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Abstract

Urbanization in low-income countries represents an important inflection point in the epidemiology of disease, with rural popu-
lations experiencing high rates of chronic and recurrent infections and urban populations displaying a profile of
noncommunicable diseases. To investigate if urbanization alters the expression of genes encoding mitochondrial proteins, we
queried gene microarray data from rural and urban populations living in Morocco (GSE17065). The R Bioconductor packages
edgeR and limma were used to identify genes with different expression. The experimental design was modeled upon location and
sex. Nuclear genes encoding mitochondrial proteins were identified from the MitoCarta2.0 database. Of the 1158 genes listed in
the MitoCarta2.0 database, 847 genes (73%) were available for analysis in the Moroccan dataset. The urban-rural comparison
with the greatest environmental differences showed that 76.5% of the MitoCarta2.0 genes were differentially expressed, with
97% of the genes having an increased expression in the urban area. Enrichment analysis revealed 367 significantly enriched
pathways (adjusted p value <0.05), with oxidative phosphorylation, insulin secretion and glucose regulations (adj.p values =
6.93E-16) being the top three. Four significantly perturbed KEGG disease pathways were associated with urbanization—three
degenerative neurological diseases (Huntington’s, Alzheimer’s, and Parkinson’s diseases) and herpes simplex infection (false
discover rate corrected p value (PGFdr) < 0.2). Mitochondrial RNA metabolic processing and translational elongation were the
biological processes that had the greatest enrichment (enrichment ratios 14.0 and 14.8, respectively, FDR < 0.5). Our study links
urbanization in Morocco with changes in the expression of the nuclear genes encoding mitochondrial proteins.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s12192-020-01108-x) contains supplementary
material, which is available to authorized users.
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Introduction

Fifty-five percent of the world’s population currently lives in a
city, with this figure expected to rise to over two-thirds by
2050 (United Nations 2019). Urbanization is occurring most
rapidly in Sub-Saharan Africa and Asia, where economic de-
velopment and the population growth have been the fastest.
Agricultural instability, forced migration due to political insta-
bility, ecological disasters (e.g., floods and climate change),
and greater social and education opportunities in cities are
other factors that lead to urbanization worldwide (Chen et al.
2014; Satterthwaite et al. 2010).

Changing environmental exposures are the sine qua non of
urbanization. Low-income countries are perhaps the best place
to observe these changes as urbanization is occurring rapidly
and there are often extremes in levels of development between
rural and urban areas. These changes include, but are not lim-
ited to, differences in rates of infection, diet, population den-
sity, nigh-time lighting, and levels of noise and pollution
(Bickler 2000). Importantly, these different environmental ex-
posures are associated with major changes in the disease epi-
demiology. In contrast to rural areas where chronic and recur-
rent infections predominate, urban populations often display a
profile of noncommunicable diseases (NCDs), similar to that
observed in high-income countries (Caldwell 2001; Eckert
and Kohler 2014; Gong et al. 2012; Harpham 2009). This
epidemiological shift from communicable to NCDs is a mi-
crocosm of that occurring globally for the past century
(Jamison and Mosley 1991; Murray and Lopez 1997).
NCDs are the leading cause of death in middle- and high-
income countries. In 2015, 71% of the 58 million deaths oc-
curring worldwide were related to NCDs, mainly cardiovas-
cular diseases, cancer, and respiratory diseases (Mortality and
Causes of Death 2016).

The biological mechanisms that underlie the shift from
communicable to NCDs and their relationship to specific en-
vironmental factors remain poorly understood. To date, most
research has focused on the impact of urbanization on cardio-
vascular risk factors such as serum lipids (Htet et al. 2017;
Kavishe et al. 2019; Vasunilashorn et al. 2010), changes in the
gut microbiome (Ayeni et al. 2018; Jha et al. 2018; Lokmer
etal. 2020), or effects of pollution in urban areas (Amegah and
Agyei-Mensah 2017; Coker and Kizito 2018). A less utilized
approach has been to compare gene expression patterns in
genetically similar rural and urban populations (Idaghdour
et al. 2010, 2008; Nath et al. 2012). These gene expression
studies have demonstrated the complex molecule changes that
occur during the transition from a rural to urban environment.
In a study from southern Morocco, the expression of over a
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third of the peripheral blood transcriptome was shown to differ
between residents of a rural Berber village and the city of
Agadir (Idaghdour et al. 2008). Similar results were observed
in a larger follow-up study from Morocco (Idaghdour et al.
2010), and in an investigation on the peripheral blood
transcriptomes of Fijians living in a rural village and the cap-
ital city of Suva (Nath et al. 2012). In all of these three studies,
differences in the genome-wide expression signature were at-
tributed to a combination of lifestyle, geography, and biotic
factors. While these studies have been important in advancing
our understanding of how environment shapes human biolo-
gy, the broad changes in gene expression have been difficult to
interpret, especially as they relate to specific risk factors and
actual mechanisms.

An evolving application of these rural-urban datasets is to
test specific hypotheses regarding how individual genes or
pathways change with urbanization (Bickler et al. 2016,
2015, 2018). As an example, we used Moroccan gene expres-
sion database to show that urbanization alters the expression
of G protein subunit genes, suggesting the possibility of envi-
ronmentally specific G protein-coupled receptor (GPCR) sig-
naling. Three genes controlling the phosphatidylinositol sig-
naling pathway and one gene regulating cAMP (3’-5’-cyclic
adenosine monophosphate) were significantly increased in the
urban population. Further, the gene encoding the {3-arrestin 1
protein (ARRB1), which dampens cellular responses to hor-
mones, neurotransmitters, and other sensory signals
(Buchanan and DuBois 2006) was increased in the rural pop-
ulation. This example illustrates the tremendous potential that
exists for using molecular biological approaches to decipher
the complex biological changes that occur during the transi-
tion from a rural to an urban environment.

In this investigation, we build on our previous efforts to
understand the biological changes that occur with urbaniza-
tion by testing the hypothesis that urbanization could alter
mitochondrial gene expression. The rationale for investigating
mitochondrial gene expression was twofold. First, urbaniza-
tion was previously shown to enrich oxidative phosphoryla-
tion (Idaghdour et al. 2010)—a mitochondrial function.
Second, mitochondria represent a cellular hub that connects
energy metabolism, stress sensing, signaling, and cell survival
(Lane 2005; Monlun et al. 2017; Naquet et al. 2016).

Material and methods

We queried gene microarray data from rural and urban popu-
lations living in Morocco for nuclear genes encoding proteins
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associated with mitochondria (Fig. 1). We first identified dif-
ferentially expressed genes in rural and urban populations and
then selected out genes encoding mitochondrial proteins listed
in the MitoCarta2.0 database. The differentially expressed
MitoCarta2.0 database genes (i.e., the nuclear genes encoding
mitochondrial proteins) were then analyzed using Gene Set
Enrichment Analysis (GSEA), Signaling Pathway Impact
Analysis (SPTIA), and WebGestalt, and used to construct a
gene interaction network.

Moroccan gene expression microarray data

Our analysis was done using gene expression microarray data
(GSE17065) from the National Center for Biotechnology
Information (NCBI, Bethesda, MD, USA). This dataset con-
tains peripheral blood leukocyte gene expression data from
individuals living in the Souss region of southern Morocco
(Idaghdour et al. 2010). The Souss region is home to several
million people of two dominant ethnicities living either in
cities, or rural villages. One-half of the samples were from
the high density, low- to middle-income city of Agadir. The
remaining samples were from two rural villages, Boutroch
which is predominantly Amazigh and quite isolated, and
Ighrem, predominantly Arab with many of the men commut-
ing to cities. As our desire was to better understand the gene
expression differences in the most disparate urban-rural envi-
ronments, we selected the Agadir-Boutroch comparison for
our enrichment analysis.

Mitocarta2.0 genes

Nuclear genes encoding proteins with strong support of mito-
chondrial localization were identified from the MitoCarta2.0
database (https://www.broadinstitute.org/files/shared/
metabolism/mitocarta/human.mitocarta2.0.html). This list of
1158 genes is based on mass spectrometry of mitochondria

isolated from fourteen tissues, assessed protein localization
through large-scale GFP tagging/microscopy, and six other
genome-scale datasets of mitochondrial localization (Calvo
et al. 2016).

Identification of differentially expressed genes
in Moroccan urban and rural populations

Normalized microarray data for GSE17065 was downloaded
from the NCBI using GEOquery package (Davis and Meltzer
2007). The R Bioconductor packages edgeR and limma
(Ritchie et al. 2015) were used to implement the limma meth-
od for differential expression analysis (https://www.
bioconductor.org). The experimental design was modeled
upon location and sex treatment (~ 0 + location + sex).
Transcripts were annotated with the IllumnaHuman3.db
(Dunning and Eldridge 2015), and filtered using genefilter
(Gentleman et al. 2018). Similar to the analysis performed
by Idaghdour et al. (Idaghdour et al. 2010), comparisons be-
tween multiple geographical locations such as Agadir-
Bourtroch (urban-rural), Agadir-Ighrem (urban-rural), and
Ighrem-Boutroch (rural-rural) were made. In addition, we es-
timated the average number of differentially expressed genes
in the urban-rural populations by comparing Agadir to the
average of the Boutroch and Ighrem groups. Significance
was defined by using an adjusted cutoff of p < 0.05 after mul-
tiple testing corrections with a moderated t statistic in limma.
In some cases, multiple illumina probes mapped to the same
gene. The probe with the lowest p value was retained and all
other probes were discarded.

Enrichment analysis of differentially expressed
MitoCarta2.0 genes

Enrichment of the differentially expressed MitoCarta2.0 genes
was assessed using Gene Set Enrichment Analysis (GSEA)

Fig. 1 Strategy for investigating Moroccan rural-
if urbanization alters the \rbandataset
expression nuclear genes (GSE17065)

encoding mitochondrial proteins

MitoCarta2.0 database:
Nuclear genes encoding
mitochondrial proteins

Differentially expressed
genes in rural and urban
populations

Differentially expressed genes
that overlap with MitoCarta2.0
database genes

Gene Set Enrichment
Analysis (GSEA)

WebGestalt ORA

Signal Pathway Impact
Analysis (SPIA)

VisJS2jupyter
Network analysis
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implemented in the Bioconductor GSVA package
(Hanzelmann et al. 2013), over-representation analysis
(ORA) in WEB-based Gene Set Analysis Tookit
(WebGestalt)(Wang et al. 2017), and Signaling Pathway
Impact Analysis (SPIA) (Tarca and Draghici 2018). GSEA
assesses the enrichment of functionally related gene sets based
on the Molecular Signatures Database (MSigDB) (Liberzon
et al. 2015), while SPIA assesses the differentially expressed
genes that change together in KEGG disease signaling path-
ways (Kanehisa et al. 2017). For the WebGestalt ORA, we
used the gene ontology biological process database
(Biological process noRedundant) and the
[lumina_humant 12 v3 reference gene list.

Gene interaction network of differentially expressed
MitoCarta2.0 genes

Significantly differentially expressed genes were used as
seeds for network propagation (Cowen et al. 2017) on the
STRING high confidence interactome (Szklarczyk et al.
2015). A graph-based modularity maximization clustering al-
gorithm was used to identify groups of genes within the most
proximal genes which were highly interconnected. Genes in
the entire network and within each of these clusters were an-
notated with associated pathways identified by functional en-
richment analysis, with the ToppGene (Chen et al. 2009).
Network visualization and propagation were performed using
Cytoscape (Shannon et al. 2003) and VisJS2jupyter
(Rosenthal et al. 2018). The subgraph composed of the most
proximal genes is visualized using a modified spring-
embedded layout algorithm, modified by cluster membership,
so that genes belonging to the same cluster are separated from
other clusters. Differential expression log fold change was
mapped to the node color, for the significantly differentially
expressed genes (FDR < 0.05) within the subgraph.

Results

A total of 12,961 genes were available for analysis after fil-
tering out genes with low expression. Of the 1158 nuclear
genes listed in the MitoCarta2.0 database, 847 genes (73%)
were identified in the Moroccan dataset. The numbers of dif-
ferentially expressed transcriptome and MitoCarta2.0 data-
base genes, by geographical comparison, are summarized in
(Table 1). The number of differentially expressed genes (i.e.,
the nuclear genes encoding mitochondrial proteins) varied
geographically in a pattern that paralleled the gene expression
changes of the total transcriptome. The Agadir-Boutroch
(urban-rural) and Agadir-Ighrem (urban-rural) comparisons
had the greatest number of differentially expressed genes
within the MitoCarta2.0 database (76.5% and 81.3%, respec-
tively), while the rural-rural comparison (Boutroch-Ighrem)
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had the least (10.3%). It is worth noting that the fraction of
upregulated genes within the MitoCarta2.0 database exceeded
the fraction of upregulated transcriptome genes in both urban-
rural comparisons (e.g., 74.0% vs 52.9% in the Agadir-
Boutroch comparison).

A more detailed analysis of the Agadir-Boutroch geograph-
ical comparison is shown in Fig. 2 and Table 2. In the Agadir-
Boutroch urban-rural comparison, 97% of the differentially
expressed genes identified in the MitoCarta2.0 database were
increased in the urban area (Fig. 2a). The mitochondrial asso-
ciated protein transcripts (nuclear DNA) with the greatest ex-
pression differences are shown in Fig. 2b. The genes with the
greatest fold increase change difference were NDUFA4
(logFC 0.89, adj.P.Val 5.77E-14), COX7B (logFC 0.85,
adj.P.Val 4.46E-12), and MRPS21 (logFC 0.80, adj.P.Val
1.41E-10). A complete list of differentially expressed
MitoCarta2.0 genes for the Agadir-Boutroch comparison is
provided in Supplementary Table 1.

Gene Set Enrichment Analysis (GSEA) of the differentially
expressed genes within the MitoCarta2.0 database revealed
367 significantly enriched pathways (adjusted p value <
0.05) (Supplementary Table 2), of which oxidative phosphor-
ylation, regulation of insulin secretion, and glucose regulation
showed the highest values (Fig. 2¢). WebGestalt showed mi-
tochondrial RNA metabolic processing and translational elon-
gation as the most highly enriched biological processes (en-
richment ratios 14.0 and 14.8, respectively, FDR <0.5)
(Fig. 2d). SPIA of the differentially expressed MitoCarta2.0
genes revealed four significantly perturbed KEGG disease
pathways—three degenerative neurological diseases
(Huntington’s, Alzheimer’s and Parkinson’s diseases) and her-
pes simplex infection (false discover rate corrected P values
(PGFdr) < 0.2) (Table 2). A complete list of the SPIA results is
provided in Supplementary Table 3. Network visualization of
the differentially expressed Mitocarta2.0 genes in the Agadir-
Boutroch comparison showed a link between clusters of
oxidase-reductase and ribosomal protein biosynthesis genes
(Fig. 2e).

Discussion

Urbanization is the most important demographic change dur-
ing the past century, and is a major divergence from how
humans have lived for the past several thousand years
(Galea and Vlahov 2005). Although living in a city is usually
associated with improved living standards, an untoward effect
of urbanization has been an increased prevalence of NCDs,
such as cardiovascular diseases, cancer, and respiratory dis-
eases. With no end in sight to the current global epidemic in
NCDs, there is a critical need to better understand the patho-
genesis of these common conditions, which could lead to new
prevention and treatment strategies. In the present study, we
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Table 1

Number of differentially expressed genes by geographical comparison

Geographic comparison

Agadir vs.
Boutroch

(urban-rural)

Transcriptome Total genes expressed (%) 12,961 (100)
No change (%) 5392 (41.6)
Upregulated (adjusted p 6828 (53.9)
value < 0.05) (%)
Downregulated (adjusted 741 (5.7)
p value <0.05) (%)

MitoCarta2.0 genes Total genes expressed (%) 847 (100)
(i,§,, nuclear genes §ncoding No change (%) 199 (23.5)
mitochondrial proteins) Upregulated (adjusted p 627 (74.0)

value < 0.05) (%)
Downregulated (adjusted 21 (2.5)

p value <0.05) (%)

Agadir vs Ighrem vs Average urban rural
Ighrem Boutroch (Agadir vs average of
(urban-rural) (rural-rural) Boutroch and Ighrem)

12,961 (100) 12,961 (100) 12,961 (100)

4898 (37.8) 11,317 (87.3) 9678 (74.7)

7886 (60.8) 134 (1.0) 2321 (17.9)

177 (1.4) 1510 (11.7) 962 (7.4)

847 (100) 847 (100) 847 (100)

154 (18.2) 760 (89.7) 465 (54.9)

688 (81.2) 6(0.7) 340 (40.1)

5(0.6) 81 (9.6) 42 (5.0)

examined whether urbanization altered the expression of nu-
clear genes encoding mitochondrial proteins. Our analysis of
gene expression microarray data from individuals living in a
rural and urban area of Morocco revealed several interesting
findings.

First, it was found that urbanization increases the expres-
sion of nuclear genes encoding mitochondrial proteins. This
effect was observed in two different urban-rural comparisons
and seemed to relate to the degree of environmental differ-
ence, as the number of differentially expressed genes in be-
tween Ighrem and Boutroch (two rural areas) was only 10.3%.
Since Ighrem is mainly of Arab ethnicity, and Boutroch al-
most exclusively Amazigh, these data indicate that the genetic
variations between these two populations only account for a
minimal fraction of differentially expressed genes. The major-
ity of changes in nuclear genes encoding mitochondrial pro-
tein are thus most likely a result of urbanization. In the urban-
rural comparison with the greatest environmental differences,
over 75% of the nuclear genes encoding mitochondrial pro-
teins were differentially expressed, with 97% having in-
creased expression in the urban area. As urbanization is asso-
ciated with changes in multiple environmental stimuli, it is
difficult, at this stage, to suggest the factors responsible for
these differences in gene expression. Some of the more prom-
inent environmental changes that occur with urbanization in-
clude differences in the burden of infectious diseases, diet,
crowding, noise, and levels of pollution (Bickler 2000).

Moving forward, it will also be important to determine the
mechanism(s) by which urbanization increases the expression
of nuclear genes encoding mitochondrial proteins. Based on
the existing literature, increased mitochondrial stress in urban
areas affecting translational mechanisms, and chromatin-
related phenomena that regulates mitochondrial gene expres-
sion would seem to be the most likely mechanisms.

Mitochondria stress is known to activate nuclear genes via a
variety of mechanisms, including OXPHOS dysfunction, de-
fects in mtDNA, and loss of membrane potential (Guha and
Avadhani 2013; Arnould et al. 2015). Mitochondrial stress can
also activate a mitochondrial-cytosolic response, or an extra-
cellular response mediated by “mitokine” signals (Quiros et al.
2016). The observation that pollution can have profound ef-
fects on mitochondrial function supports this hypothesis
(Dagher et al. 2006; Gualtieri et al. 2011; Li et al. 2006;
Pigneret et al. 2018). Alternatively, the gene expression dif-
ferences could be caused by a chromatin-related
phenomenon—although the two mechanisms are not mutual-
ly exclusive. In this scenario, compaction or accessibility of
DNA to relevant transcription factors is altered (Andersen and
Tost 2018; Chiarella et al. 2020), limiting the expression of the
nuclear genes encoding mitochondrial proteins in the rural
areas. Given the importance of epigenetic mechanisms in
guiding other physiological adaptations, perturbations in
chromatin-related processes deserve further study.

An additional important finding was that urbanization po-
tentially affects a broad spectrum of biological processes, with
nuclear transcripts encoding mitochondria proteins function-
ing as an important nexus. In the urban-rural comparison,
differentially expressed genes within the MitoCarta2.0 data-
base were associated with more than 350 functionally related
gene sets in the Molecular Signatures Database (MSigDB).
Similar to the Idaghdour study (Idaghdour et al. 2010), it
was found that found urbanization was associated with heavy
enrichment of oxidative phosphorylation and ribosomal bio-
synthesis. Insulin secretion, glucose metabolism, and integra-
tion of energy metabolism were other highly enriched path-
ways. The most heavily enriched biological process were
RNA metabolic processes, translational elongation, and mito-
chondrial transport. Interestingly, our gene interaction
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Table2 KEGG disease pathways identified by Signaling Pathway Impact Analysis (SPIA)

Name ID pSize NDE pNDE tA

pPERT pG pGFdr pGFWER Status

5016 75 70
5010 70 65
5012 73 67
Herpes simplex infection 5168 4 4

Huntington’s disease 6.47E-05
Alzheimer’s disease

1
2
3 Parkinson’s disease
4

—0.505359048 0.212
0.000195516 —0.484697517 0.236
0.000405577 —1.534221055 0.335
0.341836624 —1.727162773 0.004

0.000167352 0.011714644
0.000506811 0.01773838

0.001345617 0.0313997721
0.010384837 0.181734648

0.011714644 Inhibited
0.03547676  Inhibited
0.094193164 Inhibited
0.726938592  Inhibited

psize number of genes in the pathway; NDE number of DE genes in pathway; pNDE probability to observe at least NDE genes in the pathway; tA
observed total perturbation accumulation in the pathway; pPERT probability to observe a total accumulation more extreme thamn tA by chanve; pG p
value obtained by combining pNDE and pPERT; pGFdr false discovery rate; pGFWER Bonferroni adjusted global p values; Status direction in which the

pathway is perturbed in urban population

network analysis revealed a relationship between clusters of
oxidative reductase genes and ribosomal protein biosynthesis
genes. Given the results to our enrichment analysis, and recent
advances in the understanding of mitochondrial gene expres-
sion (For review see (Pearce et al. 2017)), we suggest these
clusters of genes might represent the mitochondrial ribosome
(mitoribosome) and the OXPHOS system. Human
mitoribosomes synthesize 13 essential proteins of the oxida-
tive phosphorylation pathway and are composed of between
250 and 300 nuclear encoded proteins (Amunts et al. 2015;
Calvo et al. 2016; Pearce et al. 2017; Smith and Robinson
2016). As mitoribosome function is paramount to mitochon-
drial respiration, and thus critical to cell differentiation,
growth, and survival, this could be an important area of future
research.

Finally, several disease pathways were associated with
urbanization. Specifically, that differentially expressed nu-
clear genes encoding mitochondrial proteins were associ-
ated with inhibition of three degenerative neurological dis-
eases (Huntington’s, Alzheimer’s and Parkinson’s dis-
eases) and herpes simplex virus infection. Because nuclear
transcripts encoding mitochondrial proteins are a subset of
the genes in the entire pathway, care must be exercised in
interpreting whether the disease pathways are either acti-
vated or inhibited. As an example, the Alzheimer KEGG
disease pathway is inhibited in the urban population when
nuclear genes encoding mitochondrial proteins are used in
the analysis; but the pathway is activated in the urban pop-
ulation when analyzed using the larger transcriptome (false
discover rate corrected p values (PGFdr) = 0.007). Perhaps,
the most that can be concluded from our Signaling
Pathway Impact Analysis (SPIA) is that nuclear transcripts
encoding mitochondrial proteins are well represented in
several degenerative neurological diseases, and Herpes
simplex virus infection pathways. Nevertheless, as mito-
chondrial dysfunction has been identified in a broad range
of disease processes, ranging from neonatal fatalities to
adult onset neurodegeneration, and is a likely contributor
to cancer and type II diabetes (DiMauro and Schon 2003;

Lowell and Shulman 2005; Wallace 2005), this should be
an area of fertile research.

Our study did have several limitations, including the in-
complete gene expression data in the Moroccan dataset and
that the samples were collected from one geographical area
(southern Morocco). Repeating the study in other geographic
areas and utilizing more comprehensive gene expression tools
(e.g., RNAseq) would be the best way to address these limi-
tations. RN Aseq analysis has the advantage that it can provide
information on gene expression of mitochondrial genes
(mtDNA), thus providing important insight into the effect mi-
tochondrial genes might have on nuclear gene expression.
Knowing the expression of mitochondrial genes (i.e., the sub-
units of the OXPHOS system, 22 transfer RNAs, and two
ribosomal RNAs) in different environments could help answer
this question. Another limitation of our study is that it was
based solely on the gene expression in peripheral white blood
cells. Although this may not be a problem, as there is growing
evidence that the blood transcriptome dynamically reflects
system wide biology (Liew et al. 2006).

In conclusion, our study suggests a link between urbaniza-
tion in Morocco and changes in the expression of nuclear
genes encoding mitochondrial proteins. In doing so, it should
bring to bear extensive literature on the role of mitochondria in
cellular function, and thus be helpful in better understanding
how urbanization impacts mitochondrial function, and ulti-
mately the role it might have in the origins of NCDs. Recent
themes in mitochondrial research that might be relevant to the
urban-rural transition include the relationship between mito-
chondria and the innate immune system (Garaude 2018;
Sander and Garaude 2018), and the emerging concept that a
network of organelles helps maintain cellular homeostasis
(Gilkerson 2018). In the latter, mitochondrial dynamics are
thought to be intrinsically linked to bioenergetics and adeno-
sine triphosphate (ATP) production, and mediate cell-wide
signaling networks (Gilkerson 2018). The urban-rural para-
digm offers an important opportunity to investigate these
mechanisms in humans, and how they might relate to the
rising rates of NCDs worldwide.
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