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BrainAligner: 3D Registration Atlases of Drosophila Brains

Hanchuan Peng1, Phuong Chung, Fuhui Long, Lei Qu, Arnim Jenett, Andrew M. Seeds, 
Eugene W. Myers2, and Julie H. Simpson2

Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, 
VA, 20147, USA

Abstract

Analyzing Drosophila neural expression patterns in thousands of 3D image stacks of individual 

brains requires registering them into a canonical framework based on a fiducial reference of 

neuropil morphology. Given a target brain labeled with predefined landmarks, the BrainAligner 

program automatically finds the corresponding landmarks in a subject brain and maps it to the 

coordinate system of the target brain via a deformable warp. Using a neuropil marker (the 

antibody nc82) as a reference of the brain morphology and a target brain that is itself a statistical 

average of 295 brains, we achieved a registration accuracy of 2µm on average, permitting 

assessment of stereotypy, potential connectivity, and functional mapping of the adult fruitfly brain. 

We used BrainAligner to generate an image pattern atlas of 2,954 registered brains containing 470 

different expression patterns that cover all the major compartments of the fly brain.

Introduction

An adult Drosophila brain has about 100,000 neurons with cell bodies at the outer surface 

and neurites extending into the interior to form the synaptic neuropil. Specific types of 

neurons can be labeled using antibody detection1 or genetic methods such as the UAS-

GAL4 system2, where each GAL4 line drives expression of a fluorescent reporter in a 

different subpopulation of neurons. Computationally registering, or aligning, images of fruit 

fly brains in three-dimensions (3D) is useful in many ways. First, automated 3D alignment 

of multiple identically labeled brains allows quantitative assessment of stereotypy: how 

much the expression pattern or the shape of identified neurons varies between individuals. 

Second, aligning brains that have different antibody or GAL4 patterns reveals areas of 

overlapping or distinctive expression that might be selected for genetic intersectional 

strategies3. Third, comparison of aligned neural expression patterns suggests potential 
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neuronal circuit connectivity. Fourth, aligning images of a large collection of GAL4 lines 

gives an estimate of how extensively they cover different brain areas. Finally, for behavioral 

screens that disrupt neural activity in parts of a brain using GAL4 collections, accurate 

alignment of images is a prerequisite for detecting anatomical features in brains that 

correlate with behavior phenotypes.

Earlier 3D image registration approaches4,5,6 use surface- or landmark-based alignment 

modules of the commercial 3D visualization software AMIRA (Visage Imaging, Inc.) to 

align sample specimens to a template. The major disadvantages of these approaches are the 

huge amount of time taken for a user to manually segment the surfaces or to define the 

landmarks in each subject brain, as well as the potential for human error.

The earliest and most relevant parallel line of research for automated alignment is for two-

dimensional (2D) or 3D biomedical images such as CT and MR human brain scans7,8,9, and 

for 2D mouse brain in situ hybridization images as part of the Allen Brain Atlas project10. 

Previous efforts to automatically register images of the fruit fly nervous system based on 

image features includes work on adult brains11,12, on the adult ventral nerve cord and larval 

nervous system13. We conducted comparison tests (Supplementary Note) on several widely 

used methods for registration14,15,16,11,12,13 and all produced unsatisfactory alignments at a 

rate that make them unsuitable for use in a pipeline that involves thousands of high-

resolution 3D laser scanning microscope (LSM) images of Drosophila brains.

In this study we developed an automatic registration program, BrainAligner, for Drosophila 

brains and used it to align large 3D LSM images of thousands of brains with different 

neuronal expression patterns. Our algorithm combines several existing approaches into a 

new strategy based on reliably detecting landmarks in images. BrainAligner is hundreds of 

times faster than several competitive methods and automatically assesses alignment 

accuracy with a quality score. We validated alignment accuracy using biological ground 

truth represented by co-expression of patterns in the same brain. We have used BrainAligner 

to assemble a preliminary 3D Drosophila brain atlas, for which we assessed the stereotypy 

of neurite tract patterns throughout a Drosophila brain.

Results

BrainAligner

BrainAligner registers 3D images of adult Drosophila brain into a common coordinate 

system (Fig. 1). Brains that express GFP in various neural subsets were dissected and 

labeled with an antibody to GFP (colors in Fig. 1a–b); this is the pattern channel. Brains 

were also labeled with nc82, an antibody that detects a ubiquitous presynaptic component 

and marks the entire synaptic neuropil17 (gray in Fig. 1a–b); this is the reference channel. 

The brains to be registered have different orientations, sizes, and morphological 

deformations that are either biological or introduced in sample preparation. For each subject 

brain, BrainAligner maps the reference channel to a standardized target brain image using a 

nonlinear geometrical warp. Using the same transformation, the pattern channel from the 

subject image is then warped onto the target. Multiple subject images are aligned to a 

common target so that their patterns can be compared in the same coordinate space (Fig. 1c 
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and Supplementary Video 1). In this way, we have mapped a large collection of GAL4 

patterns into a common framework to identify intersecting expression patterns in various 

anatomical structures (Fig. 1d–h and Supplementary Video 2).

BrainAligner registers subject to target using a global 3D affine transformation followed by 

a nonlinear local 3D alignment. For large-scale applications, brains may have different 

orientations, brightness, sizes, evenness of staining, morphological damage, and other types 

of image noise, which requires our algorithm to be robust. Thus we optimized only the 

degrees of freedom that are necessary.

In global alignment, we sequentially optimized the displacement, scaling and rotation 

parameters of an affine transform from subject to target to maximize the correlation of voxel 

intensities between the two images (Fig. 2a and Methods). We visually examined the 

transformed brains after the global alignment, and found no transformation errors in over 

99% of our samples. The failure cases typically corresponded to poorly dissected brains that 

were either damaged structurally or for which excess tissues were present.

In the local alignment step, we designed a reliable landmark matching (RLM) algorithm 

(Fig. 2b) to detect corresponding 3D feature points, each of which is called a landmark, in 

every target-subject pair. For the target brain we manually defined 172 landmarks that 

correspond to the points of high curvature (“corners” or edge points) of brain compartments 

as indicated by abrupt image contrast changes in the neuropil labeling. For each target 

landmark, RLM first searches for its matching landmark in the subject image using two or 

more independent matching criteria such as maximizing: (a) mutual information18,11, (b) 

inverse intensity difference, (c) correlation, and (d) similarity of invariant image moments15, 

within a small region around the landmark in the target and its potential match in the subject. 

A match confirmed by a consensus of these criteria is superior to a match based on only a 

single criterion. Therefore, when a consensus of the best matching locations of these criteria 

are close to each other (<5 voxels apart), RLM reports a preliminary landmark match (pre-

LM), which is the site within the 3D bounding box of these best matching locations that 

gives the maximal product of the individual matching scores. These pre-LMs may violate 

the smoothness constraint, which states that in toto all matching-landmark pairs should be 

close to a single global affine transform, and locally, that relative location relationships 

should be preserved. Therefore, RLM uses a random sample consensus (RANSAC) 

algorithm19 to remove the outliers from the set of pre-LMs with respect to the global affine 

transform that produces the fewest outliers. Next, RLM optionally checks the remaining set 

of pre-LM pairs and detects those violating the relative location relationship in every 

corresponding tetrahedron formed by three additional neighboring matching points. Pre-LM 

pairs that clearly create a spatial twist with respect to nearby neighbors are removed. The 

landmarks that remain are usually highly faithful matching locations, and are called reliable 

landmarks.

We used the reliable landmarks to generate a thin-plate-spline warping field20 and thus 

mapped the reference channel of a subject image to the target. We then applied the same 

warping field derived from the reference channel to the pattern channel. We also optimized 

BrainAligner’s running speed. For instance, to generate the warping field we used 
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hierarchical interpolation (Methods) instead of using all image voxels directly, improving 

the speed 50-fold without visible loss of alignment quality. Typically BrainAligner needs 

only 40 minutes on a current single CPU to align two images with 1024×1024×256 voxels.

One advantage of RLM is that the percentage, Qi, of the target landmarks that are reliably 

matched can be used to score how many image features are preserved in the automatic 

registration. The larger Qi, the better the respective alignment. We visually inspected the 

aligned brains and ranked alignment quality using a score Qv (range = 0~10, the larger the 

better). The automatic score Qi and the manual score Qv correlated significantly on 805 

randomly selected alignments in the central brain, left optic lobe and right optic lobe 

(Supplementary Fig. 1), suggesting that Qi is a good indicator of alignment quality. 

Empirically, when Qi > 0.5, the respective alignment was good; when Qi > 0.75, the 

alignment was excellent. Low Qi scores typically correspond to poor nc82 staining and 

brains damaged during sample preparation.

While BrainAligner can be used to align subject brains to any target brain, we prefer to use 

an optimized “average” target brain obtained as follows. We first selected one image of a 

real brain, TR (Supplementary Fig. 2), as the target for an initial alignment for 295 brains 

that aligned to TR with Qi > 0.75. We then computed the mean-brain, TA, for the respective 

local alignments (Supplementary Fig. 2). Although TA was smoother than TR, it preserved 

detailed information, reflected in the strong correlation between TA and TR (Supplementary 

Fig. 2). We used TA as a new, and statistically more meaningful, target image for 

BrainAligner. Compared to the results for TR, this led to 38% more brains aligning with a Qi 

score larger than 0.7, and 14% more aligning with a Qi score higher than 0.5, on a data set 

consisting of 496 brains (Supplementary Fig. 3).

Assessment of BrainAligner accuracy and biological variance

The variation between individual aligned brains of the same genotype is a combination of 

biological difference, variation introduced during sample preparation or imaging, and 

alignment error. In a previous study11, the variance of axon position was estimated to be 

approximately 2.5 ~ 4.3µm in the inner antennal cerebral tract (iACT) and at its neurite 

bifurcation point. We addressed a similar question by aligning 20 samples of a278-GAL4; 

UAS-mCD8-GFP to the common target TA. The large neurite bundles in aligned samples 

(Fig. 3a) were traced in 3D (Fig. 3b) using V3D-Neuron21,22. A mean tract model, Rm, of all 

these tracts was computed (Fig. 3c, and Supplementary Video 2). The neurite tracts were 

compared to Rm, at 243 evenly spaced locations. The variability of tract position was 3.26 

µm (about 5.6 voxels in our images) with a range of 2.1 to 5.1 µm (Fig. 3d).

With ~3µm variance, BrainAligner produces reliable results. We further differentiated 

biological variability from aligner variance. The existence of two binary expression systems, 

GAL4 and LexA23, permits rigorous comparison of a computational prediction of overlap 

with a biological test of co-expression. The LexA line (LexAP036) showed potential overlap 

with the a278-GAL4 line used above in the Ω-shaped antennal lobe commissure (ALC) (Fig. 

4a and 4b) when registered with BrainAligner (Fig. 4c and 4e). We then co-expressed 

distinct reporter constructs using the LexA and GAL4 systems simultaneously in the same 

fly and showed that there is indeed overlapping expression in the ALC (Fig. 4d and 4f). We 
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estimated the precision of BrainAligner’s registration using the absolute value of the 

difference of the biological spatial distance of co-localized patterns and their respective 

spatial distance measured from the computationally aligned patterns. The average distance 

measured at 11 different spatial locations (Fig. 4d) along ALC of the aligned patterns and 

physically overlapping patterns was 1.8±1.1µm. Therefore the estimated registration 

precision was 0.8 to 2.9 µm. We also saw agreement between the aligned and co-expressed 

images of other GAL4-LexA pairs with expression patterns in the optic tubercle 

(Supplementary Fig. 4, Supplementary Videos 4a–b).

We performed an independent test of BrainAligner’s accuracy by comparing the 

computational alignment and co-labeling for FasII antibody staining, which labels the 

mushroom bodies, and various GAL4 lines that express in or near the mushroom bodies. 

BrainAligner accurately predicted the overlap of FasII antibody staining with the 201Y and 

OK107-GAL4 patterns, while C232-GAL4, which expresses in the central complex, does 

not co-localize with FasII (Figure 5).

Finally, the Flp-Out technique24 allows the expression of GFP reporters in a random subset 

of neurons within a given GAL4 expression pattern. Therefore, the computational alignment 

of Flp-Out subsets (“clones”) should correlate well with the expression pattern of the parent 

GAL4 lines. We aligned the CG8916-GAL4 expression pattern (Supplementary Fig. 5a) and 

Flp-Out clones (Supplementary Fig. 5b and 5c) of this GAL4 line. Nested expression 

patterns were visible in the superior clamp (SCL), posterior ventrolateral protocerebrum 

(PVLP), anterior VLP (AVLP), superior lateral protocerebrum (SLP), and SOG 

(Supplementary Fig. 5d and 5e, Supplementary Video 5).

Building a 3D image atlas of Drosophila brain

We automatically registered 2,954 brain images from 470 enhancer trap GAL4 lines 

(unpublished data) to our optimized target brain. We selected a well-aligned representative 

image of each GAL4 pattern (with a Qi score > 0.5) and arranged them as a 3D image 

pattern atlas (Fig. 1d, Supplementary Video 2). To effectively browse, search, and compare 

the expression patterns in these brains, we developed V3D-AtlasViewer software (Fig. 1e) 

based upon our fast 3D image visualization and analysis system V3D21. V3D-AtlasViewer 

organizes the collection of registered GAL4 patterns using a spreadsheet (Fig. 1e), within 

which a user can select and display any subset of patterns on top of a standard brain for 

visualization. This 3D image atlas reveals interesting anatomical patterns. For example, 

visualizing different sections in six GAL4 patterns demonstrates the previously reported 

subdivision of the mushroom body horizontal lobe into gamma-lobe (red/purple), beta’-lobe 

(blue) and beta-lobe (green)25 (Fig. 1e, Supplementary Videos 6a and 6b).

With this atlas, we were able for the first time to analyze the distribution of GAL4 patterns 

in different brain regions in a common coordinate system. The 470 GAL4 lines covered all 

known brain compartments (Supplementary Fig. 6a), with the SOG, superior lateral 

protocerebrum (SLP), prow (PRW), mushroom bodies (MB), and antennal lobes (AL) the 

five most represented compartments in this GAL4 collection. A relatively small number of 

GAL4 lines expressed in superior posterior slope (SPS), inferior posterior slope (IPS), 

inferior bridge (IB), and gorget (GOR). For the central complex of a Drosophila brain, less 
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than 20% of GAL4 lines expressed in the fan-shape body (FB), ellipsoid body (EB), and 

noduli (NO). It may not be surprising that a large fraction of lines express in the SOG, since 

this neuropil region represents 7.43% of the brain by volume (Supplementary Fig. 6c). 

Therefore we also produced the density map of the neuronal pattern distribution within each 

compartment, normalizing the distribution by volume (Supplementary Fig. 6b). The central 

complex was over-represented in our GAL4 collection while the SOG, normalized for its 

volume, was actually under represented.

We examined the stereotypy of 269 neurite tracts that project throughout all brain 

compartments. We reconstructed each tract from at least two aligned brains of each GAL4 

line. The spatial variations were computed and used as the width of each tract in 

visualization (Fig. 6a and Supplementary Video 7). The average variation was 1.98±0.83 µm 

(Fig. 6b), consistent with our previous independent test of 111 tracts21. This range of 

variation is within the upper bound of biological stereotypy of the neurite tracts themselves 

and noise introduced in sample preparation, imaging, and image analysis including 

registration and tracing. The tracing error was close to 021. Compared to the typical size of 

an adult fly brain (590 µm × 340 µm × 120 µm), this small variation indicates strong 

stereotypy of the neurite tracts.

Discussion

BrainAligner is a new landmark-detection-based algorithm and software package for the 

large-scale automatic alignment of confocal images of Drosophila brains. We have used it, 

in combination with an optimized virtual target brain, consistent tissue preparation and 

imaging, and a library of GAL4 lines, to generate a pilot 3D atlas of neural expression 

patterns for Drosophila. We have also applied BrainAligner to our on-going FlyLight 

project that will produce an even higher resolution 3D digital map of the Drosophila brain. 

BrainAligner has robustly registered over 17,000 brain images of thousands of GAL4 lines 

within a few days, without any manual intervention during the alignment. The alignability of 

new samples, determined by their Qi scores, serves as an important quality control check. 

We are developing further methods to expand and query this resource, but it is already in use 

for anatomical and behavioral investigation of neural circuit principles.

Expression patterns generated by recombinase-based methods to label neurons of a common 

developmental lineage (MARCM26) and images in which single neurons are labeled can be 

aligned with our GAL4 reference atlas to identify lines that have GAL4 expression in those 

cells, allowing investigation of their behavioral roles. Examination of different GAL4 

expression patterns for proximity or overlap suggests which areas might be functionally 

connected. The Drosophila brain is subdivided into large regions based on divisions in the 

synaptic neuropil caused by fiber tracts, glial sheaths, and cell bodies, but these anatomical 

regions may be further subdivided by gene expression patterns revealed by the GAL4 lines. 

When the GAL4 lines are aligned to a template brain upon which anatomical regions have 

been labeled, we can annotate the expression patterns using the VANO software27 in a faster 

and more uniform way. Alignment permits imaged-based searching, a significant 

improvement over keyword searching based on anatomical labels. Accurate alignment of 

images will also make it easier to correlate anatomy with behavioral consequences. 
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Integration of aligned neuronal patterns with other genetic and physiological screening tools 

may be used to study different neuron types.

We have optimized BrainAligner to run on large datasets of GAL4 lines expressed in the 

adult fly brain and ventral nerve cord, but these are not the only type of data that can be 

aligned. Antibody expression patterns, in situs, and protein-trap patterns28,29 are also 

suitable; if the same reference antibody is included, images from different sources can be 

aligned using BrainAligner. Although BrainAligner was developed using the nc82 pre-

synaptic neuropil marker, we have also successfully aligned brains where the reference 

channel was generated by staining with rat anti-N-Cadherin antibody (see Figure 5). Other 

reference antibodies that label a more restricted area of the brain, such as anti-FasII, may 

also work with the algorithm. It is also possible to align any pair of brains directly, rather 

than aligning both to a common template.

BrainAligner can be used in many situations where the image data has different properties 

than the data presented in this study. The optic lobes of an adult Drosophila brain shift in 

relation to the central brain and distort alignments. We developed an automated method to 

segregate the optic lobes from the central brain30, which was then registered using 

BrainAligner. For the larval nervous system and the adult ventral nerve cord of Drosophila, 

we detected and aligned the principal skeletons of these images13, followed by BrainAligner 

registration. BrainAligner automatically detects the corresponding landmarks, but it permits 

using manually added landmarks to improve critical alignments or to optimize alignments in 

a particular brain region. Indeed the brains to be aligned may also be imaged using different 

magnification scales. Higher resolution images may have only a part of the brain in the field 

of view, complicating registration. In such a case, the user can manually supply as few as 

four to five markers using V3D software21 to generate a globally aligned brain, which can 

then be automatically aligned using BrainAligner.

Despite a number of successfully used image registration methods in other scenarios such as 

building the Allen mouse brain atlas10, we have not found another automated image 

registration method that performs as well as BrainAligner on our large scale applications. 

Indeed, the key algorithm in BrainAligner, the RLM method, can be viewed as an optimized 

combination of several existing methods. It compares the results produced using different 

criteria and only uses results that agree with each other. BrainAligner is not limited to 

Drosophila and could be applied to other image data such as mouse brains.

Methods

Immunohistochemistry and confocal imaging

Males from enhancer-GAL4 lines (unpublished collection, JHS and B. Ganetzky) were 

crossed to virgin UAS-mCD8-GFP (Bloomington #5137 26) that produces a membrane-

targeted fluorescent protein in the neurons. Adult brains were dissected in phosphate-

buffered saline (PBS), fixed overnight in 2% paraformaldehyde, washed extensively in 

PBS-0.5% Triton, and then incubated overnight at 4°C rotating in primary antibodies (nc82 

1:50 Developmental Studies Hybridoma Bank17 and rabbit anti-GFP 1:500 Molecular 

Probes/Invitrogen A11122). After washing all day at room temperature, brains were 
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incubated overnight at 4°C rotating in secondary antibodies: goat anti-mouse-Alexa568 and 

goat anti-rabbit-Alexa488 1:500 Molecular Probes/Invitrogen A11034 and A11031. After 

another day of washing, brains were cleared and mounted in the glycerol-based Vectashield 

(on glass slides with 2 clear re-enforcement rings as spacers (Avery 05721). Samples were 

imaged on Zeiss Pascal Confocal with 0.84 µm z-steps using a 20X air immersion lens. 

Sequential scanning was used to ensure that there was no bleed-through between the 

reference- and pattern-channels. The raw images collected had 1024×1024×N voxels (the 

number of z-sections, N, typically was around 160), 8bits (voxel size = 0.58µm × 0.58µm × 

0.84 µm), and two color-channels. The gain was increased as the imaging depth increased to 

maintain optimal use of detector range: the pattern channel intensity was maintained 

between over- and under-saturation. This resulted in a gain ramp of roughly 10% from lens-

proximal to lens-distal surface of sample.

The enhancer-LexA lines (AMS and JHS, unpublished collection) were crossed to LexOp-

CD2-GFP (in attP2 generated by AMS) and stained with nc82 and anti-GFP as above. For 

the double-label experiments, combination stocks of LexOp-CD2-GFP, UAS-mCD8-RFP; 

enhancer-GAL4 32,33 were built and crossed to the LexA lines. These were stained with 

rabbit anti-GFP 1:500 and rat anti-CD8 1:400 Invitrogen. The secondary antibodies were 

Alexa488 anti-rabbit and Alexa568 anti-rat (1:500). For the Flp-Out clones, GAL4 lines 

were crossed to hs-Flp; UAS-FRT-CD2-FRT-mCD8-GFP stocks31 and heat-shocked at the 

end of embryonic development or in adulthood.

Other fly stocks: C232-GAL434, 201Y-GAL435, and OK107-GAL436 were obtained from 

the Bloomington Stock Center. Other antibodies: FasII37 (1D4) and N-Cadherin38 

(DNEX#8), both from the Developmental Studies Hybridoma Bank (developed under the 

auspices of the NICHD and maintained by The University of Iowa, Department of Biology, 

Iowa City, IA 52242) and both were used 1:50.

BrainAligner implementation

To maximize the robustness of the automatic alignment and avoid being entrapped in local 

minima, in BrainAligner we used sequential global affine alignment in three steps. First we 

aligned the center of mass of a subject image to that of the target image. Then we rescaled a 

subject image proportionally so that its principal axis (obtained via principal component 

analysis) had the same length with that of the target image. Finally, we rotated a subject 

image around its center of mass, and thus detected the angle for which the target image and 

the rotated subject image had the greatest overlap. Since normally we did not have shearing 

in the 3D images, we did not optimize it for the affine transform. The rescaling step might 

also be skipped as brains imaged under the same microscopic setting had the similar size.

For the local nonlinear alignment, we computed the features based on adaptively determined 

image patches. The radius of an image patch was calculated using the formula 48×S/512, 

where S is the largest image dimension in 3D. To reduce the computational complexity, we 

searched matching landmarks hierarchically, first at a coarse level (grid spacing = 16 voxels) 

and then at a fine level (grid spacing = 1 voxel) around the best matching location (within a 

13×13×7 window) detected at the coarse level. The mutual information was calculated on 

discretized image voxel intensity, by binning the grayscale intensity into an evenly spaced 

Peng et al. Page 8

Nat Methods. Author manuscript; available in PMC 2011 December 01.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



16 intensity levels. For the RANSAC step, we constrained that all matching landmark pairs 

would satisfy a global affine transformation. Thus we computed the Euclidian distances of 

all initial matching landmark pairs after such a transformation, and removed the matching 

pairs that had more than 2 times the standard deviation of the distance distribution.

We designed a fast way to compute the thin-plate-spline (TPS)20 based displacement field, 

which was used to warp images. We computed the displacement field using TPS for a sub-

grid (with 4×4×4 downsampling) of an entire image, followed by tri-linear interpolation for 

all remaining voxels to approximate the entire TPS transform. This method resulted in very 

similar displacement field compared to a direct implementation of TPS, but is about 50 

times faster.

Data analyses

For the co-localization analysis using co-expressed GAL4 and LexA patterns, we measured 

distances between a series of pairs of high-curvature locations along the respective co-

expressed GAL4 and LexA patterns in the ALC tract. We treated these distances as the 

ground truth of characteristic features that should be matched in computationally aligned 

brains. Then in the aligned brains, we visually detected these matching locations and 

produced the respective distance measurements. The error of registration was defined as the 

absolute value of the difference between the corresponding distances.

The correlation analysis for the Flp-Out data was performed around each of the co-localized 

subset clone patterns and the parent pattern. We first used V3D-Neuron21 to trace the co-

localized neurite tracts, which were used to define the “foreground” image region of interest 

(ROI) for the correlation analysis. Suppose a foreground ROI had K voxels, then we 

randomly sampled another K voxels from the remaining brain area as the negative control 

for calculating the correlation coefficient for this co-localized subset clone pattern and the 

parent pattern.

In the analysis of GAL4 pattern distribution, for an aligned brain image, we calculated the 

mean value, m, and standard deviation, σ, of the entire brain area. We defined a brain 

compartment as having neuronal pattern(s) if (1) it had any absolutely visible voxels 

(typically intensity > 50 for an 8-bit image), and (2) its voxel intensities were outstanding 

compared to the average expression signal in the entire brain area (i.e. intensity > m + 3×σ). 

The names of brain compartments we used are consistent with the on-going effort of an 

international fruit fly brain nomenclature group.

Data and software

The BrainAligner and V3D-AtlasViewer software are available as Supplementary Software 

1. BrainAligner, the optimized target brain, as well as additional information about 

BrainAligner, can also be downloaded from http://penglab.janelia.org/proj/brainaligner. The 

V3D-AtlasViewer program is a module of V3D21, which can also be freely downloaded 

from the web site http://penglab.janelia.org/proj/v3d.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
BrainAligner registers images of neurons from different brains onto a common coordinate 

system. (a–b) Maximum intensity projections of confocal images of a64-GAL4 and a74-

GAL4 brains. Neurons are visualized by membrane-targeted GFP and brain morphology is 

visualized by staining with the antibody nc82. (c) Aligned and overlaid neuronal patterns of 

(a) and (b). (d) Alignment of many GAL4 expression patterns. Patterns of interest can be 

selected and displayed in the common coordinate system. R1 and R2, regions of interest. (e) 

V3D-AtlasViewer software for viewing the 3D pattern atlas. (f–h) Zoomed-in single-section 

views of R1 and R2 in (d). Scale bars in all sub-figures: 50 µm.
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Figure 2. 
Schematic illustration of the BrainAligner algorithm. (a) BrainAligner performs a global 

alignment (G) followed by nonlinear local alignments (L) using landmarks. Scale bars: 50 

µm. (b) The Reliable Landmark Matching (RLM) algorithm for detecting corresponding 

feature points in subject and target images. Dots of the same color indicate the matching 

landmarks; PT, a target brain landmark position; PS, a subject brain landmark; PMI, PINT, 

PCC, the best matching positions based on mutual information (MI), voxel intensity (INT), 

and correlation coefficient (CC) of local image patches. In the tetrahedron-pruning step, the 
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landmarks in a subject image that clearly violate the relative position relationships of the 

target are discarded.
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Figure 3. 
Stereotypy of neuronal morphology and reproducibility of GAL4 expression patterns. (a) 

Two aligned and overlaid examples (magenta and green) of the a278-GAL4 expression 

pattern, from different brains. Scale bar: 20 µm. (b) 3D reconstruction of the major neurite 

tracts in (a). Magenta and green, surface representations of the reconstructed tracts. Gray, 

GAL4 pattern. Scale bar: 20 µm. (c) 3D reconstructed neurite tracts (gray) from 20 aligned 

a278-GAL4 images, along with their mean tract model (red). (d) Average deviation of the 

mean tract model from each reconstructed tract.
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Figure 4. 
Expression pattern overlap by computational and biological methods. (a) Maximum 

intensity projection of a278-GAL4; UAS-mCD8-GFP. Scale bar: 100 µm. (b) Maximum 

intensity projection of LexAP036; lexop-CD2-GFP. Scale bar: 100 µm. (c) Aligned image of 

GAL4 and LexA expression patterns in (a) and (b), with a zoomed-in view to the right. 

Scale bar: 50 µm. (d) Co-expression of the GAL4 and LexA patterns, with a zoomed-in view 

to the right. Scale bar: 50 µm. Arrows indicate the 11 locations where colocalization of the 

two patterns was measured; the yellow arrow indicates a region of substantial overlap. (e–f) 
Cross-sectional views of single slices of the aligned (e) and co-expressed (f) samples at a 

position corresponding to the yellow arrow in (c) and (d). Scale bars: 25 µm.
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Figure 5. 
Comparison of computational alignment of separate brains with co-expression within the 

same brain. For all images, grey shows N-cadherin (N-Cad) labeling, which serves as the 

reference signal for alignment to the nc82-labeled target. Magenta, FasII antibody staining; 

green, GAL4 expression pattern (anti-GFP stain). (a) Wild-type w1118 adult brain. (b–d) 

Expression patterns of the indicated lines shown as maximum intensity projections of 20X 

confocal image stacks. (e, g, i) Cross-sectional views of computational alignments of FasII 

expression from (a) with GAL4 patterns from (b–d). (f, h, j) Matched cross-sectional views 

of brains expressing the GAL4 lines and labeled with both anti-GFP and anti-FasII to show 

biological co-localization. OK107 and 201Y expression patterns overlap with FasII (yellow 

arrows), but C232 expresses in adjacent but non-overlapping brain regions (red arrow). 

Scale bars, 100 µm.
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Figure 6. 
A 3D atlas of neurite tracts reconstructed from aligned GAL4 patterns. (a) 269 stereotyped 

neurite tracts and their distribution in the brain. The width of each tract equals the respective 

spatial deviation. The tracts are color-coded randomly for better visualization. Scale bar: 100 

µm. (b) Distribution of the spatial deviation of the neurite tracts.
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