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~ ABSTRACT
‘Thevconvective évblufion of large amplitude Alfvén waves
propagating in a nonunifornb streaiing-plasma modeled after the
solar wind.is'investigated. ' Observed large- and small-scale
properties of the interp;anetary medium which aré rélevant to
ﬁhis_study are reviewed. An idealizéd solar wind model is devel-
oped which neglects éolar rotation and has a radial magnetic
field. |
In preparation for the nonuniform plasma problem, Alfvén
waves péral;el to a uniform magnetic field. @0 iﬁ-g uniformvbut
- anisotropic plasma are studied in the Chew-GoldbefgerALow and

~ guiding-center formalisms. Exact solutions are found for stable

and unstéble plasmes. The exact nonlinear behavior of an unstable

eireularly polsrized Alfvén mode is .obtained: growth of a finite

pgrturbation is guenched in a finite time, and decay begins
immediately;' When the plasma is stable, an érbitrarily large,
' constant-amplitude perturbation perpendicular to the uniform

" ‘field can propegate without distortion parallel to this field.

1
' 5 2
"The propagation velocity, V,(b) = (Boe/hnp)z[l - hx(pn-pi)/ﬁ 1%,

LD

O

A

is nonlinearly dependent on the amplitude b of the wave part
' ‘ i
2

of the magnetic field through B = (Bo2 +’b2) and the two

invariants p, Bt ol ana P, ® o7, _
Experimental evidence indicates that this propagating

Alfvén wave is an important low-frequency phenomenon in the solar

wind. Its convective evolution in the idealized solar wind model

is solved in two ways: by energetic considerations and by.a

"detailed treatment of tlhie wave equations in the Chew~Goldberger-

Low approximation. When the radial flow velocity is large .

compared to the Alfvén velocity VA’ both methods produce the

simple'result _VA(b/Eo)g = constant,where Bj denotes the radial
magnetic field, The adlabatic plasma expansion tends to increase

the effective anisotropy (p“ - pﬂJ/B2 and thus decreases V,.

Consequently b/Bo grows, which reduces the effective anisotropy

and keeps VA finite. Thus the wave prevents the solar wind

from becoming unstable with respect to Alfvén perturbations.
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"CHAFTER 1
INTRODUCTION' TO.THE CONVECTIVE.EVOLUTION OF ALFVéN WAVES

1.1 The Driven Instability

The objective of this fe;earch is the study of a driven
iﬁstability in a plasma.

_ Envisién a -situation ihxwhich'some mechanism, internal
or exterﬁal 6r both, causes a plasma to becomé.unsﬁable with
respect to some mode. The*mode.cénnot grov indefinifely, as
linear theory implies, due to.the fiﬁiﬁe amount of energy avail-
mablé in the plasma. Hence, as”the mode ngWS,.it affeéts the
pl#sma, ultimately in a manner which limits its amplitude. . .

‘ With continuous application of the driving mechanismy,the:
'plagma must reéchsa steady staté condition. This steady‘stafe
may exhibit either an oséillatory behavior.or a time independept
asymptotic limiting'configuration. The consequént,balancg between
tﬁe applied driving mechanism and the self-limiting character of
the wave constitutés a highly nonlinesr problem.

Although such driven instability processes frequently
occwr in both laboratory and astrophysical plasmas, theorists
have done little more than speculate on their properties; ,Both
linear ;nd quasilineér techniques are usually impotent againét
the severe nonlinearitieé which, of necessity, oceur when the
wave amplitude is so large tﬁat it quenchés its own growth.

. One driven instability problem, which has yielded to

analytic methods, formS'the subject of this dissertation.

-h-

1.2 Alfvén Waves in the Solar Wind

As the solar Vind expands adiabatically from the sun, the

double adiabatic or Chew-Goldberger-Low equafionsl predict that

the particle pressures parallel and perpenﬁicular to the local -

field and the magnetic pressure decrease. The parallel pressure - -
decreases more slowly thap the perpendicular and magnetic pres-
sures that tend to stabilize the Alfvén mode. . Far énough from
the sun, this model predicts that the plasmé becomes unstabie.
with respect to Alfvén wavés. | |

‘An’ Al1fvén wave propegating in the solar wind near the

‘sun finds itself in an increasingly unstable environment as the

streaming plasma convects it outward. Finding itself convected
into a regioh'where unstable growth occurs, the wave must approach

a large amplitude at which self-quenching effects counter the

‘driving mechanism provided by ‘the adiabatic expansion.

The analysis of the convective evolution of Alfvén waves

in the solar wind is studied in the following chapters.

' 1.3 Summary of the Paper

Chapter 2 outlines the experimentally observed character-

istics of the solar wind which are relevant to thé study of - e

" AlfvEn waves convected by it. OSeveral excellent review articles

provide additional details.2'6 , » =

Sectlon 2.2 deals with large -scale characteristics of the
interplanetary medium. The solar wind plasma streams radlally ]
from the sun and drags solar magnetic field - lines with it. This

raedial flow and the sun's rotation cause the interplanetary field



&

-5-

lines to have the shape of Archimedes' spirals.7 The ecliptic . .
rlane can be divided roughly into sectors along such spirals. In

alternate sectors the field is- predominantly toward or away from

the sun, as sketched in Fig. 1. The plasma's bulk'velocity also

shows a sector structure consisting of slow streams and fast
$8-10 '

‘streams. The fast streams tendvto be hotter; with lower

deneity and more high frequency field ectivity. The dominant
heary particle in the soler wind is the proton;ll’lts temperature
is characteristically a fervelectron volts with an anisotropy of
approximatel& 2 at l AU. "The electron temperature there averages
13 ev with an anisotropy between 1.1 and 1.2.

Section 2. 3 discusses low frequency modes observed in the
solar wind. East Coast observers, Ness,.Burlaga, Ogilvie, Sari,
and others, emphasize the importance of tangential discontinuities

12-16

in the solar wind. Belcher, Coleman, Davis, Jones, and Smith

on the West Coast view Alfvén waves as a dominant meso-scale

1721

feature of the solar wind's wave population. . Both sets of

observers agree that Alfvénic perturbations occur at. least 25%

of the time. Figures 2 - U present examples of spacecraft data

which indicate the presence of outward propagating Alfvén waves. >

The plasma density remains relatively constant, and perturbations

_in the magnetic field components correlate well with those of the

plasma velocity. Tt is also observed that the magnitude of the

‘-total field remains constant ih time, a characteristic shared

by the waves treated theoretically in Chapters 4 and 5. The

waves seen in space are aperiodic and nonsinusoidal. The average

. remnants of turbulent - structures occurring near or on the sun.

~6-
field direction is also the direction of minimum field fluctua-

tion. The data indicate that the most pure examples of Alfvén

waves occur in the high velocity streams and on their trailing

edges. Amplitudes are largest in these regions as well. Belcher

and_Devis argue that the waves observed at 1 AU probably are
. 19

In Chapter 3, an idealized model is developed for use in

stﬁdying the convective evolution of large-amplitude Alfvén waves

in the solar wind.

In order to obtain analytic results for the convective

'evolution problem, some.simplifications are necessary. " The .-

'spiral nature of the field is neglected, and the purely radial -

magnetic field which results correspornds physically to a non-
rotatlng sun, The complication of the magnetic sector structure
is elso eliminated by assuming that the field is that of a
magnetic monopole centered at the sun. Thus B 1is everywhere
outward or toward the sun in the absence of waves,as indicated

in Eq. (3.1).’ The sector structure of the plasma streaming is

. also ignored for simplicity, and Eq. (5.3) specifies the bulk

velocity u .
The result is a spherically symmetric idealized model in

which the plasma bulk velocity and the magnetic field lines are

' radial everywhere. Background quantities, suﬁh as the radial

streaming velocity, temperatures, density,'and so forth, are
assumed to depend only on the distance r from the center of the

sun.
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V Thevmodel set of equatiens chosen.to describe the solar
- wind plasma>and waves is fhe Chew-Goldberger-Low model.l This -
seﬁ of equations ellows for the pressure anisotropy which is
necessary to produce instability in Alfvén perturbations. It has
the disadvantage of omitting electron heat flow effects, which
are important 1n the solar wind, and which must be 1ncluded in a
more complete theqretical treatmenﬁ of it. .

" Although fhis.baper treats highly nonlinear effects, many
‘precesses, such as coulomb collisions, wave-wave interactions,
.and resenent perticle 1nterac£ions are not included in the

analysie. |

Since the wavelengths of the Alfvén waves observed in

'spece are small compared to 1 AU, the waves find themselves in a .

'locally uniform background pleéma In Chapter 4 the behavior of

large amplitude Alfven modes in a uniform plasma immersed in a

uniform magnetic field is investigated. The solutions obtained

are exact solutions of both.the Chew~Goldberger-Low and the

guiéling-center-ev.;ua.t:i.ons.]“"22’23 )
Seétien‘h.e outlines the analysis using the Chew- |

Goldberger-Low fofmalism. ‘Tﬁe same results are obtained in

éec. 4.3 within ihe more general guiding-center theory. Two

classes of Alfvén modes are described, both oriented paralle; to

the uniforn field. 

o Sections h,éA and 4.3A Qeal with a wave propagating -

parallel to the background.fieid. _This is cheracterized by a

wave magnetic field component perpendicular'to the uniform field

-8-
whose amplitude is constant in space and time, but whose ofienta-
tion is quite general. The total field, given by Egs. (4.9b)
and‘(h.17), is aperiodic and nonsinusoidal, in general. . In the

uniform plasma it propagates at the generalized Alfvén velocity

V, given by Eq. (4.16) without change of shape. The plasma must

be stable with respect to Alfvén perturbations, i.e. VA must

. be real, for this solution to exist. Simple examples of this

wave are illustrated in Fig. 5.
Sections-h.QB and 4,3B describe circularly poiarized
standing wave modes of the form shown in Fig. 6. These may occur

in stable or unstable plasmas. The temporal evolution of the

‘perpendicular signed field amplitude “b of these waves is the.

same as the displacement of a classical particle moving in the
magnetic potential #, defined by Eq. (4.25). Equation (4.28)

is the equivalent energy equation. When the plasma is Alfvén

_stable in the absence of any Alfvén mode, § has the form

sketched in Fig. T(a). In this case the standing wave mode
oscillates in amplitude, passing through zero twice each period.
When the unperturbed plasma is unstable with respeet to Alfvén
waves, Fig. 7(b) indicates the snape of the magnetic potential.
An infinitesimal circularly polarized Alfvén mode at first grows
exponentially with time in such a plasma, and then more slowly.

It wltimately reaches a quenched state, corresponding to the most

extreme displacement of the associated magnetic pseudoparticle, -

and decays, eventually at an exponential rate, toward zero

amplitude.
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Some interesting prcperties of the propagating wave are

" discussed in Sec. 4.BA., This wave shares important properties

with the Aifvén perturhations observed in the solar wind. Both

are charscterized by constant plasma density, constant total

megnetic field, and ncnsinusoidal behavior. The relation between

magnetic field and plasma velocity given by Eq. (4.18) agrees
with the correlation dbserved experimentally. Moreover, the

exact solution of Sees. 4.2A and L4.3A is characterized by varia-

- tions in the components of B in the plane orthogonal to the

propagation direction, but the parallel component of B is-.

'copstanf. Belcher and Davis observe such an anisotropy: the
~ variation in g' along (g) is one-fourth to one-sixth of that

“in the directions orthogonal to (B)

Section h.hB.comﬁeres the exact solution to the quenching
psoblem provided by the standing wave mode with earlier-quasi-
linear work on she firehose mode.eh_ Qualitative features of‘the
exact solution are quenching in a finite time through purely wave-
particle interactions and immediate decay. Simllar properties

characterize the quenching of flute modes and two-stream

. instabilities,'which.have been studied numerically.

Chapter 5 treats the convective evolution of the "constant-

amplitude" propagating waves in the nonuniform plesme and field of

' the idealized model for the solar wind. Section 5.1 details the

-structure of the convected waves, A constant-amplitude source,

which is spherically symmetric with respect to the sun, supplies

aperiodic, yropagating Alfvén waves. Steady state is assumed so

~10~
that wave amplitudes do not depend on time and have only a weak

radial dependence as the waves propagate in and are convected

. by the nonuniform, expanding plasma. The plasma parameters;

density apd pressure, also depend only on r . AWKB phase
dependence, specified in Eq. (5.2) - (5.6), is chosen for the
wave components of field and velocity To obtain consistent
equatlons, we must allow for a small skewness o) between the
wave part of the magnetic field and the wave part of the fluid

velocity. In -the uniform plasma theory of Chapter It these

components are exactly parallel or antiparallel. Solutions to

_the convective.evolution problem have been obtained in two ways.

Section 5.2 describes the derivation of a solution by the

use of energy conservation. In this section the Alfvén velocity

',and the relation between velocity'and field, characteristic of

the propagating waves, are taken from the uniform plasma theory.

The Alfvén velocity A

The total energy conservation relation for

ig assumed to be small compared to the

bulk velocity Uge

waves and plasma, Eq. (5.14), reduces to Eq (5. 20) for the

spherically symmetric and steady state conflguratlon. The energy
flux vector £ '1is evaluated in Appendix C for a Chew-~Goldberger-
Low plasma. Its radial component, required in Eqg. (5. 20), is
obtained in Appendix D for the wave configuratlon of the idealized
model. There results the energy relation, Eq. (5.25), which
contains as unknowns»the wave ampliﬂude b and the plasma

radial velocity Uy - A second equation is provided by the

radial component of the Chew-Goldberger-Low momentum equation,
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which ié exhibitedbin Eq. (5.26). FElimination of u, between
thése equations leédé to the differentiai equation (5.34).‘ Tts
solution is sketched in1Appehdjx H. vThe result is given by Eq.
(5.36).
The convective -evolution aﬁalysis is carried out in

Sec. 5,3.by using the;ﬁefaiied ﬁave equations. " No assumptions.
'areimade reéarding the'velocity‘ VA' appearing in Eq. (5.5){_thé
wve componeﬁt.éf the Piuid Velocity Up s or the relative gize
'of‘ VA and 'ub.
HChew-Goldberger-Low momentum equation is given by.Eq. (5. 37)

. For the wave ansatz, the nonradial part of the

Similarly, the wave part the Chew-Goldberger-Low Maxwell equation
s displayedAin Eq. (5.38). These vector differential equations
are solved, giving the usual Alfvén velocity for V , the |
» éxpeéted relation between the fluid velocity “ug and the wave
-part.of the magnetie field, the phase angle 6 , and Eq. (5. 52)
‘The latter.is equivalent to Eq. (5. 36), the result of the
energetic.gnalysis,“When _VA << ug -
Section 5.44 shows that, for solar wind perameters, the
two soldtioﬁs are identical. Properties of the soiution are
diScussea in Sec; 5.48. With no wave present the Chew-Goldberger-
de'médel predicﬁs-that the expanding solar windvplasma becbmes
Alfvén unsteble at sufficient distance from the sun, .called the
. Alfvénkcritiéal instabilify radius, r,.. The presence of the
wave preveﬁtsfthis unstable_éondition from arising. If the wave
_ sﬁﬁﬂxude ié nonzero.anywhere, -VA can never.pass‘through zero or

- become imaginary according to Eq. (5.36). The dependence of vy

=12«

and wave amplitude b on radius is sketched in Fig. 10 fbr &ar-
ious choices of wave.amplitude.

If the wave amplitude is small within the Alfvén critical
instability radius rcf’ where the generaliied Alfvén velocity
VA vanishes in the absence.éf wavés, it must increase dramat-
fcally at r_  in order to keep the plasus, stablg.A Figure ld(a)

-(d) demonstrates thié effect. If the growth of wave amplitude

is too rapid, the assumptions used to derive the analytic solu-~

tion break down. This and other limitations on the walidity of

the theory receive attention in Sec. 5.4C, The necessary condi-

tions are sumarized by the inequalities (5.63), (5.64), (5.68),

~and (5.72); when these hold the analysis is valid. They are

satisfied for measured values of the solar wind parameters at

.1 AU.

Section 5.LD compares the theoretical predictions of-
convective evolution with the observed properties of the solar
wind, The Earth is well beyond the Alfvén critical redius given

by simple Chew-Goldberger-Low theory, and the solution of the

'idealizeq model yields a considerably smaller Alfvén velocity at

1 AU than is observed. This disqreﬁancy may arise from effects
such as electron ﬁeat condﬁctioh, high frequency electron waves,
and the spiral geometry of the ‘'solar wind. |

‘The poss1bility of extending the analytic solution to more
general geometries is consﬂde;ed in Sec. 5.4E., The convective

evolution of waves may be useful in intergalactic space, where

_Alfvéh waves have been proposed as an important particle accel- -

erating mechanism.Bl’32
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CHAPTER 2
OBSERVED PROPERTIES OF THE SOLAR WIND
2.1 Introduction ) B |
The solar Vind is an extremely complex system. Great

effort has been spent in experiiental observations of its

- properties, particularly during the past decade. Considerably

more w111 be necessary ‘before a thorough understandlng of all 1te
aspects exists.

}No attempt will be made to survey,everything that 1;
known about the solar wind.' Further details can be found in a

2-6

number of excellent_revie#s.

The.convective evolution of Alfvén waves will be éhalyzed

-in a model which is a very simplified abstraction of the phy31cal
solar wind.. In this chapter known properties of the solar wind
which are believed_to be relevent to the convective eVolution
problem are outlined. The discussion wili‘by no means be
exhaustive, and theboriginal literature should be consulted for
more ekfensive descriptions. ‘

Section 2.2 deals with the grosswcharacEeristice_of.the_,
selar.wind. Large-seale static struetures of the plasma and
megnetic field are.diseussed.

Section 2.3 describes microscale phenomens, whicﬁ.possess
Alfvén waﬁe_characteristics and which are the subject of the

' theoretical investigations of this dissertation.

2.2 Gross Features of the Solar Wind
The solar wind seems to be a ubiquitous element of the -

solar system. It expands essentially radially;from-the sun et

~1h-

velocities which are supefsonic long before 1 AU is reached. At
the orbit of Earth its bulk veiocityiis roughly 400 km/sec, but
varies between 300 km/éec'and 800 km/sec. This streaming veloc-
ityAis independent of distance from the suﬁ to a good approxi-
mation, |

~ Due to the very high electrical conductivity of this

. coronal plasma, it drags elong'magnetic field lines .from the sun

as it convects outward. Since the bulk plasma kinetic energy

density exceeds the magneticbfield’energy density by nearly a

factor of 100, the solar wind controle‘the field line motion,

and the field has negliglble influence on the streaming motion.
The field defines & local reference frame for plasma kinetic
rroperties such as pressure end temperature.

The sun's rotation, in conjunction with the purely radial
bulk velocity of the eolar wind, causes the interplanetary"

magnetic field lines to have an Archimedes spiral shape in the

ecliptic plane. This rattern rotates with the sun and has a

period of about 27 days. A simple model7 gives the theoretical

static magnetic field as

B.(r, 6 #) = B 8 F)ry/r) e

'36 = o0, ‘ (2.2)

By(r, 6, §) = Blrgy 6, §)ry/r)mg/adstn 8, (2.3)
where

§ = b +x9/u . o ()

Throughout this paper r, 6, and ¢ are the usual spherical
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coordinates, r. 1is a reference radius, u

0 is the solar wind

0
bulk velocity, which is assumed constant here, and § denotes
the sun's anguiéf,velocity of rotation.

.The spiral field lineé are nearly radial within a few
solaf radii of the sun. At 1VAU the azimuthal velocity of the
field lines is about 440 km/sec, roughly equal to the solar wind
bulk velocity there. vConsequently’thg average field direction.

- makes an angle of h5°.with the radial directiog, Atvtimes when
the bulk velocityris quite high, the average field direction is
slightlybmore-rﬁdial, as the above model indicates should happen.

Since B, % By at 14U, Egs. (2.1) and (2.3) show that
within & AU the megnitule of the total field, |B| , falls roughly

‘as r-e. At distances larger fhan 1 AU it decreases more grad-
wally. A typical field strength at 1 AU 1s 3 to 8 gamma.

- The solar wﬁnd can be divided along the spiral field
lines into sectofs as indicated in fig. 1.. In alternate sectors

“the aﬁerage field points predominantly toward or away from the
sun as shown. Although fpuf_sectors-apbear in Fig. 1, sometimes

5

_only fyo sectors are observed; _
The bﬁlk.velocity also showé a sector structure.s-lo
Slow streams bf expaﬁding ﬁlasma alternate with fast*streams.
Thé_fast_streams are generaliy‘hotter_and have lower density
than the low veloéity stfgams. Tbe mﬁgnetic field is character~
>istiqally the saﬁe in fast apd slow s@reams; except at the

leading edges of high yélocity streéms, where both magnetic

field and plasma dénsity are high. Temperatures are also high

" recent Vela 4 measurements of thermsl anisotropies was 4 seconds:

-;6-

in such regions as are the levelsvof magnetic field activity.
This bhenomenop is probgbly related to the collision of the
fasﬁer moving streams with the adjacent low velocity ones. The
strength of high freqqenpy field components tends to be higher
in the faster streams; »

The dbminapt-ion species in the éolar wind is the proton,
accoﬁnting for all bﬁt.a»few percent of the plaéma ions.ll A
typicél ion temperaturevié a few eléctron volts at 1 AU, éiving
a protoﬁ gyroradius of about 100 km, Electron temperatures are
estimated to be épproximatély’lj-ev at the Earth, Measured

anisdtropies, T“/QL, where parallel and perpendieular refer to

. the local magnetic fleld, range in the vicinity of 2 for ions

and from 1.1 to 1.2 for electrons at 1 AU.h The ion anisotropies

were observed by Vela 3, whose velocity distribution sample time .
was approximately one minute.. More refined experiments have
produced the same kind of results; The sampling period for

| 3
Thé solar magnetic field seldom_variés over such short time

scales, and thus the above numbers represent instantaneous thermsl

" anisotropies.

The propertiés of the solar wind outlined here must not
be considered inviolable. For-examplé, the magnetic field in an
"outward" sector will occasionally point toward the sun for a
brief interval.

2.3 Low Frequency Modes in the Solar Wind

The gross properties described above are considerably

complicated by a great variéty of physical processes with char-
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zcteristic scale lengths smaller than 1 AU. .For the purposes of

. tae theoretical work to follow, we concentrate on_long—wavelength,

low-frequency perturbations of the vackground plasms and magnetic

field, especially those Vhich reveal Alfvén mode characteristics.

Atrthis time there exists a rather heated debate between

,inwestigators on opposite coasts. The East'Coast'observers,'

Ness,. Burlaga, Ogillvie, and Sari, tend to emphas1ze the dom-

imance of tangential discontinuities in the solar wind.12 -16

The West Coast cbservers, Belcher, Coleman, Davis, Jones, and

Smith, picture Alfvén waves as a dominant feature of the low-

17-21

fPrequency solar wind wave structure. Believing that a

satisfactory resolution of this argument must await more complete

data we limit our participation to a few comments w1thout

choosing either side.

Both sets of observers are agreed that perturbations with
srevén wave properties are observed at least 25% of the time. |
Since this phenomenon is most'thoroughly discussed by Belcher
and Davis,l7-l9 we concentrate on their findings in outlining
the experinental evidence for Alfvén waves in the solar wind.
Figure 2 depicts solar wind data obtained by Mariner 5.19
it shows the nagnetic field .g ’ plasma velocity 3 , field

magnitude B , and plasma number density n. The vector quan-

tities are resolved into three mutually orthogonal components:

‘ para:uei to the radial direction (R); parallel.to the azimuthel

direction AT); and normal to the ecliptic plane (¥). The

strong correlation between the components of B and the

-18-

components of u appears quite clearly. The relative constancy -
of !g’ and n 1s also evident. |

Figure 3 is an expansion of the field data of three ten-
minute intervals of Fig. 2. Here again the constancy of -IE’:
despite the-narked variations in field components, is clear.
Further evidence of this characteristic is strikingly shown in
Fig. b, which depicts magnetometer data for a l hour period

" Belcher and Davis argue conv1ncing1y that such char- |
acteristics indicate the presence of Alfvén perturbations. The
waves are generally.nonsinusoioai and aperiodic, as.is evident
from Fig. 3. A.spectral decompositionvindicates that the field
components fluctuate with characteristic times from th sec. to

3 sec. The local average field direction B

o is also the

- direction of minimum»fluctuation. The magnetic field bhas an

observed power anisotropy. of 5:4:1 in an orthogonal coordinate
system whose unit vectors are ﬁo x T, ﬁo x (ﬁo x T), and
'ﬁo , respectively. The propagation direction indicated by _
treating these phenonena as Alfvén waves is almost always away
from the sun.

The data indicate that the fluctuations are most purely
Alfvénic in the‘high velocity_solar wind streams and on their
trailing edges. These perturbations have largest amplitudes in
the compression regions at the leading edges of the high velocity
streams, but here the mo&e structure is more complex. The energy
in the fluctuations there i1s comparable to the energy.in the

total field.
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In the low velocity streams the Alfvén structures tend
Z0 be less pure, i.e;, they are combined with non-Alfvénic

34 and the ampli-

. phenomena, such as tangential discontinuities,
tudes are reduced.

. Magneto-acoustic modes may occur, but were not identified

by Belcher and Dayis. If presént, they have an average power less

fhan a tenth of the power in Aifvén modes. These investigators’
estimate that Alf%én.waves propagating outward from the sun
‘_ ﬁominate thé microscéle structure at least 50 percent of the

" time. They speculate on & variety of'poésible sources for
AXrvénic pertﬁrbétions and conclude that they are probably
remnants of waves §r turbuieﬁce structures genéfated_at orAnear
thé sun vhich have been convected outward by the solar wind.

| 7 _Tﬁis sketchy story 6f'the experimentally-determined
properties éf thevsohar wind will be used in the next chapfer to
‘constructia siﬁple model for use in analyzing tﬁe convéctivé

evdlutionAof Alfvén waves.

IDEALIZED MODEL OF THE SOLAR WIND

3,1 Geometry of the Solar Wind Model

The spiral nafure_of the averége magnetic field‘cénfig-
uration is an important feature of the structure of the solar
wind. Hoyever,_its inclusi;n intreduces formidable mathematical
difficﬁlties in an analytic stﬁdy of the éonvective évblution of
large amplitude waves. _

Within_b.l’AU thé average field is believed to be nearly

radial, due to the slow solar rotation and the rapid radial plasma

- flow., A logical simplification is to eliminate thé spiral nature

of the magnetic‘lines of force entirely and assume that they are
radial everyvhere. Thié model corresponds physically to a nqn;
rotating sun, the magnetic field swept out by the streaming solar
wind being purely radial in this casé. | ‘

| The interplanétary magnetic éectors contribute additional
ccmflications fo the theo#eticél model. Within each magnetic
field sector the Alfvén waves find themselves iﬁ a background

field which is entirely away from  or entirely toward the sun.

For the purposes of studying wave evolution inside such a sector,

it suffices to assume that the field points outward in every such

sector. Since azimuthal variations in.the static field introduce

" an unnecessary complication, the field is chosen to be spherically

" symmetric for the theoretical analysis.

Whevess the fast and slow streaming sectors and consequent

collision regions are vital to a great many solar wind processes,

N/
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‘The r dependence of u
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izcluding Alfvén waves, we seek primarily a theory of Alfvén

vaves convecting in a freely expanding plasma. Since there is

‘mo evidence of a pfeferred direction for the emission of solar

' wind plasma, when solar rotation effects are negiigible,.we are

led to consider a spherically syﬁmetric expanding plasma.
Thus we consider an idealized solar wind model which

cénsists of a background magnetic field corresponding to a

- magnetic monopole:

B, & #) = Byx) £, C(3a)
wﬁere _BO haé an inyerse square relation with r:

B = Boolme. (3.2)
Hbré, Béo' denotes the radial background field at the reference
radiu§ ,foi. It caﬁ'be negative or positive, cbrresponding;

respectively, to an inward or outward directed field throughout

interplanetary space.

Likewise, in the gbsence of Alfvén:perturbations, the

plaéma fluid velocity u 1is taken to be spherically symmetric:.

~
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0 will be derived later.

Similarly, we assume that the other plasma parameters,

&ensity and pressure, depend only on r. Gravitational effects

are ignored in the analysis.

The WKB method of studying a wave which propagates in a

ﬁonuniform, time dependent medium assumes as a first approximation

that the wave‘behaves as if it were in & locally uniform and

2P~

~constant environment. Providing the space and time variations

- of the background are sufficiently small over characteristic

wavelengths and wave periods, they affect the wave only by
producing_gradual changes in wave parameters such as its ampli~

tude, phese, and frequency. The fundamental character of the

“wave is unchanged,

A wave in the idealized model and a wave in & more

complicated geometry find themselves in a plasma whose properties,

in a frame of reference moving with the plasma, are changing
slowly in time., The wave responds in either case to the varying

characteristics of the supporting medium. Whether the variations

- are caused by a slowly msving'piston, ah inverse square:law

expansion, or a complex convection process is relatively unimpor-

. tant to the wave, providiﬁg the variations occur over distances

large éompared fo a ﬁavelength. In the solar wind problem, the
largest ﬁa?eiengths are 106 km, whereés gross plasma properties
evolvé over distances like 1 AU or 10° im.

Applying this philosophy to the convective evolufion of
Alfvén waves in thé solar ﬁind, we hyppthgsize‘that the wave
iarameters vary slowly as a consequénce of the gradual changes.
in the idealized medium in which it propagates. Knowing this
dependence of wave parameters on the properties of the medium
in the idealized model, we hope to use the actual solar wind
configuration, i.e. the variations Qf'dénsityg pressure, and the
spirai background field of the interplanetary medium, to predict

the true wave behavior.
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Although it cannot provide the exact behavior of Alfvén
waves in the ph.ysical éélar'wind, the solution of ¢onvective
evolution in the idealized model should yield the correct
qualitative features. V.Once the propagation _propertivés ar"e under-
_s;toogi in the simple geometry, proéogation in the actual spiral
geometry can .‘be predicted by an »:appropri'até transforﬁation of t;he
sﬂatic plasma ch.a.r.acteristics.i Quaﬂtitatively, the model may
serve as a lowest order solution in a épheriéal_ha.rmbnic expan-

: sion of the acﬁua.l field geoinetry. |

Of course, ‘the overwhelming argument in favor of the

meallzed model lies in the simplicity which permits the analytlc,

—esults that are derived in subsequent cha.pters.

Because di-stanc_es characteristic of the model are so much
larger than the wa«velengths. of interest, the waves find them-.
selves in a locally uniform plasma end field.._ ,Althougﬁ slowly
' ﬁime;varying in the plasma franie, these properties are . constant
crv.e:r.t'he time and space scales characteristic of the waves. Thus
tb obtain insight-into the waves to be studied in the idealized,
spherically symmetric model, we will first c»onsider- large ampli-
tude 'Alfjvén waves.in a 'u_niform plasma immersed in a uniform
" magnetic field. The properties of the background medium will be
aséumed stationary, except as’they are igfluenced_ by the waves
themselves. This preliminary study is the subject of Chapter L.
Haves analyzed there é.ré much 1like the experimentally observed . -
'A’Lf\_fén perturbations. They are introduced into the idealized

‘model for the convective evolution investigations of Chapter 5.

Db

3,2 Plasma Equations for the Solar Wind Model

Even with {:he limited complications of t';he jdealized
model, the analytic details of the ;behavior of waves in an _
adiabatically expanding plasme are rather _formid.able. Thus the
vequatioﬁs describing itihe in,tera_ct‘ions_ of plasma and fields should
be as simple :&S'possiblé, and wé are led to consider f_luid-models.' .

We assume tmt the plaéma consists of a single ion sp.eéie's; it is

& relatively simple matter to generalize the result to multiple

species, at least in the collisionless limit. Since we wish to

g

consider unsta.blé‘Alfvén waves, the model equations must include
the possibility of pressure _anisotropy.' The simplest choice is
the Chew;qudberger-Iow or "double adisbatic"” model,l These

equations can be obtained from Maxwell's equations and velocity

"moments of the Vlasov equation, assuming that the ion gyroradius,

. is small compared to the length scales to be studied, that the

ion grrpfreqﬁency is larger than the frequencies of interest, and
that the divergence of thé heat flux .tensor .Q, vanishes.

The Alfvén,waves ob'served in the solar wind have wave-
lengths greater than 103 km, _Which is large compared to the 100

km typical of the ion gyroradius. 15 This also implies that

‘A1fvén wave frequencies are smaller than ion gyrofrequencies,

“because the A1fvén velocity and the ion thermal velocities are

comparable in the solar wind. In Chapter 4, the analysis of
Alfvén waves in a uniform plasma is carried out in the more

general "guiding-center"” theory, which includes the possibility

22,23

of heat flow. In the gulding-center solution, the heat
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flow tensor vanishes identically. Thus its neglect is justified
in retrospect, and the Chew-Goldberger-Low model is a fortunate

| choice in the case of Alfven ﬁaves in a uniform plasma and field.

Dropping V. § in the idealized model is not justified,

because of the plasma’s nonuniformity, and constltutes probably

the most serious defect of the model. Electron heat conduction o

, is expected to be ‘an efficient means of communlcatlng temperatures
‘at the‘sun to great distances.35 ‘The transfer of these high
temperatures to the ions would modify the predictions of the
‘double adiabatic model, which.are that T, and p are
proportional to r° and that oT, and.-pi fall as r'h,,in
" the absence of vaves. These latter relations are obtained in
Sec. 5.4B, |
The pressure tensor which appears in the double adiasbatic
model includes ion and electron contributions. Since. V - 3 is
appreciable for electrons, the electron pressures do not obey the
" Chew-Goldberger-Low equations and represent an'unrnown,in the
convectiVe'evolntion problem. - Multiple fluid theories have
attempted to predict electron thermal properties,.bnt none haVe
succeeded in simulating the known characteristics of the solar
 ind. 55,56
In order to maintain the simplicity of the double
- adiabatic model, heat flow due to electrons is arbitrarlly
assumed to be zero in the analysis which follows. With this

nypothes1s, electron_temperaturesvand pressures follow from the

- Chew-Goldberg~Low equations.

26—

The observed electron pressure difference Py - B is
only a tenth of the electron.pressure, whereas for ions it'is
one to four tines the ion perpendicular pressdre. Since electron
and ion pressures at 1 AU are comparable,-electron contributions

are negligible when computing the total pressure difference,

. p - p ‘Both the Alfvén wave dispersion relation, Eq. (h 16),

n

~oand the solution of the convective evolution problem, Eq. (5. 36)f

depend on the pressures only through this difference. Thus, when

‘details of the actual electron temperature behavior are included
'in the theory, the answer may still depend mainly on the ion

_pressure tensor.

One possible improvement in the present.approach might

- be the inclusion of an ad hoc heat flow term in the Chew- -

Goldberger-Low model. - This would preserve the basic simplicity,
which permits a relatively simple solution, while serving as a
better approximation to the physical world. Alternatively, the
analYSis could be carried out in the guiding-center formalism -
used 1n Chapter L, which includes the possibility of heat .
conduction._’

7 Wave-wave interactions,-the effect of“Coulomt collisions;_

and resonant-particle interactions with Alfvén waves are omitted

. in this study. Some of these, such as collisional effects, can

be readily incorporated into the fluld theory, but their

inclusion would complicatevan'already formidable analysis -and

prevent a closed form solution. Finite gyroradius corrections

have been omitted for similar reasons. Eviatar and Schulz studiei,
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*he influence of sdne of these éffects on ion pressure anisotropy
in the solar Wind.3 »7 They concluded that the ion-cyclotron
instabilit& and Coultémb' éollisons could account for the smallness
of the observed anisotropy.  The résul‘gs vderivéd in Chapter 5
show that Alfvén waves of thé type experimentally observed can
also limit the anisotropy. o |
. .Sagaeev and Galéev Have sbtﬁdied three;wavé in"ceracti.ons' .
using the magnetohydrodynaiziiq theory, in which p, = pJ_.?B
They conciude that a lafge amplitude circularly polarized Alfvén
wave propagating parallel to a uniform magnetic field can d_eca&
into another Alfvén wave and a sound vave. Although the type of .
a1vén wave observed experimentally has not been stulied explicitly
with respect to. this. type of iﬁstability, thére is evefy reason
to suspect that it, too, should be vulnereble o a similar decay -
process. ;Neverthelessb, the observed presence of extensive Alfvén
" modes in the solar wind indicates the presence of some effec;tivq_e
barrier:&g#inét such three-wave interactions. No attempt is made

%o include them in the ensuing chapters.
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CHAPTER 4
EXACT NONLINEAR EVOLU‘I_‘ION OF LARGE AMPLITUDE ALFVﬁN_WAVES
| IN A UNIFORM PLASMA

4.1 Introduction |

In anticipation of the labor involved in studying the
evolution of iarge amp;ifude _wé.ves in the sola_.r wind; which is
both_nonuni_forin andv convecting, it 1s necessary to find é mode
wit_h’a mathematically sim_ple description, at ieast in a wiform
plasma,

As this preliminary stage in studying the conveetive

evolution problem, two classes of Alfvén waves have been dis-~

covered which in a uniform plasma immersed in & uniform mgnetic
field are exact solutions of the Chéw-Goldberger-Low modell_and
the guiding-center equatipns.ee" 23 ‘The first is a wave prop-
sgating parallel to the uniform mgnetic field. Tt is character-
ized by a wave magnetic field componenf perpendicular to the
uniform field whoée magnitude is '_constant in space and tim_e, but
whose orientation is a.rbiﬁrary. There is »experimental evidence.
that this mode is important in the solar wind,’d and Chapter 5
treats its thearetical behavior inia conve_ctiné piasm.vmodeled

after the solar wind. The second class of Alfvén waves is a

circularly polarized standing wave oriented parallel to the

‘uniform magnetic field. When an excess of pressure parallel to

the magnetic field makes such a wave unstable, it is known as the
"firehose" or "garden-hose" instability. By use of elementary

analytical methods, the nonlinear quenching of this unstable wave
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can be solved exactly in either modei, thus providing pérhaps

the first simple and complete solution of the nonlinear growth
of a plasma wave,.rigcrous within_the limitations of the guiding-
center equations., | . ‘

In what follows we consider Alfvéh waves in an infinite,
qniférm plasma in a uniform ﬁaghetic field :20’- The vedocity
distribution is in general anisotropic... |

The firehosé mode has already been studied in such a

plasma by qpasilinear’techniques.2h159,40

The Vlasov equation
carried to second order in the perturbation shows that the
'unstabie‘waves, initially growing due to an excess of pressure
“parallel to By react back on the particle distribution, causing
the'parallel fressure.to décrease and'the perpendicular - pressure
‘to 1n9rease as.long &s any waves are growing; the growﬁh rate is
made smaller by the relative decrease_of parallel pressure, ahd ;
wave growth is thus self-guenched. An explicit examination of -
.this procéés has not appeared in the 1iterature.

The Chew-Goldberger-Low model is chosen for the simpliéity
inherent in a fluid description and because to lowést.ordér it '
predicﬁs_fhe same nonlinear behavior of Alfvén waves as fhe Vlasov
equation. In Appendix A the earlier qpasi;inear results are
generalized to arbitrary k by carryiﬁg the Chew-Goldberger-Low
equations to éecond order in the wave perturbatibn. (of course,
finite ion;g&roradius~effects must be appended to the Chew-
Goldberger-Lo§ équations to correctly_ﬁredict growth rates for

smali wavelengths.)  This calculation verifies that, at least to
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seébnd order, the Chew-Goldberger-~-Low model agrees with the more
complete kinetic description. Itvwas thus deemed a reasonable
model for this”igvestigation despite the approximétions implicit
in it. V _ '

The Alfvén modes.that exactly solve the Chew-Goldberger-
Low model aléo s&tisfy without approximation the more widely

recognizéd guiding;center eQuations.'_Moreover, the guiding-

~ center solution has the_property that the heat-flow tensor, which

is arbitrarily drppped in deriving the Chew-Goldberger-Low
equations, vanishes, providing further justification for the
sultability of the Chew-Goldberge:-Low equatioﬁs to this study.
Section 4.2 treats eXact_Alfvéﬁ"wave solutions in the’
Chew-~Goldberger-Low model. In Sec. 4.2A a magnetic perturbation

perpendicular to the uniform field B, of constant, but arbi-

0
trarily large, amplitude is shown to be an exact solution of'the

Chew-Goldberger-Low model provided the usual Alfvén wave stability
criterion, Bq. (4.19), is satisfied. Such waves‘ﬁropagate without

distortion parallel to B, at the generalized Alfvén velocity,

0
given by Eq. (h.i6). Figure 5 illustrateé examples of this wave.
The constant-amplitude Alfvén wave in the Chew-Goldberger-Low
model has been briefly treated as an example of a "simple wave’
of classical fluid theorf.hl

In Sec. 4,2B a circularly polarized A1 £vén wave with k
parallel to EO
Goldberger-Low model to Bgs. (4.12), (4.13), (4.20), and (L4.23)

is studied. This mode reduces the Chew-

through (4.27), which are derived without any approximations.
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" The mode does not propagate. The magnetic field has a helical
structure consisting of 'go and a‘component perpendicular to .
B, of signed amplitude '-'b(t),',a_s ehown in Fig. 6. The time

~0
evoiution ef‘vb(t) 'is easily obtained from the energy Eq. (L4.24):
fb(t). can be viewed as thevdisplacement_of a classical particle
| moving in the potential @(b), which is sketched in Fig. 7 for
: verious initial plasma conditions’. .If the stability criterion
(h.l9)hbld$;fb(t) oscillates between positive-and negative
ualues with an amplitude-dependent frequency, which approaches -
’ _the Alfvén frequency in the small-amplitude limit.
If' the Aifvén stability criterion (4.19) is not satisfied,
. three special cases can occur, depending on the particular
boundary conditions assumed for the plasma The usual initial

condition assumed for plasma‘instability studiesbcorresponds to

Fig. 7(c), in which p,(0) > p,(0) + Bog/lm, and the initial

perturbation amplitude b  and its time derivative o' are small

and positive. ‘The_amplitude grows exponentialiy at first, then

more slowly; it reaches a paximum value in a finite'time and

immediately decreases, ultimately decreasing to Zero exponentnﬂly.

This. demonstrates that wave quenching occurs in a finite time and
1s»followed by immediate decay. . If the 1nitia1 eonditions
correspond to the situation in Fig. 7(d), the wave amplitude _
oscillates (ndnsinuSoidaliy),'never passing through zero. - If the
initial conditione corre_epond to Fig. T(b), the wave amplitude
“oscillates nonsinusoidaliy and passes through zero twice each

period.
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Section h;B shows that identical results are obtained
from the guiding-center equations.

Iu Sec. L4.4 the exact results of Secs. 4.2 and 4.3 are -
discussed. It is noted that the censtant-emplitude waue may be
an important lOw-frequency'jhenomenon inlthe solar wind. iThe

circularly polarized firehose mode is related to the quasilinear
' ko

] theory of the Alf‘véri instability. 24,39, Qualitative features i
. of the nonlinear evolution of the circularly polarized firehose

,mpde are compared with characteristics of other unstable waves.

4.2 Parallel Alfvén Waves in the Chew-Goldberger-Low Model

The ChewaGoldberger-Low equations or doubie adiabatic

equations a.rel"25

dp/at = -pVeyg, A , (4.1)
pdy/at = -Vip + (V% g).x Bfbx , | (uf_g')
3Bt = Y x (u x B), _ (4.3)
a(pe B /at = o, (bb)
aPedVat = o, (.5)
v ;jg ="or, : ' . SRR (k.6)
£° Rl(% - BB) + p,EB f

= + _pAﬁﬁ s , (4.7)
P P, - B o : (4.8)

The usual notation for the convective derivative,

a/at = (3/ot + w-9),
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nas been used.b In these equations B Qenotes the magnitude of
the totél'magnetic field 3B . . .
Wgsassume that the unpérturbéd state consists of a uniform

plasma in a ﬁhiform and constant magnetic field B Choose a

0 *
Cartesian coordinate system with 2z axis parallel to go.
Al] plasma wéves,discussed‘in Seos. 4.2 and 4.3 are

assﬁmed to have the following space-time dependence:he

¥ = ulzt) - - (4.9a)
3 e g+ k) - (b 90)
wB, = _‘ [ | SR (%)
ve, - 0 )
£ = lb‘(.z,t)'l.r= b(t), ' -~ (4.9e)
neme e
f,, - 'p,,(t),' - 5 BTN
p = constant. - |  (k.om)

Note that the only spatial dependencé is through the variable 1z,
hence the name parallel Alfvén waves.

‘Without any approximation, use of properties (4.9) reduces

‘the Chew-Goldberger-Low Eqs. (4.1) through (4.8) to the simple

system

dp/ot By dufdz, ‘ (4.10)

il

]

RE/dt = -(By/5)p,- B/ 4x )0y 02, (b.11)
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p, (t)/p (0} = 3(t)/B(0), (k.12)

B, (£)/5,(0) = 2¥(0)/5(v). - (5.13)

Equations (L4.10) and (4.11) can be combined to give a

- wave equation for b:

et - ol /B, - B /e ()
Equation (h.lh) can be treated ﬁy.a sepafation of var-
iables technique, but, due fq its nonlinearity, particular
solutions cannot be superposed to give more general ones, . Guided
by solutions of the linearized plasma equations, we investigate
two classes of solutions of.Eqs._(h.loj through (4.14).
A. Constant-Amplitude Propagating Solutions
in the Chew-Goldberger-Low Model
Assume b(t) 1is constant in time. Equations (h.lEj;and
(h.l}) imply that p, and p, are also constant. With

b =b B(z,t), Eq. (4.1k) reduces to

Bt = v2FbL, ‘  (4.15)
where the generalized Alfven %elocity,“VA' is given by
2 a1, 2.2 .
Vo = o (By/BY[(8/4x) - p,] ' (4.16)

and is also constant.

The general solution of the simple wave Eq. (4.15) is
b = % cos 8(z - Vyt) + ¥ sin 8(z - V,t), (4.17)

where b has been chosen perpendicular to B, in accordance with

0
Eq. (4.94), and 6(+) is any twice differentiable real function.
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For example, if ©(x) « +tanh(kx), then for

iz - VAtl >> ‘k_l' the direction of b is nearly constant,

vhereas vhen lz - VAH S k'l, b rotates. The total magnetic
field is essentially uniform where |z = VAtl >> ¥ and is

slahted with respeét_ to the B, direction in this region. The

~0
" .field lines .tWist in the vicinity of z = V,t so that the total
- field ,]§ always makés the same angle with EO' The approximate

shapes of the field lines for - 8(x) = n tanh{kx), _,

8(x) =_3r/2 tanh(kx), ‘and 8(x) = (7n/2)exp[-(kx)2] are shown
in Fig 5(a), (b)i,b a.nd (e), respectively. In the Chew-
Goldbe.rger-low modelA,.bthe f"ie‘ld ‘structures shown propagate
vithouf Qistortioﬁ at vel.oci'vtyv VA parallei to EO' The prop-
i agating interface at z = VAt, where the interesting fiéld' o
bebavior occurs, has been likened to a shock front_.:m_oving
throp_gh’é uniform piasma. The helical structure of Fig. 6

results if O(x) = kx.

The fluid velocity u 1s obtained from Eq. (%.10): -

ulx,t) = -(V/Be(zt). o (5a8)
Since u must be real, VA must be real, 1i.e.,
P, <P+ Bz/hn,' : Ny (4.19)

which is the well-known stability criterion for Alfvén waves.

In swmary, Eqs. (4.16) through (4.18) and (k.98) through

(4.9h) constitute an exact solution of the full nonlinear Chew-
Goldberger-Low equations when the stability criterion (4.19) is

satisfied. The solution is & wave of arbitrary but constant
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amplitude, propagating without distortion at the A1fvén velocity

IVAI, mrallel or antiparallel to B.. The total field B always

o

mekes the same angle with B, and has the same orientation

0.
throughout each ‘plane 2z = constant. »
B, Standing Wave Solutions with Time-Varying-Amplitudes o ""
in the Chew-Goldberger-Low Medel .
We next .consider solutions of Eqs.: (.h.lvOl)-thr‘oﬁgh (L.1b) - )
in which the wave amplitude can vary with time. '
Since Eq. (4.9) assumes that the wave amplitude is

independent of 2z, we write
b(z,t) = b(t) Blz), ' (k.20) .
where “b(t) represents an amplitude that may assume positive or .

negative values. Subétitution of this trial solution into Eq.

(hll&) gives .
(dab/dta)'b? = -p-l(Bo‘"/B)E(pA - 2 )b db/az’.

Separating this equation into parts dependent on z and

t,'-respectively, we f£ind

4% /a2

1]

B . L (ka) | R

© and

Ewjat? = 1 p'l(ﬁO/B)z(pA- 2 i) . (h.22) ‘ .

]

In order that b have finite components, the constant k

must be real, and Eq. (4.21) gives:

$(2) = % cos(iz +8) + 5 stnliz + 8). (5.23)
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Thus the magnetic field has a helical structure with axis
rerallel to B, .as shown in Fig. 6. In what follows we assume
the wavelength large compared with the ion gyroradius to pre-
serve the validity of the Chew-Goldberger-Low model.

An energy-like equation for ‘b{t) can be obtained by

@tiplyim Eq. (k.22) by “b’, using Egs. (4.12) and (hl}) to

carry out the resulting elementary integrations. Thus we find

% (~b_v)2_+ j(‘b) = K : ' : » (4.2k4)

: whe;'e K 1is a constant and

Fen) =24 32 07 p (0)(B(0)/51° + 23, (0)(B/5(0)] + B/,

(4.25)
The dependence of ﬁ on b is through B:
= 5 * b)E. . (4.26)

From Eqs. (4.10), (4.11), (4.20), and (4.23) ve find

a(z,6) = (B))™ B[R sinlke + 8) - 7 cosliz + 8)1.. . (h.27)

_Eq._uat‘ionrs (k.12) ahd'(’-t.lB) specify p_L(t) and p“(t-).

If Bq. (4.18) is multiplied by p(kB))™, and Egs. (k.12),

(4.13), and (4.27) are used to simplify the result, we obtain
. D ' .
Sou(t) v 5 p,(6) + p(t) + F(£)/8x = K'.  (h.28)

This is the energy eciuation for the combined system of plasma and

wave with the obvious physical interpretations: ,1'- pu2 represents

2

- the plasma translational energy density, %PII is the thermal
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energy density paral;él to B, P, .is the thefmal energy density
perpendicular to B, and B2/81r is the total energy density in
the field; .

Viewing Eq. (L4.24) as an equation in “b(t), we see that

it describes the motion of a particle with displacement - s

.velocity ', and total energy’ K ‘moving in the potential Bv).

The time development of b(t) follows easily .from this inter-
pretation of Eq. (k.2L),
First we consider the properties of H(™b). From Eg.

(4.25), one obtains

33D w bilB2/tx] + 3 (0B 2(B(0)BI - p, ()82 E(0)p7".
| (1.29)
One éxtremum occurs at b = 0, because f is even in "b. When
multiplied by BA the curly brace in Eq. (4.29) is a monoton-
ically increasing function of [*b|. Thus the brace is positive

for all b # 0, if it is nonnegative at b = 0, i.e., if
(B/bn) + B, (0)[B/B(0)] - p,(0)[B(0)/B,1°

= By /M) + () - () > 0. (4.30)

‘b=0. =0 :

Equation (4.30) is the Alfvén stability cri‘terion; when it holds,
H(d) nas only the extremum at b = O and must have the form
‘sketched in Fig. 7(a). In the Alfvén unstable case, when Eg.
(h.}O) does not hold, the curly brace is zero for exactly one
value of 5] > O,. and f(‘b) must have the form sketched in

Fig. 7(v).
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Evolution of the circularly polarized Alfven wave in the
stab;e and uhstablevcases is goverﬁed by the energy constant K,
which is determined by the initial conditions.
l Case 1. Stable Ilasﬁa

When Eq. (4.30) holds, $(0) is the minimum value of

). Thus K cannot be less than $(0), since this would imply -

an imaginary velocity ~Db’.
) :A qﬁiescent, stable 'ple‘a.sma..w.ith " = 0 corresponds to
K = §(0).

Assume K > $(0), and let :bl = "‘02 > 0 be the real -
roots of t_he equation P(™b) = K,v which is a quartic in B. In
view ef Eq. (4.24) and Fig 7{a), b bosciiliafes_'between the
turning points ", and b,. Figure 6 shows. the magnetic field
behavmr for this wave. .One complete cycle, observed from a -
fixed spatial reference, is demonstrated by the - sequence
@)(0) - (£)g)(£)- -+ (a).

" When I“o l << BO’ Eq. (h.?h) can be expanded in *b
fo give | |
CH 4 307 LB kn) +p (0) - p (O = A, (h31)
Where A isa positive constan*t;.. Equation (4.31).is that of &

simple harmonic oscillator with its frequency o given by

£ = o Pl(E 2 ) + 2,(0) - 2,001 -  (h32)

Thus for small amplitude waves we recover the Alfvén dispersmn

relation. .This solution -is 8 standing wave; it can be v1ewed as
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a linear cqmbinetion of two circuiarly polarized Alfvén waves,
epecial types of the constant-amplitude solution considered in
Sec.' 4,28, propagating in opposite directions. -
For more severe perturbations the f‘requency of oscillation

is a.mplitude-dependent the period T being simply the transit

tlme of- the_ magnet;l.c particle oscillatmg in ‘the potentlal

B():

(P > o
4% 4% -
. D v | r .7 (L.33)
i &Y (2[K - F(0)1)2
\bl

Although this-so]_.ution' is a standing wave, b does not oscil-

‘ lz_i’ce sinusoidal_ly; so this mode cannot be viewed as a super-

position of circularly. polarized parallel propagating Alfvé_x_:
waves.

" Case 2. Unstable Plasma

Assume that Eq. (4.30) does not hold, i.e., assume

-

(p“)‘b=d > (p‘\')\o=0 + Bo-/lm.. (L.34)
The plasma is unstable with respect to small-amplitude _Alf_vén»

waves, and the magnetic potential § has the form sketched in

Fig. 7(b)~(d).. The evolution of the circularly polarized Alfvén

wave depends on the value of K relative to 5(0)

(a) Assume K > P(0), which corresponds to Fig. 7(b).

.Let ’ﬁ(‘_‘bl) ='_§('1>2) = K, where :‘bl = _"bv2 > 0 as before.

As in Case 1 for ‘large-amplitude waves, b oscillates

between the values ‘bl and ‘bg with period- © given by Eg.
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{%.33). The oscillation is nonsiﬁusoidal to .the extent that @
_is nonparabolic. The dev’élopment of the magnetic field in time
can be seen in F:lg 6: a complete cycle consists of the sequence
A{a)---(f)(g)(f)"'(‘a); “‘b ‘passes through zero twice each period.
' (b) Assume :K % }(O), which corresponds to Fig T(c).
'I'he case K= _5(0) is rthe situation usually considered
in insta'blllty studies:‘ the plasma is u.nstable, but 1n1t1ally
umperturbed. If a small-amplitude circularly polarized A1fvén
 wave perturbation is introduced with *b(0)> 0 amd “b'(0) > 0,
b initially grows exponentially, then more slowly until its

2
" diately the mode decays, with ‘b ‘ultimately falling exponen=

. growth stops at Y, the positive root of B(b) = K. Imme-

txally to zero.
The tlme T required for the amplitude to reach satura-

tion and decay to its initial amplltude (0). is

L .
P o
T = 2 - = . L.
-2 < (4.35)
v(0) -

The exponential rate for growth and decay 1s..t.he usual
f:‘_.rehose growth rate. The duration of exponeﬁtial gféﬁh will be
rarbitz;arily long as (O) is made arbitrarily small, although
in practice "b(O) cannot be made much less than the inherent
random fluctuations in B. _
- The grqwth-deéay behavior is demonstrated in Fig. 6'by the
sque_nc‘e | (c.) (b)(g)(b)(c), with ultimate decay to -the uniform

ragnetic field pictured in Fig. 6(d).
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When K = $(0) the exact equations predict pure decay,
or growth-saturation-decay, but fhe mode ;Ls not periodic. -When
K 4is near ﬁ(o), but not equal to it, any circularly polarized
wave oscillates betwr-;en solutions of ﬁ( ‘bj = K, . The pe;'turba-
tion amplitude spends most of its time near zero amplitude, since
B! ois sxﬁall there. The period increases -markedly.as X -
ap}ﬁréaches _}5(0) | . .

{c) Assune jmin- < K<_§(O), where ﬁmin denoctes the -
minimum value of  H( b), corresponding to Fig. 7(a).

Let f( v, ) = B( ‘oe) = K, where 0 < “bl <'b,, and
choose the coordinate system so that LN < (o) < ,-
Figure 7(d) shows that b os.ci_llates between the limits b

1
and ‘02 , never passing through zero. The field behavior for a

~full cycle is illustrated in Fig. 6 by the sequence (a)(b)(c)(v)fa).

b.j Parallel Alfvén Wéves in the Gulding-Center Model

The results obtained in Sec. 4.2 in the Chew-Goldberger-

-Low model also follow from the guiding-center equations, which, -

because the heat-flow tensor is not arbitrarily neglected,

constitute & more realistic approximation to an actual plasma.

We work with the équations obtained by Kulsrud from the V].asow}
23 .

equation in the small gyrofadius limit. This is a kinetic

description, and thus the particle distribution function FO

must be specified. We take Fo to be bi-Maxwellian:

s

Foli,0,t) = C p, ™" p, - expl-pw/p - olq - w,)?/2py) (4.36)
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where
(4.37).
and _
sy . S (n8)
Parallel and perpendicular refer to the total magnetic field.
‘ Using Eq. (4.36) andrthe charactéristics (%.9) of ﬁhé -
ﬁaves 6f‘interest,iwe show in Appendix B fhat Kuisrud'siguiding-

center equations reduce to

E, -0, S o (4.39)
s m e  (b.%0)
/ot = .(-130/13?'.).(1)A - Bfappfer, ()
p;kf)/p;(o) - sEO) )
p'“(t)/p',;(o) - Poyfw), (4.53)
'.QB/Bv‘=' o(p, - lehﬂj-i ae/3t, : (h.hu)
(n ..g)é - o .v : | . L (ws)

Equations (4.L40) through (h.hj).are idenﬁical to ﬁhose
cbtained fram the Chew-Goldberger-Low model, Egs. (4.10) through
(4,13). Equation (4.39) disposés.of the parallel electric field;
which appears in the guiding-ceﬁter.theory; but not in the Chew-

Goldberger-Low model.

Ly

A. Constant«Amplitude Propageting Solutiorns
in the Guiding-Center System
The solutions of the Chew-Goldberger-Low system consid-
ered in Sec. 4.2A have the property that ,gl and ‘Ei remain
constant in time. Thus both sides of Eq. (4.44) vanish, ﬁq.
(4.45) is éatisfied, and the guiding-center equations reduce to
thosé derivedbfrom the Chew—Goldberger-Low model and iead to the
same solutions as oﬁtained in Sec. k.2A.
B. Tﬁme-varying-Ampiitude Standing-Wave Solutions
in the Guiding-Center Systeh‘

The time-varying-amplitude Alfvén modes considered in

‘Sec. 4.2B satisfy Eq. (4.hh) in view of Bq. (4.27) and a simple

manipulation of Eq. (4.22). Equation (4.45) is likewise satisfied
because Egs. (4.23) and (h.27)'sh§w that b and u are orthog-
onal. | .

The guiding-center equations have thus been simplified to
the Chew-Goldberger-Iow results, Eqs. (4.10) $hrovgh (4.13), and
lead to the same time-varying-amplitude solutions obtained in
Sec. k2B, o ' :

Note that, sipce the solutions obtéinedﬁfrom.the guiding-
centef equations have a bi-Maxwellian velocity diétribution, the

heat-flow tensor Q vanishes. This justifies, in retrospect,

~

‘the use of the Chew-Goldberger-Low model, which arbitrarily

assumes that V+Q = 0.1+23 _
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4.4 Discussion of the Uniform-Plasma Solutions

A, 'Significance of the Constant-
Amplitude Propagating Alfvén Wave
It has been known for many years that in a uniform

magneﬁofluid-dynamic plasma a transverse magnetic perturbation

» of arbitrary orientation and constant amplitide (or special céses
of this type of wave ) propagates at- the Alfvén velocity parallel

" to a uniform magnetic field without distortion, i.e., there is

no -coupling to. particles or waves in the absence of other -

perturbations.’” 5™ Sections 4.2A and b.34 show that this.

econclusion holds even‘for an anisotropic plasma in the Chew-

Goldberger-Low and guiding-center models. Examples are.pictured

in Fig. 5.
The constant-amplitude propegating Alfvén wave may be -

important in the solar wind. .Mariner V datal ’19-show the high

‘earrelation or anticorrelation between magnetic field and fluid

velocity which characterizes Alfvén waves [see Eq. (4.18)].

. Although the individual field components fluctuate in.a seemingly
random fashion, the total field magnitude is relatively constant -
‘over large regioms of the solar wind. The wave propagates at the

_ Alfvén velocity, always away from the swn. Furthermore, the

amplitude of the magnetic fluctuation is comparable to the total

field, so that eXplanaﬁion of the phenomenon requires a large-~

" amplitude theory. Subsequent analysis of the data may show that

the random fluctuations in the observed field can be duplicated

by the constant-amplitude M fvén wave with suitable choice of the

-L6-

.

arbitrary function 6. The constant-amplitude Alfvéh wave is

characterized by a constant magnetic field component BO An the

direction of propagation; it has not been established whether the

_solar wind has this property.h6

The simple picture of a constant-amplitude wave propaga-

-ting parallel tovthe uniform field without'distorion may no

longer be valid if other waves are present. ItAhas been shown,

‘for example, that ailargé-amplitude circulafly polarized Alfvén.

wave in a magnetofluid—dyﬁamic plasma . (p, = pL) can couple %o
another Alfv€n wave and an ion sound wave if the waves satisfy
certain three-wave resonance conditions.38

| . This wave is»used in Chapter 5 for the study of the
convective evolution of large-amplitude Alfvén waves in the solar
wind. Although it retains the important property of being locally
constant in amplitude, its amplitude varies slowly with distance.
from the sun as it propagates through the nonuniform and rapidiy
convecting plasma. Its importénce in the solar wind receives
further attention in‘Chapter_B.

Barnes and Suffolk hﬁ?e investigated the large~amplitude.
propagating Alfvén wave using a relétiﬁistic kinetfc theory.h.7 |
B. The Variable-Amplitude Circularly Polarized Alfvén Mode |

Eneréy conservétion prevents the indefinite growth of a

linearly unstable plasma wave. Nonlinear effects, such as wave-

" particle and wave~-wave interactions, ultimately limit the ampli-

tude of modes that increase exponentially with time in linear

theory.
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This mode quenching problem rarely yieldé analytic_
solutions in ;losed_form, and insight fegarding wavé-saturatioﬁ
processes is acquired witﬁ difficulty. Except in special cases,
‘even the qualitative properties are unknown. For egample, does.
thevplasmg,a?proach‘the satuiated state of mgximum_wave-energy

’asymptoticaiiy aé 'f‘* w, . or doésnsaturation-oécﬁrAin-a finite
time? If the latter holds, does the queﬁched stafe réfresent.a..
stable configuration, or‘will'further evqlution.occur?

24,39, 4o

. Earlier quasilinear studies of the firehose mode

mroduced equations accurate to second order in the wave amplitudes

of the form

d“ﬁ,)/d#? (B, )/8,°) | P 70t W), o -’(L.us)‘
d{P;,)/dt = [(KE) - 2<?¢>)/362] d_jkfr(g,t)w(g,t), (a7
ay(kgt)/at - = 27(kt) \v(}g,'t'),' o a8y
jﬁa;,t) = ot B PURY - (B - BEn), - (hbo).
Wot) 8l +x) = (B(pt) - BGELE). (450)

Here BB 1is the perturbation in the magnetic field, parallei and
pérpendicular refer to the direction of QO’ and figite gyroradius
effécts,have'been dropped. The brackets denote ensemble and
spatial‘averaging_in the derivation of Davidson and_VSlk._

" Equations (4.146) through (4.50) are obtained in Appendix A from

the. Chew-Goldberger-Low model.
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The quasilinear equations have the advantage of treating
an arbitrarybdistribution of linearly polarized-Alfvén waves.
They imply the existence of a queﬁching point: the plasma is
initially unstable iz. (P,)(0) > ()(0) + B /Um, but, as the

waves grow, .<3L) increases and (ﬁl) decreases until

: 7(39t) = 0, and no waves are unstable,

Howe&er, Eqs.:(h.hé)’through.(h.ﬁo) have not>ﬁeen soi;ed
in even the simplest cases. The qualitative pfopefties of the.
guenching proceés obtained so simply in Sec. 4.2B for the
circularly polarized mode-~namely, that}queﬁching oceurs in é
finite‘time and is followed immediately by decay--are obscured
by the complexity of Egs. (4.46) through (h.so).” Indeed these
groSs’features may have been lost by the approximations used in.
deriving them from the more fundamental equations.v The quasi-
linear theory cannof provide quantitative information céncerhing>
the quenching process, since, as Davidson and VOlk note, highef--
order nonlineaf effects become important as 7y — 0. In deriving

the qpasilinear equations one treats 72(g;t) as a zero-order

quantity, an assumption which clearly breaks down at the quenching

point.-

Qualitétive’featurésbof.the.queﬁching of the circularly’
polarized A1fvén wave are’shared by other wave saturation
processes:

'l.‘ Numerica; studies of the flute mode in the low-
density regime show exponential growth at small amplitudes, then.

5

saturation followed by decé.y.2 The energy in the mode oscillates,
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ruch like the Alfvén wave of Case 2(b), Sec. 4.2B, when K _is
slightly less than §(0).

2. Investigation of the nonlinear evolﬁtion of a single-

- wavelength longitudinal flute mode with frequency near & harmonic.

of‘the gyroffequency'in a loss-cone plﬁsma indicates saturatiqn
in a finite timé fbllowed’by deca§;26 ‘The analysis is invalid

beyond the decay regime; so that oécillatofy behavior qannot be.
revéaled.‘ The modé considered is a symmetric standing wave, and

the analysis involves a pseudopotential, both characteristics.

baving analogues in the theory of Sec. 4.2B.

3. In a plasma consisting pf two cold streams, a
dymamical thedryvof:the two-stream instability shows that "the
eléctric.fie;d does mot grow and level off at some value E o
whefe 7 =0, but, rather; becéuée of the dynamics, overshoots
this point and then oscillates‘back to its initisl state."27

4. The Bﬁmb-on-the-tail 1limit of the two-stream v
instability has similar fréperﬁies: ~wave saturation occwrs in
a2 finite time and is‘folloved by gentle.oscillations of the wave
energy, with period comparable to particle-trapping times, 20730

The pure circularly polarized M fvén wave discussed here

-mBy never occur in-the physical world., The requirement of a

iarge uniforﬁ plésma:in a uniform magnetic field subject tq no
other.pérturbatioh makes its experimental realizétion nearly

impossible. it is hoped that the advantage of having an exact
selutioﬁ in a simple form to én otherwise intractable class of

problems will meke this study beneficial. The characteristics
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of the simple wave-quenching process may serve a useful purpose
if only pointing the way to important characteristies of more
complete and more complex plasma instability problems;

Berezin and Sagdeev have studied tﬁe vgriable amplitude

circularly polarized Alfven mode in a generalized double adisbatic .

model which includes finite gyroradius effects.hB_ The resulting

analysis is more complicaﬁedj but the evolution of the mode

remains essentially the same as found in Sec. 4.2B.
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CHAPTER 5
CONVECTIVE EVOLUTION OF ALFVEN WAVES
IN THE IDEALIZED SOLAR WIND MODEL

5.1 The Wave Structure

_The convective evolution analysis of .Alfvén waves in the

eolar wind is based on the spherically symetric idealized model -

iiscussed.in Chaepter 3; This,consists of a static magnetic

' monopole field, in‘which'a'spherically'symmetriC-plasma flows
radially outward at supersonic and super-Alfvénic velocity B
along the field lines._ »

At some arbitrary redius a source of Alfvén waves is

introduced. It is spherically symmetric, in a sense to be

explained below, and emits pfopagating Alfﬁén waves of the type..

studied in Sec. 4.34 in the guiding -center approximation. The
amplitude of these emitted waves, i.e., the component of B
perpendicular to the radial direction, is assumed to be constant
in time at the source. | .

The loeus of the'sourcevcan be at the surface of the sun
in the theoretical model, although the location of the actual
source of “the Alfvén waves observed experimentally in the
vicinity of 1 AU 1is not known at present. Recalling the ideas
of Chapter 2, the turbulence in the solar corona produces fluc-
’tuations in the magnetic field which metamorphose into Alfvén
“waves long before they reach 1. AU »Another possibillity is that
‘the turbulent region between the fast and slow streams of the

solar wind sectors may be the dominant source of constant-—

-52-

amplitude outward-propagating Alfvén waves. Whatever and where-
ever the actual source may be, for the_analytic model it suffices
to assume a constant-amplitude source at some radius L This
reference radius must be large compared to.a wavelength so that

the wave is not aware of the curtature of the model. The solu-

tion iS'readily*extended to smaller radii. For example, one

- might poetulate known_propenties of Alfvén waves at 1 AU and-

solve for the source required at the solar corona to produce
them. .
In the uniform plasma problem considered in Chapter L,

the magnetic field for the Alfvén wave rpropagating along the

.z axis can be uritten,

B(z,t) = Boﬁ + b[& cos 8(t - z/VA) +§ sin 6(t - z/VA)].

(5.1)

In Eq. (5.1), 8(*) is an arbitrary twice-differentiable

‘Punction, subject to the restriction that it not change so

abruptly that the gyroradius linit'of the Chew-Goldberger-Low
theory is exceeded.

. An appropriate generalization to a spherically symmetric
convecting plasma containing large-amplitude propagating Alfvén

waves is the ansatz

Bz t) = By(e) + b(x)(8 cos 8(x,t) + B sin 8(x, )],

(5.2)

where r, 8, and ¢ denote the usual spherical coordinates.
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We éhooée the WKB phase dependence appropriate to a wave
sropagating radiaily at the Alfvén velocity VA in a plasma

which is itself convecting radially at the velocity uo:

. ) r : .
8(r,t) = 8(t- [ arlu )+ v, (5.3)

- r
-8

The function _6{'} ‘must be differentiable and possess smoothness
 properfieé to be derived later; otherwise it is‘arbitrary, as in
the uniform-plasma case.

To simplifyrthe notation, we défine

g(@) = 8 cés.e + z'sin 8 R .: . _ (5-&)
i.e., g(@) 1s a unit vector perpendicular to the radial
>direction which mekes an gngle 9. with the local 8 ‘difection.
This notation is‘somewhat unsatisfactory,  since 3 and a' are
determined by the nﬂiﬁl position r at which & bis computed.
-Makiné this relation notationally explicit, e.g. g[@(;,t);s],
would‘unnecessarily comflicate the equations. The meaning of
S(e) should always be clear from the context. '

Using this notation, the ansatz (5.2) can be written

B(t) .= Bylr)r + vlr) b(e) , : - (5.5)
with 6(r,t) defined by Eq. (5.3).
Since a steady-stéte solution is sought, the wave

amplitude b at eny redius is independent of time. However,

the waves are no longer 'constent-amplitude" &s they are in a

-5h;

uniform plasma. The slow variation of wave amplitude with radius

as the wave propagates in the expanding plasma is the objective

of this investigation. . »
With the introduction of ansatz (5.2) or (5.5), the

topology of spherical systems causes the idealized model to

' become i114posed.ana destroys its sﬁhericai symmetry; _Supposev’

fhat fqr some sphérical surface r = To and somelfime té,
8(ryt,) = 2rq, vhere q  is any integer. On this surface the
wave componenfs of B given by Eq..(5.5) would be in the |
direction everywhere as shown in Fig. 8. vThe loss of spherical

symmetry is clear, and the evident field singﬁiarity at the pole

is physically and mathematically nonsensical.

Figure 8 shows that in the vieinity of the equatorial
plaﬁe the ansatz, Eq. (5.5), is éonsisfent and represents a
;océlly spherically symmetric wéve. Providing the analysis>ié
restricted to waves onpagating'radially in equatorial latitudes
such that [0 - n/2] « 1, Eq. (5.5) is mathematically con-
sistent. This allows the analysis to be carried out locally as
if the enfiré‘éystem ﬁpsseSses spherical symmetry, even tﬁough '
the model breaks down ét polar latitudes, and the.wave introduces

a preferred direction. Thevrestrictioh of the analysis to a

- small solid angle is adequate, sincé the large amplitude Alfvén

waves reside principally in the narrow, high-velocity spirals
i . 8

at the boundaries between high and low density sectors.l »19

The ansatz represented by Eg. (5.5) is. sufficiently

general to fit the seemingly random phase of the aperiodic large-
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amplitude Alfvén waves observed by the interplanetary spacecraft, -

with suitable choice of the arbitrary phase function 8(-). The
k9

wave is éxpected to pr-opaéate away from the sun “ in the convec-
ting plasma without modification of the shape function 8(-) , but
t_;he magnetic f_iel_d changes as the amplitude;,'ofv its radial and
k ‘perfendicular components varyv-;slov'lly._ » ‘

In analogy with the large-amplitude propagating Alfvén
: wave inb a homogeneoﬁs Plasma, we assume that the bulk plasma

velocity u has the form

bE(E’t) - T+ . ble +8), . (5...6)

" where 5 and uT -are slowly varying functions of r, and the

._time dependence of u(r,t) occurs throuéh the phase function
G(E,t). ‘ » . ' »

| In Eq. (5.6), ©®(r) 1s a smnll phase angle which is
arbitrai'ily introduced to a]iow for the small difference in.
direction between the wave components of B and u which
res;zl_ts from the nonuniforﬁ plasma and field. In the case of a
uniform plé.sma and field, Eq. (4.8) shows that these :compo'ne.nts ,
are parallel (antiparallel) when the direc{:ion of .propagati.m is
a.ntiparailel (paraile’l) to the uniform field direction. For the
nonuniform solar wind model consideréd in this chapter, the

" ansatz, Egs.. (5.5) and (5;6), is overspecified if we assﬁme.that
&(r) is identically zero, as it is in the uniform case. That

" is, the equations that result when Egs. (5.5) and (5.6) are

substituted in the Chew-Goldberger-Low equations are inconsis’oen_t,
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and no solution exists if & 2 0., We assume throughout that

8(r) is small:
b)) «< 1, - )

and we verify in Sec. 5.4C that this holds for Alfvén waves in

. the solar wind at 1 AU,

As in the uniform situation, the pressures and density
do not vary in time at a particular position. Due to the non-

uniformity of the solar wind model, each depends on r:

o = p(r), | v (5.8)
P, = 'P”(r), v | : (5.9)
p = p, (). o - (5.10)

We carry out the analysis of large-amplitude Alfvén
waves propegating in the idealized model in two ﬁays. In Sec.
5.2 we solve the Problem by using energy and momentum conser-
vation equations for the radial direction. In Sec. 5.3 the
solution is obtained by using the wave parts of the Chew-
Goldbergéi‘-bow momentum and Mexwell equations, without féference
to energy conservation.

Section 5.4 compares the results of the two’methods,

'spécifies ranges of validity of the analyses,' and discusses

consequences and applications of the solutions..
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3.2 Solution of the Convective Evolution Problem from an

Energetic Viewpoint

In order to . apply energetic considerations to Alfvén
" waves propegating in the expanding solar wind plasma, certain

properties_ofvthe waves mu$t be known. - In this section we assume

theifollOVing propertiesvdérived for propagating Aifvén waves in:

isécs.'h.e and 4.3:

u@) = - V) bE)EE), (5.12)

VA = 0 ) B @A) - p )/ (5.22)

Recall that p, = B, - EL; Eq. (4.8). Thus we suppose that the

}
: relétions.obtained for waves in a uniform system<h§ld locally -
_in ‘the nonuniform plaéma, with eagh wave parameter assigned its
.local value. . ‘ |

We also assume throughout this section that the Alfvén

veldcity is small compared to the plasmsa bulk veloeity:

v fu, < 1 _ N ) o (5.13)

" This assumption 1s @iscussed in mofe detail in Sec. 5.54. in the
solar wind the ratio is 'VA/ﬁO s 01

Taking é_global viewpoint of the spherically symmétric
systeﬁ 6utlined in Sec. 5.1, we write the energy conservation

equation

%% N v'.vg' B o (5.14)
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Vhere U represents the total energy per unit volume, including
contributions from plasmé parficleé and ﬁhé_electromégnetic
fieids, and S denptes the total energy flux vector. Equation
(5.14) states that the total energy lost fiom a fixed volume .
equals the flux of energy out of that volume. ‘

The model described in Sec. 5.1 is assumed to be in a o

,Steady-state'conditioh, i.e., the sources of A fvén waves- and

convectihg plasma were turned on at t = -, and all transient:

‘effects haﬁe disappeared at the time of observation.

~ Although the wave is time dependent, and its shape is

quite irregular, its amplitude is constant in time at each point.

- Consequently the energy density U 1is stationary in time. Thus,

in the steady-state situation being considered, Eq. (5.14)

reduces to
veg =0 . - (5.15)
and it suffices to compute the energy flux vector §S.

Since § must include the flux of particle energy and

the_flux:of electromagnetic energy or Poynting flux, it has the

form:

s = Z [dBV%m . vily omot) + (c/lm)g X B. (5.16)
e,i . ' '

In Eq. (5.16), m is the particle mass, y is its velocity, f

is its distribution function, and the summation is over electrons

and ions.
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In Appendix C, § 1s computed for a general bi-thermal
zarticle distribution. £ . From the guiding-center analysis of
‘ Chafter L4 it:wou;d seem appfopriate to assume that. £ is bi-
Maxwellian in. ¥y .‘ However, the Chew-Goldberger-Low formelism
ignores the details‘bf'the rarticle distribution,‘énd £ is
v.ieft_in_its moétrgeﬁerai form. In ﬁhié.formaiism; §’ beéomes

-1 2 . 1
8= Feuarlp rapletn u oy,

B < @ Bl (5a7)

-As usual, perpendicular and parallel refer to the local total"
mﬁgﬁetic field direction. In Eq. (5.17) g is the heat flow

‘teasor § contracted over two of its three indices:
(gl = [3]153 . (5.18)

Since V°+ @ = O 1is assumed in the Chev-Goldberger-Low model,
the térm Q 1is-dropped hencéfofth, because only the divergence
of S .occurs.i.

Since we assume spherical symmetry, Eq. (5.15) has the

form
-2 2 ’
r - or Sr)/ar_ = 0 , ‘ (5.19)
where Sr is the radial component of the energy flux vector.
Equation (5.19) has the obvious solution

r2 Sr' = cbnstant. v . ' . (5.20)
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The calculation of the radial component of S reguires
some algebra, because parallel and perpendicular in Eq. (5.17)
refer to the total fiéld direction rather than the radial

direction. For example, u,(r,t), which is a vector in the .

‘direction of B(r,t), is the projection of the total fluid

velocity onto - _g,(;/,-t).' Appendix D contains the details for the

ahsa?z; Egs. (5.5) and (5.6), and shows that’

S =
r

PO

pug + (o, + 230, + 50 7,2 Guy + 27/ . (5:21)
The first term in Eg. (5.21) is the dominant term for
thermal vélocities small compéred to thé cénvection velocity uy-
ihe remaining térms determine the evolution of the wave amplitude
in the convecting plasma. In keeping with inequality (5.13) we
drop the term proportional to p VA5V in Eq. (5.21) so that the

latter becomes
o1 3 3 2 2 :
S, = FPuy + (p +50D )uo +S0V, uo(b/Bo) . .(5.22)

The Chew-Goldberger-Lovw relations supply the additional

equations which are needed»fb‘bbtaih the dependence of the

parameters on Tr.
~ The mass conservation law, Eq. (4.1) in the steady state

becomes

v (p.‘g)b = o . (5.23)’

and, since the system is spherically symmetric, Eq. (5.23)

integrates to give
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2 .
r".pu, = constant. o (5.24)

.. When Sr given in Eg. (5.22) is substituted in the
energy conservation law, Eq. (5.20), and the constant factor .
specified in Eq. (5.24) is divided out, there results the

relatively simple energy equation:

%2 +3 _:31 2 -.5‘- + 3 VAQ(b/BO) = constant. » (5.25)
The bulk solar wind velocity U, is approximately
. constant; the lowest order corrections to u 2 = constant are

(¢}
of order P.L,N/ P~ vthe‘ Although these correctiqn terms can ‘

o 1in the

usually be neglected, it is not valid to absorb u -
constant term in:Eq. (5.25), since the §ther terms in this
‘ .equatit)n are the same order as the lowest arder cbr;'eétions to
7.102 = constgnt. _

Thus, in oi‘der to solve Eq. (5.25), we need an accurate
6. This .can be obtained from tpe radial
component of the Chew-Goldberger-Low momentum equation, Eq. (4.2).

: expfession for u

. Appendix F proves that, for the spherically symmetfié model of
outward propagating Alfvén waves, the radial part of Eq. (L.2)

can be written

Py duo/dr = -d(p, + bg/Sﬂ)/dr - B, d(péxBO B2)/ar.

(5.26)

Inspection of Eq. (5.26) verifies that the variations in uo2

are of order vth .

-G

We must add to Egs. (5.25) and (5.26) the adiabatic laws,
Egs. -(k.4) and (4.5), to determine the pressures in the convecting

Plasma. For the steady state problem, these equations reduce to

p-l B-l

N constant (5 '27)

and

1

02 #F p, = constant, - - (5.28)

In view of Eq. (5.24), and the fact that changes in ug

2, 2
are of order Veh / Uy s

P r-e[l + O(Vthe/uoz)].

In Eq. (5.25) we have dropped a term of order vthB‘

Thus, for the purpose of calculating p and the pressures to
the order required in Eq. (5.25) and the right side of Eq. (5.26),
it is unnecessary to carry along the exact r dependence of the

bulk velocity Uy It suffices to treat u,

(5.24) to calculate p, and hence p, and p,, except where p

as constant in Eq.

appears with the large u02

We 1nt:_oducé the notation

factor on the left side of Eq. (5.26).

B () = B_(r)/Bé(_r) |
A S e (5.29)
and»deﬁ.ne
0y = olry) ' (5.308)
plé = p(ry) - (5.30m)
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ho = wGo o
By, = Bylrgy) | (5.308)
and _ ,
B, = Bey. (5.308)

To the accuracy required in Eq.' (5.25) and the right side

of Eq. (5.26), we can write

plr) = oo(io/r)?, | _ '. - (5.31)
pJ_(r‘) = plo(rJr)jh@/By o S (5.32)
and . ‘ o : | ; |
@) = mole/=) BB 533

The remaining task is to eliminate the large terms
involving u, between Eqgs. (5.25) and (5.26) and, using Eqs.
(5.31) - (5.33), td_ obtain & differential equation for [B (r).

The algebraic steps are‘sketched in Appendix G. The result is
4

P B ”3{0 ry | a e
‘L ( ) (378 +l)‘5u( ) . } ]B

B (ﬂf D)% B, 6o

where

o 2 '
= b p|[,J_o BOO %0 . - . (5'35)
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Appendix H outlines the solution of the differential

equation (5.34). The result is
VA(b/Bo)2 = constant. _ ' : (5.36)

This solution will be discussed in Sec. 5.4, when ﬁhe

‘solution provided by the wave analysis has been obtained.

5.3 Solgtioﬂ of ‘the Convective Evolution Problem from a
Wave Viewpoint |

In this section we carry out the analysis of the convec-
tive evolution of 1arge—amplitude Alfvén-waves by working
directly with ﬁhe detailed magnetic and velocity vectors which
describe the waﬁes;

The nonredial or wave componeﬁts of the Chew-Goldberger-‘
Low momentum equation, Eq..(4.2), and Maxwell equation, Eg. {(4.3)
are required. .Apéendix F shqws that the wave paft of the moﬁena .

thm:equation for the idealized solar wind model can be written

p(.a/at + U, 3for + uo/r ) [uT 3(8 + 8)]

‘=-B bb(e)a B )/ér

(5.37)

Appendix J demonstrates how to obtain the following form

rfor the wave part of the Chew-Goldberger-Low Maxwell equation,

Eq. (4.3), in the idealized solar wind model:
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3 3b(8)/3t = By dluy b(6 + )1/

- [uo b g(@) +'ﬁo Uy, b(e + 8)l/r
- b B(0)uy/dr - uy db B(OI/ar . (5.38)

- In view of the definition of D(8) in Eq. (5.k), it

follows that

25(8)/% - T x B(e). (5.39)

Usipngq. (5.39) and thé space-time.dependence.of the
' phase function 8(r,t) specified by Eq. (5.3), the differentie-
tions in Eq. (5.37) and Eq. (5.38) can ﬁow be performed.
- The wave part of the mémentum equation becomes

r

{a
9 uTle VA(uO + 7,

)'l + Uy 8’]? x b(e + 8)

+ é(uo + VA)"I'[(l/un} - pﬁxB-E} By b T x b(e)

-0 ug(up  + u/r) B(e + 3)
Ly &fb' * b/r)[(l/hn) - pALB-z] - b alp, B7)/ax)B, B(e),

(5.40)
where primes dencte derivatives with respect to r, and e is
the derivative of the arbitrary function 8(+) with respect to
its argument (or simply the partial derivative of 8(r,t) with

respect to t).
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The wave part of the Chew-Goldberger-Low Maxwell equation

becomes

)-l

. ~ ~ . — ) /\-A
OVA(“o +V,)7 br xb(8) + [@(uo +VA) -6'130 Up T ox b(e + 8)

= Bo(ui.; pT/r)ﬁ(e +.8) - [(ud ¥ uo/r)b_f ay b 1B(8) W - | ,
o (5.41)
The structures of Egs. (5.40) and (5.41) are similar.

~ B .
‘Since b 1is orthogonal to ?, they are vector equations with

all terms contained in the plane perpendicular to 7 . since

& is small, the left-hand side of each comsists of vectors

. approximately in the T x 3(9) direction; the right~hand sides

are roughly in-the 3(6) direction, i.e. perpendicular to the
left-hand sides. ' Thus both sides of the equations must almost
vanish. In fact if we.set the wave velocity phase lag © equal
to zero, as it is in the uniform plasms situation of Chapter h,.
each side of Bgs. (5.40) and (5.41) must vanish idenfically,

giving four scalar equations for the three unknowns VA’<'UT“

~and b. These four equations are incompatible, i.e., the

problem is overspecified.. This demonstrates the necessity of

.including the phase lag ©(r) in the ansatz, Egs. (5.5) and

(5.6). With the inclusion of & , Egs. (5.40) and (5.41)
constitute four scalar equations for the four scalar unknowns
VA’ Uy b, and &, and a consistent solution can be found.

The validity of the assumptions used to derive Egs. (5.40) and

(5.41) remains to be verified.
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First we show that the ®' terms in Egs. (5.40) and
i5.,41) can be neglected for values of the parameters appropriate

to the solar wind. In Eq. (5.41), B®' can be neglected if

5! << é/uO . (5.&2)

It can be dropped from Eq.i(S.MO) providing
b1 << (V/ug) 8/u, - (5.43)

| For the solar wind problem, Eq. (5.42) holds if Eq.
(5.43) ié true, since VA <.uo. Thus, it suffices to demonstrate
the validity of Eq. (5.43).
In the solar wind V, ~ 50 km/sec, Uy > 400 m/sec,
é: 2 1075.rad/sec, and a characteristic length scale for
variations in © is R~ 1 AU>~108 Jm.

Thus Eq. (5.4%3) holds for solar wind parameters if

5 << 59 > 1072 x 108
(ko0)
or _
5 << 30, : (5.h4)

Equation (5.44) holds in view of Eq. (5.7). We demonstrate below

that © 1is indeed small, once a formula for & is obtained.
Thus, the B' terms can be dropped from Egs. (5.40) and (5.41).

_ Next we compare the order of a term on the left side of
' Eq; (5.40) with a term on its right side, for typical solar wind
8

parameters: . _
_ | . : . 3
puTévAuO ~RéVA Z10 x.10 x5o~1h

'.D uo-ué u02 - (600)2 .(S,LS)

1
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In estimating this ratio we have chosen observed values of the
parameters which give the smallest ratio. Thus we have used the

smallest observed angular frequency, 8 = lO-jisec-l, and a

large value for the solar wind bulk velocity, u, % 600 km/sec.

The ratio is much larger for‘more typical solar winds. A more

-refined estimate of the components of Eq. (5.40) is made in

Sec. 5.4, where the limits of validity are discussed.

The situation is illustrated in Fig. 9, which shows the

.relative megnitude of the vector components of Eq. (5.40). When

the component of Eq. (5.40) in the T x ﬁ(e) direction is
computed, the contribution from each term on the left side is
large, but the contributions from right-side terms are small,
due to the combined effects of their smell size and the order o
projection of the élmost orthogonal unit wvector S(e + 8), On
the other hand, 1f the component of Eq. (5.%0) 1is coﬂputed in
the .. 3(8) direction, the important contributions include the
right-side termé and the order © projection of the large'

T x g(e + 8) term on the left side.

-Similar arguments apply to Eg. (5.l41).

. Thus we can solve Eqs. (5.40) and (5.41) by taking
components in the T x ﬁ(e) direction, neglectirnz the right-
side contributions, and by taking components in the ﬁ(@)
direction, keeping all terms.

The * X g(@) components of Egs. (5;&0) and (5.41)

become, respectively,
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o up 8 W, (ag + V)™ 4 8uy+ V)@ ) -0, BTIED = 0
' (5.46)

and
éV(u-l;V)-lb'+é(u +v)t s = 0 (5.47)
A% T YA 0" 'a oY% = % :

where ©5° terms have been dropped. _
Solved simultaneously, Eqs. (5.46) and (5.47) give the

solutions anticipated by the uniform plasma theory of Chapter b

up(r) = - V,(r) v(r)/By(r) (5.148)

v2 = o Bl -y BE] L (5.09)

These propértieé were assumed to hold in the energetic analysis |

of Sec. 5.2. See Egs. (5.11) and (5.12).
Resolving Egs. (5.40) and (5.41) into components in the
; 2
%(e) direction, neglecting corrections of order &, we find,

respecti#ely,
L. : -1 t
-p ug @ VA(uO +.VA) 5 .= ~p uo(uT +vuT/r)

+ {(b' + b/r)[kl/hﬁ) - pAIB—e] -b d(pAB"e)/dr\Bo
' ' 5.50)
and. _b |
.é({xO +va)'1 By up & = By(uy - up/r) - (ug + uy/r)b - uy b’
o (5.51)

The simultaneous sclution of Egs. (5.50) and (5.51) for
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5(r) and b(r) is straightforward, but somewhat lengthy. The

_procedure is outlined in Appendix K. The results are

2. -2
VA(b/BO) = C uo(uo +7,)7, : (5.52)
where C 1is a constant, and

2 alm(yy V) e (5.53)

8 = (28,

This solution, Egs. (5.48), (5.49), (5.52) and (5.53),
is discussed in the next section, where it is compared with the

predictions of the energetic analysis of Sec. 5.2.

5.4 Solutions of the Convective Evolution Problem

‘A, Comparison of the Results of the Two Methods

The equations of primary intérest are those giving the
dependence of thé plasma.parameters and the wave amplitude as
functions of r. In the energetic analysis this is Eq. (5.36).
In the detailed wave analysis of Sec. 5.3, the solution is Eq.
(5.52).

The only assumptions made in deriving Eq. (5.52) were

_ thé.spherical symmetry of the idealized model and the smallnéss

. of & and B5'. No restriction places limits on the relative

magnitudes of‘ 4y and VA. ' Thus, within the approximations of
the Chew-Goldberger-Low model, Eq. (5.52) should be accurate
regardless of the size of VA and Uy providing the assumptions
basic to the model’and Egs. (5.7), (5.4%) and (5.43) are
maintained.

Equation (5.52), alone, does not reﬁresent a self-

contained solution to the convective evolution problem, because
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Toth b and g remain unknown functions of r, after VA’ 0,
©, and p, have been eliminated via Egs. (5.48), (5.17), (5.21),
and (5.22), respectively. This equation may.be combined, e.g.,
with the parallel part of the momentum equation, Eq. (5.26), in
order to obtain ;olutioné uo(r) and b(r). The complex inter-

relations amoné-the paraméters would necessitate a numerical

_solutioh, which has not been attempted. In any case, the problén

can be solved Quité satiéfactorily for the purpose of modelihg
the solar wind. Since VA/uO is small, and uo remsins con-
stant to order (VA/uo)e' as noted in Sec. 5.2, b(r) is the
only unknown in Eq. (5.52);:_Th;s represents a result of adequate
accuracy fof thé solar wind in view of the aiready gross o
approximationsvincluded in the idealized model and the laék of
precise dﬁta from_space probes. '

In the energetic analysis, Sec. 5.2, terms of order -

VA/uO afe consistently dropped in computing wave quantities and -

the solution, Eq. (5.36). It has not been possible to carry
through.fhe details of the energetic method with VA/uo _of
arbitrary size as in Sec. 5.3. The reason for this é?parént
asymmetry~between the energgtic and wave approaches is not cléar.
For application to the convective evolution of Alfvén waves in
the solar wind, a 10 percent inconsistency in theoretical
predictions is‘quite,acéeptable. The neélect of effects such

as heat flow, wave-particle_and-wave-wave effects mentioned in
Chaptér 3 are expected to édh@ribufe'more‘seriéus discrepancies

between the present theory and the physicai world.
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In the 1limit of large bulk velocity wu., the factors

0
and u, + V, in'Eq. (5.52) are constants, and the solution
obtained by wave analysis is identical to Eg. (5.36) derived
from.energetic considerations.

Throughout the remaindef of Chapter 5 we assume that
VA/uO_ is negligibly sma;l.comparéd to ;, and that _uév may.be -
treated as a constant; v . ‘

B. Properties of the Solutions

In the absence of any Alfvén wave perturbation,_i.e.,>

b £ 0, the solution of the ideallzed solar wind convection model

is easily obtained. We find

o = oylry/r), ' (5.54)
a = uog,' (5.55)
B = ByrrfE, (5.56) -
B = plo(ro/r)h, (5.57)
and , v _ N
B - oyt (5.58)

where the subscript refers to the wvalue of thé respective
parameters at r = ro.
From Eq. (4.16) the Alfvén velocity can be written

S : 1/2 .
v, = f(ro/r) po-l[BOOE/hK» * P g'o(r/ro)?] . (5.59)

It is evident that, if p is nonzero, the Alfvén

velocity becomes imaginary beyond the critical instability



r=dius Top given by
T 1/2

fer 7 rol'(Boo [hm 3;0)/Puo} ‘ (5.60)
The plasma is unstable where r > rc¥. Far into the Alfvén
unstable region VA_ approaches the limifing value

VA(r - ﬁo)‘.= (- in/pé);/E,j.4',’ o o (5.61)

The solution obtained.ip Secs. 5.2 and 5.3 predicts a
strikingly @ifferent behavior for the convecting plasma, when-
Alfvén waves are present. - Equations (5.36) and (5;52) show that
’if a wave 1s rresent, regardless of its amplitudg, then the soiar
wind never becomes Alfvén gnstable. Even an infinitesimally'
szell waﬁe, providing the approximations used in deriving the
solution hold, renders the plasma sﬁable everyvwhere by adjusting
iﬁ amplitude in a way that maintains the reality of VA‘ In
fact, VA' can never reach zefo.

| In order to. show explicitly the functional relation

between the wave amplitude b and r, Eqs. (5.36) and (5.52)
can 5e writteh |

l>+-(bO/BOO)2 /e

1+ (2/rg) (o/Byo

327
b {1+ %L

r sl1/2

: 2 1+ (bO/BOO)2 ] _

B (r/r, ) (b/B )2J
0 o’ ™00

= const.

(5.62)

radius r

=Th-
In Eq. (5.62), b, denotes the wave amplitude at the reference

o BOO is the radial field at r

are defined in Eq. (5.35).

o’ and B” and QL
It can be seen by inspection that Eq. (5.62) is merely.a
polynomial in b, with coefficients depending on r. It turns
out ﬂ:teva.polynomial of degree‘8 in -bg, and hence numerical
$olutionvmethbds ére'appropriéte,_ The rgéﬁltingl r dependéﬁcé
of VA and b for various choices of vave amélitude at the
reference radius is shown in Fig. 10 (a), (b), (c¢) and (d). In
_ - !
each case it is assumed that p,, = By, /b and Do=5 Do -
The qualitative behavior is relatively independent of these

parameters.

The wave amplitude increases most markediy in the

'vicinity of the critical instability point where the Alfvén

velocity would vanish if the wave were not present. By Eq.
(5.60), this critical instability radius is T, = 3/2 ro'
for the particular choice of reference plasma parameters used in

Fig. 10. Figure lo(a) shows an example of relatively large wave

‘ amplitude prior to the critical instability radius, and the

increase necessary to maintéin plasme stability is rather mild.

At the other extreme, Fig. 10(d) shows an example in wiich the
wave ampiitude is initially &ery small; It isn't able to grow
cémparaple to Bo before the critical instability radius is
reached. In order to stop the Alfvén velocity's plummet toward

‘Zero, b/BO must increase abruptly and markedly at Tor
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‘Iﬂ all cases VA approaches zero as r incfeases. The
ratio (b/Bo)2 is proportionai to r as r - o, and Eq. (5.52)
shows that V, goes to zero as r' in this 1limit.

Since B, and o each vary as 2 in the idealized

model, Eq. (5.36) can be written in the form

hgrzr.VA be/(hnp) = F,

where F ié’a constant. This expression is amenable to a
physical interpretation. The quantity b is the area of the

spherical.surfaée of radius r ~with center at the sun. The

formula VAb2/4n represents the Poynting energy flux density of

the Alfvén wave as viewed in a frame moving with the local Plasma

bulk velocity. Thus Eq. (5.36) states that the flux F of
Alfyén wave energy, yiewéd in a frgme tied to the convecting
solar wind and normalized to the local Plasma density, is the
same through every spherical surface centered at the sun.

This is a relatively simple conclusion when compared to.

" the involved anaiyses of Secs. 5.2 and 5.3, which produced it.

It suggesfs the existenCe of a general principle in'opération] e

for .convecting waves in é nonunifqrm.mediuny the work of Chapter 5
pfovidiné a'particulér e#ample of its application. What this_ o
moré general theorem might be is unknown. Attempts to obtain

. (5.36) by simpler methods bave failed. It is not known
whether other types'of conveéting waves exhibit an analogous..

property.
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C. Ranges of Validity of the Convective Evolution Analysis
The parameters in the idealized solar wind convection
model ére 1imited:by reétrictions which are fundamental to the
validity of the Chew-Goldberger-Low equations used to describe

the plasma and fields and aléo by requirements imposed during

“'the analysis of the problem. These validity limits are.examined

- below. -

The fluid nature of theVChew;G§IAberger;ﬁo§ model
requires that the average ion gyroradius rg be small compared
to.distances over which plasma variables chéngevappreciably.
This plaées a restriction on the constant-amplitude source of
propagating waves: the waves cahnqt te too sharply curved. In

terms of the arbitrary phase -function € , this requires
8 << (yy+ VA)/rg. (5.63)

When inequality (5.63) is satisfied thevrotation of the magnetic

. ~ : .
field and velocity vectors about r takes place over distances

large compared to rg;_and the fluid model should be accurate.

. Throﬁghout'most of.the'radial range of convective
efolhfion, the charaéterist;c length for éﬁplitﬁde.cﬁénges is
r . In order that gubﬁichanges e small>01v: a distance of
ordef rg, we ‘require |

.o -(5.6k4
r >> rg o ' (5.6k)

This also guaranteés that the directional changes in the field
due to the spherical geometry of the model are small over

distances like Ty Inequality (5.64) is emsily satisfied in



“he phys:.ca.l ‘solar wind,
More severe restrictions are imposed on the parameters .
‘when effects at the critical i_nsta'bility radius Tor are |
- .considered. Fig’ul‘e.'lo‘?ShOWS cleai'ly that as the wave amplitude
is made 'smallef, the sudden wave growth ,nécessary at T . to
maintain plasma stéb’ility occurs over éhortef ie‘ngth _sca.le_s,,_
Eventually, when fhe wave amplitude is Itoo small inside Top
Eg. (5.52) requires that D cﬁange over distances small compared
to rg' at r,,, and the Chew-Goldberger-Iow model breaks down.
To quantlfy these remarks, an estimate is obtained in
Apperdix L for the maximm rate of change of the quantity h,

defined by
n(r) = v(x)/By(r), : . (5.65)

in terms of the plasma parameters h, B, and BJ" at any

. reference radius To interior to the Alfvén critical instability
radius T .- Assuming h(ro), << 1, which is the most dangerous
li_mit-wit_h regard td'iproducing rapid changes in -h, we find

o : ‘-1/6
(Bh/ar)max x r0 [l + BL - an

' /3
*’{h(ro)(l + BL)/BJ - (5.66)

Validity of the fluid theary requires

(3n/ar)™ > v, (5.67)

’

“£o hold everywhere.

~This phase lag is largest where h changes most rapidlyAand v

is small, which occurs near the critical instability radius r

-78-

In terms of the wave amplitude ratio at T we demand

that

nrg) > (e /e )@+ 80 @ v p, -5

(5.68)

ThiAs represents a very weak restriction on the waw}e‘ aﬁplitude
when solar wind parameters are used.

Throughout the analysis of Secs. (5.2).'aud (5.3), it is
assumed that the phase angle & between the wave components of
B and u is 'sma.llb compared to 1. An estimate of & can be

obtained from Eq. (5.53), which can be expressed in the form

5 ;-ﬁfﬁvQ?auap-Mry&. ~ (5.69)

A

cr
The worst case occurs when h 1is small inside r . Using
cr

(L.11) from Appendix I, and neglecting the 4n r term in
Eg. (5.69), which varies slowly, we find
-1
n~ L 2,. 2
By ¥ 1.10 .(9 VA r h7) } . .(5-70)

~
4Jr = r
cr

W ¥

In view of Egs. (5.36) or (5.52), V v°  is constant
during the convective evolution. Thus we write

) ’ _l . v .
I uo2 [9 r.. VA(r) h2(r)} . (5.71)

The assumption that & be small compared td 1 requires
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-

vl (r) >> uzié‘r (r)} “ (5.72)
v o | ,cr_A . N

Sote that in this imste.nce a large bulk velocity is detrimental.
It U, is too large, the ﬁlasma convects out from the sun so .
rapidly that the nonradia;-parts of n -end B cannot keep
themselves paféilel Qm_antiparailel, as they always are in s
uniform plasma andbfield.‘ | ' '

- In Sec. 5.3 we argue that the‘ratio of the left side of
Eg. (S;MO) to its right side is large. in view of Eqs.m(5.h5)

and (5 h8), this ratio can be written

- L/R ';év h/(u n'). ' : -' .(5,;'.?3)1

The worst case corresponds to h' large amd VA smﬁll,
31nce both tend to make the ratio small.  Thus, in view of Eqg.

(L. ll), we have

R 2 (é r v, he/u02> L | (5.74).

TETy

Since we have assuned that this ratio is large compared -
to 1, We agaln obtain restrictlon (5.72) on the minimum allowed
wave amplitude. ' _ _

The last essumptionAused in the analfsis is that 8; is
small, inequality (5.43). A more refined estimate of &'
follows from Eq. (5.69) and d/dr ~ h'/h. We find:'

2, (s e A\ B
8 ~ uy"(n') (e A h) ] - (5.75)

Using Eq. (L.11) to obtain the largest value of &', we.

y < 2 b2
3t S {mo v, n r ] . (5.76)
substitution of Eq. (5.76) into inequality (5.43) gives

2, - |
uy Br v, )T o« 1, . (5t77)

As noted above, YA h is a constant, and inequallty
(5. hB) holds prov1d1ng inequallty (5 72) is satisfied.

Summarizing these 11mitat10ns, we find that the convective

evolution analysis of Secs. 5.2 and 5.3 is valid when inequalities

(5.63), (5.64), (5.68), and (5.72) hold.

At 1 AU the relevant parameters are typically

-3 < . <. 1
10" H2 =~ 8 2 EHZ’

Uy o~ koo km/see,
Vy ~ 50.km/sec{'

‘r_ ~ 100 kﬁb

g
8.
. rcr ~ ,19' km,
and
By By ~ 1.

For phese values the validity relations become .

8 < bm, (5.63")
8 2 : |

10" km >> 10" xm, - : (5.64")

n a0, e
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and | . . ) X

B2 3> 3« 107 Hz/8. | (5.72")

' For high frequency Alfvén perturbations, the last inequality

requires h >> 10'h, For the lowest observed frequencies,

8~ 1c_>'5 Hi, Eq. (5.72') requires. 2 >> 0,03, Since h ~ 1
iﬁ the distunbed, hiéh:telocity regions where'Alfvén waves nre-
Vdominate, these restrictions are easily satisfied in the phys-
ical solar wind. .
) D. 'Comparison of the Analytical Results
’ with Observations

The theory of Secs. 5. 2 and 5.3 is remarkable in showing
that the Chew-Goldberger-Low model predicts a stable plasma in
spite of the adiabatic expansion, which tends to produce the
Alfvén instabilityvcondition, and in spite‘of the neglect of

the wave-wave interactions which are usually invoked to guench

such instabilities.

v Due primarily to the neglect of heat flow, and secondarily

to effects such as the single species.analysis, the assumption of

_.spherical symmetry, and the neglect of the spiral velocity sector

structure of the solar w1nd, the analysis is not an accurate
solution of the radial dependence of wave amplitude in the solar
wind.

The outward propagating Alfvén waves are probably created
by magnetic:turbulence'in tne coronal region of the sun, which
settles down within a few soler radii to the locally constant-

. .19
amplitude waves observed at 1 AU.  The Alfvén critical instebil-
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ity point predicted by the Chew-Goldberger-Low model for reason-
able estimates of the pressures and fields at the sun occurs

much closer to the sun than 1 :AU.. Consequently, the convective

evolution analysis prredicts nearly zero Alfvéen velocity at 1 AU

i,e., much smaller than the 50 km/sec observed. This theory

also predlcts thet the wave amplitude should be much 1arger than
observed., For example, assune'tnet‘ Py =P, = Boe/hﬁ at two
solar radii or 0.01 AU:from the sun's center. The Alfvén
critical instability point is then Top % 0,014 AU. When Alfvén
wavesvare present in the solar wind, the ratio 'b/BO varies as
rl/2 beyond vrcr,‘as shown in Sec. 5.4B. Consequently, the
convective evolution theony predicts b/B0 ~ 8 at 1 AU. Observa-
tions indicate that this ratio is nore tyﬁically unity.lg
Equally suspicious results follow‘theoretically if we
substitute the observed quantities at 1 AU.into Eq. (5,52) an&
solve for them at the sun, We‘find 3,/9L ~ lOfu,and- h ~ O.l
at'the solar corona. Both estimates are unreasonsbly small in

view of the powerful turbulent forces operative there, tendlng

- %o isotropize Iressures and field fluctuations.

This breakdown of the model over dlstances like 1 AU ﬁay
be due to electron heat conduction effects, which are neglected

in the theory. The electrons are relatively free to move along

the magnetic field lines, and their large thermal velocities

permit them through heat conduction to maintain temperatures at
1 AU at a much higher level than the simple adiabatic theory

predicts. Consequently, the Alfvén critical instability point,
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where parallel pressure exceeds the perpendicular and field
fressures,. is pushed out farther from the sun, or eliminated

altogether. Scarf35

notes that thefmal conduction and heat »
trgnspbrt should produce L&rge effects éven'in the dilute'plésma
at fhe Earth, |
| . Fur#her discﬁssion of.hea# flow effecté, 1nc1udiﬁg':
estimatesléf the.the:mdl transboft invoived, appeérs in Appendix
" _ . _ |
Hollweg has "sémi-self-cénsistently" treated the effect
ofvsolar rotgtioﬁ on the exéécted proton anisotropy in the solar
' wind;so Hb'neg;ects wa.ve procésses entirely and uses only the -
tWo adiabétié relations, Egs. (L.%) and (4.5). If the protons’
are assumed isotropic a I0 Ty these equstions predict that the
Vgrdton anisotropy.at erU-is %'/EL. : 75,:ﬁhen the field is
radial._ When thé séiral gegmetry arising from.solar rotation is
accounted for, Igl increases and consequently p“/pL *3716_ at
1 AU, 'This éhiSOtropy is still mﬁch larger‘than observed, but .
~the improvément isVObvious. The isotropy-producing -influence
of.Alfvéh.ﬁaves, in conjﬁnction with the,spirai_gébmetry, méy’
provide a mofé satisfactory explanation forbthe observed p;ofon
anisotropy. a
‘»"C.EF. Kennel sﬁggeéts that wave effects may also be

important in’pos£poning thé occurrence of the Alfvén critical
instability'radius.sl_ For example, the électrons may‘produce
high frequéncy wéveéiwhich affect»the ion distribution; instabil-

ities with frequencies somewhat below the ion gyrofrequency may

- -8l

tend to reduce the:ion Iressure anisotropy and thus cause the
firehose instability to Qccur.at & larger radius than simple
Chew-Goldberger-Lowvtheory predicts. ‘

The theory which ultimatelyvdescribes the evolution of
Alfvén_waves in the convecting solar wind must include the
effects of the slowly. changing backgroﬁn@ on these wgves..fThe_

expansion mﬁsﬁ locaily affect the proton anisotropy regardless

of how severely counter-effects limit this téndency. The wave

amplitude variations also produce anisotropy changes. A‘complete

theoretical treatment of A1fvén wave evolution must acknowledge

.the'consequences derived in the present simplified model,

together with thermal conduction and whatever other effects

prove important.

E. ‘Generalizatiqns,and Further Applicétions of the
Convecﬁive.Evolution Analysis
Although the analyses of Secs. 5.2 and 5.3 are strongly

bound within the spherically smetric model, the resulting
constant of the wavé‘evolution, Eq. (5.36) or (5.52), may have
a much wider validity. .

| ‘Consider é_more>general situation; such as the éctual
cOnfiguratién of tﬁe.solar wind, in which a p&aémé convects in
an arbitrary, but‘SlOle varying geometry. Suppose that it
carries along Alfvén waves of the type developed in Sec. 4.24, )
which propagﬁte according to the theory éf Chapter 4 relative
to the moving plasma. A wave crest finds itself in a medium

whose properties -.p, ‘p”, PL" EO’ and thus VA, slowly vary‘in
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zome arbitrary fashion dictated by the geometry.and the wave
:itselfu Ip the idealized spherically symmetric model the wavé

at each ﬁoint is onlj aware of the local environment, and its
amplitudé.is_gévérhed by Egq. (5.52).. It seeﬁs reasonable that in
the more general_situation the wave's development.is governed by’
the local plasma properties,.and again.should obeyban anélogue

of Eq;i(5.52). What this analogué mighf be-is difficuit to say.

_‘In the idealized model, we find

o.-1
oo (uyr) » (5.78)
and ' ' ’
. > .
Byoc T . : (5.79)
Since 'uo T constant for the ranges of parameters we consider,

both. o and B, have the same r dependence. Thus the factor

0
2 ' - . . 2-v v
3, in Eq. (5.36) can equally well be written B, p, for

any constant V. For example, Eq. (5.52) can be written,

including thé more accurate u

0 dependence of = p, as.

I S |

_ _ Je -
A b? = [uo/(uo + vA)} . o (5.80)

Unfortunately, this ambiguity in the solution, i.e.
Whefher ‘BO? p, or f-e should appear in the left side of
Eq. (5.36), (5.52), or (5.80), prevents its immediate applicétion
to more general solar ﬁind geometries. In the real solar wind,

-2 .
© varles as r , but B, does not, due to solar rotation and

o
the consequent spiral field. This, if Eq. (5.36) is used to

derive the relation between b and r, the answer depends on
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whether p or BO appears &s a factor in the left side.
As mentioned earlier in this chapter, the signs of Uy
and VA are not necessarily both positive for the wvalidity of

thé analysis. The treatment is aimed toward the solar wind

configuration, in which the Alfvén waves are propagating outward

in a plasma which is itself flowing away from the sun. The

matﬁematical>analysis‘is the same if the 6utward convecting
plasma supports inward propagating waves, or vice versa.

The convectiﬁé evolution of Alfvén waves may have
applications outside the solar system. Kulsrud§l’32 has spec-
ulated that Alfvén waves are an important particle accelerating
mechanism in interstellar space and has considered how they
might be produced there. Thg effects of convection on.such‘waves
would form an important part bf avcomplete theory.

5.5 Concluding Remarks

In the uniform plasma problem discussed in Chapter U,
the exact solution provides more insight into the ﬁhstable Alfvén

mode's behavior than does quasilinear theory. In quasilinear

» analysis the growth of unstable waves produces corrections to

p; and p, which tend to lessen the’instébility and thus, at
some point, quenches the waves' growth. The exact analysis shows
quite clearly that a small-amplitude circularly-polarized wave in

an unstable plasma grows exponentially for a while, then less

rapidly, eventually overshooting the Alfvén stability point.92

Finding itself in a momentarily stable plasma, it reaches a

maximum amplitude and decays, ultimately exponentially with time,
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:dwara itsrinitial value.

. The nonliﬁéar analysis of Chapter 5, which is a large-
amplitudé:theory like that_presénted in Chapter b4, similarly
yields insights into the driveﬁ instability probleﬁ, that may.
prové more'uséfgl'than the information é qpasilineﬁf.method_'
bl’cduld provide. - |

| A quasilinear treatment of the convective evolution
sroblem would solve for the linear behavior of the wave, and .
use the resulting linearized wave to compute'higﬁer order

correctioné to the distributién function and other plasma param-

eters. The wave could be followed in this manner from the source

“to the Alfvéa critical redius r,., where .V, first vanishes.

- Just beyond this point, the Aifvén velocity is imaginary in the

:iinear theory, the wa%e is unstable, and in the éuasilinear

“theory, the resulting exponential wave growth reacts back on the

-plasma in é ﬁanner which makes the plasma lgss unstable. .
Theirigorous analysis of Seecs. 5.2 and.5.§ shows that

A
approached. In other words, instead of waiting for the plasha

- wave growth alfeady occurs as the condition V, =0 is being

~to Becomg unstable and then grbwing to an amplitude which renders
_'ﬁhe plasma stable, the wave grows before VA _reachés zero. in é
way fhat keeps 'VA always real and Eq. (5.36) or (5.52) satis-
fied. | ’

This is probably an important properfy of any driven
:iﬁstability problem in which the driving meéhanism_dhanges slowly

cémpared to wave'periods or growth rates. For example, in the
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" magnetosphere, when excess electrons are injected, electron

cyclotron waves are believed to become unstable, grow, and cause

. pitch angle diffusion of other electrons, whichvthen scatter into

the loss cone and precipitate into the atmosphere. If the

‘injection time is short ‘and the electrons rapidly -inserted, this

ﬁicture is probably correct, l.e., Iﬂésma instability precedes

‘wave growth. However, if ﬁhe injection process is adiabatic on. . .

the time scale characteristic of the whistler modes, the whistler
amplitude may increase slowly, maiﬁtaining an amplitude which
keeps the plasma always stable.

Since rigorpus_solutions of driven’instability problems .

are practically honexistent, it is not possible to do more»than

speculate in this way on what properties such processes might

share. Moreover, the implications of the analytical results of

Chapter 5 are not fully understood at the present time.

' Whatever a?proach is used to detérmine'it, the effect of

the expanding plasma\on the waves present in it must be included -

in a theoretical model of the physical solar wind.

. Scart has remarked,_55 "In fact, the observed values of
(Th/TL>i are so mﬁch smaller than predicted by strict conserva-
tion of [the adiabatic invariants] p and Vv that it is
ﬁecessary to invoke.some type of wave-particle interaction to
account’ for the observed near isotropy at 1 AuL"

The analytic solution (5.36) or {5.52) shows one way in

which the presence of waves can produce the required isotropy.
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5 8 are the adiabatic lavs,

3ince 'p, ~ P B and p”' ~ 0
wave growth tends to increase P and decrease Py » thus

reducing the pressure anisotropy.

The idealized models treated in this paper represent
imperfect approximatioﬁs to reality, but the effects derived in. -
the simplified casethst éppear-in a complete theoretical picture

of interplanetary processes.
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APPENDIX A: QUASILINEAR THEORY OF THE FIREHOSE.'
INSTABILITY IN.THE CHEW-GOLDBERGER-LOW MODEL
We outliné a derivation from the Chew-Goldberger-Low
equations of the quasilinear results obtained by Davidsén.and
Vﬁlk.zh It is not surprising that identical resﬁlts follow,.

because the assumption of diagonal: pressure tensor and neglect

~of the heataflowitensor explicit in their work are used in

deriving the Chew-Goldberger-Low eguations, It is useful,
however; to point out an iﬁportant difference between the defini-
tion of the average pressures in thevtwo analysés. Note, also,
that in our analyéis thevensemblg averages implied by Davidson
and V8lk are not required: it suffiges to consider only
spatially averaged quantities. .

We assume a uniform, infinitesimally perturbed plasma in
a uniférm magnetic field- go. We view all Chew-Goldberger-Low
variables as consisting of a space-average part, which may depend
on time, and a flﬁctuating part: p(x,t) = (p)(t) + 8p(x,t), ete.
The hexagonal brackets denote spatial averaging;

Taking the space-average of the Chew-Goldberger-Low Egs. -

(4.1) through (4.3), we find

{p)(t) = constant = p, _ v (a.1)
,(E>(t) = constant = O, (a.2)
(g)(t) = constant = B.. (A.3)

When the Chew-Goldberger-Low Egs., (L4.1) through (4.8) are

linearized in fluctuations about these spatial averages and the
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stable Alfvén wave characteristics are assumed, the usual
linearly polarized firehose waves follow. To first order. in the.

perturbation we find

8p =' 0, . ‘ . | (A.4)
A ENON s
R (S Ve (2.6)

81_3(51:)» = 8B(k,0) e7(k t)t,‘ (a.7)
sult) = -1 7(5t)(k-B) " 8Bl t),  we
Yist) = HEB e () - 32M)/el. . (a.9)

Ve assume that the fir'ehqse instability criperion holds so that

- the Q‘Mh raté y(k,t) 1is real. The pield fluctuation 8B 1is

perpendlcular to k and BO, a characteristic of Alfvén waves.,
The average fressures are constant to first order, to -

‘calculate their second-drder evolution in time it suffices to

" carry tﬁe.two adiabatic equations (4.4) and (4.5) to.second order

- in the pertufbation and - space average the result. We find_

3zt (<'I:’l)/302)A chk 7(;:,#) e t), (a.10)

olpy /ot = -2(<I5‘l)/B02[d3k 7(pt) ¥(pt), - (A1)

where the magnefic field spectralidensity ¥ 1is defined by
v(gt) 8(k + k') = (8B(k,t)°8B(k',t)) o (Aa2)

and satisfies

.(pA)(t) in Eq. (A.9) may be replaced by <PA}(t).

M)/ = r(t) Wipt). (A.15)

In order.to compare the results (A.10) through (A.13)

with those of Davidson and V8lk, we note that D which appears

in the Chew—Goldberger-Low equations, is the pressure perpendic-

wlar to the local magnetic fleld B = §O + SB}.ﬁhereas the

quantlty P which is used in the earlier work, is the pressure

_L)

perpendicular to B

Bye Similar remarks apply. to g' and P“ .

Thus we have

lp,) = (A.14)

= (p:3BB Vs
Ap) = %{g sE-®y, '(5.15)
(py) = (p: BF ) (a.16)
() =3 (ps (-8B | | (A.17)
TO'second order it»follows that
(p) = <P4> + ((pA)/EB )j ax v(k, t) (A.18)‘
(8,) = (p,) - - (o3, )fdjk Wgt).  (aa9)

Note that (p ) - (P ) is & second-order quantity and

51m11arly for (p ) - (ﬂ,). ‘Thus to the required accuracy,
53

Taking the time derivative of (4.18) and (A.19), we have
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]

‘f(pl>/&t (PH)/B j &k ¥( kt) Wk t), ' (A.20)

]

o(Bp/et (4< ) - 2(P ))/B ] [ 3k 7(kt) V(g t). (a.21)

Equations (A.9), (A.12), (A.13), (A.20), and (A.21) are

' iden-tical to Eqs.» (1# h6) through (h 50) obtained by Davidson and

o1k, F‘1n1te gy'roradius effects have been ignored here and should .

be included in a more complete treatment.
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APPENDIX B: GUIDING-CENTER EQUATIONS FOR THE

PARALLEL ALFVEN WAVE

We start with the guiding center equations in the form

haiabatic Equations, " is

5p/at +‘V';(ol_1) =0

‘pdg/at = -V-p + (V x B) x B/bx,

“p BB (1 - )
= + P -
£ P Pi'a s

" Z IF (q-u) 2n dq dw,
Z [F w2:tdq_dw,

2,3t + (g + aB)-TF + WA/ + QP /%

o)
]

By

~A

W o= BB W- Vg -qv

Q = g;aﬁ/at + o s VE + qg/ﬁ VE + w.B + eE“/m,
g = p-pi

VB = 0

B/A = V x (g xB)

ZejFodqdw = 0,

2
e {F.qdgdw = 0O
(s 170 7

obtained by Kulsrud. 23 This system, which Kulsrud terms the..

(B.1)
(B.2)

(8.3)

(B.4)
(8.5)

(B.6)
(B.7)
(B.8)
(5.9)
(B.10)
(8.11)
(B.12)

(B.13)



-95-
B, = 5 (e/m) g'(v'g)/(,,waveg/m), (B.14)
w = é(i-s)f, R - | - (B.15)
a4 = | (5.16)

In these equations the notation of the Chew-Goldberger-Low model,

 Egs. (4.1) through (4.8), has been used where applicable; the
particle distribution function Fo depends on the particle
velocity y t_hréugh .4 and w; parallel and perpendicular refer

_to the direction of the local magnetic field B; E, is the

"
parallel electric field component and the summations in Eqs. )
(z. 4) through. (B.14) are’ over par’cicle species.

It is convenient to sunplify Egqs. (B.7) and (B 8)
ﬁsing (B.9) to elimlnate @ in -favor of the fluid veloc1ty E.’.

. He find

=
i1

W - V'E -qv-8, - , o (B.17)
Q= E-aﬁ/at + [uu + (g~ Eg)}&%] : 9B + wv.B + €E,,
' B (B 18)

We consider Alfvén waves having properties (4.9) and use .

these ché.racteristics to simplify (B.l) thi‘ough (B.18)..

Equations (B.1) and (B.10) are trivially satisfied.

. Equations (B.2) and (B.3) reduce to

‘p‘ag/at - -. - 2/lm] B Bép/Bz C(B19)

Equation’ (B.ll) becomes

B/t = By /. ~ (3.20)

The wave equatidn (4.1L4) is readily obtained from (B.19) and

(B.20).
Equatlon (B ll+) gives
B, - o.: o - (3.21)
Finally, Egs. (B.17) and (B.18) simplify to
W o= %‘-B’? /3 = B/B . (B.22)
" and »

p<q-uB>(p - E/u )L a2/t
(B.23)

o
]

-~ ) -

T

We assume a bi_-Ma.xwell:La.n distribution function:

1
=2

Folwrat) = Cr Uy,

'exp[-mr/p‘L - ola - u,|)2/2p”].
' (B.24)

The appropriate time dependence of the normalization factor is

included in Eg. (B.2L4), With this choice, Egs. (B.4) and ('B».-j)

.give the appropriate pressures. The quasineutrality condition

(B.12) holds for all times if it is true initially, and Eq.

(B.13) requires that the fluid velocity be the same for electrons
e _ 4 i
ot
(B.24) reduce to =

ard ions, u - Equations (B.6), (B.22), (B.23), and-

(- /p, - %bu/p“ + ovp, /p,° + & ola-w,  B,/n - w(8/8)0/p, -
+ L pIB/E + 5 ol - ) (op B/4n)™ /2 ol -u,)/p, )7,

- 0. . 3 | (B.25) -
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Since F, is never zero, and since (q - un) and w

are independent variables, the coefficients of  w, 1, (q.- u"),,

and (q - u“)2 in the curly brace of Eq. (B.25) must vanish:

A%/%J.w£-= o O es
-g/ﬁ?+%h/g,= o : ’(ﬁeb

(E'E_)é -0 _ o : (B.28)
B/By + pley - BT 05 % < o,  me)

Equations - (B.26) and’ (B.27_)»gi_ve.

#

B (£)/2,(0) = B(+)/3(0) | (8.30)

I

p“(t)/p“(o) = B2(0)/FP(t). ‘ | . (B.31)

. Thus for the Alfvén modes under consideration and for a -

bi-Maxwellian particle. distribution, the guiding-center vequations- )

_reducé'to-Eqs'. (B.19) through (B.21) and (B.28) through (B.31).
Equations (4.39) through (4.43) and (4.45) are equivalent to
Egs. (B.21), (B.20), (B.19), (B.30), (B.31), and (B.28),

respectively. Equation (U4.4h) follows from Eq. (B.29) when

5. - 1is eliminated by means of Eg. (B.31).
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APPENDIX C: DERIVATION OF THE ENERGY FLUX VECTOR S
IN THE CHEW-GOLDBERGER-LOW MODEL .
The distribution function used in the definition of the
energy flux vectar S, Ea. (5.16), mﬁst -desc:I'i‘be,a plasma which

prossesses & local fluid velocity u and is locally anisotropic

" in pressure and teamperature. in view of the guiding-center theory

of Chapter h,i an appropriate' choiéeIWOUld be to make f Dbi-
Maxwellian in the particle velocities. The theory of Chapter 5.
has not been carried out usiﬁg the guiding-center equations, and
tt_xe Ch_eﬁ-Goldberger-Ibw model used there does not require the
choice of an explicit p_a.rtieie distribution. Thus f is simply .

assumed to have the properties basic to the double adiabatic

xnod‘e].:1
Z j mfdy = o(x, t), e ' (c.1)
p-:L Z jm v £y = ule, t), ' (c.2)

e,i »

S_\' aly - )y - ) £ v = p¢£+PA§I§,_ (c.3)
A X _
e 1
ngmlv-gl (y-u)tadv =g, (c.4)
e, i

and

ve.eg = O. _ (c.5)
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In these equations, parallel and perpendicular notations
-zfer to the local, total magnetic field direction; § is the

contraction of the third rank heat flow tensor'oﬁer two of its

indices. The~vanishihgrof the divergence of the heat flow tensor,

basic tb thé Chew-Goidberger-Low'model, is provide& by Eq. (€.5).
ﬁt is feadily shown that-the bi-Maxwellian diétribution used in
Aépendix B'safisfies Egqs. (C.1) ﬁé (C.B).

» 'The_particle'contributipn to Eq. (5.16)_is written more

Jasefully as:
1 - 1 2 .
5wV vf@v = Emﬂw|rmo +&1Wu-u@

2 : 2 - 2.
touy f (X_L - E‘l) +2y,° (XL - E.L) oy }

.x [(z"_- B") + (x‘ --Ei) + E} by d5v .

(c.6)

The various terms may be read off, using Egs. (C.1) -

(C.h). We find:

Fmv ¥ fa'v = Zpu u+ (PL +5 p")B

e,i

L+ pi u, + p“ g, + 9,« . (C.T)
The double adiabatic model assumes that the plasma is
infinitely conducting, so the electric field satisfies

E +ct uxB = o (c.8)
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Using Egs. (5.16), (C.T), and (C.8), we write the energy

flux vector $ in the Chew-Goldberger-Low model in the form

1 .2 1 »
$pt) = zeuw w + (e et oy v R gyt

o

¢ Box (wox Bl (c.9)
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APPENDIX D: CALCULATION OF THE RADIAL COMPONENT :

OF THE ENERGY FLUX VECTOR FOR THE IDEALIZED MODEL

We oufline the calqulét;on of thé radial component Sr
. of the energy flux vector § 1in the idealized solar wind model
_descriﬁédi&n Sec. 5.1. - This model consists of a spherically |
symmetrid sodfce 6f pfqpagating‘AlfVéh waves in a radially con-
v -vectiﬁg plasma immefsed in a monopqlé mégnetic field. -
| Since we are;only'interested in taking‘the divergence of
S, we drop the .(divergenceless) heaf flux vector Q from the .
expression 6btained for S in Appendix C. Thus § can be
written in the form '
oy + (p, + % PJ8 + B 8, + P, 8, +BX (Q x i%)ﬂﬂ-

F163]
i
OjH

~

~(p.1)
The loéal magnetic field consists of the radial:part

0

B. r and the wave component b G(e). The plasme velocity is
g =uyt +uy b({6 + &), by Eg. (5.6). We neglect the small"

misélignment 8 between the nonradial parts of B and u .

Because of Eg. (5.7), the comsequent error in vSf, of order

62 o) vth? Uy s is negligible: The geométry of field and velocity

vectors is sketched in Fig. 11.
et a= sih—l b/B denote the angle between B and z.

Recalling that u Vis the éomponent of the total field wvelocity

it

in the B direction, we write

B, = (po cos @ + Uy sin a)B . : | (D.2)

“10P -

Similarly we find

il

(~u sin & + U cos a)( B(e) coé a - % sin a). (D.3)

~

Using the usual expansion of ‘the double cross rroduct,

the Poynting vector for the propagating Alfvén wave is

- 2 - e
Bx (g xB) = (up - wpBy)F + (Brup - By - B b(8).
' (D. %)
When Egs. (D.1) - (D.L) are combined, the radial component

of

S becomes
12 1 - . o
s, = e uy+ (EL +5 p”)uo + p”(uo cos @+ uy sin a)cos‘

+ pl(ub sin @ - ug cos a)sin o + (uobe‘- uTbBO)/hn.
(p.5) . ‘

Finally, we use the properties of the propagating Aifvén
waves derivéd for the uniform plasma case in Sec. L,2A. These

are Egs. (5.11) and (5.12), which are assumed to hold in Sec.

5,2, With them Eq. (D.5)_reducés to the following expression_

for the radial component of the energy flux density:

o
i
N g

2 : 2
P u03 + (p, + % )y + % p vy (3uy + 2v,)(0/By)".
| (p.6)
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APPENDIX E: VECTOR CALCULUS FOR ALFVEN WAVES ‘ Thus we can write

IN THE IDEALIZED.SOLAR WIND MODEL o ) , ~ o,
- - B-VB = B, 3B/x + (B,b/r)v(8) - (/r)r,

We require quantities suchas B+« VB and B+ Vu in

the analysis of the Chew;Goldbefgef-Low equations for convected : - . - : .
y . o : i . with a similar result for u -+ V. If & 1is small as postulated
large-amplitude Alfvénvwaves in the spherically symmetric solar : : : e . : )

o T o ' . in Eq. (5.7), then Eqs. (5.5) and (5.6) give
vind model. Let A and B be any vectors having the forms ‘ S _ s

A= AR+ abe) @®1) LB veoE o A v Gugrle) - (uye
S E _ o . ; (E.6)

‘and

N

£+ b(8), o (m.2)

By

'Q »
where A, a, Bo; b, and 8 depend only on the-spgtial
coordinates through the radius r.

‘ Writing the vector operator in spherical coordinates we

have

~

A4-VB = (r Ay+6acos 8+ $ a sin 8)

_'(? 3 + 8 r 3/ + B(r sin 8)t d/ )

(% B, + 8 b éos 8 + 3 E siﬁ‘e). .' _(E.a)g,]'
Since the assumption of spherical‘symmetryvin Chapter 5.
requires that ﬁe_restrict the anélysis.to thé vicinity of the
éqpatoiial plane, 6 is approximately =/2. The differéntial
| operators in Eq.  (E.3) act on both the scalars and the vectors
in.ﬁﬁe'iast factor. Carrying out the indicated‘operations, we

find

A;:vg:;.Ao @y&.+(aBJr53®)-(mﬂrﬁ..  v(Eh)
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- APPENDIX F: - THE MOMENTUM EQUATION FOR THE IDEALIZED MODEL
OF ALFVAN WAVES TN THE SOLAR WIND
Using the vector calculus derived in Appendix E for
propagating Alfvéh ‘wéves in a spherically symmetric __system, we
‘ ca.n_wr,ite_the CheW-Goldberge,z_'-I.ov; momentim equgtioﬁ, Eq. (h.e),

in the form.
o(du/3t + ﬂo dufdr + ble + 8)u, ‘uT/r -7 uT2/r)
-2 =
= -Vp -B;B3(p,B Y - VE/8x

+ L@/4) - p,872 008, 3B/or + B(0)B, b/r - 7 v/x].
| o ' (F.1)

_ ‘Equaf;ions (5.11) and (5.12) imply fhevresult
AR uTe/r = -2[(1/ bx) - pé B'E]bz/r. (F.2)

 Hence these radial terms can be eliminated from both sides of

)

8g. (F.1). Invoking spherical symmetry, we find that the radial

component of Eq. (F.1l) reduces to
g ' ' 22y, A1 2,00
o uy dupfar = -dp /ar - alp, By )/ar - (8x)7" @ /ar,
' (7.3)
which is equivalent to Eq. (5.26).

Equation (5.26) can also be obtained from the radial

component of the total momentum conservation equation

»agl/at‘va-g:o_,' o (F.4)
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where g 1s the total plasma momentum,

2

g = pu + E x B(kne), . . (F.5)

and T is the total momentum flux tensor,

(F.6).

T = puu - - .

In Eq. (F.6), EEM " is the momentum flux due to electfomgﬁetic'

fields, 51‘

+ BB - %%(E‘? + )1/ b (R.7)

A

Ba = L2

ot

' The wave part of the momentum equation, Eq. (F‘.l), is
o(d/3t + u, 5/5r'}+ uQ/r)[u,Il ﬁ(e +38)1°
= - B(e)b B, alp, B7)/ar

+ Byl (1/kn) - pp B/ + 2 ™)(b B(6)] .

(F.8)
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APPENDIX G: DERIVATION OF A DIFFERENTIAL EQUATION FOR 13 (r)-
A IN THE ENERCETIC SOLUTION OF THE IDEALIZED MODEL
‘We begin with Bgs. (5.25) and' (5. 26) Différeﬁtiate
Eq. (5 25) with respect to r and multiply the result by p/2.
Subtx_'acti_ng_ this from Eq.. (5.26) to eliminate the la.rge Uy

terms, we find

ealp /e + (3/2)p"/p + (3/2)v,% (v/B, 1 ar

- q(pl'%be/Bﬂ)/dr - B d(pABB )/dr = o. (.G.1)'

In obtaining Eq.”(GJl) the rigorous dependence of p  on r - has
teen used in.evaluéting tﬂe'lafgé p uoz' terﬁs.

_ Using Eq_. (512) to express the Alfvén velocityl VA- in
terms of the-pressures, densityband field,>using Eq. (5.31) to
eliminate p, and carrying out some of the differentiations, we

can reduce Eq. (G. l) to the form

‘ { + P"/Q + (1/h“) - PA 2/2]b }/
+ (bp a}‘p.+ [(3/4x) Qp B21 %) /r <. 0. (G.2)
2 ] A . o *
Now' we use Eqs. (4.8), (5.29), (5.32), and (5. 33) to
write all varlables in terms of r, tbkr), and constants. When

T Loall possible dlfferentiatlons are carried out, and terms are

collected, we find
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o _(ro/r)“(Bo(f/un)} o /ax

’ ’ T - 0 - :) ) :v- ﬁ' '6

- (0, B, B+ 5, 2/ B2 - 1y

' 2
When Eg. (G.3) is multiplied by lm/Boo , .and

definition (5.35) is used, Eq. (5.34) is obtained.

(6.3)

e
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APPENDIX H: THE SOLUTTON OF DIFFERENTIAL EQUATION (5.34) Next we divide Eq. (£.2) by the factor

. ’ . . . r - N . .
Because of the mixing of the dependent and independent (Be . l){l - /[;)/O/Z'E _ 5, (r/r )g(bjo/zj)h}
- o . : ' L ' (] o’ P »
variables Hj and r in Eq. (5.34), the usual integration .

. . _ . ‘o . . B
techniques do not yield a solution without a great deal of effort. which is val;d providing the solution doesn't pas.s through b = 0

- ‘The solution itself can be 'written in a fairly simple form. We . .or _VA = 0. This gives

L . e _z . ‘ o 5. . . )
‘outline a - seq_uence of manipulatlons of (5. Bh) which yields the - . [(QL/)*)IKOI@ 3 B“ (r/ro)zﬁo%ﬁ ]dLBE/dT - rog(Eo/E)h

,.equnred answer. 14 B.L'E)/ﬁ ) B'” (r /1;6)2 (B o’ﬁ )h

Equation (5.34) may be written:

. . ' ' -1 ) . _y ,
.um@cﬂB 5 el BB | aB%ar R CAED AR YL Y (55)

| _ S bk | . , 1 , .
+ {B" (r/r’o)e(go/ﬁ)u" q' (r/ro)% o «ﬁ _ o . v . The gmerator of the first terTn is 5 times the r
: - _ _ derivative of its denominator. A1l terms in Eq. (H.3) are now
. (B_L/I*)WQ’IE-B . (%/’*)ﬁﬁ}dgg/dr o A . . easily integrated, giving ‘ o
_ , - : : 1 2
, | . )y %n[l+81 'HBO/]P q’ r/r (EO/‘E) +€n(ﬁ -l)-l«nr
- (IB -1) {1+ B.L/@O/B - B“(r/ro) @O/ﬁ) .
: v — v = const. (A.4)
Do - | _
+ B||(r/?0) (Eo/ﬂ‘/() }/r = 0. : (H1) - Exponentiating, we find the solution of Eq. (5.34) is
A rearrangement and factorization of Eq.‘ (H.1) gives | | r-lqge._ 1) [l . B‘L ’B()/]B ) ﬁ“(r/ro)quﬁ)h]

s BB - (r/ro)g(%o/ﬁf)hj alf®/ar ‘ I | = const. - (5.5)
" (B2 -1) [3.(r/r )2 /L; h.lg_- ) (BL/M L/ ﬂz-i we/dr : Using Fgs. (5.29), (5.35), and (5.12), we can write
' I LA 0] ‘ | . ‘ |
o Bir I‘O-E(»'/BO/IB)“} : _ o1+ B Tgo/ﬁ - Bﬂ(r/ro)z(ﬁo/zg)h - V p/B (2.6)
- (lBE "l){l + B.Lﬁo/TB - B”‘(r/ro)e(TBO/EZ)hJ/r = 0.

(7.2)
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- In view of Egs. (3.2) and (5.31) we have
2 .
p/Bo -~ = {const.)r". (B.7)

' Thus Egs. (5.39), (8.6), and (H.7T) reduce thé solution

(B.5) to the form

VA(b/BO)é = const. - | . - (H.8).
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APPENDIX J: MAXWELL'S EQUATION FOR THE IDEALIZED MODEL
The Chew-Coldberger-Low Maxwell equation, Eg. (4.3), can

be expanded as

~

op/ot = vsgﬁ-v.gg, S (3.1)

where the divergence operatar is understood to act on both veét_ors
on its right. Carrying out the indicated differentiations and

using Eq. (4.6), we find

ayat = B*Vau -~ (V- u)g - uc v B. (5.2)

Using the results of Appendix Ev.to expand B - Vu and

“u +'VB for the ansatz, Egs. (5.5) and (5.6), we find

3p/3% = By dluy ble +8))/ar
- [u0 b ﬁ(e) + Bo U, ﬁ(e +8)l/r -2 uo'go/r
- b B(8) auo/br -, 3B/3r . ' L @:3)

0

The radial part of Eq. (J.3) simply gives B ~_r'2, i.e., ..
the monopole background field of the idealizéd solar wind mo‘de]_..'

The wave -part of the Maxwell equation is -
b3 %(9),/_& = B, olu, B(8 + ar)]/a,r

- [uo b b(8) + BO uT b(8 + 6)1/r

-h%m)mda-uoabamya[ (3.%)
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APPENDIX K: SOLUTION OF EQUATIONS (5.50) AND (5.51)
The unknown phase lag © .can Be eliminated by dividing

g, (5.50) vy Eq. (5.51). This gives:

ot -1
ey By T

(puo(ué-+ uf/r? + (b’+~b/rj[(l/ha) -pAPfQJBO -bBO d(pﬁg-z)/a%>

_ L
' Y - LI . - 1
(Bolap - wp/r) - (ug + up/r)b - ug b K.1)
Using the exact mass conéervation law
2 2 '
puy T = pyus, T, (K.2)
where Py and uoob are the values of p and g at some
reference radius rg s elementary identities such as -
ué + uT/r = ¢t a(r uT)/dr: (x.3)

and.Eq. (5.49) for the Alfvén velocity, we cen write the

rumerator of Eq. (K.1) in the form

= 7t P, d(ruT‘- rub'l VAe b/BO)/dr-
(x.L4)

Similarly, the denominator of the right-hand side of

Eq. (K.1) reduces to
[ 1 = -rbalruyb - ruy B)ar. (®.5)

Thus Eq. (K.1) can be expressed in the simpler form

-11ha o
-1 2 .
ouy 5t o 0 e T N YL (K.6)
: ar Uy bo- T oug BO)/dr .

Making use of Eq. (5.%8) to write wu; in terms of b

and VA, we obtain

-1 -1 -1 L L
Vy uy o By = -alv, uy™" B, (uQ + VA)rb]/d[(uo + V, )rb] .

.f(K-?)
Multiplying Eq. (K.7) by the differential in the dom-

inator of the right-hand side, we have

R | .
v = - :
/y Yy By d[(uo + VA)rb] = vy uy o By al(u

-1 _ =1y
- (u0 + YA)rb d(VA uQ B, v){
{x.8)
which can be written
N -1 _ -1
2 d[(uo,+ VA)rb] d[VA o By J
( ) + — 7 = 0, (x.9)
uy + VA rb _VA Y B0 :
Equation (K.9) has the cbvious integral
(uy + 7, 2207 v, :
= const., - {K.10)
Uy By
' . 2 -
which becomes Eq. (5.52) when r 1is replaced by B, 1

An expression for &(r) can be obtained from Eq. (5.51).

We find, after similar manipulations,

5 = é[(uO + V,)/(6 v, r ©)] al(uy + V)rbl/ar.  (k.11)
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This can be written in the alternate form

-1

2 2 > dlrb(u

5 = -(2 8 Vb ) o

which gi&es the r dependence of 8 when Db is specified by

Eg. (K.10).

+ VA)]E/dr , (Ka2).
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APPENDIX L: ALFVEN CRITICAL INSTABILITY POINT INVESTIGATIONS

"The solution of the convectlve evolutlon problem, Eg.

“ (5.36) or (5.52), can be written in the limit V'A/uO << 1 in

the fqrm
n* <> - .g“.e(rlxr/rl)é, S
vhere T isfén arbitrary'refe:énce.;?dius, :
h = ﬁ(r)/Bo(rﬁ, | ‘ ' (L.2)
h1 - a(r,), _ (L.3)
€)= 1 e Bl - 8 () (L.b)
and’ : ' , '
By = (/) ). ws)

Differentiating Eq. (L.l) with respect to r, we solve
for h' = dh/dr and find
o 2
=21, : .2 2 L -3 \]
1 = .
h' =2rr [h 5"(;1)(1 + by Y (1 +1r%) + h'h ,e(rl)

x: e(?) + (¢ o)t {hﬁu(r )r r (1+-h1252(

a1t
- (A w20 ) ” i
J (L.6)

l-+h?)-2

From Fig. 10 one sees that breakdown of the analytic
'theory due to-fast change in amplifude of the field's wave
component is only possible when h(r) - << 1 4inside the critical

instebility radius r_ . Moreover, the violent change in h
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accurs while h is still small. Thus, in investigating the

maximum value of h', we will assume

hir) << .1, : (L.7)
when r S r .
er
‘We choose the reference radius Ty to be at or near
r and consider h'(r) for r near r..
cr T . ‘ . 71
Figure 10 shows that the Al1fvén velocity at Top is
' ; oy x -1/2 o . _
small compared to its value, V = (bxp) B if the plasma

0.7 °
AT ' ' /2, /e
were isothermal there. Since we can write V, = (bnp) / B, € /_,

e(rl) is small:
= 1 ) - : .8
e(ry)) = 1) -pylr) «< 1 (£.8)
Cdnsequently'the second term in the nunerator bracket of Eq.
(L.6) may be neglécted.'
With these approximations, Eq. (L.6) reduces to the more
tra#table form

2 ox en T eyl () o o[y tny) - sL(rl>J @)

ne

1

In view of Eq. (L.8), Eg. (L{9) can be written

) -1
SN R CORR AT NI (1.10)

R

hl

which shows clearly that the denqminator brace never vanisheé.

) ‘ : . 2
(Since VAQ is proportional to €(r) and V,~ > 0 everywhere
according to the solution (5.36), e€(r) must be positive for

all values of r.)
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The numerator of Egq. (L.iO) is a monotonically but slowly
increasing function of r for r < rcr’ the scale length for
changes in h being of order Tt Invthe denominator brace of
Eq. (1.10), . e(r) dis the dominant term well inside the critical
instability radius, since e is small there. As r increases

to" r, e(r) approaches zero, and the monotonically increasing

o) .
h™ term, although still smsll, becomes dominant in the brace.

Choose .rl to be the point where ¢€(r) equals the term

B2+ BQL(rl)]. Then at r, ‘the denominator brace of Eq. (L.10)

is a minimum, and r, gives, approximately, the maximum value of

1

h'. To avoid anomolous cases We assume EL 1 ~ 1, and, omitting
, .

factors of order 1, we find

noo ® (r h(rié) , | (L.11)

where ry is the radius at which

e(rl)- oy hz(rl). _ >(L.12)

We réquire'an estimate for hz(rl) in terms of the
plésﬁa configﬁration.at an arbitrary-point interjor to the
éritical radius. “

We select a point r with T < T having known

OJ
plaspa parameters Blﬂro), B”(ro), and h(ro) << 1, For

values of r  between ro

and rcr, h remains small compared

.to 1, and we have

) = 148, (ry) - By (rg)e/ryF. (.13)
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At Ty € 1is small as argued above, and thus Ty is
ziven by
(rl/ro) > [+ (r)lfp, (x,). (L.14)

Equations (L.1), (L.12), and (L.14) can now be used to
" estimate h(ry): '
_ - X o : 1/6
(r;) X (W'(r )1+ B, (rg) - B (xy) M1 + Bl-(ro)]/ﬁ,,(ro) .
' ‘ (L.15)
Substituting ﬁhe last result in Eq. (L.11), we find an .
estimate for the maximum rate of change of h in terms of the
' Dlasma parametefs at the selected radius Ty inside the Alfvén

critical instability radius:

. . -1
By 5 To 14 8,(xy) - By(ry)]

. ' 3.
o oxAnlrl By (rp))ey(rg) Y . (T.26)

This result 1s valid only if h(ry) << 1.

-120-
APPENDIX M: ESTIMATES OF THE
SOLAR WIND HEAT FLUX DENSITY DUE TO ELECTRONS

A very crude estimate of the electron thermal flux .

density 'Qe can be obtained by using the electron temperature

at the solar corons, lO6 OK, and at 1 AU; lO5 OK; to estimate

~the electron thermal gradient at 1 AU. Spitzer's formula for

the heat_tfanspbrt coefficient then,gives55

* S - - :
Q, ~ 2 x 10%% ev cn™ sec?. » (M.1)

This enormously overestimates the actual heat flux,
because high electron thermal conductivity sevérely_reduces
thermal gradients at 1 AU.

In the absence of Alfvén waves, the idealized.theoretical

model used in Chapter 5 predicts

Tll @ pn/p_

{114

constant, . v (M.2)

i.e. there is no:électron heat transport.
The actual heat flow must lie somewhere in between‘these
extremes. |
Measurements of the.electroﬁ velocity distribution give
an estimate df the eigctron heat flux by taking the third moment
of the diétribution. The average over one year of Vela L data
gives55

( Q Y ~ b x 107 ev em™® sec (M.3)

5
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By comparison, the flux density of energy in thermal

motion of the electrons and ions, calculated by assuming 10 ev -

3

per ion or electron, 10 ions and electrons per cm”, and

uy = 400 km sec-l, give this latter value also:

Q

Athermal }+ ¥ 107 ev cm " sec . | | (M,h)

The energy flux density due to the bulk transport of

particle kinetic energy is given by

. R 11 2 -1
Q’bulk 2 X 107 evem  sec .

Since the electron heat flow Qe* , obtained frqm the
estimaﬂed sun-Earth temperature gradieﬁt, 0.01 QK/knb exceeds
the—measﬁred value (_Qé Y by é factor of 5000, the electrén
temperature gradient at 1 AU must be less than its estimated
value by this factor. Thus the aﬁérage eiectron temperature
gradient at 1 AU should be 2 ¥ 10'6 °k/km. This small value

at 1 AU implies a swift decrease of electron temperature near

the sun, probebly occurring in a strongly turbulent. region where

the héat transport coefficient is anomdlously small.

Equations (M.3) and (M.l) show that electron heat
qonduction is an important effect in the solar wind. However,
since the energy flow due to electron heat conduction is
comparable to the thermal energy transported by convection, it
_ does not dominate other contributions to the overall energy

‘balance.
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FICURE CAPTIONS
Due to- solar rotation and radial plasma flow outward,
the average interplanetary magnetic field lines in the.
ecliptic plane describe the Archimedes' spirals specifiai

by Egs. (2.1) - (2.4). The areas in which the magnetic

'field is generally toward (or away from) the sun form

sectors whose boundaries follow these spirals. This
sketch indicates a total of four sectors, but at times

5

This Mariner 5 solar wind data covers a twenty~four

hour period.19’56'

) Magnetic field compopents BR’ BT’
and BN are plotted-uéing horizontai and vertical line
segments. FPlasma veloéity éomponents Vg2 Y and

v,, are plqtted with diagonal lines., The units employed
are magnetic field in gammas, plasma velocity in km/sec,
and number density N in-cm-a.

The stfong positive correlation between magnetic

field COmpoﬁents and plasma velocity components and the .

v fact that the average field is toward the sun on this»

day clearly indicafes the presence of an outward-
propagating Al1fvén wave.

Note that igl and N are relatively constant, .

" despite the markéd fluctuations in B and ¥ .

Y

o>



Tig. 3.
Fig. b,
Tig. 5.

"at the bottom,
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Three ten-minute intervals of the day used in Fig. 2

show details of. the Meriner 5 data.19 The crosses

denote magnetic field components BR’ B,PT _Bﬁ, and,

[Bl. The horizontal lines indicate

plasma velocity components V,, V, V.

R g N

number density N. The five minute saﬁpling period of

and the plasma
Fig. 6.

the vélocity detector precludes the correlation of its

‘data with the measurable high-frequency fluctuations of

1the magﬁetic field. The tendency of the averaged

velocity to follow magnetic field trends is obvious.
This one-hour sample qf Mariner 5 data illustrates the
high-freqﬁency'flucthations of the magnetic fiéid g.;9
The magnitude of. B remains quite constant while
appreciable fluctuation in its components occur.
Magnetié field lines of constant-amplitude Alfvén waves
for various choices of the function é('), which spec-
ifies the direction of the field disturbance b:

(a)
(e)

the field lines make a h5°

Fig. 7.

o(x) = « tanh kx; (b) e{x) = (#/2) tanh kx;

1l

o(x) = (7x/2) exp[—(kx)?]. In each illustration -

angle with B, everywhere,

0

corresponding to }E; =B In (2) and (c) the nearly

o
uniform field gt large i)ositive values of k(z - VAt)
is parallel to the field at large negative values of
k(z - VAt); the exaggerated perspective makes them seem
nonparallel.

In the Chew-Goldberger-Low and guiding-center

‘parallel to 3B
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models these field configurations propagate without

distortion at the generalized Alfvén velocity

/2

1
v, = 2210 - (- T

0°
Temporal evoluﬁion.of the time-varying-amplitude Alfvén

mode. Field lines aré pictured for: (a) b = 6B

o
(®) " =x3B, - (c) DR By

(e) ™= -By

(@) ®=0o
(£) d=x-3B, (g) =X -6,

‘The helical standing-wave structure is generated by a

magnetic field component perpendicular to the uniform

field B, having signed amplitude “b(t), whose time

0
depéndence readily follows from Eqs; (4.24) and (h.25).
This mode is an exact solution for a stable or unstable
plasma in the Chew-Goldberger-Low and guiding-center
models.

Sketch of the magnetic potential B(v), Eq. (4.25), for
the variable-amplitude Alfvén mode with various choices
of the plasma parameters:  (a) stable plasma with

X >J§(O), corresponding to Case 1; (b) unstable plasma
with X > P(0), corresponding to Case 2(a); (c) un-
stable plasma with X = §(0),corresponding to Case 2(b);
(4) unstable plasma with —§min < K < $(0), corresponding
to Case 2(c). 1In (a), P is sketched For the pressure

) = B02/87t, (p'/)mzo = Bog/lm. The

P
4" =0
unstable plasma in (b) - (d) correspords to

anisotropy (
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o

(p,) = 4B "/x. By Eq. (b.2b),

YL CH I
the time dependence of the signed amplitude b , which
determines the evolution of the helical étructure
pictured in Fig. 6, is the disp;acement'of & unit mass
particie of ehergy K ﬁoving in the potential .ﬁ(fb).
Spherical topoiogy causes the ansatz représented by »
Eq. (5.5) to be mathematically inconsistent. According
to the idealized model, wave components of the magnetié
field, depicted by smail arrows in this Sketch; point
in the 8 direction at each point on the spheriéal
surfacé [£| =75 when e(ro,t) is an integral

multiple of 2n. The anomolous character of the wave

" field at the polar axis is evident. To avoid this

difficulty, we restrict the analysis to the vicinity
of the equatorial plane, © T x/2.
Equations (5.40) and (5.41) are vector differential

equations whose terms iie in the plane perpendicular

“to ? . The left side vectors are large in amplitude
and nearly perpendicular to the smell right side»vecﬁofs.
-The latter can be ignored when resolving these equations

‘into components along r X %(@), The right side terms

~ and the large '? X 5(0 +8) term on the left side must

'bé_included~in computing compbnents'along 'S(e).

Fig. 10,

Fig. 11.
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In the 1idealized model of the solar wind, the conwvective
evolution of largé amplitude Alfvén Qaves is governed Dby
the equation V'A(b/BO)2 = constant. Solutions of this
equation are sketched here for four values of the wave
amplitude., In all cases the plasma pérameters at the

reference radius r

2 o
o 8re P o= Byo /b - and

Pvé = EbO;/Bﬁ. For these pressures‘thevAlfvén'critical

insfability point, where the plasma would become Alfvén

unstable in the absence of the propagating wave, is
L eeyl/2

Tor = (3/2)7° =,

When b/Bo 'is small at ry Cases (¢) and (4),

- note the swift growth.of wave amplitude necessary at

rcr' to maintain the reality of VA and hence the

stability of the plasma.

In the limit of infinitesimal phaée lag ©, the magnetic
field 2; the plasma velocity u, and ? are co-
planar in the-ideglized model.A

The velocity u is computed by taking the

]

projections of the wave and radial components of u

onto B. Since Bll+ EJ, = W BL easily follows.

3
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XBB 708-3608A

Fig. 5(b)

Fig. 5(a) XBB 708-3609A
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XBB 708-3614

Fig. 6(a)

XBB 708-3607A

Fig. 5(c)
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XBB 708-3611
Fig. 6(b)
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any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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