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Sensory systems present environmental information to central nervous system as sequences of action
potentials or spikes. How do animals recognize these sequences carrying information about their world?
We present a biologically inspired neural circuit designed to enable spike pattern recognition. This circuit
is capable of training itself on a given interspike interval (ISI) sequence and is then able to respond to
presentations of the same sequence. The essential ingredients of the recognition circuit are (a) a tunable
time delay circuit, (b) a spike selection unit, and (c) a tuning mechanism using spike timing dependent
plasticity of inhibitory synapses. We have investigated this circuit using Hodgkin-Huxley neuron models
connected by realistic excitatory and inhibitory synapses. It is robust in the presence of noise represented
as jitter in the spike times of the ISI sequence.

DOI: 10.1103/PhysRevLett.96.148104 PACS numbers: 87.18.Sn, 87.18.Bb
Stimulus sensitive regions in central nervous systems are
seen in several observations [1–3]. One striking example of
this stimulus specific response is the auditory telencephalic
nucleus high vocal center (HVC) in the songbird brain [4].
Projection neurons in HVC fire sparse bursts of spikes only
in response to auditory feedback of bird’s own song (BOS)
and syllables of BOS played in reverse order.

If the stimulus produces spikes with indistinguishable
waveforms, then all information about the stimulus is in the
interspike intervals (ISIs). The presence of neural circuitry
tuned to specific stimulus properties suggests a biological
network capable of distinguishing among different ISI
patterns generated by different stimuli.

We investigate a neural circuit constructed from biologi-
cal components able to train itself on a given set of ISIs and
then selectively respond to presentations of the same ISI
sequence. This is of broad general interest as one explores
how the outside world is represented and understood by
nervous systems. The construction also gives insight about
how nervous systems tell time [5–7].

The essential ingredients of the ISI recognition circuit
are (1) a spike selection unit which dissects each spike in
the input sequence and sends it out along its own neural
process, (2) a tunable time delay circuit which receives an
input spike at t0 and produces an output spike at t0 � ��R�;
R is a dimensionless parameter characterizing an inhibitory
synaptic strength, and (3) a strategy to tune ��R� using an
observed spike timing dependent plasticity rule for inhibi-
tory synapses [8]. Our time delay circuit is based on
observations in the anterior forebrain pathway of songbirds
[9]. We abstract from that a simple three neuron circuit
shown in Fig. 1(a). Each neuron in the time delay circuit is
represented as a standard Hodgkin-Huxley (HH) neuron
with Na and K voltage gated currents, a ‘‘leak’’ current,
and an injected dc current. The forms of these equations are
06=96(14)=148104(4)$23.00 14810
standard and are not repeated here [10]. We have used the
kinetic functions and parameter values given in [11]
(Section II and Appendix 1) for the model neurons. For
these parameter values, increasing the dc input current to
the HH neuron leads to stable limit cycle oscillations via a
saddle node bifurcation. Each neuron has a well-defined
spiking threshold [12].

We have also explored time delay circuits comprised of
two neurons and a single synapse, and that, along with
other details of our model ISI recognition circuit will
appear in [13].

The input to the delay circuit [Fig. 1(a)] is a spike
arriving at neurons A and B at t0. In the absence of input
neuron A is at rest near �65 mV. Neuron B oscillates at
about 20 Hz and inhibits neuron C. Neuron C responds
with subthreshold oscillations. In the presence of spiking
input, neuron A produces a spike and this input to neuron B
resets the phase of its oscillations. Neuron A then inhibits B
resulting in removal of inhibition on neuron C. In response,
neuron C produces a rebound spike at time t0 � ��R�. ��R�
[Fig. 1(b)] is monotonic in R and d��R�

dR > 0. If R is too
small, neuron C fires spontaneously; if R is too large,
neuron C never fires.

The spike selection unit (SSU) is shown in Fig. 2. Neural
units �n and �n are bistable having coexisting rest and
spiking states. Each satisfies

dV�t�
dt
� Idc � gNam1�V�t���ENa � V�t��

� gKn�t��EK � V�t�� � gL�EL � V�t�� � IS�t�

dn�t�
dt
� �n1�V� � n�t��=�n;

where V�t� is the membrane potential, Idc, a dc current,
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FIG. 2. Spike selection unit. This receives the spike train
S at neurons �n and each neuron �n produces only one spike

at tn.
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FIG. 1. (a) Time delay circuit. Input to the circuit is a spike
arriving simultaneously at units A and B at time t0. The output of
the circuit is a single spike at time t0 � ��R�. The excitatory
connection C! B is used for learning as explained in the text.
(b) The time delay ��R� as a function of R. The time delays
resulting from the use of standard HH neurons can range from
tens of ms to about 100 ms, depending on the parameters of the
model neuron. Here the range is about 40–65 ms. Empirical fit
to the inhibitory synaptic plasticity rule with the function of the
form �g��t�=gI0 � ���tj�tj��1 exp���j�tj�, used for learn-
ing is shown in the inset of Fig. 1(b).
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IS�t�, the synaptic current. Er are reversal potentials. The
gating variables m1�V� and n1�V� satisfy X1�V� �
1=�1� exp��VX � V�=kX��. The parameters of the
model are (in mS

cm2 ) gr � �20; 10; 8� and (in mV) Er �
�60;�90;�80� for r � Na;K;L. In mV we have Vm �
�20, Vn � �25, km � 15, kn � 5, and in ms �n � 0:16.
Idc�4:0 �A

cm2 . The membrane capacitance is 1 �F
cm2 . Absent

any ISI input, neurons �n are in the stable oscillating state
(with Idc � 6:0 �A

cm2 ), and neurons �n are at rest. Neurons
�n are HH neurons described earlier; they are at rest.

The input to the SSU in Fig. 2 is shown as a sequence S
of three spikes at times ft0; t1; t2g. When the spike at t0
arrives at neuron �0, that neuron is excited into its spiking
state. It then excites neuron �0, and it produces an output
spike at t0. When excited, neuron �0 begins oscillating and
inhibiting neuron �0; no further spikes from S excite �0.
�0 also inhibits neuron �1 moving it from oscillation to
14810
rest. The quieting of �1 allows neuron �1 to respond to the
spike in S at t1 producing an output spike at t1. Neuron �1

now is excited to oscillation and inhibits �1 and �2. �1

does not respond to any other spikes in the sequence S.
This series of events continues as long as there are spikes in
S. Not shown in this schematic is the final step whereby all
neurons �n are returned to rest, and all neurons �n are
returned to their oscillating state. This is accomplished by
global inhibition of the �n and excitation of the �n after S
has stimulated output spikes from all neurons �n, which
can be done through a signal sent back to the spike sepa-
ration unit after the detection unit has triggered a spike
after adjusting ��R� through learning which indicates the
detection of input ISI.

The third ingredient for the ISI recognition unit (IRU) is
the mechanism adjusting the time delays to be equal to the
input ISIs Tk � tk�1 � tk; k � 0; 1; . . . . A spike timing
dependent plasticity (STDP) window for inhibitory synap-
ses has been reported in [8] and has the form
�g��t�=gI0 � ���tj�tj��1 exp���j�tj�, where �t �
tpost � tpre. tpre is the time of presynaptic spike stimulation,
i.e., the spike produced by neuron B in the time delay unit.
tpost is the time of the postsynaptic spike, i.e., the spike
produced by neuron C in the time delay unit and gI0 is the
scaling factor chosen to be 1 in all the calculations pre-
sented here. We utilize this to tune R and the time delay
��R�. The STDP [8] rule is obtained for a single prepost
spike pair, and a key feature of the rule is the zero around
�t � 0. This rule provides a biologically feasible mecha-
nism for modifying R and setting ��R�.

The IRU comes from putting together an SSU able to
separate the spikes in S � ft0; t1; . . . ; tNg and a set of time
delay units with one �k�Rk� for each ISI Tk � tk�1 � tk;
k � 0; 1; . . . ; N � 1. The output of the neurons �n; n �
0; 1; . . . ; N are sent in pairs to the time delay units. In Fig. 1
the output of neurons �0 and �1 at t0 and t1 � t0 � T0 are
4-2



0 3 6 9 12 15 18 21 24 27 30 33

Presentation Number N

0

4

8

12

16

20

24

28

32

g B
C
(N

)

gBC=2
gBC=30

0 3 6 9 12 15 18 21 24 27 30 33
43

45

47

49

51

53

55

57

59

τ(
N

)

FIG. 3. Training an IRU to learn an ISI of T � 55 ms. The
initial values of gBC�N � 0� are set to explore the two scenarios
described in the text. ��R� (top panel) and gBC (bottom panel) are
plotted as function of the number of presentations of the training
sequence N. The resolution limit � � 4 ms is shown in dotted
lines for ��R� and T � 55 ms is shown as a solid line.
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sent, respectively, to neurons A and B and to neuron C. The
output unit of the IRU is a ‘‘detection unit’’ which receives
outputs from each of the ‘‘C’’ neurons of the time delay
units in the IRU. The detection unit is composed of neurons
which fire when two spikes arrive within a time resolution
� ms of each other. This means that when �tk � j�k�Rk� �
Tkj< � as a result of the adjustments to �k�Rk�, the detec-
tion unit fires.

When �tk > �, we must invoke the learning rule to
decrease �tk. To explain how this is accomplished, we
focus on a generic time delay unit receiving input at t0 to
neurons A and B and input at t0 � T to neuron C. NeuronC
would fire at t0 � ��R�. Note there is an excitatory feed-
back from neuron C to neuron B. Consider the situation
when �t > �, and T > ��R�. Neuron C produces a spike at
time t0 � ��R� resulting in a spike response in neuron B at
time t0 � ��R� � � where � corresponds to the synaptic
delay. This excitation of neuron B is presynaptic to the
B! C inhibitory coupling and is identified with tpre in the
STDP rule. Neuron C again receives excitatory input at
time t0 � T. This is postsynaptic to the B! C inhibitory
coupling and we set tpost � t0 � T. �t � T � ��R�.

This combination of spiking activity in neurons B and C
results in an increase in the B! C inhibitory synaptic
connection. Since d��R�

R > 0; ��R� increases, approaching
T from below. This learning process continues until T �
��R�< � when the detection unit fires.

In the situation when T < ��R� neuron C fires at time
t0 � T which is earlier than the rebound spike time for C.
Since firing of C excites B, which in turn inhibits C,
neuron C is prevented from producing any further spikes.
The detection unit receives just one spike output from
neuron C and does not fire. In this case the presynaptic
time to be paired with the firing of neuron C is the next
action potential generated by neuron B as it resumes its
oscillations. This occurs at a time t0 � T � tB, with tB > 0,
and this is greater than t0 � ��R� when neuron C would
have fired if there were no input spike at t0 � T < t0 �
��R�. The STDP rule then sees �t � t0 � T � �t0 � T �
tB�< 0. This leads to a decrease in R and a decrease in
��R�. The decrease in ��R� continues until ��R� � T, when
the time delay unit has completed its learning. ��R� does
not decrease beyond T for then we would have the first
situation where T > ��R�, and we have seen that STDP
operates to send ��R� ! T in that case. Of course, when
j��R� � Tj< �, the detection unit fires, and learning is
completed.

The overall IRU is comprised of an SSU and as many
time delay units as there are ISI in the sequence S. Once the
SSU has separated the spikes from the input sequence, each
time delay unit is trained in precisely the same way,
namely, to the nth time delay unit spikes at times tn and
Tn�1 � tn � Tn are delivered. The time delay �n�Rn� is
adjusted to correspond to Tn within a resolution �. Since
each unit is trained in precisely the same way, we present
14810
here results on the training of just one time delay unit. The
training consists ofN presentations of the spike sequence S
to the time delay unit. To illustrate the two training scenar-
ios just described, we choose the synaptic strength
gBC�N � 0� first to correspond to �n�Rn�< Tn and second,
to �n�Rn�> Tn.

In Fig. 3 we show results from training two IRU units
tuned to detect an ISI of T � 55 ms. The first IRU has
gBC�N � 0� � 2, corresponding to ��R� � 43 ms, so T >
��R�. The second has gBC�N � 0� � 30 leading to ��R� �
60 ms, so T < ��R�. Each IRU trains itself on the given ISI
input presentedN � 1; 2; . . . times. In the detection unit we
set � � 4 ms. This resolution represents the widths of
realistic neural spikes.

The training is completed when the detection unit re-
sponds with a spike output. The contribution of mul-
tiple spike pairs in the STDP learning is considered addi-
tively [14]. We have also trained an IRU using a simple
STDP rule wherein only the contribution from the near-
est spike pairs are considered. The convergence per-
sists though the number of steps to convergence in the
training differ. The additive rule for spike pairs is also
considered in number of earlier works [15,16]. IRUs are
trained by invoking the inhibitory STDP rule as �gBC �
1:0
gnorm

P
j�

��tjj�tjj��1 exp���j�tjj�, with gnorm �

��e��, where �tj � TC � TBj when we have one post-
synaptic spike in neuron C at time TC and TBj represents
the presynaptic spike times of neuron B. In the situation
when there are two postsynaptic spikes in neuron C at
times TC1

and TC2
, such that TC1

< TC2
as in the case
4-3
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FIG. 4. Training an IRU to learn an ISI of T � 55 ms in a
noisy environment. The input ISI has a uniform jitter of 2 ms.
The initial values of gBC�N � 0� are set to explore the two
scenarios described in the text. ��R� (top panel) and gBC (bottom
panel) are plotted as function of the number of presentations of
the training sequence N. The resolution limit � � 4 ms is shown
in dotted lines for ��R� and T � 55 ms is shown as a solid line.
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when T > ��R�, we compute �tj as

�tj � TC1
� TBj ; TBj 	 TC1

� TC2
� TBj ; TBj > TC2

� �TC1
� TBj� � �TC2

� TBj�; TC1
< TBj 	 TC2

:

The parameters for the empirical learning rule were
taken as � � 0:54, � � 3 for �t > 0 and � � 0:24, � �
5 for �t 	 0.

In Fig. 3, top panel, we show ��R� as function of
presentation number N, and in Fig. 3, bottom panel,
gBC�R� as a function of N. We see that in each case both
IRUs train themselves to the same values of ��R� and gBC.
The former is within the resolution � � 4 ms.

To explore the robustness of the training procedure in the
presence of noise we show in Fig. 4 the training of the same
two IRUs but now with a uniform jitter of 2 ms.

Using a time delay circuit suggested by a birdsong
control loop [9], implemented in Hodgkin-Huxley model
neurons, and an observed spike time dependent plasticity
rule for inhibitory plasticity, we have constructed an an-
swer to the interesting general question: how is timing in
the range of tens to hundreds of milliseconds implemented
and learned in biological neural circuits. This also informs
the broad question of how nervous systems tell time with a
14810
focus on time intervals important to many neural process-
ing tasks.

Biological circuits similar to the IRU are capable of
recognizing specific sensory input as it is delivered, pre-
sumably segmented into useful patterns in space and time,
for higher order neural recognition and processing. We
have examined the robustness of this circuit to noise in
the form of ISI jitter in the input ISI sequence. There are
many other formulations of noise in spike recognition one
may consider, and we examine them in the context of a
collection of ISI sequences and associated IRUs which
follow the segmentation of a neural response to a complex
input [13]. The importance of IRUs as biological recogni-
tion units will depend on their ability to sort desired
sequences from the complex array associated with actual
input signals.
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