then
@ induces a morphism of toric varieties X — Y. To construct the map, notice that because
¢(0) is contained in a cone inside Ay (which we will call ¢’ for convenience), we induce a
map U, —> U, for every cone 0 € Ax. Then we glue them together. Throughout this

paper, we will use the notion of toric morphism and lattice/fan morphism interchangeably.
We also note that the diagonal map U,,~,, — U,, X U,, is a closed embedding; see
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[Ful, page 21]. As a consequence, any toric variety must be separated. Similarly, since any
variety is Noetherian and quasi-compact in the Zariski topology, any toric variety must be

Noetherian and quasi-compact also.

We define the support of a fan A, denoted |A[, to be the union of all cones in A as viewed
inside Ng. We say a toric variety X is complete if |Ax| = Ng. If X is a toric variety over C,

the X is complete if and only if X (as a complex manifold) is compact in the usual topology.

We say that a cone o is simplicial if its minimal set of generators {vy,...,v;} is linearly
independent over R. We say that a fan A is simplicial if every cone ¢ € A is simplicial, and
we say that a toric variety X is simplicial if its associated fan Ay is simplicial. Similarly, we
say that a cone ¢ is smooth if its minimal set of generators {vy, ..., v;} is part of a Z-basis
of N. We say that a fan A is smooth if every cone ¢ € A is smooth, and we say that
a toric variety X is smooth if its associated fan Ay is smooth. Notice that any smooth

cone/fan/toric variety must also automatically be simplicial.

Let N be a lattice, and o C Ng be a cone. We define N, = (6 N N) + (—o N N) to be
the sublattice of N generated by o. Similarly, we define N, =N /N,

One important fan that we can create from a given fan A (inside the lattice N) is the star
of a given cone 7, denoted Star(7). The star of the cone 7 is the fan consisting of all cones
o € A such that 7 < o, but considered inside the lattice N,. The toric variety X (Star(r)) is a
closed subvariety of X (A), and the dimension of the cone 7 is the codimension of X (Star(7))

inside X (A); in particular, if 7 is a maximal cone, then X (Star(7)) is a point inside X (A).

We conclude this section by presenting a result from [Ful] that will form the basis of our

arguments throughout the paper. First, we need a lemma.

Lemma 2.1. Let 0 C Ng be a cone. Then o NN and N, are saturated.

Proof. Given any point x € 0 N N, we have that the line segment joining x to the origin lies
completely in ¢ C Ng. Then any point of N that lies on this line segment is also in ¢ N V;
in particular, the minimal lattice point (i.e. the point of N on the line segment joining 0

and x with shortest distance to 0) on this line is also in ¢ N N. Denote this minimal lattice



point by y. Since y and x lie on the same line in Ng, x must be a multiple of y. Since both z
and y live in o,  must be a positive multiple of y (otherwise o contains a non-trivial line).
Finally, since x and y both live in N, x must be a positive integer multiple of y. Thus, we
have shown that given any element p-y € 0 N N, we have y € 0 N N also. So o N N is

saturated. Since N, = (60 N N) + (—o N N), the fact that it is also saturated is immediate.

]

We can now prove our main proposition, which may be found in [Ful].

Proposition 2.2. Let o be a p-dimensional cone in a lattice N with dim Ng = n. Then

Uy 2 Uy x T, where T = G'7P is a split algebraic torus of rank n — p.

Proof. By Lemma 2.1, N, is saturated. Choose a splitting N = N,&N” (note that N” = N,,
but that this splitting is not canonical). In this splitting, we have ¢ = o’ @ {0}, where ¢’
is a maximal cone in N,. Now taking duals gives us the splitting M = M’ & M"”. Then
o'NM=(""NM)®M" and k[o¥ N M] = k[(¢’V N M")® M"]. Taking Spec of both sides

gives us U, = U,» x Ty» and observe that T» = G P as desired.

O

Remark 2.3. We call the torus Tn~» constructed in Proposition 2.2 the torus part of
U,. Observe that, as N” = ]VJ, we can construct the torus part of U, by taking
Spec(k[Hom(N,,Z)]). In the remainder of the paper, when we say “torus part of U,”,
we mean Spec(k[Hom(N,, Z)]).

2.2 Weighted Projective Spaces

In this section we study a particular class of toric varieties that we will be interested in as the
paper progresses: the class of weighted projective spaces. To understand weighted projective
spaces, we first recall ordinary projective spaces. Ordinary projective space, denoted P?, is

constructed by

P! = AT\ {0}/ ~ (2.3)
8



where (ag, ...,aq) ~ (b, ..., bq) if and only if there is a A € k such that a; = A - b; for all

1 =20, ...,d. This is a toric variety where the torus is

Tpe = {(ag, ...,aq)| a; #0 fori=0,...,d}. (2.4)

As this is a toric variety, we should be able to find a fan Aps and indeed we can. Consider

the lattice Z4 with basis {eo, ..., e4}; then we construct a lattice N by

N =7 ){eg+ -+ eq). (2.5)

In other words, we impose the relation eq+ - - - +e4 = 0. This gives us a lattice of dimension
d. Consider the set {x, ..., x4} of residues of {ey, ..., ¢4} in this quotient. Then Apa is the fan
consisting of all cones generated by proper subsets of {x, ..., z4}. If we follow the method
described in Section 2.1 for the construction of X (Aps), we recover the usual construction

for P? by gluing together copies of A9,

Observe that all the usual properties of P4 can be seen in the fan Aps. Indeed, we notice
that Apa is smooth (and therefore simplicial) since every proper subset of {zy, ..., x4} is part
of a basis for N. Therefore, we get that P4 is smooth (and therefore simplicial). Since it is
a toric variety, P? is automatically separated, Noetherian, and quasi-compact. Finally, P?
is complete, as the union of all the maximal cones in Apa give us Ng. None of these facts

should be surprising, as they are all known properties of projective space; see [Hart].

Our goal in defining weighted projective spaces is to generalize the above example. Let
o, ---» qq be positive integers with ged(qo,...,qq) = 1. Weighted projective space, denoted

P(qo, ..., qa), is constructed by

P(qo, - ga) = A1\ {0}/ ~ (2.6)

where (ag, ..., aq) ~ (bo, ..., bq) if and only if there is a A € k such that a; = A% - b; for all



1 =20, ...,d. This is a toric variety where again the torus is

Tr(go,.q0) = (a0, .., aa)| a; #0 fori=0,...,d}. (2.7)

As this is a toric variety, we should be able, just as in the ordinary case, to find a fan
Ap(g...qn) and indeed we can. Consider the lattice Z9*! with basis {fy, ..., fa}; then we

construct a lattice N by

N =Z" [ {qofo + -+ + qafa)- (2.8)

In other words, we impose the relation qofy + -+ 4+ gafs = 0. This gives us a lattice of
dimension d. Consider the set {yo, ..., yq} of residues of {fo, ..., f4} in this quotient. Then
Ap(q,....qq) 18 the fan consisting of all cones generated by proper subsets of {yo, ..., ya}. Observe
that ordinary projective space is the weighted projective space where all the weights are 1;
namely, P = P(1, ..., 1).

Before continuing, we make an important observation about weighted projective spaces
that will implicitly be used everywhere, and is useful to have explicitly stated. A priori, the
only weighted projective spaces that are toric varieties are those where the weights are all
relatively prime, as mentioned above. However, we’ll see below that we can always adjust
the weights to make this the case. The full details of this argument can be found in [Reid].

We begin with the notion of a well formed weighted projective space.

Definition 2.4. A weighted projective space P(qo, ..., qa) is called well formed if no d of the

d + 1 weights have a common factor.

The important proposition below says that every weighted projective space satisfies this

property.

Proposition 2.5. Let P(qo, ..., qq) be a weighted projective space. Then we have the following:

(a) If m is a common divisor of qo, ..., qa, then P(qo, ..., qa) = P(%2, ..., %).

m?

10



(b) Suppose qo, ..., qq have no common factors, but that m divides q; for all i # j. Then

qj+1 q_d>
m o m )

we have P(qo, ..., qa) = P(L, ..., 2= g,

m?*" m

For the proof of this proposition, see [Reid, Proposition 3.6]. As a corollary of this
proposition, we see that we can always assume that the weights are relatively prime (making
every weighted projective space a toric variety after all), and we can assume that every

weighted projective space is well formed.

Observe that, just as with ordinary projective spaces, weighted projective spaces are
complete, separated and quasi-compact. However, they are not, in general, smooth. In fact,
it turns out that the only smooth weighted projective spaces are the ordinary projective
spaces. Nevertheless, weighted projective spaces are simplicial. Indeed, suppose there was a
non-simplicial cone in Ap(g, . 4,); then some proper subset of {yo, ..., ¥4} is linearly dependent
over R, which would mean some proper subset of {fo, ..., f4} is linearly dependent over R,
which is a clear contradiction. As much of our work in this paper will be concerned with

simplicial toric varieties, our results will apply to weighted projective spaces as well.

2.3 Resolution of Singularities for Toric Varieties

Toric varieties have several very nice features that make studying their geometry considerably
easier than other kinds of spaces. But one of the most convenient features is that it is
relatively easy to resolve their singularities. Recall from Section 2.1 that every toric variety
is given by a fan, and that a toric variety is smooth if and only if every cone in the fan is
smooth. The way in which we obtain a resolution of singularities for a given toric variety is
by refining the fan; in other words, by adding additional cones to the fan until each cone in
the fan is smooth. In general, one must first simplicialize all cones (that is, one must first
make the fan simplicial) before one can resolve singularities. However, as our focus in this
paper is on simplicial toric varieties, we will not need this first step, and therefore we skip
it. Again, for the full details, we refer the reader to the standard sources, such as [Ful] and
[Cox]. We will mostly follow the presentation given in [Cox].

So suppose we have a simplicial fan A. We say a fan A’ is a refinement of A if each cone
11



of A is a union of cones in A’. Notice that, if we take the identity map on lattices and its

induced map f: A" — A, then we can construct a toric morphism
fo: X(A) — X(A). (2.9)

Recalling that |A| denotes the support of A (see Section 2.1 for the definition), one can show
that f, is proper if and only if fg ' (JA]) = |A'] (see [Cox]). From the perspective of supports,
notice that saying A’ is a refinement of A is equivalent to saying that |A| = |A’| and that

every cone of A’ is contained in a cone of A. Our goal is to prove the following theorem.

Theorem 2.6. If X(A) is the toric variety coming from the fan A, then there exists a

refinement A" of A such that the toric morphism
fe: X(A) — X(A) (2.10)

1s a resolution of singularities.

Sketch of proof. We sketch the proof of this theorem; see [Cox, Theorem 5.1] for the full
details. Note again that usually one begins by refining to obtain a simplicial fan, and then
further refining to get a smooth fan. We omit the first step, as our focus throughout this

entire paper is only on simplicial toric varieties (making this first step unnecessary).

Notice that the set of all nonsingular cones, denoted A°, forms a subfan of A and that
X (A% is the smooth locus of X(A). Our goal will be to refine A without changing A°.
Then the induced morphism f, will be proper and because A° is unchanged, f, will be an
isomorphism away from the singular locus of X (A). This will give us precisely the properties

we desire in a resolution of singularities.

In order to resolve singularities, we need to assign a measure to the singularity. Let o € A
be any cone, generated by the primitive elements x4, ..., x4. Then we define the multiplicity

of o to be the group index

mult(o) = [Ny : Zxy + Zxg + - - - + Zxg] (2.11)
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where N, is as defined in Section 2.1. Recall that o is smooth if its primitive generators
form part of a Z-basis for N. This is equivalent to the generators forming a Z-basis for N,
so obviously ¢ is smooth if and only if mult(c) = 1. Similarly, we define the multiplicity of

the fan A to be

mult(A) = max mult(o). (2.12)

ocEA

Again, it is obvious that the fan A is smooth (and hence the toric variety X (A) is smooth)
if and only if mult(A) = 1. The proof works by showing that if mult(A) > 1, we can find a
refinement A; such that either mult(A;) < mult(A) or mult(A;) = mult(A) and has fewer

cones of that multiplicity. Obviously if one shows this, then the result follows.

The idea is to take a nonsmooth cone ¢ of minimal dimension, generaed by the primitive
elements z1, ..., x4, and then find an element u = ayx1 + - - - + agry with 0 < a; < 1 for all ¢
(otherwise u would lie in a proper face of ¢ and thus lie in a smooth cone by minimality).
Taking 7 to be in the star of o, we see that we can write 7 = o + 7/ with 77 N0 = {0}. We

then consider the cone

Ti = (Uy L1y eeeey Ty vy Tg) - (2.13)
Then one can show that mult(r;) = a; mult(7) < mult(r). So to construct Ay, let 75 be
a nonsmooth cone of largest multiplicity, and let ¢ be a nonsmooth face of 7y of minimal

dimension. Performing the above operations on ¢ and 7y, we get the new fan

Ay = (A\Star(@)U [ | {rnnmad ] (2.14)

TEStar(o)
Notice that all cones in Star(o) are replaced by cones of strictly smaller multiplicity, and
that we have deleted at least one cone (namely 7) of maximal multiplicity. Therefore, either
mult(A;) < mult(A) or mult(A;) = mult(A) and has fewer cones of that multiplicity, as

desired. Repeatedly applying this procedure gives us the desired resolution.
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]

The proof of Theorem 2.6 tells us explicitly how to find the correct refinement to get a
resolution of singularities, but in practice it is often easier to find the desired refinement,
especially in low dimensions. We will now look at an example, which we will return to many

times throughout this paper, that illustrates the techniques we will use.

Example 2.7. Consider the weighted projective space P(1,1,2). As we have already seen,
this is a complete simplicial toric variety. The fan is generated by the one-dimensional cones
(1,0), (0,1), and (—1,—2) in the lattice Z*. Clearly the two-dimensional cone generated
by the rays (1,0) and (—1,—2) is the only singular cone. To resolve the singularity, we
simply add in additional rays until all cones are smooth. In this case, we need only add
one additional cone, namely the cone generated by (0, —1). This new fan is (isomorphic to)
the fan of the Hirzebruch surface Ha, which is the P'-bundle over P! associated to the sheaf
O(0) + O(-2).

Next, we need to determine the exceptional curve for this resolution. In general, we do
this by taking Star(T), where T is the cone added in for the resolution. Recall that Star(T)
15 simply the set of all cones containing T as a face, but is considered in the lattice ]f\\f; (see
Section 2.1 for definition). It is easy to see that, in this case, the exceptional curve turns out

to be PL. So this resolution gives us the blow-up square

Pl —H,

|

{x}—P(1,1,2)

and we obtain a resolution of singularities for P(1,1,2), as desired.

3 Background

In this section we build the necessary machinery that will be used throughout the paper.
Much of the material presented in this section is very general and can be found in several
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other sources. However, we present them here as they will play a key role in the sections to

follow.

3.1 Commutative Algebra and Algebraic Geometry

There will come a point in the proof of our main theorem where we will need to understand
properties of morphisms of the form Spec(B) — Spec(A). This can be done primarily
by understanding the properties of prime ideals. In this section, we collect the results that
will be needed when analyzing these properties in the context of our problem. Many of our

results can be found in the standard sources such as [AM], [Mil], [Hart], [Shal], and [Sha2].

We recall that if A is a ring, we can construct a scheme called Spec(A) by taking the topo-
logical space to consist of prime ideals of A as points and closed sets V(1) (the set of all prime
ideals of A containing the ideal ), and taking the sheaf to be the standard structure sheaf;
see [Hart, page 70]. We call such a scheme an affine scheme. Recall also that if f: A — B
is a morphism of rings, then this induces a morphism of schemes Spec(B) — Spec(A);
conversely, if we have a morphism of schemes Spec(B) — Spec(A), then there is a ring

homomorphism f : A — B inducing it; see [Hart, Chapter II, Proposition 2.3].

Definition 3.1. We say that a morphism of affine schemes Spec(B) — Spec(A) is surjec-
tive if the morphism on the underlying topological spaces is surjective; that is, for any prime

ideal P C A, f(P) is a prime ideal of B.

We would like to establish conditions under which a morphism of affine schemes will
be surjective. As the following theorems will show, that condition turns out to be that

f+ A — B is injective and integral.

We begin by stating some basic definitions and results on integrality from Commutative

Algebra; see [AM, Chapter 5] for the standard proofs of each of these statements.

Definition 3.2. Let B be a ring, and A C B be a subring. An element x € B is said to be

integral over A if x satisfies some monic polynomial

4 a4 ap i+ a, =0, (3.1)
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where a; € A for all i. We say that B is integral over A if every x € B is integral over A.

We have the following important proposition.

Proposition 3.3. The following are equivalent:

(a) x € B is integral over A.
(b) Alx] is a finitely generated A-module.
(c) Alx] is contained in a subring C' of B such that C' is a finitely generated A-module.

(d) There exists a faithful A[z]-module M which is finitely generated as an A-module.

Proof. See [AM, Proposition 5.1].

]

Corollary 3.4. Let x1,...,x, be elements of B, each integral over A. Then the ring

Alxy, ..., 2] is a finitely generated A-module.

Proof. Proceed by induction. The case n = 1 is immediate by Proposition 3.3. Let
A, = Alzy,...;xy1]). Then Alzy,...,z,] = A,_1]z,]; by our inductive hypothesis, A, 4
is a finitely generated A-module. Since z,, is integral over A, it is integral over A, _; triv-
ially. Thus, A, 1[x,] is a finitely generated A,_;-module by Proposition 3.3, and thus a
finitely generated A-module since if i, ...,y generate A, _1[z,] as an A,_j;-module, and
21, ..., 2z, generate A,_; as an A-module, then the mk products {y;z;} generate A,_;[z,] as

an A-module.

Definition 3.5. Let f: A — B be a ring homomorphism.

(a) There is an A-module structure on B induced by a -z = f(a)x; we call this structure
the canonical A-module structure induced by f. Thus, f makes B an A-algebra. More

generally, if M is any B-module, then M is also an A-module, induced by a-x = f(a)x.

16



(b) We say that [ is of finite-type if B is finitely generated as an A-algebra via f; in other

words, if there exists 1, ...,x, € B such that the morphism Alty, ..., t,| — B with
D i, 0t = Y fla,a)a (3.2)

1S a surjection.

(c) We say that f is integral if B is integral, in the sense of Definition 3.2, over the subring
f(A).

(d) We say that f is finite if B is finitely generated as an A-module under the canonical

A-module structure induced by f.

Theorem 3.6. Let f : A — B. Then f is finite if and only if it is both finite type and

integral.

Proof. If f is finite, then B is finitely generated over f(A). That means there exists
x1,..., T, that generate B as an f(A)-module (and equivalently, an A-module). Then take

Alty, ..., t,] — B by t; — x; and
D i, a0t Y flag, )t (3.3)

Then this map hits every element of f(A) and it hits 1, ..., x,, so it must hit all of B. So f

is of finite type.

To see that f is integral, observe that, for any x € B, f(A) C f(A)[z] C B. Since
B is finitely generated over f(A), f(A)[z] must be finitely generated over f(A) also. By
Proposition 3.3, z is integral over f(A). Since this can be done for any x € B, B is integral

over f(A); hence, f is integral.

Now suppose that f is finite type and integral. Since f is finite type, there exists x1, ..., z,
such that B = f(A)[z1,...,x,]. Since B is integral over f(A), Corollary 3.4 says that
f(A)[x1,...,x,] is finitely generated as an f(A)-module; hence, B is finitely generated as

an f(A)-module. So f is finite.
17



What follows are the properties of integrality that we will use.

Proposition 3.7. Let A C B in Rings, with B integral over A.

(a) If J is an ideal of B and I = JN A is an ideal of A, then B/J is integral over A/I.

(b) If S is a multiplicatively closed subset of A, then S™'B is integral over S™'A.

Proof. Any x € B satisfies 2" + a12" ' + -+ + a,_17 + a, = 0, where a; € A for all i.

For (a), simply reduce this equation modulo J; then the coefficients will be reduced

modulo [ since I = J N A and the result is immediate.

For (b), notice that, for any s € S, the element £ € S™'B satisfies

n n—1
<£> + it (E) 4+t Z::i <§> + n =0, (3.4)

S \s S sn

where a; € A for all i. So £ is integral over S™'A and we are done.

S

]

Corollary 3.8. Let A C B in Rings, with B integral over A. If P is a prime ideal of A,

then Bp is integral over Ap.

Proof. This is immediate from Proposition 3.7 part (b), with S = A\ P.

]

Proposition 3.9. Let A C B be integral domains, and B integral over A. Then B is a field
if and only if A is a field.

Proof. Suppose A is a field, and let x+ € B with x # 0. Then let the polynomial
2"+ a2t + -+ ap_17 + a, = 0 be the polynomial of smallest degree that x satisfies.
Then, since = # 0, a,, # 0 also; otherwise we would have z(z" ' + a;z" 2 + -+ + a,_1) = 0,

which would imply 2" + a;2" 2 + -+ + a,_; = 0 contradicting the fact that our initial
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polynomial was the smallest degree polynomial over A that x satisfies. Then we simply have
vt = —a (2" + @ 2”2 + - + a,_1), which makes B a field also.

Conversely, suppose that B is a field. Let x € A, x # 0. Then we have x € B also; since
B is a field, that gives us 7' € B. Since B is integral over A, there exists a polynomial
(" +a; ()" P+ +an_1(z7') + @, = 0. Multiplying both sides by 2" and putting
all the terms involving z on one side gives us 1 = —xz(a; + -+ + ap_12" 2 + a2 1), or

vl =—(a;+  + ap12"? + a,z" '), making A a field also.

]

Corollary 3.10. Let A C B be rings, and B integral over A. Let Q) be a prime ideal of B,
and P =Q N A. Then Q is mazximal if and only if P is mazimal.

Proof. By Proposition 3.7 part (a), B/Q is integral over A/P. Since ) (and hence P) are
prime ideals, A/P and B/Q are both integral domains. Thus, by Proposition 3.9, A/P is a
field if and only if B/Q is a field, which gives the result.

Finally, we can prove the following important theorem.

Theorem 3.11. Let A C B in Rings, with B integral over A, and let P be a prime ideal
of A. Then there exists a prime ideal () of B such that Q " A = P. In other words, the

morphism Spec(B) — Spec(A) induced by the inclusion map A — B is surjective.

Proof. By Proposition 3.7 part (b), Bp is integral over Ap. Let @« : A — Ap and

B : B — Bp be the canonical localization maps. Then we get the commuting square:

where the horizontal maps are injections. Let /N be a maximal ideal of Bp; then NNAp = M

is maximal by Corollary 3.10. Since the ring Ap is local, M is the unique maximal ideal of
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Ap. Then we have that a='(M) = P and by commutativity a='(M) = 874(N) N A. So
Q = B7Y(N) is our desired prime ideal.

O

Corollary 3.12. If f : A — B is injective and integral, then the induced morphism
Spec(B) — Spec(A) is surjective.

Proof. Factor f into A — f(A) — B, where the first map is an isomorphism (every
injective map is an isomorphism onto its image) and the second map is the obvious inclusion
map. Then Spec(f(A)) — Spec(A) is an isomorphism and hence surjective. The morphism

Spec(B) — Spec(f(A)) is surjective by Theorem 3.11; composing these two gives the result.

]

Corollary 3.13. If f : A — B is injective and finite, then the induced morphism
Spec(B) — Spec(A) is surjective.

Proof. By Theorem 3.6, f must be integral. Now the result is immediate from Corollary

3.12.

]

We also want to recall some basic notions from algebraic geometry. In particular, we

want to recall the notions of flat, unramified, and étale morphisms. We begin with flatness.

Definition 3.14. Let A be a ring, and N an A-module. We say that N is flat if the functor
M — M ®4 N is an exact functor. We say that N is faithfully flat if, whenever we have an

exact sequence

0O— M UN—sMIN—M' @4 N—0

the sequence
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must have already been exact to start with. A ring homomorphism f: A — B is called flat
(faithfully flat) if B is flat (faithfully flat) as an A-module via the module structure given in
part (a) of Definition 3.5. We say a morphism of schemes f: X — Y is flat if, for every
point v € X, y = f(x) €Y, the induced morphism f# : Oy, — Ox, is a flat morphism of

TINgs.

Proposition 3.15. Flat morphisms satisfy the following very important properties:
(a) An open immersion is flat.
(b) If f: X — Y and g: Y — Z are flat, then so isgo f: X — Z.

(¢) Flat morphisms are closed under base extension.

Proof. See [Mil, Chapter 1, Proposition 2.4].

]

Corollary 3.16. If f : X — Y and f' : X' — Y’ are both flat, then so is
fxfl: XxX —YxY.

Proof. This follows from properties (b) and (c) of Proposition 3.15. To see this, consider the

following diagram:

X' Y’ Spec(k)

Observing that Y/ =Y Xy Y’, we realize that « is obtained by the base extension of f’

XXX — XX (Y xyY)=X xy (Y xY)
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where the latter equality is by elementary properties of fiber products. Since f’ is flat, so is

a by property (c) of Proposition 3.15. Observe that

a(z, ') = (z, f'(2)). (3.5)

Similarly, we realize that 3 is a base extension of f. Indeed, observing that X = X xy Y,

we can base extend f to get

XXy (Y xY)=(Xxy V) xY' x X —Y xY’

where the initial equality is by elementary properties of fiber products. Since f is flat, so is

B by property (c) of Proposition 3.15. Observe that

Bz, y) = (f(x),y). (3.6)

So we immediately see that 5o« = f x f’. Since both « and § are flat, by property (b) of
Proposition 3.15, f x f is flat also.

O

We have the following important propositions, which provides us with some basic prop-

erties of flatness that allows us to relate being flat to being projective.

Proposition 3.17. Let f : A — B be a flat morphism of rings. If N is flat as a B-module,
then N is also flat as an A-module, via the A-module structure given in part (a) of Definition

3.5.

Proof. See [AM, Chapter 2, Exercise 8|.

Proposition 3.18. Fvery finitely presented flat A-module N is projective.

Proof. See [Wei2, Theorem 3.2.7].
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Corollary 3.19. If A is Noetherian, then any finitely generated flat A-module N is projec-
tive. In particular, if we have a ring map f: A —> B of Noetherian rings, with f both flat
and finite, then B is projective as an A-module via the module structure given in part (a) of

Definition 3.5.

Proof. Recall that if A is Noetherian, then any finitely generated A-module is also Noethe-
rian; therefore, N is Noetherian. Since N is finitely generated, there is a surjection from
a finite rank free module to N; ¢ : A® — N surjective for some n. Recall that we say
N is finitely presented if ker ¢ is also finitely generated. However, since A is Noetherian,
A™ is Noetherian (since it is finitely generated); by definition of Noetherian module, every
submodule of a Noetherian module is finitely generated. Since ker ¢ is a submodule of the
Noetherian module A”, it is finitely generated, making N finitely presented. Now the result
follows from Proposition 3.18. In the case of f : A — B being a map of Noetherian rings,
with f is flat and finite, this is just a special case of the first part of this corollary, since f
flat and finite means that B is a finitely generated, flat A-module and therefore projective

since A is Noetherian.

]

Now that we have recalled what it means for a morphism of schemes to be flat, we now
want to recall what it means for a morphism to be unramified. We follow the presentation

given in [Mil]. Recall that if x € X, then k(x) denotes the residue field of the point z.

Definition 3.20. Let f : A — B be a ring homomorphism of finite type. We say that f is
unramified at a point Q € Spec(B) if and only if P = f~1(Q) generates the mazimal ideal in
Bg and k(Q) is a finite separable field extension of k(P). We say that f is unramified if it
is unramified for every @ € Spec(B). Similarly, given a morphism of schemes F : Y — X
that is locally of finite type, we say that F is unramified at y € Y if Oy, /MOy, is a finite
separable field extension of k(x), where x = f(y). We say F' is unramified if it is unramified
at every y € Y.

The following result about unramified morphisms gives us a good way to test whether a
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morphism of schemes is unramified.

Proposition 3.21. Let f : Y — X be a morphism of schemes that is locally of finite type.

The following are equivalent:

(a) [ is unramified.
(b) For all x € X, the fiber Y, — Spec(k(zx)) over x is unramified.

(c) All geometric fibers of f are unramified; in other words, for all morphisms

Spec(k) — X with k separably closed, Y x x Spec(k) — Spec(k) is unramified.
(d) For all x € X, Y, has an open covering by spectra of finite separable k(x)-algebras.

(e) Forallz € X, Y, is a sum [ Spec(k;), where the k; are finite separable field extensions
of k(x).

Proof. See [Mil, Chapter 1, Proposition 3.2].

]

Just as we had with flat morphisms, we have the following results for unramified mor-

phisms.

Proposition 3.22. Unramified morphisms satisfy the following very important properties:

(a) An open immersion is unramified.
(b) If f: X — Y and g : Y — Z are unramified, then soisgo f: X — Z.

(¢) Unramified morphisms are closed under base extension.

Proof. See [Mil, Chapter 1, Proposition 3.3].

]

Corollary 3.23. If f : X — Y and f' : X' — Y’ are both unramified, then so is
fxfl: XxX —YxY.
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Proof. This follows from properties (b) and (c) of Proposition 3.22. To see this, consider the

following diagram:

X' - Y’ Spec(k)

Observing that Y' =Y Xy Y’ we realize that « is obtained by the base extension of f’

XXX — X x (Y xyY)=X xy (Y xY)

where the latter equality is by elementary properties of fiber products. Since f’ is unramified,

so is a by property (c¢) of Proposition 3.22. Observe that

a(z,2') = (z, f'(2)). (3.7)

Similarly, we realize that § is a base extension of f. Indeed, observing that X = X xy Y,

we can base extend f to get

XXy (Y XY)=(XxyYV)xY' x X' —Y xY’

where the initial equality is by elementary properties of fiber products. Since f is unramified,

so is 8 by property (c) of Proposition 3.22. Observe that

Bz, y) = (f(2), ). (3.8)

So we immediately see that 5oa = f x f’. Since both o and 8 are unramified, by property

(b) of Proposition 3.22, f x f’ is unramified also.
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We are now ready to recall the definition of an étale morphism.

Definition 3.24. Let f : A — B be a homomorphism of rings. We say that f is étale if
f is both flat and unramified. Similarly, given a morphism of schemes F' 1Y — X, we say

that F' is étale if F is both flat and unramified.

An étale morphism is the algebraic geometry analog of a morphism satisfying the con-
ditions of the Implicit Function Theorem from ordinary geometry. Recall that a morphism
satisfying the conditions of the Implicit Function Theorem is a local diffeomorphism in or-
dinary geometry; however, due to the fact that Zariski open sets are often very large, étale
morphisms are not necessarily local isomorphisms. However, they retain many of the impor-

tant properties of local analytic isomorphisms, which makes their study extremely important.

Just as with flat morphisms and unramified morphisms, we next have the following very

useful result.

Proposition 3.25. Etale morphisms satisfy the following very important properties:

(a) An open immersion is étale.
(b) If f: X — Y and g: Y — Z are étale, then so isgo f: X — Z.
(c) Etale morphisms are closed under base extension.

(d)If f : X — Y and [ : X' — Y’ are both étale, then so is the map
fxfl: XxX —YxY.

Proof. Parts (a), (b), and (c) are immediate from Propositions 3.15 and 3.22. Part (d) is

immediate from Corollaries 3.16 and 3.23.

[]

We now have the tools to determine if a given morphism is étale. We can now put these

tools to use.

Proposition 3.26. Let A be a ring, and let B = A[T|/(P(T)), where P(T) is an irreducible,

separable, monic polynomial in A[T]. Then the morphism A — B is étale.
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Proof. Following the proof given in [Mil, Example 3.4|, we need to check that B is both
flat and unramified over A. Flatness is immediate, as B is actually free as an A-module,
with rank equal to the degree of P(T). To check that this mapping is unramified, recall
that a polynomial is separable if the ideal (P(T'), P'(T)) = A[T], where P'(T) denotes the
formal derivative of P(T"). This is equivalent to saying that P'(T) is invertible in B. Let
P be any prime ideal in Spec(A), and let k(P) denote its residue field. Then P(T) is
separable if and only if P(T) € k(P)[T] is separable for all P. One direction is obvious; if
(P(T), P'(T)) = A[T], then tensoring both sides with k(P) over A gives the claim. For the
other direction, let I = (P(T), P'(T)) and suppose that Ip = I ®4 k(P) denotes the image
of I in k(P)[T] for all P. If I» = k(P)[T], then since we have that PAp[T] C Ip C Ap[T]
by the correspondence theorem, we conclude that Ip = Ap[T]. In other words, the inclusion
I — A[T] induces a surjection (and hence an equality) when tensoring with Ap over A.
But [AM, Proposition 3.9] says that any A-module homomorphism f : M — N such that

the induced morphisms fp : Mp — Np are surjective for all P is itself surjective as well.

So the inclusion I — A[T7] is a surjection and hence an equality, giving the other direction.

So now we check that A — B is unramified by using Proposition 3.21, part (b). We do
so by looking at the morphism of schemes Spec(B) — Spec(A). For a point P € Spec(A),
the fiber is

Spec(B)p = Spec(B) x 4 Spec(k(P)) = Spec(B ®4 k(P)) (3.9)

and since B ®4 k(P) = k(P)[T]/(P(T)), this question reduces to whether or not the exten-

ki
sion of fields k(P)[T]/(P(T)) over k(P) is separable. But since P(T) is a separable monic

polynomial in A[T], P(T) is separable for every P, and therefore the extension of fields is

indeed separable and we are done.

[]

Corollary 3.27. If B = A[T|/(T" — a), then the morphism A — B s étale if and only if

ra € A*.
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Proof. We want to show that these conditions are equivalent to the polynomial 7" — a being
separable. First notice that ra € A* if and only if ra is not contained in any prime ideal of
A, which is the same as saying that r(ap) is not contained in the unique maximal ideal P Ap
of Ap, which is in turn the same as saying that ra is not 0 in the field £(P). So ra € A* if
and only if » # 0 and @ # 0 in k(P). The statement r # 0 is the same as saying that the
characteristic of k(P) does not divide r, so we have that for all P € Spec(A), @ # 0 and the
characteristic of k(P) does not divide r. This means that the polynomial 7" —@ is separable
in k(P)[T] for all P € Spec(A). By the claim we established during the proof of Proposition
3.26, this means that 7" — a is separable in A[T]. By Proposition 3.26, the map A — B is

étale and we are done.

]

In addition to the basic commutative algebra and algebraic geometry results we’ve pre-
sented above, we will need to know something about groups schemes; in particular, since
our toric varieties are assumed to have only split tori, we need to say something about diag-
onalizable group schemes. Much of the material we present here can be found in [KMRT].
In what follows, let Algy denote the category of untial commutative (associative) k-algebras

with k-algebra homomorphisms as morphisms.

Definition 3.28. Let H be an abstract abelian group, written multiplicatively, and let k
be a field. We have a Hopf algebra structure on the group algebra k(H) over k given by
comultiplication c(h) = h & h, co-inverse i(h) = h™*, and co-unit u(h) = 1. The group
scheme represented by k(H) is said to be diagonalizable and is denoted Hgyoq. By definition,
Hyiag(R) = Homyy,, (k(H), R) = Hom(H, R*) for any R € Algy.

We can find many examples of diagonalizable group schemes. For instance, if H = Z,
then Hgyiqqg = Gyy; similarly, if H = Z", then Hgoy = G}, the split algebraic torus of rank
n. Since our toric varieties are all split toric varieties, this is the viewpoint that we want to

take. We now give the following proposition.

Proposition 3.29. There is an anti-equivalence of categories between the category of diag-

onalizable group schemes over k, denoted Diag, and abelian groups, denoted Ab, where the
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functors are given by F : Diag — Ab, F(G) = G* (here G* denotes the group of characters)
and M : Ab — Diag, M (H) = Hgjog-

Proof. See [KMRT, Proposition 20.17].

]

Remark 3.30. This is not the proposition that actually appears in [KMRT]; the true propo-
sition proves that there is an equivalence of categories between the category of group schemes
of multiplicative type over k and the category of abelian groups with continuous I'-action.
Here I' = Gal(ks.,/k). However, as we work exclusively with diagonalizable groups schemes,

this added generality will not be helpful to us so we omit its presentation.

We conclude this section with one final observation about diagonalizable group schemes.

Definition 3.31. We say that a diagonalizable group scheme is finite if the Hopf algebra
representing the group scheme is a finite k-algebra (see part (d) of Definition 3.5 with f the

canonical k-algebra structure map).

Proposition 3.32. If H is a finite abelian group, then Hgiqq 15 a finite diagonalizable group

scheme.

Proof. The Hopf algebra representing H a4 is the group algebra k(H). Since the basis (as a
k-module) of the group algebra is in one-to-one correspondence with the elements of H, the

result is immediate.

3.2 Grothendieck Topologies

In the sections that follow, we will be concerned with several kinds of topologies. Section
3.8, in particular, looks at descent properties with respect to our various topologies, and we
then use these descent properties in Section 4. To that end, we want to discuss Grothendieck
topologies and to identify the main topologies that we will examine in later sections. We

begin with the following definition, as seen in [Art].
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Definition 3.33. A Grothendieck topology T consists of a category C and a set Cov(T) of
families {¢; : U; — U}ier of maps in C called coverings (where in each covering the target

space U of the maps ¢; is fived) satisfying the following conditions:

(a) If ¢; is an isomorphism then the set {¢;} is an element of Cov(T); in other words, an

1somorphism forms a cover consisting of one element.

(b) If {U; — U} is in Cov(T) and {V;; — U;} is in Cov(T') then {Vi; — U}, formed

by taking composition of maps, is in Cov(T) as well.

(c) If {U; — U} is in Cov(T') and V. — U in C is arbitrary, then U; Xy V' exists and
{U; xp V.— V'} is in Cov(T).

We discuss the following examples, which will each play a role in our work.

Example 3.34 (Zariski Topology). Let us consider a scheme X and let U be the set of all
Zariski open subsets of X. Define a covering to be {¢; : Uy — U }ie; where each of the maps
¢; are open immersions and U = U;U;. One can immediately see that all three conditions of
Definition 3.33 are trivially satisfied. So the Zariski topology forms a Grothendieck topology

on the category Schemes.

Example 3.35 (Etale Topology). Let us consider a scheme X over a field k. Define a
covering to be {¢; : Uy — Ulier where each of the maps ¢; are étale morphisms and
U = U;U;. One can immediately see that all three conditions of Definition 3.33 are trivially

satisfied. So the Etale topology forms a Grothendieck topology on the category Schemes/k.

Example 3.36 (Nisnevich Topology). Let us consider a scheme X over a field k. We define
the Nisnevich Topology to be the Grothendieck topology generated by coverings of the form
{1 : U — X, : V — X} where ¢, : U — X is an open immersion, ¢o @V — X
is an étale morphism such that the induced morphism V xx (X \U) — X \ U is a split
surjection, and X = ¢1(U) U ¢o(V'). One can check that all three conditions of Definition
3.33 are satisfied, showing that the Nisnevich Topology is indeed a Grothendieck topology on

the category Schemes/k.
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The next topology is extremely useful, especially in the calculation of KH groups. But

to present it, we need to first give a definition.

Definition 3.37. An abstract blow-up square of Schemes/k is a Cartesian square of
Schemes/k

E—X'
Z X
where X' — X is a proper morphism and Z — X is a closed embedding such that

(X'\ E)red —s (X \ Z) is an isomorphism. When X, X', and Z fit into such a square,

_

we say that X' — X is an abstract blow-up with center Z.

Example 3.38 (cdh-Topology). Let us consider a scheme X over a field k. We de-
fine the cdh-Topology to be the Grothendieck topology generated by coverings of the form
{1 : U — X, 09 : V — X} where ¢, : U — X is an open immersion, ¢o : V — X is
an étale morphism such that the induced morphism V X x (X \U) — X\ U s a split surjec-
tion, and X = ¢1(U) U ¢o(V), and by coverings of the form {¢1 : Z — X, ¢y : X' — X},
where ¢1 : Z — X is a closed immersion, ¢o : X' — X is an abstract blow up with center
Z, and X = ¢1(Z) U ¢o(X'). In other words, the cdh-Topology is generated by Nisnevich
covers and by abstract blowup squares. One can check that all three conditions of Definition
3.33 are satisfied, showing that the cdh-Topology is indeed a Grothendieck topology on the
category Schemes/k.

There are various uses for looking at Schemes and Schemes/k in different topologies. The
most common example is Etale Cohomology, which is a cohomology constructed using the
Etale Topology instead of the Zariski Topology (see [Mil]). However, we will use them in
a different way; namely, we will examine various descent properties of the functors K, KH,

KH(—) ® Q, and Fx in these different topologies. We will revisit this in Section 3.8.
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3.3 Simplicial and Cosimplicial Objects over a Category

In the sections that follow, we will be interested in relating the simplicial structures between
two complete simplicial toric varieties. The idea will be to look at the simplicial scheme
structure that is created by a complete simplicial toric variety. In order to make this a reality,
we need to first define what these terms mean. We will also be interested in cosimplicial
objects as they allow us to define the holim functor in Section 3.5 and will occur naturally
in our arguments in Section 4 since taking KH of a simplicial object will give rise to a
cosimplicial object. To that end, we present the basic definitions as they appear in [BK]
in this section, beginning with the notion of a simplicial object over a category C (see [BK,

Chapter VIII]).

Definition 3.39. Let C be a category. We say X is a simplicial object over C if

(a) For every n > 0, we have an object X,, € C.

(b) For every 0 < i <n, we have face maps

di X, — X1 (310)

and degeneracy maps

S; - Xn — Xn+1 (311)

satisfying the usual simplicial identities:

did; = d;j_1d; for i <j

disj = sj_1d; for 1 <j

d;s; = id for i=7,7+1
disj = sjdi—q for t>j5+1

$iS; = SjSi—1 for Z>j (312)
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In particular, we say that X is a simplicial scheme if X is a simplicial object over the

category of schemes.

As one can see in [BK, Chapter X]|, we can dualize Definition 3.39 to define the notion

of a cosimplicial object over C.

Definition 3.40. Let C be a category. We say X is a cosimplicial object over C if

(a) For every n > 0, we have an object X™ € C.

(b) For every 0 <i <n, we have coface maps

d. X"t — X" (3.13)

and codegeneracy maps

st XM — X7 (3.14)

satisfying the usual cosimplicial identities:

dd = dd for i<

sd = d's'7 for i< j

Sd = id for i =4,7+1
Sdt = d7s? for i >j5+1

sis' = s71s! for i > j. (3.15)

Now that we have defined simplicial and cosimplicial objects, we need to understand mor-
phisms between these kinds of objects. In particular, we want to understand isomorphisms

of such objects.

Definition 3.41. Let X and Y be two simplicial objects over C. We say that f : X — Y
1s a morphism of simplicial objects if f, : X, — Y,, is a morphism in C for every n > 0
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and for all pairs (i,n), we have that s;fn, = fur18; and d;f, = fu_1d;. We say that f is an

isomorphism if f, : X, — Y, is an isomorphism for alln >0

Let X andY be two cosimplicial objects over C. We say that f : X — Y is a morphism
of cosimplicial objects if f*: X™ — Y™ is a morphism in C for everyn > 0 and for all pairs
(i,n), we have that s'f**' = frs' and d'f*~1 = f*d'. We say that f is an isomorphism if

fr: X" — Y™ 4s an isomorphism for alln > 0

Since we have defined objects and morphisms, one could now easily check that we get
two new categories: the category of simplicial objects over C and the category of cosimplicial

objects over C.

3.4 Model Categories

In much of our work, we will need to use the fact that various categories we study are, in fact,
model categories. Working within a model category allows us to derive very nice results; the
challenge is often finding a good model structure to use in the first place. In our case, the
model structure will be vital to our main results, so for convenience we state the definitions
and basic results here. We will follow mostly the presentation in [Hov], although we will also
occasionally use material from [Hir] and [GJ]. We begin by defining model structures and
model categories. To do that, we first need the notions of retracts, functorial factorizations,

and lifting properties, as model structures are defined by these properties.
Definition 3.42. Suppose C is a category, and let Map(C) denote the category whose objects

are morphisms in C and whose morphisms are commutative squares.

(a) A map f in C is a retract of a map g in C if f is a retract of g as objects of Map(C).

That is, f is a retract of g if and only if there is a commutative diagram of the form

N

—(C—— A

! 9 f

(_

Sy

——D——B

where the horizontal compositions are the respective identity maps.
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(b) A functorial factorization is an ordered pair of functors Map(C) — Map(C), which
we denote («, 3), such that f = B(f) o a(f) for all maps f in Map(C).

Definition 3.43. Supposei: A — B andp: X — Y are maps in C. Then i has the left
lifting property with respect to p and p has the right lifting property with respect to i if, for

every commutating square

S

f
—

N

i

—
“—
=

~

g
—

Sy

there is a lift h : B — X such that hoi = f andpoh = g.

We are now ready to define a model structure on a category. The following definition is

as it appears in [Hov].

Definition 3.44. A model structure on a category C is three subcategories of C called weak
equivalences, cofibrations, and fibrations, and two functorial factorizations («, B) and (v, )

satisfying the following properties:

(a) (2-out-of-3) If f and g are morphisms such that g o f is defined and any two of f, g,

and g o f are weak equivalences, then so is the third.

(b) (Retracts) If [ is a retract of g and g is a weak equivalence, fibration, or cofibration,

then so is f.

(c) (Lifting) Define a map to be a trivial cofibration if it is both a cofibration and a weak
equivalence. Similarly, define a map to be a trivial fibration if it is both a fibration
and a weak equivalence. Then cofibrations have the left lifting property with respect
to trivial fibrations, and fibrations have the right lifting property with respect to trivial

cofibrations.

(d) (Functorial factorization) For any morphism f, the factorization («, ) has a(f) a
cofibration and B(f) a trivial fibration, while the factorization (v,0) has y(f) a trivial
cofibration and 6(f) a fibration.
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Definition 3.45. A model category is a category M with all small limits and colimits to-

gether with a model structure on M.

For the remainder of the paper, we will use the letter M to refer to a model category.

We state one very important fact about model categories, as it appears in [Hov]:

Lemma 3.46. Let M be a model category. Then a map is a cofibration (resp. trivial
cofibration) if and only if it has the left lifting property with respect to all trivial fibrations
(resp. fibrations). Dually, a map is a fibration (resp. trivial fibration) if and only if it has

the right lifting property with respect to all trivial cofibrations (resp. cofibrations).

Proof. See [Hov, Lemma 1.1.10].

O

Remark 3.47. Notice that Lemma 3.46 says that the definition of a model category really
only requires that we define what weak equivalences are and what either our fibrations or
our cofibrations are; then the remaining class is determined solely by the appropriate lifting
property. This means that if we want to prove that a map is a fibration, for example, we
can always do so by showing that it has the right lifting property with respect to all trivial

cofibrations.

We now present a very useful result about fibrations that we will use later when con-

structing the homotopy limit.

Proposition 3.48. Suppose M is a model category. If o : X; — Y, is a fibration
(trivial fibration) in M for every i € I (for I some indexing set), then the obvious map
a: [Lie; Xi — [Lic; Yi is also a fibration (trivial fibration) in M.

Proof. Let f: A — B be any trivial cofibration. Then for all ¢ € I, we have a lift in the

following square:

A—>XZ
1 l



which makes both triangles commute. Notice that, by the universal property of products,
we have a map g : B — []

h:B—1]]

;e1 Xi which is in each coordinate g; and we have a map

ser Yi which is in each coordinate h;. This gives us a diagram

N

~

k
Hz’el X;
A

s
~ «@
) l
s

T> Hze]

~
%

Sy

&<

so now we need to check the two triangles commute.

Since the morphism [[,.; X; — [[,c; Yi is, in each coordinate, the map «;, we get that
aog = (o gi)ier = (hi)ier = h so the first triangle commutes. Similarly, for the second
triangle we get g o f = (gi o f)ier = (ki)ier = k so the second triangle commutes. So
g: B — [];c; Xi gives us a lift. As this was done with any trivial cofibration, Lemma 3.46
says that o : [[,c; Xi — [, Yi is a fibration as desired. The proof for the trivial fibration
case is analogous, except that we replace “fibration” with “trivial fribration” and “trivial

cofibration” with “cofribration” in the above proof.

]

Definition 3.49. Let M be a model category, and X an object of M. Let x denote the
final object in M, and let ) denote the initial object of M. Then we say that X is fibrant if
the morphism X — % is a fibration. Similarly, we say that X is cofibrant if the morphism

) — X is a cofibration.

Definition 3.50. Let M be a model category, and X an object of M. Let % denote the final
object in M. We define the functor X — R(X) by splitting the morphism X — x (according
to the functorial factorization given in Definition 3.44) into a trivial cofibration followed by
a fibration. In other words, we get an object R(X) in M such that the morphism X —
factors through R(X), the morphism X — R(X) is a trivial cofibration, and the morphism
R(X) — % is a fibration. Then according to Definition 3.49, R(X) is a fibrant object in
M. We call this functor the fibrant replacement functor. Dually, let ) denote the initial

object of M. We define the functor X — Q(X) by splitting the morphism ) — X into a
37



cofibration followed by a trivial fibration. In other words, we get an object Q(X) in M such
that the morphism 0 — X factors through Q(X), the morphism Q(X) — X is a trivial
fibration, and the morphism ) — Q(X) is a cofibration. Then according to Definition 3.49,
Q(X) is a cofibrant object in M. We call this functor the cofibrant replacement functor.

Notice that Definition 3.50 says we can, up to applying a trivial cofibration (which is,
in particular, a weak equivalence), assume that our objects are fibrant objects. Similarly,
Definition 3.50 also says we can, up to applying a trivial fibration (which is, in particular, a

weak equivalence), assume that our objects are cofibrant objects.

Proposition 3.51. Let M be a model category, and X — Y a weak equivalence in M.

Then R(X) — R(Y) is a trivial fibration; in particular, it is also a weak equivalence.

Proof. Applying the functorial factorization to Y to construct R(Y'), we get the diagram

— R(Y)

where as always, R(Y') is fibrant. Taking the composition of these two maps, we get
get a morphism X — R(Y'), which can be split, using the functorial factorization, into
X — Z — R(Y), where X — Z is a trivial cofibration and Z — R(Y") is a fibration.
Since a composition of fibrations is a fibration, and since both Z — R(Y) and R(Y) — *
are fibrations, we have Z — % is a fibration. In other words, the Z we construct above is
fibrant. Since we constructed it using the functorial factorization, as we did in Definition
3.50, we see that Z = R(X). Since Z — R(Y) is a fibration, we get R(X) — R(Y) is a

fibration, which is the first half of the proof. Now our diagram becomes:

| ]
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and this diagram commutes by construction. Now suppose that X — Y is a weak equiv-
alence. Since Y — R(Y') is a trivial cofibration (and hence a weak equivalence), the two-
out-of-three axiom for model categories says that X — R(Y") is a weak equivalence. Since
X — R(Y) is the composite of X — R(X) and R(X) — R(Y), and since X — R(X) is
a trivial cofibration (and hence a weak equivalence), using the two-out-of-three axiom again

gives us that R(X) — R(Y') is a weak equivalence, and thus a trivial fibration as desired.

]

At this point we are now prepared to present a very useful lemma in model category

theory.

Lemma 3.52 (Ken Brown’s Lemma). Suppose that M is a model category and C is a cat-
egory with a subcategory of weak equivalences that satisfies the 2-out-of-3 axiom. Suppose
F: M — C s a functor that takes trivial cofibrations between cofibrant objects to weak
equivalences. Then F' takes all weak equivalences between cofibrant objects to weak equiva-
lences. Dually, iof F takes all trivial fibrations between fibrant objects to weak equivalences,

then F' takes all weak equivalences between fibrant objects to weak equivalences.

Proof. See [Hov, Lemma 1.1.12].

]

We conclude this section by presenting the model categories (and their model structures)
that we will be using in this paper. We begin by looking at the category of spectra. We
will, throughout this paper, assume that the category of spectra, which we denote Spectra,
comes with the stable model category structure as presented in [BF]. For completeness, we
present the definition and model structure here. Recall that a category is called pointed if

the initial and final objects are the same.

Definition 3.53. We define the category Spectra as follows. An object X, called a spectrum,
is a sequence of pointed simplicial sets X,, (for n > 0) and maps of pointed simplicial sets

o™ STA X" — X" where ST = A[1]/OA1] is the simplicial circle formed by identifying
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the two vertices of A[1]. A morphism in Spectra, denoted f : X — Y, consists of maps

ne X" 5 Y™ of pointed simplicial sets (for n > 0) such that o™(idei A f7) = oo,
f fp P forn > st Af /

Theorem 3.54. Let Spectra be as in Definition 3.53. Then the category Spectra has a model

structure with the following classes of morphisms:

(a) The weak equivalences are stable weak equivalences; that is, f : X — Y is a weak
equivalence if f, : m. X — m.Y is an isomorphism of groups for all values of x. Here

T X =lim 7, |X"|, where |X"| denotes the geometric realization of X™.

(b) The cofibrations are the stable cofibrations; that is, f : X — Y is a cofibration if
O X% — YO is a cofibration of pointed simplicial sets (which is just an injection)

and the morphisms
x I stayr — vt (3.16)
SIAX™
are cofibrations of pointed simplicial sets (i.e. injections) for all n > 0.

(c) Applying Lemma 3.406, the fibrations are the morphisms f : X — Y that satisfy the
right lifting property with respect to all trivial cofibrations.

Proof. See [BF|. Note that we can give an explicit construction for the fibrations (as opposed
to using Lemma 3.46); however, we won’t use this explicit description so we skip it. The

interested reader can see the explicit construction in [BF].

]

One nice result that we plan to use implicitly throughout this paper is that the category
of cosimplicial objects over some model category M also forms a model category. Before

doing so, we need another definition

Definition 3.55. Let X be a cosimplicial object over M and let n > —1. We let

M"X ={(z% 2", ...,2") € X" x -+ x X"| s'2? = 57712} (3.17)
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(for 0 <i < j <n). Observe that if

HX"—> IT x (3.18)

0<i<j<n
15 given by
061(1307271, ,an) = (Sil’j)ogi<j§n (319)
and
HX” — JI x! (3.20)
0<i<yi<n
18 given by
Ozl(l'o, ZL‘l, ,[L’n) = (Sj_ll'i)0§i<j§n (321)

then M"X 1is the equalizer of a; and ay. We call M™X the matching space of X. Ob-
serve that the matching spaces all come with natural maps sX : X" —s M"X given by
sX(a) = (s%a,...,s"a). In particular, we have M1 X = % and M°X = X°.

n

Theorem 3.56. Let M be a model category. Then the category of cosimplicial objects over

M forms a model category with the following classes of morphisms:

(a) The weak equivalences are morphisms f : X — Y such that, for every n > 0,

T X" — Y™ is a weak equivalence in M.

(b) The fibrations are morphisms f : X — Y such that

(f"sX) XM — Y ey M™X (3.22)

are all fibrations in M for all n > —1.

(c) Applying Lemma 3.46, the cofibrations are morphisms f: X — Y that satisfy the left
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lifting property with respect to all trivial fibrations.

Proof. See [BK, Chapter X, Section 4]. Note that we could give an explicit construction of
the cofibrations; they are morphisms f : X — Y such that f is one-to-one and induces
an isomorphism on the maximal augmentation. However, the maximal augmentation is a
construction that we will not use in the paper, so we omit its presentation. The interested

reader may find its construction in [BK, Chapter X, 4.2].

The final model structure we consider is a model structure on a category of diagrams.

Theorem 3.57. Let M be a model category, I a small category, and M! the category of
diagrams. Then M! has a model structure with the following classes of morphisms:

(a) X — Y is a weak equivalence if and only if X; — Y; is for every i.

(b) X — Y is a fibration if and only if X; — Y is for every i.

(¢) By Lemma 3.46, X — Y s a cofibration if and only if it satisfies the left lifting

property with respect to trivial fibrations.

Proof. See [Hov, Theorem 5.1.3].

3.5 Homotopy Limits

At this point we want to give the general definition and basic properties of homotopy limits,

as they will be crucial in our proof; for additional details, see [BK, Chapter XI].

In order to define homotopy limits, we need to define two new functors: the total object
functor and the cosimplicial replacement functor. These are denoted Tot and IT*, respectively.
These will be important, as the holim functor will be defined based on these. We will begin

with the total object functor, which requires that we begin by defining function objects.
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Definition 3.58. Let X and Y be two cosimplicial objects over a simplicial model category
M. We define the function object Hom(X,Y') to be the object where the n-simplices are the

maps

Aln]® X — Y, (3.23)

with faces

An -1 X — AR X — Y (3.24)

(where Aln — 1] ® X — Aln| ® X by d' ® X), and degeneracies

An+1]@X — AR X — Y (3.25)

(where Aln +1]® X — Aln]®@ X by s' @ X ).

Example 3.59. Consider the category Spectra. This is a simplicial model category, where

the action is given by

Aln] ® X = (Aln] X Xon)m. (3.26)

In other words, the spectrum given by Aln] ® X is the spectrum whose sequence of simplicial
sets is given by Aln] x X,, for all m. With this simplicial model category structure, one
can define the function spectrum Hom(X,Y') for two cosimplicial spectra X andY using the

construction in Definition 3.58.

We in particular have a very important property about function objects in categories of
cosimplicial objects over a simplicial model category, which we state as the next theorem;

for the proof, see [BK, Chapter X, Section 5.

Theorem 3.60 (Axiom SM7). With the notion of function objects defined in Definition

3.58, the category of cosimplicial objects over a simplicial model category M satisfies axiom
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SM7; in other words, if i : A — B is a cofibration and p : X — Y s a fibration, then the

map
(¢,p) : Hom(B, X) — Hom(A, X) X Hom(A,X) Hom(B,Y) (3.27)

s a fibration, and is a weak equivalence if either i or p is a weak equivalence.

Corollary 3.61. If f : X — Y is a weak equivalence with X and Y fibrant, and B is

cofibrant, then f induces a weak equivalence Hom(B, X) — Hom(B,Y').

Proof. This is immediate from Theorem 3.60 by letting A = ().

]

Now we define the total object of a cosimplicial object over a simplicial model category

M, and we prove an important basic property.

Definition 3.62. Let A denote the cosimplicial standard simplex. Let X be a cosimplicial
object over a simplicial model category M. We define the total object of X, denoted Tot(X),
to be Hom(A, X). Note that Tot(X) is an object of M.

Corollary 3.61 has the following very important consequence for Tot(X') that we plan to

use.

Corollary 3.63. If X — Y is a weak equivalence between fibrant objects, then

Tot(X) — Tot(Y) is a weak equivalence.

Proof. The cosimplicial standard simplex A is cofibrant (see [BK, Chapter X, Example 4.3]).
Therefore this is immediate by Corollary 3.61 and the definition of Tot.

]

Now that we have defined Tot, we proceed to define IT*, the cosimplicial replacement func-
tor. To do this, we need to first consider the nerve (also called underlying space) of a small
category; then, with that understanding, we can define a cosimplicial object constructed

from a category of diagrams associated to that small category.
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Definition 3.64. Let I be a small category. We denote by I the nerve of I, which consists

of simplices

20 o 1 o oo o in

which we denote by the shorthand u. The face maps d; are given by deleting the iy term if
Jj = 0, deleting the i, term if j = n, and composing o; with ajyq for all other j. In other

words, this gives us

11 as an in
for do(u),
to o1 1 %) an1 n-l
for d,(u), and
(N o 11 o e oy Zj—l o1 Zj+1 e <—an in

for d;(u), with 0 < j < n. For s;(u), we simply add in an identity map at the j™ spot. In

other words, we get

for s;(u).

Definition 3.65. Let M be a simplicial model category, I a small category, and M! the
category of diagrams. Let X be an object in M. Let X, denote the object in our diagram
corresponding to the object i; in I, and let X, denote the morphism in our diagram X that
is induced by the morphism o in L. Let u be as defined in Definition 3.64, and let Z,, denote
the set of all n-simplices in the nerve of I. We define I1*(X), the cosimplicial replacement

of X, to be the cosimplicial object (over M) where

)" = I X (3.28)



with coface and codegeneracy maps induced by s = iy, for0<j <mn, & = idy,, for

0<j<n,and d® = X,,.

The advantage of viewing our situation from the perspective of diagrams is that, from
Theorem 3.57, a weak equivalence/fibration is just a map of diagrams where X; — Y is
a weak equivalence/fibration for every i. We would like to see what happens to a weak
equivalence or a fibration if we apply the cosimplicial replacement functor. To do this, we

need the following lemma.

Lemma 3.66. Letting d (Z,,) denote the set of all degenerate simplicies in I, we have that

IT X =M arx)) (3.29)
wed(Zn)

where M™X denotes the matching space of Definition 3.55. Consequently, we have
(IT"(X))" = Z"(IT"(X)) x M"~H(IT"(X)) (3.30)
where

77mx) = I X (3.31)
weIp\d(Zy)

is the “cofree” part of (II*(X)) in degree n.

Proof. See [GJ, Chapter VII, Example 4.2] and [GJ, Chapter VIII, Section 2].

]

Theorem 3.67. Suppose that X — Y is a fibration/trivial fibration in M!. Then the map
II*(X) — II*(Y) is a fibration/trivial fibration in the category of cosimplicial objects over
M.

Proof. Recall from Theorem 3.56 that II*(X) — II*(Y') is a fibration/trivial fibration in
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the category of cosimplicial objects over M if and only if
(I (X))™F — (I (V)™ X (vy) M™(IT7(X) (3.32)

are all fibrations/trivial fibrations in M for all n > —1. Applying Lemma 3.66 to (IT*(X))"*!

and (IT*(Y"))"™!, and canceling the fiber product, the map reduces to
Z"M (X)) x M™(IT*(X)) — Z"THIT*(Y)) x M™(IT*(X)) (3.33)

This map is the identity on M™(IT*(X)) and is induced by the given map X — Y (which is
a vertex-wise fibration/trivial fibration) on Z"*(I1*(X)) — Z""(I1*(Y)). In other words,
this map is a product of fibrations/trivial fibrations. But by Proposition 3.48, we conclude

that this product of maps is a fibration/trivial fibration as well, completing the proof.

]

Corollary 3.68. If X is fibrant in M?, then 11*(X) is fibrant in the category of cosimplicial

objects over M.

Proof. If * is the final object of M, then the constant diagram of # is the final object of M/
and so I1*(X) — IT*(x) is a fibration by Theorem 3.67. The final object in the category of
cosimplicial objects over M is the cosimplicial object consisting of * in each degree, with the
obvious coface and codegeneracies. However, IT*(x) is, in each degree, a product of copies
of . As such a product is always canonically isomorphic to * itself, I[I*(x) is canonically

isomorphic to the cosimplicial object consisting of x in each degree. Thus, IT*(X) is fibrant.

]

Corollary 3.69. Suppose that X — Y is a weak equivalence between fibrant objects in M.

Then the map II*(X) — TI*(Y") is a weak equivalence in the category of cosimplicial objects
over M.

Proof. By Lemma 3.52, it’s enough to show that if X — Y is a trivial fibration between

fibrant objects in M, then the map IT*(X) — II*(Y) is a weak equivalence in the category
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of cosimplicial objects over M. But this is immediate from Theorem 3.67, since cosimplicial

replacement sends trivial fibrations to trivial fibrations (which are weak equivalences).

O

Definition 3.70. Let X be an object in M*, where M is a simplicial model category. Then

we define

holim(X) = Tot(IT*(R(X))), (3.34)

where R(X) denotes the fibrant replacement of X. In particular, as the category of cosim-
plicial objects over M can also be realized as the diagram category M?, where A denotes
the cosimplicial indexing category, we define holim(X) as above for any X in the category

of cosimplicial objects over M. Note that holim(X) is an object of M.

Now we can begin to prove some very important results related to the homotopy limits

of our cosimplicial objects. We begin with a general observation.

Proposition 3.71. Let X and Y be objects in M!, where M is a simplicial model category,
and suppose f : X — Y is a weak equivalence. Then holim(X) — holim(Y') is a weak
equivalence. In particular, if X and Y are cosimplicial objects over M (again, M is a
simplicial model category) and f : X — Y is a weak equivalence, then the induced morphism

holim(X') — holim(Y) is a weak equivalence also.

Proof. As we saw in Proposition 3.51, R(f) : R(X) — R(Y) is a trivial fibration. By using
either Theorem 3.67 or Corollary 3.69, we have that the morphism II*(R(X)) — II*(R(Y))
is a weak equivalence, and by Corollary 3.68, it is a weak equivalence between fibrant objects.
Finally, by Corollary 3.63, the map Tot(II*(R(X))) — Tot(II*(R(Y))) is a weak equiva-
lence. By Definition 3.70, that means that holim(X) — holim(Y) is a weak equivalence,

as desired.

We conclude this section by stating the following theorem.
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Theorem 3.72. Given a homotopy cartesian square of diagrams in M, where M is a
simplicial model category, applying the holim functor at each wvertex gives us a homotopy

cartesian square in M.

Proof. This is an immediate application of [BK, Chapter XI, Example 4.3].

3.6 Background on Algebraic K-Theory and KH-Theory

We are now ready to discuss Algebraic K-Theory and KH-theory. The origins of K-theory
are due to Grothendieck, who, for a scheme X, constructed Kq(X) as the group of isomor-
phism classes of locally free coherent sheaves on X modulo exact sequences. The group
Ko(X) is often called the Grothendieck Group because of this. This later inspired a topolog-
ical construction that was analogous to Kq(X), which yielded a theory of higher topological
K-theory; that is, it yielded groups K, (X), for n > 0. However, algebraists were unable to
discover a suitable analog of higher topological K-theory until Quillen did so in the landmark
paper [Quil]. Since then, much work has gone into expanding Quillen’s ideas. Waldhausen
showed in [Wal] how to build K-theory out of a complicial biWaldhausen category (which
is very similar to a Model Category). Weibel showed in [Weil] that there is a homotopy-
invariant version of K-theory, which he called KH-theory, and showed that KH satisfies the
Mayer-Vietoris property from [Tho]. Thomason collected much of the work on Higher Alge-
braic K-theory into the paper [TT], where he constructs (among other things) a more flexible
definition of K-theory using perfect complexes, a Projective Bundle formula, a Localization
sequence, and a non-connective spectrum K® with K as its —1-cover (this spectrum K? is
often called non-connective K-theory). The construction of K2, in particular, allows us to
extend K-theory to negative degrees, and for n > 0, m, K? = K,,. In later sections of this

paper, when we say K, we are really referring to the spectrum K2,

In regards to Thomason’s construction of K(X) (that is, the K-theory spectrum for the

scheme X), we recall the following definitions.

Definition 3.73. For any integer m, a chain complex E° of Ox-modules on a scheme X
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is said to be strictly m-pseudo-coherent if E' is an algebraic vector bundle (that is, E* is a
locally free Ox-module of finite type) for all i > m and E* = 0 for all i sufficiently large.
The complex E s called strictly pseudo-coherent if it is strictly m-pseudo-coherent for all

m; that is, if it is a bounded above complex of algebraic vector bundles.

Definition 3.74. A complex E of Ox-modules on a scheme X is said to be strictly perfect
iof it is strictly pseudo-coherent and strictly bounded below. In other words, a strict perfect

complex is a strict bounded complex of algebraic vector bundles.

Remark 3.75. If X = Spec(A) is affine, recall that algebraic vector bundles on X correspond
to finitely generated projective A-modules. This follows from the fact that the category of
A-modules is equivalent to the category of quasi-coherent O x-modules, via the map M — M
(see [Hart, Chapter II, Corollary 5.5]). So over X = Spec(A), strict perfect complexes can

be viewed as strict bounded complexes of finitely generated projective A-modules.

Definition 3.76. We say that a complex E° of Ox-modules on a scheme X is pseudo-
coherent if it is locally quasi-isomorphic to a strict pseudo-coherent complex. We say that a
complex E' of Ox-modules on a scheme X is perfect if it is pseudo-coherent and has locally

finite Tor-amplitude.

For the precise definitions of locally quasi-isomorphic and locally finite Tor-amplitude,
see [TT]. Beyond their presence in this definition, they will not be important to our work.

We now present Thomason’s definition of the K-theory spectrum for X.

Definition 3.77. For a scheme X, K(X) is the K-theory spectrum of the complicial bi-
Waldhausen category of perfect complexes of globally finite Tor-amplitude in the category of
Ox-modules. The spectrum K(X) has the property that its stable homotopy groups give us
the K-theory of X ; in other words

1 K(X) = K, (X). (3.35)

For a scheme X, K™*(X) is the K-theory spectrum of the complicial biWaldhausen

category of strict perfect complexes in the category of Ox-modules. The spectrum K"*¢(X)
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has the property that its stable homotopy groups give us the naive K-theory of X; in other

words
T KM (X) = KRt (X). (3.36)

The functors K(—) and K"¢(—) are both contravariant functors from the category of
schemes to the category of spectra; if f : X — Y, we write f* : K(Y) — K(X) for

the induced morphism, and similarly for K™¢(—).
Remark 3.78. The spectrum K"**¢(X) of Definition 3.77 is the construction for higher
algebraic K-theory given in [Quill; see [T'T, Proposition 3.10].

We now present a proposition that we will implicitly use during the course of our proof.

Proposition 3.79. For a scheme X with an ample family of line bundles (in particular,
for X affine), there is a natural homotopy equivalence of spectra K™¢(X) = K(X). In

particular, the K-theory of such a scheme can be calculated using either theory.

Proof. See [TT, Corollary 3.9].

Our next concern is morphisms between K-theories.

Proposition 3.80. Given two Waldhausen categories A and B, an exact functor

F: A — B induces a map of spectra F, : K(A) — K(B).

Proof. See [TT] or [Wal].

]

Thomason shows in [TT, Section 3| that if £" and F" are strict perfect complexes, then
E ®0, F" is also strict perfect. Similarly, he shows the same result holds if £ and £ have

finite Tor amplitude or are both pseudo-coherent. Thus we get a pairing

K(X) AK(X) — K(X) (3.37)
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induced by the tensor product, which gives a graded ring structure to @ K,(X), and a pairing

Knaive(X) A Knaive(x) N Knaive(x) (338)

induced by the tensor product, which gives a graded ring structure to & KZ“W(X ); for the
details of the proof, see [TT], [Wal], and [GroSGA6]. Under either of these pairings, we
denote the product of two elements a and b by a - b, and we call this the cup product of a
and b. Note that when a and b are both elements of K;(X), authors often write {a, b} to
denote their cup product. In order to avoid confusion with the literature, we will adopt this

notation as well.

Proposition 3.81. If ¢ : R — S is a ring homomorphism of commutative rings,

then g* : ®@K.(R) — @®K.(S) is a graded ring homomorphism. In other words,
g9*(a-b) = g*(a) - g*(b).

Proof. As always, both maps are induced by what happens on the level of finitely generated
projective modules. Let P and ) be two finitely generated projective R-modules. Then
the cup product of P and @ is induced by the tensor product P ®g @, and so g*(a - b)
is induced by (P ®g @) ®g S. On the other hand, if we first apply ¢*, this corresponds
to mapping P and ) to P ®r S and () ®r S; then taking the cup product says that
g*(a) - g*(b) is induced by taking (P ®p S) ®s (Q ®r S). But notice that, as modules,
we have (P®rS)®s (Q®grS) = (P®rQ)®rS. So on the level of projective modules, and
hence on the level of strict perfect complexes, these are canonically isomorphic. This means

that ¢g*(a-b) = ¢g*(a)-g*(b), and therefore that g* is a graded ring homomorphism as desired.

]

Another important theorem is the Bass Fundamental Theorem. It will prove extremely

useful to us later, when we examine maps on the K-theory of algebraic tori.

Theorem 3.82 (Bass Fundamental Theorem). If R is a ring, there is a canonical split exact
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sequence

0—— Ku(R) === Ko (Rlt]) © K, (R[]) —— Ko (BRIt §]) =22 Koa (R) — 0

where the splitting of 0 is given by multiplication by t € Ky (R]t, %]) If R is reqular, this

splitting yields an isomorphism

K, (R {t, H) ~ K, (R) & K, 1(R) (3.39)

where again the splitting is given by multiplication by t € Ky (R]t, %])

Proof. For the proof, see [Wei3, Theorem 8.2] or [TT, Theorem 6.6].

]

Remark 3.83. In Theorem 3.82, when we say multiplication by ¢, we mean multiplication
under the cup product; i.e., under the grading on & K, (R][t, %]) induced by the tensor product,

as described above.

The results presented so far in this section also extend to negative degrees when you

replace K with K?; see [TT, Section 6] for the details.

We are now ready to define homotopy K-theory (which we denote by KH-theory for the
remainder of the paper). Weibel defines KH for a ring A by setting KH(A) to be the (fibrant)
geometric realization of the simplicial spectrum K®(AA), where AA is the simplicial ring so

that, for any n, A, A = Alto, ....t,]/ (O t; — 1) A. Then KH satisfies the following important

properties:

Theorem 3.84. Let A be an associative ring.

(a) (Homotopy Invariance) For every set X, let A[X] denote the polynomial ring in the

commuting variables X. Then

KH,(A) 2 KH, (A[X]). (3.40)
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(b) (Bass Fundamental Theorem) For all n € 7, we have

KH, (Alz, 27Y]) & KH,(A) & KH,_, (A). (3.41)

(c) (Graded Rings) If A= Ay ® A1 & - - - is a graded ring, then
KI,(A) 2 KH, (A). (3.42)

Proof. See [Weil, Theorem 1.2, parts (a), (c), and (d)]. Note that he proves part (a) by
showing the stronger statement that, as spectra, KH(A) ~ KH(A[X]).

O

Weibel then goes on to show that KH satisfies excision for ideals and the Mayer-Vietoris
property for ideals. He next extends his construction of KH to quasi-projective schemes
by using Jouanolou’s Device, before finally defining KH(X), where X is a scheme, to be
holim(KH(Uf)), where U denotes any cover of X by affine open subschemes.

This definition was later modified in [TT] to the following, more useful definition:
Definition 3.85. Let X be a scheme, and let A" denote the standard simplicial object, where
A" = Spec (Z[To, .., T /(X Th = 1)). We define

KH(X) = hocolimae KP(X x A). (3.43)

The spectrum KH(X) has the property that its stable homotopy groups give us the KH-theory

of X; in other words

7, KH(X) = KH,(X). (3.44)

We will see in Section 3.8 that these two definitions for KH agree when X is assumed
quasi-compact and quasi-separated. Since all toric varieties are quasi-compact and separated,
this is enough for our purposes. The fact that these definitions agree for all Noetherian
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schemes is due to Thomason; see [Tho, Exercise 2.5] and [TT, Theorem 10.3]. The original
intuition is due to Brown and Gersten; see [BG, Theorem 4]. See Remark 3.120 for further

discussion of this.

Definition 3.86. Let X be a scheme. We define K(X)® Q to be the spectrum whose stable

homotopy groups are K,,(X) ® Q. In other words,

T K(X) ®Q = K, (X) ® Q. (3.45)

Just as K is contravariant, K(—) ® Q is contravariant, and given any morphism

fiX—Y (3.46)

the induced morphism (K(—) @ Q)(f) is, in each degree n, given by

fT®idg 1 Kp(Y)®Q — Kip(X) @ Q (3.47)

where f* s the induced map from Definition 3.77. To simplify notation, we will denote
(K(=) @ Q)(f) by (f*)e-

Similarly, we define KH(X) ® Q to be the spectrum whose stable homotopy groups are
KH,(X) ® Q. In other words,

m KH(X) ® Q = KH,(X) @ Q. (3.48)

Again, just as KH is contravariant, KH(—) ® Q is contravariant, and given any morphism

f: X —Y (3.49)

the induced morphism (KH(—) ® Q)(f) s, in each degree n, given by

KH(f) ®idg : KH,(Y) ® Q — KH,,(X) ® Q. (3.50)
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To simplify notation, we will denote (KH(—) @ Q)(f) by KH(f)q.

Remark 3.87. Formally, K(X) ® Q and KH(X) ® Q are obtained by taking a Bousfield
localization at the Eilenberg-Maclane spectrum HQ. However, as we are only interested in

the fact that

T K(X)®Q = K, (X)®Q (3.51)

and that

7 KH(X) ® Q = KH,(X) ® Q, (3.52)

we skip the construction.

As was mentioned in Section 1, K(X) and KH(X) agree with each other when X is
smooth (see [Weil, Proposition 1.5] and [Weil, Example 4.7]). However, when X is not
smooth, K(X) and KH(X) still share a relationship. The difference between K(X) and
KH(X) is what we call Fx(X). Our next goal will be to present the construction of Fx(X).
To do so, we begin with a definition (see [CHWW3, Section 3]).

Definition 3.88. If E is a presheaf of complexes on Schemes/k, then we denote by
Hean(—, E) the cdh-fibrant replacement of E (see [CHWWS, Section 2]). We define Fg
to be the shifted mapping cone of the map E — Hegn(—, E). In other words, we have

Hcdh(Xy E)[—l] — .FE(X) — E(X) — Hcdh(Xa E) (353)

In particular, if HC is the presheaf of complexes on Schemes/k that maps to the cyclic
homology complex, then we define Fuc to be the shifted mapping cone of the map
HC — Hcdh(_7 HC)

Remark 3.89. While we will not treat the subject of triangulated categories explicitly in
this paper, one should note that Fg is the choice of object that makes the sequence in

Equation (3.53) into a distinguished triangle.
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Definition 3.90. If £ is a presheaf of spectra on Schemes/k, then we denote by Hegn(—, )
the cdh-fibrant replacement of €. We define Fg to be the homotopy fiber of the map
E — Hean(—,E) (see [CHW, Definition 1.4]). In particular, if K is the presheaf of spectra
on Schemes/k giving us the K-theory spectrum of Definition 3.77, then we define Fx to be
the homotopy fiber of the map K — H g (—, K).

Remark 3.91. By [Hae, Theorem 6.4], H 4, (—, K) ~ KH, so an equivalent formulation of
Definition 3.90 is to say that Fxk is the homotopy fiber of the map K — KH.

It turns out that Fx and Fyc are related. We present that relationship in the following

theorem.

Theorem 3.92. The presheaves Fx and Q' Fuc are weakly equivalent as presheaves of
spectra. In the more modern language, that means that, for every X in Schemes/k, there is

a long exact sequence

oo KHpg (X) — Hy™ (X, Frell]) — Kn(X) — KH,(X) — -+ (3.54)

and (Fx)n(X) = H;2 (X, Fuc[l]).

Proof. See [CHW, Theorem 1.6] and [CHWW, Theorem 5.5].

O

Remark 3.93. Strictly speaking, Fyc is only a presheaf of complexes, not a presheaf of spec-
tra. We will not focus on this detail too closely, but it is resolved by applying the Eilenberg-
Mac Lane functor to Fyc to yield an equivalent presheaf of spectra. So the Fyc appearing
in Theorem 3.92 is really the presheaf of spectra we get after applying the Eilenberg-Mac
Lane functor to Fgc. The second result of Theorem 3.92 then follows in light of the work in
[CHSW, Section 3] and [Tho, Scholium of Great Enlightenment 5.32], as well as the proofs
given in [CHW, Theorem 1.6] and [CHWW, Theorem 5.5].

Since we study toric varieties, the results of [CHWW] are important for our purposes. In

this paper, they prove the following theorem:
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Theorem 3.94. For every toric variety X over a field k of characteristic 0, the map
K, (X) — KH.(X) of Definition 3.91 is a split surjection. Hence

K, (X) 2 KH, (X) @ (Fi)n(X) (3.55)

where (Fx)n(X) = H, (X, Fuc[l]).

Proof. See [CHWW, Proposition 5.6].

]

So for toric varieties, understanding of the K-theory can be accomplished by understand-
ing the KH-theory and the Fx groups. Given that this is the case, and given that our
primary focus is on complete simplicial toric varieties, much of our work in this paper will

focus on the calculation of KH(X) and Fx(X).

3.7 Transfer Arguments in Algebraic K-Theory

In Section 3.6, we saw that K, KH, K(—)®Q, and KH(—) ® Q are all contravariant functors
from schemes to spectra. Recalling that any ring homomorphism f : A — B gives us an
associated morphism f® : Spec(B) — Spec(A), we see that this is equivalent to saying that

they are all covariant when defined on the category of rings, so that if f: A — B, then

£ K(A) — K(B) (3.56)

and similarly for the other three. The goal of this section is to construct a morphism

o K(B) — K(A) (3.57)

which we call the transfer morphism, and to give conditions under which a transfer morphism
exists. Throughout this section we will restrict our focus to regular rings, so that K and KH

will be the same, as this will be the only situation in which we will use transfer arguments
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in this paper. To begin, we need the following lemmas.

Lemma 3.95. Suppose f : A — B is a flat, finite morphism of Noetherian rings. The
functor t; + B — Mod — A — Mod sending a B-module M to the A-module M (via the

A-module structure given in part (a) of Definition 3.5) has the following properties:

(a) The functor ty is always exact.
(b) The functor t; sends finitely generated modules to finitely generated modules.

(¢) The functorty sends finitely generated projective modules to finitely generated projective

modules.

Proof. For (a), this is clear since any short exact sequence remains short exact when you use
the A-module structure induced by f. For (b), since f is finite, B is finitely generated as
an A-module via the action of f. Then any module that is finitely generated as a B-module
is also automatically finitely generated as an A-module; indeed, if x4, ..., z,, generate B as
an A-module, and ¥y, ..., y, generate M as a B-module, then the mn products z;y; generate
M as an A-module. For (c), if M is a finitely generated projective B-module, then it is
also flat. By Proposition 3.17, M is also flat as an A-module via the A-module structure
given in part (a) of Definition 3.5. So ¢; sends a finitely generated projective B-module to
a finitely generated flat A-module. Since A is Noetherian, Corollary 3.19 implies that M is
projective as an A-module; therefore, t; sends finitely generated projective B-modules to a

finitely generated projective A-modules as desired.

]

Lemma 3.96. Suppose f : A — B is a flat, finite morphism of Noetherian rings. Then
there is an induced map f. : K(B) — K(A).

Proof. By Lemma 3.95 part (c), t; sends finitely generated projective modules to finitely
generated projective modules. That means that ¢; sends any strict perfect complex over

B to a strict perfect complex over A. By Proposition 3.80, this induces a morphism
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K"¢(B) — K"™¢(A) ; by Proposition 3.79, this induces a morphism K(B) — K(A).
We call this induced map f,.

]

One of the basic properties of transfer maps is that it satisfies the following version of

additivity.

Proposition 3.97. Suppose f: A — B is a flat, finite morphism of Noetherian rings. If
we have that B = B’ x B", and that f decomposes as ' x f”, then we have f, = f. + fI.

Proof. As usual, we induce transfer maps by restriction of scalars on finitely generated
projective modules. Let P be any finitely generated projective B-module; then ¢;(P) is just
P viewed as a projective A-module. Since B = B’ x B”, any module (and hence any finitely
generated projective module) decomposes as M = M’ x M"; hence our module P = P' x P",
which can be rewritten as P = P’ @ P”. Here P’ is a B’-module and P” is a B”-module,
and both are still projective. So t¢(P) = t;(P' & P") = t;(P') & t;(P"). As f" takes only
the value 0 in P" and f’ takes only the value 0 in P”, we have that t;(P') = tp(P') and

tr(P") = tpm(P"). Taking the induced map on strict perfect complexes then yields the result.

]

Lemma 3.96 shows that under certain conditions, a transfer map exists. One can now
ask how the ordinary induced map f* and the transfer map f, are related. One immediate

answer comes from the following lemma.

Lemma 3.98 (Projection Formula). Suppose f : A — B is an injective, flat, finite mor-

phism of Noetherian rings. Then if x € K,(B) and y € K,,,(A), we have

folz - f(y) = ful@) -y (3.58)

where the multiplications x - f*(y) and f.(x) -y are both cup product multiplications.
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Proof. We sketch the proof given in [Wei3]. As mentioned in Section 3.6, and proven in

[TT], the tensor product induces a pairing

K(B) ANK(A) — K(A) (3.59)

which represents the right hand side of the projection formula. If P is a projective A-module

and @ is a projective B-module, the isomorphism

QAP =Q®p(B®sP) (3.60)

induces a natural homotopy to a pairing that represents the left hand side of the projection

formula, completing the proof. See [Wei3] for the full details.

]

Remark 3.99. The Projection Formula given in Lemma 3.98 is a special case of the more
general Projection Formula: If f : X — Y is a quasi-compact, quasi-separated morphism
of schemes with Y~ quasi-compact, such that Rf, preserves perfection (and therefore induces
a transfer morphism f, : K(X) — K(Y)), then f, is a map of module spectra over the ring

spectrum K(Y'). In other words, for x € K,,(X) and y € K,,(Y'), we have

fulw - f*(y) = fulz) -y (3.61)

For the proof of this version of the projection formula, see [TT, Proposition 3.17], [Quil,

Section 7.2.10], and [GroSGAG, 1V, 2.12].

In what follows, we will begin to examine what happens when we tensor with Q. To that

end, we state the following lemma for convenience.

Lemma 3.100. Suppose that A is an abelian group, and that f : A — A is multiplication

by n for some n > 0. Then the map

f®idg: A®Q — AR Q (3.62)
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18 an isomorphism.

We are now ready to apply the Projection Formula of Lemma 3.98.

Theorem 3.101. Suppose f : A — B is an injective, flat, finite morphism of Noetherian
rings. Then the map f.o f*: K,(A) — K, (A) is multiplication by [B], where [B] € Kq(A)
denotes the class of B. If B is a free A-module of rank d, then f, o f* is multiplication by d.

Proof. As we saw in Lemma 3.96, our morphism f as constructed induces a transfer map.

By Lemma 3.98, for any = € Ky(B) and y € K,,(A), we get

folz - f(y) = ful@) - v (3.63)

If © € Ky(B), then by construction f,(z) € Ky(A). Letting x = 1 (that is, letting

x = [B] € Ky(B)), we see that our formula becomes

L () = £.(1) -y (3.64)

So we need only determine what f,(1) is. As we saw in Lemma 3.95 and Lemma 3.96, f,
sends any finitely generated projective B-module to itself, except viewed now as a finitely

generated projective A-module. So

f(1) = £.([B]) = [B] € Ko(4) (3.65)

making our formula

f(f*(w) =[B]-y (3.66)

as claimed. If B is a free A-module of rank d, then as A-modules, B = A% Therefore,

[B] = [A9] = d € Ky(A). In this case, our formula would then become

() =d-y (3.67)
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as claimed.

[]

Corollary 3.102. Suppose f : A — B is an isomorphism of Noetherian rings. Then f,o f*
is the identity map, and f, = (f*)~L.

Proof. 1f f is an isomorphism, then B is a free A-module of rank 1; by Theorem 3.101, f,o f*
is multiplication by 1, which is the identity map as claimed. Since f being an isomorphism

implies f* is an isomorphism, taking (f*)~! of both sides yields the second result.

]

Corollary 3.103. Suppose f: A — B is an injective, flat, finite morphism of Noetherian

rings, and B is a free A-module of rank d. Then for all n, the map

(fao (fe: Kn(A)©Q — Ku(4) @Q (3.68)

18 an isomorphism, and

(f)o: Kau(A) @ Q — K (B)®Q (3.69)

18 1njective.

Proof. As usual, (f*)g = f* ® idg; similarly, we define (fi)g = f« ® idg. By Theorem 3.101,
feo f*: K, (A) — K,,(A) is multiplication by d. Therefore, by Lemma 3.100, the map

(feo [ @idg = (f)oo (fe: Ka(4) ©Q — Ku(4) @ Q (3.70)

is an isomorphism. Since this composite is injective, the first map must also be injective, so

(f*)q is injective as claimed.

]

One very nice application of transfer maps, and of Corollary 3.103 in particular, is in

what is known as a transfer argument.
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Theorem 3.104 (Transfer Argument). Suppose we have the following commutative square

of rings

Sy

h1
—_—

~

e

«—
Q

Q
S

—
ha

Suppose further that f : A — C and g : B — D satisfy the conditions of Lemma 3.96
(so that transfer maps exist), that C is a free module of finite rank over A via the structure
induced by f, and that D 1is a free module of finite rank over B wvia the structure induced
by g. Furthermore, suppose that (g«)g © (h)o = (h})g © (fi)g for all n. Then if there is
an n such that (h})q is an isomorphism, (hi)g is an isomorphism as well for that same
n. Consequently, if (h})g is an isomorphism for all n, then so is (hi)q. In particular, if

D = B®yC, then the conclusion holds.

Proof. Applying K,,(—) ® Q to the entire diagram, we get a diagram

K,.(4) © Q% K, (B) 0 Q

(f*)@(/ >(f*)@ (g*)@g ,>(g*)@

By Corollary 3.103, both (fi)g o (f*)g and (g«)g © (¢%)g are isomorphisms for all n. This

gives us the following diagram:

R

Ko(A) Q12 K, (0) © Q2%

(hI)Ql (h3)a (hi)o
K,.(B)® Q——

Notice that the left square obviously commutes for all n, and the right square commutes for
all n since by our assumption we have (g.)g o (h3)o = (h])g o (f«)o for all n. This means
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that for all n, (h})g is a direct summand of (hj)g. So if there is an n such that (h})g is
an isomorphism, then (h})q (for that same n) is a direct summand of an isomorphism, and

therefore is an isomorphism as well.

For the final comment concerning the case D = B ® 4 C, note that in this case, the map
g« o h3 is induced by taking a projective module P in the category of C-modules, mapping
it to P ®c (C ®4 B), and then restricting scalars to the ring B. Similarly, the map hj o f,

is induced by restricting P to the ring A, and then mapping it to P ®4 B. Since
P®c(C®aB)=P®sB (3.71)

as B-modules, the maps g, o hj and hj o f, are the same on the level of projective modules.
Thus, they are the same on the level of strict perfect complexes, and therefore they are the
same on the level of K-theory. Now tensoring with Q gives us the desired conditions, and

the first part of the proof applies.

]

Theorem 3.101 tells us more or less all we need to know about the morphism f, o f*. But
we would also like to examine the morphism f* o f,. This requires more effort. We begin

with a proposition.

Proposition 3.105. Let the following be a pullback diagram of quasi-compact schemes, with
f a quasi-separated map.

X’LX

)

Y’ T> Y
Suppose that f and g are Tor-independent over Y. Suppose that f has finite Tor-dimension
and that f and f" are such that Rf, and Rf. preserve perfection, so that transfer maps

£ K(X) — K(Y) (3.72)
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and

i K(X) — K@Y (3.73)

*

both exist. Then there is a canonical homotopy

g o fo~ flog"  K(X) — K(Y). (3.74)

Proof. See [TT, Proposition 3.18], [Quil, Section 7.2.11], and [GroSGAG6, IV, 3.1.1].

]

Remark 3.106. While the statement of Proposition 3.105 initially only applies to ordinary
K-theory, Thomason later proves that this homotopy extends to the non-connective K-theory

case as well; see [TT, 6.5].

In order to understand f* o f, properly, we need to be more restrictive in our choice of

f. Making these extra restrictions allows us to explicitly write down the map f* o f,.

Theorem 3.107. Suppose we have that f : A — B is an injective, finite, étale morphism
of Noetherian rings, and that B is a free A-module. Suppose further that B/A is a Galois
extension of rings; in other words, suppose there is a finite group G acting on B such that
BY = A, and that the rank of B as an A-module is |G|, so that Theorem 3.101 tells us f.o f*
is multiplication by |G|. We call this G the Galois group of B over A. Then

frofi=>Y g :Ku(B) — Ku(B) (3.75)
geG
for alln, and
(fae (o= (9" : Ku(B) @ Q — K, (B) @ Q (3.76)
geG

for alln.

Proof. The second claim clearly follows from the first by tensoring with @, so we restrict
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ourselves to proving the first claim. We model our proof after [Tho, Lemma 2.13] and [TT,

Proposition 11.10].

Consider the following pushout square of rings

Applying Spec will give us a pullback square of schemes, so Proposition 3.105 can be applied.
Notice also that all morphisms in this scheme are injective, flat, and finite so the conditions
for Tor-independence and finite Tor-dimension are trivially satisfied. So by Proposition

3.105, we have a canonical homotopy
frofi=(f®lp)o(lp® f) : K(B) — K(B). (3.77)
In other words, for every n, we have
frofi=(f®lp)o(lp® f)": Ku(B) — Ku(B). (3.78)
Another way to express the canonical homotopy is to say that the square

K(B .4 B) 22K (B)

o] 1"

K(B) ——K(A)

commutes up to canonical homotopy. So it is enough to understand the morphism
(f®1p)io(lp® f)".

From this perspective, we see that f* o f, is induced by the functor

P— P®g (B XA B). (3.79)
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Galois Theory tells us that there is an isomorphism
k:B®sB—]l,ecB

where k(z ® y) = (2 - g(y))4ec- Since k is an isomorphism, Corollary 3.102 says that
K4 0 k* is the identity map, and that s, = (k*)~'. This allows us to construct the following

commutative diagram:

where A denotes the diagonal map. Notice that the map (f ® 1p). 0 ke = > geG 9x Dy
Proposition 3.97 applied to the map o (f ® 15); indeed, notice that

ko(f®lp):B— ][ B (3.80)

geG

is given by sending z = 1 ®  +— (g(x))4ec so on the level of transfer maps we get that

(f®1B)so ks = deG g« as claimed. Composing with A gives us that

frofi~) gooA~) g.:K(B) — K(B) (3.81)

geG geqG

and thus we have that

frofi=>Y g :Ku(B) — Ku(B) (3.82)

geG

for all n as claimed.
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3.8 Descent Properties of Algebraic K-theory

Now that we have established the definitions and basic properties of K-theory and KH-theory,
we can now examine what happens to these functors in the various Grothendieck topologies
introduced in Section 3.2. For our purposes, the Nisnevich Topology is really only useful
in introducing the cdh-Topology, so we will exclude descent properties with respect to the

Nisnevich topology and instead only focus on the Zariski, Etale, and cdh topologies.

Definition 3.108. Let F' be a presheaf of Spectra on the Zariski site of X. We define the
Zariski Hypercohomology of F' (with respect to a Zariski cover U), denoted H' (U, F'), to be
holim(F(U)). In other words, H (U, F') = holim(F(U)); that is, the homotopy limit of the
diagram

s F(U0) S ier P xx Vi) -

Similarly, if F is a presheaf of Spectra on the étale site of X, and we denote by Et(U)
an étale cover of X, we define Hy, (Et(U), F) (the Etale Hypercohomology of F) to be
holim(F (Et(U))). Finally, if F is a presheaf of Spectra on the cdh site of X, and we denote
by (U)can a cdh cover of X, we define H ,, (U)can, F') (the cdh Hypercohomology of F') to be
holim(F ((U)can))- In the latter two cases, the only difference in our diagram is that the U;’s
come from the appropriate cover (Et(U) or (U)ean) and F is replaced by the sheafication of F
in the appropriate topology. These latter two are mentioned for completeness; our primary

focus will be the Zariski topology case.

Remark 3.109. We adopt this notation, given by Thomason in [Tho|, to make the notation
of this section a bit cleaner. We will continue to use the holim notation in other sections of

this paper.

Definition 3.110. Let F be a presheaf of Spectra on the Zariski site of X. We say that

F satisfies the Mayer-Vietoris Property for the Zariski topology if for all Zariski open sub-
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schemes U,V C X, the square

FUUV)——F(U)

J l

F(V)—— FUNYV)

1s homotopy cartesian. In other words, if we apply F to a Zariski square, the resulting
square s homotopy cartesian. Similarly, if F' is a presheaf of Spectra on the étale site of
X (respectively, cdh site of X ), we say that F satisfies the Mayer-Vietoris Property for
the étale topology (respectively, the cdh-topology) if whenever we apply F' to an étale square

(respectively, cdh square), the resulting square is homotopy cartesian.

Example 3.111. [TT, Theorem 8.1] shows that, for X a quasi-separated scheme, the
presheaf KB satisfies the Mayer-Vietoris Property for the Zariski topology. We will use

this fact without proof in this paper.

Definition 3.112. Let F' be a presheaf of Spectra on the Zariski site of X. We say that
F satisfies Zariski descent if the natural map F(X) — H(U, F) is a weak equivalence
for all Zariski covers U of X. Similarly, if F' be a presheaf of Spectra on the étale site
of X (respectively, cdh site of X ), we say that F satisfies étale descent (respectively, the
cdh descent) if the natrual map F(X) — Hg (Et(U), F) (respectively, the natrual map
F(X) — H ;,((U)can, F)) is a weak equivalence for all étale covers Et(U) (respectively, all
cdh covers (U)can)-

It turns out that satisfying Zariski descent is the same as satisfying the Mayer Vietoris
property for a Zariski cover. For much of the remainder of this section, we will show that
the functor KH satisfies Zariski descent in a special case by proving parts (b) and (c¢) of
[TT, Exercise 9.11], and as such any mention of sheaves and the Mayer Vietoris property
are assumed to be with respect to the Zariski topology unless otherwise stated. The general
case is implied by a result of Brown and Gersten ([BG, Theorem 4]). We will then discuss
other forms of descent that will be important to us.

We will be seeking to generalize the following proposition about K? to KH.
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Proposition 3.113. Let X be a quasi-compact, quasi-separated scheme. Let
U=A{ly,..,U,} (3.83)

be a cover of X by finitely many Zariski open subschemes, each of which is quasi-compact.

The the augmentation map
KP(X) — H (U,K") (3.84)

18 a weak equivalence.

Proof. See [TT, Proposition 8.3].

]

To proceed further, we need to first make a definition. The following definition can be

found in [Tho.

Definition 3.114. Let U = {U; — X|i € I} and V = {V; — X|j € J} be two Zariski
covers (or more generally, two covers in any fixed topology) of X. A map of coversUd — V
consists of a function ¢ : J — I and, for each j € J, a morphism f; : V; — Uy
compatible with the projection to X. V is called a refinement of U if there is a map of covers

u—"V.

We now state a couple of lemmas that we will use in the proof of Theorem 3.118 below.

Lemma 3.115. Let U and V be two covers of X, and suppose there is a map U — V), so
that V is a refinement of U. Suppose that for every finite set I of U; — X drawn from U,
and for the fibre product (over X)

U]:Ulo Xinl XX'--XXU'

in

(3.85)
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of the elements of I, and for the induced cover V x x Uy of Uy that the augmentation map
FU) — H (VY xx U, F) (3.86)
is a weak equivalence. In particular, for I = 0, we suppose that
F(X)— H (V,F) (3.87)
1s a weak equivalence. Then the augmentation map for U is also a weak equivalence; namely,
F(X)—H U,F) (3.88)

18 a weak equivalence.

Proof. See [TT, Lemma 8.2.5].

]

Lemma 3.116. Let F' be a presheaf of Spectra satisfying the Mayer-Vietoris property. Then
hocolimaer F'(— x A") also satisfies the Mayer-Vietoris property. Here A" is the standard
simplicial object, where A™ = Spec (Z[Ty, ..., T,]/ (> Ti = 1)) and where the fiber product

1s taken over SpecZ.

Proof. Let U and V' be two open subschemes. Then we get a square of schemes

UNV)x A —U x A

l l

VXA —UUV)x A

which, by the Mayer-Vietoris property for F', gives us that the square

F(UUV)xA)——F(U x A")

| |

FVXxA)——F{(UNV)xA)
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is homotopy cartesian. Since in Spectra we have that a square is homotopy cartesian if and

only if it is homotopy cocartesian, we have that

F(UUV)xA)——F(U x A")

| |

FVxA)——F(UNV) xA)

is homotopy cocartesian as well. This means that the homotopy colimit of the diagram

F(UUV)xA)——=F(U x A)

l

F(V x A

(which we denote by hocolim;(F (U x A"))) has
hocolim;(F(U x A")) — F(UNV) x A’) (3.89)

and this map is a weak equivalence. Applying hocolimasr to both sides and using [Tho,

Lemma 5.16], we get that
hocolim; (hocolimaer F'(U x A")) — hocolimpaer F((UNV) x A) (3.90)
is also a weak equivalence. This means that the square

hocolimper F((UUV) x A") ———— hocolimaer F(U x A)

| |

hocolimpaer F(V X A") ———— hocolimpae F((UNV) x A)

is homotopy cocartesian, and therefore also homotopy cartesian. Therefore, the functor

hocolimaer F/(— x A") satisfies the Mayer-Vietoris property as desired.

Corollary 3.117. The presheaf of Spectra KH satisfies the Mayer-Vietoris property.
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Proof. Since KH(—) = hocolimaer KP(— x A"), Example 3.111 and Lemma 3.116 give the

result.

We are now ready to state the following important theorem.

Theorem 3.118. Let I be a presheaf of Spectra satisfying the Mayer-Vietoris Property. Let
X be a quasi-compact and quasi-separated scheme. Suppose that for any cover C of X, the

presheaf F' satisfies the property that the natural map
F(X)— H(,F) (3.91)

is a weak equivalence. Let U = {Uy,...,U,} be a finite cover of X by open sets. Then the

following map is a weak equivalence:
hocolimpep (holima (F'(U x A"))) — holima (hocolimaes (F'(U x A'))).
Since H' (U, F) = holima (F(U)), we can rewrite this weak equivalence as

hocolimper (H' (U, F(— x A"))) — H' (U, hocolimpaer (F(— x A'))).

Before we prove Theorem 3.118, we observe the following corollary, which is a special

case of [BG, Theorem 4].

Corollary 3.119. Let X be a quasi-compact, quasi-separated scheme. Let
U={Uy,..,.U,} (3.92)

be a cover of X by finitely many Zariski open subschemes, each of which is quasi-compact.

The the augmentation map

KH(X) — H (U, KH) (3.93)
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18 a weak equivalence.

Proof. Under these conditions, Example 3.111 shows that K is a presheaf of Spectra satis-

fying the Mayer-Vietoris property. Proposition 3.113 tells us that
K (X x A) — H (U, K (- x A)) (3.94)
is a weak equivalence. Applying hocolimao.r to both sides gives us that
KH(X) — hocolimaer (H (U, K”(— x A))) (3.95)
is also a weak equivalence. By Theorem 3.118, the map
hocolimaer (H (U, K”(— x A))) — H (U, KH(-)) (3.96)

is a weak equivalence. Composing these two maps, and applying the 2-out-of-3 axiom of

Definition 3.44 gives us the result.

O
We are now ready to prove Theorem 3.118.
Proof of Theorem 3.118. From Lemma 3.116, we know that the functor
hocolimpaer F'(— x A) (3.97)

satisfies the Mayer-Vietoris property. We proceed by induction of the number of elements
in U. If n =1 this result is trivially true as U is just the trivial cover. The case n = 2 is

implied by Lemma 3.116, since the square

hocolimpaer F((U; UUs) x A') ———— hocolimpaer F(U; x A)

| |

hocolimper F(Uy X A") ———— hocolimaer F((U; N Uy) x A')
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being homotopy cartesian means that, for the cover U = {U;, Us}, the natural map
hocolimper F'((U; UUs) x A") — H (U, hocolimper F/(— x A')) (3.98)
is a weak equivalence. Since the square
F(U,UUy) x A)—— F(U; x A)

| |

FUyx A)—— F(U1NU,) x A)

is homotopy cartesian also, we get that the natural map
F(UyuUy) x Ay — H U, F(— x A")) (3.99)

is also a weak equivalence. Applying hocolimaer to both sides gives us that

hocolimaer F((U; UUy) x A") — hocolimpae H (U, F(— x A")) (3.100)
is a weak equivalence as well. Since

hocolimpaer H' (U, F(— x A")) — H' (U, hocolimpaer F(— x A")) (3.101)
is the natural augmentation map, the composite with the map

hocolimper F((U; U Us) x A") — hocolimpaer H (U, F/(— x A')) (3.102)
gives us the natural augmentation map

hocolimaer F((U; UUy) x A) — H' (U, hocolimpaor F(— x A')) (3.103)

which we already saw is a weak equivalence. Applying the 2-out-of-3 axiom of Definition
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3.44 gives us that
hocolimpaer H' (U, F(— x A")) — H' (U, hocolimpaer F(— x A')) (3.104)

is a weak equivalence. This is the case n = 2.

Now suppose the statement is true for all covers of size k < n. Let
U=A{ly,..,U,} (3.105)
be any cover of X of size n. Set
V=UuU,U---UU,_q, (3.106)

and set V = {Uy, ..., U,_1} the cover for V.

By the Mayer-Vietoris property and Lemma 3.116, we have that the square

hocolimaer F/(— X A") ———— hocolimper F'((— NU,) x A")

| |

hocolimaer FI((—NV) x A") —— hocolimper F((—NV NU,) x A)

is homotopy cartesian. Applying H' (U, —) to this square gives us, by Theorem 3.72, a
homotopy cartesian square as well. So the natural maps give us a morphism of diagrams

between the diagrams
hocolimpe, H' (U, F(— x A")) —————— hocolimaer H' (U, F((— N U,) x A))

l l

hocolimaer H (U, F((— NV) x A")) —— hocolimpaer H' (U, F((— NV NU,) x A))
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and

H (U, hocolimpop F(— X A")) —————— H (U, hocolimper F((— N T,,) X AY))

J l

H (U, hocolimpor F((—NV) x A')) —— H (U, hocolimper F((— NV NU,) x A))

and we want to explore the properties of this morphism of diagrams. I claim that this will
induce our desired result. We will accomplish this by showing that the morphism between

the diagrams

hocolimaer H (U, F((— N U,) x A%))

|

hocolimaer H (U, F((— NV) x A")) —— hocolimpaer H' (U, F((— NV NU,) x A))

and

H (U, hocolimpaer FI((—NU,) x AY))

l

H (U, hocolimpor F((—NV) x A)) —— H (U, hocolimper F((— NV NU,) x A))

given by the natural maps is a weak equivalence of diagrams. Recall from Definition 3.57 that
a weak equivalence of diagrams is a map of diagrams which is term-wise a weak equivalence.
If we show this, then by applying Proposition 3.71, we will get that the homotopy limit of
the first diagram maps to the homotopy limit of the second diagram, and this map is a weak
equivalence. For ease of notation, call these homotopy limits holim(1) and holim(2). Then

we get a commuting square

hocolimpae, H (U, F(— x A")) —— H (U, hocolimper F'(— x A'))

| |

holim(1) holim(2)

where all but the top map are known weak equivalences. By applying the 2-out-of-3 axiom
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of Definition 3.44 twice, we get that the map

hocolimpaer H' (U, F(— x A")) — H' (U, hocolimpaer F(— x A')) (3.107)

is a weak equivalence also, which will complete the proof. So it remains only to show that

the natural maps give us a weak equivalence of diagrams.

In each of the three cases we seek to make use of Lemma 3.115 and our induction hy-

pothesis. Observe that, by its very construction,

H (U, hocolimper F'((—NW) x A")) (3.108)

is naturally isomorphic to

H (U N W, hocolimper F'(— x A7) (3.109)

for any open set W. Suppose W = U,. Then U N U, has a refinement C consisting of just
the trivial cover {U,, — U, }. Consider U; as in Lemma 3.115; then C x x U; is a cover of

U; of size 1, so by our induction hypothesis, we get

hocolimpey H' (C X x Uy, F(— x A")) — H'(C X x U;, hocolimpaer F(— x A))

is a weak equivalence for every I. Composing with the natural weak equivalence

hocolimpaer F'(Uy x A") — hocolimaer H'(C x x U, FI(— x A")) (3.110)

we get that

hocolimper F(Uyr x A) — H'(C x x Uy, hocolimper F'(— x A')) (3.111)

is a weak equivalence for all /. By Lemma 3.115, we get the following commuting triangle:

79



hocolimpae, H (U N U, F(— x A')) —— H (U N Uy, hocolimper F(— x A))

NT /

hocolimaer F/(U,, x A")

which, by the 2-out-of-3 axiom of Definition 3.44, implies that the morphism
hocolimpaer H'(U N U, F(— x A")) — H' (U N U, hocolimpaer F(— x A"))

is a weak equivalence as desired.

The other two cases will work similarly. Indeed, notice that V is a refinement of 4 NV
and VNU, is a refinement of Y NV NU,; both of these refinements are of size n — 1 and will
remain of size n — 1 when taking the fibre product with U;. So by our induction hypothesis,

we have
hocolimaer H'(V X x U, F(— x A")) — H'(V x x U, hocolimpaer F(— x A))
and
hocolimpaey H (VN U,) Xx Up, F(— x AY)) — H((V N U,) xx Ur,hocolimper F(— x A’))

are weak equivalences for every I. Composing, respectively, with the natural weak equiva-

lences
hocolimper F'(Ur X A") — hocolimpae H'(V X x U, F(— x A'))
and

hocolimper F(Uy X A) — hocolimpao, H (VN U,) xx Ur, F(— x A))
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we get that both
hocolimpaer F(Ur x A') — H(V x x Uy, hocolimpe F(— x A))
and
hocolimpe F(Ur x A) — H (VN U,) xx Ur, hocolimpes F(— x A'))
are weak equivalences for all I. By Lemma 3.115, we get the following commuting triangles:

hocolimpae, H' (U NV, F(— x A')) —— H (U NV, hocolimper F(— x A'))

hocolimper FI(V x A)

and

hocolimpe, H' (U NV N U, F(— x A")) — H (U NV N U,, hocolimpe F(— x A"))

hocolimaer F(V NU, x A")

which, by the 2-out-of-3 axiom of Definition 3.44, imply that the morphisms
hocolimpe, H (U NV, F(— x A')) — H (U NV, hocolimper F'(— x A"))
and
hocolimpaey HUNV NU,, F(— x A")) — H (U NV N U,, hocolimper F/(— x A'))

are weak equivalences as desired. This completes the proof.

]

Remark 3.120. Corollary 3.119 is not the true form of Brown and Gersten’s Theorem.

The true form asserts that if X is Noetherian and of finite dimension, and F' is a presheaf
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of spectra with the Mayer-Vietoris property, then the augmentation map
F(X)—H U,F) (3.112)

is a weak equivalence. This version is given in [Tho, Exercise 2.5]. It is proven in [TT)]
in the case that FF = K” (giving a stronger version of Proposition 3.113), and is proven
completely in [Mit] using Jardine’s model structure on the category of presheaves of spectra.

The interested reader seeking this more general version is encouraged to read these papers.

So we have shown that the functor KH satisfies Zariski descent, assuming that K does.
As an immediate corollary, if our scheme is a toric variety over a field of characteristic 0,
then the functor Fx (recall Definition 3.90) will also satisfy Zariski descent as a consequence
of Theorem 3.94. The functors K(—) ® Q and KH(—) ® Q both satisfy étale descent, and
thus Zariski descent since any Zariski cover is automatically an étale cover. The proof for
K(—)®Q can be found in [TT]; we omit the details, but the proof uses very similar techniques
to those presented in the proof of Theorem 3.107. The proof for KH(—) ® Q can then be
done using similar techniques to the ones presented in this section, using K(—) ® Q in place
of K. Finally, the functor KH also satisfies cdh descent; the proof of this fact can be found
in [Hae]. If a functor F' satisfies descent with respect to a topology then F' also satisfies
the Mayer-Vietoris property with respect to that topology, and as mentioned earlier in this
section, satisfying Zariski descent is equivalent to satisfying the Mayer Vietoris property with
respect to the Zariski topology. For the remainder of this paper we will, in the Zariski case,

use these two ideas interchangeably.

4 KH-Theory for Complete Simplicial Toric Varieties

As we saw in Theorem 3.94, the algebraic K-theory of any toric variety X is determined
completely by its KH-theory and the group Fk. In this section, we calculate as much of the

KH-theory of complete simplicial toric varieties as we can.

The initial impulse the reader might have is to use the fact that toric varieties have
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a very nice resolution of singularities, and then combine that idea with the fact that KH
satisfies cdh-descent, as mentioned in Section 3.8. For very simple examples, this is actually

a reasonable approach, as we see in the following section.

4.1 KH-Theory of P(1,1,a)

Recall Example 2.7, which examined the weighted projective space P(1,1,2). We showed in
that example that if we resolve the singularity we get the Hirzebruch surface H, and the

exceptional variety is P!. Recall this gives us the blow-up square:

Pl H,

|

{x} —P(1,1,2)

Let ¢ denote the inclusion morphism i : P! — H, including the exceptional variety
into the blow-up. Similarly, since H, is the Pl-bundle over P! associated to the sheaf
O(0) + O(—2), we get a structure morphism 7 : Hy — P!, which is induced by the lattice
map 7 : Z* — Z where 7(x,y) = x. Let f : P! — P! be the composition of these maps;
that is, f = m o4. On the level of lattices, notice that ]f\i = Z in this case (remember from
Example 2.7 that the exceptional variety is the toric variety associated to Star(7), which
lives in the lattice N:) so begin by picking an element z € Z. This corresponds to a “line”
in Z2, given by (z,t) for t € Z. Then under 7, this line again maps to z. Applying the
appropriate functors, we see that f is an isomorphism. Now since KH satisfies cdh descent,

we get the following long exact sequence:
o KH,(P(1,1,2)) —— KH,,(H2) ® KH,, (k) —"

KH,(P') —— KH, ;(P(1,1,2)) —————— - --

Now we want to analyze the morphism a,. Recalling the construction of the

Mayer-Vietoris long exact sequence, notice that «, is the difference of the morphism
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i* : KH,(Hs) — KH,(P') and the morphism j} : KH,(k) — KH,(P'). Our goal is
to show that «,, is surjective; obviously the difference by j* would not affect this provided
that ¢} is surjective. So it is enough to show that ¢ is surjective. But f = 7 o1 was
shown to be an isomorphism, so for every n, the composition i} o 7} is an isomorphism,
and ¢ is indeed surjective. By exactness, this means that the group KH,(P(1,1,2)) is a
subgroup of KH,,(H2) ® KH, (k) for every n; since the latter of these groups is 0 for n < —1,
KH,(P(1,1,2)) = 0 for n < —1 as well. Finally, in the case n = 0, we get the short exact

sequence

0 —— KHo(P(1,1,2)) —— KHo (H) & KHo(k) —2s KHo(P') —— 0

Now KHy(k) = Z, KHo(P') = Z? and, by the projective bundle theorem (see [TT]),

KHy(Hs) = Z*. Therefore this short exact sequence reduces to

0—— KHo(P(1,1,2)) —— 75 —— 72 ——0

which obviously splits. Therefore, we get KHy(P(1,1,2)) = Z3.

Note that the choice of weight 2 did not really determine the answer. Had we looked at
the weighted projective space P(1, 1, a) for any a > 1, the above steps will still work (although
will of course yield a different Hirzebruch surface), and still yield the same answer. We state

this fact as the following theorem.

Theorem 4.1. Consider the weighted projective space P(1,1,a), with a > 2. Then

KH,(P(1,1,a)) = 0 (4.1)

forn < —1 and

KHo(P(1,1,a)) = Z>. (4.2)

Proof. The steps are almost word-for-word the same as the P(1, 1,2) case. The only singular
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cone is ((1,0), (=1, —a)), and after refining our fan by adding the cone generated by (0, —1),
we get the Hirzebruch surface H,, which is the P!-bundle over P! associated to the sheaf

O(0) + O(—a). This gives us a blow-up square
Pl — S H,

|

{*} - ]P)(la L a)
and because KH satisfies cdh descent, it gives rise to a long exact sequence

oo —— 5 KH,(P(1,1,a)) —— KH,(H,) ® KH, (k) =2

KH, (P') — KH,,_1(P(1,1,a)) ————— - -

By the exact same argument as in the P(1, 1, 2) case, the morphism «, is surjective for every

n and our long exact sequence splits into short exact sequences of the form
0— KH,(P(1,1,a)) — KH,,(H.) ® KH, (k) 2, KH,, (P') ——0

Since KH,,(H,) ® KH,,(k) = 0 for n < —1, KH,(P(1,1,a)) = 0 for n < —1 as well. For the

case n = 0, we have
0 —— KHo(P(1,1,a)) — KHo(H,) ® KHy(k) —2= KHo(P') —— 0

Now KHy(k) = Z, KHy(P') = Z? and, by the projective bundle theorem (see [TT, Theorem
4.1]), KHo(H2) = Z*. Therefore this short exact sequence reduces to

0 —— KHo(P(1,1,a)) 75— 72 ——0

which obviously splits. Therefore, we get KHo(P(1,1,a)) = Z3, as desired.
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However, this method is not effective as a general approach to calculating the KH-theory
of even just weighted projective spaces (as opposed to all complete simplicial toric varieties).
The problem is that even in dimension 2, the number of steps needed to resolve the singular-
ities can be quite large, and therefore we can be confronted with uncontrollable exceptional
varieties. Consider, for instance, the weighted projective space P(1,5,7). To completely re-
solve all singularities, we must add in five additional one-dimensional cones. The exceptional
variety will, in this case, be a disjoint union of a chain of three copies of P! and a chain of

two copies of P! (see [Ful], page 47).

However, this approach does suggest that if two complete simplicial toric varieties have
the same simplicial structure, such as P? and P(1,1,2) in this case, then there may be a
relationship between their respective KH-theories. This motivates the approach we use,

beginning in the next section.

4.2 The Simplicial Structure and Simplicial Scheme Structure Associated to a

Complete Simplicial Toric Variety

We begin with calculating the KH-theory of U, for any cone o. The intuition we use for
doing this calculation goes all the way back to [Weil]; the properties of KH that provide
this intuition are given as Theorem 3.84. We begin by examining the KH-theory of U, in
the case that ¢ is a maximal cone; that is, in the case that the dimension of the subspace

generated by o equals the dimension of Ng.

Proposition 4.2. If 0 is a mazimal cone, then

KL, (U,) 2 KH, (k) = K, (k). (4.3)

Proof. Note that if o is maximal then the dual & is also strongly convex. But then ¢ N M
does not contain any lattice points along any linear subspace of M (it only contains points
“on one side” of a linear subspace, but not both). That means that the ring k[¢ N M] has
no non-trivial units, and is therefore an N-graded polynomial ring. Then using either (a) or

(d) of Theorem 3.84 gives the result.
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]

Now we recall from Proposition 2.2 that, given any p-dimensional cone ¢ in N, where
dim Ng = m, we get U, = U, x T, where T is a torus of rank m — p. This brings us to our

next proposition.

Proposition 4.3. Let o be any p-dimensional cone. Then

KH,(U,) & KH,(G" ) = K,,(G™). (4.4)

In other words, the KH groups of an open set corresponding to a cone are just the K groups

of its associated torus part.

Proof. Given the splitting N = N, @& N” of Proposition 2.2, taking duals gives us
M=M@&M" Thenoc"NM = (¢VNM')d M, and

klo¥ N M] = k[(c" n M) M"]. (4.5)

At this point in Proposition 2.2 we applied Spec. However, this time we instead apply KH

to both sides to get:

KH,(k[o" N M]) = KH,(k[(c" 0 M) @ M"]). (4.6)

Now since ¢’ is maximal in N,, ¢’V N M’ is N-graded. By a similar argument to the one
given in Proposition 4.2, k[(¢’V N M") @ M"] is N-graded in the variables given by ¢’V N M’.
So by part (a) of Theorem 3.84,

KH, (k[(c" N M") @ M"]) = KH, (k[M"]) = KH,(G"?) = K, (G"?) (4.7)

where the last isomorphism is because G]'7? is smooth. This is what we wanted to show.

]
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Remark 4.4. One can also show that, as spectra,

KH(U,) = KH(G™?) = K(G™7) (4.8)

where the second isomorphism is because G]'7? is smooth. This is done in the proof of

Proposition 5.6 of [CHWW], which appears as Theorem 3.94 in this paper.

It is the result of Proposition 4.3 that provides the intuition for the approach we use.
Our goal will be to build some relationship between a complete simplicial toric variety and
a scheme that is built from all the torus pieces of open sets of that toric variety, and then
use this scheme of torus pieces to develop a relationship between the KH-theories of two

complete simplicial toric varieties with the same simplicial structure.

As we saw above, the KH-theory of an open set associated to a cone depended only on
the torus piece. This leads us to consider ways in which we might use the simplicial structure
of a toric variety to determine its KH-theory. We want to see, in particular, the relationship
between two complete simplicial toric varieties with the same simplicial structure. In order

to do this, we must first make our definition of simplicial structure clear.

Definition 4.5. Let X be a complete simplicial toric variety, and Ax(1) be the set of 1-
dimensional rays in the fan of X. Let S(Ax) denote the set of all sets of rays in Ax(1)
that form a cone in the fan Ax. Since X is assumed simplicial, any subset of a set of rays
forming a cone also forms a cone; therefore, S(Ax) forms a simplicial complex. We define

the “simplicial structure” of X to be the simplicial complex S(Ax).

By itself, this definition isn’t very helpful. However, it now allows us to discuss what it

means for two complete simplicial toric varieties to have the same simplicial structure.

Definition 4.6. Consider two simplicial fans A and A’, and their corresponding simplicial
complezes S(A) and S(A"). We say that the set map ¢ : S(A) — S(A') is an isomorphism of
simplicial complexes if it is a bijection as a set map and if A C B in S(A) then ¢(A) C ¢(B)

in S(A"). Let X and Y be two complete simplicial toric varieties; then their respective fans
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Ax and Ay are simplicial fans. We say that the toric varieties X and Y have the same

simplicial structure if their simplicial complexes S(Ax) and S(Ay) are isomorphic.

Remark 4.7. Notice that, in particular, every element of Ax (1) is a cone in Ax and similarly
for elements in Ay (1). So an isomorphism of simplicial complexes ¢ : S(Ax) — S(Ay)
induces a bijection ¢ : Ax(1) — Ay(1). This statement has a partial converse that we
can use. If X and Y are complete simplicial toric varieties, and if we have a bijection
¢ : Ax(1) — Ay(1) that preserves adjacency relations (i.e. if z; and z; are adjacent rays,
then ¢(z;) and ¢(z;) are adjacent rays as well), we can use this to build an isomorphism
of simplicial complexes. To see this, note that every element of S(Ax) and S(Ay) is just a
set of elements in Ax (1) and Ay (1), respectively. So we can map that set of elements in
Ax(1) to the corresponding set of elements in Ay (1) just by applying ¢ to every element
in that set. The adjacency preserving condition will then ensure that the set of elements
in Ay (1) obtained by applying ¢ to every element in the set coming from Ay (1) actually
still generates a cone. Then the two conditions for ¢ to be an isomorphism of simplicial
complexes are trivially satisfied. So to define an isomorphism of simplicial complexes for two
complete simplicial toric varieties, it is enough to define a bijection that preserves adjacency

relations on the respective sets of 1-dimensional rays.

Caution 4.8. Both the completeness condition and the adjacency preserving condition of
Remark 4.7 are necessary. Indeed, if one of the toric varieties is not complete, then a bijection
¢ : Ax(1) — Ay (1) is not enough to construct an isomorphism of simplicial complexes
¢ : S(Ax) — S(Ay). As a counterexample, let X = P? and let Y = P2\ {[1:0:0]}. We
saw in Section 2.2 that the fan Ay is given by all proper subsets of {xg,z1, 22} where z; is

the image of the basis element e; under the surjection

N =72/{eq + e, + e3). (4.9)

This gives us the simplicial complex

S(AX) = {Q)v {IO}v {l’l}, {1’2}, {x(]? x1}7 {x()? 172}, {5(31, xQ}} (410)
89



Similarly, one can show (through the orbit-cone correspondence for toric varieties; see [Ful]
and [Cox]) that the fan Ay is the same as A x except that the cone generated by x; and x is
not present; indeed, the distinguished point of the cone generated by z; and x5 is {[1: 0 : 0]}
so to delete the point is the same as to delete the corresponding cone. This gives us the

simplicial complex

S(AY) = {@, {x0}7 {331}, {332}7 {330’ 'Tl}v {:Uo, 332}} (4'11)

where again z; is the image of the basis element e; under the surjection

N =7%/{ey+ e1 + e3). (4.12)

Observe that there is an obvious bijection between Ax (1) and Ay (1), but that S(Ax) and
S(Ay) cannot possibly be isomorphic as simplicial complexes. So the completeness condition

is essential to the partial converse.

Similarly, suppose we have the toric variety P! x P! which is given by the fan in Z2

generated by the rays eq, e, —e1, and —ey. Suppose we defined the bijection

e — ey
ey — €
—e; = —e
—ey > —ey (4.13)

This will obviously not give rise to an automorphism of simplicial complexes as we described
in Remark 4.7 because the cone (—eq, es) would not be mapped to a cone. So the adjaceny

preserving condition is also essential to the partial converse.

Now that we have established our basic definitions, the remainder of Section 4 will be

dedicated to proving and applying the following theorem, which is our main technical result.

Theorem 4.9. Let X and Y be two complete simplicial toric varieties over k with the same
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simplicial structure; i.e. ¢ : S(Ax) — S(Ay) is an isomorphism of simplicial complezes,
where Ay is the fan for X and Ay is the fan for Y. Let Ax live in the lattice N~ and
Ay live in the lattice NY. Suppose we have a lattice morphism F : NX — NY which is
injective with finite cokernel such that the restriction maps F|yx : NX — Ng(g) are also
injective with finite cokernel for any cone 0 € Ax. Suppose further that the characteristic

of k does not divide | coker(F)|. Then KH(X)® Q and KH(Y) ® Q are weakly equivalent as
spectra; in particular, KH,(X) ® Q = KH,(Y) ® Q for all n.

There are several stages that go into the proof of Theorem 4.9. We begin by focusing
on a single complete simplicial toric variety and, in the spirit of Proposition 4.3, seek to
relate its KH theory to the KH theory of certain torus pieces that are related to X. Then,
once such a relationship is established, we look to use the lattice conditions to build a map
between these tori that let us (after considering the above relationship with the complete

simplicial toric variety X) derive the relationship between the KH theories of X and Y.

To accomplish this, we first need to construct simplicial scheme structures associated to
X and Y. Then we need to find a way to relate these associated simplicial scheme structures
(as opposed to the structures of X and Y as complete simplicial toric varieties). For a
discussion of general simplicial and cosimplicial objects over a given category, we refer the
reader to Section 3.3. We can now prove our first important theorem, which allows us to

apply the material of Section 3.3 to complete simplicial toric varieties.

Construction 4.10. Let X be a complete simplicial toric variety. Then X gives rise to a
simplicial scheme, which we call Uyx. This is a standard construction, but we make it explicit
for use in Section 4.3. To construct the simplicial scheme structure, we need to give schemes

(Ux )n (for every n) and we need to give the face and degeneracy maps.

Define Ux to be the open cover of X by open sets corresponding to mazximal cones (the
construction using this cover is why we denote our simplicial scheme by the same notation).

We define (Ux),, to be the following:

Us)n = [[Us x -+ x Us,) (4.14)
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where this coproduct is taken over all elements of Ux (equivalently, over all mazimal cones).
Notice that, in particular, the order of elements matters (so we can repeat elements in (Ux )y ),
and that the Uy, ’s meed not be distinct. Since Uy, X -+ X Uy, is the fiber product of known
schemes, it is a scheme also; however, for practical use it’s easier to view this as an inter-

section and in the remainder of the paper we switch seamlessly between these two viewpoints.

Now that we have our (Ux),’s, we need to determine our face and degeneracy maps.
Define d; : (Ux)n — (Ux)n—1 to be the map where, in each term of the coproduct, you
delete the j™ term. In other words, we have

dj Uy X+ xU

O'j_1

x U,

Jj+1

X Uy, X U, X oo X Ug, v Uy X -+ X Uy,

i1 NEEE ngn

—1

for each term in the coproduct. Note that we begin our ”counting of terms” with 0, not 1 (so
the 0™ term is U,, and so on). Observe that in each term of the coproduct, this is just an
inclusion map. Similarly, we define our degeneracy map s; : (Ux)n —> (Ux )n+1 by repeating
the ™ term in each term of the coproduct. In other words, we have

$j i Uy X+ X Us, X U, X oo X Ug, = Uy X+ X Uy, X Uy, X U X X U,

Tj+1 95+1

for each term in the coproduct. Again, we begin our counting from 0.

From here, one can easily verify the usual simplicial identities by examining them on
each term. In the first case, we examine dpd; for k < j. This deletes the term U,, and then
deletes the term U,, . Looking at d;_idy, we see that this first deletes U,, . Since k < j, this
now makes Uy, the (j — 1) term as the count for every term past the k™ is decreased by 1.
But then d;_y will delete Uy, since it is now the (j— 1)th term. So did; and d;_idy, must be

equal (for k < j).

Neat, we examine the behavior of dys;. If k < j, this repeats the j™ term Us; and then
deletes the k™ term U,,, whose count is unaffected by adding a term ahead of it. If instead
we look at s;_ydy, we first delete Uy, , which now makes U, the (j — 1) term. Applying
sj—1 then repeats U,, and we get the same thing. So dyps; = s; 1dy, for k < j. If k=7 or
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k = j+ 1, then this map is the identity map since applying s; now makes both the j" and
(5 + D)™ terms Us;; deleting either of these will give us back the term we started with. If
k > j+1, then s; repeats U, and dy, deletes what was originally the (k — 1) term, which
s U,

oo_y- This is the same as if we first applied dy_, and then applied s; since the G term

didn’t change by applying dy—1 (k —1> j). So dys; = sjdj_;.

Finally, we look at sys; for k > j. After applying s;, the k™ term in our result is what
was the (k — 1)™ term from our original expression, which is U,, . So this map repeats
Us,_, and U,;. This is the same as if we first applied si_1, repeating Uy, _,, and then since
k —1 > j, this doesn’t affect the count for j and applying s; repeats Uy,. So spsj = 8jSk—1,

verifying the usual simplicial identities.

For the remainder of this paper, when we say “simplicial scheme associated to X7, we

are referring to the simplicial scheme Ux.

Remark 4.11. In Construction 4.10, we described the face and degeneracy maps geomet-
rically. However, as our cover is given by open sets associated to cones, we can just as
easily construct our face and degeneracy maps on the level of lattices, and then apply the
appropriate functors to arrive at the ordinary face and degeneracy maps. For the face maps,
recall that

dj i Ugy X -+ XUy, XUy, X Uy X oo o X Uy 09 Ugy X o oo X Uy, X U

Tj+1 o X X Us,-
Letting 7 = 09 N --- N0, and letting 7, = 0o N---Na&; N --- N oy, this map becomes

d; - U, — U, (4.15)

by inclusion. Notice that, since 7 < 7;, this face map can be obtained by taking N¥ — N¥
to be the identity and taking 7 — 7; by inclusion. For the degeneracy maps, if we again

let 7=00MN"---Noy, then s; becomes

s; Uy — U, (4.16)
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by the identity, which can easily be obtained by taking N — N¥ to be the identity and
taking 7 — 7 to be the identity as well. Note that we can see very easily that the maps
d; and s; above satisfy the usual simplicial relations in this form as well; we simply repeat
the logic of the corresponding proofs from Construction 4.10. While the presentation in
Construction 4.10 is more enlightening geometrically, the presentation from the perspective

of lattices will prove to be more useful as we progress.

Corollary 4.12. If X is a complete simplicial toric variety, then KH(Ux) and KH(Ux) @ Q

are cosimplicial objects over the category of spectra.

Proof. 1f X is a complete simplicial toric variety then by Construction 4.10, Uy is a simplicial
scheme. Since the functors KH and KH(—) ® Q are contravariant functors from the category
of schemes to the category of spectra, we then can immediately conclude that KH(Uy) and

KH(Ux) ® Q are cosimplicial objects over the category of spectra.

]

We conclude this section by making an observation about the simplicial scheme structures
associated to two complete simplicial toric varieties X and Y whose simplicial structures are

isomorphic in the sense of Definition 4.6.

Theorem 4.13. Let X and Y be two complete simplicial toric varieties with isomorphic
simplicial structures. Let Ux and Uy be the simplicial scheme structures associated to X

and Y, respectively. Then we have the following two facts:

(a) Foralln >0, (Ux), and (Uy ), have the same number of terms in the coproduct, where

we view (Ux ), and (Uy ), as given in Theorem 4.10.

(b) For any Uy, N---NU,, in (Ux), and Uy, N---NU,, in (Uy), corresponding under
the isomorphism of simplicial structures, the torus parts for each of these intersections

have the same rank.

Proof. For the first part, recall that (Ux), = [[(Uy, X - - - X Uy, ) where each of the o;’s are

maximal cones in Ax. Similarly, we have (Uy), = [[(U,, x - -+ x U,,) where the 7;’s are
94



maximal cones in Ay. Since there is an isomorphism

and since S(Ax) has as a subset all rays generating any maximal cone (and similarly for
S(Ay)), then Ax and Ay each have the same number of maximal cones; otherwise, there
would be rays in one that form a maximal cone but whose corresponding elements in the
other does not. If this happens, then the rays (in the case they don’t form a maximal cone)
would generate a non-maximal cone, which would be the face of some larger dimensional cone
(just add more rays). But then the set of rays generating this larger dimensional cone could
not be in the image of ¢ (or possibly ¢!, depending on whether non-maximality occurs
in Ax or Ay). This contradicts our assumption that X and Y have the same simplicial
structure, so Ay and Ay each have the same number of maximal cones. But since Ay and
Ay each have the same number of maximal cones, they must generate the same number of

fiber products of the same length. This gives us (a).

For the second part, it’s easier to use the intersection viewpoint

Ux)n =[]0 n- -0 Ts,), (4.18)

and similar for (Uy),. Recall from [Ful] that U,, N U,, = U,, where 7 = 01 N 0.

Recall that, in a simplicial fan, if a cone o is generated by k distinct rays (in a lattice
of dimension n), then the torus part will have rank n — k. Let 7, = ¢(0;), where by ¢(o;)
is the maximal cone in Ay generated by the cones ¢(p;), where the p,’s span o;. Since ¢
induces a bijection between the respective sets of rays (see Remark 4.7), 7; and o; must be

generated by the same number of rays. So U,, and U,, have torus parts of the same rank.

Now notice that ¢(o; N o) = 7; N 7;; therefore, they are both generated by the same
number of rays and the open sets U,, N Us;, = Usino; and Uy, NU,, = Uy, have torus parts

7

of the same rank. Repeating inductively gives us part (b).
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4.3 The Construction of the Simplicial Scheme BOT x

In Section 4.2, we constructed the simplicial structure of a complete simplicial toric variety
X (Definition 4.5), a simplicial scheme Ux associated to a complete simplicial toric variety X
(Construction 4.10), and used it to construct cosimplicial spectra KH(Ux ) and KH(Ux) ® Q
(Corollary 4.12). Now our goal is to relate the KH theory of a complete simplicial toric
variety to the KH theory of its torus pieces, as mentioned in the outline following Theorem
4.9, by attempting to extend the viewpoint of Section 4.2. To do this, we must find some way
of relating torus pieces (which are direct factors of open sets associated to cones) and the
whole variety. Fortunately, our work has provided us a way to do this. Indeed, notice that our
definition of the simplicial scheme structure associated to a complete simplicial toric variety
is given completely in terms of open sets; thus, it will allow us to relate these two concepts.
In what follows, we can present the material in one of two ways; we can either present
everything purely in terms of the underlying lattices and then just apply the appropriate
functors, or we can use a more geometric approach to describe the maps in question. Each
presentation has its advantages and disadvantages: the lattice construction is very concrete
and is therefore easy to understand and adapt to other situations, but its definition loses
the intuition behind its construction; on the other hand, the geometric approach makes very
clear the intuition behind its construction, but it is far more difficult to prove that this
construction is well-defined and it is not very easy to adapt to the other situations that we
encounter later in this paper. Given that each perspective offers a worthwhile opportunity for

understanding, both constructions are presented below. We begin with some new definitions.

Definition 4.14. Let X be a complete simplicial toric variety with associated simplicial
scheme Ux as shown in Construction 4.10. We define two lattice maps, which we call (;lvj
and s;, by the following construction. Let T =o¢N---No, and 7, = 0o N---NG; N -+ N0y.

Then construct

d;: NY — N (4.19)

by first lifting ]VTX up to N*, then mapping NX to itself via the identity (with T — 7; via
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inclusion), and finally taking canonical projection onto ij Similarly, construct
5 NX — NX (4.20)

by first lifting NTX up to NX, then mapping N to itself via the identity (with T — T
via the identity), and finally taking canonical projection onto NTX Observe that, with this

construction, s; is just the identity map.

Definition 4.15. Let X be a complete simplicial toric variety with associated simplicial
scheme Ux as shown in Construction 4.10. We define a new simplicial scheme, which we

call BOTx, by the following properties:

(a) We define (BOTx)n = [ Ta(oo, ,0n), Where To(oy,.. o, 15 the associated torus piece for
the open set Uy, N -+ - NU,, and afog,--- ,0,) is its rank. As before, the o;’s are all

maximal cones.

BOTx

BOTyx
dj J

(b) We define the face and degeneracy maps, denoted and s respectively, to
component-wise be the morphisms of toric varieties that are induced by the lattice maps

c@ and s; of Definition 4.14.

Remark 4.16. We observe that, in the definition of d?OTX and S?OTX , what we are actually
doing geometrically is (component-wise) lifting a torus piece back to its open set, applying
the appropriate face or degeneracy map under the simplicial structure of Ux to obtain some
new open set, and then projecting back down onto the torus part of that new open set.
So in other words, we could define our face and degeneracy maps purely geometrically in
the following way: we map a given torus 7" into the associated open set U, = U, x T by
mapping 7' +— x* x T (for some point z* in U, ), apply the face or degeneracy map that
comes from the simplicial scheme structure of X, and then project this new open set back

onto its associated torus part. In symbols, component-wise we have
JBOTx
j

= (projz) odjo (x* x T) (4.21)
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and

sBOTX — (projy) o 550 (z* x T) (4.22)

J
where projs denotes projection onto the second component (which is the torus part).

We want to show that BOT y, as defined above, is actually a simplicial scheme, as this

is not clear from its definition. One possible point of concern is that in the definitions of

BOTx

BOT x
dj J

and s , we make a choice (namely in lifting N2 up to N¥); therefore, they might
not be well-defined. So before anything else, we need to make sure that the maps c@ and s;

of Definition 4.14 are well-defined.

Lemma 4.17. The maps c@ and s; of Definition 4.14 are well-defined maps of lattices;

BOTx

BOTx
dj J

consequently, the maps and s are well-defined.

Proof. Suppose that [z] = [y] in NX. We want to show that c@([m]) = c@([y]) and that
s;([z]) = s;([y]). We begin with 67] Recall that d; is given by mapping i : NX — N¥ via
the identity and sending 7 — 7; via inclusion. This second inclusion induces an inclusion
it NJ¥ — N7. Since [z] = [y] in NX z —y e NX. By the inclusion i : NX —s N, we
have i(z) —i(y) € ij( ; applying canonical surjection gives us gj([x]) = cz;([y])

Similarly, recall that s; is given by mapping i : N¥ — N via the identity and sending
7 —> 7 via identity also. This implies that i : NX — NX is the identity map as well. Since
[z] = [y] in NX, —y € NX. By the inclusion i : NX — NX, we have i(z) —i(y) € NX; ap-

plying canonical surjection gives us s;([z]) = s;([y]). So CTJ and s; are well-defined; applying

BOTx

all the necessary functors, we see that d;-BOTX and s; are well-defined as well.

O

There are two main advantages to using lattice techniques for the proofs in this section.
The first is that later in the paper, these techniques will be more easily adapted to our proofs.

The second is highlighted in the above proof of Lemma 4.17. From the lattice construction,

BOTx

it is reasonably easy to show that d?OTX and s; are well-defined. If we instead use
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the geometric construction given in Remark 4.16, we need to show directly that they are

independent of the choice of lift x*. We prove this in the following lemma.

Lemma 4.18. The maps d?OTX and S?OTX as defined in Remark 4.16 are, in each com-
ponent, independent of our choice of lift; that s, they are independent of our choice of x*.

Therefore, the maps d?OTX and S?OTX are well-defined.

Proof. Let T be the torus part of U,, N - - - N U,,, let T; be the torus part of
UsyN---N lj; N---NU,, let z € T be any point, and let ] and z} be two choices

of lift. Then we have the following two face maps

A3 = (projz) o dj o (z} x T) (4.23)
and

dps"™ = (projs) o d; o (a x T), (4.24)

and we have the following two degeneracy maps

spc = (projs) o 550 (a7 x T) (4.25)
and
SESTX = (projz) o sjo (x5 x T). (4.26)

We begin with the two degeneracy maps. We want to show that SE?TX (2) = SES TX(2) for
any z € T. Recall that s; is just the identity map on the respective components of (Ux),
since all it does is repeat a term in the intersection (which does not change the actual set)

and then includes into this intersection (which is just the identity as claimed). So we have

BOTx

si 0 (2) = (proja) o sj(x1, 2) = (proja) (w1, 2) = 2 (4.27)
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and

BOTx (Z)

51,2 = (proja) o s;(a3, 2) = (projz)(z3, 2) = z. (4.28)

This shows that SE?TX (z) = SES TX(2), establishing the claim of the lemma for the degen-

eracies.
Now we look at the face maps. We want to show that dB?TX (2) = dBOTX (z). The proof
is similar to the degeneracy case, with one slight modification. While SBOTX was mapping

T — T, d}BOTX is mapping 1" — T, which is in general a torus of smaller rank. So we

have

iy (2) = (proja) o d;(}, 2) (4.29)
and

A2 (2) = (proja) o d;(x3, 2). (4.30)

As we saw before, d; is just an inclusion map, so d;(x}, z) = (z7, 2) and d;(z3, 2) = (25, 2). If
Tj is the same rank as 7' (which would mean that 7' = T}), then the argument now proceeds
exactly the same as the degeneracy case and we are done. However, if T} is smaller rank,
then when included into U,, N - - - N [j;] N---NU,,, there is some of z that misses 7). Call
that part y; and denote by z; the part of z that lands in 7;. Then (z7,2) = ((z7,y;), %))
and (x3, 2) = ((z3,y;), 2;); then the projection onto the torus part of each of these is just z;.

This gives us

dE?Tx(z) = (projz) o d;(z7, z) = (proj2) (27, y5), 2;) = 2; (4.31)
and

Ay (2) = (projz) o d;(x3, ) = (proja) (x5, 1), 2) = %. (4.32)
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This shows that dE?TX (2) = d%) TX(2) and completes the proof.

O

Using either the methods of Lemma 4.17 or Lemma 4.18, we see that the maps d?OTX

BOTx

and s; are well-defined. Our next goal is to show that these maps indeed make BOT x

into a simplicial scheme. We begin with a lemma.
Lemma 4.19. The maps c@ and s of Definition 4.14 satisfy the usual simplicial identities

of Definition 3.39.

Proof. We recall that the five usual simplicial identities are:

did; = d;_1d; for i <j

disj = sj_1d; for i <j

d;s; = id forv=7,7+1
dis; = s;di—y for i >j+1

§iS; = 8;j8i-1 for Z>j (433)

We show each of these separately for él; and s;. Let

T = Uoﬂ...ﬁo-n
T, = goﬂ...mé\jm...mgn
Tij = Uoﬂ...ﬂo/—\iﬂ...ﬂé\jﬂ...ﬂan (4'34)

and so on. When including multiple indices, we write the indices in increasing order (so for

i < j, we write 7, ;; if i > j, we write 7;;). Similarly, we write

T = opMN---No;No;MN---Noy,

™ = ggN---NoyNo;N---No;No; N Nay, (4.35)

and so on. Again, when including multiple indices, we write the indices in increasing order.
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Observe that both 77 and 7/, are just 7 itself.

By Lemma 4.17, we know that cAl; and s; are independent of the choice of lifting from
NTX up to N¥; therefore, throughout this proof, we assume that the lifting takes [x] to z.
Call this lifting map a (by abuse of notation, we will use « to refer to all such lifting maps,

instead of referring to the specific lifting map by index, as all these liftings have the same

action). Then we can rewrite d; and s; as

dj = moidyx o (4.36)
and

§; = molidyx o« (4.37)

where in each case 7 denotes the appropriate canonical surjection map. We now prove the

identities.

For i < j, we have

did; = TNX © idyx o o TNX © idyx o
did; = nyx oidyx oidyx oa
] N,_l_j N N
did; = TNX O idyx o © TNX © id yx o
dz‘dj = dj—ldi (438)

which is our first simplicial identity. Notice that the last equality comes from the fact that
mapping 7 to 7;; can be accomplished first by deleting the j™ term (which is o;) followed
by deleting the i*" term (which is 0;), or by deleting the i*® term followed by deleting the

(j — 1)™ term (which has become o as deleting o; shifts all indices bigger than i down by
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1). Next we look at the identities for czgj For i < j, we have

mx 0idyx oo Tyx oidyx o
J 73 i

T
1

mx 0 idyx oidyx o
J

T
k3

Tyx 0idyx oo myx oidyx o
J i

T
k3

5,_1d; (4.39)

which is our second simplicial identity. Notice we can obtain the last equality by realizing

that repeating the j™ term o; and then deleting the the i term o; is the same as first

deleting the i*" term o; and then repeating the now (j — 1)™ term o;. We could also see this

immediately since, as we saw in Definition 4.14 that s; turns out to be the identity map.

For ¢ = j,7 + 1, we have

which is our third simplicial identity. Here we use that both 77 and 7

1> 7+ 1, we have

myx 01dyx oav o Tyx o idyx o«
7J TJ

K3
TTnyX O idNX OidNX o«

J

TS

K3

TNX o«
J

T
(3

TNX O«

id (4.40)

; 1y, are just 7. For

mx 0idyx oo Tyx oidyx ox
J 7J rJ

T
2

Tyx 0idyx oidyx o«
J

T
k3

Tnx o ldyx oo Tyx oidyx o
J i

T
k3

5;d;_ (4.41)

which is our fourth simplicial identity. Notice we can obtain the last equality by realizing
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that repeating the j™ term o; and then deleting the new i*" term o;_; (after repeating o;,
the i*" term becomes o;_1) is the same as first deleting the (i — 1) term o;_; and then
repeating the j™ term o; (the j™ term is unaffected by deleting o;_; as i — 1 > j). We
could also see this immediately since, as we saw in Definition 4.14 that s; turns out to be

the identity map. Finally, we look at the identities for s;s;. For ¢ > j, we have

5i8; = myx  oidyx oaomyx oidyx ox
ri—1,3 TJ
gigj = TNX L OidNX Oide o
si—1,j
s;5; = myx oildyxoaomyx oidyxoa
si—1,j Si—1
gigj - gjgifl (442)

which is our final simplicial identity. Notice we can obtain the last equality by realizing that
repeating the j* term o, and then repeating o;_; (the new " term after repeating o;) is
the same as first repeating the (i — 1)™ term o;_; and then repeating the j™ term o; (the
J* term is unaffected by repeating o;_; as i > j). We could also see this immediately since,
as we saw in Definition 4.14 that s; turns out to be the identity map. So the maps cfivj and

s; of Definition 4.14 satisfy the usual simplicial identities as claimed.

With Lemmas 4.17 and 4.19, we can now prove that BOTx is a simplicial scheme.

Theorem 4.20. BOTy, as defined in Definition 4.15, is indeed a simplicial scheme.

Proof. Definition 4.15 has already given us our objects (BOTx),, and our face and degeneracy
maps. So to complete the proof, we need only show that the face and degeneracy maps given
satisfy the usual simplicial identities. Recall that the maps dfOTX and S?OTX are defined
to be given component-wise by applying the appropriate functors to c@ and s; of Definition

4.14. By Lemma 4.19, the maps CTJ and s; satisfy the usual simplicial identities; applying

the appropriate functors, we see that component-wise the maps d?OTX and s?OTX satisfy

d}BOTX ?OTX are determined by what they do

the usual simplicial identities. Since and s
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BOTx

BOTx
dj J

component-wise, we conclude that and s satisfy the usual simplicial identities,

making BOTx a simplicial scheme, as desired.

O

The above proof quotes Lemma 4.19, which uses only lattice techniques, in order to prove

BOTYx is a simplicial scheme. However, we could use the geometric definitions of d?OTX and

sP9TX and directly show that they satisfy the usual simplicial identities. This version of the

proof (given below) demonstrates the intuition behind our choice of construction for d?OTX

BOTx,

and s; ; namely, that they are induced by (and therefore satisfy the usual simplicial

relations because of) the face and degeneracy maps d; and s; of Uy.

Alternate proof of Theorem 4.20. Definition 4.15 has already given us our objects (BOTx),
and our face and degeneracy maps. So to complete the proof, we need only show that the

face and degeneracy maps given satisfy the usual simplicial identities. Since the maps d?OTX

and S?OTX are defined by what they do on each component of (BOTx),, it is enough to show
that the usual simplicial identities are satisfied component-wise. Each of these follow from
the corresponding identities for the face and degeneracy maps for X as a simplicial scheme,

since the face and degeneracy maps of Ux are also defined component-wise.

Now in each of these compositions, we get a term in the middle of the form
(x* x T') o (projs) for some choice of lift x*. Since Lemma 4.18 showed that these maps
are all independent of this choice of lift, we can simply choose z* to be the point that was
lost after applying (projs). In other words, if (projs)(x, z) = z, then choose * = x. Making
these choices, we can delete the term (z* x T') o (projs) from any composite, and add it to

any composite, as it is just an identity mapping when making the correct choice.

Now that we have made this observation, each of the usual simplicial identities are

immediate from the corresponding identities on Uyx. First, we look at the identities for
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dPOTx d?OTX . For ¢ < j, we have

(JBOTx JBOTx
JBOTx jBOTx
(JBOTx JBOTx
JBOTx JBOTx

JBOTx JBOTx
J

which is our first simplicial

1 < j, we have

dBOTX SBOTX
J

dBOTX SBOTX
J

dBOTX SBOTX
J

dBOTX SBOTX
J

dBOTX SBOTX
J

identity. Next we look at the identities for

proja) od; o (z; x T) o (projz) od; o (x5 x T)

)
projs) od; od; o (:r;" x T)
)

proja) od;j_yod;o (IB; xT)

(
(
(
(proja) o dj_y o (x5 X T') o (progjz) o d; o (xj x T)
JBOTx JBOTx

(4.43)

BOTx BOTx
d, S;

. For

od;o (z; x T)o(projs) osjo(x; xT)

o(x;xT)

o (proja) od;io (zj xT)

BOTx ;BOT
Sjy dp

(4.44)

which is our second simplicial identity. For ¢ = j,j 4+ 1, we have

dBOTX SBOTX
J

dBOTX SBOTX
J

dBOTX SBOTX
J

dBOTX SBOTX
J

dBOTX SBOTX
J

od;o (z; x T) o (projs) osjo(xj xT)

(:1:;“ x T)

id (4.45)
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which is our third simplicial identity. For ¢ > 7 + 1, we have

d?oTXS?OTX = (projz)od;io (x; x T)o (projz)osjo(xj xT)

BOUE (i) od, o8y o 0t % T)

;s = (projs) o sjodiy o (2 x T)

dfOTXS§OTX = (proja)osjo(x; xT)o(projz)odiyo(z;xT)

d?OTX S?OTX _ S?OTX d?,olTX (4.46)

which is our fourth simplicial identity. Finally, we look at the identities for S?OTX S?OTX :

For ¢ > j, we have

POTXSBOTX = (projy) o 550 (2} x T) o (projs) 0 s 0 (x5 x T)

POTXSPOTX = (proja) o s;0 850 (a5 x T)

POTXGIOTX = (proja) o sjosia 0 (a) x T)

DO = (proja) 0 sj 0 (¢ X T) o (proja) o si—y o (x5 x T)

?OTX s}gOTX _ S?OTX 8;3701TX (4.47)

which is our final simplicial identity. So the face and degeneracy maps satisfy the usual

simplicial identities and BOTx is a simplicial scheme, as desired.

]

Now that we have shown BOTx to be a simplicial scheme, we want to relate BOTx to
the simplicial scheme Ux. Let ¢4* be the morphism of schemes obtained by projecting each

component of (Ux), onto its torus part. By it’s very definition, this gives us a morphism

¢* - (Ux)n — (BOTx), (4.48)

which we now seek to show gives rise to a morphism of simplicial schemes.
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Theorem 4.21. The morphism ¢*'* : Uy — BOTyx given in degree n > 0 by
¢ - (Ux)n — (BOTx), (4.49)

1s a morphism of simplicial schemes.

As we should expect by now, Theorem 4.21 can be proven two ways. We can either use
the lattice techniques, or prove it directly using the geometric descriptions of dEOTX and

SEOTX . We present both proofs below.

Lattice proof of Theorem 4.21. We need to show that

dPOTX o Mx = Hx o 4 (4.50)
and that
sp0TX o glx = g o sy (4.51)

As usual, we check this component-wise. Component-wise these maps are induced by the
lattice maps c?k and 3, of Definition 4.14, and the canonical surjections NX — ]VTX for the

cones T € Ax. Recall that we can write Jk and 355 as

dy = 7 o idyx oa (4.52)
and

5p = moidyx ox (4.53)

where in each case 7w denotes the appropriate canonical surjection map. On lattices, dj is

given by mapping NX — N via the identity, and 7 — 73, via inclusion. So for the face
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maps we need
Wﬁ%ﬁ o ldNX o o FNTX = Wﬁ%ﬁ o ldNX (4.54)

which is clearly true by our choice of @ (and Lemma 4.17). The left hand side component-
wise induces dEOTX o ¢4*  while the right-hand side component-wise induces qz{f 1 ©dg. This

establishes the first equality.

Similarly, on lattices, s; is given by mapping N¥ — NX via the identity, and 7 — 7

via identity. So for the degeneracy maps we need
Wﬁx OidNX OO[O7TNX :Wﬁx OidNX (455)

which is again clearly true by our choice of o (and Lemma 4.17). The left hand side

BOTx
k

component-wise induces s o ¢4x while the right-hand side component-wise induces

q%jl o s;. This establishes the second equality. So ¢“* is indeed a morphism of simplicial

schemes.
O
Geometric proof of Theorem 4.21. We need to show that
dOTX o gMx = Ux o dy (4.56)
and that
50T o g = g%, o sy (4.57)

As usual, we check this component-wise. On each component of (Ux),, ¢#¥ is just a projec-

tion map onto the torus. In other words,

& Uy NU,, =U, 22U xT T (4.58)
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is a projection (here T is our torus, and 7 = oo N ---Na,). So pick any element z in
Uyo M-+ - N U,,; then that element is of the form z = (y, z), where z € T. ¢*(z) = 2z so we

have
dBOT o it (z) = dBOTX (2), (4.59)

For the other direction, di(z) is just an element of U,, N---N ﬁ; N---NU,,; in other
words, di(z) € Uy, = U X T" where 7, = 0N+ NG N+ -Noy. So dp(z) = (Yk, 21) and
¢4, o di(x) = ¥ (y, 2x) = 2. But notice that, by its very construction dj,°" (z) = z.
The reason is that the image of x under q%fl o dy depends only on where the torus part of
x is sent under dy; that is precisely what dfOTX (z) is since z is the torus part of x. So we

establish the first condition.

Now we check the same condition on degeneracy maps. However, this condition is sig-
nificantly easier. The reason is that s, is just the identity on any given component, since all

it does is send

Upo N -NUy, MUy N NUy = Upy NN Uy, MUy MU, NN U,

Ok+1 Ok+1

and this intersection is just the same set. Since it just includes a set into the same set, it is

the identity on that set. As a consequence, SEOTX is also the identity on each component.
Now pick any = = (y, z). Then
s 0T 0 ¥ (y,2) = 5,01 (2) = 2 (4.60)
and
Gty 0 sy, 2) = ¢l (v, 2) = = (4.61)

So these commute as well and ¢“* is a morphism of simplicial schemes.
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Corollary 4.22. We get a morphism
KH(¢"*) : KH(BOTx) — KH(Uy) (4.62)
of cosimplicial objects over the category of spectra. Similarly, we get a morphism
KH(¢"¥) ® idg : KH(BOTx) ® Q — KH(Ux) ® Q (4.63)

of cosimplicial objects over the category of spectra.

Proof. Apply KH (or KH(—) ® Q) everywhere, and recall Corollary 4.12 and the fact that
KH (or KH(—) ® Q) is a contravariant functor.

]

We can actually do even better. Recall from Theorem 3.54 that the category of spec-
tra has a model category structure in which the class of weak equivalences are just quasi-
isomorphisms; similarly, recall from Theorem 3.56 that the category of cosimplicial spectra
has a model category structure in which the class of weak equivalences are just morphisms

that are quasi-isomorphisms in each degree.

Theorem 4.23. The morphism of cosimplicial spectra
KH(¢"¥) : KH(BOTx) — KH(Uy) (4.64)
15 a weak equivalence. The morphism of cosimplicial spectra
KH(¢"*) ® idg : KH(BOTx) ® Q — KH(Ux) @ Q (4.65)

18 also a weak equivalence.

Proof. Suppose we have a situation in which

GY ——Cx G2 —5GY ——C x G2
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where ¢ is an inclusion map and ¢ is a projection map. For simplicity, we adopt the notation
f* = KH(f). Define a homotopy map F : (C' x G2) x Al — C x G® by F(—,0) =iogq
and F(—, 1) = idCXGﬁ,L-

The projection map X x Al — X induces a homotopy equivalence

KH(X)—=>KH(X x Al)

for any X with two homotopy inverses ji and j;i, where j; : X — X x Al by z — (z,1)
for i« = 0,1. Now since j; and j7 are both homotopy inverses to the same map, then in the

homotopy category we must have [j5] = [j;].

Applying this to X = C x G¢

@ then we have F o j, = F(—,0) = 70 ¢ and
Foji = F(—,1) = idgxge . Then in the homotopy category, since [j;5] = [j;] and since
[F*] = [F*], we have that [(F(—,0))*] = [(F(—,1))*]. This means that [¢*][¢*] = [id*] and

[¢*] is an isomorphism in the homotopy category. That means that ¢* is a weak equivalence

in the category of spectra.

But notice that the map ¢“* is, in each degree, made up of maps like the map ¢ above.
So by the above we have that in each degree, KH((¢"¥),) is a weak equivalence; therefore

KH(g"*) is also a weak equivalence.

To see that KH(¢"*) ® idg is a weak equivalence, we need only note that KH(¢*) is a
weak equivalence, and therefore induces an isomorphism on all KH groups of each component;

since tensoring with Q preserves isomorphisms, the result is immediate.

O
Corollary 4.24. The morphism of cosimplicial spectra
KH(¢"*) : KH(BOTx) — KH(Uy) (4.66)
mduces a weak equivalence
R(KH(BOTx)) — R(KH(Ux)). (4.67)
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Similarly, the morphism of cosimplicial spectra
KH(¢"*) ® idg : KH(BOTx) ® Q — KH(Ux) ® Q
mduces a weak equivalence
R(KH(BOTy) ® Q) — R(KH(Uyx) ® Q).
Proof. By Theorem 4.23, the morphisms
KH(¢"*) : KH(BOTx) — KH(Uyx)
and

KH(¢"¥*) ® idg : KH(BOTx) ® Q — KH(Ux) ® Q

are weak equivalences, so the result is immediate by Proposition 3.51.

Corollary 4.25. The morphism of cosimplicial spectra

KH(¢"~) : KH(BOTx) — KH(Ux)

induces a morphism

holim(KH(BOTy)) — holim(KH(Ux)),

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

and this induced morphism 1s a weak equivalence. Similarly, the morphism of cosimplicial

spectra

KH(¢"*) ® idg : KH(BOTx) ® Q — KH(Ux) ® Q
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mduces a morphism

holim(KH(BOTx) ® Q) — holim(KH(Ux) ® Q), (4.75)

and this induced morphism is a weak equivalence.

Proof. This is immediate from the construction of the holim functor, Proposition 3.71, and

Corollary 4.24.

This allows us to conclude the following important consequence for BOT x.

Theorem 4.26. Let X be a complete simplicial toric variety. Then the two spectra

holim(KH(BOTx)) and KH(X) are weakly equivalent.

Proof. Recall that two objects in a model category are said to be weakly equivalent if there
is a "zig-zag” of weak equivalences between them; see [Hir, Definitions 7.9.1 and 7.9.2]. By

Corollaries 3.119 and 4.25, we get a zig-zag

holim(KH(BOTx)) — holim(KH (Uy)) +— KH(X) (4.76)

where each map is a weak equivalence. Thus the spectra holim(KH(BOTy)) and KH(X)

are weakly equivalent as claimed.

]

Theorem 4.26 completes our generalization of the intuition we presented in the intro-
duction to Section 4. Since holim(KH(BOTx)) and KH(X) are weakly equivalent, the nth
stable homotopy group of holim(KH(BOTYy)) is isomorphic to the group KH,,(X), showing
that KH,,(X) is indeed determined only by the torus pieces.
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4.4 The Proof of Theorem 4.9

With the work of Sections 4.2 and 4.3, we are now ready to prove Theorem 4.9. Section
4.3 focused on the construction of BOTx for a given complete simplicial toric variety X.
Similarly, we could construct BOTy for a different complete simplicial toric variety Y. The
question is: when are these two simplicial schemes related? In general this is not known;
however, if we impose the conditions that X and Y have the same simplicial structure and

that we have a lattice morphism
F:N* — NY (4.77)
which is injective with finite cokernel such that the restriction maps
Flyx : NS — N2 (4.78)

are also injective with finite cokernel for any cone ¢ € Ax, then we get a very useful
relationship. It is the need to build this relationship that led to such strong conditions on

the lattices associated to X and Y.

Recall that, for any cone o € Ay, we write NX = NX/NX_ where NX is the lattice that

o

gives rise to the torus part of U,. See Remark 2.3.

Lemma 4.27. Let X and Y be two complete simplicial toric varieties with the same sim-
plicial structure, and suppose we have a lattice morphism F : NX — NY which is injective
with finite cokernel such that the restriction maps F|yx : NX — N;/(U) are also injective

with finite cokernel for any cone o € Ax. Then F induces a map

. X ATY
F,: NX — NY,, (4.79)

that is also injective with finite cokernel.
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Proof. The first thing we need to show is that F' induces a map

. X ATY
E,: NX — NY,. (4.80)

Once we have this map, we will show that it is injective with finite cokernel. Composing F'

with the canonical surjection morphism

TNY NY — NJ, (4.81)
we get a morphism
Ty o F: N* — N2 (4.82)

Since Flyx : N — N, is also injective, we see that the kernel of myy,, © I contains
o (o

NX. Therefore, TNy, © F factors through NX. Thus, we get a map
(o

. X ATY
F,:NX — NY,, (4.83)

as desired. Note that F,([z]) = TN, © F(z), and that this map is well-defined since if

[

[z] = [y], then # — y € NX, which means that F(x) — F(y) € N;/(G), and therefore that

Ty o F(x)=myv o F(y). (4.84)

o(o) (o)

So F,([z]) = F,([y]), showing that F, is well-defined and independent of the choice of lift.

Now by Lemma 2.1, we have that both N X and ]v;/(g) are themselves lattices (in partic-

ular, they are free abelian groups). So we have the following diagram of lattices

7TN§

0 NX¢ NX

lFNg( JF F

0—— NY N — N,

w(o) TNY w(o)
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where the rows are short exact sequences. Then by the Snake Lemma, we get the exact

sequence

ker (F|yx) —— ker (F) —— ker (FU> —

- - coker (F|yx) — coker (F') —— coker (ﬁg>

Now since F' and F|yx are assumed to be injective, we have
ker (F|yx) = ker (F) = 0. (4.85)
So our exact sequence reduces to
0 —— ker (ﬁa> —— coker (F|yx) — coker (F') — coker (ﬁa>

Now we recall that coker (F | Ng<> is assumed to be finite; therefore, as the above exact
sequence forces ker (ﬁg) to inject into coker (F | Ngf), we conclude that ker (ﬁa) is finite
as well. Since ker <ﬁ’a> is a subgroup of the free abelian group N X we conclude that
ker (ﬁ,) = 0 and the map ﬁg is injective.

From here, the remainder of the proof is immediate. F injective with finite
cokernel implies that rank N¥ = rank NY while F \ nx Injective with finite coker-
nel implies rank NX = rank N:)f(g). Since rank Nf = rank N¥ — rank NX and

rank NY

o(o) = Tank NY — rank N;/U), we conclude that rank NUX = rank ]v;/a) and F, has

( (
finite cokernel as desired.

]

Corollary 4.28. For F, as in Lemma 4.27, we have that | coker(F,)| divides | coker(F)| for

any cone o.

Proof. Choose splittings of N* and NY to give us

N¥ = NX o M (4.86)
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and
Y ~ Y A{Y
N = Nw(o_) EB 90(0')' (487)

Notice that MX = N X and that M&U) = ]V;f(g). One should also note that these splittings
are non-canonical; however, as we are only interested in a relationship determined by orders
of quotients of these groups (as opposed to the groups themselves), this will not be an
issue. We showed in Lemma 4.27 that F, is given by lifting an element of N back to N,
applying F, and then applying the canonical surjection map TNY and we also showed that

this operation is independent of the choice of lift back to NX. Therefore, if we assume that

the lift of z is just (0,z) € NX, then the map ﬁg is isomorphic to the map

FM MY — MY, (4.88)
given by
z— (0,2) — (0, F(x)) — F(z) (4.89)

where the last map is just projection onto the second coordinate. In particular,

| coker(F,)| = | coker(FM)| so we are done if we can show the result for | coker(£)].

Now notice that ' = F|yx @ FM so by elementary group theory, we have
NYJF(NY) 2 (NJo) [ Flux (N7) @& (M) / F (M) (4.90)
In other words, we have
| coker(F)| = | coker(F|yx)]| - | coker(F.")] (4.91)

and conclude that | coker(F)| divides | coker(F)|. Therefore, | coker(F,)| divides | coker(F)]

as well and we are done.
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]

The importance of Lemma 4.27 is that F, : Nf — NY

() gives rise to a morphism

between the torus pieces of UX and U;/(U), which will in turn allow us to construct a morphism

BOTx — BOTYy of simplicial schemes.

Theorem 4.29. Let X and Y be two complete simplicial toric varieties with the same

simplicial structure, and suppose we have a lattice morphism
F:NYX — NY (4.92)
which is injective with finite cokernel such that the restriction maps
Flyx : NS — N2 (4.93)

are also injective with finite cokernel for any cone 0 € Ax. Then F induces a morphism of

simplicial schemes
BOTx — BOTy . (4.94)
Furthermore, for every n, the morphism
(BOTx), — (BOTy), (4.95)

is, in each component, induced by a finite injection of rings (in fact, a finite injection of

Hopf algebras).

Proof. As we’ve already seen, Nf and N ;/(0) determine the torus parts of UX and U ;/(U), and

SO

. NX ATY
F,:NX — NY,, (4.96)

determines a morphism between the tori 7 and T:)/(U). We will examine closely how this
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induced morphism is constructed. Because F, is injective with finite cokernel (Lemma 4.27),

it gives us the following exact sequence:

~. B v
N@(a)

LAY AT X
N(P(U)/NU —0

where Néf(o) / N X is finite. Now we take the dual of these lattices, so we apply Hom(—, Z) to

this sequence. This gives us the exact sequence

00— Hom(NY, /NX,Z) — Hom(NY,, ), Z) — -

- Hom(NX, Z) — Ext!( SD(U/ X )—>Ext1(N;”(U),Z)

However, N is free, giving us

Ext' (N}, Z) = 0 (4.97)
and since N;f(g) /NX is finite,

Ext (NYJ) /NX,7) = /NX (4.98)

90(0

and

Hom(NY,,/NX,Z) = 0. (4.99)

o

So we reduce to the exact sequence

0 — Hom(NY,

@(0),Z)—>Hom(N§,Z) —>N;/(U)/N§—>O .

This means that the induced morphism

Hom(NY,),Z) — Hom(N.*, Z) (4.100)
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is also injective with finite cokernel. Taking group rings, we get

k[Hom(NY

o(o)’ Z7)| — k[Hom(Nf, 7)] — k[ﬁy

go(a)/ N, 5]
From here, we take Spec of everything to get the sequence
Spec <k[]vz(g)/ﬁ§]> —— Spec (k‘[Hom(Kff, Z)]) —— Spec (k[Hom(N;/(U), Z)]) .
This induces a morphism
(BOTx), — (BOTy), (4.101)
since in each component of (BOTy),, we get a map of the form

Spec <k[Hom(ﬁ§,Z)]> — Spec <k[Hom(Nf§(U),Z)]) : (4.102)

Thus, we have the first piece of a morphism of simplicial schemes. To show this is a true
morphism of simplicial schemes, we also need to show that it commutes with the face and

degeneracy maps. However, before doing so, we show that, in each component of
(BOTx), — (BOTy),, (4.103)

this map is induced by a finite injection of rings.

To see this, we take a closer look at how the map is constructed in each component. As

we saw above, in each component the map is just
Spec <k[Hom(ﬁ§,Z)]> — Spec (k[Hom(NZ(J),Z)]) . (4.104)

As we saw in Section 3.1, we can understand properties of this morphism by understanding
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the ring map

k[Hom(NY ), Z)] — k[Hom(NZ, Z)]. (4.105)

For ease of notation, we let A = k[Hom(N?

Yo 2)] and B = k[Hom(NX,Z)]. T claim that

this ring map is injective and finite.
Injectivity is obvious. To see that this is finite, realize that, as an A-module, B is

generated by Hom(NX, Z). Recall we have a surjection
Hom(N),Z) — N}, /N (4.106)

(where wa(a) /NX is finite). Lift each element of ]V;/(g)/ NX back to Hom(N2X, Z); call these
elements {¢1, ..., on}. Then every element ¢ € Hom(ﬁf,Z) is of the form v = ¢ + ; for
some ¢ and some ¢ € Hom(ﬁéf(g),Z), as N;/(U) /NX is (isomorphic to) the cokernel of the
injection

Hom(N},),Z) — Hom(N, Z). (4.107)

o)’

When constructing the group ring, we need to view these groups as being multiplicative;

therefore, we have y¥ = x?*%i = x? . x¥. Now any element of B can be written as

> ! (4.108)

YeHom(NX ,Z)

where 7, € k. Since x¥ = x? - x¥', we can rewrite this sum as
> e | X (4.109)

=1 NY
¢6Hom(N(p(a),Z)

and > peHom(RFY,  2) reX? € A. So every element of B is an A-linear combination of the x#i’s;
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since there are finitely many x¥i’s, B is finitely generated as an A-module. So the ring map

k[Hom(NY,),Z)] — k[Hom(NX, Z)] (4.110)

is finite as claimed.

Finally, we need to show that the maps
(BOTx), — (BOTy), (4.111)

commute with the face and degeneracy maps. Recall from Definitions 4.14 and 4.15 that the
face and degeneracy maps for BOT x are constructed by considering maps on the appropriate
lattices. Recall that we called these maps g] and s;; here, to differentiate between the case
when they’re constructed from NX or NY, we denote these maps by JJN * and §§V * for the
complete simplicial toric variety X and by OTJN " and §§V " for the complete simplicial toric

variety Y. Then, in the face map case, we get the following diagram:

idyx
X X
N X
X
a /
\N . /
Nx S N
J

Here F' is injective by assumption, while fT and ﬁfj are injective by Lemma 4.27. Ob-
serve that, obviously, the outer square commutes. We want to show that the inner square

commutes. In other words, we want to show that

Food¥ =dY oF; (4.112)

J
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then after applying all the necessary functors, we get that these induced maps on the tori

commute with the face maps of BOT x component-wise, and therefore commute overall.

Notice that, from the construction of the map F, given in Lemma 4.27 we have that, for

an element [z] € NX

Fr([z]) = vy,

e(T)

o F(x). (4.113)

In other words, we lift [z] back to N*, apply F', and then apply ™Y As F, is independent
w(T

of our choice of lift, we can just take the lift a sending [z] to =, as we did in the construction

of CZN * and 'svjv * in Lemma 4.19. As before, we will abuse notation and use « to denote all

such lifts of this type. This means that we can write

E:WNYHOFOQ (4.114)
and
F, =myy oFoa. (4.115)
7 w(75)

Also recall that, from Lemma 4.19, we can write

d;-vx = myx oidyx o (4.116)

and
-
dj

= TTNY o idNY o«x. (4.117)
(75)
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With this, we now simply compute the composition:

NNY jd . .
d;’ oF, = WNLTJ.) oidyy oaomyy oFoa
—y ~ .
djv oF, = myv oidyvoFoa
e (75)
~y ~ '
dév oF, = myv oFoidyxoa
(75)
—y ~ .
dj-v ol = TNY. oFoaowN% oidyx oa
J
INY =~ o NX
dj oF, = F|NJX od; . (4.118)

So these maps commute with face maps. To see that they commute with degeneracy maps

is even easier. This time our diagram is

idyx

NX NX

™
X Ng(
~NX «

~ s ~
X J X
NX 2 N

F El l F. F
~NY

Now — Ngey

7TNY TNY
/ NG
(0%
NY

NY

id yy

and recalling from Definition 4.14 that 57 * and 5y " turn out to just be the respective
identity maps, the commutativity of the inner square is obvious. Thus, we have a morphism

of simplicial schemes as desired.

O

Corollary 4.30. For every n, the morphism (BOTx), — (BOTy), is, in each component,

an isogeny; that is, in each component, this map is surjective with finite kernel.

Proof. As before, let A = k[Hom(ﬁ&o),Z)] and let B = k[Hom(NX Z)]. Recall from
Theorem 4.29 that the ring homomorphism A — B is injective and finite. Applying
Corollary 3.13, we get that Spec(B) — Spec(A) is surjective. Thus, in each component,
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the map
(BOTx), — (BOTy), (4.119)

is surjective as claimed.

To show that, in each component, this map has finite kernel, we recall that each compo-
nent is just an algebraic torus, which is just a diagonalizable group scheme. By Proposition
3.29, the category of diagonalizable group schemes is anti-equivalent to the category of
abelian groups, which is an abelian category. That means that, under this equivalence, the

short exact sequence

00— Hom(N;/(g), Z) — Hom(NX, Z) — N;/(G)/Nf —0
gets mapped to the short exact sequence
0 —— Spec <k[]vg(a)/ﬁ§]> —— Spec(B) — Spec(A) —— 0.

So the kernel of any given component is of the form Spec <k[ﬁ;f(g) JNX ]) Since ]Tf;f(o) JNX
was assumed finite, we have by Proposition 3.32 that the scheme Spec <k[ﬁ;f(g) / Nf ]) is a

finite group scheme. So in each component, the map
(BOTx), — (BOTy), (4.120)

has finite kernel as desired.

]

Remark 4.31. Notice that the kernel of the morphism Spec(B) — Spec(A) of Corollary
4.30 is the group scheme Spec (k[ﬁ;/(a) / Nf]), which we denote by pu,. We will see later

that, after writing N v/ NX in invariant factor form, if k contains all m;™ roots of unity
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(where my, ..., m,, are the invariant factors of ]A\z/(g) /NX) then
|| = my - mg---my,. (4.121)
This will allow us to conclude that
o] = [N/ NG (4.122)

In light of Corollary 4.28, once established we can conclude that the order of every ker-
nel arising from an isogeny in Theorem 4.29 and Corollary 4.30 divides |coker(F')|, where

F: NX — NY is our lattice map from Theorem 4.29.

Corollary 4.32. The morphism of Theorem 4.29 induces a morphism of cosimplicial spectra
KH(BOTy) — KH(BOTY) (4.123)

which is, component-wise in each degree, given by induced morphisms f* as defined in Def-
wniation 3.77. Similarly, the morphism of Theorem 4.29 induces a morphism of cosimplicial

spectra

which is, component-wise in each degree, given by induced morphisms (f*)g, with f* as

defined in Definition 3.77.

Proof. Recall that every component of (BOTx), and (BOTy), is an algebraic torus. In
particular, every component is smooth so the KH-theory of any component is just the K-
theory of that same component. Similarly, KH(—) ® Q of any component is just K(—) ® Q

of that same component.

Since KH is a contravariant functor from schemes to spectra, it sends any simplicial
scheme to a cosimplicial spectrum, and sends any morphism of simplicial schemes to a

morphism of cosimplicial spectra. KH of a simplicial scheme is given by applying KH to each
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component in each degree. Similarly, the morphism of simplicial schemes is mapped (via KH)
to a morphism of cosimplicial spectra by applying the functor KH to every morphism. By
the initial remark that the KH-theory of any component is just the K-theory of that same

component, we see that these induced maps are just the maps f* of Definition 3.77.

Similarly, since KH(—) ® Q is a contravariant functor from schemes to spectra, it sends
any simplicial scheme to a cosimplicial spectrum, and sends any morphism of simplicial
schemes to a morphism of cosimplicial spectra. KH(—) ® Q of a simplicial scheme is given
by applying KH(—) ® Q to each component in each degree. Similarly, the morphism of
simplicial schemes is mapped (via KH(—) ® Q) to a morphism of cosimplicial spectra by
applying the functor KH(—) ® Q to every morphism. By the initial remark that KH(—) ® Q
of any component is just K(—) ® Q of that same component, we see that these induced maps

are just the maps (f*)g, with f* as defined in Definition 3.77.

O

Theorem 4.29 has shown that BOTx — BOTy is in each degree component-wise in-
duced by a finite, injective map of rings; however, these rings are actually Hopf algebras, and
the Spec of these rings are actually diagonalizable group schemes. We can conclude from

the following proposition that this injection of rings is also flat.

Proposition 4.33. Let f : A — B be an injection of Hopf algebras over k (where k is a
field). Then B is faithfully flat as an A-module.

Proof. See [KMRT, Proposition 22.1] and [Wat, Section 14.1].

]

Corollary 4.34. The injection of rings k:[Hom(N;/(
flat.

7)] — k[Hom(NX,Z)] is faithfully

o)’

Proof. This is immediate by Proposition 4.33, since we've already seen that

k[Hom(NZ(J), 7)] —» k[Hom(NZX,7Z)] is an injection of Hopf algebras.
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Corollary 4.35. The morphism

Spec (k[Hom(]vg(, Z)]) — Spec (k[Hom(NY(J), Z)]) (4.125)

¢
1s flat.

Proof. This is immediate from Corollary 4.34, [Hart, Chapter I1I, Proposition 9.2], and the

definition of a flat morphism of schemes. See [Hart, page 268].

We can actually say even more about the maps

Spec <k[Hom(Kf§, Z)]) — Spec (k[Hom(NY(a), Z)]) (4.126)

P

from Theorem 4.29. The first observation we can make is that because these maps are

isogenies induced by a lattice morphism, they can be diagonalized.

Proposition 4.36. Suppose that f : Ty — Ty is an isogeny between two split algebraic
tori Ty and Ts. Then f can be diagonalized; more specifically, we can choose coordinates
{1, 29, ...,z } of Ty and {y1,Ya, ..., yn} of Ty such that y; = " and the morphism f is just

the powering map
(1, Toy ooy ) > (™ 252, ™). (4.127)

Proof. As T1 and T, are algebraic tori, they are given by lattices and f is constructed by
a lattice homomorphism. As f is assumed to be an isogeny, we have that the map of
lattices inducing f, which we call f, is injective with finite cokernel. In short, we have that

f Ty — T, is given by the morphism

where N7 and Nj are finite rank lattices. Let {ej,...,e,} denote the basis of N;. Then the
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set {f(e1),..., f(en)} is a linearly independent set in N,. Let G denote the subgroup of N,
generated by {f(el), o ~(en)}; since f is injective with finite cokernel, G and N, have the
same rank. Therefore, there exists a basis {31, ..., 8.} of Na, and integers my, ..., m,, (with
my|msl| - - - |my,) such that the set {myf,...,m,B,} is a basis of G (this can be realized when
giving an elementary proof of the invariant factor form of a finitely generated abelian group).
As {m1f1,...,m,(3,} is linearly independent and fis injective, {aq, ..., } is linearly inde-
pendent, where «; = ffl(miﬂi). Similarly, as G = 1m(f) is generated by {mif1,...,m,0,}
and f is injective, N is generated by {aq,...,a,} as well (N; is isomorphic to G via f)
Therefore, {aq,...,a,} is a basis of N;. Viewing N; in the basis {aq,...,a,} and Ny in
the basis {51, ..., 5,} gives us that f is (in these bases) diagonal, with diagonal elements

may, Mo, ...,m,. Taking Hom and the appropriate group rings give rise to a morphism of

rings
K[ty t7h o tn, 6] — K[s1, 870, 0, Sn, 55,1 (4.129)

given by mapping k identically to itself and mapping t; — s;". Taking Spec everywhere, or

equivalently taking Hom(—, k) everywhere, then gives the result.

]

Corollary 4.37. If k contains all m;™ roots of unity, for i = 1,....n, then the group ji, of
Remark 4.31 satisfies

lti] = NG/ N5 | (4.130)

o(o
as claimed.

Proof. Recall that the morphism F, : NX — N ;/(U) induces an isogeny of tori TX — T;/(U)
by Theorem 4.29 and Corollary 4.30. By Proposition 4.36, we can diagonalize T-X — T;/(U)

using the invariant factors of the group Kf;/(a) / N X If my,...,m, are the invariant factors of
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j\}Y

e(o)

/NX, then
INY o) /N =my-my - my, (4.131)

so we are done if we can show that |u,| = my-mqy---m, also. Using the bases of Proposition

4.36, we have that
po = {(z1, .oy wn) |27 = 1} (4.132)

for all i. Since k contains all m;"™ roots of unity by assumption, the ith coordinate of any
element of u, has m; distinct possible values. This means that |u,| = my - ms - --m, and we
are done. As mentioned in Remark 4.31, we can conclude that |u,| divides |coker(F)| for

every cone o.

]

As we just saw in Corollary 4.37, if f : T} — T3 is an isogeny, Proposition 4.36 gives us
a very nice way to view both the map and its kernel. Indeed, letting ker f = u, we see that

in these bases
p=A{(x1,....,x,)|x;" =1} (4.133)

for all 7. The result of Corollary 4.37 leads us to want our underlying field k£ to have all of
the m;*™ roots of unity, which a priori need not be true. However, using a Transfer Argument

as in Theorem 3.104 allows us to reduce to this case. Before doing so, we need a lemma.

Lemma 4.38. Suppose f : A — B is an injective homomorphism of rings and that B is a

free A-module of rank d via the structure induced by f.

(a) If s and t are indeterminants, we have an induced homomorphism

F: Als] — BJ[{] (4.134)
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with A mapping to B via f and s — t. Then B[t] is a free A[s]-module of rank d via

the structure induced by F'.

(b) If s and t are indeterminants, we have an induced homomorphism

F:Als, s — B[t t ] (4.135)

with A mapping to B via f and s — t. Then B[t,t™] is a free Als, s~']-module of rank

d via the structure induced by F.

Proof. To prove (a), first notice that since f is injective, F' is injective as well. Since Als] is
isomorphic to its image inside of B[t], we can replace A by f(A) and s by ¢t and assume that
F' is just inclusion. So we have reduced to the case that A[t] — B[t] via inclusion. Next,

we recall that, for any indeterminant = and any A-module M, we have that
Mlz] = Alzx] @4 M (4.136)

as A[z]-modules; see [AM, Chapter 2, Exercise 6]. Since B = A¢ and since tensor products

commute with direct sums, letting M = B and x =t gives us
Blt] 2 Alt) @4 B2 Alt] @4 A =2 (A[t] @4 A)* 22 A[t]% (4.137)

This establishes part (a).

For part (b), we use a similar method to reduce to the case that
Alt,t71 — B[t t 7] (4.138)

via inclusion. By part (a), B[t] is a free A[t]-module of rank d. Letting S = {1,¢,¢2 3, ...},
observe that A[t,t7!] = ST A[t] and BJt,t7'] = S™!B[t]. Next, we recall that that, for any

R-module M, we have

STIM=S'RerM (4.139)
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as S~!R-modules; see [AM, Chapter 3, Proposition 3.5]. Since B[t] = A[t]¢, letting R = Alt],
M = BJt], and S = {1,t,12,3, ...} gives us

Blt,t™'] = ST'B[t] = STA[t] @y Blt] = STA[l] ®ap Alt] =

1%

(STMA[t] @ap At]) (STLA[t])Y = Aft, 7). (4.140)

This establishes part (b).

[]

We are now ready to make our transfer argument. For convenience, we again use the

notation of Proposition 4.36 and Corollary 4.37.

Proposition 4.39. Suppose that the characteristic of k does not divide |uy|. Letting k()
denote the field extension of k given by adjoining all the m;™ roots of unity, and letting
(Tj)k(uo) (for 7 = 1,2) denote the base extension of T to the field k(u,), we have that if
((fr(uo))*)a is an isomorphism for every n, then (f*)g is an isomorphism for every n as

well.

Proof. Here we seek to use Theorem 3.104. Consider the square of rings

Elt, t7h o te, 6] ;ﬂc[sl, s1t s S, s Y

] -

k:(,ua)[tl,tl_l, SO ]f—>k(ua)[31,sl L. s Sy St
k(peo)

where the two vertical maps i, and iy are given by base extension; in other words, they map
the variables to themselves but extend the coefficients. This square obviously commutes.
The morphism k& — k() of rings is injective (as k is a field), and k(u,) is a free k-module
of (finite) rank [k(uy) : k| (as |uy| is finite, the degree [k(u,) : k] must be finite as well).
Therefore, by Lemma 4.38, we have that k(u,)[t1, 1", ..., tn, ;] is a free module of rank
[k(its) : K] over k[t 17", ..., t,, t7Y], and similarly we have that k(u,)[s1, 57", ..., Sn, 551] is a

free module of rank [k(y,) : k] over k[si,s7', ..., sn, 57%]. Therefore, both morphisms i; and
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19 are injective, flat and finite. Finally, notice that

k(ig)[51, 87", oo Sy 850 = k(o) [t 17 oo s )] sttt k[s1,87", 0y 8n,5,0].

So the conditions of Theorem 3.104 are satisfied. Thus, if ((fx(.,))*)o is an isomorphism for
every n, then by Theorem 3.104, (f*)g is an isomorphism for every n as well. This completes

the proof.

]

So by Proposition 4.39, we may assume that our field & contains all m;'" roots of unity,
where the numbers my, ..., m,, are the diagonal elements of f determined in Proposition 4.36;

we will do so from here on out.

Viewing the morphisms of Theorem 4.29 using Proposition 4.36, we can show that the

morphism

Spec (k[Hom(N§ , z>]> — Spec (k;[Hom(NY Z)]) (4.141)

o)’

is actually even étale. This will be our next result.

Proposition 4.40. If the characteristic of k does not divide ||, then the morphism

Spec (k‘[Hom(Kff, Z)]> — Spec (k[Hom(],\va(U), Z)]) (4.142)

%)
1s étale.

Proof. Recall from Proposition 3.25 part (d) that if two morphisms are étale then their
product is étale also. By inductively applying this, we can conclude that if we have a finite

collection of étale morphisms then their product is étale also.

Proposition 4.36 shows that we can choose coordinates with

mi m2

flzr, @, .y xy) = (7™, 252, o ™). (4.143)
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This means that f is, in these bases, a product of powering maps. So if we show that the

morphism
G — Gy, (4.144)

given by x — x" is étale for any n, where k contains all nth roots of unity, then we are done.
Notice that the condition that the characteristic of k£ does not divide |u,| reduces, in this
case, to the characteristic of k£ not dividing n, since the kernel p, of the nth powering map

is {z|z" = 1}, which has order n since k contains all nth roots of unity.

On the level of rings, observe that this is given by the ring homomorphism
k[t,t7'] — k[s,s7] (4.145)

where ¢ + s". Then k[s,s™'| = k[t,t7][X]/(X™ — t), so it’s enough to show that the

morphism
klt,t7 Y — k[t H[X] /(X" — 1) (4.146)

is étale. By Corollary 3.27, we are done if we can show that nt € (k[t,t7'])*. We know
t € (k[t,t7'])* so this reduces to showing that n € (k[t, ¢ !])*, which is the same as saying
that the characteristic of £ does not divide n. But that is true by assumption. So the

morphism
E[t,t71] — k[t,t 1[X]/(X™ — 1) (4.147)
is étale and we are done.

O

Corollary 4.41. If the characteristic of k does not divide | coker(F)|, then the morphism

Spec <k[Hom(ﬁ§, Z)]> — Spec (k[Hom(NY(J), Z)]) (4.148)

®
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is €tale for every cone o € Ax.

Proof. By Corollary 4.37, |u,| divides | coker(F)| for every cone o. Therefore, if k& does not
divide | coker(F')|, then k does not divide |u,| for any cone o. Thus, by applying Proposition

4.40 in every case, we see that the morphism

Spec (k[Hom(ﬁf , z>]> — Spec (k;[Hom(NY(U), Z)]) (4.149)

p

is étale for every cone o € Ay, as desired.

O

We are now ready to begin the next stage of our argument. We know that
BOTx — BOTy is in each degree component-wise given by the faithfully flat, finite injec-
tion of rings

k[Hom(NY ), Z)] — k[Hom(N),Z)]. (4.150)

w(o

By Corollary 3.19, we know that k:[Hom(]\fo,Z)] is a projective module over

k[Hom(NY,

(o) Z)]. We now use the following theorem.

Theorem 4.42. Let G be a free abelian group, k a field, and k[G] the group algebra for G

over k. Then any projective k[G]-module is free.

Proof. The proof is essentially the same as the proofs of [Qui2, Theorems 3 and 4]; see
[Swan] for the necessary modifications to make Quillen’s solution to Serre’s problem extend

to Laurent polynomial rings.

Corollary 4.43. The ring k[Hom(NX,7Z)] is a free module over k[Hom(]vz(J),

z)].

Proof. By Corollary 3.19, we know that k[Hom(NX,Z)] is a projective module over

k:[Hom(N;/(U),Z)]. Since Hom(ﬁ&g),Z) is a free abelian group, the ring k:[Hom(N;/(U),Z)]

is the group algebra of a free abelian group over a field. By Theorem 4.42; all projective
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modules over /{:[Hom(N::(U),

over k[Hom(N;J/(U), Z)] as desired.

7)] must be free. Therefore, k[Hom(NX,Z)] is a free module

[]

Lemma 4.44. The ring k[Hom(NX,Z)] is Galois over k[Hom(ZA\fg(U), 7)), with Galois group
Ly = Spec </§[Nz(a)/ﬁf]) (4.151)

the kernel of the associated morphism on schemes. As a consequence, the isogenies of The-

orem 4.29 satisfy all the conditions of Theorem 3.107.

Proof. We need to show that the automorphism group of k[Hom(ﬁf ,Z)] over

Y
k[Hom(N_ ),

By Proposition 4.36, we can choose bases so that our map looks like

Z)] is p, and that the rank of k[Hom(Nf,Z)] over k[Hom(Kf;/(a),Z)] is |fto].

k[tlatl_17 "'atnut;I] — k[shsl_l? SEE) Snvs'r_Ll] (4152)

m;
7 0

given by mapping k identically to itself and mapping t; — s;", and by Proposition 4.39,

we may assume that all the m;" roots of unity are in k. Then the group of automor-

phisms of kK[Hom(NX,Z)] over k[Hom(]vg(U), Z)] is actually the group of automorphisms of

mi

k[s1,87", ..., 80,571 over k[s[", 57, ..., 8™ s-™]. Take any such automorphism g. Then
g(x) =z for all z € k and ¢(s;) = «;s; for some «; (otherwise, if g sent s; to a non-monomial
in s;, the condition that s;" — s;" would be violated). But since g(s;"") = s/", we have
that a;"'s;" = s"", or that a;" = 1. Notice that g is determined by the «;’s, and therefore

can be represented by the tuple
g=(a1,as,....,ay) (4.153)

and notice that the tuple (ay, ag, ...., ) € . So given any element of p, we can build an
automorphism of k[Hom(NZ,Z)] over k[Hom(N ;/(J), Z)], and conversely given an automor-

phism of k[Hom(N,Z)] over k[Hom(NY,

(0): L)), we construct an element of 11,. So fi, is the
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automorphism group of k[Hom(NX, Z)] over k[Hom(N Ny

7)] as desired.

For the second part, notice that if our field k contains all m;"™ roots of unity, then
lte| = mq - mo-+-m,. So we need only show the rank is m; - mg---m,. But this is

immediate, as the set of all products
IIs" (4.154)
i=1

where 3; < m; will form a basis for k[si, 57", ..., 5,571 over k[t1, 7", ..., tn, t-1]. Thus, the

ring k[Hom(NX,Z)] is Galois over k[Hom(N;/(U), Z)| with Galois group u, as claimed.

[
Corollary 4.45. Given the morphism
f + k[Hom(NY ), Z)] — k[Hom(N, Z)] (4.155)
of Lemma 4.44, f.o f* is multiplication by |py|.
Proof. This is immediate from Corollary 4.43, Lemma 4.44, and Theorem 3.101.
O
Theorem 4.46. The maps
f + k[Hom(NY ), Z)] — k[Hom(NZ, Z)] (4.156)
arising in each component of
(BOTx), — (BOTy), (4.157)

as constructed in Theorem 4.29 all have the property that

(f)a o (f)e : Kn(k[Hom(N},), Z)])) ® Q — Ky (k[Hom(N} ). Z)]) © Q
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s an isomorphism for all n, and
(f)g : Kn(k[Hom(N} ), Z)]) ® Q — K, (k[Hom(N, Z)]) © Q

1s injective for all n.

Proof. This is an immediate application of Corollary 4.45 and Corollary 3.103.

O

Caution 4.47. The reader might be tempted at this point to, following the logic of Corollary

4.32, attempt to construct a morphism of cosimplicial spectra
KH(BOTyx) — KH(BOTYy) (4.158)

which is, in each degree, component-wise given by transfer maps f, as constructed in Lemma
3.96. Unfortunately, this is not possible. The reason is that the transfer maps do not
commute with the coface maps of KH(BOTx) and KH(BOTY ), and thus cannot give rise to

a morphism of cosimplicial spectra.

Even though the transfer maps do not directly give rise to a morphism of cosimplicial
spectra, we can still use them to gain information about f* and, more importantly, (f*)q.
Specifically, we can use them to show that if f is an isogeny between two algebraic tori, then

(f*)g is an isomorphism for every n. This will be our next goal.

To accomplish this goal, given any isogeny f : 77 — T5 with kernel u, we need to see
how the group y acts on the group K, (77) ® Q. Since k contains all m;™ roots of unity, then
any g € p is of the form

_( aq a2 Oén)
g_ mi? dSmM2? ) Smy,

(4.159)

where (,,; is a primitive m;th root of unity. Then g defines a morphism 77 — T} given by

g(xl) Loy eny In) = (C%lll'la ngzgx% sy g?ré;:zxn) (4160)
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This corresponds to the morphism of rings

1 K[s1,87", .., 8, 55, (4.161)

_ -1
g:k[s1,8] s Sn, S,

given by g(r) = x for x € k and g(s;) = (i s; for each i (since p is the Galois group of

-1

mi m —-m
n S n 8 n

1 9n 5 °n

kls1,s7", ..., 8n, 571 over k[T, s7 |, then in view of Lemma 4.44, this should

not be surprising). One can again easily see that these are equivalent by taking Hom(—, k)
everywhere. This gives rise to a group action of p on K, (71)®Q; if g € pand z € K,,(T1)®Q,
then define g - z = (¢*)o(z), where

9" Ku(Th) — Ka(Th) (4.162)

is the map induced by taking K-theory, and where (¢*)g = ¢* ® idg as usual.

Theorem 4.48. Let f : Ty — T, be an isogeny with kernel . Then

im((f")o) = [Kn(T1) @ QY, (4.163)

the points of K, (T1) ® Q fized by the action of p, for every n. As a consequence, we have
that

(f*)q : Kn(T2) ® Q —— [K,(T1) © Q"

s an isomorphism for every n.

Proof. To see that im((f*)g) C [K,(T1) ® QJ*, observe that for any g € u, we have that

f = fog. This can easily be seen by direct calculation:

(fog)(zr, @2 nzn) = f(Gra1, Gim2, - G Tn)

(fog)ar, xa,yan) = ((GRia)™, (Cw2)™, oo (Gt n)™)
(fog)(xy,xe,...,zp) = (", 232, .. 2™)

(fog)(wi, ma, . yxn) = flx1, 2., 20) (4.164)
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which shows that f = f o g as claimed. Then taking the induced maps on K, (—) ® Q, we
get that (f*)go = (¢%)g © (f*)g. Therefore, g fixes every element of im((f*)g); since this can

be done for any element g € i, we get that
im((f*)o) C [Kau(T1) ® Q) (4.165)

as claimed. Ome could also do this from the perspective of rings by appealing to the fact
that p is the Galois group of the associated morphism of rings.

For the other containment, we need to use a trace argument. Suppose that V is any
Q-vector space, and G is any finite group. Then we can define an operator t : V. — V|

where for v € V we have

tw)=> (g-v). (4.166)

geG

Then V¢ = (V). The containment V¢ D ¢(V) is obvious, since if we act on #(V) by any
element of G, we simply permute the terms in the sum. On the other hand, if v € V¢, then

g-v=vforallge Gandso|Glv=73 _,v=> ;9 v)=1tv) (remember that |G| is

L

finite). Thus we can write v = I_él t(v) = g v) € t(V), giving the other inclusion.

Letting V = K, (71) ® Q and letting G = p above, we see that
[Kn(Th) @ Q) = t(Kn(Th) ® Q). (4.167)

By Theorem 3.107, we have that (f*)g o (fi)o = >_,c,(9%)o.- Realizing that g-v = (¢")o(v)
under this action, we have that (f*)g o (fi)o = t, where ¢ is the trace operator from above,

and that

(/e o (f)oKa(Th) © Q) = H(Kn(Th) @ Q) = [Ku(T1) @ Q" (4.168)
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which shows that

[Ka(Th) © Q" < im((f7)o), (4.169)

giving the other inclusion.

The second part follows immediately from the first part, Theorem 4.46, and the fact that

an injective morphism is an isomorphism onto its image.

]

By Theorem 4.48, we can show that (f*)g is an isomorphism if we can show that
K,(Th) ® Q* = K, (T1) ® Q. This will be our next major goal. To that end, we need
to understand better the action of p on K, (77) ® Q. Since any g € u acts on K,,(T1) ® Q by
applying the map (¢g*)g, which is the identity on the Q part, it is enough to examine what
g* does to K, (T1). Since

Ty = Spec (klt1, t7", ..., ts, ;1]) (4.170)

we can write
K, (Th) = Ky, (k[t1, 67", .t 81]) - (4.171)
Here we can apply the Bass Fundamental Theorem (Theorem 3.82) inductively to see that

Ko (K[t £ ot t51]) = @Dt oy o 1.} - K (k) (4.172)

r<s

where {t,,t,} denotes the cup product of [t,] and [t)] (viewed as elements of

Ky (k[ti, ¢, ..., s, t;1]) as usual).

Given any g € u, recall that

9= (Gas Gz > G (4.173)
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where (,,; is the primitive m; th root of unity. This g induces a map
K[ttt o te, t0Y] — K[ttt o b, 101 (4.174)

given by mapping t; = (i t;. This means that the element t; € K; (k[tl,tl_l, s, ts_l]) is
mapped to the element (7it; € Ky (k[tl, ot s ]) Therefore, we see that g acts on

Ky (k[t ot t5]) = @it oot} Koer (K) (4.175)

r<s
by multiplying ¢;, by C%le, and by leaving any term from K,,_,(k) unchanged.

Lemma 4.49. Let x € K,,(T1). Then ¢ - (m; - x) = m; - .
Proof. Write x as a tuple (z;, j,..j.), where
Tjtjargr = Ljis iy s i} + Y (4.176)

for some y € K,,_.(k). If m € Z is any integer, then the action on K,,(7}) is given by
M (g, o) = A U, ) (M- y). (4.177)

Letting g = (1,...., 1, 1,...,1) € pu, we realize this acts by applying the map ¢* as

m ? Y

always. Since ¢g* is a homomorphism of abelian groups, we must have that
g-(mi-x)=m;-(g-x). (4.178)

We show the latter of these is just m; - x. We do this componentwise. For every component

of x, we have
m; - ($j1,j2 ----- 'r) = {t;fﬂt;zﬂ- s t;;%} - (mi - y) (4.179)

from the above Z-action. On the other hand, applying g to x, we see that g acts triv-
143



ially on any component where i ¢ {ji,jo,...,Jr} and so obviously on those components

g-(m;-x)=m;-x. It i € {j1, 2, ..., Jr}, then
g- (le,j2;-~~7j7‘) = {tj17tj2> e %iitia "'7th} "y (4180)
and if we apply m; to this component we get

m; - Ty ggriy)) = My [{tjl,th,..., %ti,...,tjr}-y]
Tjr o)) = {t}ﬁlﬂt}zﬂ---7(Cﬁiti)mﬂ--~at}fi}‘(mi‘y)
m; - ) = AL Bt (my - y)
)

(
m; - (g -

(

( = M (T js,...5.) (4.181)

(
(

9 (Tj1go.ois
(

mg - Lj1,j2seesdr

as desired. So our statement is true on every component of x, and is therefore true on x.

Since x was arbitrary, it is true on all of K,,(77).
[l

Corollary 4.50. Let © € K,(Ti). Then for any g € p, g- (m-x) = m -z, where

m =11 M9 -Msg.

Proof. As before, we have
9= (Gl G oo Gt (4.182)
where (,,; is the primitive m;th root of unity. We can write this as
9=0192-""gs (4.183)
where
gi=(1,.....1,¢0, 1,0, 1), (4.184)

Inductively applying g; through g, and using Lemma 4.49 at each step then yields the result.
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Theorem 4.51. Let f: Ty — T, be an isogeny with kernel . Then we have that
(F)o : Ka(T2) ®Q——Ku(Th) © Q

s an isomorphism for every n.

Proof. By Theorem 4.48, we need only show that [K,(71) ® Q)" = K,(T1) ® Q. The fact
that

[Kn(Th) ® Q" C Ko(Th) ® Q (4.185)

is obvious. For the other direction, let x € K,,(T}) ® Q. Then we can write x = y ® ]—;, and
we see that gz = py ® 1. In other words, qr € K, (711). Letting m = my - my---my as in
Corollary 4.50, and realizing that the action of p on K,,(77) ® Q only occurs in the K,,(77)
coordinate, we see that mgr = mpy ® 1 is invariant under the action of p by Corollary
4.50. However, as the action only occurs in the K,,(7}) coordinate, we see that mpy ® miq is

invariant under the action of p also, again by Corollary 4.50. But

1 m
mpy®—=y®—p=y®§

=z (4.186)
mq mq

Thus, we see that x is invariant under the action of u, which gives us that
Kn(T1) © Q C [Kn(Th) ® QY (4.187)

completing the proof.

With our above work, we are now ready to prove Theorem 4.9.
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Proof of Theorem 4.9. Suppose we have a lattice morphism
F:N* — NY (4.188)
which is injective with finite cokernel such that the restriction maps

Flyx : N — N}, (4.189)

e(o)

are also injective with finite cokernel for any cone 0 € Ax. We know from Theorem 4.29

that F' induces a morphism

which is component-wise in each degree an isogeny. By Theorem 4.51, the induced map

(f")q « Kn(k[Hom (N

w(o)’

2)])) ® Q — Ku(k[Hom(N;¥, Z)]) ® Q

on each such component is an isomorphism for every n. Observe that it is this step which
requires that the characteristic of k£ does not divide | coker(F)|, since Theorem 4.51 depends
on Theorem 4.48, which in turn depends on Theorem 3.107. One of the conditions of Theorem
3.107 is that the morphism in question is étale, and since we wish to use it for every map,
we need all our isogenies to be étale. As we saw in Corollary 4.41, this is accomplished by

assuming that the characteristic of k£ does not divide | coker(F)|.

By Corollary 4.32, the induced morphism of cosimplicial spectra

is in each degree component-wise given by morphisms of the form (f*)g. Recall from Theorem

3.54 that the model category structure we use for the category of spectra defines the class
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of weak equivalences to be quasi-isomorphisms. Since the morphism of spectra

(f*)o : K(k[Hom(NY ), Z)]) ® Q — K(k[Hom(N.,Z)]) ® Q

P

induces the isomorphisms

(f")q « Kn(k[Hom (N

¢(o)>

7)) ® Q — K, (k[Hom(N', Z)]) ® Q

for every n, we see that (f*)q is a weak equivalence of spectra. Observe from Theorem 3.56
that the model category structure on the category of cosimplicial spectra defines the class
of weak equivalences to be the morphisms that are quasi-isomorphisms component-wise in

each degree. Since the map
KH(BOTy) ® Q — KH(BOTyx) ® Q (4.192)

is in each degree component-wise given by morphisms of the form (f*)g, and since we’ve

shown these morphisms to be weak equivalences of spectra, we conclude that the morphism
KH(BOTy) ® Q — KH(BOTx) ® Q (4.193)
is a weak equivalence of cosimplicial spectra. By Proposition 3.71, we have that the morphism
holim(KH(BOTy) ® Q) — holim(KH(BOTx) ® Q) (4.194)

is a weak equivalence of spectra. This gives us the following diagram:

holim(KH(BOTy) ® Q) —— holim(KH(BOTx) ® Q)

Nl lN

holim(KH(Uy ) ® Q) holim(KH(Ux) ® Q)
KH(Y) ® Q KH(X) ® Q
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where the morphisms

holim(KH(BOTy) ® Q) — holim(KH(Uy ) ® Q) (4.195)

and

holim(KH(BOTy) ® Q) —» holim(KH(Ux) @ Q) (4.196)

are weak equivalences by Corollary 4.25, and the morphisms

KH(Y) ® Q — holim(KH(Uy) ® Q) (4.197)

and

KH(X) ® Q — holim(KH(Ux) ® Q) (4.198)

are weak equivalences by the fact that KH(—) ® Q satisfies étale (and therefore Zariski)
descent (see our work at the end of Section 3.8). So the spectra KH(X)®Q and KH(Y)®Q
are connected by a sequence of weak equivalences, making them weakly equivalent as spectra,

and establishing KH,,(X) ® Q = KH,,(Y) ® Q for all n. This completes the proof.

4.5 Applications of Theorem 4.9

With Theorem 4.9 proven, we can now apply it to calculate KH,,(P(qo, .., q4)) ® Q for any

n. To accomplish this, we first prove the following important lemma.

Lemma 4.52. Any weighted projective space P(qo, -..,qq) has the same simplicial structure,

in the sense of Definition 4.6, as ordinary projective space P2,

Proof. Recall from Section 2.2 that both P¢ and P(qy, ...,qq) are complete toric varieties.
Recall that the fan of P? is calculated by taking Z*!, with basis {e, ..., eq}, and building
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the lattice
NPd:Zd+1/<€o+€1+"'+ed>- (4.199)

Letting x; = €;, the fan Apa consists of all the cones generated by proper subsets of
{7, 21,...,24}. Similarly, recall that the fan of P(qo,...,qq) is calculated by taking Z4+!,
with basis { fo, ..., fa}, and building the lattice

NE@owaa) — 744L (g0 b0+ g fy + -+ + qafa) (4.200)

Letting v; = fi, the fan Ap(go,...q) consists of all the cones generated by proper
subsets of {vo,y1,..,yqa}. See Section 2.2 for the details of this. Define a map
@+ S(Aps) — S(Ap(g,...qu)) given by mapping any cone (x; ,%i,, ..., %) in Apa to the
cone (Yiy, Yigs - Yir) i Apgy,..q- This map is clearly an isomorphism of simplicial com-
plexes in the sense of Definition 4.6; therefore, weighted projective space P(qy, ..., g¢) has the

same simplicial structure as ordinary projective space P?.

O

We are now ready to calculate the groups KH,,(P(qo, ..., qq4)) ® Q, by comparing them to
KH, (PY) ® Q.

Theorem 4.53. If P(qo, ..., qq) is any d-dimensional weighted projective space defined over
a field k such that the characteristic of k does not divide the product qo - q1 - - - qq, then

KH, (P(qo, .-, a)) ® Q = KH, (P) ® Q (4.201)

for all n.

Proof. We prove this by using Theorem 4.9. Let NF¥' and NF@:-4) he as in the proof of
Lemma 4.52. By Lemma 4.52, P? and P(qp, ..., gg) have the same simplicial structure, so to
apply Theorem 4.9, we need to find a lattice morphism F : N¥* —s NF(@0--42) that satisfies

the necessary conditions.
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To see how to properly define F, we consider the map F : Z4+! — Z4+1 defined by

F(e;) = q; f;- We get the following diagram:

gdtl __F v

Pl J{ lﬂpNﬂ”(qo ----- aq)
d

where the two vertical maps are the canonical surjection maps and the dotted bottom hori-

zontal line is the obvious map that makes this diagram commute. Define
F: NP — NPoa0) (4.202)

to be this map; by construction, F'(x;) = ¢;y;- To see this map is well-defined, suppose that

@1 = az in N¥* (that is, that T yed (1) = Typa(az)); then
a; =as+ z(eg+e1+ -+ eq) (4.203)

for some z € Z. Applying F to both sides gives us

F(a1) = F(az) + z(qfo + @1 f1 + -~ qafa) (4.204)
which, after applying canonical surjection, gives us that
Txetaoan (F(@r)) = Tyrtoan (Flaa)) (4.205)
By construction,
F (@) = F (7 (0:)) = Tpetaomman (ﬁ(@) : (4.206)

therefore, F'(ar) = F' (az), showing that F' is a well-defined morphism of lattices.

The next thing we need to show is that F' is injective with finite cokernel. Suppose there
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is an a such that F(«) = 0; since {z1, ..., 24} is a basis for NP we can write
a=ayry + -+ agry. (4.207)
Applying F' to this expression gives
F(a) = aiquyr + -+ + aaqaya = 0
in NP(o--4a) " Lifting back to Z+!, there is a z € Z such that

a1qifi + -+ aqqafa = zqofo + 2z fr + - - + 2qafa

Subtracting the right side from the left side, we get

—(qo2) fo+qi(ar — 2) fi + - -qalag — 2) fa = 0.

Since { fo, ..., f4} is a basis for Z4*1 and since gy # 0 by assumption, z = 0. Therefore, this

reduces the above expression to

arqifi+ -+ aiqifa =0

in Z™!. Again, since {f, ..., f4} is a basis for Z4*! and since none of the ¢;’s are 0, we
get that a; = 0 for ¢ = 1,2,...,d. This proves that F' is injective. Since rank (di) and
rank (NP(QO""’Qd)) both equal d and F' is injective, F' automatically has finite cokernel as
well. Notice that | coker(F')| = qo - ¢1 - - - qa; since we want to apply Theorem 4.9, we see the
assumption that the characteristic of k does not divide the product qg-q; - - - ¢4 is a necessary

one.

Now we need to show that, for any cone o € Apa, the restriction map

Flypa : NF* — NE0-0a) (4.208)

v(o)
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is injective with finite cokernel, where

¢ : S(Apa) — S(Ap(go,...00)) (4.209)
is the isomorphism constructed in Lemma 4.52. To see that F| e takes values in Ng((gg """ 9)
note that if there is a set of indices {i, ..., 7} such that
0= (Tiys s Tip ), (4.210)
then
@(0) = (Yir, s Yi)- (4.211)

Since F(z;,) = ¢i,y;;, the image of FlNgd is a sublattice generated by {gi,yi, .-, ¢ Yi, }

,,,,,

it must also be injective, and since o and (o) have the same dimension, rank (N ffd> and

rank (Nf((g‘; """ qd)) must be equal, forcing the cokernel to be finite. Then by Theorem 4.9,

KH, (P(qo, ..., q4)) ® Q = KH,(P") @ Q (4.212)

for all n.

Remark 4.54. Theorem 4.53 establishes part (a) of Theorem 1.1.

Corollary 4.55. If P(qo, ..., qq) is any d-dimensional weighted projective space defined over
a field k such that the characteristic of k does not divide the product qo - q - - - qq, then for
n < 0, KH,(P(qo, .-, qa)) has rank 0, and KHo(P(qo, .., qa)) has rank d + 1.

Proof. This is immediate from Theorem 4.53. Theorem 4.53 showed that

KH, (P(qo, - a2) ® Q = KH, (P*) @ Q (4.213)
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for all n. Then for n < 0, KH,(P?) = K, (P?) = 0. Therefore, KH, (P?) ® Q = 0, forcing
KH,,(P(qo, .., q4)) ® Q = 0. So the rank of KH,,(P(qo, -..,q4)) (for n < 0) is 0 as claimed.

Now recalling that KHy(P?) = Ko(P?) = Z%! KHy(P?) @ Q = Q4. This forces
KHo(P(qo, ..., qq)) ® Q = Q4. So the rank of KHy(P(qo, -..,qq)) is d + 1 as claimed.

]

We can use Corollary 4.55 and the methods of Section 4.1 to calculate the KH-theory
(up to degree 0) of weighted projective spaces of the form P(1,1,1,1,...,1,a). We do so in

the following corollary.

Corollary 4.56. Consider the d-dimensional weighted projective space P(1,1,1,1,...,1,a),
with a > 2. Then

KH,(P(1,1,1,1,...,1,a)) = 0 (4.214)
forn < —1 and
KHo(P(1,1,1,1,...,1,a)) = Z*, (4.215)

Proof. The fan for P(1,1,1,1,...,1,a) is generated by the 1-dimensional cones

{61, €2,...,6q,—€1 — €9 — " — €g_1 — aed}. (4216)

The steps are almost word-for-word the same as the P(1,1,a) case. The only singular cone
is (eq, €9, ...,€64-1,—€1 — €9 — - -+ — €4_1 — aeq), and after refining our fan by adding the cone

generated by —ey, we get a smooth toric variety; call this smooth variety X. Now notice
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that the star of the cone —e, is just the fan for P4~! so we get the blow-up square

il X

l l

{x} —P(1,1,1,1,...,1,a)

and because KH satisfies cdh descent, it gives rise to a long exact sequence
e S KH,(P(1,1,1,1,...,1,a)) —— KH,,(X) ® KH,, (k) -2

KH, (P*) — KH, 1 (P(1,1,1,1, ..., 1,a)) —————— -

Y ? ? Y

Now we get a morphism 7 : X — P? ! induced by the lattice morphism
(1, .0y Tg_1,2q) — (z1,...,24-1). Making the obvious analogous argument to the one pre-
sented in the P(1,1,2) case, we see that i is surjective for all n; therefore, the morphism a,
is surjective for every n as well (see Section 4.1). As before, our long exact sequence splits

into short exact sequences of the form

0——KH,(P(1,1,1,1, ..., 1,a)) — KH,(X) ® KH, (k) — KH,,(P*!) —— 0

Since KH,,(X) @ KH,,(k) = 0 for n < —1, KH,(P(1,1,1,1,...,1,a)) = 0 for n < —1 as well.

For the case n = 0, we have

0— KHO(]P)(L 17 17 17 [ 1a CL)) B— KHO(X) ) KH()(]{T) i) KHO(]P)d_l) —0

We could at this point attempt to calculate KHo(X) and then use the fact that this above
sequence splits. However, in [MP, Corollary 7.8], the authors prove that if Y is any smooth
projective toric variety, then Ko(Y) is a free abelian group of finite rank; since Xisa smooth,
projective toric variety, we have that KHO()N( ) is a free abelian group of finite rank. Since

KHy(k) is also free, KHo(P(1,1,1,1,...,1,a)) is a subgroup of a free abelian group, and is
therefore itself free abelian. By Corollary 4.55, the rank of KHo(P(1,1,1,1,...,1,a)) is d+ 1;
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therefore, we get KHo(P(1,1,1,1,...,1,a)) = Z4!, as desired.

5 The Fk groups for Weighted Projective Spaces of Dimension 2

Having calculated the KH(—) ® Q groups for weighted projective spaces in Theorem 4.53,
we are now ready to examine the Fgk groups. The calculation of these groups is in general
much more difficult, so we will restrict ourselves to the case when the characteristic of the
underlying field is 0 and when the weighted projective space has dimension 2. We begin with

a definition.

Definition 5.1. Let F' be a field of characteristic 0 and X an F-scheme essentially of finite
type over F'. We say that X is K, -regular if K;(X) = KH;(X) for all i < n. Equivalently,
we say X is K,-reqular if (Fx);(X) =0 fori <n.

In [CHSW], the authors prove that if k is a field of characteristic 0 and X an k-scheme
essentially of finite type and of dimension d, then X is K_gregular and for n < —d, we
have K,,(X) = 0 . Our goal will be to derive stronger K-regularity results for complete
toric surfaces, and in particular weighted projective spaces of dimension 2. We will begin by
returning to the example of P(1, 1, 2) in Section 5.1 before progressing to weighted projective
spaces of the form P(1,1,a), for a > 1, in Section 5.2. We will then proceed to the general
case of complete toric surfaces, with a particular emphasis on P(a, b, c) (where a,b,c > 1
and all are pairwise relatively prime) in Section 5.3. We then conclude this paper with a
discussion of what the Fyx groups will look like for certain classes of higher dimensional

complete toric varieties and weighted projective spaces in Section 5.4.

5.1 The Fk groups for P(1,1,2)

We begin just as we did in Section 4, by returning to the example of P(1,1,2). Recall
that in Section 4.1, we concluded that KH,(P(1,1,2)) was 0 when n < —1 and was Z?

when n = 0. We proved that result using cdh-descent. While Fx does not satisfy cdh-
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descent, it does satisfy Zariski descent as discussed in Section 3.8. To that end, we want
to construct the correct Zariski cover for P(1,1,2) to allow us to use Zariski descent. The
obvious starting point is to use the open cover given by the fan. Recall that the fan is
generated by the one-dimensional cones (1,0), (0,1), and (—1,—2) in the lattice Z2. The
affine open subsets that form the cover we want are the affine open sets associated to each
of the maximal cones. Following the outline given in Section 2.1 for constructing an affine
scheme associated to a cone, we see that the cone o; = ((1,0),(0,1)) gives us U,, = A?, that
the cone o9 = ((0,1), (=1, —2)) also gives us U,, = A? (with different coordinates of course),

and that the cone o3 = ((1,0), (—1,—2)) gives us
Uy, = Spec (klu, v, w]/(uvw — v?)). (5.1)

Notice that o3 is the only non-smooth cone in the fan of P(1, 1, 2); indeed, the other dimension
2 cones are smooth, and all 1-dimensional cones are smooth since any toric variety is normal

(and therefore smooth in codimension 1). Then we get the following theorem.

Theorem 5.2. For U,, as above, we have that (Fk),(P(1,1,2)) = (Fk)n(Uy,) for all n.

Proof. Let Y =U,, UU,, and Z =Y NU,,. We begin by showing that

for all n. Covering Y by U,, and U,, and using Zariski descent, we have the long exact

sequence:

i (-FK)H(Y> — (FK)n<U01) @ (]:K>n(Uaz) —

> (.7'—}()71((]01 N U02> — (]:K)n—l(y) —_— (53)
Noting that U,, and U,, are smooth (and therefore that U,, N U,, is smooth), we have that

(F)n(Usy) = (F)n(Us,) = (Fk)n(Us NUs,) = 0 (5.4)
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for all n. Therefore, by exactness, we have that (Fk),(Y) = 0 for all n as well.

Now Z =Y NU,, = Usynos U Usyno,. Covering Z by the open sets Uy no, and Uyynps,

and noticing that
Uo’1ﬂo’3 N Uo’zﬂo’g - Ualﬁagﬁag - UO - an (55)
we get the long exact sequence (again using Zariski descent):

= (Fa(Z) = (FnUsings) © (Fi)n(Uspnos) — -

= (Fa(Gh) > (Fr)n-1(Z) — -+ (5.6)
Noting that Uy nes, Usynes, and G2, are smooth, we have that

(F)n(Usinos) = (Fi)n(Uoanos) = (Fi)a(Gy,) =0 (5.7)

for all n. Therefore, by exactness, we have that (Fk),(Z) = 0 for all n as well.

Finally, covering P(1, 1,2) by the open sets Y and U,, and using Zariski descent, we get

the following long exact sequence:

> (F)a(P(1,1,2)) — (F)a(Y) © (Fi)n(Usy) — -+

- — (Fx)n(2) — (F)n1(P(1,1,2)) — - - (5.8)

However, (Fk)n(Y) = (Fk)n(Z) = 0 for all n by our above work; therefore, by exactness, we

get that (Fk)n(P(1,1,2)) = (Fk)n(Usy) for all n.

]

So now we have reduced the problem to determining (Fk),(Uy,). Here we use the tech-
niques presented in [CHWW?2]. In that paper the authors show that if R is a graded ring
with Ry = k, and R is the homogeneous coordinate ring of a smooth projective variety,

then we can caleulate K,(R) = K,(R)/K,(k). In our case, since KH,(U,,) = K,(k), if
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U,, = Spec(R), where R is the homogeneous coordinate ring of a smooth projective variety

(and its weight 0 component is k), then K,(R) 2 (Fx)n(Us,).

Proposition 5.3. The ring klu,v,w]/(uw — v*) is the homogeneous coordinate ring of the

smooth projective curve uw — v* = 0.

Proof. First notice that this is the affine coordinate ring of the cone uw — v? = 0. Following
[Hart, Chapter I, Exercise 2.10], we immediately see that this ring is the homogeneous
coordinate ring of the projective curve uw — v? = 0 since it is the affine coordinate ring
of the cone over that projective curve. Now we simply need to show the projective curve
ww — v? = 0 is indeed smooth. The singularities are the points where the Jacobian is
singular; in this case, that means where all the partial derivatives are 0. But one can quickly

see that this only occurs when (u,v,w) = (0,0, 0), which is not a projective point. So for all

projective points this curve is non-singular, making it a smooth projective curve as desired.

]

Now letting R = kfu, v, w]/(uw — v?), we seek to calculate K,(R). Fortunately, this

calculation was already done in [CHWW2]. We state the result below.

Theorem 5.4. For R = k[u,v,w|/(uvw —v?) and for all n, we have

K,(R) = 'o o ... (5.9)

In particular, K1 (R) = Ky (k) @ k and Ko(R) = Ka(k) & Q}.

Proof. See [CHWW2, Theorem 4.3]. Note that by Q! we mean Q};/Q.

]

Corollary 5.5. If k is algebraic over Q, the formula in Theorem 5.4 reduces to Kn(R) =k
when n > 1 and odd, and K,(R) = 0 otherwise.

Proof. By [Hart, Chapter II, Theorem 8.6 4], since every extension of Q is separable, 2,/ = 0
if £/Q is algebraic (because if k/Q is algebraic, its transcendence degree is 0). From here

the result is immediate from Theorem 5.4.
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Corollary 5.6. We have that
(F)n(P(1,1,2) =2 Qe Qi e Qi @ - - (5.10)
As a consequence, we have that K,(P(1,1,2)) =0 if n < —1 and Ko(P(1,1,2)) = Z3.
Proof. The first assertion is immediate from Theorem 5.4 and the fact that
(Fx)n(P(1,1,2)) = (Fx)n(Uss) = K, (R). (5.11)
The second assertion follows from the first, the fact that
K,(P(1,1,2)) = KH,(P(1,1,2)) & (Fk).(P(1,1,2)), (5.12)

the work in Section 4.1 showing that KH,,(P(1,1,2)) = 0if n < —1 and KH(P(1,1,2)) = Z3,
and that fact that QL = 0 if ¢ < 0.

5.2 The Fk groups for P(1,1,a)

Building on our work from Section 5.1, we now seek to generalize this situation for the case
P(1,1,a), just as we did in the KH case. This time, o3 = ((1,0), (=1, —a)) and this gives us

the ring
R=k[y ' oy 2%yt . 2% Y] (5.13)

Then just as before we get the following theorem.

Theorem 5.7. For o3 = ((1,0),(—1, —a)), and U,, = Spec(R) the associated open affine
subset, we have that (Fx)n(P(1,1,a)) = (Fk)n(Usy) = (Fk)n(R) for all n.
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Proof. The proof is analogous to the proof of Theorem 5.2. Note that this theorem also will

follow from Theorem 5.28.

O

Before proceeding, we make an important definition that we will use throughout this

section.

Definition 5.8. Consider the map P! — P¢ given by
[S:T] s [S%: S84 ST T, (5.14)

in other words, the Veronese Embedding of degree d on P'. We define the Veronese Curve
of degree d to be the image of the Veronese Embedding of degree d on P*. We will just
say Veronese Curve when the degree of the embedding is unimportant or when the degree is
understood from the context. Observe that the Veronese Curve of degree d is the projective
variety given by the common zero locus of the homogeneous equations w;u; — u;11uj—1 where

0<i1<d—-1and1 < j <d. Notice that we do not require i and j to be different.

The Veronese Curve has very nice properties that we plan to use. However, in order to

examine these properties, we first need to recall the following proposition, due to Gubeladze.

Proposition 5.9. Let R be a domain and M a monoid. Then the monoid algebra R[M] is

normal if and only if R is normal and M 1is saturated.

Proof. See [Gub2, Theorem 1.5.2]. Note that what he calls a normal monoid is what we call

a monoid that is saturated.

]

With Proposition 5.9, we are ready to prove the following useful properties of Veronese

Curves.

Proposition 5.10. Any Veronese Curve is rational, nonsingular, and projective.
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Proof. By its very definition, any Veronese Curve of degree a is a closed subvariety of the
projective space P%; therefore it must be projective (see Definition 5.8). To check that any
such curve is nonsingular, we show that the curve is normal. Since any normal variety is
smooth in codimension 1, our curve being normal is equivalent to our curve being nonsingular.
So to see normality, use Proposition 5.9 with the domain k& and the monoid v N M where
M is the dual of our given lattice N, as always, and ¢V is the dual of the maximal cone
o =1{(1,0), (=1, —a)). Since o is maximal, ¢" is also a rational, strongly convex polyhedral
cone; therefore ¥ N M is saturated by Lemma 2.1. Since any field is obviously normal,
koY N M] is normal. Since k[o¥ N M] is isomorphic to the homogeneous coordinate ring for
the Veronese Curve, the Veronese Curve is projectively normal and therefore normal (see
[Hart, Chapter II, Exercise 5.4]). Finally, to show that the Veronese Curve is rational, we
recall [Hart, Chapter I, Corollary 4.5], which says that two varieties X and Y are birationally
equivalent if and only if there is an open set U C X and V C Y such that U and V are
isomorphic. For convenience, let C' denote the Veronese Curve of degree a inside P*. Suppose
that P! is given by the homogeneous coordinates [S : T] and P? is given by the homogeneous
coordinates [Xo : X; : --- : X,]. Consider the affine open set V in P* defined by X, # 0,
and let V = V N C be the induced open set on C'. Then V is given by the coordinates
[1 : % : (%)2 Dl (%)a} Let U be the affine open set of P! defined by S # 0; then U is
given by coordinates [1 : %] Then, when restricted to U, the Veronese Embedding is just

the morphism between the affine varieties U and V' given by
r s (x,2° 2%, .., 2%) (5.15)

which is a clear isomorphism, making the Veronese Curve rational.

]

Proposition 5.10 showed that any Veronese Curve is rational, nonsingular, and projective.
However, any curve that is rational, nonsingular, and projective is in fact isomorphic to P!,

which we can conclude from the following proposition.
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Proposition 5.11. Let X be a rational, nonsingular, projective curve. Then X is isomorphic

to P

Proof. This follows from [Hart, Chapter II, Propositions 6.7 and 6.8] as well as the discussion
in [Hart, Chapter II, Example 6.10.1].

Corollary 5.12. If X is a Veronese Curve of degree a, then X = P!,

Proof. This is immediate from Propositions 5.10 and 5.11.

]

Veronese Curves will play a very important role in our understanding of P(1, 1, a). Recall

from Section 5.1 that Fx(P(1,1,2)) = Fx(R) where

R=kly " ay " 2y . (5.16)

Here R is the affine coordinate ring for the cone over the Veronese Curve of degree 2. We claim
that this statement is true for all P(1,1,a), with a > 2; namely, Fx(P(1,1,a)) = Fx(R),
where R is the affine coordinate ring for the cone over the Veronese Curve of degree a. We

prove this claim in the following theorem.

Theorem 5.13. The ring

R=kly oy ' 2%yt . 2% (5.17)

1s the affine coordinate ring of the cone over the Veronese Curve of degree a.

1 we notice right away

Proof. Letting R be generated by the algebraic variables u; = 'y~
that, given any ¢ and j, we have u,u; — u;11u;—1 = 0, and in fact, all relationships between
the u;’s can be derived from these ones. Notice that we do not require ¢ and j to be different.

Then R will be the affine coordinate ring of the cone over the projective variety given by the
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common zero locus of the homogeneous equations u;u; — u;+1u;—;. But this common zero

locus is precisely Veronese Curve of degree a, by Definition 5.8. This is what we wanted.

O

Unfortunately, there is a Lemma that is used in [CHWW?2] that is crucial for the proof
of Theorem 5.4; namely, that the curve we are taking the cone over must be a complete
intersection. Since the Veronese Curve of degree d is not a complete intersection for d > 2,
there is no simple analog of Theorem 5.4. So our goal is to calculate as much of the K-theory

as we can in spite of this.

Let X be a smooth projective variety of dimension d, and R be the affine coordinate ring
of the cone over X. We define the Q-vector space Kﬁf)(R) to be the i weight eigenspace of

the Adams operation. Then for any n, we have

d+1

K.(R)®Q=EPK(R) (5.18)

as Q-vector spaces. We can derive a similar result for KH(R) Indeed, since R is a graded ring,
notice that Rn(R) is an Rg-module for every n. In our case, Ry = k, a field of characteristic
0. Therefore, k contains Q, making RH(R) a Q-vector space for every n. We define the space
K(i)(R) to be the i*® weight space induced by the Adams operation on K,(R) ® Q. Then for

n

any n, we have

R.(R) = K7 (R). (5.19)

This is immediate from the corresponding decomposition for K,,(R) ® Q and the fact that
K, (R) is already a Q-vector space. See [CHWW?2] for a full discussion of this.

Theorem 5.14. Let X be a smooth projective variety in PY with homogeneous coordinate
ring R. Then

(0)

(a) KO (R) =0 for allm >0 and K, (R) =0 forn>0;
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(b) K\"(R) = R* /R, where R denotes the seminormalization of R;
(c) K¢ (R) = @2, H'(X, Qi (1)) fori > 1;

(d) K“TD(R) = B, H™H(X, Q% (t)) for any m >0 and all i > 0.

If k has finite transcendence degree over Q, then each Q-vector space Ko(R)/Z and

K_,.(R) is finite dimensional.

Proof. See [CHWW?2, Proposition 1.5 and Theorem 2.1]. For the final remark, recall that
we already showed that K, (R) a Q-vector space for every n. Since K_,,(R) = K_,,(R) and
Ko(R) = Ko(R)/Z, Ko(R)/Z and K_,,(R) are indeed Q-vector spaces. To see that they are
finite dimensional, observe that if £ has finite transcendence degree over @, then % is a
coherent sheaf. For each ¢ > 0, the HY(X,Q%(¢)) are finite dimensional, and only finitely
many are non-zero by Serre’s Theorem B; for more details, see [CHWW?2, Theorem 2.1] and

[Hart, Chapter III, Theorem 5.2].

]

Theorem 5.15. Let X be a smooth projective variety in PY with homogeneous coordinate

ring R. Then for all n > 1 we have graded isomorphisms:

K,&”+1)(R) ~ coker (Q%/dﬁz_l — @HO(X, Q}(ﬂ))

t=1

KO(R) = @X H ™ Y(X,Q(t) for i >n+2. (5.20)
The graded decomposition of K"D(R) = @52, KI"M(R), is:
K (R), = coker ((Q/dQp "), — HO(X, Q% (1)) - (5.21)

n

Proof. See [CHWW?2, Proposition 2.12].
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Theorem 5.16. Let X be a curve of genus g, embedded in Py be a complete linear system

of degree d > 1. Assume the twisted Gauss-Manin connection
v HY(X, Qx (1)) — @ ® HY(X, Ox(1)) (5.22)
is zero. Then K (R); = k%91 £ 0 and
KM D(R), = Ql @ k4+9! (5.23)

forn > 1. In particular, K(”“)( R)y # 0 whenever n is between 1 and the transcendence

degree of k/Q. Here

Proof. See [CHWW?2, Theorem 3.8].

]

Remark 5.17. The group K™™(R); denotes the weight 1 part of K" (R) under the

graded isomorphism of Theorem 5.15.

Theorem 5.18. Let X be a smooth projective variety in PY with homogeneous coordinate
ring R. Suppose that X is a curve, so that dim(R) = 2, and suppose further that R 1is

reduced. The we have
(a) Ki(R) 2 k* @ KP(R) @ K (R) and K" (R) = 0 fori > 4;
(b) Ks(R) = Ka(k) @ tors QL & K (R) @ K" (R);
(¢) Ku(R) = K, (k) ® @K, (R).

Proof. This is a special case of [CHWW2, Theorem 1.15].

]

At this point, we restrict ourselves to fields which are algebraic over Q; this will avoid

Q} being non-zero, and will force Ko(R)/Z and K_,,(R) to be finite dimensional. This
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assumption will make Theorem 5.16 trivially true in our case. It also reduces Theorem 5.18

to the following Corollary.

Corollary 5.19. If R=k®P R & Ry & --- 1s seminormal of dimension 2 and k is algebraic
over Q, then

(a) Ki(R) = k™ @ Q,(R)/QY(R) where Qg (R) = Hey, (R, ),
(b) Ka(R) = Ky(k) & tors Qf;

(¢) Kn(R) = K, (k) ® HC,,_1(R).

Proof. See [CHWW?2, Proposition 1.17]. Note that HC,(R) = HC,,(R)/ HC,(k), where HC

denotes the cyclic homology functor.

]

Using Corollary 5.19 above, along with [CHWW?2, Proposition 2.12], one can prove the

following theorem.

Theorem 5.20. Suppose k is algebraic over Q and that R is the homogeneous coordinate

ring of a smooth curve X over k. Then
Ki(R) 2 (872 Har (X, Qx i (1))) /gy (5.24)

The calculation of IjI\(/]n_l(R) is beyond the scope of this paper, but Theorems 5.14, 5.16,
5.18, and 5.20, along with Corollary 5.19 give us the ability to calculate the K-theory of
P(1,1,a) for all negative degrees as well as degree 0. We also give a description of the

rational K-theory of P(1,1,a) in all positive degrees.

We begin with calculating the negative K-theory. By Theorem 5.14 part (d), we have

KUPD(R) = é H™ (X, QL (1)) (5.25)

t=1
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for any m > 0 and all ¢ > 0. For our case, X is the Veronese Curve of degree a, and R is
the affine coordinate ring of the cone over X. By Corollary 5.12, X = P!; therefore we also

know that Q% (t) = QL ® Opi(a-t) by [CHWW2, Remark 2.13]. So our groups become

KO (R) = @@ H™ (P!, % © Opi(a-t)) for m >0, i > 0. (5.26)

—-m
t=1

By Grothendieck’s Vanishing Theorem (see [Hart, Chapter III, Theorem 2.7]), if m > 2 or
1> 2orm =1 =1, then these groups are 0. So we are left with the case m =1 and ¢+ = 0

as the only possible non-zero case. So we have

KY(R) = D H'(P', Opi (a - 1)). (5.27)
t=1
By [Hart, Chapter 111, Theorem 5.1 part (d)], we have that

H'(P', Opi(a- 1)) = H'(P', Op1 (=2 — a - 1)) (5.28)

as k-vector spaces. Since the latter of these is 0 for ¢ > 1, the former is also 0 for all t > 1.

Thus, we have just proven the following theorem.

Theorem 5.21. Let X be the Veronese Curve of degree a, and let R be the affine coordinate
ring of the cone over X. Then K_,,(R) =0 for all m > 0.

Corollary 5.22. For all m > 1 and all a > 2, we have that
K_,.(P(1,1,a)) = 0. (5.29)
Proof. Recall Theorem 3.94, which says that
K_,.(P(1,1,a)) = KH_,,(P(1,1,a)) ® (Fx)-m(P(1,1,a)). (5.30)
We saw in Theorem 4.1 that KH_,,(P(1,1,a)) = 0 for m > 1. To calculate
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(FK)—m(P(1,1,a)), recall that Theorem 5.7 says that
(Fk)-m(P(1,1,a)) = (Fk)-m(R) (5.31)

where R is the affine coordinate ring for the cone over the Veronese Curve of degree a. By
Theorem 5.21, K_,,,(R) = 0 for all m > 1; consequently, (Fx)_,(R) =0 for all m > 1, and

we are done.

]

We next turn our attention to calculating Ko(R). By Theorem 5.14 parts (a), (b) and

(c), we have that
KSY(R) = RY/R (5.32)
where Rt denotes the seminormalization of R,

KU™(R) = é H{(X, (1)) (5.33)

for ¢ > 1, and that Kéo)(R) = 7. By Proposition 5.9, we know that R is in fact normal,
and so RT™ = R. Therefore, Kél)(R) = 0. For the calculation of Kéiﬂ)(R), we again know
by Grothendieck’s Vanishing Theorem ([Hart, Chapter III, Theorem 2.7]) that these groups

are all 0 if ¢ > 2. So the only remaining case is i = 1:
K§(R) = @) H' (X, 2k (1)) (5.34)
=1
Since Q% (t) = QU ® Opi(a - t) and since Qp, = Op1(—2), we have that

Q% (t) =2 Opi(a-t —2). (5.35)
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So this gives us
KP(R) = é H'(P', Opi(a-t —2)). (5.36)
t=1
By [Hart, Chapter III, Theorem 5.1 part (d)], we have that
HY(P', Opi(a-t —2)) = HY(P', Opi(—a - t)). (5.37)

Since the latter of these is 0 for all £ > 1, the former must be also. Therefore, KéQ)(R) =0.

Thus, we have just proven the following theorem.

Theorem 5.23. Let X be the Veronese Curve of degree a, and let R be the affine coordinate
ring of the cone over X. Then Ko(R) = Z.

Corollary 5.24. For all a > 2, we have that
Ko(P(1,1,a)) = Z>. (5.38)

Proof. Recall Theorem 3.94, which says that
Ko(P(1,1,a)) = KHo(P(1,1,a)) & (Fx)o(P(1,1, a)). (5.39)

We saw in Theorem 4.1 that KHy(P(1,1,a)) = Z3. To calculate (Fk)o(P(1,1,a)), recall that
Theorem 5.7 says that

(Fr)o(P(1,1,a)) = (Fk)o(RR) (5.40)

where R is the affine coordinate ring for the cone over the Veronese Curve of degree a. By
Theorem 5.23, Ko(R) = Z. Since KHy(R) = Z by Proposition 4.2, (Fk)o(R) = 0, and we

are done.

O

For the higher K-theory, we can no longer derive a nice formula for the K-theory of
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P(1,1, a); however, we can still use the description of K,,(R) to give a general expression.

Theorem 5.25. Let X be the Veronese Curve of degree a, let R be the affine coordinate ring

of the cone over X, and suppose k is algebraic over Q. Then we have the following:

(

0 for n <0
Q3 for n =0
Ko (P(1,1,a) ® Q2 { (K, (k) ® Q)° @ ( L (R )/QR/k> ® @) for n=1  (5.41)
(Ky(k)) ® Q) & ((tors Q%) ® Q) for n =2
[ (Kn ‘@ (HC )@Q) for n >3
where
Qo (R )/QR/k = (@2, Hy,, (P, Op1(a - t — 2))) /QR/lc (5.42)
and
tors O = ker (Q}%/k — Qan(R)) . (5.43)

Proof. The case when n < 0 is immediate from Corollary 5.22, after tensoring with Q.
Similarly, the case n = 0 is immediate from Corollary 5.24, after tensoring with Q. The
remaining cases follow from applying Theorem 4.53 (and the fact that K,(P?) = K, (k)?),
Corollary 5.19, Theorem 5.20, the fact that KH,,(R) = K,,(k) (by Proposition 4.2), the result
of Theorem 5.7 that says that (Fk),(P(1,1,a)) = (Fk).(R), and tensoring with Q.

]

While this doesn’t give us a complete calculation like in the P(1,1,2) case, it still gives
us a fairly good description of the rational K-theory of P(1,1,a). Notice that Corollaries
5.22 and 5.24 are proven, in part, by showing that (Fx),(P(1,1,a)) = 0 for n < 0; in other
words, by showing that P(1,1,a) is at least Ko-regular. One final question from our work in

this section remains: is P(1, 1, a) Kg-regular, for some d > 0?7 While we can’t fully calculate
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(Fx)1(P(1,1,a)), we can say with certainty that it is non-zero, and thus that Ko-regularity
is the best we can hope for (and which agrees with our earlier calculations in the P(1,1,2)

case). We prove this as the following theorem.

Theorem 5.26. The group (Fk)1(P(1,1,a)) # 0. Therefore, P(1,1,a) is Ko-regular and no

better.

Proof. By Theorem 5.7, we have that (Fk)1(P(1,1,a)) = (Fk)1(R). As we saw in Theorem
5.16, KgQ)(R) # 0 since K@(R)l >~ ko1 £ 0. As we saw in Theorem 5.18, we have that
K (R) ¢ (Fx)1(R); therefore, (Fx)1(R) # 0, and so (Fi)1(P(1,1,a)) # 0 also, as desired.

[]

Remark 5.27. Combining Corollary 5.22, Corollary 5.24, and Theorem 5.26 establishes

part (c) of Theorem 1.1.

5.3 The Fx groups for Complete Simplicial Toric Surfaces and for Weighted
Projective Spaces P(a,b,c)

Our goal is to now proceed to the general case P(a, b, c). We begin by showing that there is

an analog of Theorem 5.2 that extends to all complete toric surfaces.

Theorem 5.28 (Fix Decomposition Theorem). Let X be any complete toric surface, and let
Uy, s Usy,..., Uy, be all the open sets associated to a mazimal cone in the fan Ax. Then we

have

I

(-FK)n<X) (fK)n(Um) ©® (FK)R(U@) ©---D (FK)n(Uam) (544)

for all n.

Proof. We proceed by induction on the number of open sets associated to maximal cones.

We begin with the base case m = 2.
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So let X =U,, UU,,. We want to show that

(Fr)n(X) = (Fx)n(Usy) @ (F)n(Us) (5.45)

for all n. Covering X by U,, and U,, and using Zariski descent, we have the long exact

sequence:

T (Fi)n(X) — (Fx)n(Usy) ® (Fx)n(Ugy) — - -

> (F)nUoy NUsy) — (Fr)n-1(X) — - - (5.46)

Now recalling that U,, NU,, = Uy,no,, we know immediately that U,, N U,, is smooth. The
reason is that o N oy is either the 0 cone (in which case U,, N U,, = an and is obviously
smooth) or is a l-dimensional cone; for any toric variety a 1-dimensional cone must be
smooth (since any toric variety is normal and therefore smooth in codimension 1). So we

have that

(‘FK)TL(Ual N UO’Q) =0 (547)

for all n. Therefore, by exactness, we have that

I

(Fr)n(X) = (Fk)n(Us)) @ (Fk)n(Us,) (5.48)

for all n as desired. This establishes the case m = 2.

Now suppose the result is true for all £ < m. Then we have
x=Ju., (5.49)
i=1

so we can cover X by the open sets Y and U, , where

m—1

Y =] U, (5.50)

=1
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Let Z =Y NU,, . Then (Fk)n.(Z) =0 for all n. To see this, again proceed by induction on

the number of open sets, where we notice that
m—1
Z=YNU,, =] Usnnon (5.51)
i=1

is our cover. The case m = 2 is trivial. The case m = 3 is done by considering the cover
Usinos and Uyynes. By the same reasoning as above, U,.,qy, is smooth for ¢ = 1,2, and

noticing that we have
Uo’1ﬂo’3 N Uo’2ﬂo’3 - Ualﬁagﬁag, - UO - an (552)
we get the long exact sequence (again using Zariski descent):

= (Fa(Z) = (FnUsings) © (Fi)n(Ussnos) — -+

— (F)a(Gy) — (Fx)a-a(Z) — -+ (5.53)
Since Uy, nos, Usynos, and G2, are smooth, we have that
(Fi)n(Usinos) = (Fi)n(Ussnos) = (Fi)n(Gr,) = 0 (5.54)

for all n. Therefore, by exactness, we have that (Fx),(Z) = 0 for all n as well. This gives

the case m = 3.

Now for the inductive step for (Fx),(Z), cover Z by the open sets Z and U, _ . , where

m—2
Z = Usro- (5.55)
=1

By the same reasoning as above, U,,~,, is smooth for all 7, and noticing that, for any i # 7,

we have

Uo'iﬂam N Uajﬂam - Ua'iﬂcrjﬁcrm - UO = G%,L (556)
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which implies that

m—2 m—2
Z ﬂ U0m7100'7,b = U UU'imo'm ﬂ U0m7100'7,b = U G?TL - G’?‘ﬂ, (557)
=1 =1

So we get the long exact sequence (again using Zariski descent):

= (Fia(Z) — (Fn(2) @ (Fi)nUspsom) — -+

But (Fi)n(Us,_1re,,) = 0 because U, .. is smooth, and (Fx),(Z) = 0 by our inductive
hypothesis. Since (Fk),(G?) = 0 also, exactness gives us that (Fx),(Z) = 0, giving the

inductive step for Z.

Now we return to the inductive step for X, with the covering by Y and U,, . Using

Zariski descent, we get the following long exact sequence:

c— (Fn(X) — (F)n(Y) & (F)n(Us,,) — -+

c— (FalZ) — (F)aa(X) — - (5.59)
However, (Fx)n(Z) = 0 for all n by our above work; therefore, by exactness, we get that

(FK)n(X) = (J—"K)n(y) ¥ (FK)n(Uvm) (5'60)

for all n. By our induction hypothesis, we have that

(F)n(Y) = (Fi)n(Usy) @ (F)n(Usy) @ -+ @ (Fi)n (U, ) (5.61)

for all n. Substituting this in gives us

12

(Fr)n(X) = (F)n(Usy) © (F)n(Usy) @ -+ @ (F)n(Us,) (5.62)
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for all n, completing the inductive step.

[]

Corollary 5.29. Let P(a,b,c) be any 2-dimensional weighted projective space, and let U,,,
Us,, and U,, be the open sets associated to the three mazimal cones in the fan of P(a,b,c).

Then we have that

(Fr)n(B(a,b,¢)) = (Fx)n(Us,) ® (F)n(Us,) © (Fi)n(Ussy) (5.63)

for all n.

Proof. This is immediate from Theorem 5.28

]

So just as we saw in Section 5.2, our problem reduces to calculation (Fx),(Usy,), for
all 7. The problem is that this time, while U,, will still be the prime spectrum of the
affine coordinate ring of a cone over a projective variety, that projective variety will rarely
be smooth. It will most often be isomorphic to a chain of copies of P! intersecting at a
collection of points, and these intersection points will be singular (see [Ful, page 47]). So the
results of [CHWW?2]| cannot be applied here.

Nevertheless, the results of Section 5.2 do still suggest that (Fx),(P(a,b,c)) should be 0

for n < 0. So even though we cannot calculate all of the Fx groups, we seek to determine if

P(a, b, ¢) is Ko-regular. To do so, we use the following results, originally due to Gubeladze.

Lemma 5.30 (Gubeladze). For any regular ring R and any monoid M, we have

Ko (R) = K,(R[M]) =0 (5.64)

forn < —1.

Proof. See [Gub3, Theorem 1.3], which in turn uses elements of [Gub] and [Gub2].
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Theorem 5.31. If X = U, is an affine toric variety, then Ko(X) = Z and K, (X) = 0 for
n < —1. Consequently, (Fx)n(X) =0 forn <0.

Proof. For the Ky part, see [CHWW, Proposition 5.7]. Note that while I write this as a
consequence in the statement above, the proof in the n = 0 case centers around using that
KHy(X) = Z (see Proposition 4.3 of this paper or the proof of [CHWW, Proposition 5.6]) and
then showing by direct calculation that (Fk)o(X) = 0. A stronger version of this statement
can be found in [Gub3].

For the case of K,, with n < —1, we use Lemma 5.30, the fact that U, = Spec (k[o¥ N M]),

the fact that all fields are regular, and the fact that oY N M is a submonoid of M.

O
Corollary 5.32. Let X be any complete toric surface. For alln <0, we have
(Fk)n(X) = 0. (5.65)
Proof. This is immediate from Theorem 5.28 and Theorem 5.31.
[
Corollary 5.33. For alln <0, we have
(Fx)n(P(a,b,c)) = 0. (5.66)
Proof. This is immediate from Corollary 5.32.
[

Corollary 5.34. For any two complete toric surfaces X andY satisfying the conditions of
Theorem 4.9, we have that

Ka(X) ® Q2 K, (V) © Q (5.67)

forn <0.
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Proof. By Corollary 5.32, we have that

K, (X) = KH,(X)

and

K,(Y) = KH,(Y)

for n < 0. Tensoring each of these with QQ gives us

K,(X) © Q 2 KL, (X) @ Q

and

K,Y)®Q=KH,(Y)2Q

for n < 0. By Theorem 4.9, we have that

KH,(X)© Q= KH,(Y)®Q

for all n. Composing all the isomorphisms gives the result.

Corollary 5.35. If P(a,b,c) is any weighted projective space, we have that

K, (P(a,b,¢)) © Q=0

for all n < 0, and that

Ko(P(a,b,c)) ® Q = Q3.
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Proof. By Corollary 5.34 applied to the toric varieties P(a, b, ¢) and P2, we have that

K, (P(a,b,c)) ® Q = K,(P?) © Q (5.75)

for n < 0. But K,(P?) =0 for n < 0 and Ko(P?) = Z3. Therefore we have

K, (P(a,b,c)) ®Q=0®Q=0 (5.76)
for n < 0 and
Ko(P(a,b,c)) ® Q= Z° © Q = Q’ (5.77)
which completes the proof.
O

Remark 5.36. Combining Corollaries 5.33 and 5.35 establishes part (b) of Theorem 1.1.

5.4 The Fk groups for Weighted Projective Spaces of Higher Dimensions

In Section 5.3, we proved Theorem 5.28 and then used it, along with Theorem 4.9 to deter-
mine the rational K-theory (in degree n < 0) for complete toric surfaces, and in particular
for 2-dimensional weighted projective spaces. Unfortunately, Theorem 5.28 does not, in gen-
eral, extend to higher dimensions. The problem that arises is that, while we could always
conclude that U,, N U,, was smooth when our variety was dimension 2, it is not true in

general that U, N U, is smooth if the dimension of our variety is bigger than 2.

Example 5.37. Consider the 3-dimensional weighted projective space P(1,1,2,4). The fan

15 generated by the 1-dimensional cones

{(1,0,0),(0,1,0), (0,0,1), (=1, —2, —4)}. (5.78)
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Let

o1 = ((1,0,0), (0,1,0), (=1, -2, —4)) (5.79)
and let
75 = ((1,0,0), (0,0,1), (=1, =2, —4)). (5.80)
Then we have that
o1 Moy = ((1,0,0), (=1, =2, —4)). (5.81)

I claim that this cone is singular, and therefore that U,, N U,, is not smooth. Indeed, for

this cone to be smooth, we would need to be able to find a vector (a,b,c) € Z3 such that the

matrix
1 -1 a
0 —2 b (5.82)
0 -4 ¢

has determinant +1. But this is impossible because the determinant of this matriz is 4b — 2c
and there are no integers b and ¢ that make this equation equal to +1 (the ged(2,4) =2 #1).

So this cone is indeed singular.

As Example 5.37 shows, U,, N U,, does not need to be smooth even in dimension 3, and
so we cannot express (Fk),(X) as a direct sum of the (Fk),(U,,)’s. However, if we impose
additional conditions on X, we can still recover an analog of Theorem 5.28 in dimensions

d> 2.

Theorem 5.38. Let X be a complete toric variety of dimension d > 2, and suppose that the
dimension of the singular set of X is 0 (that is, X is smooth in all codimensions < d —1).

Let U,,, Us,,,...,U,, be all the open sets associated to a maximal cone in the fan Ax. Then
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we have

(}-K)n<X) = (fK)n(Um) ® (fK)n(Udz) ©---D (—FK)n(Uom) (5~83>

for all n.

Proof. First notice that the dimension of a singular cone is precisely the codimension of the
singularities created by that cone. So the statement that X is smooth in all codimensions
< d — 1 is equivalent to saying that the only possible singular cones of Ax are maximal

cones.

We now proceed by induction on the number of open sets associated to maximal cones,

as we did before. We begin with the base case m = 2.

So let X =U,, UU,,. We want to show that

(]:K)R(X) = (‘FK)N(Um) D (‘FK)W»(UO'Q) (584)

for all n. Covering X by U,, and U,, and using Zariski descent, we have the long exact

sequence:

i (]:K>n(X) — (FK)n<U01) @ (]:K>n(UU2) —
c— (Fx)nUs, NU,,) — (Fk)n-1(X) — - (5.85)

Now recalling that U,, NU,, = Us,ns,, Wwe know that U,, N U,, is smooth because o1 N oy
is not a maximal cone (it is a cone of smaller dimension) and is therefore nonsingular by

assumption. So we have that

(Fx)n(Us, NUs,) =0 (5.86)

for all n. Therefore, by exactness, we have that

(F)n(X) = (Fx)n(Usy) & (Fx)n(Usy) (5.87)
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for all n as desired. This establishes the case m = 2.

Now suppose the result is true for all £ < m. Then we have

x =, (5.88)

Y = U (5.89)

Let Z=Y NU,, . Then (Fk).(Z) =0 for all n. To see this, again proceed by induction on

the number of open sets, where we notice that
m—1
Z = Y m UO—nL = U UO’,’ﬂO’"L (590)
i=1

is our cover. The case m = 2 was done above; U,, NU,, is smooth (by assumption) because
o1 N o9 is not a maximal cone. The case m = 3 is done by considering the cover U,,n,, and

Usynos- By the same reasoning as above, Uy, is smooth for ¢ = 1, 2.

Noticing also that the intersection of these two open sets is
Usinos N Ussnios = Usinosnos (5.91)
we get that Uy nyys N Ugynes 1S also smooth because o1 Moy MNog is not a maximal cone; hence
(F&)n(Usinos N Usarioy) =0 (5.92)

for all n as well.

Using Zariski descent, we get the long exact sequence:

i (FK)n(Z) — (FK)n<Ua1ﬂ03) S5 (]:K)n<Uazﬁa3> —
i (fK)TL(UUlﬁUS M U02ﬁ03> — (FK)H—1<Z) — (593>
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Since Uy, noss Usynos, and Usynoy N Ugynoy are smooth, we have that

(]:K)H(Uomos) = (}—K)H(Uom%) = (}—K)n(Ualﬂas N Uazﬂas> =0 (594)

for all n. Therefore, by exactness, we have that (Fx),(Z) = 0 for all n as well. This gives

the case m = 3.

Now for the inductive step for (Fx),(Z), cover Z by the open sets Z and U, o, , where

m—2
Z = Usron- (5.95)
=1

By the same reasoning as above, U,,~,,, is smooth for all 7, and noticing that, for any 7 # 7,

we have
Uaiﬂam N Uajﬂam - Uoiﬁajﬂam (596)

is smooth (again, o; N o; N o, is not a maximal cone, and therefore smooth by assumption)

which implies that

m—2

Z0Uq, s0on = | Usiron N U, 100 (5.97)

=1

is also smooth, since it is the union of smooth open subschemes. As a consequence,

(F)n(Z O Uy, _ren) = 0. (5.98)

So we get the long exact sequence (again using Zariski descent):

- (Fi)n(Z) — (Fi)n(2) @ (Fi)aUsprnom) — -+

s (FnZN0Uys o) — (Fi)n1(Z) — - (5.99)

But (Fi)n(Us, e, ) = 0 because U, .. is smooth, and (Fx),(Z) = 0 by our inductive
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hypothesis. Since (Fg)n(Z N Uy, iro,) = 0 also, exactness gives us that (Fx)n(Z) = 0,

giving the inductive step for Z.

Now we return to the inductive step for X, with the covering by Y and U,, . Using

Zariski descent, we get the following long exact sequence:

- (Fa(X) — (Fr)a(Y) © (Fr)n (U

Om

c— (FaZ) — (F)aa(X) — - (5.100)
However, (Fx)n(Z) = 0 for all n by our above work; therefore, by exactness, we get that

(FK)n(X) = (J—"K)n(y) ® (FK)n(Uvm) (5'101)

for all n. By our induction hypothesis, we have that

(F)n(Y) = (Fi)n(Usy) @ (F)n(Usy) @ -+ @ (F)n(Us,, ) (5.102)

for all n. Substituting this in gives us

12

(Fr)n(X) = (Fx)n(Usy) © (F)n(Usy) @ -+ @ (F)n(Us,) (5.103)

for all n, completing the inductive step.

]

Using Theorem 5.38, we can now derive results that are analogous to those proven at the

end of Section 5.3.

Corollary 5.39. Let X be a complete toric variety of dimension d > 2, and suppose that

the dimension of the singular set of X is 0. For alln <0, we have

(Fi)n(X) = 0. (5.104)

Proof. This is immediate from Theorems 5.38 and 5.31.
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]

Corollary 5.40. If X and Y are any two complete simplicial toric varieties satisfying the

conditions of Theorem 4.9, and satisfying the extra condition that the singular sets of X and

Y both have dimension 0, then for n <0, we have

K,(X)®Q=2K,(Y)®Q.

Proof. By Corollary 5.39, we have that

K, (X) = KH,(X)

and

K, (Y) 2 KH,(Y)

for n < 0. Tensoring each of these with QQ gives us

K,(X)®Q=KH,(X)®Q

and

K,Y)®Q=KH,(Y)®Q

for n < 0. By Theorem 4.9, we have that

KH,(X) ® Q = KH,(Y) ® Q

for all n. Composing all the isomorphisms gives the result.

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

]

Corollary 5.41. If P(qo, q1, 42, ---,qa) 1S any d-dimensional weighted projective space such
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that the singular set has dimension 0, we have that

Kn<P(QO7Q17QQ>-~-7Qd))®Q:0 (5111)

for all n < 0, and that

Ko(P(q0, 41, G2, -, qa)) ® Q = Q. (5.112)

Proof. By Corollary 5.40 applied to the toric varieties P(qo, q1,¢2, ..., qa) and P?, we have
that

Kn(P(q()? q1,42; ---, qd)) ® @ = Kﬂ(Pd) ® @ (5113)

for n < 0. But K, (P?) = 0 for n < 0 and Ko(P?) = Z4*1. Therefore we have

Kn(P(q07Q17q277Qd))®(@go®@:0 (5114)

for n < 0 and

Ko(P(go, 41, 2, .-, ¢a)) ® Q = Z7' @ Q = Q! (5.115)

which completes the proof.

]

Remark 5.42. Combining Corollaries 5.39 and 5.41 establishes part (d) of Theorem 1.1.

Corollary 5.41 gives us a way to examining non-trivial classes of higher dimensional

weighted projective spaces, as the following example demonstrates.

Example 5.43. Consider the 3-dimensional weighted projective space P(1,a,b, c) where

ged(a, b) = ged(a, ¢) = ged(b, ¢) = 1. (5.116)
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The fan is generated by the 1-dimensional cones

{(1,0,0), (0,1,0), (0,0,1), (—a, —b, —c)}. (5.117)

Every 1-dimensional cone is smooth as before, so to apply Corollary 5.41, we need only check
that all 2-dimensional cones are smooth. Obviously all 2-dimensional cones involving only
the cones (1,0,0), (0,1,0), and (0,0,1) will be smooth, so we need to only consider the three

2-dimensional cones that involve (—a,—b, —c). That gives us the following cones:

= {((1,0,0), (—a,—b, —c))
7 = ((0,1,0), (—a, —b, —c))

3 =((0,0,1), (—a, —=b,—c)) (5.118)

For 7y to be smooth, we need to be able to find a vector (x,y,z) € Z* such that the matriz

1 —a =z
0 —b y (5.119)
0 —c =z

has determinant +1. The determinant is cy — bz so if we can find integers y and z such that
cy — bz = 1 then we have extended to a Z-basis of Z* as desired. But since ged(b,c) = 1,
such a y and z can indeed be found; taking those choices for y and z and letting x = 0 gives

us the desired extension. The argument is analogous for 7o and 13. Therefore, provided that

ged(a, b) = ged(a, ¢) = ged(b, ) =1 (5.120)

we see that P(1,a,b,c) satisfies the conditions for Corollary 5.41, and we conclude that

K, (P(1,a,b,¢)) ® Q=0 (5.121)
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forn <0 and

Ko(P(1,a,b,c)) ® Q = Q™. (5.122)

Example 5.44. Following from FExample 5.43, consider the d-dimensional weighted projec-
tive space P(1,q1,qo, ...,qqa) where ged(qi,q;) = 1 for i # j. The fan is generated by the

1-dimensional cones

{e1, ez, .y €a, —qrer — quea — -+ — qaeq}. (5.123)

As before, every 1-dimensional cone is smooth, and obviously every cone involving only the
e;’s are smooth also. So the only possibly non-smooth cones are those involving the cone
—q1e1 — Qoy — + - — qqeq. Just as in Example 5.43, we need to consider non-mazximal cones
movolving —qieq — gaey — - - - — qqeq and see that they are still smooth. The idea is analogous.

Let us consider the cone

0 = (€1, Ciys s Ciyy —G1€1 — G2€2 — *** — Ga€q)- (5.124)

Notice that k < d — 2 since if k = d — 1 then o would be a maximal cone. Also notice that if
o 18 shown to be smooth whenever k = d — 2, then it is smooth for all choices of k since we
can just extend by the (d — 2) — k vectors that are ommitted. So we can assume k = d — 2.

Without loss of generality, suppose that e;; = e;, so that we have

o= <€1, €9, eey €4—2, —(q1€1 — (2€3 — +++ — Qd€d>- (5'125)

For o to be smooth, we need to be able to find a vector (ay, g, ..., ag) € Z¢ such that the
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matrix

1 00 0 —aq o
010 0 —q Q9
001 0 —gs Qa3
(5.126)
000 - 1 —qa2 i
000 - 0 —ga—1 a1
000 -+ 0 —qq ay

has determinant 1. The determinant is ag_1qq — qqq—1 So if we can find integers ag_1 and
ag such that aig_1qq — 0igqa—1 = 1 then we have extended to a Z-basis of Z as desired. But
since ged(qa—1,qq) = 1, such an ag_1 and agq can indeed be found; taking those choices for
ag-1 and ag and letting o; = 0 for i < d — 2 gives us the desired extension. The argument

is analogous for all other possible choices for o. Therefore, provided that

ged(gi, q5) = 1 (5.127)

for i # j, we see that P(1,q1,qs, ...,qq) satisfies the conditions for Corollary 5.41, and we

conclude that

KN(P(lﬂqlaq%-'WQd))®Q:O (5128)

forn <0 and

KO(P<1JQI7QQ7‘”7QCI)) ®@g@d+1- (5129)

Example 5.44 shows that weighted projective spaces of the form P(1, ¢, go, ..., qq), with
ged(qi, ) = 1 for all i # j, satisfy the conditions for Corollary 5.41 by showing that they
satisfy the conditions for Corollary 5.39. In particular, weighted projective spaces of the
form P(1,1,1,...,1,a), where a > 2, satisfy the conditions for Corollary 5.39. This gives rise

to our final theorem.
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Theorem 5.45. Consider the d-dimensional weighted projective space P(1,1,1,...,1,a),

where a > 2. Then
K,.(P(1,1,1,...,1,a)) =0 (5.130)
forn < —1 and
Ko(P(1,1,1,...,1,a)) = 24 (5.131)
Proof. Recall from Theorem 3.94 that
K,(P(1,1,1,...,1,a)) = KH,(P(1,1,1, ..., 1,a)) & (Fx).(P(1,1,1,....,1,a)). (5.132)

Corollary 5.39 and our work in Example 5.44 shows that (Fx),(P(1,1,1,...,1,a)) = 0 for

n < 0, and gives us that
K,.(P(1,1,1,...,1,a)) = KH,(P(1,1,1, ..., 1,a)). (5.133)

Applying Corollary 4.56 then gives us the result.

]

Remark 5.46. Theorem 5.45 establishes part (e) of Theorem 1.1, and therefore completes
the proof of Theorem 1.1.
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