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Abstract

Recent models of metrical structure in music rely upon notions
of oscillation and synchronization. Such resonance models
treat the perception of metrical structure as a dynamic process
in which the temporal organization of musical events synchro-
nizes, or entrains, a listener’s internal processing mechanisms.
The entrainment of a network of oscillators to an afferent
rhythmic pattern models the perception of metrical structure.
In this paper, I compare one resonance model with several pre-
viously proposed models of meter perception. Although the
resonance model is consistent with previous models in a num-
ber of ways, mathematical analysis reveals properties that are
quite distinct from properties of the previously proposed mod-
els.

Introduction

The perception of rhythm in music involves, among other
things, the perception of metrical structure. Metrical struc-
ture describes an important part of musical phenomenology,
the sense of alternating strong and weak beats that accompa-
nies the experience of listening to music (Lerdahl & Jack-
endoff, 1983). It is related to the metrical structure of
language (Lerdahl & Jackendoff, 1983), however, in music
metrical structure refers to a distinctive form of temporal
organization. Psychologically, metrical structure may be
viewed as a perceptual framework that affects human per-
ception, attention, and memory for complex, temporally
structured event sequences (Jones & Boltz, 1989; Palmer &
Krumhansl, 1990; Povel & Essens, 1985).

Theories of metrical structure attempt to describe the per-
ceived temporal organization of rhythmic patterns. Genera-
tive models posit rules for describing legal metrical
structures (e.g. Lerdahl & Jackendoff, 1983; Longuet-Hig-
gins & Lee, 1978). The perception of rhythm then involves
parsing a rhythmic pattern to retrieve its metrical structure
(Jackendoff, 1992; Longuet-Higgins & Lee, 1982). Clock
models have been proposed (e.g. Essens & Povel, 1985;
Scarborough, Miller, & J. Jones, 1992) that explain meter
perception as the process of aligning the ticks of an internal
clock with the onset of events in an acoustic signal.

Dynamic attending models (Jones, 1976; Jones & Boltz,
1989) propose that rhythm perception is a dynamic process
in which the temporal organization of rhythms synchronizes,
or entrains, a listener’s attention. Connectionist accounts of
the perception of metrical structure have recently been pro-
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posed that are more or less consistent with this view
(Large & Kolen, in press; McAuley, 1994; Page, 1994). In
this paper, I focus on one such mqdel (Large & Kolen, in
press). According to this model oscillatory units phase-
and frequency- lock to periodic components of a rhythmic
pattern, and the self-organizing response of a network of
oscillators embodies a dynamic perception of metrical
structure. I compare this model with previous accounts of
metrical structure in music. I argue that resonance models
of musical meter provide advantages over previous
approaches for describing the perception of temporal
structure in music.

Models of Metrical Structure

Models of metrical structure must account for several
aspects of the perception of temporal organization in
rhythmic patterns. First, a model must specify structural
constraints, describing which temporal structures corre-
spond to legal metrical structures. This is not enough,
however, because the relationship of rhythmic patterns to
legal structures may in principle be many-to-many. Thus, a
model must also specify a set of metrical preferences
(Lerdahl & Jackendoff, 1983), to predict which structure a
listener would perceive for any given pattern. Finally, the
durational patterns that musicians perform never corre-
spond precisely to the durations called for in a musical
score, rather they contain intentional and unintentional
timing variability (e.g. Sloboda, 1983). This is a problem
for most models of metrical structure, because the models
refer to nominal note durations. Therefore, a perceptual
model must also explain how listeners deal with perfor-
mance timing.

Generative Models

Generative models of metrical structure handle struc-
tural constraints by proposing grammars that describe the
organization of events in time. For example, Lerdahl and
Jackendoff (1983) have proposed a generative theory in
which the metrical structure of a piece is transcribed as a
grid (see Figure 1) similar to linguistic metrical structure
grids (cf. Liberman & Prince, 1977). Each row of dots rep-
resents a level of beats, and the relative spacing between
dots of adjacent levels describes the relationship between


mailto:large@cis.ohio-state.edu

Y | Sl | 1
EEE——cc-==c:
e |

J & el

® 90 0 0000 © 0 00 SO0 O © © © © @ O © © 0 00 0 O @

[ °® ® L] ® L] L e ° L] @ @ & = ° ]

@ @ ° ° ™ ™ ® °

[ ] ® [ [ ]

Figure 1: A metrical structure grid describing an alternation of strong and weak beats.

the beat periods of adjacent levels. Lerdahl and Jackendoff’s
(1983) metrical grids explicitly capture the perception of
regularly recurring strong and weak beats. Points where the
beats of many levels coincide are strong beats; points where
few beats coincide are weak beats. Lerdahl and Jackendoff
(1983) give a set of well-formedness rules to describe legal
metrical structure hierarchies. They give a set of preference
rules to describe which metrical structure a listener would
perceive for any given rhythmic pattern. They do not, how-
ever, deal with the issue of performance timing.

Longuet-Higgins (1978) has proposed that the meter (i.e.
the time signature) of a melody may be regarded as a genera-
tive grammar, and the rhythm of a melody may be described
as a tree structure generated by the grammar. Terminals and
non-terminals correspond to periods of time, and produc-
tions describe temporal nestings corresponding to integer
ratios (2:1, 3:1, 4:1, etc.). The “task” of rhythm perception is
to infer from a rhythmic pattern a metrical grammar and a
parse tree. Figure 2 shows a simple melody, and the parse
tree generated by a metrical grammar that describes binary
temporal nestings (corresponding to the 2/4 time signature).
Longuet-Higgins and Lee (1982) handle metrical prefer-
ences as processing constraints imposed by the demands of
real-time parsing. Longuet-Higgins (1987) deals with perfor-
mance timing by proposing that the length of a beat period
may be adjusted throughout the performance as the per-
former speeds up or slows down. According to this model a
parser uses a static tolerance window, within which it will
treat any onset as being “on the beat”. Incoming durations
are assigned to one of a few duration categories (i.e. quarter
note, eighth note, and so forth), so that they can be properly
dealt with by the grammar.

Clock Models

Models of meter perception sometimes invoke the notion
A
/K /Q\ A /{

of a clock that attempts to align its output ticks with event
onsets in the acoustic signal. For example, Essens and
Povel (1985) model the perception of meter as the induc-
tion of a “best clock™ according to which rhythmic input is
coded and stored in memory. Input to their system consists
of a pattern of inter-onset durations with associated accent
information (strong/weak). The system hypothesizes
clocks of every different period and phase that could be
implied by the pattern. Each clock is then ranked accord-
ing to counter-evidence, which includes the number of
ticks that would coincide with weakly accented events,
and the number of ticks that would coincide with no event
onset. In this way, the pattern of accent in the sequence
determines the beat period, phase, and “strength” of the
induced clock, implementing metrical preferences. The
model does not deal with timing variability.

The BeatNet model (Scarborough, Miller, & J. Jones,
1992) was designed to implement Lerdahl and Jackend-
off’s (1983) generative theory. BeatNet is based on a con-
nectionist parallel constraint satisfaction paradigm. The
BeatNet network is a one-dimensional array of idealized
oscillators of different beat-periods that operate to align
their discrete output ticks with event onsets, producing a
metrical grid of the style proposed by Lerdahl and Jack-
endoff (1983). A metrical structure emerges from local
interactions between units, rather than from the global
effect of rule-based analysis. The interactions are hand-
crafted to implement Lerdahl and Jackendoff’s well-
formedness and preference constraints. The model does
not deal with performance timing.

Resonance Models

Resonance models of the perception of temporal organi-
zation posit the existence of one of more oscillators that
entrain to rhythmic patterns (Large & Kolen, in press;
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Figure 2: A melody and a metrical parse tree. The tree describes a binary nesting of time spans.
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McAuley, 1994; Page, 1994). Resonance models are consis-
tent with dynamic attending models (Jones, 1976; Jones &
Boltz, 1989) in that they treat rhythm perception as a
dynamic process in which the temporal organization of
external musical events entrains a listener’s attention. For
specificity, I describe one resonance model in detail (Large
& Kolen, in press).

Large and Kolen (in press) have proposed an approach to
modeling the perception of metrical structure that is based on
the mathematics of coupled oscillation. A rhythmic pattern
serves as a driving signal. Through non-linear coupling, the
rhythm perturbs both the phase and the intrinsic period of
individual oscillators, modeling musical beat. A system of
oscillators entrains to the periodic components of a rhythmic
signal at different time-scales, and to the outputs of one
another. Thus metrical structure is modeled as the collective
consequence of mutual entrainment among many constituent
processes.

The rhythm is represented as a series of discrete pulses,
s(r), corresponding to the onset of individual musical events
(e.g. notes) such that s(r) = | at the onset of an event, and 0
at other times. Each oscillator adjusts both its phase and
period so that during stimulation the unit’s output pulses
become phase- and frequency-locked to a driving rhythm.

The output of the oscillator is given by:

2
o(t) = l+1anh(1r(cos~;(r—ro)—l)). (1)

where ¢ is time, p is the period of the oscillation,
(1-1y)(mod)p is the phase, and v is the output gain. Each
output pulse (see Figure 3) instantiates a temporal recep-
tive field for the oscillatory unit — a window of time during
which the unit “expects” to see a stimulus pulse. The
width of the receptive field can be adjusted by changing
the unit’s output gain, y. The unit responds to stimulus
pulses that occur within this field by adjusting its phase
and period, according to the following rules:

2 om _2n
Aty = -m,s(r)psech Y{CDSF (t=tp) = 1) smF (t-15),(2)

* 2n 2n
Ap = -n,s(t)psech y(cosl—’(r—roj =]} sin; (t—15). (3)

Figure 3 shows three such units responding to a piano
performance of a short melody (from Figure 1). The oscil-
lators interacted with one another through discretized out-
put pulses. Each oscillator was also allowed to adjust its
own output gain, y. Figure 3 shows a stable metrical inter-
pretation of the input rhythm emerge, with strong and
weak beats observable as points in time when the output
pulses of several oscillators occur simultaneously. The
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Figure 3: The response of a network of three oscillators to a performance of the melody of Figures 1 and 2.

A) Piano-roll notation of the performance, B - D) Output of the oscillators. Vertical lines show event onset times.
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three oscillators are correctly responding to the metrical
structure at the sixteenth, eighth, and quarter note levels.
This example shows the network responding to the metrical
structure of a rhythmic pattern in the presence of systematic
performance timing deviations.

Comparison of Models

It is informative to compare the above resonance model
with the previous models we have described above, because
there are important similarities and important differences.
For instance, the output pulses of each oscillator are analo-
gous to the beats of a metrical structure grid, or the ticks of a
clock model. Points in time when the output pulses of sev-
eral oscillators occur simultaneously, may be thought of as
strong beats. In this section I present a comparison of this
approach with previous models of metrical structure. First, I
discuss the issue of how the resonance model deals with per-
formance timing deviations. Next, I address how the model
implements structural constraints. I do not address the imple-
mentation of metrical preferences in this paper.

Performance Timing

In the resonance model, an output pulse fills the role of a
beat. However, output pulses differ from beats, or the ticks
of an idealized clock, in that each output pulse has a width.
Thus an event that occurs a little earlier or later than
expected may still be interpreted an being “on the beat” and
the oscillator will adjust its phase and period accordingly.
Precisely how much deviation from timing regularity an
oscillator will tolerate depends on the three basic parameters
of the model, n,. N, and y.

To understand the effect of these parameters on an oscilla-
tor’s behavior, it is useful to examine regime diagrams for
the oscillator model. A regime diagram summarizes the
response of a single oscillator to periodic stimulation, a sim-
plified form of input that can be expected either from an
external rhythm or from another oscillator in the network

(Large & Kolen, in press). In the following regime dia-
grams, [ assume that g is the period of the input (driver)
and p is the intrinsic period of the responding (driven)
oscillator. The ratio, g/p, is plotted along the x-axis. n,
varies along the y-axis, and individual diagrams are given
for different values of y.

The regime diagrams show parameter regions that result
in stable phase-locked states, called Arnol’d tongues
(Schroeder, 1991). Figure 4 shows the effects of phase-
locking alone (Eq. 2). For example, in an uncoupled sys-
tem (n, = 0), if g/p = 0.5 then the driver fires twice for
each time the driven oscillator fires. In a phase-coupled
system (Eq. 2, n,>0), even when ¢/p is different from
0.5, the system may still lock in a 1:2 relationship (the
center “tongue” in the diagrams of Figure 4), because each
time the driven oscillator fires, its phase is perturbed
slightly by the coupling to the driver. Each diagram identi-
fies parameter regions that result in phase-locked ratios,
q/p such that p <8. Darker regions reflect faster conver-
gence on stable phase-locks.

The oscillator also adjusts its intrinsic period (Eq. 3).
This is important for modeling musical beat because when
the driving signal is temporarily removed, the oscillator
continues at the driver’'s period, “expecting” the driver's
eventual return. Figures 5A-C show the effects of adding
the delta rule for period (Eq. 3). For easy comparison with
Figure 4, n, was fixed at a small positive value, and again
n, varied along the y-axis. These entrainment regions are
larger than the corresponding regions for phase-locking
alone. Adjustment of intrinsic period not only acts as a sort
of memory, but also causes widening of the resonance
tongues.

The width of each Amol’d tongue reflects the sensitivity
of the coupled system to deviations in the g/p ratio. In the
current context, this corresponds to the sensitivity of an
individual unit to timing deviation in the input signal.
Thus, these Arnol’d tongues predict sensitivity of the
model to timing deviation in musical performance. The
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Figure 4: Regime diagrams describe stable phase-locking regions as a function of driver/driven period ratios and
coupling strength. A) y = 0, B) y = 2, C) y = 8. Each diagram shows the following regions (left to right):

0:1, 1:8, 1:7, 1:6, 1:5, 1:4, 2:7, 1:3, 3:8, 2:5, 7:3, 1:2, 4:7, 3:5, 5:8, 2:3, 5:7, 3:4, 4:5, 5:6, 6:7, 7:8, 1:1.
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Figure 5: Phase-locking regions as a function of driver/driven period ratios and coupling strength with frequency-
locking enabled. A) y = 0, B) y = 2, C) v = 8. Each diagram shows the following regions (left to right):

0:1,1:8, 1.7, 1:6, 1:5, 1:4, 2:7, 1:3, 3:8, 2:5,7:3, 1:2, 4.7, 3.5, 5:8, 2:3, 5.7, 3:4, 4.5, 5:6, 6:7, 7:8, 1:1.

response depends on the ratio of the intrinsic periods of the
input and the responding oscillator, as well as on the values
of n,, m,, and y. Adjustment of intrinsic period enhances
the stability of the oscillator’s response in the presence of
timing deviations

Structural Constraints

As external input brings the response periods of two oscil-
lators in a network close to some rational ratio, interaction
between the oscillators will tend to keep the two oscillators
locked at that ratio. Thus, assuming that the interaction is
one-way (i.e. that one oscillator’s discretized output forms
the input to a second oscillator) the regime diagrams of Fig-
ures 4 and 5 describe allowable relationships between the
outputs of the two oscillators much as the rules of a genera-
tive model describe allowable ratios between adjacent levels
of beats.

The stability of the locking behavior is determined by
sensitivity to deviation in the ratio of oscillator periods.
Deviation in this ratio may be caused, for example, by the
oscillators’ response to the external input. Figures 4 and 5
show that, in general, 1:1 phase-locks are more stable than
1:2 phase-locks, which are more stable than 2:3 phase locks
and so forth. Thus, the Arnol’d tongues summarize the struc-
tural constraints of the model. Two oscillators can lock in
any rational ratio, with the stability of the lock determined
(more or less) by the identity of the ratio.

This is an important departure from the previous models
we have described. Each of the previous models allow only
integer ratio relationships between adjacent levels of beats.
This restriction of legal metrical structures to strictly nested
hierarchies limits the scope of such theories, however. Only
some music can be described in this way. Much non-Western
music, as well as contemporary Western Art music, Jazz, and
popular music make use of dissonant rhythmic structures
(Yeston, 1976), known as polyrhythms. A polyrhythmic rela-
tionship between two levels of beats is a relationship of beat-
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periods such that N beats at one level occupy the same
amount of time as M beats at the next level. Polyrhythmic
relationships are described using rational ratios (3:2, 4:3,
5:4, and so forth) (Yeston, 1976).

The resonance model handles polyrhythmic structure
naturally. Rather constructing rules that describe allowable
beat period ratios, polyrhythmic relationships arise given
interaction between oscillators in the network. Further, the
stability of polyrhythmic structures is limited by the stabil-
ity of the corresponding phase-lock, preventing extrava-
gant claims regarding the perception of polyrhythmic
structures in music.

Conclusions

Resonance models of metrical structure posit oscillators
that synchronize periodic output pulses with afferent
rhythmic patterns. The response of a network of oscillators
models the perception of metrical structure as a process of
self-organization. The model I have described here (Large
& Kolen, in press) is consistent with results in human
rhythm perception, which show that temporal pattern
structure affects human abilities to perceive, remember,
and reproduce rhythmic sequences (e.g. Deutsch, 1980;
Essens & Povel, 1985; Jones, Boltz, & Kidd, 1982). In
addition, the dynamic approach to metrical structure per-
ception is consistent with dynamic theories of motor coor-
dination. The literature on motor coordination reveals a
number of activities, including rhythmic hand movements
and cascade juggling, to be consistent with mathematical
laws governing coupled oscillations (see Beek et al., 1992
for a review of recent models).

The output of each oscillator models the experience of
musical beat, and the coincident output of several oscilla-
tors models metrical accent, consistent with previous mod-
els of metrical structure perception. However, analysis of
the behavior of a single oscillatory unit in response to peri-
odic stimulation reveals complex dynamics, and important



differences compared with previous models. Regime dia-
grams describe the content of resonance models regarding
the well-formedness of metrical structures, and show how
resonance models handle polyrhythmic structure. In addi-
tion, resonance models account for the perception of meter
in the face of timing variability. Thus resonance models may
provide the basis for more comprehensive accounts of the
perception of metrical structure.
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