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Abstract of the Thesis

A Moment Matching Based Fitting Algorithm

for High Sigma Distribution Modeling

by

Rahul Krishnan

Master of Science in Electrical Engineering

University of California, Los Angeles, 2015

Professor Lei He, Chair

The impact of process variations continue to grow as transistor feature size shrinks.

Such variations in transistor parameters lead to variations and unpredictability in

circuit output, and may ultimately cause them to violate specifications leading to

circuit failure. In fact, timely failures in critical circuits may lead to catastrophic

failures in the entire chip. As such, statistical modeling of circuit behavior is

becoming increasingly important. However, existing statistical circuit simulation

approaches fail to accurately and efficiently analyze the high sigma behavior of

probabilistic circuit output. To this end, we propose PDM (Piecewise Distri-

bution Model) - a piecewise distribution fitting approach via moment matching

using maximum entropy to model the high sigma behavior of analog/mixed-signal

(AMS) circuit probability distributions. PDM is independent of the number of in-

put dimensions and matches region specific probabilistic moments which allows for

significantly greater accuracy compared to other moment matching approaches.

PDM also utilizes Spearman’s rank correlation coefficient to select the optimal

approximation for the tail of the distribution. Experiments on a known mathe-

matical distribution and various circuits obtain accurate results up to 4.8 sigma

with more than 2 orders of speedup relative to Monte Carlo.
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CHAPTER 1

Introduction

As transistor feature size continues to shrink, the impact of process variations

on circuit behavior grows and cannot be neglected [1, 2, 3]. Under these vari-

ations, circuit behavior is transformed from a deterministic value to a random

variable with an unknown distribution. These variations can cause significant

circuit performance degradation that may violate constraints and fail. As such,

circuit reliability has become an area of growing concern. For critical circuits

that are repeated millions of times, a single failure may lead to catastrophic re-

sults. Consequently, such “rare event” failures must be accurately and efficiently

modeled to maximize the effective yield of a circuit.

As society and industry move towards more energy efficient chips, minimizing

power consumption becomes increasingly important. In such designs, low supply

voltages (VDD) are often used to reduce power. However, while VDD is explicitly

reduced the gate over drive (Vgs − Vth) is implicitly reduced [4]. In the presence

of large Vth variations from the manufacturing process, transistors may enter the

subthreshold operation region causing a strongly non-linear circuit behavior. This

non-linear behavior translates to circuit behavior distributions becoming strongly

non-Gaussian (see Figure 4.4). Consequently, when modeling this behavior for

yield analysis, it is necessary to consider the inherent non-linearity that arises due

to the aforementioned reasons.

Although there are many methods that attempt to model overall circuit be-

havior [1, 3, 5], there are very few methods that efficiently model the high sigma
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behavior of strongly non-Gaussian distributions. One brute force method is Monte

Carlo (MC), which is considered to be the gold standard approach; it involves re-

peated sampling and simulation to extract an approximate distribution of circuit

behavior [6]. Although Monte Carlo is highly accurate, it is infeasible for yield

analysis because it requires millions of samples/simulations making it runtime

prohibitive. Moreover, if any design changes are introduced in the circuit we must

repeat these simulations another million or more times.

In order to improve the efficiency of yield analysis techniques, classifier based

approaches such as Importance Sampling [7, 8, 9] and Statistical Blockade [10]

were proposed to obtain high accuracy with a minimal number of samples. Im-

portance Sampling biases the input sample distribution to draw more “important”

samples which are then reweighed and used to calculate a final probability. How-

ever, Importance Sampling methods have two drawbacks. First, they are unable

to handle circuits with a large number of variables due to the “curse of dimension-

ality” which causes the reweighing process to become degenerate and unbounded

[11, 12]. Second, they do not estimate the overall PDF of circuit behavior and

thus require repetitive sampling to estimate different critical points, leading to po-

tential inefficiency. Statistical Blockade [10] attempts to build a linear classifier to

screen out/block samples that are likely to cause failure and evaluate these “likely

to fail” samples to calculate a failure probability. However, the classifier does not

account for the non-linearity between process variables and circuit outputs, or the

multiplicity of input failure regions, leading to large errors.

In order to combat the dimensionality issue of the above methods, a moment

matching technique based on Maximum Entropy [13], referred to as MAXENT,

was proposed. The method is novel because it uses circuit output behavior (e.g.

delay) as its only input and therefore performs moment matching solely in the

output domain. Consequently, the method is constant in dimensionality and thus

does not fall to the dimensionality issues in Importance Sampling and classifier
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methods outlined above. However, MAXENT uses only one set of moments that

are accurate in the low sigma region. Obtaining moments that are accurate in

the high sigma region requires both a large number of samples to obtain accurate

moments and knowledge of which moments reflect behavior in the tail of the

distribution, which is often unknown [14]. Consequently, the distribution that it

uses is formulated on a global optimization framework that attempts to minimize

overall error and is therefore unable to capture the high sigma behavior in non-

Gaussian distributions.

To address both the issue of high-dimensionality and non-Gaussian distribu-

tions while maintaining high accuracy and efficiency, we propose a piecewise distri-

bution fitting algorithm, known as PDM (Piecewise Distribution Model), that uses

moment matching via maximum entropy to build two separate, region based dis-

tributions of circuit behavior. The first distribution, Segment1, matches moments

that are accurate only in the body/bulk of the distribution. The second distribu-

tion, Segment2, matches moments that are accurate only in the high sigma/tail

region of the distribution and models the tail of circuit behavior. Both distribu-

tions are constructed using the maximum entropy moment matching technique

but differ by using two different sets of moments. The moments in Segment1 are

obtained by using circuit behavior sample moments calculated from the original

input (process variation) distributions. The moments in Segment2 are obtained

using circuit behavior sample moments calculated from input distributions that

are shifted towards regions that are more likely to fail.

The optimal Segment1 distribution is selected using Spearman’s rank corre-

lation coefficient to analyze the monotonic behavior of the CDF. The Segment2

distribution is assumed to be an exponential distribution. Because this distri-

bution is constructed from shifted moments, its probability must be re-weighed

and is done so using conditional probability and a scaling factor that corrects

for continuity between the Segment2 distribution and the true model of the tail
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distribution. PDM has a constant complexity in terms of input dimensions as

it works solely in the output (circuit behavior) domain. Experiments on both a

mathematically known distribution and circuits demonstrate the method is accu-

rate up to 4.8 sigma for non-Gaussian distributions with more than 2 orders of

speedup relative to Monte Carlo.

The rest of the paper is organized as follows. Section 2 presents background

on general statistical modeling and a detailed derivation of the maximum entropy

moment matching technique, along with results on the MAXENT method [13].

Section 3 presents the proposed piecewise fitting algorithm and highlights the

difference between it and the general maximum entropy moment matching tech-

nique. Section 4 evaluates the performance of PDM on the mathematically known

distribution, one digital circuit, and one analog circuit, where all distributions are

non-Gaussian. Section 5 concludes this thesis and presents some topics for future

work.
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CHAPTER 2

Background

2.1 General Statistical Modeling

Figure 2.1 shows the typical flow for performing statistical simulations on a cir-

cuit. We begin by sampling the process variations which are known as the input

variables and are part of the “input domain”. These variables, such as the effective

channel length Leff or oxide thickness tox, belong to the input domain because

they are part of the transistor values that are fed into a circuit simulator. The

input variables are typically assumed to be normally distributed with a known

mean µ and variance σ2. These parameters of the input variables are obtained

via the transistor model which is typically provided by the designer or fabrication

plant.

Once the input variables are sampled, we feed the values to a circuit simulator

such as HSPICE. The simulator then produces a single circuit response such as

50% delay or a voltage at a node. These circuit responses are commonly known as

the circuit output and are part of the “output domain”. These circuit outputs are

often one dimensional and often need an extended period of time to obtain even

a single measurement. Due to the variations in the input variables, we will often

get two different circuit outputs for a combination of different variable values.

Therefore, if this work flow of sampling and simulation is repeated, the majority

of the input domain space will be covered and an overall estimate of all circuit

responses with their estimated probabilities can be extracted.
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Figure 2.1: Flowchart for Circuit Simulation

The above flow of repeated sampling and simulation is straightforward Monte

Carlo and is used to obtain an estimate of the distribution/probability density

function (PDF) of circuit response [6]. Depending on the required accuracy of

the response, the required number of samples will change. In some cases, a few

hundred samples are required to estimate the probability of a circuit response

around the mean (nominal) value of the PDF. However, we are often interested in

the circuit responses that have very small probability because these “rare events”

are typically the most harmful and destructive [9, 15]. Because we are interested

in the distribution of circuit behavior, the random variable of interest is the circuit

response.

One such method of quantifying the required number of samples for a target

probability is simply taking the inverse. For example, consider a designer that is

interested in the circuit response that will result in a failure rate of 16%. This

means that we are interested in a circuit response that has approximately 16%

probability in the tail of the PDF. This failure rate corresponds to approximately

1 failure every 6.25 samples, so a starting point would be drawing 7 samples,

simulating each and selecting the largest value. However, the preceding case

6



assumes that we will determinately see 1 failed sample every 6.25 which may not be

true due to the large variations and unpredictability in the circuit. Consequently,

in order to have a more confident estimate, we may require that we draw enough

samples such that we have 5 failures, i.e. we would draw 32 samples. By using

basic probability, we do not make any assumptions about the shape of the circuit

PDF allowing for an unbiased estimate. Furthermore, to simplify the relationship

between estimated probability (failure rate) and required number of samples, we

utilize the Z score of a standard normal distribution which is typically referred to

as the “sigma” value [14]. For example, instead of asking for the circuit response

that gives a 16% failure rate, we would ask for the “1 sigma point” of the PDF.

Note that the aforementioned probability and Z score methods work for both ends

of the tail of a PDF.
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Figure 2.2: Required samples for various sigma (probability) points

In typical yield analysis, we require a failure rate of at least 0.003167% or

approximately 4 sigma. Obtaining this probability would require one failure every

31, 575 samples, and using the estimate of 5 failure samples increases that required

number to approximately 155, 000 samples. In many cases, this is the “largest”

probability that is required and we typically need up to the 4.8 or 5 sigma point in

the PDF, which corresponds to roughly 3.4E6 samples for 1 failure. Furthermore,

simulating this many samples is overly time consuming, making straightforward
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Monte Carlo runtime prohibitive. Figure 2.2 shows the required number of samples

(log scale) for a given sigma point (linear). We see that even in log scale, the

required number of samples is non-linear. Alternative methods such as Quasi

Monte Carlo may be utilized, however they still require a large number of samples

and it can be shown that as the dimensionality of the sampling space increases (in

this case, the input domain), the convergence rate of QMC and MC are similar

[16]. Consequently, it is necessary to develop efficient algorithms that minimize

the number of samples to accurately estimate a very small failure probability.

2.2 Derivation of Maximum Entropy Method

Entropy is a measure of uncertainty. When choosing a distribution, one should

choose a distribution that maximizes the entropy [17]. By doing this, we can

ensure that the distribution is uniquely determined to be maximally unbiased

with regard to missing information, while still agreeing with what is known [17].

The entropyW of a distribution p(x) is defined in (2.1). To choose the distribution

with maximum entropy, we simply maximize this function with respect to some

constraints. These constraints are typically moment constraints as shown in (2.2),

as a probability distribution can be completely defined by its set of moments [18].

When applying the maximum entropy method to circuit simulation algorithms,

we consider probabilistic sample moments of circuit response with moment order

i = 0, 1, ..., k where k assumes multiple values to generate multiple distributions,

of which one is optimally selected.

W =

∫

−p(x) log p(x)dx (2.1)

∫

xip(x)dx = µi, i = 0, 1, ..., k. (2.2)
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To maximize (2.1) we first introduce Lagrange multipliers, resulting in the

Lagrangian function

L = −

∫

(p(x) log p(x))dx+

k
∑

i=0

λi(

∫

xip(x)dx− µi) (2.3)

Next, we take partial derivatives of L with respect to p(x) and λ to find the

points where it reaches a maximum, as shown in (2.5) and (2.4).

δL

δλi

= 0 (2.4)

δL

δp(x)
= 0 (2.5)

Taking the derivative with respect to λ results in the original moment con-

straints from (2.2) and is redundant information. The derivative with respect to

p(x) yields (2.6)

δL

δp(x)
=

∫

(log p(x)dx) + 1− {

k
∑

i=0

λi(

∫

(xidx))} = 0 (2.6)

We can further simplify this by absorbing the constant 1 into the λ0 term and

combining the finite sum with the integrand resulting in (2.7)

∫

(log p(x)dx)−

∫

(

k
∑

i=0

λix
idx) = 0 (2.7)

Note that the limits on both integrals are identical and are typically from∞ to

−∞ for standard probability distributions because the distribution is assumed to

be 0 outside of the support of random variable x. In the case of circuit simulation

algorithms, this is also true, i.e. the circuit has maximum and minimum operating

values and is zero outside these points. Consequently, because the above equation

9



must hold in the general case of arbitrary limits, the integrand must be 0 and we

can rearrange terms to solve for the unknown variable p(x) as shown in (2.8).

p(x) = exp

(

−

k
∑

i=0

λix
i

)

(2.8)

However, the solution in (2.8) does not exist for values of k ≥ 2 [19]. Conse-

quently, [20] propose that we transform the constrained problem into an uncon-

strained problem by utilizing its dual. Utilizing duality allows us to recast the

original problem of maximizing (2.3) into its dual form that we can minimize. This

dual function can be obtained by plugging the results of (2.8) into the Lagrange

function resulting in (2.9) and (2.10)

Γ = lnZ +

k
∑

i=1

λiµi (2.9)

Z = exp(λ0) =

∫

exp

(

−

k
∑

i=1

λix
i

)

dx (2.10)

Now this dual problem can be solved for any value of k. One approach is

using an iterative method such as traditional Newton’s method as shown in [19,

21, 13]. Here, Newton’s method is used to solve for the Lagrangian multipliers

λ = [λ0, λ1, ..., λk]
′ for a corresponding set of moments i = 0, 1, ..., k. The standard

Newton update equation for iteration m is shown in (2.11)

λ(m) = λ(m) −H−1δΓ

δλ
(2.11)

Where the gradient (2.12) and Hessian (2.13) are defined as

δΓ

δλi

= µi −

∫

xi exp

(

−
k
∑

i=1

λiµi

)

dx

∫

exp

(

−
k
∑

i=1

λiµi

)

dx

= µi − µi(λ) (2.12)
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Hij =
δ2Γ

δλiδλj

= µi+j(λ)− µi(λ)µj(λ) (2.13)

µi+j(λ) =

∫

xi+j exp

(

−
k
∑

i=1

λiµi

)

dx

∫

exp

(

−
k
∑

i=1

λiµi

)

dx

(2.14)

Equation (2.13) indicates that the dual function Γ has a second derivative and

that it is positive definite [22]. Consequently, the function (2.9) is everywhere

convex which guarantees that if a stationary point exists it must be the unique

absolute minimum. However, convexity does not ensure that a minimum does

exist. Consequently, a necessary and sufficient condition that (2.9) has a unique

absolute minimum at a finite value of λ is that the moment sequence {µi, i =

0, 1, ..., k} be completely monotonic [22]. We note that the derivation of such an

existence condition is outside of the circuit simulation topic and we therefore refer

to [22] for its derivation.

2.3 Application to Statistical Circuit Modeling

We begin by drawing a small number of samples from the input variables and feed-

ing them to a circuit simulator to produce a set of outputs. These small number of

outputs are realizations of the random variable x which are used to construct the

moments µi that are to be matched in the optimization. Note that probabilistic

moments are typically calculated as µi =
∫

xip(x)dx. However, because we have

no apriori information about the shape or form of the distribution p(x), we cannot

use this method. Consequently, we utilize sample moments [14] µi =
N
∑

j=1

xi
j/N (N

is the number of samples that we draw) to construct the moments for this generic

case. By using sample moments, we ensure that the requirement for monotonic

moments is satisfied because the random variable x is assumed to be always posi-
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tive (we can always transform the circuit response to be positive). Consequently,

we are guaranteed that the estimated probability distribution p(x) will be stable.

After obtaining the sample moments µi for a set i = 0, 1, ...k we perform the

maximum entropy moment matching method using traditional Newton’s method.

We initialize the Lagrange multipliers to 0, λ = [0; 0; ...; 0], resulting in the initial

guess of the distribution as a uniform distribution. This result is sensical as the

uniform distribution inherently has the maximum entropy of all distributions.

Next, we let the algorithm continue until the successive changes in multipliers λi

are within a user specified tolerance. As such, we obtain a probability distribution

p(x)k where k denotes the number of moments that are used.

2.4 Experimental Results using MAXENT

Examples of this work are implemented as the MAXENT algorithm and are shown

in [13]. We implemented the proposed algorithm in MATLAB. The first circuit is

a 6-T SRAM bit-cell with 54 variables, while the second circuit is a Operational

Amplifier with 70 variables. HSPICE is used to simulate these 2 circuits for circuit

performance. Also, MC [6] and PEM [1] are used for comparison. PEM is another

circuit modeling algorithm that converts probabilistic moments of circuit perfor-

mance into corresponding time moments of an LTI system then uses Asymptotic

Waveform Evaluatiation (AWE) to match these time moments to the transfer

function of the system. AWE uses the Pade approximation which generates poles

(eigenvalues) that correspond to the dominant poles of the original system, and

also poles that do not correspond to the poles of the original system but account

for the effects of the remaining poles [23].

Figure 2.3 depicts the 6T SRAM bit cell circuit overview. The reading opera-

tion of this cell is viewed as the circuit performance. The reading operation of the

cell is determined by the voltage ∆V between BLand BL. If this voltage is large

12



enough to be sensed, it is deemed to be a successful read. The discharge behavior

at BL plays a crucial role in the value of ∆V . Due to process variations in all

transistors, the discharge behavior of BL may not be as predicted and therefore

the voltage ∆V may not be large enough. Figure 2.4 depicts the Operational

Amplifier circuit overview. The bandwidth of this circuit is viewed as the circuit

performance.

Q

Q

WL

BL
BL

Vdd

Mn1

Mn2

Mn3

Mn4

Mp5 Mp6

WL

Figure 2.3: 6T SRAM Circuit Layout

2.5 Stability

Figure 2.5 shows the performance distributions generated by MAXENT, PEM,

and MC for the first 16 moments and first 18 moments using the 6T SRAM circuit

using 200 samples. As we can see, MAXENT is stable under both conditions. The

curves representing MAXENT for the first 16 moments and first 18 moments show

very good overlap with the ground truth (MC) distribution. On the other hand,

only the PEM curve corresponding to 16 moments is stable and overlaps with

the ground truth distribution. The only value that changed between these curves

are the order of moments that were used. The sample number, circuit topology,

13



Figure 2.4: Operational Amplifier Circuit Layout

process variations, and all other inputs were held constant. These results imply

that PEM is very sensitive to the moments that are used.

Figure 2.6 shows the performance distributions generated by MAXENT, PEM,

and MC for the first 16 moments and first 18 moments using the 6T SRAM circuit

using 250 samples. As we can see, MAXENT is stable under both 16 moments

and 18 moments and overlap well with the ground truth distribution. Moreover,

we see that PEM is now stable under both 16 moments and 18 moments and also

overlap well with the ground truth distribution. Previously, PEM was unstable

for the SRAM circuit using 200 samples and 18 moments, whereas now it is stable

for the SRAM circuit using 250 samples and 18 moments.

Figure 2.7 shows the performance distributions generated by MAXENT, PEM,

and MC for the first 16 moments and first 18 moments using the 6T SRAM circuit

using 300 samples. In this case, we have returned to the instability of PEM. We

14
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Figure 2.5: PEM lack of stability on SRAM circuit (200 samples)
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Figure 2.6: PEM stability on SRAM circuit (250 samples)

see that MAXENT is still stable as always, but PEM is now unstable with 18

moments.

Based on Figures 2.6, 2.5, 2.7 we can see that other moment matching meth-

ods such as PEM are very sensitive to both the number of moments and the

number of samples used. It is sensitive to the number of moments because the

Pade approximation (used to estimate the transfer function model of the moment

matching algorithm) can produce positive poles leading to instability. Further-

more, because a different number of samples generates a different set of moments
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Figure 2.7: PEM lack of stability on SRAM circuit (300 samples)

(recall that moments in both algorithms are sample moments) we may also incur

instability because of the Pade approximation. Additionally, this moment match-

ing method uses a transfer function which may allow for negative probabilities -

a non-sensical result in the case of probability. On the other hand, MAXENT

is guaranteed to be stable if it uses a monotonic set of moments. Its stability is

not sensitive to the number of moments or samples used. Moreover, because it

is estimated as a product of exponential functions it will never have a negative

probability. Consequently, we can see that MAXENT is quite robust compared

to other moment matching methods.

2.6 Accuracy

We also evaluated the accuracy of the MAXENT algorithm compared to PEM.

Throughout our experiments, MAXENT consistently offers lower error relative to

the ground truth than PEM does for any order of moments. We determine the

error using the following equation:

error =

∫

(f1(x)− f2(x)) dx (2.15)
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where f1(x) is our distribution from MAXENT or PEM and f2(x) is the ground

truth distribution from MC. Figures 2.5, 2.6, 2.7 already illustrate the accuracy of

MAXENT on the SRAM circuit for various samples and moment orders. Figure

2.8 illustrates the accuracy of MAXENT on the Operational Amplifier circuit.

We see that at a moment order of 10, MAXENT already does a good job of

mimicing the overall shape of the distribution, but it lacks some key details.

Increasing the moment order to 12 gives an almost exact replica of the ground

truth distribution. On the other hand, for a moment order of 10, PEM fails to give

an accurate representation of the shape of the distribution. Moreover, increasing

the moment order to 12 still yields a disappointing result. The overall shape and

accuracy of the distribution from PEM is still very different from the ground truth

distribution.
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Figure 2.8: Operational Amplifier Accuracy (800 samples)

To quantify the results, Table 2.1 displays the relative error for both MAXENT

and PEM in the SRAM and Operational Amplifier circuits. As we can see from

both Table 2.1 and Table 2.2, once we reach a steady-state value, MAXENT offers
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up to 110% lower error for the OpAmp, and up to 27% lower error for the SRAM

circuit. We note that although the values of the variance and kurtosis (moment

orders 2 and 4) themselves are accurate, the distributions generated using such

few orders of moments is very inaccurate. This seems to be an issue of all moment

matching algorithms. Consequently, results using such low order of moments is

excluded.

Table 2.1: Accuracy Comparision
Circuit # Samples Moment Order PEM MAXENT

Error(%) Error(%)

6 46.349 11.85

8 30.656 3.988

SRAM 200 10 15.577 3.281

12 9.4457 3.394

14 6.6038 3.181

18 198.97 5.470

10 125.54 30.943

12 116.39 30.881

Op. Amp. 200 14 108.43 5.374

16 102.05 5.506

18 93.793 5.567

20 111.49 5.584

Table 2.2: Accuracy Comparison
Circuit # Samples Moment Order PEM MAXENT

Error(%) Error(%)

6 46.117 11.043

8 30.251 5.331

SRAM 300 10 15.097 6.046

12 11.341 5.818

14 10.74 6.516

18 200 6.222

10 126.51 28.271

12 117.26 3.851

Op. Amp. 800 14 108.40 4.232

16 101.110 3.679

18 94.682 3.465

20 89.264 3.568
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CHAPTER 3

Piecewise Distribution Model

In this section, we propose the PDM (Piecewise Distribution Model) algorithm to

accurately and effective model the high sigma portion of non-linear distributions

from circuits in high dimensionality. The motivation behind PDM is to accurately

model the tail distribution of circuit behavior by using region specific moments.

In general, moment matching techniques such as [1, 13] use moments that may

accurately reflect the bulk or body of the distribution. However, these global

approximation methods use general probabilistic moments which give very little

information about the high sigma areas and thus fail to accurately model the

tail distribution. To this end, PDM utilizes moment matching to fit the high

sigma distribution by using region specific moments which capture highly accurate

information in regions of interest. In general, an arbitrary number of pieces can

be used to fit the overall distribution. To this end the proposed algorithm fits

two pieces - the first distribution (Segment1) matches the low sigma region and is

accurate in the body (typically ≤ 4σ) while the second distribution (Segment2)

matches the high sigma region and is accurate in the tail (typically ≥ 4σ). The

flow of the method is shown in Figure in 3.1 while details are given below.

3.1 Building the Segment1 Distribution

To build the Segment1 distribution, we first draw samples qi; i = {1, ..., N} from

input parameter distributions f(xj); j = {1, ..., p} where p is the number of vari-

ables. Next, we simulate these samples using a circuit simulator to obtain circuit
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Figure 3.1: PDM contains 4 steps: building the Segment1 distribution, selecting

the optimal Segment1 distribution, shifting input parameters to build the Seg-

ment2 distribution, and estimating the final probability

behavior outputs yi; i = {1, ..., N}. Finally, sample probabilistic moments µk are

calculated and matched using MAXENT as outlined in [13, 22]. Depending on the

number of moments that are matched, we will obtain different Segment1 distribu-

tions. However, the exact number of moments to be matched is unknown because

we do not know which set of moments map to different areas of the distribution

[14]. Consequently, we sweep across a range of values k = 5, 7, 9, ..., build multi-

ple Segment1 distributions and select a single, “optimal” Segment1 distribution

as explained below.

3.2 Selecting the Optimal Segment1 Distribution

One of the key characteristics of non-Gaussian distributions is that the gradient

of their CDFs are monotonically increasing, i.e. the change in circuit behavior for

a fixed change in probability continuously increases as the sigma value increases.

Here, the sigma value is simply the standard Z-score of a Standard Normal dis-

tribution, P (Z ≥ σ). On the other hand, the gradient is constant for a Gaussian

distribution. This is illustrated in Figure 3.2 which shows the gradient of the CDF

for a LogNormal (non-Gaussian) distribution vs a Gaussian distribution. Here,
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although the LogNormal distribution is a mathematical distribution, we label the

y − axis of the figure as Circuit Behavior to emphasize that this type of circuit

behavior is of interest. Consequently, we select the optimal Segment1 distribution

by choosing the one with a monotonically increasing gradient.
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Figure 3.2: Slope of Gaussian vs Non-Gaussian Distribution

In order to gauge the monotonicity of the gradient, we turn to Spearman’s

Rank Correlation Coefficient [24]. The correlation coefficient ρ is a measure of

how well a set of data can be described using a monotonic function. A coeffi-

cient of +1 indicates strong correlation to a monotonically increasing function

while a coefficient of -1 indicates strong correlation to a monotonically decreas-

ing function. To this end, we measure the gradient of the CDF for various body

distributions and compare the data set to a monotonically increasing set using

Spearman’s Coefficient ρ and select the distribution with the largest, positive co-

efficient. Figure 3.3 compares various Segment1 distributions, each built with a

different number of moments, that are used for approximating a non-Gaussian

distribution. We see that the coefficient for 5 of 6 distributions indicates that the

gradient data set is monotonically decreasing or uncorrelated. However, there is

a single distribution using 14 moments with a coefficient of ρ = 0.98, indicating

it is a monotonically increasing set and should be used as the optimal Segment

1 distribution. In general, the optimal Segment 1 distribution may not have 14

moments.
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Figure 3.3: Spearman’s Correlation of Distributions with Different Moments

To confirm that this is the optimal choice of the above example, we compare

the estimated data from the selected Segment1 distribution (strong Spearman’s

correlation), one non-selected distribution (poor Spearman’s correlation), and the

ground truth values as shown in Figure 3.4. We see that the selected distribution

matches very well with the ground truth because both distributions are non-

Gaussian and exhibit monotonically increasing gradients. On the other hand,

the distribution with poor correlation is very inaccurate. In short, we utilize

this combination of gradient and Spearman’s correlation to select the optimal

Segment1 distribution used in PDM.

Figure 3.4: Segment1 Comparison using Spearman’s Correlation Results
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3.3 Shifting Input Distributions and Building the Seg-

ment2 Distribution

The motivation behind shifting the input distributions is to draw more samples

that yield an output in the tail of the original circuit behavior distribution. By

generating more samples in this region, we can generate region specific moments

that are highly accurate in the tail. To obtain moments νl that are specific to the

tail of the distribution, we must shift the mean of the input parameter distributions

fromm to m̂ for each input parameter individually. To shift the mean, we first find

the largest circuit behavior ymax from the set yi used when building the Segment1

distribution. Each circuit behavior yi has a corresponding set of input samples qj

for each input parameter j = 1, ..., p. The largest circuit behavior ymax will have

a sample value q∗j for each input parameter j = 1, ..., p. To obtain the shifted

distributions, we simply shift the mean mj of parameter j to the sample q∗j .

Once the input parameters are shifted, an additionalN2 samples q̂i; i = 1, ..., N2

are drawn and simulated yielding an output ŷi; i = 1, ..., N2. To ensure that the

moments νl are comprised of information only in the tail distribution, we must

first screen the simulated data ŷi such that only samples that lay in the tail are

used. To do this, we simply pick a circuit behavior t∗ that separates the Seg-

ment1 distribution and the next distribution, in this case Segment2. The value

of t∗ is obtained by selecting a sigma point s in the Segment1 distribution and

extracting the corresponding circuit behavior. Typically, s is chosen to be a sigma

value between 3 and 4 as this is where the long, flat region of the tail begins as

shown in Figure 3.2. Next, the circuit behavior values are screened to obtain

wk = ŷi ≥ t∗; k = 1, ..., N3 where N3 is the number of points beyond t∗. Because

the output was screened, we ensure that the moments νl shall only be reflective

of the tail distribution’s domain and not be polluted by information outside of it.

Finally, to build the Segment2 distribution, we calculate l = 4 moments using
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µi =
∫

xip(x)dx and match them using maximum entropy as in [13, 19, 21, 22].

The motivation behind using only 4 moments is that this forces the maximum

entropy method to yield an exponential distribution as shown in [25]. The ex-

ponential distribution is a good approximation of the tail as it is monotonically

decreasing and can easily be obtained using the maximum entropy method.

3.4 Reweighing Segment2 via Conditional Probability

Once the Segment2 distribution is obtained, the probability for a specified circuit

behavior tcritical can be obtained; however, it will be inherently biased because the

input parameters were shifted to draw more important samples. To resolve this

issue, we use conditional probability to “re-weigh” probabilities as follows

P (H ≥ tcritical) = P (H ≥ tcritical|B ≥ t) ∗ P (B ≥ t) (3.1)

Where H is the random variable associated with the Segment2 distribution, B

is the random variable associated with the Segment1 distribution, tcritical is the

circuit behavior whose probability is of interest, and t∗ is the circuit behavior for

sigma point s. This conditional probability relationship works well when the two

distributions are identical, i.e. if we are calculating conditional probability under

one distribution. However, the proposed algorithm uses conditional probability

to re-weigh probabilities of two different random variables. If we rearrange (3.1)

we get

P (B ≥ t) =
P (H ≥ tcritical)

P (H ≥ tcritical|B ≥ t)
(3.2)

For a new point t
′

critical, the relationship is

P (H ≥ t
′

critical) = P (H ≥ t
′

critical|B ≥ t)P (B ≥ t) (3.3)
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P (B ≥ t) =
P (H ≥ t

′

critical)

P (H ≥ t
′

critical|B ≥ t)
(3.4)

Rearranging (3.2) and (3.4) and equating the common term yields

P (B ≥ t) =
P (H ≥ tcritical)

P (H ≥ tcritical|B ≥ t)
=

P (H ≥ t
′

critical)

P (H ≥ t
′

critical|B ≥ t)
(3.5)

If this relationship were true, then the denominator changing by a factor α

would force the numerator to change by this same factor. However, the only time

this will happen is if the distributions from the numerator and denominator (joint

and conditional, respectively) are identical as in importance sampling algorithms

such as [26]. Consequently, we propose a dynamic scaling technique that addi-

tionally reweighs the probability under the Segment2 distribution by a scaling

factor β. The scaling factor is a heuristic that is calculated based on the number

of outputs in wk that lay beyond the circuit behavior of interest tcritical, and the

total number of outputs N3 as shown in (3.7). The scaling factor attempts to

improve the accuracy in the conditional probability weight purely based on the

samples rather than assumptions about the shape of the distribution.

I(wk) =











0 if wk < tcritical

1 if wk ≥ tcritical

(3.6)

β =

N3
∑

k=1

I(wk)

N3
(3.7)

Using this scaling factor yields the final probability of a specified circuit behavior

tcritical as (3.8)

P (H ≥ tcritical) = P (H ≥ tcritical|B ≥ t) ∗ P (B ≥ t) ∗ β (3.8)
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Figure 3.5: Shape Issue in Conditional Probability

Figure 3.5 shows an example of the difference in shape between the true tail

distribution, the unscaled Segment2 distribution and the scaled Segment2 distri-

bution. Additionally, we note that both Segment1 and Segment2 distributions are

guaranteed to be stable, i.e. they will have a non-negative probability and there-

fore the CDF is guaranteed to be monotonic. This naturally arises because both

distributions are calculated using the maximum entropy method and all moments

in both segments are monotonically increasing.
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CHAPTER 4

Experiment Results

4.1 Experiment Settings

We implemented PDM in MATLAB using simulation outputs from HSPICE. The

algorithm was tested against the mathematically known LogNormal distribution,

along with the high sigma delay of a six stage clock path circuit and gain of an

Operational Amplifier. The results show the estimated sigma for multiple tcritical

values and are compared to Monte Carlo as ground truth. The Monte Carlo results

were generated with roughly 8E6 samples for the Time Critical Path and 2.5E6

samples for the Operational Amplifier. Additionally, we compare the results to

the moment matching algorithm MAXENT [13] to show the improvements using

a piecewise fitting method rather than a global approach. We also compare the

results to High Dimensional Importance Sampling (HDIS) [9] to show that the re-

weighing portion of PDM is robust as it is independent of dimensionality because

it is performed in the output domain, leading to high accuracy in high dimensional

circuits. Table 4.1 gives an overview of the variables used in each circuit.

The time critical path circuit has six stages and nine process parameters per

transistor, while the circuit behavior of interest is the delay from input to output.

Figure 4.1 displays a schematic of the two-stage differential cascode operational

amplifier. The circuit has a total of thirteen transistors and four gain boosting

amplifiers. In total, only ten transistors are considered to be independently varied.

However, transistors in the gain boosting amplifiers are also varied, though due
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Table 4.1: Parameters of MOSFETs
Variable Name Time Critical Path OpAmp

Flat-band Voltage †

Threshold Voltage †

Gate Oxide Thickness † †

Mobility † †

Doping concentration at depletion †

Channel-length offset † †

Channel-width offset †

Source/drain sheet resistance † †

Source-gate overlap unit capacitance † †

Drain-gate overlap unit capacitance † †

to the mirrored properties of the circuit they are varied simultaneously and are

counted as one variation. As such, although each transistor has seven process

parameters resulting in a total of seventy variables, the true number of variables

is much higher. The circuit behavior of interest is the gain Vout1

Vin1

.

4.2 Experiment on Mathematical Distribution

To illustrate the capability of modeling strongly non-Gaussian distributions, we

use PDM to model a LogNormal distribution. The LogNormal distribution with

mean and sigma parameters µ = 0, σ = 0.35 was selected because of its strongly

non-Gaussian behavior. A plot of the PDF of this distribution is presented in

Figure 4.2. The distribution appears to be Gaussian for a small portion due to

the bell shaped curve, but it has a very long tail, giving it the non-Gaussian

properties that are of interest.

Figure 4.3 shows the high sigma modeling results for Monte Carlo, MAXENT,

and PDM at multiple tcritical points. The figure is the CDF zoomed into the

tail area with the x-axis as probability and y-axis as the value of the random

variable, precisely circuit behavior. Here sigma is used to represent probability,

i.e. 4σ ≈ 0.000064 in the tail. The motivation for this type of plot is to best
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Figure 4.1: Op. Amp Schematic

represent the non-linear behavior of a non-Gaussian PDF. Additionally, it shows

only the high sigma behavior rather than the overall distribution because that is

the motivation and focus behind this algorithm.

HDIS, MAXENT and PDM each used a total of 4000 samples, with PDM using

3000 samples to calculate the Segment1 distribution and 1000 samples to calculate

the Segment2 distribution. In this case, the point s that separates Segment1 and

Segment2 is selected to be the 4 sigma point, i.e. whatever circuit behavior that

corresponds to a tail probability of 6.4E − 5 in the Segment1 distribution. By

introducing the Segment2 distribution at the point s, PDM is able to avoid any

errors that MAXENT suffers from, allowing PDM to match almost identically with

the Monte Carlo results up to 4.8 sigma. By utilizing region specific moments and

doing a piecewise fitting of the distribution, PDM keeps consistently small errors.
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Figure 4.2: LogNormal PDF

Figure 4.3: LogNormal Sigma Behavior

On the other hand, the MAXENT algorithm begins to lose accuracy and fails to

capture the tail of the distribution because it only uses one distribution to model

the overall behavior.

Furthermore, we see that HDIS has accuracy comparable to both PDM and

Monte Carlo. At the 4 sigma point, we see that HDIS is slightly more accurate.

However, between 4 and 4.8 sigma we see that PDM is more accurate, with both

algorithms exhibiting the same, good accuracy at the 4.8 sigma point. These

results intuitively make sense as the LogNormal distribution has only 1 variable

so HDIS does not suffer from the curse of dimensionality. Moreover, because it has
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only 1 variable, it is able to find a good shift. Similarly, PDM is able to maintain

very high accuracy because it matches region specific moments. Table 4.2 shows

the error in estimated sigma for PDM. The error is between -0.25% and 2% all

the way to the 4.8 sigma point.

We also note that MAXENT and PDM do not assume the distributions to be

matched are Gaussian distributions because they do not match only 3 moments.

[25] outlines that the maximum entropy moment matching method can be forced

to assume a Gaussian distribution if we match exactly 3 moments. However,

because we sweep through a wide range of moments for both MAXENT and

PDM we, in general, will never pick a Gaussian distribution because it does not

agree with the gradient criteria selected by Spearman’s correlation coefficient.

Consequently, the high error that MAXENT suffers from is due to its limitations

of using one set of moments, not from any assumptions about its model.

Table 4.2: Sigma Error for LogNormal
True Sigma Estimated Sigma % Error

4.0 4.0786 1.9650%

4.2 4.2224 0.5333%

4.4 4.3886 -0.2591%

4.6 4.5888 -0.2435%

4.8 4.8569 1.1854%

4.3 Experiments on Circuits

The Monte Carlo distribution of the time critical path circuit delay is presented

in Figure 4.4. Because the circuit operates at a very low VDD level, it behaves

in a slightly non-linear way. The distribution, while not as long tailed as the

LogNormal, has a more elongated tail than a Gaussian distribution.

Figure 4.5 shows the high sigma modeling results for Monte Carlo, MAXENT,

HDIS, and PDM at multiple tcritical points. HDIS, MAXENT and PDM each used
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Figure 4.4: Clock Path PDF

Figure 4.5: Clock Path Sigma Behavior

a total of 4000 samples, with PDM using 3000 samples to calculate the Segment1

distribution and 1000 samples to calculate the Segment2 distribution. Once again

in PDM, the point s is the 4 sigma point from the Segment1 distribution. By

introducing the Segment2 distribution at the point s, PDM is able to avoid any

errors that MAXENT may suffer from. This is most apparent at the 4.4 sigma

point and beyond. Additionally, PDM is able to capture the increase in slope

as the circuit approaches higher sigma. On the other hand, MAXENT is able

to perform somewhat well up to 4.2 sigma but then blows up and becomes com-

pletely inaccurate afterwards. The significant increase in accuracy with PDM is,
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again, due to matching region specific moments that allow piecewise fitting of the

distribution. Because MAXENT uses a single distribution to make a global ap-

proximation it is unable to capture the tail of the distribution and instead models

the high sigma points purely as noise. We again note that MAXENT does not

assume the distribution is a Gaussian model, so its error is due to limitations of

using one set of moments to model the total distribution which PDM does not

suffer from.

Furthermore, we see that the results from HDIS are completely inaccurate

compared to both Monte Carlo and PDM. HDIS is unable to come anywhere to the

proper sigma value for any of the points that it estimates. This is likely inaccurate

from a combination of high dimensionality and an inaccurate shift in the mean

and sigma of the new sampling distribution that causes the re-weighing process

to again become inaccurate. Simply put, if the shifting method is inaccurate the

results from HDIS will be inaccurate. If a larger number of samples is used, then

the shift and corresponding samples drawn from the new distribution will be more

accurate; however, due to the run time prohibitive nature of high dimensional

circuits, it is imperative to minimize the number of samples. On the other hand,

the shifting method in PDM is more robust because the re-weighing process is

performed in the output domain and is performed using conditional probability

rather than as a ratio of two distributions. Table 4.3 shows the error in sigma

between PDM and the ground truth from Monte Carlo. We see a worst case error

of 2.7% at 4 sigma but significantly lower errors at higher sigma values.

The Monte Carlo distribution of the Operational Amplifier circuit gain is

shown in Figure 4.6. The distribution is heavily skewed and has a very sharp

peak near the beginning and proceeds to drop very quickly, However, it also has a

slightly flatter portion that eventually decreases to a long, flat region of the tail.

It clearly has a long tail and behaves in a strongly non-Gaussian way.

Figure 4.7 shows the high sigma modeling results for Monte Carlo, MAXENT,
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Figure 4.6: Op. Amp PDF

Figure 4.7: Op Amp Sigma Behavior

and PDM at multiple tcritical points. The figure shows only the high sigma behav-

ior rather than the overall distribution because that is the motivation and focus

behind this algorithm. Both MAXENT and PDM used a total of 3000 samples,

with PDM using 2000 samples to calculate the Segment1 distribution and 1000

samples to calculate the Segment2 distribution. In the case of the OpAmp, the

point s was determined to be the 3.6 sigma point rather than the 4 sigma point as

in the previous cases due to the extremely long-tailed nature of the distribution.

Before the point s, it’s clear that PDM has a larger error (roughly 5%) than in

previous cases. However, when we introduce the Segment2 distribution, PDM is
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able to immediately recover and match the 3.8 sigma point closely and continues

to match larger sigma points and the overall shape of the Monte Carlo curve very

well. By introducing this second “piece” to fit the distribution, we are able to

get a significant increase in accuracy. On the other hand, the MAXENT method

has a large error, blows up and returns noise values because it is unable to cap-

ture the tail of the distribution as it does not use moments that are specific to

that region. We again note that MAXENT does not assume the distribution is a

Gaussian model because it matches more than 3 moments. Hence, its error is due

to limitations of using one set of moments to model the total distribution.

Moreover, we see that the results from HDIS are inaccurate throughout the

entire curve and at one point has a huge jump in its results and is simply noisy

throughout. Although the Operational Amplifier circuit is not as high dimensional

as the Clock Path, HDIS is still unable to properly model the high sigma region.

Again, the inaccuracy is most likely from an inaccurate shift in the mean and

sigma of the new sampling distribution that causes the re-weighing process to

again become inaccurate. Table 4.3 shows the error in estimated sigma between

PDM and the ground truth from Monte Carlo. We see very accurate results with

a worst case error of about -1% at 4.2 sigma.

Table 4.3: Sigma Error for Circuits
Time Critical Path Op Amp

True Estimated % Error True Estimated % Error

Sigma Sigma Sigma Sigma

4.0 4.1077 2.693% 4.0 4.0015 0.0375%

4.2 4.2571 1.360% 4.2 4.1547 -1.0786%

4.4 4.4080 0.182% 4.4 4.4386 0.8773%

4.6 4.5793 -0.450% 4.6 4.6329 0.7152%

4.8 4.8517 1.077% 4.8 4.7662 -0.7042%
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4.4 Speedup Comparison

To analyze the efficiency of the proposed method, we compare the number of sam-

ples required by PDM to the number of samples used for Monte Carlo. Since the

LogNormal distribution is a mathematically known circuit and requires no Monte

Carlo simulations, we exclude that speedup comparison. In the clock path circuit,

PDM requires a total of 4000 samples - 3000 samples for the body distribution

and 1000 for the hybrid distribution. In the Operational Amplifier, PDM requires

a total of 3000 samples - 2000 samples for the Segment1 distribution and 1000

for the Segment2 distribution. Table 4.4 compares the Monte Carlo and PDM

runtime requirements and the speedup for all circuit examples. We note that the

speedup of the algorithm compared to Monte Carlo will vary based on the number

of samples that are used; however, it is clear that PDM offers a significant speedup

at very little loss in accuracy.

Table 4.4: Speedup Comparison
Circuit Monte Carlo PDM Speedup

Runtime Runtime

Clock Path 8,000,000 4000 2000x

Op. Amp. 2,500,000 4000 625x
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CHAPTER 5

Conclusions and Future Work

In this thesis, we presented the motivation for statistical modeling of circuit per-

formance and presented two novel algorithms that solve this problem. The first

algorithm was based on the maximum entropy moment matching method in the

communications and signal processing field. We showed that this algorithm is

provably stable under general statistical circuit analysis methods. We also showed

that it offers high accuracy and stability when compared to other moment match-

ing methods [1, 3]. However, we showed that MAXENT is unable to accurately

model the high sigma behavior of non-Gaussian circuits and is therefore unsuit-

able for yield analysis. To this end, we proposed PDM - a piecewise distribution

fitting method that performs region based moment matching to extract the PDF

of circuit performance. We showed that PDM is provably stable because it is

based on the maximum entropy method, and also showed that is is able to model

the high sigma regions of the circuit performance PDF. In particular, we showed

that introducing a second distribution based on a set of moments that are accurate

in the tail of the PDF leads to significantly improved accuracy over MAXENT

[13] and shows little error with respect to Monte Carlo. Future work involves

application of both MAXENT and PDM to multiple digital and analog circuits.

Additionally, we propose utilizing a General Pareto Distribution (GPD) to fit the

Segment2 distribution in PDM as the GPD is known to be an accurate model for

the tail of probability distributions [10]. Finally, we plan to develop a weighted

moment matching based approach that allows us to pick and choose the impor-
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tant moments of a distribution. The motivation behind this is not all moments

are important to the distribution, e.g. in a Gaussian distribution only even or-

der moments are non-zero, and therefore applying more weight to “important”

moments may help improve accuracy and reduce noise.
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