
UC San Diego
UC San Diego Previously Published Works

Title
Memory-bound k-mer selection for large and evolutionarily diverse reference libraries.

Permalink
https://escholarship.org/uc/item/8dg689rd

Journal
PCR methods and applications, 34(9)

Authors
Şapcı, Ali
Mirarab, Siavash

Publication Date
2024-10-11

DOI
10.1101/gr.279339.124

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8dg689rd
https://escholarship.org
http://www.cdlib.org/

Memory-bound k-mer selection for large
and evolutionarily diverse reference libraries

Ali Osman Berk Şapcı1 and Siavash Mirarab1,2
1Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, California 92093, USA; 2Department of
Electrical and Computer Engineering, University of California, San Diego, California 92093, USA

Using k-mers to find sequence matches is increasingly used in many bioinformatic applications, including metagenomic se-

quence classification. The accuracy of these downstream applications relies on the density of the reference databases, which

are rapidly growing. Although the increased density provides hope for improvements in accuracy, scalability is a concern.

Reference k-mers are kept in the memory during the query time, and saving all k-mers of these ever-expanding databases is

fast becoming impractical. Several strategies for subsampling have been proposed, including minimizers and finding taxon-

specific k-mers. However, we contend that these strategies are inadequate, especially when reference sets are taxonomically

imbalanced, as are most microbial libraries. In this paper, we explore approaches for selecting a fixed-size subset of k-mers

present in an ultra-large data set to include in a library such that the classification of reads suffers the least. Our experiments

demonstrate the limitations of existing approaches, especially for novel and poorly sampled groups. We propose a library

construction algorithm called k-mer RANKer (KRANK) that combines several components, including a hierarchical selec-

tion strategy with adaptive size restrictions and an equitable coverage strategy. We implement KRANK in highly optimized

code and combine it with the locality-sensitive hashing classifier CONSULT-II to build a taxonomic classification and pro-

filing method. On several benchmarks, KRANK k-mer selection significantly reduces memory consumption with minimal

loss in classification accuracy. We show in extensive analyses based on CAMI benchmarks that KRANK outperforms k-mer-

based alternatives in terms of taxonomic profiling and comes close to the best marker-based methods in terms of accuracy.

[Supplemental material is available for this article.]

The number of genomes available in public repositories has been
growing dramatically in recent years, especially due to increased
sequencing of microbial and viral species. Of the 322,193 bacte-
rial species deposited on RefSeq since 2000, >15% have been add-
ed in 2023 alone. A major benefit of having access to all these
genomes is to build ultra-large reference libraries with the poten-
tial to search new query sequences against them. Such libraries can
be used to classify reads from a metagenomic sample and to
detect contaminants. It has been long appreciated that the accu-
racy of these downstream applications in metagenomics relies on
having access to dense reference libraries as classification accuracy
suffers when the query is distant from all reference genomes
(Pachiadaki et al. 2019; von Meijenfeldt et al. 2019; Liang et al.
2020; Rachtman et al. 2020). Many authors have recently at-
tempted to create ultra-large genomic reference sets (e.g., Parks
et al. 2018; McDonald et al. 2024), often used with marker genes
(Asnicar et al. 2020; Balaban et al. 2024). Using these data sets
with k-mers-based methods, however, runs into a mundane but
key limitation—the memory needed to use these genomes as ref-
erence libraries.

Using k-mers to build ultra-large libraries and classify reads
has been a promising approach, as evident from the success of
Kraken 2 (Wood et al. 2019). Kraken 2 and other methods such
as CLARK (Ounit and Lonardi 2016) and CONSULT-II (Şapcı
et al. 2024) extract k-mers for some large k (e.g., 31) from the refer-
ence set, use some strategy to choose a subset of k-mers, and build a
searchable data structure (e.g., a hash table) of the selected k-mers

and their taxonomic associations. At the time of the query, the en-
tire data structure is loaded into thememory, k-mers from reads are
extracted and searched against the data structure, and a read is clas-
sified at some taxonomic rank if certain heuristic conditions (spe-
cific to each method) are met. It is easy to store millions or even a
few billion k-mers in memory but modern data sets can include
tens or hundreds of billions of k-mers. For example, Şapcı et al.
(2024) were able to fit 8 billion 32-mers and their taxonomic labels
into ≈140 GB of memory, but these had to be subsampled (arbi-
trarily) from 20 billion 32-mers available in the moderate-size da-
tabase of 10,575 genomes produced several years ago by Zhu
et al. (2019). Trade-offs of accuracy and scalability imposed by
the need to subsample k-mers will be increasingly felt by develop-
ers of k-mer matching methods and those aiming to build ultra-
large reference sets.

For the k-mer-based methods to benefit from the ever-grow-
ing set of available genomes, we need improved methods of sub-
sampling k-mers in a memory-bound fashion. Of course, we are
not the first to note the need to subsample k-mers. Minimization
is the standard technique that selects some among adjacent k-
mers (Roberts et al. 2004; Zheng et al. 2023) and is adopted by
most tools. However, we argue that beyond minimization, which
focuses on the redundancy of adjacent k-mers, we need to consider
the evolutionary dimension. This direction can be stated as a com-
putational problem: We are given a taxonomic tree T and a set of
genomes G labeled by the taxonomy. LetK be the set all of distinct
k-mers across all genomes g [G. We seek a subset of K with size
M ≤ |K| such that the reference taxonomy is represented well

Corresponding author: smirarab@ucsd.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.279339.124.
Freely available online through the Genome Research Open Access option.

© 2024 Şapcı and Mirarab This article, published in Genome Research, is avail-
able under a Creative Commons License (Attribution-NonCommercial 4.0
International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Method

34:1455–1467 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/24; www.genome.org Genome Research 1455
www.genome.org

mailto:smirarab@ucsd.edu
https://www.genome.org/cgi/doi/10.1101/gr.279339.124
https://www.genome.org/cgi/doi/10.1101/gr.279339.124
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml

with the selected k-mers. Users can adjustM to control thememory
budget (see Methods for details).

The problem statement leaves the meaning of “well-repre-
sented” unspecified as many criteria can be considered, and the
choice of the criterion forms the basis of each method. A notable
attempt in this direction is pioneered by Lee et al. (2011) who pro-
pose seeking discriminative k-mers specific to a species not found
in others, an idea implemented in CLARK (Ounit and Lonardi
2016). Another obvious approach is to represent all reference ge-
nomes at equal levels, or similarly, to sample k-mers uniformly
at random. The overall goal of this work is to explore these and a
set of alternative strategies in the context of taxonomic read clas-
sification and taxonomic profiling of metagenomic samples.

Subsampling k-mers fromultra-large andheterogeneous data-
bases available these days faces many challenges. On the one
hand, sampling of taxonomic groups in public libraries is very im-
balanced, which can become a challenge as noted by Nasko et al.
(2018). For example, RefSeq includes 35,947 Escherichia genomes
whereas 1164 genera have only a single genome. In the data set
of Zhu et al. (2019), despite their attempts to find representative
species, the number of genomes sampled per taxon in each taxo-
nomic rank varies three orders of magnitude. The true imbalance
in evolutionary history (where some clades aremuchmore diverse,
abundant, and species-rich than others) in addition to biases in
sampling (where some environments are sampled far more than
others) are behind such imbalances. Regardless of the cause, a na-
ive subsampling of k-mers can easily miss entire branches of the
evolutionary tree. The situation is made worse by the fact that
for k≫20, a large number of k-mers are not shared even among ge-
nomes of the same species. Examining theWoL-v1 data set, we see
that 15% of pairs of genomes from the same species have pairwise
distances above 5%, which results in 98% of 30-mers being unique
to each genome in such pairs. Pairs of genomes from the same ge-
nus but different species sharedmore than 10% of their 30-mers in
only 1% of cases. Thus, as the number of genomes N grows, the
number of unique k-mers grows close to proportionally to N.
Moreover, k-mers unique to ranks above species will be far out-
numbered by those unique to a genome or a species. As a result, op-
timal k-mer selection is evenmore challenging if one tries to find a
unique set of k-mers to be used at all ranks (perhaps the reason
Ounit and Lonardi [2016] target a particular rank).

In this paper, we propose a set of strategies for selecting a pre-
defined number of k-mers from a large pool of genomes in ways
that are conducive to classifying reads. Our goal is to find subsets
that do not leave out poorly sampled groups, work across taxo-
nomic ranks, and do not reduce the ability to classify relatively
novel reads. We implement and explore these strategies paired
with the read classification and taxonomic profiling method
CONSULT-II. Our method, k-mer RANKer (KRANK), takes a taxon-
omy and a set of genomes labeled with the taxonomy as input. It
selects a subset of k-mers from these genomes based on its ranking
strategy and a user-defined size constraint. KRANK subsamples k-
mers in a bottom-up traversal of the reference taxonomy, enabling
it to make choices about what k-mers to keep locally instead of
globally and eliminating the need to analyze all k-mers jointly at
any point in library construction. Our highly optimized and flex-
ible C++ implementation allowed us to compare several alternative
strategies empirically. Our comprehensive results on taxonomic
read classification and taxonomic profiling tasks show that
KRANK, unlike more naive selection strategies, can produce dra-
matic reductions in library sizes without substantial loss of
accuracy.

Results

We designed KRANK (detailed in Algorithm 1) to select a prede-
fined number of k-mers from a given set of genomes. KRANK des-
ignates some taxonomic rank as the leaf rank (species by default). It
then traverses the taxonomy T in post-order. At leaves, distinct k-
mers are extracted and encoded in a compact manner (see “Algo-
rithmic details of KRANK”). Following CONSULT-II, KRANK in-
dexes k-mers using l locality-sensitive hashing (LSH) tables.
These LSH tables ensure two k-mers with a small Hamming dis-
tance (HD; e.g., ≤3) have a high chance of being indexed to the
same row in at least one of the tables (see “LSH tables” for details).
This is achievedby selecting h< k randombut fixed positions of a k-
mer as its hash key, and each k-mer is stored in the row of the table
indexed by the LSH key. As we traverse the tree, on each internal
node, we adaptively impose a size constraint on its tables.We com-
bine each row of the hash tables of all the children nodes and re-
move k-mers based on a ranking algorithm until the size
constraint is satisfied. At the root, the final l tables are restricted
to b columns per row, and each will contain 22hb k-mers. When
not specified, we use l=2, k=32, h=12, b=16. Given the hash ta-
bles at the root, we use the existing CONSULT-II algorithm for tax-
onomic classification and abundance profiling (see “CONSULT-II
classification and profiling”).

The heart of the algorithm is adaptive size constraints and k-
mer ranking, both of which we empirically motivate first. These
explanatory sets of results use a manageable microbial data set
by Zhu et al. (2019) composed of 10,575 genomes (WoL-v1 hereaf-
ter).We chose 756 query genomes in total (676 bacterial and 80 ar-
chaeal genomes), of which only 10 are present in the reference set.
Measuring the novelty by theminimumdistance of a query to any
reference genome as estimated by Mash (d∗), we bin queries into
novelty groups (Supplemental Fig. S1A). We use 150 bp error-
prone reads simulated from each genome (66,667 reads per query
genome) and test methods in terms of their accuracy in classifying
individual reads. See ”Data sets” and “Evaluation metrics” for de-
tails. After exploratory results, wemove tomore formal evaluations
of the method for two tasks: taxonomic classification of metage-
nomic reads and taxonomic profiling of metagenomic samples.

KRANK: motivating the design

Adaptive size constraints

Weobservedwide differences among taxa, even at the same rank, in
terms of sampling density (Fig. 1A) and levels of diversity (Fig. 1B).
This heterogeneity creates a major challenge in selecting k-mers. If
we randomly sample k-mers, taxa will contribute proportionally
to their size in the final subset. Given a total budget M, in expecta-
tion, a taxon t would haveM|Kt |/|K| k-mers in the sampled subset,
whereKt is the set of k-mers of all genomes labeled by taxon t, andK
is the set of all reference k-mers. As a result, taxawith lower sampling
will have little representation, whereas highly sampled groups (e.g.,
Escherichia coli) will dominate. We partially address this challenge
by imposing a size constraint on hash table size for each internal
node during traversal to avoid having bloated nodes that starve sis-
ter taxa. Although this balancing can in theory be done at the root,
wewould need to keep amap from k-mers to genomes, which is im-
practical. Thus, preemptively filtering some number of k-mers from
some tables helps scalability by reducing thememory usage.We de-
signed a heuristic for adaptive size constraints whereby, each node t
containing portion r(t) of the total data set gets a budget of

����
r(t)

√
M

k-mers. We define r(t) as either the portion of total k-mers present

S ̧apc ı and Mirarab

1456 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1

under t (default) or the proportion of taxonomic leaves (i.e., species)
under t (see section “ADAPTIVESIZECONSTRAINT” for details). We empir-
ically evaluate these two versions of this heuristic against the base-
line of enforcing no adaptive constraint, all paired with random k-
mer subsampling.

Imposing the adaptive size constraints canmake a substantial
difference for taxonomic groups with low levels of sampling (Fig.
2A). For example, for phyla with [0,50] and (50,500] reference ge-
nomes sampled, both definitions of r(t) improve the F1 accuracy
over enforcing no adaptive constraint for up to 35% and 12%, re-
spectively, with similar improvements obtained at other ranks.
Thus, the adaptive size constraints achieve their stated goal of en-
suring groups with lower sampling are not left out. This equitable
spreading of the k-mer budget inevitably results in reduced repre-
sentation for highly sampled groups. For example, for the few phy-
la with more than 500 reference genomes, we observe a
considerable drop in the performance (e.g., F1 score declines by
14%–20%). Thus, it may appear that better sampling of low-repre-
sentation groups has to come at the expense of the high-represen-
tation groups. However, this trade-off can be avoided.

Because we have two different tables (l=2) in the library, we
can have a mixed strategy: We enforce the adaptive size constraint
for one table but not the other. This mixed strategy is almost as
good as the adaptive version for low-representation groups, and al-
most as good as the no-adaptive-constraint strategy for highly
sampled groups (Fig. 2A). Overall, this mixed strategy outperforms
having no adaptive constraints, both in terms of precision and re-
call (Fig. 2B). The improvements are most visible for moderately
novel queries (d∗ ∈ (0.025, 0.1]). Across queries, the mixed strategy
improves the recall by 6%–10%and precision by 2%–5% above the
genus rank. Thus, KRANK adopts themixed strategy as the default.

Ranking and removing k-mers

Facedwith the question of which k-mers to select given the limited
budget, three options immediately present themselves: selecting

randomly, selecting discriminative k-mers unique to some taxa, or
conversely, selecting common k-mers present in many taxa. We
compared these options and others that we propose paired with
the adaptive size-constraint approach described above using con-
straints for both tables (i.e., not mixed). In implementing these
strategies, we used two quantities—the number of leaves (i.e., spe-
cies) under taxon t that include a k-mer xdenoted byR(x,t), and the
number of children of t that include the k-mer x at least once de-
noted by R′(x,t), as shown in Supplemental Figure S2.

The case against discriminative k-mers

Keeping discriminative k-mers found only in specific target spe-
cies, an approach followed by Ounit et al. (2015), would corre-
spond to preferentially filtering out k-mers that appear in more
than one species (or some other rank), which corresponds to
R(x,t) > 1. Going one step further, we emulate the discriminative
k-mer strategy by ranking k-mers inversely to R(x,t) or R′(x,t),
thus removing common k-mers. Empirically, using either version
is worse than simply using random selection (Fig. 2C). The reduc-
tion is negligible with children-based R′(x,t) but is quite dramatic
when used with species counts R(x,t); for example, the declines
in F1 are 36% and 19% for species and genus ranks, respectively.
Thus, we caution against using discriminative k-mers in a memo-
ry-bound setting.

The reduced accuracy of selecting unique k-mers can be ex-
plained by noting that very few k-mers are shared even among dif-
ferent species of the same genus. For example, in theWoL-v1 data
set (Zhu et al. 2019), a random sample of genomes that are from
different species but the same genus share only 0.05% of their
30-mers (Fig. 1C) and have Mash distances that typically exceed
20% (Fig. 1B). With simplifying assumptions, we can approximate
the probability that a k-mer would be shared between a query ge-
nome and at least one of N genomes sampled from a taxonomic
group, assuming each pair of genomes in this group has distance
d to parent, as (1−d)k (1−(1−(1−d)k)N). Plotting this equation

4

32

256

2048

phylum class order family genus species

N
um

be
r o

f
ge

no
m

es
 in

 ta
xo

n

0%

25%

50%

75%

100%

0.0 0.1 0.2 0.3 0.4
Pairwise distance

EC
D

F

0%

25%

50%

75%

100%

0.0005% 0.05% 5% 50%
Shared 30-mers between pair

EC
D

F

Rank
same phylum, diff. class same class, diff. order same order, diff. family

same family, diff. genus same genus, diff. species same species

0.01%

0.10%

1.00%

10.00%

1 10 100 1000
Number of reference genomes

Ex
pe

ct
ed

 s
ha

re
d

30
-m

er
s

Within group
diversity

5%
10%
15%
20%
25%
33%

A

B C D

Figure 1. Exploratory analysis of imbalanced taxon sampling and the portion of shared k-mers across taxonomic ranks in the WoL-v1 data set (Zhu et al.
2019). (A) Number of reference genomes under each taxonomic node (dots), separated by ranks. (B,C) The distribution ofMash (Ondov et al. 2016) estimated
genomic distances (B) and Jaccard similarities (C) among 500,000 randomly sampled pairs of genomes that share a taxonomic rank but are different in lower
ranks. The empirical cumulative distribution function (ECDF) is shown. (D) The theoretical expectation for the number of 30-mers shared between a query and
at least one of N sampled genomes of a reference set for a group that has within-group diversity 2d is shown as (1−d)k(1− (1− (1− d)k)N).

Efficient k-mer selection for large databases

Genome Research 1457
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1

shows that using discriminative k-mers leads to very few matches
between a query and the reference (Fig. 1D). For instance, in a
group with 2d=20% diversity (which is less than most genera;
see Fig. 1B), only 0.7% of query 30-mers are expected to be found
in at least one among N=5 reference genomes and only 4.2%
whenN→∞ (infinitely many genomes sampled from that genus).
Becausemost k-mers are unique and subsampling is inevitable in a
memory-bound setting, removing common k-mers makes it diffi-
cult to find k-mer matches between reads and reference species
that have 20% or more distance to them (e.g., when the closest
available match is at the genus level). This only gets worse at high-
er ranks and is not much better within the same species, where the
pairwise Mash distance is 5% or more in 15% of cases.

Selecting common k-mers alone does not help

We can emulate common k-mer selection by ranking k-mers pro-
portionally to R(x,t) or R′(x,t). Given the argument against discrim-
inative k-mers, common k-mers seem appealing because they can
represent each taxon using conserved sequences present across dif-
ferent genomes. Empirically, this strategy usedwith either R(x,t) or
R′(x,t) is better than using discriminative k-mers but is no better
than random sampling (Fig. 2C). Just like randomly selecting
k-mers, this strategy focuses the budget on larger and densely sam-

pled taxa. For instance, the WoL-v1 reference set includes 2975
Pseudomonadota genomes and only a single genome from many
other phyla. Although some unevenness is undoubtedly due to
genuine differences among the diversity of phyla, some must be
due to uneven sampling.

Covering all children improves accuracy

Instead of maximizing total coverage, we can attempt to cover all
species. We designed a scalable heuristic ranking mechanism to
fulfill this goal. We rank k-mers by a weighted-sum of R(x,.) values
of t’s children (see Method section “FILTERBYRANK” and R∗(x,t) de-
fined in Equation (11) and illustrated in Supplemental Fig. S2).
Theweights are used to de-emphasize children that are highly sam-
pled among surviving k-mers. We simply set the weights to be in-
versely proportional to the coverage of each child taxon among k-
mers of a particular row of the LSH table to ensure that children
covered with fewer surviving k-mers get covered by the parent.
Using this approach improves k-mer selection consistently across
all taxonomic ranks compared to the random strategy and com-
mon k-mer strategy (Fig. 2C). Further dividing queries by their nov-
elty, we observe that our weighted-sum strategy improves both
precision and recall, particularly for less novel queries; recall

A B

C
D

Figure 2. Evaluation of read classification performance of KRANK using different heuristics for k-mer selection. (A,B) Comparison of adaptive size-con-
straint approaches with random k-mer selection. None: enforcing no constraint, species: number of species constraint, k-mer: total k-mer count constraint,
Mixed: no constraint for one table and k-mer count constraint for the other. (A) F1 accuracy, dividing queries (panels) into three bins based on the number
of reference genomes in the phylum of the query. (B) Precision versus recall of None versus Mixed (default), dividing queries into bins of novelty (d∗). (C,D)
Evaluation of simple ranking strategies (discriminative, common, random) implemented using species counts R or children counts, R′ and our newweight-
ed-sum, R∗ heuristic [Equation (11)]. See Supplemental Figure S2 for an illustration of functions. (C) F1 across all queries. (D) Precision versus recall of ran-
dom and weighted-sum heuristic, dividing queries by bins of novelty (d∗). In (A) and (C), x-axes are ordered by the average F1 score of all queries. All results
use: w=35, k=32, l=2, h=12, and b=16. d∗ is the distance to the closest reference estimated by Mash. Default KRANK uses mixed adaptive size and
R∗ ranking.

S ̧apc ı and Mirarab

1458 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1

increases by as much as 15% at the species level in the d∗ ∈ (0.001,
0.25] bin (Fig. 2D).

Comparison to other methods for taxonomic read classification

The default version of KRANK uses both adaptive size constraints
(mixed strategy) and k-mer ranking and comes in two default
modes: high-sensitivity (hs) using 51.2GB and lightweight (lw) us-
ing 12.8 GB. We next compare these two versions of KRANK
against CONSULT-II, CLARK, and Kraken 2 on the same WoL-v1
data set used so far in terms of accuracy in classifying individual
reads (Fig. 3).

Accuracy in default settings

Across different ranks and query novelty levels, KRANK-hs
matched or improved on CONSULT-II in terms of F1 accuracy de-
spite using far fewer k-mers and about one-third of the memory
(Fig. 3A). KRANK-hs and CONSULT-II often had similar precision
(with a slight advantage for CONSULT-II in some cases), but
KRANK-hs had better recall in many settings (Supplemental Fig.
S3). Similar to CONSULT-II, KRANK achieved substantially higher
recall compared to Kraken 2 and CLARK. Improvement in recall
usually comes with little or no sacrifice in precision, which can
be controlled with the total vote threshold parameter of
CONSULT-II (Şapci et al. 2024). KRANK-lw is more accurate than
CONSULT-II at the kingdom level and only slightly less accurate
elsewhere despite using 10 times less memory. Accuracy also de-
pended on query novelty (d∗). All methods performed similarly
both in terms of precision and recall for queries thatwere not novel
(d∗ ≤0.025), except CLARK which had slightly lower accuracy
(Supplemental Fig. S3). For these less novel queries, both variants
of KRANK were indistinguishable from CONSULT-II. For more

novel queries (d∗ >0.025), accuracy dropped for all methods and
substantial differences between them emerged. For example, for
the d∗ ∈ (0.05, 0.1] bin, KRANK-lw outperformed Kraken 2 and
CLARK above the species rank, achieving 16% and 35% higher
F1 scores, respectively, at the phylum level. Unlike KRANK-hs,
KRANK-lw had slightly lower accuracy than CONSULT-II at some
ranks (e.g., 8%–9% at the order rank) for d∗ ∈ (0.025, 0.1] andmod-
erately lower accuracy (e.g., 12% at the phylum rank) for d∗ >0.1.
Nevertheless, KRANK-lw outperforms Kraken 2 (e.g., 77% and
250% higher F1 at the phylum rank for d∗ ∈ (0.1, 0.2] and
(0.2,0.35], respectively).

Both KRANK-hs and KRANK-lw are slightly better than
CONSULT-II in terms of kingdom-level classification for novel ge-
nomes. This improvement can be due to the better representation
of archaea with careful k-mer selection. Note that our query set is
highly imbalanced (e.g., 90% bacteria and 33% Pseudomonadota).
Thus, simply assigning all reads to the largest group (in terms of
the number of query genomes) at each rank would still perform
well (Supplemental Fig. S4). As expected, this null model performs
well at the kingdom level (0.94 F1 score). However, KRANK (both
lw and hs versions) is the only method that improves on the null
model (0.96 and 0.97 average F1 scores, respectively) and assigns
83% of archaeal reads to archaea. At lower ranks, all tools, except
for CLARK at the phylum rank, do substantially better than the
null model.

Adjusting memory usage

We next explored three to seven levels of consumed memory for
KRANK, CONSULT-II, and Kraken 2 to compare their accuracy giv-
en similar levels of memory, ranging from 1.6 GB to 140 GB (Fig.
3B). KRANK clearly outperformed both alternatives in terms of

A B

Figure 3. Detailed evaluation of read classification performances of tools across different ranks andmemory levels. (A) Comparison of two default modes
of KRANK (lw for lightweight and hs for high-sensitivity) with other methods across ranks and novelty bins on the WoL-v1 data set with 66,667 simulated
150 bp reads from each of 756 query genomes. Each panel is a novelty bin, corresponding to the minimum distance to any reference genome (d∗), mea-
sured byMash (Ondov et al. 2016); see Supplemental Figure S1. F1 scores are averages of all queries in each d∗ bin. See Supplemental Figure S3 for precision
and recall. (B) F1 accuracy for KRANK, CONSULT-II, and Kraken 2 as we change the memory used in GB. CLARK is shown as a single data point. We mark
memory levels corresponding to the lw and hs modes using dashed lines.

Efficient k-mer selection for large databases

Genome Research 1459
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1

average F1 scorewhenmemory is controlled. At lowermemory lev-
els, CONSULT-II had much lower F1 scores than KRANK, and
Kraken 2 had lower F1 than CONSULT-II for more novel queries.
For instance, given ≤4 GB, KRANK was 26% more accurate than
CONSULT-II and 8% more accurate than Kraken 2 for the least
novel bin. For the moderately novel queries (d∗ ∈ (0.05, 0.1]),
KRANK with 3.2 GB outperformed Kraken 2 with 46.5 GB.
KRANK with 1.6 GB outperformed CLARK (149.6 GB) and
Kraken 2 (46.5 GB) for novel queries (d∗ >0.1), giving 160% and
89% higher F1 scores, respectively. Note that CONSULT-II and
KRANK store the same number of k-mers (268 M in a single table)
whenmemory usages are 5GB and 3.2GB, respectively. KRANK re-
mained more accurate than CONSULT-II when we compared the
method for varying numbers of k-mers kept in the library
(Supplemental Figs. S5 and S6). Because the only difference be-
tween KRANK andCONSULT-II is the selected k-mers, these results
demonstrate the effectiveness of the selection algorithm.

Resource usages

Despite performing more complex computations, KRANK built li-
braries using less computational resources due to its efficient im-
plementation, compared to CONSULT-II (Table 1). Although the
total time neededwas also less, themain gainwas KRANK’s distrib-
uted memory implementation. KRANK splits the LSH table into
batches, enabling it to divide the workload into independent
jobs. For instance, on theWoL-v1 data set, KRANK-hs was built us-
ing 512 batches per table, each of which took 8 min on average
with four threads. KRANK-lw used 256 batches and built each
batch in 5 min on average. Together with the initial preprocessing
of reference genomes, processing 32 batches in parallel (e.g., on
different cluster nodes) needed 4.5 h for high-sensitivity mode
to construct a library with two tables. Using this configuration,
the peak memory usage for each batch was <32 GB. Although
the running times are not directly comparable because of the dif-
ference in parallelism, KRANK needed significantly shorter times
than CONSULT-II and CLARK to build its libraries.

At the query time, compared to CONSULT-II, KRANK does
not introduce any extra computation but its smaller libraries re-
sulted in reduced running times. On this data set, KRANK-hs was
more than twice as fast as CONSULT-II (Table 1). These improve-
ments are due to better cache performance and shorter library
loading times. Note, however, that Kraken 2 was ∼13× faster
than KRANK-hs and scaled better as the number of queried short
reads increased (Fig. 4). This difference may be due to the fact
that KRANK needs to compute HD for up to 2b=32 reference

k-mers for each query k-mer, whereas Kraken 2 only computes
presence/absence.

Abundance profiling: CAMI challenges

CAMI-I high-complexity data set

Wenext comparedKRANK-hs against three alternatives in terms of
taxonomic profiling accuracy on the Critical Assessment of
Metagenome Interpretation (CAMI-I) (Sczyrba et al. 2017) bench-
marking challenge, focusing on the high-complexity subset (can
be found at http://gigadb.org/dataset/100344). We compared
against CONSULT-II, CLARK, and Bracken (a Bayesian extension
of Kraken 2) using standard metrics promoted by CAMI-I (see
“Data sets” and “Evaluation metrics”). All methods were run
with the custom libraries built using the same WoL-v1 data set
used in the previous analysis.

Abundance profiles estimated by KRANK-hs andCONSULT-II
are the most similar to the true profile in terms of Bray–Curtis dis-
similarity (Fig. 5A). At the species level, all methods have high er-
rors and are comparable, with a slight advantage for KRANK-hs. As
wemove up the ranks, the error quickly drops for all methods, but
KRANK-hs and CONSULT-II outperform others. Overall, KRANK-
hs performs similarly to CONSULT-II despite the much-reduced
memory. KRANK performs considerably better than both Bracken
and CLARK. All methods tend to underestimate Shannon’s equita-
bility, which is a measure of the variety and distribution of taxa

Table 1. Computational resources needed for a database built on 10,470 reference genomes and 756 queries (50 M short reads)

Running time Peak memory

Query Library Query Library

Kraken 2 88 sec, 96 threads 3.5 h, 128 threads 47 GB 50 GB

CLARK 676 sec, 96 threads 13.5 h, 128 threads 150 GB 370 GB

CONSULT-II 2191 sec, 96 threads 19 h, 128 threads 141 GB 157 GB

KRANK-hs 1167 sec, 96 threads 4.5 h, 32 × 4 threads 51 GB 32 GB per batch

KRANK-lw 787 sec, 96 threads 2.5 h, 32 × 4 threads 13 GB 8 GB per batch

Measurements for both queries and library building were performed on a machine with 2.2 GHz AMD EPYC 7742 processors. Reported library building
times are for 256 and 512 batches, respectively, for KRANK-lw and KRANK-hs, each with four threads, distributed across 32 cluster nodes and run in
parallel.

64

128

256

512

1024

2048

4.2 8.4 16.8 33.6 67.1
Number of short reads (million)

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Tool
CLARK
CONSULT−II
Kraken 2
KRANK−hs
KRANK−lw

Figure 4. Query time for varying numbers of short reads sampled across
756 genomes from different novelty levels. Running time measurements
were performed using 96 threads on a machine with 2.2 GHz AMD
EPYC 7742 processors. Both axes (x and y) are in log-scale.

S ̧apc ı and Mirarab

1460 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://gigadb.org/dataset/100344
http://gigadb.org/dataset/100344
http://gigadb.org/dataset/100344
http://gigadb.org/dataset/100344

present in a sample. At the phylum rank, Bracken has closer values
to the gold standard, whereas CONSULT-II and KRANK become
better at the family rank or lower (Fig. 5B). Overall, KRANK-hs is
slightly less accurate than CONSULT-II in terms of this metric
across ranks. Note that correcting for genome size improves the ac-
curacy of both CONSULT-II and KRANK, but KRANK benefits
slightly more in terms of the Bray–Curtis metric (Supplemental
Fig. S7A). Because the largest three phyla in our reference set con-
stitute 80%–85%of each sample, this data set presents a casewhere
the KRANK strategy of covering low-sam-
pled groups is not needed and sampling
of highly covered phyla by CONSULT-II
is sufficient.

CAMI-II marine and strain-madness data sets

To compare KRANK to a larger set of
methods, we built a library based on
72,766 genomes available on RefSeq as
of January 8, 2019. Considering the
high number of reference genomes, we
omitted the lightweight memory config-
uration and focused on the high-sensitiv-
ity setting, which already uses less than
half of the memory used by CONSULT-
II. Because this same data set had been
provided to all methods tested in the
CAMI-II challenge (Meyer et al. 2022),
we were able to compare KRANK with
12 alternative methods from that origi-
nal paper, in addition to CONSULT-II,
which was also applied to this data set
(see “Data sets”). These methods include
both marker-based and k-mer-based
methods, whichuse reads from the entire
genome as opposed to relying on prede-
fined markers.

Taxonomic profiles of KRANK-hs were among the most accu-
rate on the CAMI-II challenge (Fig. 6). On the strain-madness data
set, in which only two phyla constitute 90% of the relative abun-
dance, our method was a close second to the best method, which
was the marker-based method MetaPhlAn (Fig. 6; Supplemental
Fig. S8A). Averaged across all samples, the UniFrac score of
KRANK-hs was only 2% less than MetaPhlAn and 6% above the
third-best method, CONSULT-II. In species, class, and phylum
ranks, MetaPhlAn had slightly better L1 than KRANK-hs, whereas

A

B

Figure 5. Taxonomic profiling on CAMI challenge. (A) The Bray–Curtis metric measures the dissimilarity between the estimated and true profiles. (B) The
difference between Shannon’s equitability of the estimated profile and of the gold standard, measuring howwell each tool reflects the alpha diversity (i.e.,
the evenness of taxon abundances). Reported metrics are based on the profile estimates of the high-sensitivity (hs) setting of KRANK. We show the mean
and minimum/maximum across five samples.

Figure 6. Comparing KRANK (high-sensitivity setting using 51.2 GB) with other participants in CAMI-II
benchmarking challenge (Meyer et al. 2022). As in that original paper, we show the upper bound of L1
norm (2) minus actual L1 norm versus the upper bound of weighted UniFrac error (16) minus actual
weighted UniFrac error. Each data point stands for the average of 100 strain-madness samples or 10 ma-
rine samples. Metrics were computed using OPAL with default settings and the -n option. The UniFrac
error is the total amount of predicted abundances that needs to be moved along the edges of the taxo-
nomic tree to make them overlap with the true abundance profile. The L1 error simply measures the ac-
curacy of reconstructing the relative abundance profile at a fixed rank.

Efficient k-mer selection for large databases

Genome Research 1461
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1

in the family rank, KRANK-hs was slightly better (Fig. 6). Note that
KRANK and MetaPhlAn are based on very different approaches,
and the reason behindMetaPhlAn performing better is not imme-
diately clear. It may be that usingmarkers performs better than us-
ing entire genomes in some cases as markers are less subject to
horizontal gene transfer. Because MetaPhlAn lacks the capability
of classifying individual reads, we were not able to include it in
the read classification experiments. Despite using the same profil-
ing algorithm as CONSULT-II and one-third of its memory,
KRANK-hs also had better L1 metrics than CONSULT-II across all
ranks on this data set. Other k-mer-based methods such as
Bracken had far lower accuracy in terms of both metrics.

On the marine data set, which includes both archaeal and
bacterial genomes, and consists of 65%–70% Proteobacteria, the
pattern slightly changed (Fig. 6). Here, CONSULT-II was slightly
more accurate than KRANK-hs, with 3% better UniFrac and 3%
better L1, averaged over all ranks and samples. Only at the species
level, KRANK-hswasmore accurate thanCONSULT-II (6% in terms
of L1). Overall, KRANK-hs was ranked fourth, following mOTU,
CONSULT-II, and MetaPhlAn (Supplemental Fig. S8). Note, how-
ever, that the best method, mOTU, performed poorly on the
strain-madness data set. KRANK-hs was the second-best k-mer-
based method after CONSULT-II but used only one-third of its
memory. The third leading k-mer-based method, Bracken, was
less accurate than CONSULT-II and KRANK-hs in both metrics,
but with a smaller margin than the strain-madness data set.

To summarize, KRANK-hs was the best k-mer-based method
and the second-bestmethod overall (Supplemental Fig. S8B). Aver-
aged over both data sets, themarker-basedmethodMetaPhlAnhad
the best accuracy, followed closely by KRANK-hs, and then CON-
SULT-II. Note, however, that we focused on the two main CAMI-
IImetrics that accounted for abundance values. Judged by the pres-
ence/absence of taxa (i.e., ignoring abundance), KRANK-hs had
better purity than CONSULT-II and Bracken and about the same
level of completeness (Supplemental Fig. S9). However, these
abundance-agnostic metrics were not the strength of k-mer-based
methods; across both data sets, KRANK-hs, CONSULT-II, and
Bracken were among the best in terms of completeness but not
purity.

Discussion

We introduced KRANK for selecting a memory-bound and repre-
sentative subset of k-mers from a large genome collection for the
purpose of taxonomic classification and abundance profiling.
We used a tree-based k-mer filtering algorithm that decides which
k-mers to remove as it moves up a taxonomic tree. This bottom-up
strategy makes the library construction more memory efficient as
k-mers are analyzed in smaller chunks at each node. In addition,
we use an adaptive size constraint mechanism to leave some filter-
ing decisions to higher taxonomic levels. These decisions aremade
based on the prevalence of k-mers among children of or leaves un-
der each node.

Ultimately, both our adaptive size constraints and our rank-
ing strategies are heuristics, with no theoretical guarantees, but de-
signed based on careful experiments involving novel queries and
imbalanced sampling. Due to the empirical nature of the method,
the exploration of alternatives will be an ongoing topic of research,
one that is helped by KRANK’s software design. In particular, our
approach still leaves room for ties during ranking, and smarter
ways to break such tiesmayhelp accuracy. Alternatively,more the-
oretically justified approaches should be explored.

One obstacle to building a more theoretical approach is to
define an objective function for k-mer selection. Subtleties of im-
balanced and biased sampling in reference databasesmake the def-
inition of the desired optimization problem tricky. Should we
attempt to combat the sampling bias by selecting k-mersmore pro-
portionally from under-sampled groups? If so, how can we know
and model the bias? Should we attempt to consider likely profiles
of queries? If so, under what model? These questions have no easy
answers. Nevertheless, defining mathematically rigorous but nu-
anced objectives for k-mer selection could be a fruitful avenue of
future research.

Our approach focused on k-mer similarity along the evolu-
tionary dimension but completely ignored k-mer overlap. Select-
ing k-mers based on overlap is well covered by minimizers,
which we use as a preprocessing step. However, our ranking algo-
rithm is unaware of overlap and minimizers are unaware of the
taxonomic relationships. Integrating the evolutionary-aware strat-
egies of KRANK with location-based minimizers poses an interest-
ing algorithmic challenge and could further improve the method.
However, designing such a combination is not trivial given our
hashing strategy and needs further algorithmic developments.

Despite all the improvements compared to CONSULT-II, the
library construction of KRANK is expensive in terms of CPU hours
spent. Nevertheless, the creation of the reference library is a
one-time operation, amortized over many subsequent uses.
Furthermore, computation is getting cheaper rapidly, and the total
resources we used (e.g., <550CPUhours for theWoL-v1 library) are
far from prohibitive. Crucially, the batching strategy enables us to
build the library over a cluster (i.e., distributedmemory), with each
job using as little as 8GB andmany running in parallel in the order
of minutes (Table 1). Moreover, note that the library building time
is a function of both the number of genomes and the size of the
taxonomy, which grows less rapidly. For example, whereas the
CAMI-II library had 7× more genomes than WoL-v1, we needed
only 3×, because the taxonomy had 1.8× as many nodes, and 2×
as many species as WoL-v1. Our analyses of 72,766 genomes in-
cluded in theCAMI-II case demonstrate the scalability of themeth-
od to scales commensurate with modern-day libraries.

As data sets become even larger, KRANKparametersmayneed
to adjust. Many ultra-large reference databases are available now,
including GTDB (Parks et al. 2018) with 402,709 genomes, and
WoL-v2 (Balaban et al. 2024), with a phylogeny built from
199,330 genomes. Moreover, RefSeq currently includes millions
of genomes. The fast increase is primarily due to the sequencing
of many more genomes from key species. As the number of ge-
nomes from each species increases, our choice in this paper to treat
the species rank as the leaves of the taxonomy becomes less scal-
able. However, KRANK can easily use a more refined group (e.g.,
subspecies) as the leaf, which will trade-off slightly longer running
times for bettermemory efficiency. It could also enable subspecies-
level classification, a topic that should be explored in the future.
Another concern in handling ever-growing data sets is the need
for de novo construction of the database as new genomes become
available. Future research should explore ways to add new ge-
nomes into existing libraries, without repeating all the steps.

Methods

As a k-mer selection method, KRANK can, in principle, be paired
with any k-mer-based classification or profiling methods.
However, in this paper, we use KRANK solely with CONSULT-II
(Şapcı et al. 2024); k-mer matches found in libraries built by

S ̧apc ı and Mirarab

1462 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1

KRANK are given as input to CONSULT-II v0.5.0 for classi-
fication and profiling. Moreover, our k-mer selection algorithm
adopts a similar LSH data structure to CONSULT-II. Thus, we
start by describing the CONSULT-II hash tables and the
CONSULT-II classification and profiling methods before present-
ing KRANK.

LSH tables

CONSULT(-II) was designed to answer the following question: Are
there any k-mers in a given reference set with HDs less than some
threshold p to a given query k-mer? The core idea is to find lowHD
matches efficiently by partitioning reference k-mers to constant-
sized subsets (i.e., rows of the hash table with size b) using the
bit-sampling LSH method (Har-Peled et al. 2012). In this method,
we select h random but fixed positions of a k-mer as its hash key.
Each LSH table is a simple 22h× b array, and l such hash tables con-
stitute the data structure (default: l=2, h=14, and b=16 for
KRANK).

Each query is compared against all l × b k-mers with the same
hash key. We return the closest k-mer match with distance ≤p if
any exists. Because we explicitly compute the HD of the query
to these reference k-mers, there are no false positive matches
but false negatives are possible. Using the bit-sampling scheme
(Har-Peled et al. 2012), one can guarantee that two k-mers at
HD= d have the same hash with probability (1−d/k)h assuming
independence of positions. Thus, given two k-mers, the probabil-
ity that at least one of l LSH keys is the same for both k-mers is
given by

r(d) = 1− 1− 1− d
k

()h
()l

. (1)

For small enough p (e.g., p = 4), the probability ρ(d) drops quickly
when d≫ p and it is sufficiently high if d≤ p. Further-
more, because classification is done at the read level, there
will be L−k + 1 chances for a k-mer match for a read of length L.
For such a read, the expected number of matching k-mers is
(L−k + 1)ρ(d), which can be large enough for several realistic
choices of l and h (Supplemental Fig. S10). For instance, with
k = 30, h = 14, and l = 2 (KRANK-hs settings), for a 150 bp read at
15% distance from the closest reference genome, we would still
expect 23.5 k-mer matches if all of those reference k-mers are in
the database. If only 20%of the k-mers from the reference genome
are in the library, we still expect more than 5 k-mer matches,
which can be sufficient for classification. In practice, the number
of matches will depend on the budget M, and will necessarily
decrease as we reduce M.

CONSULT-II extends LSH tables further by adding a taxo-
nomic label for each k-mer in the table. This label is the lowest
common ancestor (LCA) of a subset of species that have the corre-
sponding k-mer (hence the name soft-LCA). This subset is deter-
mined with a probabilistic procedure that performs a Bernoulli
trial for each genome and includes its species in the subset if
the trial is successful. The success probability is different for each
k-mer xi and is a function of the number of genomes in which

the k-mer appears (Ni) set to pu(Ni) = w log−1
2 2(Ni − 1)/s + 2

()
,

where w and s are hyperparameters.

CONSULT-II classification and profiling

Both read classification and profiling algorithms of CONSULT-II
are based on voting. Given a query read R, CONSULT-II lets each
k-mer x [R vote for the soft-LCA of the reference k-mer it match-

es. The value of the vote decreases as the HD between the query
k-mer x and its bestmatch increases. Let the bestmatch be at distance
d to a k-mer with soft-LCA at taxon t; then, x votes vx(t) = (1− d/k)k

units for t. To take hierarchical relations in the taxonomic tree into
account, CONSULT-II aggregates votes by recursively summing
them in a bottom-up manner. Let child(t) be the set of children of
the taxon t. Then, the total vote of taxon t for read R is

�vR(t) =
∑
x[R

vx(t)+
∑

t ′[child(t)

�vR(t ′). (2)

For read classification, CONSULT-II simply determines a majority
vote threshold τ, corresponding to half of the total vote value at
the root of the tree. It then assigns each read to the groupat the lowest
rank whose total vote value strictly exceeds τ. Note that this choice is
guaranteed to be unique.

To derive an abundance profile, CONSULT-II first normalizes
the total vote values of a read Ri per each taxonomic rank using

v∗Ri
(t) = �vRi (t)∑

t ′[T r
�vRi (t ′)

, (3)

where T r is the set of all taxa at rank r (e.g., all phyla). Next, it gath-
ers normalized total vote values of all n readsR1, . . . , Rn in a sam-
ple, and normalizes again to obtain the final profile. Let
pr = [prt]t[T r

denote the relative read abundance profile at rank r,
summing up to 1. CONSULT-II (since v0.3.0) sets the relative
abundance of taxon t to:

prt =

∑n
i
v∗Ri

(t)

∑
t ′[T r

∑n
i
v∗Ri

(t ′)
. (4)

Note that prt estimates the ratio of reads belonging to the taxon t,
but we are often interested in the relative abundances of cells (de-
noted by p̂r = [p̂rt]t[T r

). Thus, CONSULT-II (since v0.4.0) incorpo-
rates genome sizes by simply correcting prt values as follows:

p̂rt =
prt l

−1
t∑

t ′[T r
prt l

−1
t ′

(5)

where lt is the average genome length of all references in taxon t.
See Supplemental Figure S7A for a comparison between v0.3.0 cor-
responding to Equation (4) and v0.4.0 implementing Equation (5)
on the CAMI-I data set. As an option, CONSULT-II can replace the
denominator of Equation (4) with the total vote at the root of the
taxonomic tree to quantify the abundance of unclassified taxa.
This can be viewed as propagating vote values down from a parent
to an artificial “other” lineage which continues until the species
rank.

As opposed to classification, CONSULT-II’s profiling (v0.4.0)
algorithm does not require a majority vote, and hence, a read can
contribute to abundance values of multiple taxa at a fixed rank,
even when there exist only a few high HD matches.
Furthermore, normalized values can accumulate over billions of
reads in a sample, and can result in erroneous profiles (potentially
explaining relatively high errors of CONSULT-II at species rank in
CAMI-II strain-madness data set). In v0.5.0 (first introduced in the
presentmanuscript), CONSULT-II introduces a new profiling algo-
rithm, which uses a very similar principle to its classification algo-
rithm. Keeping the genome size correction (Equation (5)) the
same, v0.5.0 modifies Equation (4) as follows:

prt =
1
n

∑n
i

1{v∗Ri
(t) . max (t, t0)} (6)

Efficient k-mer selection for large databases

Genome Research 1463
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1

where τ is the total vote value of the taxonomic tree and τ0 is a
hyperparameter hard threshold (default: 0.03). In words, instead
of each k-mer of a read voting for a different taxon, each read votes
collectively; the read votes for the same taxon where CONSULT-II
would classify it if its total vote is high enough (i.e., >τ0). Reads
with total votes below τ0 and few or ambiguous matches are con-
sidered unclassified. Thus, the resulting abundance profile does
not have to sum to 1. Using v0.5.0 instead of v0.4.0 with
KRANK’s library resulted in improvements in terms of Bray–
Curtis dissimilarity especially at lower ranks (Supplemental Fig.
S7). Thus, we report profiling results using v0.5.0 for KRANK in
both CAMI challenges.

Algorithmic details of KRANK

Weuse T to denote the set of all nodes of the taxonomywhen clear
by context.We let S # T be the set of species, and for t [T , we let
St # S be the set of species under node t. We can choose the leaves
of the tree T to correspond to any desired rank, but by default, we
use species (S) as the lowest rank; this can be easily changed to any
other rank. Let Kt denote the set of k-mers of all genomes labeled
by a taxon t [T . Notice that Kt = <t ′[StKt ′.

Recall that during the tree traversal of Algorithm 1, for each
node t [T , three key operations are performed to build a new
hash table, denoted by Ht:

1. UNIONTABLES: takes the union of hash tables of its children Ht′,
t ′ [child(t),

2. ADAPTIVESIZECONSTRAINT: computes a size constraint for Ht,
3. FILTERBYRANK: ranks and removes k-mers from the union until it

fits the size constraint.

At the root, the library is flattened to a 1D array (PROJECTTABLE). We
first describe our two main heuristics and then discuss details of
other named functions in Algorithm 1.

Algorithm 1 KRANK algorithm. Functions are discussed in the text.

1: procedure BUILDLIBRARY(t)
2: Ht← an empty table with 22ℎ rows
3: if t [S then
4: Kt ←EXTRACTKMERS(t)
5: Ht← FILLTABLE(Kt)
6: return Ht

7: for all t ′ [child(t) do
8: Ht′ ←BUILDLIBRARY(t′)
9: for all t ′ [child(t) do

10: Ht←UNIONTABLES(Ht′,Ht)
11: M(t)←ADAPTIVESIZECONSTRAINT(t)
12: n← |Ht|−M(t)
13: if n >0 then
14: FILTERBYRANK(Ht,n)
15: if t= root then
16: PROJECTTABLE(Ht)
17: return Ht

ADAPTIVESIZECONSTRAINT

Let M(t)≤M be the upper bound (i.e., the size constraint) for the
number of k-mers kept for each table at each node (i.e.,
ADAPTIVESIZECONSTRAINT in Algorithm 1). Let r: T � (0, 1] assign a
portion of the full budgetM to each node t; any function r is valid
as long as it takes the value 1 at the root (i.e., r(root) = 1) and in-
creases as we move up the tree (i.e., r(t)≥ r(t′) if t ′ [child(t)). We

evaluated two options for r(t):

r(t) =
∑

s[St
|Ks|∑

s[S |Ks| (total k-mer count constraint), or

r(t) = |St |
|S| (number of species constraint).

(7)

The two options for r(t) would be identical if all species have equal-
sized genomes and each species is sampled the same number of
times (Ks can be the unionovermultiple genomes). Theirmain dif-
ference is that the first option allows highly sampled species (or
very large genomes) to contribute more, whereas the latter does
not. With either definition, we then set

M(t) = |Kt | t [S,����
r(t)

√
M otherwise

{
(8)

noting that M(t) ≤ ∑
t ′[child(t) M(t ′) due to the concavity of the

square root. The concavity matters because it ensures that the
size constraint becomes more restrictive as we move up the tree.
In this case, the allowed budget increases faster than proportional-
ly until r(t) = 1/

��
2

√ ≈ 0.7 and slower than proportionally after.
Thus, at lower ranks, many of the decisions for removing k-mers
are left to its ancestors; note that a k-mer not removed at a taxon
can still be removed further up. Close to the leaves, very few k-
mers would be removed (e.g., a single species out of 104 still is as-
signed 1% of the total budget when visiting this node), whereas
close to the root, taxon budgets get closer to the full budget (e.g.,
a phyla with two-thirds of the species is assigned 82% of the bud-
get). Also, going up the tree, the k-mer budget assigned to each tax-
on increases compared to each child, but it never exceeds the total
budget assigned to its children. Clearly, M(root) matches the full
budget allowed.

FILTERBYRANK

For each hash taxon t, the FILTERBYRANK function of Algorithm 1 re-
moves k-mers when the size of the tableHt exceedsM(t). First, each
row is pruned to b k-mers according to the strategy described be-
low. If the table size is still greater thanM(t), we continue removing
k-mers, one at a time from each row in the descending order of
their sizes, and iterating until the size constraint is satisfied.

For a k-mer set K, a taxonomy T , and its corresponding
species set S, we define R, R’: K× T � [0, |S|] as

R(x, t) = |{y:x [Ky, y [St }| (9)

and

R′(x, t) =
∑

t ′[child(t)
1{|R(x, t ′)| . 0}, (10)

both illustrated in Supplemental Figure S2. We express each rank-
ing strategy using either function and removing low-ranked k-mers
accordingly. Discriminative and common k-mer strategies simply
rank k-mers inversely and proportionally (respectively) to R or R′.
In the case of ties, which can happen frequently, especially near
leaves, we simply break them randomly.

The goal of covering all species can be imposed as a complex
set covering problem. Instead, in the interest of scalability, we opt
for a simple approach using weighted sums. We set

R∗(x, t) =
∑

t ′[child(t)
wt ′ (x) · R(x, t ′) (11)

where wt′ down-weights groups that are highly sampled among
surviving k-mers (see Supplemental Fig. S2). A natural choice of
weights is wt=1/|Ht|. However, because |Ht| is independent of the
k-mer or the row being considered, this approach will consistently

S ̧apc ı and Mirarab

1464 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1

down-weight the children with the largest tables; in the extreme
case, it can remove all k-mers from a child altogether. Thus, we
define the weight of a k-mer x locally for its LSH table row by set-
ting it to be inversely proportional to the coverage of each child tax-
on among k-mers of that row:

wt ′ (x) = (|{x′ : x′ [Ht ′ , LSH(x) = LSH(x′)}|)−1.

As a result, children covered with fewer surviving k-mers get higher
weights, leading the process at the parent node to remove them
less often (see Supplemental Fig. S2 for a toy example). However,
because decisions are made per row, and the assignment of
k-mers to rows is random, this avoids consistently removing the
same species.

EXTRACTKMERS

In extracting k-mers from all input genomes, we use minimizers
to perform an initial subsampling by choosing the k-mer whose
encoding has a MurmurHash3 (https://github.com/aappleby/
smhasher) value that is the smallest in a local window of size w=
k+3. We adopt the left/right encoding of k-mers introduced by
Rachtman et al. (2021); this encoding allows fast calculation of
HD using just four instructions (a pop-count, an XOR, an OR,
and a shift). For k>16, these encodings require 64 bits. However,
h many k-mer positions are already given by the hash index and
donot need to be saved as a part of the encoding. In KRANK, unlike
CONSULT-II, we savememory by dropping these positions; this re-
duces the encoding size to a 32-bit number when k−h≤16, which
is the case in our default configurations (k=30 and h=14 or k=29
and h =13). Because each k-mer encoding is only 32 bits, we save
the encodings in the hash table; note that this is different from
CONSULT-II, which saved pointers to a separate encoding array.

Populating LSH tables (FILLTABLE, UNIONTABLES, and PROJECTTABLE)

For each leaf t, FILLTABLE computes LSH and encoding values of each
k-mer x [Kt . Based on h positions, it stores k-mer’s compact en-
coding in the row indexed by the LSH value.We keep a counter ini-
tialized to 1 associated with each k-mer to enable computing later.
For nonleaf taxa, UNIONTABLES combines hash table rows by taking
the union of k-mers. Luckily, the union operation can be defined
on a per-row basis as the same k-mers share LSH value; indepen-
dent union operations are performed in parallel across rows.
Union also updates R(x,t). Furthermore, KRANK uses some of the
available threads to perform postorder traversal in parallel.

Below root, KRANK saves rows of the hash tables using vectors
that allow dynamic size changes during construction, switching to
static structures only at the end. At the root, each row gets pruned
to b k-mers, again using the ranking. This allows converting the ta-
ble to a memory-efficient flattened static 1D array of size 22hb.

Batching

Because we need to merge multiple tables at internal nodes,
the required memory may exceed what is available. To tackle
this issue, we used a batching approach. Except for the
ADAPTIVESIZECONSTRAINT, all components of our algorithm can be
performed independently on a per-row basis. Therefore, we divide
rows of the tables into batches and build them separately and in
parallel. KRANK has a parameter to set the number of batches,
and each batch’s size constraint is simply updated as M(t) divided
by the number of batches.

Data sets

WoL-v1 data set (read classification)

We demonstrate the pros and cons of selection strategies using the
microbial WoL-v1 data set (Zhu et al. 2019) composed of 10,575
genomes (accessible at https://biocore.github.io/wol/download).
We excluded 100 archaeal genomes used by Rachtman et al.
(2021) as queries and five genomes with IDs missing from NCBI
from the reference set, leaving us with 569 archaeal and 9901 bac-
terial references. We chose 756 queries in total; these include 666
bacterial genomes added to RefSeq after WoL-v1 was constructed,
10 randomly selected bacteria from the reference set, and all 80 of
100 archaeal queries from Rachtman et al. (2021) with Jaccard in-
dex above 0 to some reference genome. The queries span a range of
distances to the closest reference genome and are binned into nov-
elty groups as such (Supplemental Fig. S1A). The query set covers
55 phyla and 396 genera, with some phyla highly represented
(e.g., 253 from Pseudomonadota, 91 from Bacillota) but including
several rare phyla (Supplemental Fig. S1B). We generated 150 bp
reads using ART (Huang et al. 2012) at high coverage with the de-
fault Illumina error profile and then subsampled down to 66,667
reads for each query (≈2× coverage for these genomes). We use
the NCBI taxonomy provided with the WoL-v1 data set as our ref-
erence taxonomy.

We used this data set to explore the various heuristics of
KRANK and to also compare the final KRANK versus other meth-
ods. We examined the same query set in both analyses. We com-
pared KRANK against CONSULT-II v0.4.0 (Şapcı et al. 2024),
where k-mer selection is arbitrary, Kraken 2 (with default settings),
andCLARK (Ounit et al. 2015) (with default settings, k=31; species
rank), which uses discriminative k-mers. For KRANK, the classifica-
tion algorithm is identical to CONSULT-II v0.5.0. We tested
KRANK with two memory levels: KRANK-hs (high-sensitivity)
sets k=30, h=14, b=16, and uses 51.2 GB of memory, whereas
KRANK-lw (lightweight) sets k=29, h=13, b=16, and 12.8 GB of
memory. For details, see the exact commands and tool versions
in the Supplemental Information.

Profiling on the CAMI-I high-complexity data set

This data set contains five different high-complexity samples, each
of size 75 Gbp, which are simulated by mimicking the abundance
distribution of the underlying microbial communities (Sczyrba
et al. 2017). We tested the Bracken (Lu et al. 2017) extension of
Kraken2,which combines its results with Bayesian priors for better
profiling.We used the same custom libraries builtwith theWoL-v1
data set, with default parameters as described in the WoL-v1 data
set (read classification). Results for CONSULT-II, CLARK, and
Bracken are retrieved from our prior work and are available at
GitHub (https://github.com/bo1929/shared.CONSULT-II).

Profiling on CAMI-II marine and strain-madness data sets

We used the ten-sample marine data set (5 Gbp each, “marmg”
available at https://frl.publisso.de/data/frl:6425521/marine/) and
the 100-sample (2 Gbp each, “strmg” available at https://frl
.publisso.de/data/frl:6425521/strain/) strain-madness data set,
which are the two main data sets focused on abundance profiling
in the CAMI-II challenge. For all tools except CONSULT-II and
KRANK, we used CAMI-II results submitted to the challenge avail-
able at GitHub (https://github.com/CAMI-challenge/second_
challenge_evaluation). We exclude versions of the methods that
were submitted to the first challenge. CONSULT-II results were
again retrieved from GitHub (https://github.com/bo1929/shared
.CONSULT-II). We built and used a KRANK library in high-

Efficient k-mer selection for large databases

Genome Research 1465
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://biocore.github.io/wol/download
https://biocore.github.io/wol/download
https://biocore.github.io/wol/download
https://biocore.github.io/wol/download
https://biocore.github.io/wol/download
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
https://github.com/bo1929/shared.CONSULT-II
https://github.com/bo1929/shared.CONSULT-II
https://github.com/bo1929/shared.CONSULT-II
https://github.com/bo1929/shared.CONSULT-II
https://github.com/bo1929/shared.CONSULT-II
https://frl.publisso.de/data/frl:6425521/marine/
https://frl.publisso.de/data/frl:6425521/marine/
https://frl.publisso.de/data/frl:6425521/marine/
https://frl.publisso.de/data/frl:6425521/marine/
https://frl.publisso.de/data/frl:6425521/marine/
https://frl.publisso.de/data/frl:6425521/marine/
https://frl.publisso.de/data/frl:6425521/strain/
https://frl.publisso.de/data/frl:6425521/strain/
https://frl.publisso.de/data/frl:6425521/strain/
https://frl.publisso.de/data/frl:6425521/strain/
https://frl.publisso.de/data/frl:6425521/strain/
https://frl.publisso.de/data/frl:6425521/strain/
https://github.com/CAMI-challenge/second_challenge_evaluation
https://github.com/CAMI-challenge/second_challenge_evaluation
https://github.com/CAMI-challenge/second_challenge_evaluation
https://github.com/CAMI-challenge/second_challenge_evaluation
https://github.com/CAMI-challenge/second_challenge_evaluation
https://github.com/bo1929/shared.CONSULT-II
https://github.com/bo1929/shared.CONSULT-II
https://github.com/bo1929/shared.CONSULT-II
https://github.com/bo1929/shared.CONSULT-II
https://github.com/bo1929/shared.CONSULT-II

sensitivity setting (k=30, h=14, b=16) using 72,766 genomes se-
lected from the NCBI RefSeq snapshot as of January 8, 2019 (re-
trieved from https://openstack.cebitec.uni-bielefeld.de:8080/swift/
v1/CAMI_2_DATABASES/) by allowing each species to contribute at
most 500 genomes (otherwise randomly selected among available
genomes).

Evaluation metrics

We describe evaluation metrics, referring the reader to the
Supplemental Methods section “Evaluation metrics and tools
used” for further commands and details.

Read classification

We evaluated the read classification with respect to the NCBI tax-
onomy. Each prediction is separately evaluated across each taxo-
nomic rank. When the reference set had at least one genome
matching the query taxon at a particular rank, we call it a positive:
TP if it is the correct taxon, FP if it is the incorrect taxon, and FN if
the read is not classified at that rank. Similarly, at a particular rank,
when the reference set lacks a genome from the query taxon, we
call it a negative:TN if the read is not classified at that rank, FP if
it is classified, which would necessarily be false. We ignored que-
ries at ranks where the true taxonomic ID given by NCBI is a miss-
ing rank.

We use custom scripts to process the specific output format of
each tool and compare it with the taxonomy used to build refer-
ence libraries. These scripts are available on GitHub (https://
github.com/bo1929/shared.KRANK). We also provide distances
of each query genome to the closest reference genome, d∗ as esti-
mated by Mash (Ondov et al. 2016), taxonomy files, and the out-
puts of evaluation scripts.

Taxonomic profiling

To measure taxonomic profiling performances on both CAMI
challenges, we reported the same metrics as those emphasized in
original publications. We used OPAL (version 1.0.12) to compute
the metrics with -n option (which renormalizes after removing
the unclassified portion).

On CAMI-I, we used the main two metrics singled out by the
open-community profiling assessment tool (OPAL, available on
GitHub: https://github.com/CAMI-challenge/OPAL) (Meyer et al.
2019): the Bray–Curtis dissimilarity between the estimated profile
and the true profile and Shannon’s equitability as a measure of al-
pha diversity. All the results are averaged across all five samples. On
the CAMI-II Challenge, we followed the original paper by Meyer
et al. (2022) and compared methods based on L1 norm error and
weighted UniFrac error. Both L1 norm error and weighted
UniFrac error measure the accuracy of the relative abundance esti-
mations of taxa in a sample. TheUniFracmetric is computed across
the entire taxonomic tree, whereas the L1 norm is computed at
each taxonomic rank. The weighted UniFrac has a maximum of
16 on this data set, so we report 16—UniFrac; similarly, the L1
norm can never be more than 2, so we report 2—L1. We report av-
erages across 10 samples and 100 samples, respectively, for marine
and strain-madness data sets.

Data access

Simulated query sequences for read classification can be found at
https://ter-trees.ucsd.edu/data/krank/KRANK-queries.tar.gz. Our
results,metadata files and scripts used to create figures, and custom
scripts used to evaluate read classification results are available at
GitHub (https://github.com/bo1929/shared.KRANK). KRANK’s

software can be found at GitHub (https://github.com/bo1929/
KRANK). We also share both the software and custom auxiliary
scripts as Supplemental Code. The list of KRANK libraries used
across our experiments can be found at https://ter-trees.ucsd
.edu/data/krank/, a tutorial for running KRANK, and descriptions
of these libraries are available at GitHub.

Competing interest statement

The authors declare no competing interests.

Acknowledgments

We acknowledge the San Diego Supercomputer Center (SDSC)
at University of California, San Diego for providing HPC resources
that have contributed to the research results reported within this
paper. The funding for this work was provided by the National
Institute ofHealth (NIH) grant number R35GM142725 and by a re-
search grant by the Minderoo Foundation to S.M.

Author contributions: A.O.B.Ş. and S.M. conceived the study,
designed the experiments, and wrote the manuscript. A.O.B.Ş.
wrote the KRANK software and conducted the experiments.

References

Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, Zhu Q,
BolzanM, Cumbo F, May U, et al. 2020. Precise phylogenetic analysis of
microbial isolates and genomes from metagenomes using PhyloPhlAn
3.0. Nat Commun 11: 2500. doi:10.1038/s41467-020-16366-7

Balaban M, Jiang Y, Zhu Q, McDonald D, Knight R, Mirarab S. 2024.
Generation of accurate, expandable phylogenomic trees with uDance.
Nat Biotechnol 42: 768–777. doi:10.1038/s41587-023-01868-8

Har-Peled S, Indyk P, Motwani R. 2012. Approximate nearest neighbors: to-
wards removing the curse of dimensionality.Theory Comput 8: 321–350.
doi:10.4086/toc.2012.v008a014

HuangW, Li L, Myers JR, Marth GT. 2012. ART: a next-generation sequenc-
ing read simulator. Bioinformatics 28: 593–594. doi:10.1093/bioinfor
matics/btr708

Lee D, Karchin R, Beer MA. 2011. Discriminative prediction of mammalian
enhancers from DNA sequence. Genome Res 21: 2167–2180. doi:10
.1101/gr.121905.111

Liang Q, Bible PW, Liu Y, Zou B, Wei L. 2020. DeepMicrobes: taxonomic
classification for metagenomics with deep learning. NAR Genom
Bioinform 2: lqaa009. doi:10.1093/nargab/lqaa009

Lu J, Breitwieser FP, Thielen P, Salzberg SL. 2017. Bracken: estimating species
abundance in metagenomics data. PeerJ Comput Sci 3: e104. doi:10
.7717/peerj-cs.104

McDonaldD, Jiang Y, BalabanM, Cantrell K, ZhuQ, Gonzalez A,Morton JT,
Nicolaou G, Parks DH, Karst SM, et al. 2024. Greengenes2 unifies micro-
bial data in a single reference tree. Nat Biotechnol 42: 715–718. doi:10
.1038/s41587-023-01845-1

Meyer F, Bremges A, Belmann P, Janssen S, McHardy AC, Koslicki D. 2019.
Assessing taxonomicmetagenome profilers with OPAL.Genome Biol 20:
51. doi:10.1186/s13059-019-1646-y

Meyer F, Fritz A, Deng ZL, Koslicki D, Lesker TR, Gurevich A, Robertson G,
Alser M, Antipov D, Beghini F, et al. 2022. Critical assessment of meta-
genome interpretation: the second roundof challenges.NatMethods 19:
429–440. doi:10.1038/s41592-022-01431-4

Nasko DJ, Koren S, Phillippy AM, Treangen TJ. 2018. RefSeq database
growth influences the accuracy of k-mer-based lowest common ancestor
species identification. Genome Biol 19: 165. doi:10.1186/s13059-018-
1554-6

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S,
Phillippy AM. 2016. Mash: fast genome and metagenome distance esti-
mation using MinHash. Genome Biol 17: 132. doi:10.1186/s13059-016-
0997-x

Ounit R, Lonardi S. 2016. Higher classification sensitivity of short metage-
nomic reads with CLARK-S. Bioinformatics 32: 3823–3825. doi:10
.1093/bioinformatics/btw542

Ounit R, Wanamaker S, Close TJ, Lonardi S. 2015. CLARK: fast and accurate
classification of metagenomic and genomic sequences using discrimi-
native k-mers. BMC Genomics 16: 236. doi:10.1186/s12864-015-1419-2

PachiadakiMG, Brown JM, Brown J, Bezuidt O, Berube PM, Biller SJ, Poulton
NJ, Burkart MD, La Clair JJ, Chisholm SW, et al. 2019. Charting the

S ̧apc ı and Mirarab

1466 Genome Research
www.genome.org

https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_2_DATABASES/
https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_2_DATABASES/
https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_2_DATABASES/
https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_2_DATABASES/
https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_2_DATABASES/
https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_2_DATABASES/
https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_2_DATABASES/
https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/CAMI_2_DATABASES/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
https://github.com/bo1929/shared.KRANK
https://github.com/bo1929/shared.KRANK
https://github.com/bo1929/shared.KRANK
https://github.com/bo1929/shared.KRANK
https://github.com/bo1929/shared.KRANK
https://github.com/bo1929/shared.KRANK
https://github.com/CAMI-challenge/OPAL
https://github.com/CAMI-challenge/OPAL
https://github.com/CAMI-challenge/OPAL
https://github.com/CAMI-challenge/OPAL
https://ter-trees.ucsd.edu/data/krank/KRANK-queries.tar.gz
https://ter-trees.ucsd.edu/data/krank/KRANK-queries.tar.gz
https://ter-trees.ucsd.edu/data/krank/KRANK-queries.tar.gz
https://ter-trees.ucsd.edu/data/krank/KRANK-queries.tar.gz
https://ter-trees.ucsd.edu/data/krank/KRANK-queries.tar.gz
https://ter-trees.ucsd.edu/data/krank/KRANK-queries.tar.gz
https://ter-trees.ucsd.edu/data/krank/KRANK-queries.tar.gz
https://github.com/bo1929/shared.KRANK
https://github.com/bo1929/shared.KRANK
https://github.com/bo1929/shared.KRANK
https://github.com/bo1929/shared.KRANK
https://github.com/bo1929/shared.KRANK
https://github.com/bo1929/KRANK
https://github.com/bo1929/KRANK
https://github.com/bo1929/KRANK
https://github.com/bo1929/KRANK
https://github.com/bo1929/KRANK
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279339.124/-/DC1
https://ter-trees.ucsd.edu/data/krank/
https://ter-trees.ucsd.edu/data/krank/
https://ter-trees.ucsd.edu/data/krank/
https://ter-trees.ucsd.edu/data/krank/
https://ter-trees.ucsd.edu/data/krank/

complexity of the marine microbiome through single-cell genomics.
Cell 179: 1623–1635.e11. doi:10.1016/j.cell.2019.11.017

Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil
PA, Hugenholtz P. 2018. A standardized bacterial taxonomy based on
genome phylogeny substantially revises the tree of life. Nat Biotechnol
36: 996–1004. doi:10.1038/nbt.4229

Rachtman E, Balaban M, Bafna V, Mirarab S. 2020. The impact of contami-
nants on the accuracy of genome skimming and the effectiveness of ex-
clusion read filters. Mol Ecol Resour 20: 649–661. doi:10.1111/1755-
0998.13135

Rachtman E, Bafna V, Mirarab S. 2021. CONSULT: accurate contamination
removal using locality-sensitive hashing. NAR Genom Bioinform 3:
lqab071. doi:10.1093/nargab/lqab071

Roberts M, HayesW, Hunt BR, Mount SM, Yorke JA. 2004. Reducing storage
requirements for biological sequence comparison. Bioinformatics 20:
3363–3369. doi:10.1093/bioinformatics/bth408

Şapcı AOB, Rachtman E, Mirarab S. 2024. CONSULT-II: accurate taxonomic
identification and profiling using locality-sensitive hashing. Bioinfor-
matics 40: btae150. doi:10.1093/bioinformatics/btae150

Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I,
Majda S, Fiedler J, Dahms E, et al. 2017. Critical assessment of metage-

nome interpretation—a benchmark of metagenomics software. Nat
Methods 14: 1063–1071. doi:10.1038/nmeth.4458

von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE.
2019. Robust taxonomic classification of uncharted microbial sequenc-
es and bins with CAT and BAT. Genome Biol 20: 217. doi:10.1186/
s13059-019-1817-x

Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with
Kraken 2. Genome Biol 20: 257. doi:10.1186/s13059-019-1891-0

Zheng H, Marçais G, Kingsford C. 2023. Creating and using minimizer
sketches in computational genomics. J Comput Biol 30: 1251–1276.
doi:10.1089/cmb.2023.0094

Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, Belda-Ferre P, Al-
Ghalith GA, Kopylova E, McDonald D, et al. 2019. Phylogenomics of
10,575 genomes reveals evolutionary proximity between domains
Bacteria and Archaea. Nat Commun 10: 5477. doi:10.1038/s41467-
019-13443-4

Received March 15, 2024; accepted in revised form August 6, 2024.

Efficient k-mer selection for large databases

Genome Research 1467
www.genome.org

