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The electrocatalytic reduction of CO2 represents a possible means of disrupting current

petrochemical reliance by leveraging renewably-generated electricity to manufacture commodity

chemicals and liquid fuels. Such an approach may enable economic feasibility of anthropogenic

climate change mitigation by catalytic conversion of atmospheric CO2 to value-added products.

However, many of the most active catalysts consist of rare metals whose cost renders them

prohibitively expensive for scalability. Additionally, a wide distribution of reduction products

is often possible and poor selectivity decreases overall efficiency and complicates downstream

purification processes. Fundamental understanding of elementary steps involved in catalytic
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pathways may therefore allow for improved catalyst design from inexpensive, earth-abundant

materials.

One such elementary step consists of hydride transfer from a catalyst intermediate to CO2,

yielding the two-electron reduction product, formate. The investigation, targeting, and tuning of

the thermodynamics of such hydride intermediates to enable improved catalyst design represents

the overarching aim of the work presented herein, which is underpinned by three distinct objectives.

Firstly, a powerful scaling relationship is elucidated which relates the thermodynamic propensity

of hydride transfer, hydricity (∆G◦H−), and the first reduction potential of the parent metal complex

(E1/2(Mn+/(n−1)+)). This relationship not only establishes a mechanism for estimating hydricity

based on E1/2(Mn+/(n−1)+) but also provides a platform for rationally targeting and tuning

hydride intermediates for reactivity towards CO2 and proton sources.

This scaling relationship is subsequently utilized to target and design reactive hydrides at

nickel and the validity of the relationship is established. Installation of highly electron-donating

ligand frameworks demonstrates successful tuning of hydricity at first-row metal complexes and

additional thermodynamic arguments enable for the rational selection of mild conditions for both

electrocatalytic hydrogen evolution at extremely low overpotentials and the complete suppression

thereof.

Finally, the electrocatalytic reactivity of these species with CO2 is described. While devel-

opment of nickel-based CO2-to-formate catalysts using these methods is ultimately unsuccessful,

this work provides insight on the utility and limitations of thermodynamic scaling relationships in

catalyst design. Furthermore, the findings herein underscore the necessity of divergence from

such scaling relationships and shed light on strategies by which that may be accomplished.
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Chapter 1

CO2 Capture & Utilization: The Necessity

and Challenges of Implementing

Carbon-Neutral Economies

1.1 The Necessity for Non-Petrochemical Fuel Sources

The prosperity of modern society can be quantified by a host of different metrics. Life

expectancy, household incomes, literacy, and accessibility of information have all on average

improved for the average human residing in first-world nations since the Industrial Revolution.1−2

These quality of life descriptors are buttressed by a single, shared keystone. All of them, and

indeed the Industrial Revolution itself, are fundamentally dependent on the efficient production

and accessibility of energy sources. In particular, transportation fuels have enabled widespread

use of automobiles and air travel, and it is generally accepted that the enhanced mobility of

populations has in turn allowed for urbanization and improved access to commodities ranging

from healthcare to education.3 The last two centuries have been the age of oil. And the utilization
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of petrochemical fuels and feedstocks has directly enabled this mobility leading to booming,

global economies.

While the use of energy-dense transportation fuels from petrochemical sources has forged

the foundation of modern society, we now face the repercussions of its virtually unchecked growth.

There are two main concerns. Firstly, fossil fuel reserves are finite. While estimated extraction

of oil reserves may remain inexpensive for the next half century or so, many of the most readily

available sources have already been significantly depleted, leading to increased reliance on more

challenging methods of extraction and the excavation of less-readily available reserves.4 These

are often not only more costly but also often involve strategies that are more environmentally

detrimental.5−6 This is to say nothing of the uneven global distribution of precious reserves,

which has already led to geo-political conflict in the fight for control of such resources.7

Figure 1.1: Improvements in global life expectancy since 1770. Adapted from references 1-2.

In addition to the fiscally and environmentally expensive toll that the continued extraction

of fossil fuels poses, their use thus far has resulted in massive environmental pollution since the

Industrial Revolution. The main product of hydrocarbon combustion is CO2, whose atmospheric

concentration has risen to an unprecedented level of ∼410 ppm as a result of anthropogenic

emissions.8−10 These increased levels of CO2, which currently show no signs of abatement,
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Figure 1.2: Atmospheric CO2 concentrations for the last 10,000 years. Reproduced with
permission from reference 8.

directly contribute to a variety of different environmental issues ranging from climate change

as a result of their greenhouse gas properties to ocean acidification. Under current projections,

average global temperature increases and other adverse effects related to rising CO2 levels will

yield irreversible environmental changes that will result in the probable extinction of species,

food shortages, and increased frequency of extreme weather events. The need for a move away

from fossil fuel use is clear.

The implementation of renewable energy sources such as wind and solar have experienced

intense growth over the past several decades, but they still make up a small fraction of global

energy production.11 However, while increasing the percentage of energy derived from these

renewables is absolutely necessary, it represents only half of the problem. While sources such as

wind and solar continue to decrease in price, allowing for more economic feasibility of their use,

they remain intermittent sources, wherein produced electricity must be directly utilized. As such,

the greatest challenge currently facing society’s energy problem is one of storage.

Many different approaches to the storage of renewably generated electricity exist. Large-

scale flow batteries could serve as energy reservoirs alongside city grids, allowing for charging
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Figure 1.3: Estimated renewable share of total energy consumption from 2016. Adapted from
reference 11.

during peak output hours during the day to power grids when solar fields, for instance, are no

longer producing after sunset.12 Alternatively, valuable yet generally cost-prohibitive processes

might be driven by excess-produced renewable electricity. Desalination of sea water is energeti-

cally expensive, yet extremely valuable especially in areas where extended droughts have been

prolific.13 As the cost of electrons produced via solar fields decreases, applying them to generate

fresh water may become both a socially beneficial and economically viable approach to renewable

utilization.14

However, these strategies are typically not well suited to powering transportation. The

electrification of small, personal vehicles, such as the typical family car, represents an attractive

approach to decreasing fossil fuel dependence provided that efficient grid storage systems can be

successfully implemented. But any electric vehicles of this nature require efficient battery storage

and therein lies their great limitation.

The energy density of even the most superior batteries is fundamentally limited, and

therefore pale in comparison to the energy storage capable per unit mass of liquid fuels. (Figure

1.4) As such, even if relatively short-range transportation can be effectively electrified in coming

decades, long range travel and transportation such as air and ship traffic will likely continue to

require liquid fuels. While one can envision a variety of liquid fuels and reasonable cycles for
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Figure 1.4: Energy density of selected storage methods. “Batteries” encompass average values
for lithium-ion, alkaline, nickel-metal hydride, and lead-acid batteries. Data sourced from
references 15-17.

their production and utilization, harnessing renewably-generated electricity to capture and convert

atmospheric CO2 represents a logical approach to combat the adverse effects of anthropogenic

greenhouse gas emissions while simultaneously producing socially beneficial and economically

profitable products. It is the opinion of this author that this marks perhaps the most pressing

challenge facing modern society and represents the underlying motivation for the fundamental

research presented within this dissertation.

1.2 Potential Routes of CO2 Conversion to Liquid Fuels

Perhaps the clearest path of generating liquid fuels from a CO2 reduction product is via

the Fischer-Tropsch process, wherein a mixture of carbon monoxide and hydrogen, known as

SynGas, reacts over a catalyst (typically iron-based) to form a distribution of hydrocarbons.18−19

However, the challenge lies in generating carbon monoxide from CO2. While the thermal route

of the Reverse Water-Gas-Shift reaction is capable of yielding CO from CO2, it is plagued
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by inefficiency, precluding true viability of such a pathway.20 The invention of new, catalytic

pathways from CO2 to liquid fuels or precursors thereof is of absolute necessity in order to realize

the goal of CO2 utilization.

Figure 1.5: Standard reduction potentials of CO2 to various products at standard conditions in
aqueous solution vs. NHE.

Though a variety of catalytic pathways for the reduction of CO2 can be envisioned,

electrocatalytic approaches are particularly advantageous due to generally increased efficiencies,

ease of direct use of renewably generated electricity, and atom economy.21 However, achieving

efficient electrocatalytic reduction of CO2 is by no means trivial, involving a plethora of both

thermodynamic and kinetic challenges. While the thermodynamic reduction potential for many

highly-reduced products is quite mild (Figure 1.5),22 the design of single synthetic catalysts

capable of choreographing the six-electron, six-proton ballet of CO2 reduction to methanol, for

instance, marks a substantial kinetic challenge.

However, the two-electron reduction products, carbon monoxide and formic acid, are

kinetically more accessible. Reflecting this, there exist a multitude of well-studied electrocatalytic

systems capable of these two transformations.22−28 Furthermore, both reduction products repre-

sent economically interesting targets. While CO would likely be more readily implementable,

providing a direct route to CO for SynGas in existing Fischer-Tropsch technology, formic acid is

also of great interest either as a final product itself for use in fuel cells, or as an initial reduction

product in a tandem catalytic pathway to more reduced fuels.22
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1.3 Fundamental Challenges in Catalyst Design

While the two-electron reduction products, CO and formic acid, may be more kinetically

accessible, there remain a host of challenges associated with their efficient catalytic production

from CO2 for feasible implementation on an industrial scale. Homogeneous catalyst systems are

often not particularly suited to industrial applications due to the difficulty of product separation as

well as catalyst recovery and loading. However, they offer an incredible advantage over heteroge-

neous counterparts in their compatibility with spectroscopic, crystallographic, and solution-state

electrochemical techniques which allow for the direct probing of catalyst intermediates and in

turn, fundamental mechanistic aspects of such transformations. Such insight thereby enables

tuning both kinetic and thermodynamic attributes of catalysts and their reactive intermediates to

rationally target highly active and energetically efficient catalytic systems.

In the case of reduction to formic acid, one clear mechanistic pathway to deliver two

electrons to CO2 involves the transfer of a hydride from a transition metal catalyst site. However,

as is discussed in detail in Chapter 2, the thermodynamics of this transfer are highly dependent

on the electronics at the catalyst metal center and this activity is typically reserved for catalysts

consisting of rare and expensive precious metals such as rhodium and iridium. Furthermore,

the thermodynamics of hydride transfer are integral to the efficiency of such catalysts, and

the fundamental understanding thereof may facilitate the targeted design of similarly effective

catalysts consisting of inexpensive, earth-abundant materials.

Efficient catalysts often exhibit relatively level energetic landscapes, wherein catalyst

intermediates are thermodynamically well-matched to substrates. This avoids unnecessary

energetic barriers and troughs which may bottleneck catalytic pathways. And while reactive

catalyst intermediates require reasonable thermodynamic driving force towards substrate reactivity

in order to effect exergonic generation of desired products, excess driving force yields energetic

inefficiencies manifested in either large overpotentials, energetically costly catalyst regeneration,
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or both. Therefore, the rational design of effective and energetically efficient catalysts utilizing

earth-abundant materials hinges upon our ability to target catalyst intermediates that reside in

Goldilocks thermodynamic regions.

These approaches to the thermodynamic targeting and tuning of reactive hydride interme-

diates represent the overarching objectives of this body of work. In Chapter 2, the underlying

thermodynamic requirements for hydride reactivity with CO2, as well as requisites for their

generation by thermal or electrocatalytic means is discussed in terms of a variety of pertinent

thermochemical relationships. These thermochemical relationships give rise to a particularly

useful definition of hydride reactivity. From this, a highly instructive scaling relationship is

detailed, which enables not only the prediction of metal hydride reactivity, but also the rational

targeting and tuning thereof.

Chapter 3 subsequently details the validation of the utility of this scaling relationship by

targeting and tuning reactive hydride intermediates at nickel. These reactivities are shown to be

well-modeled by the scaling relationship discussed in Chapter 2, and additional thermochemical

arguments regarding proton reactivity are employed to both benchmark quantitative parameters as

well as select for highly efficient electrocatalytic hydrogen evolution (HER). This utility is clearly

manifested in the demonstration of electrocatalytic overpotentials in a first-generation catalyst

that rival the most optimized systems for electrocatalytic HER to date.

Having benchmarked the fundamental hydride thermodynamics in these systems, Chapter

4 seeks to leverage this understanding towards the underlying goal of CO2 reactivity. While

thermodynamic scaling relationships allow for the targeting of reactive intermediates, additional

substrate interactions are also possible, which lead to divergent pathways and distinct catalyst

selectivity. These reactivities and divergent pathways are discussed as well as the implications

for future catalyst design. While development of nickel-based CO2-to-formate electrocatalysts

is ultimately unsuccessful using these methods, this marks an important step in locating the

corners of a puzzle consisting of many moving parts. Reflection on the utility and limitations
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of thermodynamic strategies in catalyst design provides insight regarding both the successes

and shortcomings of these approaches, which builds a foundation for the construction of new

architectures, buttressed not only by intimate understanding of such scaling relationships but also

by strategies to breach their confinement.
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Chapter 2

Hydricity of Transition Metal Hydrides:

Thermodynamic Considerations for CO2

Reduction

2.1 Introduction

Transition metal hydride complexes are prolific in organometallic chemistry for both their

laboratory and industrial applications. Hydride transfer from reactive metal hydrides is a critical

step in a vast array of catalytic and stoichiometric transformations, including hydrogenation,1−8

hydrosilylation,9−10 olefin isomerization,11 and hydroformylation12 reactions. Additionally,

within the scope of renewable energy storage via the production of chemical fuels, the use

of transition metal hydrides for electrochemical H2 evolution13−15 and the chemical16−22 or

electrocatalytic7,23−25 reduction of CO2 to carbon-based fuels is of particular interest. A key step

for these reactions is formal hydride transfer from the metal hydride complex to a substrate, and

thus hydride donor ability is a critical descriptor of metal hydride reactivity.
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Figure 2.1: Modes of metal hydride bond dissociation.

Hydride donor ability, or hydricity ∆G◦H−, of a metal hydride [M-H](n−1)+ is formally

defined as the heterolytic bond dissociation free energy of the metal hydride bond to yield the

parent metal complex [M]n+ and the hydride anion.26 Cleavage of the metal hydride bond may

also occur via homolytic dissociation to a hydrogen atom or heterolytic dissociation to a proton,

given by the bond dissociation free energy (BDFE) or pKa, respectively. These three metal

hydride cleavage modes are depicted in Figure 2.1. Hydricity, BDFE, and pKa of a metal hydride

are interrelated through thermodynamic cycles involving the one-electron reduction potentials

of the parent metal complex [M]n+ and the known thermodynamic parameters for a hydride,

hydrogen atom, and proton.27 The relationship between these parameters is shown schematically

in Figure 2.1.

The thermodynamic hydricities for a large number of transition metal hydrides have been

experimentally determined in acetonitrile27 and water.28−33 These measurements are generally

performed by three common approaches for transition metal hydrides: (a) determining the

equilibrium constant for the reaction of the metal hydride with a hydride acceptor of known

hydricity; (b) establishing the pKa of the metal hydride and the two-electron reduction potential

for the Mn+/(n−2)+ redox couple of the parent complex; or (c) measuring the equilibrium constant

for H2 heterolysis in the presence of a base for which the pKa of the conjugate acid is known.

Further details and experimental considerations regarding these approaches have been recently

described by Wiedner and co-workers in an excellent review.27
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From Figure 2.1, there is an additional possible method for the determination of ∆G◦H−

based on a thermochemical cycle using the BDFE. This approach is outlined in Figure 2.2.

Here, the sum of the metal hydride BDFE, the free energy for the one-electron reduction of

the parent complex E1/2(Mn+/(n−1)+), and the free energy for reduction of a hydrogen atom

to a hydride anion ∆G◦H·/− yields the thermodynamic hydricity, given by equations (1) – (5),

respectively. In acetonitrile, ∆G◦H·/− is estimated to be 26.0 kcal mol−1.34 This relationship

has been previously noted in the literature, but has not been applied to obtain hydricities for

metal hydride complexes. The limited application of this relationship is attributed to the need

for a reversible E1/2(Mn+/(n−1)+) couple, which, especially for early transition metals, is often

complicated by the instability of the reduced form M(n−1)+ and by favorable solvation of the

parent complex Mn+. This relationship has, however, been used to measure the hydride donor

ability of various organic hydrides including NADH analogues.35 While this approach has found

limited practical utility for determining ∆G◦H− of transition metal complexes, we believe equation

(5) to be one of the most informative and predictive relationships for hydride donor abilities of

metal hydrides.

Figure 2.2: Hydricity in terms of BDFE and E1/2(Mn+/(n−1)+).

Equation (5) predicts that for metal hydride bonds with similar BDFE, there is a linear

relationship between hydricity and the first reduction potential. Such a direct correlation has been

recognized before. Indeed, several theoretical reports have discussed this and other relationships

between hydricity and other thermodynamic parameters for hydride systems.26,36−44 Notably,
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Rousseau and co-workers36−38 have developed computational methods for the accurate calculation

of hydricity for a series of nickel bis(diphosphine) hydrides and showed that the linear correlation

according to equation (5) is valid in this dataset. From an experimental standpoint, a strong linear

dependence of measured ∆G◦H− with E1/2(Mn+/(n−1)+) was originally reported for six nickel

hydrides bearing bidentate phosphine ligands,45 which was later extended to include other closely

related nickel bis(diphosphine) complexes.27,46−47 An analogous series of five palladium-hydride

complexes exhibits similar behavior.48 However, with the exception of limited comparisons of

isostructural Group 10 hydrides,49 cross-period analysis of experimental hydricities has been

largely absent. Building upon this previous work, we sought to analyze the experimentally

determined thermodynamic hydricities for a larger and more varied dataset of transition metal

hydrides to examine broader trends and probe the generality of the relationship given by equation

(5).

To this end, we herein establish a dataset containing transition metal hydrides with known

hydricity values and reversible E1/2(Mn+/(n−1)+) in acetonitrile. For this dataset, we find a

remarkably strong linear relationship between ∆G◦H− and the first reduction potential across the

entire dataset according to equation (5), independent of metal identity, dn electron configuration,

complex charge, or ligand architecture. Implications of this general correlation on the nature of

the metal hydride bond are considered. Furthermore, the significance and limitations of this result

towards the prediction of hydricities are discussed in terms of the rational design and optimization

of new metal hydride systems for small molecule conversion, and in particular, CO2 reduction.

2.2 Results & Discussion

2.2.1 Dataset of Metal Hydride Complexes

As the first step towards establishing general trends in the thermodynamic data of metal

hydrides, we compiled a comprehensive list of metal hydride complexes for which the hydricity
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∆G◦H− and the reduction potential of the Mn+/(n−1)+ couple are both known in acetonitrile. We

stress that our dataset only includes metal hydrides where this first reduction E1/2(Mn+/(n−1)+)

is reversible in order to ensure that only well-characterized numbers are used; thus, many

metal hydride complexes with measured hydricities are omitted from this analysis because

the one-electron reduction of the parent [M]n+ is not reversible. With this strict requirement,

there are 51 metal hydrides included in our dataset. Many of these hydrides are included in a

recent comprehensive review of hydricity by Wiedner and co-workers, along with other hydride

complexes that do not meet our criteria listed above.

The hydricity ∆G◦H− and first one-electron reduction potential E1/2(Mn+/(n−1)+) in ace-

tonitrile for the selected metal hydrides [M-H](n−1)+ and corresponding parent complexes [M]n+

in our dataset are summarized in Tables 2.1 – 2.3.50 Structures of the parent complexes and

associated ligands are presented in Figures 2.3 and 2.4. If solvent (acetonitrile) coordination to

the metal follows hydride transfer, the hydricity includes the energetic contribution from solvent

coordination. Additional thermodynamic data has been determined for many of these metal

hydrides: the pKa and second one-electron reduction potential E1/2(Mn+/(n−1)+) are tabulated as

well if available. All reduction potentials are reported versus the ferrocenium/ferrocene couple

(Fc+/0). For a few complexes, acetonitrile values are not available and benzonitrile data are used

instead. It has been previously shown that differences between these thermochemical parameters

in acetonitrile and benzonitrile are small.34 For several nickel and platinum complexes, more

than one hydricity measurement has been reported. In these cases, an averaged value is given

in the tables below. Overall, the agreement between the averaged values is excellent.27 Addi-

tionally, we note that [Ni(dmpe)2] +
2 as well as several of the 2nd and 3rd row transition metal

complexes in this dataset exhibit a reversible two-electron reduction E1/2(Mn+/(n−2)+), instead

of two sequential one-electron redox couples E1/2(Mn+/(n−1)+) and E1/2(M(n−1)/(n−2)+). In

these cases, the first reduction potential E1/2(Mn+/(n−1)+) is taken to occur at the potential of the

overall two-electron process.51 This assumption does introduce some uncertainty in the reduction

17



potentials since E1/2(Mn+/(n−2)+) for a reversible two-electron couple is given by the average of

the two one-electron reduction potentials.51

As seen in Tables 2.1 – 2.3, our dataset includes Group 9 and 10 metal hydrides, as well

as two ruthenium examples. The majority of hydricity measurements have been determined for

bis(diphosphine) complexes of the general type [HM(P−P)2]n+ or [HM(PR
2 NR’

2 )2]n+. This ligand

architecture has proven to be very amenable to thermodynamic measurements, and systematic

variation of the steric and electronic properties of the diphosphine ligands is facile.34,45 Nickel

bis(diphosphine) complexes represent the largest subset of metal hydrides here. These complexes

show two one-electron reductions, except for [Ni(dmpe)2] +
2 which exhibits a two-electron

reduction at -1.39 V versus Fc+/0, the most negative reduction potential in the nickel series.34

Furthermore, the corresponding [HNi(dmpe)2]+ is the strongest hydride donor of the nickel

complexes. As noted by Dubois,49 isostructural palladium and platinum hydrides are typically

stronger hydride donors (i.e. smaller ∆G◦H−) compared to their nickel analogues. Similarly, the

hydride donor abilities measured for rhodium bis(diphosphine) complexes are also greater (i.e.

smaller ∆G◦H−) than that of [Co(dppe)2(ACN)]+.52−56 Furthermore, our dataset also includes

metal hydrides that are not based on the bis(diphosphine) architecture, including piano stool

complexes of cobalt, iridium, and ruthenium bearing bidentate pyridine or phosphine ligands.

2.2.2 Correlation of Hydricity and Reduction Potential

Dubois and co-workers previously demonstrated that a linear free energy relationship

exists between the hydricity ∆G◦H− of Ni-hydride complexes [Ni(P−P)2H]+ and the one-electron

reduction potential EII/I of the parent complex [Ni(P−P)2] +
2 , where P-P are the bidentate phos-

phine ligands dppv, dppe, dmpp, dedpe, depe, and dmpe.45 In this series, as the hydride donor

strength of [Ni(P−P)2H]+ increases, EII/I shifts more positive. A similar linear correlation has

been noted for other limited datasets, including series of Ni bis(PR
2 NR’

2 ) and Pd bis(diphosphine)

hydride complexes.26−27,46−48

18



Figure 2.3: Structures and abbreviations for the parent complexes [M]n+ of the metal hydrides
[M-H](n−1)+.

Beyond these limited experimental reports, no systematic comparison of measured hy-

dricities and one-electron reduction potentials across several transition metals and ligand sets

has been discussed in the literature. Figure 2.5 represents the first example of such comparison

on a large and varied dataset. In this figure, the hydricity for all of the metal hydrides in our

dataset is plotted as a function of the respective E1/2(Mn+/(n−1)+). A linear relationship is clearly

demonstrated between the hydricity and reduction potential, which is remarkably independent of

metal center and ligand environment. This trend spans a range of over 2 V in reduction potential

and approximately 50 kcal mol−1 in hydricity.
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Figure 2.4: Phosphine ligand structures and abbreviations.

The linear correlation in Figure 2.5 can be effectively modeled by equation (5), which

describes hydricity as a function of E1/2(Mn+/(n−1)+) (or E1/2(Mn+/(n−2)+)) in the case of a

two-electron reduction potential, vide supra) and the BDFE of the metal hydride bond. We note

that although the set of equations describing the thermochemical cycle in Figure 2.2 have been

developed for standard reduction potentials E0, we assume the equivalence of E0 to the half-wave

potential E1/2 and use E1/2 in place of E0 for our thermodynamic arguments. By equation (5),

∆G◦H− is linearly dependent on the first reduction potential, with the slope of the line equal to

nF (23.06 kcal mol−1 V−1 for a one-electron process) and the y-intercept equal to the sum of

the metal hydride BDFE and ∆G◦H·/− (26.0 kcal mol−1 in acetonitrile, vide supra).34 The best-fit

line for our dataset has a slope of 20.02 kcal mol−1 V−1, which is in reasonable agreement with

the ideal value of 23.06 kcal mol−1 V−1 from equation (5). Defining the slope of the line as

23.06 kcal mol−1 V−1 also gives a similar fit to the data, and this line is plotted in Figure 2.5.

We note that when only complexes that exhibit a one-electron reduction E1/2(Mn+/(n−1)+) and

not a two-electron reduction E1/2(Mn+/(n−2)+) are considered, the slope of the best-fit line is in

excellent agreement with the ideal value of 23.06 kcal mol−1 V−1, but the scatter of this smaller

dataset is worse (see Figure 2.17 and 2.18).
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Table 2.1: Thermodynamic data for nickel complexes.a

Parent Complex
E1/2(d8/d9)

(V vs. Fc+/0)
E1/2(d9/d10)

(V vs. Fc+/0)
∆G◦H−

(kcal/mol)b pKa
c Ref

[Ni(dmpe)2]2+ -1.39 -1.39 49.3 d 24.3 e 34, 57
[Ni(PR

2 NR’
2 )2]2+; R = Me, R’ = Ph -1.03 -1.29 54.0 20.5 58
[Ni(depe)2] +

2 -1.16 -1.29 55.3 23.8 e 34, 57
[Ni(PR

2 NR’
2 )2]2+; R = Ph, R’ = Me -0.98 -1.14 55.6 f 18.5 46, 59-60

[Ni(PR
2 NR’

2 )2(CH3CN)]2+; R = nBu, R’ = Ph -0.93 -1.23 57.1 – 47
[Ni(PR

2 NR’
2 )2(CH3CN)]2+; R = Ph, R’ = Bz -0.94 -1.19 57.2 19.6 61

[Ni(PR
2 NR’

2 )2(CH3CN)]2+; R = TMP, R’ = Ph -0.89 -1.17 57.6 – 47
[Ni(PR

2 NR’
2 )2(CH3CN)]2+; R = 2-PhEt, R’ = Ph -0.90 -1.16 57.8 – 47

[Ni(PR
2 NR’

2 )2(CH3CN)]2+; R = Ph, R’ = C6H4-OMe -0.87 -1.07 58.6 17.4 46
[Ni(PR

2 NR’
2 )2]2+; R = Cy, R’ = Bz-OMe -0.85 -1.39 58.8 22.6 62

[Ni(PR
2 NR’

2 )2(CH3CN)]2+; R = Ph, R’ = Ph -0.84 -1.02 59.1 16.4 61
[Ni(PR

2 NR’
2 )2(CH3CN)]2+; R = Bz, R’ = Ph -0.83 -1.12 59.4 – 47

[Ni(dedpe)2]2+ -0.99 -1.08 60.0 20.6 45
[Ni(PR

2 NR’
2 )(PR’

2 NR’
2 )(CH3CN)]2+; R = Cy, R’ = Ph -0.76 -1.05 60.5 16.6 46

[Ni(PR
2 NR’

2 )2(CH3CN)]2+; R = Cy, R’ = Bz -0.80 -1.28 60.9 21.5 61
[Ni(dmpp)2]2+ -0.89 -1.33 60.9 d 23.9 e 34, 57

[Ni(PR
2 NR’

2 )2]2+; R = Cy, R’ = tBu -0.81 -1.45 61.0 24.5 63
[Ni(dppe)2]2+ -0.70 -0.88 62.8 14.4 34

[Ni(PR
2 NR’

2 )2(CH3CN)]2+; R = Cy, R’ = Ph -0.62 -1.09 63.7 17.3 46
[Ni(depp)2]2+ -0.61 -1.34 66.7 d 23.3 57, 61
[Ni(PNP)2]2+ -0.64 -1.24 66.9 22.5 61
[Ni(dppv)2]2+ -0.52 -0.83 67.4 13.9 45

[Ni(dppp)(PR
2 NR’

2 )]2+; R = Ph, R’ = Bz -0.52 e -1.04 e 68.2 18.1 46, 64

aValues in acetonitrile unless otherwise marked; b Hydricity of the corresponding metal hydride complex;
c Acidity of the corresponding metal hydride complex; d Averaged value; e Measured in benzonitrile; f DFT-calculated value.

The correlation between hydricity and E1/2(Mn+/(n−1)+) implies that the BDFE does

not change significantly across this dataset of metal hydride complexes. It has been shown by

Beauchamp70−72 and others45,48,73−76 that homolytic bond dissociation energies of metal hydrides

typically do not vary by much (less than 10 kcal mol−1) across a series of complexes compared

to the large range of accessible hydricities. This difference has been attributed to the large

redistribution of charge associated with heterolytic metal hydride cleavage, and consequently

∆G◦H− is much more sensitive to changes in the electronic structure of the metal hydride.55

Furthermore, variations in BDFE are largely independent of the identity of the metal center,

particularly for heavier atoms. Therefore, the spread from the model line in Figure 2.5 is small.
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Table 2.2: Thermodynamic data for palladium and platinum complexes.a

Parent Complex
E1/2(d8/d9)

(V vs. Fc+/0)
E1/2(d9/d10)

(V vs. Fc+/0)
∆G◦H−

(kcal/mol) b pKa
c Ref

[Pt(dmpe)2]2+ -1.73 d -1.73 d 41.8 e 31.1 34, 57
[Pd(depe)2]2+ -1.48 -1.48 43.0 23.2 48
[Pt(depe)2]2+ -1.65 -1.65 44.0 29.7 34, 57
[Pt(dmpp)2]2+ -1.53 -1.53 50.6 e 30.4 34, 57
[Pd(PNP)2]2+ -1.21 -1.21 50.7 19.7 49
[Pt(dppe)2]2+ -1.24 -1.24 52.8 22.3 34
[Pt(depp)2]2+ -1.4 d -1.4 d 53.7 – 57
[Pt(PNP)2]2+ -1.36 -1.36 54.3 27.4 49
[Pd(depp)2]2+ -1.22 -1.22 54.6 22.9 48
[Pd(depx)2]2+ -0.94 -1.02 61.8 20.1 48

[Pd(depPE)2]2+ -0.73 -0.92 66.9 18.6 48
[Pd(EtXantphos)2]2+ -0.55 -0.94 70.9 18.8 48

aValues in acetonitrile unless otherwise marked; b Hydricity of the corresponding metal hydride complex;
c Acidity of the corresponding metal hydride complex; d Averaged value; e Measured in benzonitrile; f DFT-calculated value.

An average BDFE of 51 kcal mol−1 for the metal hydrides in our dataset can be calculated from

the y-intercept of the best-fit line in Figure 2.5. This BDFE is in good agreement with the value of

60 kcal mol−1 commonly cited for the typical bond strength of transition metal hydrides.74−75,77

We note that two complexes with known hydricities have not been included in Figure 2.5: the

hydricities of [Rh(depx)2]+ and [Pt(EtXanphos)2]2+ deviate considerably from this linear trend

(Figure 2.19). In both cases, the chelate bite angle of these rigid bidentate phosphine ligands

causes a large distortion from an ideal square planar geometry in the parent complexes, which

stabilizes the lowest unoccupied molecular orbital (LUMO) and increases the hydride accepting

ability.55,78

Because the linear trend in Figure 2.5 is valid over a wide range of complexes with

different metals and ligand structures, we expect other transition metal hydrides to approximately

follow this qualitative trend as well. Therefore, this correlation may be utilized to approximate

the hydricity of metal hydride complexes simply based on the measured reduction potential of the

parent complex [M]n+, which can be obtained by cyclic voltammetry or other electrochemical
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Table 2.3: Thermodynamic data for group eight and nine complexes. a

Parent Complex
E1/2(d8/d9)

(V vs. Fc+/0)
E1/2(d9/d10)

(V vs. Fc+/0)
∆G◦H−

(kcal/mol) b pKa
c Ref

[Rh(PR
2 NR’

2 )2]+; R = Ph, R’ = Bz -2.43 -2.43 28.4 44.6 52
[Rh(PR

2 NR’
2 )2]+; R = Cy, R’ = C6H4-OMe -2.45 -2.45 30.2 46.6 52

[Rh(PR
2 NR’

2 )2]+; R = Ph, R’ = C6H4-OMe -2.27 -2.27 31.3 31.3 52
[Rh(PR

2 NR’
2 )2]+; R = Cy, R’ = Ph -2.39 -2.39 31.9 45.8 52
[Rh(dppb)2]+ -2.02 -2.02 34.0 34.9 53
[Rh(dppe)2]+ -2.12 -2.12 38.6 d – 53-54

[Ru(terpy)(bipy)(CH3CN)]2+ -1.68 f -1.98 e 39.3 32.4 26
[Ir(terpy)(ppy)(CH3CN)]2+ -1.33 f – 43.2 d – 65

[Co(dppe)2]+ -1.56 -2.03 49.1 38.1 56
[(η6−C6Me6)Ru(bipy)(CH3CN)]2+ -1.22 f -1.22 e 54.0 22.5 26

[Co(PR
2 NR’

2 )(CH3CN)3]2+; R = tBu, R’ = Ph -0.87 e – 54.2 d – 66
[Co(dmgBF2)2(CH3CN)2] -0.91 e – 55.9 d – 66

[Co(dppe)2(CH3CN)]2+ -0.70 e -1.56 g 59.7 23.6 56
[Cp · Ir(bipy)(CH3CN)]2+ -1.07 f ,h -1.07 e,h 62.0 23.3 67
[CpCo(dppe)(CH3CN)]2+ -0.51 f -0.93 e 71.5 18.4 68

aValues in acetonitrile unless otherwise marked; b Hydricity of the corresponding metal hydride complex;
c Acidity of the corresponding metal hydride complex; d Averaged value; e Measured in benzonitrile; f DFT-calculated value,
e E(d7/d8); f E(d6/d7); g E(d8/d9); h Quasi-reversible redox couple.

methods. This proposal was previously put forth by Rousseau and co-workers36 for a series

of nickel hydrides based on their experimental and DFT-calculated dataset of hydricities. A

similar approach using a smaller dataset was recently applied to roughly estimate ∆G◦H− for three

Co-hydride complexes.79 Furthermore, investigations into how systematic ligand substitutions

shift reduction potentials have been reported for several ligand classes.80−84 Thus, starting from a

metal hydride in our dataset, the effect of ligand substitution on the hydricity can be estimated,

providing a rational guide for the design of new metal hydrides with targeted hydricities.

The homolytic bond dissociation free energy of a metal hydride is also related to the free

energy of proton dissociation of the metal hydride bond and the second one-electron reduction

potential of the parent complex E1/2(M(n−1)/(n−2)+), as given by Figure 2.7.73 Considering the

small variation in BDFE across our dataset, we expect an equivalent linear correlation to exist

between the pKa of the metal hydride and the second reduction potential, with the slope of the line
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Figure 2.5: Correlation of ∆G◦H− with the first one-electron reduction potential of the parent
metal complex. Fixed slope line given by black dashed trace.

being -nF (-23.06 kcal mol−1 V−1) and the y-intercept being the sum of the metal hydride BDFE

and ∆G◦H+/H· (53.6 kcal mol−1 in acetonitrile).85 The free energies of proton dissociation, given

by 1.364 x pKa, is plotted a function of E1/2(M(n−1)/(n−2)+) in Figure 2.6. Similar to above, the

half-wave potential E1/2 for the M(n−1)+/(n−2)+ (or Mn+/(n−2)+ for a two-electron reduction) is

used in place of the standard reduction potential E0 in this thermochemical cycle. As expected, a

linear trend is observed with a slope of -25.38 kcal mol−1 V−1. Modeling the data by equation

(9) with a fixed slope of -23.06 kcal mol−1 V−1 also shows reasonable agreement, and this line is

plotted in Figure 2.6.

Equations (5) and (9) provide two methods for calculating the BDFE of the metal hydride

bond from either of the heterolytic dissociation energies: hydricity or pKa. The self-consistency

of our dataset is demonstrated by comparing the BDFE value for each metal hydride calculated

using equation (5) versus equation (9). Complexes for which the hydricity was calculated
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Figure 2.6: Correlation of pKa with the second reduction potential of the parent metal complex.
Fixed slope line given by black dashed trace.

from an experimentally determined pKa (i.e. the “potential-pKa” method)27 or the pKa was

calculated from an experimentally determined ∆G◦H− were excluded from this analysis in order to

avoid drawing conclusions from circular mathematical relationships. This comparison is shown

graphically in Figure 2.20. As expected, the slope and y-intercept for this data equal one and zero

within error, respectively.

2.2.3 Expansion to Other Hydride Classes

The chemical reactivity and biological activity of natural organic hydride donors and

related synthetic derivatives have been the subject of much research in recent decades. In nature,

hydride transfers are mediated by 1,4-dihydronicotinamide adenine dinucleotide (NADH) and

the oxidized form NAD+ are critical in many biological transformations.86−88 Many related
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Figure 2.7: Acidity in terms of BDFE and E1/2(M(n−1)/(n−2)+).

nicotinamide compounds have been prepared as structural analogues of NADH for systematic

studies on hydricity.89−90

Hydride transfer from an organic hydride donor is directly analogous to that from a metal

hydride complex; thus, the same equations given above for relating the thermodynamic parameters

for a metal hydride bond can also be applied to organic hydride donors. Here, we extend our

hydricity dataset to include several organic hydrides that fall into two general categories: NADH

analogues and arylmethanes.35,91−92 For these compounds, the reactive hydride bond in question

is a carbon-hydrogen bond, and the parent complex is the corresponding organic cation R+. The

hydricity ∆G◦H− and first one-electron reduction potential E1/2(R+/0) in acetonitrile for these

organic hydride donors are presented in Table 2.5.

Figure 2.8 shows the hydricity of the NADH compounds and arylmethanes plotted as a

function of E1/2(R+/0). Similar to the metal hydride dataset, a linear correlation exists between

∆G◦H− and the first reduction potential, and this relationship is well described by equation (5)

with the slope of the line equal to nF (23.06 kcal mol−1 V−1). As stated previously, the reversible

reduction potential E1/2(R+/0) is assumed to be equivalent to the standard reduction potential E0.

The agreement between the thermodynamic data for the organic hydrides and the model given by

equation (5) is better compared to that of the metal hydrides due to the smaller range of homolytic

bond strengths for the carbon-hydrogen bonds in this series. This result demonstrates the general

utility of this approach for visualizing trends in the thermodynamic parameters of hydride donors.
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Figure 2.8: Correlation of ∆G◦H− with the first one-electron reduction potential for organic
compounds. Fixed slope line for metal hydrides given by lower black dashed trace.

Comparing the fixed slope lines in Figures 2.5 and 2.8, the y-intercept for the organic

hydride donor dataset is approximately 22 kcal mol−1 higher. Since equation (5) gives that the

y-intercept is the sum of the carbon-hydride BDFE and ∆G◦H·/−, this 22 kcal mol−1 difference is

the difference in the carbon-hydride versus metal hydride average homolytic bond dissociation

free energies. This result is further illustrated in Figure 2.21: the BDFE for each hydride donor

was calculated using the model trend line from Figure 2.5 or 2.8 for metal or organic compounds,

respectively, and the calculated BDFEs were plotted as a function of the first reduction potential.

For both datasets, the BDFEs are only weakly correlated with reduction potential, but fall into

two distinct regions for metal or carbon-based hydride donors. This formalism further illustrates

that large hydride donor ability is not indicative of a weaker metal hydride bond.
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2.2.4 Implications for CO2 Reduction

Hydride addition to CO2

The generality of the linear relationship in Figure 2.5 across a large scope of metal

hydrides allows for some broad statements to be made regarding the hydricity of a metal hydride

catalyst and the reaction conditions required for CO2 reduction. Reduction of CO2 to formate

using a metal hydride, either via thermal hydrogenation or electrochemical means, requires

hydride transfer to CO2. Without considering the exact mechanism of hydride transfer, it is

well established that the overall energy of this transformation can be assessed by comparing

the hydricity of the metal hydride to that of formate, given by equations (4) and (10) – (12)

in Figure 2.9.20,25−27,31,46 Given that the hydricity of formate ∆G◦H−(HCO2-) in acetonitrile is

44 kcal mol−1,25 the hydricity of the metal hydride must be less than 44 kcal mol−1 for ∆G◦Rxn

defined by equation (12) to be exergonic. This requirement is shown graphically in Figure 2.10,

where the horizontal line establishes a border between metal hydrides capable of hydride donation

to CO2 (∆G◦H−(M-H) < 44 kcal mol−1) and those expected to accept a hydride from formate

(∆G◦H−(M-H) > 44 kcal mol−1). It is clear that most known metal hydrides are not suitable

for CO2 reduction via direct hydride transfer under standard conditions. It is also evident that

unassisted organic hydride donors are ineffective for CO2 reduction since all of these hydricities

lie above the horizontal line.

Figure 2.9: Hydricity requirements for hydride transfer to CO2.
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Figure 2.10: Comparison of ∆G◦H− of metal hydrides (filled points), organic hydride donors
(open points), and formate (solid black trace). Hydricities in the red region fall above
∆G◦H−(HCO2-), and are not capable of hydride transfer to CO2. Hydricities in the green
region fall below ∆G◦H−(HCO2-), and are able to reduce CO2 via hydride transfer. Fixed slope
line for metal hydrides given by lower black dashed trace. Fixed slope line for organic hydrides
given by upper black dashed trace.

CO2 Hydrogenation: Metal Hydride Generation

A key step often proposed for the hydrogenation of CO2 to formate with transition metal

hydride complexes is generation of the active metal hydride catalyst via base-assisted H2 cleavage

through deprotonation of a dihydrogen complex93 or a metal dihydride.52 The strength of the

base required to facilitate H2 activation is determined by the hydricity of the metal hydride. This

relationship is given by the thermochemical cycles in Figure 2.11, where the hydricity of H2

is ∆G◦H−(H2) = 76.0 kcal mol−1 in acetonitrile.57 The minimum strength of the base (i.e. the

minimum pKa of the conjugate acid BH+) required for H2 cleavage can thus be calculated for

a given hydricity (Figure 2.12), and can be plotted as the right y-axis on the same graph as
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∆G◦H−(M-H) versus E1/2(Mn+/(n−1)+)) (Figure 2.13). From this figure, which may be viewed as

a modified Pourbaix diagram, the minimum base strength required for H2 cleavage is obtained

by drawing a horizontal line from a hydricity on the left axis to the corresponding pKa on the

right axis. Thus, this figure not only provides a qualitative guide for the rational tuning of catalyst

hydricity, but also directs the selection of an appropriate base for catalysis. For example, if

E1/2(Mn+/(n−1)+) of the parent complex is known, ∆G◦H− of the corresponding metal hydride

as well as the associated pKa required for H2 activation can be easily estimated. It is clear that

for metal hydrides capable of hydride transfer to CO2 (∆G◦H− < 44 kcal mol−1), the added base

must have pKa(BH+) > 23.5 in acetonitrile for H2 cleavage to be thermodynamically favorable

under standard conditions.

Figure 2.11: Strength of the base required for H2 cleavage for a given hydricity. B = base, BH+

= conjugate acid of B.

CO2 Electrocatalytic Reduction: Metal Hydride Generation

The two-electron, two-proton reduction of CO2 to formic acid in acetonitrile necessarily

requires the presence of a Brønsted acid. Protonation of the two-electron reduced parent complex

is the typical pathway for electrochemical generation of the metal hydride, which may then

transfer the hydride to CO2. The pKa of the Brønsted acid required to protonate [M](n−2)+ is

readily obtained from the pKa of the metal hydride (Figure 2.6). Under electrocatalytic conditions,

protonation of the metal hydride may also occur if the acid is sufficiently strong, resulting in
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Figure 2.12: Representative catalytic cycle for CO2 hydrogenation with a metal hydride. Hy-
dricity requirement for favorable CO2 reduction given by top equation. pKa requirement for
favorable H2 activation given by bottom equation. B = base, BH+ = conjugate acid of B.

competitive H2 evolution and decreasing the Faradaic efficiency for CO2 reduction to formic acid.

The thermochemical cycles describing H2 evolution are identical to those shown in Figure 2.11:

∆G◦rxn defined by equation (17) must be less than zero in order for competitive H2 evolution to

be thermodynamically unfavorable. Therefore, the maximum acid strength (i.e. the minimum

pKa) for which H2 generation is endergonic may be estimated for a given ∆G◦H− using the

same equation in Figure 2.12, and can be plotted as the right y-axis with ∆G◦H−(M-H) versus

E1/2(Mn+/(n−1)+) in the modified Pourbaix diagram (Figure 2.13). For metal hydrides capable

of CO2 reduction (∆G◦H− < 44 kcal mol−1), the added acid must have pKa > 23 in order to

thermodynamically avoid H2 evolution. Furthermore, Figure 2.6 indicates that the metal hydrides

with ∆G◦H− < 44 kcal mol−1 generally have pKa values above 29, thus limiting the possible acids

that may be appropriate for CO2 reduction to approximately 23 < pKa < 29.
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Figure 2.13: Modified Pourbaix diagram indicating the thermodynamic stability of a metal
hydride and BH+ relative to CO2 and H2. For CO2 hydrogenation, right axis gives the minimum
pKa(BH+) of the added base for heterolytic H2 cleavage for a given ∆G◦H−(M-H) on the left
axis. For electrocatalytic CO2 reduction, right axis gives the minimum pKa(BH+) of the added
acid to avoid H2 evolution via protonation of a metal hydride with a given ∆G◦H−(M-H) on the
left axis. Fixed slope line for metal hydrides given by black dashed trace. Hydricity of formate
given by the black solid trace.

CO2 Electrocatalytic Reduction: Overpotential.

A critical parameter for benchmarking the activity of an electrocatalyst is the overpo-

tential η, which is the difference between the operating potential of the catalyst Ecat and the

thermodynamic potential for the reaction of interest, E◦. The thermodynamic potential for the

CO2/formic acid couple in aqueous solution is -0.61 V versus NHE at pH 7;94 however, to the

best of our knowledge, no value for E◦(CO2/HCO2H) in acetonitrile or other organic solvent has

been reported. Standard reduction potentials for CO2/CO and CO2/CH4 have been calculated

from the well-established aqueous standard potentials and E◦(H+/H2) in acetonitrile.95 A similar

approach was recently applied to derive the standard reduction potential for N2 to various reduced

products including ammonia.96
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In order to apply this procedure to calculate E◦(CO2/HCO –
2 ) in acetonitrile, the free

energy of transfer for formic acid or the formate anion from aqueous solution to acetonitrile

is needed, but neither value is known. Here, we take a different approach to approximate

E◦(CO2/HCO –
2 ) using the known hydricity of formate in acetonitrile. The thermochemical cycle

used to calculate this value is shown in Figure 2.14. Since this is a proton-dependent reaction,

the standard reduction potential will shift as a function of the acid strength. For a 1:1 buffer

solution of the Brønsted acid and conjugate base, this can be accounted for by equation (19).97

We thus obtain [-0.77 V - 0.030 pKa] versus Fc+/0 for E◦(CO2/HCO –
2 ) in acetonitrile for this

two-electron, one-proton reaction.

The protonation state of the formate product depends on solution acidity: if the pKa of

BH+ is greater than that of formic acid, then the CO2/formate couple is valid, but if the pKa is less

than formic acid, then the CO2/formic acid potential is more appropriate. The pKa of formic acid

in acetonitrile is not known, but has been estimated to be 20.9.98 Under more acidic conditions,

the standard reduction potential for the CO2/formic acid couple can be approximated using the

thermochemical cycle in Figure 2.15. Using the estimated pKa of formic acid, E◦(CO2/HCO2H)

is calculated as -0.15 V versus Fc+/0 in acetonitrile, which is shifted negative by 59 mV per pKa

unit for this two-electron, two-proton reaction.

Figure 2.14: Thermochemical cycle used to estimate E◦(CO2/HCO –
2 ) in acetonitrile. B = base,

BH+ = conjugate acid of B. S = acetonitrile.
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Figure 2.15: Thermochemical cycle used to estimate E◦(CO2/HCO2H) in acetonitrile. B =
base, BH+ = conjugate acid of B. S = acetonitrile.

Given that the standard reduction potentials for CO2 reduction to formate and formic

acid are known in water, the influence of solvent on these thermodynamic potentials can be

evaluated. Table 2.4 summarizes E◦ for the CO2/formate and CO2/formic acid couples in both

acetonitrile and water, as well as E◦ for the CO2/CO couple for comparison. The protonation of

formate to formic acid results in a 0.62 V shift to more positive potential for E◦(CO2/HCO2H)

compared to E◦(CO2/HCO –
2 ). In water, the direction of this potential shift is the same, but

the magnitude of the shift is significantly smaller, only 0.116 V. This large variance may be

attributed to the difference in the pKa scales in acetonitrile solvent versus aqueous solution.96

The standard potentials for CO2 reduction to formic acid or CO very similar in both solvents,

with E◦(CO2/HCO2H) occurring at slightly more cathodic potentials compared to E◦(CO2/CO)

in acetonitrile and water.

Table 2.4: Comparison of standard reduction potentials for CO2 to formate/formic acid or CO.

E◦

Reduction Reaction MeCN H2O

CO2(g)/HCO2−(s) -0.77 V - 0.030pKa -0.23 V - 0.030pH
CO2(g)/HCO2H(s) -0.15 V - 0.059 pKa -0.114 V - 0.059pH

CO2(g)/CO(g) -0.12 V - 0.059 pKa -0.104 V - 0.059pH
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The dependence of E◦ for CO2 reduction to formate/formic acid on solution acidity is

overlaid in Figure 2.16 with the hydricity trend line for metal hydrides as well as the hydricity

of formate. The point on the graph at which the E◦(CO2/HCO –
2 ) and E◦(CO2/HCO2H) lines

intersect occurs at the pKa of formic acid. As previously discussed, for a given hydricity on

the left axis, the minimum pKa of acid to prevent H2 evolution is defined by the corresponding

value on the right axis. The addition of the standard reduction potential variation in Figure 2.16

now also enables E◦ for formate or formic acid to be readily obtained at a particular pKa(BH+).

The overpotential for CO2 reduction can then be estimated from the difference between E◦

at pKa(BH+) and the operating potential of the metal hydride catalyst, which, for [M]n+ that

undergoes a two-electron reduction, is E1/2(Mn+/(n−1)+), allowing for a set of appropriate

reaction conditions and the associated overpotential for CO2 reduction to be quickly predicted.

As expected, the overpotential for electrocatalytic reduction will clearly decrease as weaker acids

are used.

Since there is appreciable uncertainty associated with the solvation energy of the hydride

anion100 and the pKa of formic acid in acetonitrile has not been reported, equations (21) and

(24) are at best rough approximations for the standard reduction potential of the CO2/formate

and CO2/formic acid couples. With these caveats in mind, the overpotential for CO2 reduction

using a metal hydride catalyst may be discussed. The approximate set of experimental conditions

where CO2 reduction to formate is viable (vide supra) is indicated by the green region in Figure

2.16. Within this region, if we consider a hypothetical metal hydride with ∆G◦H− = 43 kcal/mol,

E1/2(Mn+/(n−1)+) ∼ -1.65 V versus Fc+/0 for the parent complex from our qualitative hydricity

model in Figure 2.5. A Brønsted acid with pKa < 29 is typically required to make a metal hydride

with this hydricity (vide supra). For a buffer solution at this minimum acid strength, the standard

reduction potential for CO2 reduction is E◦(CO2/HCO –
2 ) = -1.64 V versus Fc+/0. Assuming that

the parent complex [M]n+ undergoes a two-electron reduction at E1/2, the minimum overpotential

for electrocatalysis under these conditions is 10 mV. However, electrocatalytic reactions are
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Figure 2.16: Comparison of the standard reduction potential for the CO2/formic acid (pink line)
and CO2/formate (blue line) couples as a function of pKa(BH+) (right axis), overlaid with the
fixed slope correlation of ∆G◦H−(M-H) and E1/2(Mn+/(n−1)+). Right axis gives the minimum
pKa(BH+) for heterolytic H2 cleavage for a given ∆G◦H−(M-H) on the left axis. Highlighted
green section indicates the approximate region of viability for formate production.

typically performed at least 0.1 V beyond the peak potential; therefore, a practical minimum

value for the attainable overpotential for CO2 reduction to formate with a metal hydride catalyst

is roughly 100 mV.

2.2.5 Limitations of the Model.

This formalism represents a useful tool for predicting the hydricity and reactivity of metal

hydride systems, but it is not without limitations and should only be considered a qualitative

guide. Our dataset was constructed using 51 metal hydrides for which the corresponding parent

complexes display reversible Mn+/(n−1)+ redox couples. For complexes that do not exhibit

reversible electrochemistry, the utilization of this model to predict hydricities is unreliable,
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although relative hydricity trends may still be correct.79 Care must be taken to ensure that the

reduction potential of the coordinately unsaturated or acetonitrile-solvento parent complex is

utilized to estimate hydricity, and not that of other M-X species such as the halide complex.

Furthermore, the existence of a reversible Mn+/(n−1)+ redox couple for the parent complex does

not indicate the accessibility or stability of the corresponding metal hydride, and therefore this

guide is best used in conjunction with experimental methods to characterize any new metal

hydrides and confirm their predicted reactivity.

Significant deviations from the model in Figure 2.5 are possible even for complexes

that do exhibit reversible Mn+/(n−1)+ redox couples, as exemplified by [Rh(depx)2]+ and

[Pt(EtXanphos)2] +
2 which both contain bidentate phosphine ligands with constrained chelate

bite angles that decrease the hydricity of the metal hydrides (vide supra).55,78 Additionally, the

predictive power of this hydricity model is predicated on the assumption that the BDFE of metal

hydride bonds remains largely constant regardless of metal identity and ligand framework. How-

ever, changes in the oxidation state of metal hydrides have been shown to dramatically change

the BDFE.26,56,69,101−102 For example, one-electron reduction of [Co(CpC5F4N)(PR
2 NR’

2 )H]+ (R

= tBu, R’ = Ph) to the Co(II)-hydride results in a significant decrease of over 15 kcal/mol in the

metal hydride BDFE.69 Similarly, one-electron oxidation of the isolable [W(Cp)(CO)2(IMes)H]

to the cationic hydride complex is accompanied by a decrease of approximately 25 kcal/mol in

metal hydride BDFE.102 It is clear from these large BDFE changes that these reduced or oxidized

metal hydrides would not fit the hydricity/reduction potential trend well. Other examples exist

where changes in the hydride oxidation state do not significantly alter the BDFE: one-electron

reduction of [Ru(terpy)(bipy)H]+ reduces the metal hydride BDFE by only 1 kcal/mol and thus

both [Ru(terpy)(bipy)H]+ and [Ru(terpy)(bipy)H]0 are consistent with the linear relationship in

Figure 2.5.26 In light of such unpredictable variations in BDFE and hydricity with oxidation state,

we therefore conclude that the linear model should not be applied to estimate hydricities upon

changes in the oxidation state of metal hydrides.
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While hydricity is a useful descriptor for the inherent hydride donating ability of a

metal-hydride, it does not account for the mechanism of hydride transfer, and depending on the

mechanism, hydricity may not be an accurate predictor of metal hydride reactivity. For example,

bifunctional hydrogenation catalysts do not operate via direct hydride transfer from a metal

hydride. Instead, a proximal protic ligand site facilitates outer-sphere dihydrogen transfer to the

substrate via cooperative (concerted or asynchronous) proton and hydride transfer from the ligand

and metal, respectively.1,103−106 Also, several examples of Lewis acid assisted catalysis for CO2

hydrogenation and formic acid dehydrogenation have been reported.107−109 In these reactions,

a simple comparison of the hydricities of the free substrate and metal hydride catalyst does not

accurately reflect the thermodynamics of hydride transfer to/from the Lewis acid-associated

substrate. Furthermore, only the thermodynamic hydricity of metal hydrides is considered here:

the kinetic hydricity describes the relative rate of hydride transfer to a given hydride acceptor.

Kinetic considerations are outside of the scope of our hydricity model, but nonetheless are critical

in the design of hydride transfer catalysts. A marriage of predictive thermodynamic and kinetic

hydricity trends would be especially instructive for the targeted design of metal hydrides: a step

toward this goal was recently reported by Wiedner and co-workers for a series of cobalt and

rhodium complexes.79

2.3 Conclusion

In this report, we established a dataset of metal hydrides for which measured hydricities

and reversible [M]n+/(n−1)+ couples are known in acetonitrile or benzonitrile. This dataset

includes a wide variety of hydride complexes with diverse metal identity, ligand architecture,

geometry, electronic configuration, and overall charge. Despite the large variance in the nature of

the metal hydride, a strong correlation between the hydricity and the first reduction potential of the

parent metal complex E1/2(Mn+/(n−1)+) is observed. The linear relationship between hydricity
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and E1/2(Mn+/(n−1)+) is described by a well-established model relating these two parameters to

the homolytic bond dissociation free energy (BDFE) of the metal hydride bond. The relatively

small variation in BDFE across this entire dataset gives rise to the observed qualitative correlation

between hydricity and E1/2(Mn+/(n−1)+). This model clearly illustrates that large hydride donor

ability is not necessarily indicative of a weaker metal hydride bond.

The linear model provides a simple means for roughly estimating hydricity based on

E1/2(Mn+/(n−1)+), thus enabling the thermodynamic driving force of hydride transfer reactions

to be predicted based on the relative hydricities of metal and substrate. In the case of CO2

reduction to formate, consideration of additional reaction parameters, in particular the strength

of the Brønsted base or acid reagent, is critical for both in thermal CO2 hydrogenation in the

presence of base or electrocatalytic CO2 reduction in the presence of a proton source. Using

our model, estimates for the thermodynamic requirements of the base and acid can be readily

predicted: the graphical representation of these interrelated parameters in Figure 2.16 is especially

useful for the overall design of catalytic systems. Analogous thermochemical arguments can

also be applied for the reverse reactions of formic acid dehydrogenation and electrocatalytic

formate oxidation. Furthermore, as the hydricities of additional small molecules relevant to other

catalytic transformations are determined (such as ∆G◦H− for methanediol, an intermediate in the

six-electron, six-proton reduction of CO2 to methanol), this qualitative approach will become

more broadly applicable for many catalytic reactions beyond CO2 reduction to formic acid.

Acknowledgements

Chapter 2, in full, is a reprint of the material as it appears in Waldie, K. M.;‡ Ostericher,

A. L.;‡ Reineke, M.; Sasayama, A. F.; Kubiak, C. P. ”Hydricity of Transition-Metal Hydrides:

Thermodynamic Considerations for CO2 Reduction” ACS Catalysis, 2018, 8, 1313-1324. The

dissertation author was the primary co-author of this paper. We would like to acknowledge the

39



early contributions to this work and the helpful discussions of Candace Seu, and the experimental

contributions of Alyssia Lilio and Michael Doud. We would like to acknowledge productive

discussions with members of the molecular catalysis group at Pacific Northwest National Labora-

tory. We would also like to acknowledge our reviewers for useful advice about presenting this

study. This work was supported by the Air Force Office of Scientific Research through the MURI

program under AFOSR Award FA9550-10-1-0572.

40



2.4 References

1. Casey, C. P.; Guan, H., An efficient and chemoselective iron catalyst for the hydrogenation of
ketones. Journal of the American Chemical Society 2007, 129, 5816-5817.

2. Karvembu, R.; Prabhakaran, R.; Natarajan, K., Shvo’s diruthenium complex: a robust catalyst.
Coordination Chemistry Reviews 2005, 249, 911-918.

3. Baratta, W.; Chelucci, G.; Gladiali, S.; Siega, K.; Toniutti, M.; Zanette, M.; Zangrando, E.;
Rigo, P., Ruthenium(II) Terdentate CNN Complexes: Superlative Catalysts for the Hydrogen-
Transfer Reduction of Ketones by Reversible Insertion of a Carbonyl Group into the Ru-H
Bond. Angewandte Chemie International Edition 2005, 44, 6214-6219.

4. Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D., Efficient hydrogena-
tion of organic carbonates, carbamates and formates indicates alternative routes to methanol
based on CO2 and CO. Nature Chemistry 2011, 3, 609-614.

5. Wang, D.; Astruc, D., The Golden Age of Transfer Hydrogenation. Chemical Reviews 2015,
115, 6621-6686.

6. Bullock, R. M., Catalytic ionic hydrogenations. Chemistry - A European Journal 2004, 10,
2366-2374.

7. Kang, P.; Cheng, C.; Chen, Z.; Schauer, C. K.; Meyer, T. J.; Brookhart, M., Selective
Electrocatalytic Reduction of CO2 to Formate by Water-Stable Iridium Dihydride Pincer
Complexes. Journal of the American Chemical Society 2012, 134, 5500-5503.

8. Brewster, T. P.; Miller, A. J. M.; Heinekey, D. M.; Goldberg, K. I., Hydrogenation of Carboxylic
Acids Catalyzed by Half-Sandwich Complexes of Iridium and Rhodium. Journal of the
American Chemical Society 2013, 135, 16022-16025.
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2.5 Appendix A

Figure 2.17: Correlation of ∆G◦H− with the first one-electron reduction potential of the parent
metal complex. Only complexes that exhibit a one-electron E1/2(Mn+/(n−1)+) redox couple are
included.

Figure 2.18: Correlation of ∆G◦H− with the first two-electron reduction potential of the parent
metal complex. Only complexes that exhibit a two-electron E1/2(Mn+/(n−2)+) redox couple are
included.
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Table 2.5: Organic hydride donor dataset.
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Figure 2.19: Correlation of ∆G◦H− with the first one-electron reduction potential of the parent
metal complex, including [Rh(depx)2]+ and [Pt(EtXanphos)2]2+. Fixed slope line given by black
dashed trace.

Figure 2.20: Agreement between BDFE calculated from pKa and hydricity values. Only
systems for which the parent metal complex exhibit a one-electron E1/2(Mn+/(n−1)+) redox
couple are included.
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Figure 2.21: BDFE calculated from known hydricity values as function of experimental reduc-
tion potential.
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Chapter 3

Utilization of Thermodynamic Scaling

Relationships in Hydricity to Develop

Nickel Hydrogen Evolution Reaction

Electrocatalysts with Weak Acids and Low

Overpotentials

3.1 Introduction

The implementation of renewable energy technologies such as wind and solar has seen

significant growth in recent years.1 However, due to the intermittent nature of these resources, the

viability of sustainable energy economies on a global scale hinges on the development of efficient

methods for energy storage and conversion.2−4 The electrochemical generation of chemical fuels

such as H2 from wind and solar power is a promising solution to this challenge. While platinum

is known to be an active and efficient catalyst for the hydrogen evolution reaction (HER), its cost
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and low abundance render it impractical for large-scale use. Therefore, the development of highly

active, efficient, and earth-abundant first-row transition metal catalysts for HER is integral to the

future of such technologies.

Molecular catalysts offer the advantage over heterogeneous systems in their ease of tuning

thermodynamic and kinetic parameters through ligand design and modification and amenability

to detailed mechanistic studies. A variety of molecular systems based on nickel, iron, and cobalt

have been developed, which exhibit excellent activity.5−7 However, most of these systems are

only studied with strong acid substrates and, with few exceptions,8 are still stymied by high

overpotentials, resulting in low energy efficiencies.

While kinetic design in the form of proton relays is ubiquitous in state of the art molecular

HER catalysts, thermodynamic approaches to leveling energy-surfaces to improve energetic effi-

ciencies are under-utilized. The key mechanistic step in these systems often involves protonation

of a metal-hydride intermediate by a Brønsted acid source. The thermodynamic favorability of

hydrogen evolution by this mechanism can be described according to Figure 3.1 in terms of the

hydricity of the metal-hydride intermediate (∆G◦H−), the pKa of the added acid (BH), and the

hydricity of dihydrogen (∆G◦H−(H2) = 76.0 kcal mol−1 in acetonitrile).9 Therefore, given the

hydricity of a metal-hydride intermediate, proton sources of sufficient but not excessive acidity

can be rationally selected such that eq. 5 becomes negative (HER is exergonic) while minimizing

overpotentials.

Figure 3.1: Hydrogen evolution in terms of metal-hydride hydricity.
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Our lab has recently reported on thermodynamic scaling relationships that relate the

hydricity of transition-metal hydrides to the first reduction potential of the parent d8 metal

complex (E1/2(Mn+/(n−1)+)).10 These relationships allow for the targeting, tuning, and prediction

of metal-hydride hydricities and can subsequently be used in the consideration of the pKa’s of

added acids to match proton sources to hydricities of hydride intermediates in order to favor

hydrogen evolution with low overpotentials.

Herein we report the synthesis and characterization of new, heteroleptic nickel(II) com-

plexes bearing chelating bis-N-heterocyclic carbene (bis-NHC) ligands in conjunction with

bidentate phosphine ligands. The strong donating ability of the bidentate carbene ligand dramati-

cally shifts the metal-based reduction potentials more than 0.4 V negative compared to analogous

nickel(II) bis-diphosphine complexes. The hydricities of the corresponding Ni(II)-hydride com-

plexes are estimated from the Ni(II/0) reduction potential, as well as from the Brønsted acid

strength at which H2 evolution is thermodynamically favorable. These systems represent the

strongest known nickel-based hydride donors, and thermochemical cycles are used to select mild

operating conditions to favor efficient electrocatalytic H2 evolution (HER).

3.2 Results & Discussion

3.2.1 Synthesis and Characterization

The synthesis of the bis-NHC ligand precursor and the nickel dibromide complex

[Ni(bis−NHC)Br2] were recently described.11 By this procedure, treatment of the ligand pre-

cursor with nickel(II) acetate in molten tetrabutylammonium bromide affords the dibromide

complex. Subsequent halide abstraction with sodium hexafluorophosphate in the presence of

1,2-bis(diphenylphosphino)ethane (dppe) or 1,2-bis(dimethylphosphino)ethane (dmpe) yields

complexes 1 and 2, respectively, as pale-yellow powders (Figure 3.2).
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Figure 3.2: Synthesis of 1, 2, and 3.

Single crystals of 1 and 2 suitable for X-Ray crystallographic studies were obtained by

vapor diffusion of diethyl ether into solutions of chloroform (for 1) or acetonitrile (for 2). Both

complexes exhibit distorted square planar geometries at nickel where the bis-NHC and phosphine

ligands are coordinated in a bidentate fashion wherein the benzimidazole rings of the tethered

bis-NHC ligand lie orthogonal to the nickel plane (Figure 3.3). The C1-Ni-C2 angles are 79.8◦

and 81.6◦ for 1 and 2, respectively, which is significantly smaller than the ideal square planar bite

angle of 90◦. The unusual architecture and rigidity of the tethered bis-NHC ligand enforces these

pinched bite angles and results in a strained coordination environment.

Figure 3.3: Crystal structures of 1 and 2. Thermal ellipsoids are drawn at the 50% probability
level. Hydrogen atoms and PF6 counterions are omitted for clarity.
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Treatment of 1 with KC8 (2.6 equivalents) in tetrahydrofuran affords the doubly-reduced,

charge-neutral species 3. Single crystals suitable for X-ray crystallographic studies were obtained

by vapor diffusion of pentane into a saturated solution of 3 in tetrahydrofuran. The distorted

tetrahedral geometry about the metal is consistent with a two-electron, metal-based reduction to

yield the formally Ni(0) complex (Figure 3.4). The pinched C1-Ni-C2 bite angle arising from

the rigidity of the bis-NHC ligand observed in 1 and 2 widens only marginally to 81.8◦ in the

tetrahedral arrangement. Therefore, the coordination environment, distorted from an ideal 109.5◦

tetrahedral bond angle, exhibits comparatively more strain at the bis-NHC chelate. Analogous

attempts to isolate the reduced state of 2 were unsuccessful. However, based on the similarity

in geometry and electrochemical behavior (vide infra) of both 1 and 2, the doubly-reduced state

of 2 likely adopts a similar tetrahedral coordination environment about the formally Ni(0) metal

center.

Figure 3.4: Crystal structure of 3. Thermal ellipsoids are drawn at the 50% probability level.
Hydrogen atoms are omitted for clarity.
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3.2.2 Electrochemistry

Cyclic voltammetry studies of 1 and 2 were performed in acetonitrile with tetra-n-

butylammonium hexafluorophosphate as supporting electrolyte. Complexes 1 and 2 both display

a single reversible reduction at –1.53 V and –1.87 V versus the ferrocenium/ferrocene couple

(Fc+/0), respectively. The peak-to-peak separations for both reduction features are 49 mV at 0.1

V s−1 scan rate, compared to 63 mV for ferrocene under the same conditions. These data support

assignment of these redox couples as two-electron processes, most likely where two electrons

are added in a sequential fashion with the second reduction being more favorable than the first.

The two-electron reduction occurs at a potential more than 300 mV more negative for the dmpe

complex 2, which is attributed to donor effects from the bidentate phosphine ligand: the methyl

groups in dmpe make this ligand more electron-donating than dppe and thus shift the reduction

potential to more negative values.

Table 3.1: Cyclic voltammetry data and predicted hydricities for 1 and 2.

E1/2
(V vs. Fc+/0)

∆Ep
(mV)

Predicted ∆G◦H−
(kcal mol−1) a

1 -1.53 49 45.6
2 -1.87 49 37.8

a. Predicted ∆G◦H− calculated from E1/2(Mn+/(n−1)+)
based on the fixed-slope line in Figure 3.6.

Neither the bis-NHC nor diphosphine ligands in 1 and 2 are expected to be reduced at

these potentials, so the two-electron redox couples are assigned as metal-based Ni(II/0) processes.

The observation of a two-electron reduction feature with a first-row transition metal complexes is

rare, even more so in the absence of redox-active ligands capable of accepting electron density as

needed. Such multi-electron behavior is typically reserved for noble metal complexes. This trend

61



Figure 3.5: Cyclic voltammograms of 1 (red) and 2 (blue) in acetonitrile (1 mM nickel in 0.1
M Bu4NPF6). Scan rate 100 mV/s.

is well exemplified by the [M(diphosphine)2]n+ family of complexes: for M = Ni, two separate

one-electron redox processes assigned as the Ni(II/I) and Ni(I/0) couples are observed,9,12−19 but

for M = Pt, Pd, or Rh a single, reversible two-electron M(II/0) reduction is typically seen.9,12,20−23

Interestingly, a similar two-electron Ni(II/0) couple has been observed for the closely

related complex [Ni(dmpe)2]2+, containing two strongly donating dmpe ligands. This complex

exhibits the most negative reduction potential (E1/2 = –1.39 V vs. Fc+/0) of the bis-diphosphine

analogues of nickel.12 The reduction potentials for 1 and 2 are 0.14 and 0.48 V more negative

than for [Ni(dmpe)2]2+, indicating an even larger increase in electron density at the metal through

the use of highly σ-donating NHC ligands. This approach of introducing very electron rich

ligands may be a general strategy for obtaining two-electron reactivity at first row transition
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metal complexes. Here, it likely reflects the destabilization of Ni(I) relative to Ni(II) with strong

σ-donor ligands.

3.2.3 Estimation of Hydricity

Our lab has recently reported on a scaling relationship between hydricity and the first

reduction potential of the parent metal complex, E1/2(Mn+/(n−1)+), which holds across a wide

variety of d8 transition-metal hydride complexes.10 Using the thermochemical cycle shown

in Figure 3.2, hydricity can be expressed in terms of the free energy of reduction to form a

hydride from hydrogen (∆G◦H·/−, 26.0 kcal mol−1 in acetonitrile),12 the bond dissociation free

energy (BDFE) of the metal-hydride bond, and the first reduction potential of the parent complex

E1/2(Mn+/(n−1)+) (Equation 9). Since the variation in BDFE of most transition metal hydrides is

comparatively small, this relationship provides a qualitative handle for prediction of ∆G◦H− for a

metal-hydride species based solely on the reduction potential of the parent metal complex.

Using the fixed slope (nF) line (eq. 9) and the reduction potentials of 1 (–1.53 V)

and 2 (–1.87 V), the hydricities of the corresponding hydrides, 1H, and 2H, are predicted to

be 45.6 kcal mol−1 and 37.8 kcal mol−1, respectively. Attempts to chemically isolate and

experimentally measure the hydricities were unsuccessful due to instability of the hydride species;

however, judicious selection of an added weak acid will either allow electrochemical generation

and observation of a Ni(II) hydride or electrocatalytic hydrogen evolution. This effect can

readily be seen through the relationship in eq. 5 (Figure 3.1). Here, the change in Gibbs free

energy for HER is in terms of the hydricity of dihydrogen (∆G◦H−(H2) = 76.0 kcal mol−1 in

acetonitrile),9 the hydricity of the metal hydride (∆G◦H−), and the pKa of the added acid (BH).

This relationship provides a means to experimentally benchmark hydricities of electrochemically-

generated hydrides based upon the selection of acids such that eq. 5 becomes negative and HER

is an exergonic process.
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Figure 3.6: Hydricities of transition metal hydrides as a function of E1/2(Mn+/(n−1)+) in
acetonitrile. E1/2(NiII/0) and corresponding predicted ∆G◦H− for 1 and 2 indicated by the red
and blue stars, respectively. Adapted from Ref. 10.

Experimental support for the above relationship can be found in the electrochemical

response of 2 when two different weak acids are used. When cyclic voltammograms of 2 are

recorded in the presence of methanol (pKa = 29.0 in DMSO, pKa in acetonitrile unknown)24 a

loss of reversibility of the Ni(II/0) couple is observed with the growth of a new oxidative feature

at –1.15 V vs. Fc+/0 (Figure 3.8). The loss of reversibility in the Ni(II/0) couple is best explained

as protonation of the Ni(0) species by methanol. Methanol is then too weak of an acid to further

protonate the hydride to form H2 and the re-oxidation of the hydride is observed at –1.15 V

vs. Fc+/0. When a more stronger acid, such as phenol (pKa = 29.14 in acetonitrile),25 is used,

a sudden current increase is observed at the Ni(II/0) couple (Figure 3.9). This behavior now

indicates electrocatalytic hydrogen evolution and eq. 9 must be negative under these conditions.
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Figure 3.7: Hydricity in terms of E1/2(Mn+/(n−1)+).

This allows assignment of an upper bound for the hydricity of 1H at ∆G◦H− = 36.4 kcal mol−1, if

the pKa of phenol is taken as 29.1.

It is important to note however, that phenol is known to exhibit significant homoconju-

gation in acetonitrile, which will significantly lower the pKa. To avoid artificial depression of

the calculated hydricity, the homoconjucation of phenol must be considered. At concentrations

of 0.1 M, the pKa of phenol in acetonitrile can be estimated at 25.9 (see Appendix B), which

gives a benchmarked hydricity of ∆G◦H− < 40.6 kcal mol−1.26 This avoids artificial depression

of the calculated hydricity, and is in excellent agreement with the hydricity of 37.8 kcal mol−1,

predicted by the scaling relationship between ∆G◦H− and E1/2(NiII/I). (Fig. 3.6, eq. 9).

Applying the same treatment to 1, the corresponding hydride is predicted to be insuffi-

ciently hydridic to favor HER with phenol under these conditions. This is confirmed upon the

addition of phenol where only electrochemical generation and oxidation of the hydride species is

observed (Figure 3.28). HER with complex 1, however, becomes favorable when more protic

acids such as triethylammonium tetrafluoroborate (HNEt3BF4, pKa = 18.82 in acetonitrile)27 are

used. The addition of HNEt3BF4 results in modest current increase at the Ni(II/0) couple and loss

of the Ni(II)-H oxidative feature, behavior indicative of HER catalyzed by 1 (Figure 3.29). The

hydricity of the electrochemically-generated hydride corresponding to 1 is therefore calculated

to have an upper bound of 50.3 kcal mol−1 which is in excellent agreement with the hydricity
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Figure 3.8: Cyclic voltammetry of 2 in the absence and presence of 0.8 M methanol in acetoni-
trile (1 mM 2 in 0.1 M Bu4PF6). Scan rate 100 mV/s.

of 45.6 kcal mol−1 predicted by E1/2(NiII/I). These results demonstrate how, through judicious

selection of acids, benchmarks for hydricities can readily be assigned. Furthermore, these results

support that consideration of the acid pKa can readily switch electrocatalytic hydrogen evolution

on or off.

3.2.4 Electrocatalytic Hydrogen Evolution

The further addition of phenol to a solution of 2 in acetonitrile gives rise to a significant

increase in current by cyclic voltammetry at the potential of the two-electron Ni(II/0) couple, as

shown in Figure 3.9. The origin of this current enhancement was verified by controlled potential

electrolysis: quantitative Faradaic efficiency for H2 was observed at –1.9 V versus Fc+/0 using 1

mM 2 with 0.2 M phenol (Figures 3.26-27). The direct reduction of phenol at glassy carbon is

not observed by cyclic voltammetry at these potentials (Figure 3.25), and controlled potential
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electrolysis in the absence of nickel catalyst showed negligible H2 production. Additionally,

catalysis by the freely-diffusing, homogeneous species was further corroborated by lack of

current enhancement in a rinse test, in which the same glassy carbon working electrode from an

electrocatalytic CV experiment was scanned in a fresh solution in the absence of catalyst (Figure

3.24).

Figure 3.9: Cyclic voltammograms of 2 with increasing phenol concentration in acetonitrile (1
mM 2 in 0.1 M Bu4NPF6). Scan rate 100 mV/s.

The S-shaped plateau current responses in Figure 3.9 are indicative of pseudo first-order

kinetic conditions and thus allow for estimation of the catalytic turnover frequency (TOF) from

the catalytic current enhancement icat /ip. The plateau catalytic current (icat) and the peak current

without substrate (ip) are given by eqs. 10 and 11, respectively, from which eq. 12 is obtained.

This equation gives the TOF in terms of the scan rate in V s−1 (ν), number of electrons in the

reversible, non-catalytic redox process (np), Faraday’s constant (F), universal gas constant (R),

temperature (T), and the number of electrons in the catalytic reaction (ncat).28 From Figure 3.9,

Ecat is taken as the start of the catalytic current plateau (Ecat = –2.22 V versus Fc+/0), which
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gives icat /ip = 25.1 in the presence of 1.0 M phenol and an estimated TOF of 977 s−1. However,

this calculated TOF is likely an underestimate, as substrate saturation is not yet achieved at these

concentrations of phenol.

icat = ncatFA[cat](Dkcat [Q]y)1/2 (10)

ip = 0.4463n3/2
p FA[cat]( F

RT )
1/2ν1/2D1/2 (11)

TOF = kcat [Q] =
Fνn3

p
RT (0.4463

ncat
)2( icat

ip
)2 (12)

The overpotential (η) for H2 evolution is given by the difference between Ecat/2 and

E◦H+, where Ecat/2 is the catalytic half-current potential and E◦H+ is the standard thermodynamic

potential for proton reduction with phenol under 1 atm H2 in acetonitrile. For complex 2, Ecat/2

is taken to be –1.97 V vs. Fc+/0. Accounting for the significant homoconjugation of phenol in

acetonitrile solution according to Artero et al. (see Appendix B for details), we estimate E◦BH =

–1.57 V vs. Fc+/0 for 1.0 M phenol, which gives an overpotential of η = 0.40 V.26 Thus, while the

absolute operating potential of 2 for electrocatalytic H2 evolution is rather negative, this approach

of matching the strength of the Brønsted acid source to the catalyst hydricity has proven to be

an effective method for minimizing the catalytic overpotential while still obtaining efficient H2

evolution activity.

We note that while 2 is an effective catalyst for H2 evolution using phenol as a weak

Brønsted acid, complex 1 does not exhibit electrocatalytic behavior under identical conditions

with phenol, in accordance with the predicted weaker hydride donating ability of this system

(vide infra). Furthermore, 1 demonstrates only marginal activity for H2 evolution in the pres-

ence of stronger organic acids such as triethylammonium hexafluorophosphate (pKa = 18.82 in

acetonitrile)27 (Figure 3.29). Taking Ecat = –1.51 V vs. Fc+/0 gives icat /ip = 1.29, corresponding

to a TOF of 2.6 s−1 and an overpotential of 0.29 V (see Appendix B). The lower activity of 1 may

be due to comparatively large steric crowding at the nickel center from the bulkier dppe ligand.

Further studies to confirm this hypothesis are underway.
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Catalytic Tafel plots can be used to benchmark the electrocatalytic activity of 2 with

respect to other molecular HER catalysts. By this method, the catalytic operating overpotential

and TOF for H2 evolution are compared independent of reaction conditions. The Tafel plots for 2

and other known HER catalysts were constructed in accordance with the procedure described

by Artero and Saveant (see Appendix B for details), and are shown in Figure 3.10.29 Catalysts

are compared based on the location of the curve shoulder; those exhibiting the best energetic

efficiencies (lowest overpotentials) and highest rates are characterized by a shoulder in the

upper-left-most region of the plot.

Figure 3.10: Catalytic Tafel plots for 2, Co(dmgH)2(py) (DMF solution),7 [Ni(P Ph
2 N Ph

2 )2]2+

(CH3CN solution),5 Fe(TPP) (DMF solution),6 [Ni(P PhCF3
2 N Ph – C14

2 )2]2+ (hexanedinitrile/H2O
solution)8 with 1.0 M Brønsted acid.

As seen in Figure 3.10, under the comparison conditions (1.0 M phenol), complex 2

exhibits log TOFmax = 2.99, which is lower than the maximum rate observed for four of the

most active known molecular HER catalysts. For example, 2 is 2.61 orders of magnitude

slower than [Ni(PPhCF3
2 NPh – C14

2 )2]2+, the best molecular systems reported to date.8 While 2 is
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outperformed in terms of catalytic rate, it does exhibit competitive overpotentials. Moreover, these

low overpotentials are achieved through the utilization of a weak Brønsted acid source (phenol),

just sufficiently acidic to favor H2 evolution from 2H. The other catalytic systems in Figure 3.10

were examined with much stronger organic acids. Such matching of the acid strength with the

catalyst hydricity should be considered as an effective means for targeting low overpotentials for

H2 evolution.

3.3 Conclusion

Thermodynamic scaling relationships can be effectively utilized to target and predict

hydricities of new, first-row transition metal complexes. Utilization of the bis-NHC ligands

presented here successfully pushes reduction potentials at nickel more negative than even the

most donating of their homoleptic bis-diphosphine analogues. This not only imparts two-electron

redox behavior more typically observed at noble metals, but also highly reactive corresponding

hydride species. Though instability of the hydrides precludes direct experimental measurement

of hydricities, the hydricities can be successfully benchmarked by the selection of organic acids

such that protonation of the metal hydride species is thermodynamically favored or disfavored.

Though 2 is outperformed in rate and overpotential by the recently-reported system by

Wiedner et al., it remains among the lowest operating overpotentials for state of the art molecular

HER catalysts. This underscores the importance of substrate selection with respect to the reduction

potential of the parent complex and the hydricity of the hydride intermediate. Selecting acids such

that hydrogen evolution with a given hydride is exergonic but near ergoneutral effectively levels

energy landscapes, providing a mechanism by which overpotentials can be rationally minimized.

However, it is also clear that thermodynamic scaling relationships alone are not sufficient

to predict and design new catalysts, as evidenced by the lack of activity of 1 with more acidic

proton sources. We postulate that this is a kinetic effect, likely due to the increased steric bulk of

70



the dppe ligand, whereas the unhindered nickel center in 2 allows for efficient catalysis despite

the absence of proton relays found in other competitive molecular HER catalysts. Further studies

are ongoing to elucidate secondary-sphere kinetic effects, influence of respective acid sources,

and reactivity with other substrates such as CO2.

3.4 Experimental

General Considerations. All reactions were carried out under a nitrogen atmosphere

using standard Schlenk and glovebox techniques. Solvents were sparged with argon, dried on

a custom dry solvent system over alumina columns, and stored over molecular sieves before

use. All reagents were obtained from commercial suppliers and used without further purification

unless otherwise noted. Tetrabutylammonium hexafluorophosphate (TBAPF6, Aldrich, 98%) was

twice recrystallized from methanol and dried under a vacuum at 90◦C overnight before use. The

dibromide complex [Ni(bis−NHC)Br2] and triethylammonium tetrafluoroborate (HNEt3BF4),

were prepared according to literature procedures.11,32−33

Instrumentation. 1H and 31P NMR spectra were recorded on a Jeol 500 MHz spec-

trometer and 13C{1H} NMR spectra were recorded on a Varian 500 MHz spectrometer. 1H and

13C{1H} NMR chemical shifts are reported relative to TMS (δ = 0) and referenced against resid-

ual solvent proton and carbon peaks, respectively. High resolution mass spectra were collected on

an Agilent 6230 Accurate-Mass TOFMS.

Electrochemical experiments were performed in 0.1 M tetra-n-butylammonium hex-

afluorophosphate solution in acetonitrile using a Gamry Reference 600 potentiostat. A single-

compartment cell was used for cyclic voltammetry experiments with a glassy carbon working

electrode (3 mm in diameter, Bioanalytical Systems, Inc.), Pt wire counter electrode, and Ag/AgCl

pseudo-reference electrode. All potentials are referenced to the Fc+/0 couple using ferrocene

as an internal reference. Controlled potential electrolysis experiments were carried out in a
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custom 90 mL cell designed in our laboratory. The setup included a carbon rod working electrode,

graphite rod counter electrode separated from the solution by a porous glass frit, and Ag/AgNO3

pseudo-reference electrode separated from the solution by a Vycor tip. For the catalytic elec-

trolysis studies, the cell was charged with nickel catalyst (1 mM) and phenol (0.2 M) in 0.1 M

tetra-n-butylammonium hexafluorophosphate solution in acetonitrile. Hydrogen evolution was

quantified by analyzing 1 mL aliquots of the headspace on a Hewlett-Packard 7890A Series gas

chromatograph with two molsieve columns (30 m x 0.53 mm ID x 25 µm film). The partial

pressure of H2 in the headspace was determined by comparison to gas standard samples. Henry’s

Law was used to calculate the total H2 production, given as the sum of headspace and dissolved

hydrogen (see Appendix B).

X-ray Crystallography. Single crystal X-ray diffraction studies were carried out on a

Bruker Kappa APEX-II CCD diffractometer equipped with Mo Kα radiation (λ = 0.71073 Å) or

a Bruker Kappa APEX CCD diffractometer equipped with Cu Kα radiation (λ = 1.54184 Å). The

crystals were mounted on a Cryo-loop with Paratone oil and data were collected under a nitrogen

gas stream at 100(2) K using ω and ϕ scans. Data were integrated using the Bruker SAINT

software program and scaled using the software program. Solution by direct methods (SHELXS)

produced a complete phasing model consistent with the proposed structure. All non-hydrogen

atoms were refined anisotropically by full-matrix least- squares (SHELXL-97).34 All hydrogen

atoms were placed using a riding model. Their positions were constrained relative to their parent

atom using the appropriate HFIX command in SHELXL-97. Crystallographic data, structure

refinement parameters, and additional notes on structure refinement are summarized in Appendix

B.

Synthesis. [Ni(bis−NHC)(dppe)](PF6)2 1. A solution of NaPF6 (425 mg, 2.69 mmol)

in methanol (10 mL) was added via cannula to a stirred solution of [Ni(bis−NHC)Br2] (207

mg, 0.387 mmol) and dppe (186 mg, 0.467 mmol) in methanol (15 mL), resulting in immediate

precipitation of a pale solid. The reaction mixture was stirred at room temperature for 3 hours
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and subsequently filtered. The collected solid was washed with methanol (3 x 10 mL) and diethyl

ether (3 x 10 mL) and dried in vacuo at 90 ◦C overnight, yielding 1 as a pale yellow solid (340

mg, 83%). Crystals suitable for x-ray diffraction were grown by vapor diffusion of diethyl ether

into a saturated solution of 1 in chloroform. 1H NMR (CD3CN): δ 7.62 (4H, m, Ph), 7.56 (8H,

m, Ph), 7.46 (8H, m, Ph), 7.29 (4H, m, Ar-H), 7.23 (4H, m, Ar-H), 4.42 (4H, t br), 4.32 (4H, m

br), 3.07 (4H, d, J = 18.0 Hz), 2.12 (2H, d, J = 8 Hz), 1.71 (2H, m br). 13C{1H} NMR (CD3CN):

δ 179.5 (NiC), 135.3 (Ar), 133.6 (Ph), 133.4 (t, PCH2, J = 19.5 Hz), 130.7 (t, PCH2, J = 20.5 Hz),

128.5 (br, ArCN), 125.2 (CH2), 111.6 (CH2), 49.5 (CH2), 26.6 (CH2). 31P{1H} NMR (CD3CN):

δ 52.1 (s), -144.0 ppm (m, PF6). HRMS calcd for [C46H44N4NiP2CF3CO2]+ [(M + TFA – H)+]

m/z 885.2240; found 885.2236.

[Ni(bis−NHC)(dmpe)](PF6)2 2. Complex 2 was prepared following the same procedure

as for 1, except dmpe was used in place of dppe. Yield 250 mg (82%). Crystals suitable for

x-ray diffraction were grown by vapor diffusion of diethyl ether into a saturated solution of 2 in

acetonitrile. 1H NMR (CD3CN): δ 7.43 (4H, m, Ar-H), 7.25 (4H, m, Ar-H), 4.84 (8H, m br),

2.34 (m br), 2.23 (4H, d, J = 17.5 Hz), 1.99 (2H, m br), 1.67 (12H, m br, CH3). 13C{1H} NMR

(CD3CN): δ 184.7 (NiC), 135.4 (Ar), 124.9 (Ar), 111.6 (CH2) 49.6 (CH2), 27.6 (t, J = 90 Hz,

PCH3), 27.2 (CH2), 12.3 (t, J = 60 Hz, PCH3). 31P{1H} NMR (CD3CN): δ 44.7 (s), -143.9 ppm

(m, PF6). HRMS calcd for [C26H36N4NiP2CF3CO2]+ [(M + TFA – H)+] m/z 637.1608; found

637.1614.

[Ni(bis−NHC)(dppe)]0 3. To a suspension of 1 (30.0 mg, 0.0282 mmol) in THF (2 mL)

was added a suspension of KC8 (9.9 mg, 0.733 mmol) in THF (2 mL) at –38◦C. The mixture

was agitated for 5 minutes and allowed to warm to room temperature during which it became

a deep red. The mixture was filtered through celite and solvent was removed in vacuo. The

resulting solid was washed with pentane and then extracted in benzene and filtered through celite.

Solvent was removed in vacuo yielding 3 as a dark red powder (16.2 mg, 74%) Crystals suitable

for x-ray diffraction were grown by vapor diffusion of pentane into a saturated solution of 3 in
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tetrahydrofuran. 1H NMR (C6D6): δ 7.97 (8H, m, Ph), 7.16 (8H, Ph, m), 7.08 (4H, m, Ph), 6.49

(4H, m, Ar-H), 6.29 (4H, m Ar-H), 5.38 (4H, t, J = 13 Hz), 3.25 (4H, d, J = 15 Hz), 2.15 (4H, t, J

= 7 Hz), 1.62 (2H, q, J = 13.5 Hz), 1.04 (2H, m). 13C{1H} NMR (C6D6): δ 214.8 (NiC), 144.1 (t,

J = 36.5 Hz, Ph), 135.0 (Ph), 133.5 (Ar), 133.2 (t, J = 37.5 Hz, Ph), 132.7 (Ar), 128.9 (Ph), 127.3

(Ph), 120.6 (Ph), 107.7 (Ar), 45.5 (CH2), 31.0 (CH2), 26.4 (m, NCH2), 24.8 (CH2). 31P{1H}

NMR (CD3CN): δ 29.6 ppm.
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3.6 Appendix B

Figure 3.11: 1H NMR (500 MHz) spectrum of 1 in CD3CN.

Figure 3.12: 31P NMR (500 MHz) spectrum of 1 in CD3CN.

78



Figure 3.13: 13C NMR (500 MHz) spectrum of 1 in CD3CN.

Figure 3.14: 1H NMR (500 MHz) spectrum of 2 in CD3CN.
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Figure 3.15: 31P NMR (500 MHz) spectrum of 2 in CD3CN.

Figure 3.16: 13C NMR (500 MHz) spectrum of 2 in CD3CN.
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Figure 3.17: 1H NMR (500 MHz) spectrum of 3 in C6D6.

Figure 3.18: 31P NMR (500 MHz) spectrum of 3 in C6D6.

Figure 3.19: 13C NMR (500 MHz) spectrum of 3 in C6D6.
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Figure 3.20: Cyclic voltammograms of 1 (1 mM) in acetonitrile. 0.1 M TBAPF6, glassy carbon
working electrode, platinum counter, Ag/AgCl reference, internal ferrocene reference.

Figure 3.21: Plot of peak current vs. scan rate for 1.

82



Figure 3.22: Cyclic voltammograms of 2 (1 mM) in acetonitrile. 0.1 M TBAPF6, glassy carbon
working electrode, platinum counter, Ag/AgCl reference, internal ferrocene reference.

Figure 3.23: Plot of peak current vs. scan rate for 2.
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Figure 3.24: Post-catalysis electrode rinse test. Red trace: 1 mM 2, 1.0 M phenol, 0.1 M
TBAPF6 in ACN with internal ferrocene reference. 100 mV s−1 scan rate. Black trace: unpol-
ished glassy carbon electrode post-catalysis in fresh solution with same conditions in absence of
catalyst. 100 mV s−1 scan rate.

Figure 3.25: Cyclic voltammogram of phenol (3.0 M) in acetonitrile. 0.1 M TBAPF6, glassy
carbon working electrode, platinum counter, Ag/AgCl reference, internal ferrocene reference.

84



Figure 3.26: Controlled potential electrolysis at -1.9 V vs. Fc+/0 in the presence and absence of
2. Conditions: 0.1 M TBAPF6 in acetonitrile with 0.2 M phenol and 1 mM Fc internal standard,
glassy carbon working electrode, graphite rod counter electrode, Ag/AgNO3 reference electrode.

Figure 3.27: Plot of electrons passed vs H2 produced during controlled potential electrolysis of
2 with phenol. Average Faradaic Efficiency of 112 ± 5%.
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Figure 3.28: Cyclic voltammograms of 1 in presence and absence of phenol. 1 mM 1 in
acetonitrile with 0.1 M TBAPF6, glassy carbon working electrode, platinum counter, Ag/AgCl
reference at 100 mV s−1 scan rate.

Figure 3.29: Cyclic voltammograms of 1 with varying concentrations of HNEt3BF4. 1 mM 1 in
acetonitrile with 0.1 M TBAPF6, glassy carbon working electrode, platinum counter, Ag/AgCl
reference at 100 mV s−1 scan rate.
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Estimation of E◦BH of phenol & HNEt3BF4 in acetonitrile

Phenol is known to undergo significant homoconjugation in acetonitrile (Kc = 104.2)1

which lowers its effective pKa and thereby shifts the thermodynamic potential for reduction for

proton reduction more positive. To more accurately estimate the thermodynamic potential for the

reduction of H+ from phenol for use in the calculation of upper benchmarks of hydricities and

for determination of overpotentials, E1/2(BH/BHB−) of phenol at various concentrations can be

estimated according to Artero et al. by the following equation:2

E◦BH = E◦H+/H2
− 2.303RT

F pKa + εd +
RT
2F ln(2K2

c C0C0
H2
)

Where,

E◦H+/H2
=−0.07V vs.Fc+/0(ref. 2)

R = 8.314 J mol−1K−1

T = temperature in Kelvin

F = 96485.3 C mol−1

pKa = 29.12 (phenol in acetonitrile)3

εd = 40±5mV 2

Kc = homoconjugation formation constant

C0 = concentration of acid

C0
H2

= 3.3 mM in acetonitrile4

Therefore, at

0.1 M phenol: E◦BH =−1.60 V vs Fc+/0

1.0 M phenol: E◦BH =−1.57 V vs Fc+/0

Using these values to estimate effective pKa by the Nernst equation:
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E◦BH = E◦H+/H2
− 2.303RT

F pKa

Gives,

0.1 M phenol: pKa = 25.9

1.0 M phenol: pKa = 25.4

For HNEt3BF4 (pKa = 18.82 in acetonitrile) homoconjugation is negligible and therefore:

E◦BH = E◦H+/H2
− 2.303RT

F pKa

Gives,

E◦BH(HNEt3BF4) = -1.18 V vs. Fc+/0
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Benchmarking of hydricities

When HER is exergonic, eq. 9 becomes negative. Therefore, rearranging allows for

benchmarking an upper bound for hydricity (∆G◦H−) given a known pKa of added acid (BH+),

where ∆G◦H−(H2) = 76.0 kcal mol−1.5

Where HER is ergoneutral:

0 = ∆G◦H−−∆G◦H−(H2)+1.364pKa(BH)

Therefore, when HER is exergonic:

∆G◦H− < ∆G◦H−(H2)−1.364pKa(BH)

For 2 in the presence of triethylammonium tetrafluoroborate (HNEt3BF4, pKa = 18.82 in

acetonitrile):6

∆G◦H− < 76.0−1.364pKa(18.82)

∆G◦H− < 50.3 kcal mol−1

For 2 in the presence of phenol, homoconjugation is significant and the estimated effective

pKa of 0.1 M phenol in acetonitrile (25.9) is used to avoid overestimation of the strength of the

corresponding hydride (vide supra).

∆G◦H− < 76.0−1.364pKa(25.9)

∆G◦H− < 40.7 kcal mol−1
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Figure 3.30: Graphical representation of icat , ip, Ecat , Ecat/2, and E/circ
H+/H2

, for rate and overpo-

tential determination following methods by Appel and Helm.7

Determination of overpotential with 2 and phenol

Taking Ecat =−2.22 V vs. Fc+/0

Gives,

Ecat/2 =−1.97 V vs. Fc+/0

Where current = icat/2

Since overpotential (η) is defined by:

η = |Ecat/2−E◦H+/H2
(1.0 M phenol) |

η = |−1.97− (−1.57)| = 400 mV
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Tafel Analysis

Assuming an EECC-type mechanism for HER of the following:

Ni(II)+2e– −−→ Ni(0) (EE)

Ni(0)+H+ −−→ Ni(II)−H (C)

Ni(II)−H+H+ −−→ Ni(II)+H2 (C)

We have followed Artero and Saveant’s procedures for constructing Tafel plots by the

following equations:8

icat
ip

= 4.484
√

k1[BH]
√

RT
Fνn3

p

k1 =
(0.223 icat

ip

√
(

Fνn3
p

RT )2

[BH]

TOFmax = k1[BH]

TOF = TOFmax
1+exp[ F

RT (E
◦
H+/H2

−Ecat/2)]exp[ F
RT η]

Where,

icat
ip

= 25.1

F
RT = 38.92 V−1

ν = 0.1 V−1

np = 2

E◦H+/H2
=−1.57 V vs Fc+/0 (for 1.0 M phenol in acetonitrile as estimated above)

Ecat/2 =−1.97 V vs Fc+/0
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Crystallographic Data

Table 3.2: Crystal data and structure refinement for Complex 1. (CCDC: 1852576)

Empirical formula C47H45Cl3F12N4NiP4
Formula weight 1182.81
Temperature/K 100.0
Crystal system triclinic
Space group P-1
a/Å 11.4277(4)
b/Å 13.1720(5)
c/Å 20.4025(8)
α/◦ 86.1230(10)
β/◦ 86.8440(10)
γ/◦ 64.9950(10)
Volume/Å3 2775.69(18)
Z 2
ρcalcg/cm3 1.415
µ/mm-1 3.597
F(000) 1204.0
Crystal size/mm3 0.16 x 0.16 x 0.20
Radiation CuKα (λ = 1.54178)
2Θ range for data collection/◦ 4.342 to 140.14
Index ranges -13 ≤ h ≤ 13, -16 ≤ k ≤ 16, -21 ≤ l ≤ 24
Reflections collected 51195
Independent reflections 10326 [Rint = 0.0415, Rsigma = 0.0288]
Data/restraints/parameters 10326/0/640
Goodness-of-fit on F2 1.025
Final R indexes [I>=2σ (I)] R1 = 0.0467, wR2 = 0.1263
Final R indexes [all data] R1 = 0.0484, wR2 = 0.1279
Largest diff. peak/hole / e Å−3 1.35/-0.68

Notes on refinement. The SQUEEZE routine in PLATON was used to omit density

assigned to one highly-disordered molecule of chloroform in the unit cell.
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Table 3.3: Selected bond distances for complex 1.

Atom Atom Length/Å
Ni1 P1 2.2196(7)
Ni1 P2 2.2063(7)
Ni1 C2 1.894(3)
Ni1 C1 1.900(2)

Table 3.4: Selected bond angles for complex 1.

Atom Atom Atom Angle/◦

P2 Ni1 P1 86.85(3)
C2 Ni1 P1 175.63(8)
C2 Ni1 P2 95.40(8)
C2 Ni1 C1 79.80(10)
C1 Ni1 P1 97.42(7)
C1 Ni1 P2 170.59(8)
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Table 3.5: Crystal data and structure refinement for Complex 2. (CCDC: 1851821)

Empirical formula C28H39F12N5NiP4
Formula weight 856.23
Temperature/K 100.0
Crystal system monoclinic
Space group P21/n
a/Å 10.162(3)
b/Å 12.106(3)
c/Å 31.001(8)
α/◦ 90
β/◦ 90.092(8)
γ/◦ 90
Volume/Å3 3813.8(17)
Z 4
ρcalcg/cm3 1.491
µ/mm-1 0.763
F(000) 1752.0
Crystal size/mm3 0.4 x 0.1 x 0.1
Radiation MoKα (λ = 0.71073)
2Θ range for data collection/◦ 2.628 to 52.742
Index ranges -12 ≤ h ≤ 12, -15 ≤ k ≤ 15, -38 ≤ l ≤ 38
Reflections collected 41073
Independent reflections 7792 [Rint = 0.0601, Rsigma = 0.0482]
Data/restraints/parameters 7792/0/457
Goodness-of-fit on F2 1.112
Final R indexes [I>=2σ (I)] R1 = 0.0622, wR2 = 0.1461
Final R indexes [all data] R1 = 0.0750, wR2 = 0.1572
Largest diff. peak/hole / e Å−3 1.24/-0.93

Notes on refinement. Twinned data refinement Scales: 0.6110(16); 0.3890(16). Twin

law: [-1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0]. The SQUEEZE routine in PLATON was used to

omit density assigned to one highly-disordered molecule of diethyl ether in the unit cell.
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Table 3.6: Selected bond distances for complex 2.

Atom Atom Length/Å
Ni1 P1 2.1859(14)
Ni1 P2 2.1710(14)
Ni1 C1 1.900(4)
Ni1 C2 1.899(5)

Table 3.7: Selected bond angles for complex 2.

Atom Atom Atom Angle/◦

P2 Ni1 P1 87.93(5)
C1 Ni1 P1 96.97(13)
C1 Ni1 P2 175.07(14)
C2 Ni1 P1 177.33(18)
C2 Ni1 P2 93.50(14)
C2 Ni1 C1 81.62(19)
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Table 3.8: Crystal data and structure refinement for Complex 3. (CCDC: 1851844)

Empirical formula C46H44N4NiP2
Formula weight 773.50
Temperature/K 100.0
Crystal system monoclinic
Space group C2/c
a/Å 21.5537(9)
b/Å 15.6323(8)
c/Å 23.5228(11)
α/◦ 90
β/◦ 102.908(3)
γ/◦ 90
Volume/Å3 7725.3(6)
Z 8
ρcalcg/cm3 1.330
µ/mm-1 1.799
F(000) 3248.0
Crystal size/mm3 0.4 x 0.1 x 0.1
Radiation CuKα (λ = 1.54178)
2Θ range for data collection/◦ 7.048 to 136.948
Index ranges -25 ≤ h ≤ 25, -18 ≤ k ≤ 18, -28 ≤ l ≤ 28
Reflections collected 25596
Independent reflections 7038 [Rint = 0.1038, Rsigma = 0.0879]
Data/restraints/parameters 7038/0/478
Goodness-of-fit on F2 0.978
Final R indexes [I>=2σ (I)] R1 = 0.0464, wR2 = 0.0930
Final R indexes [all data] R1 = 0.0879, wR2 = 0.1064
Largest diff. peak/hole / e Å−3 0.48/-0.33
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Table 3.9: Selected bond distances for complex 3.

Atom Atom Length/Å
Ni1 P2 2.1643(8)
Ni1 P1 2.1642(9)
Ni1 C1 1.921(3)
Ni1 C2 1.914(3)

Table 3.10: Selected bond angles for complex 3.

Atom Atom Atom Angle/◦

P1 Ni1 P2 88.42(3)
C1 Ni1 P2 125.61(9)
C1 Ni1 P1 122.93(10)
C2 Ni1 P2 118.91(9)
C2 Ni1 P1 123.78(10)
C2 Ni1 C1 81.76(12)
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E.; Röschenthaler, G.-V.; Koppel, I. A.; Kolomeitsev, A. A., Pentakis(trifluoromethyl)phenyl,
a Sterically Crowded and Electron-withdrawing Group: Synthesis and Acidity of Pen-
takis(trifluoromethyl)benzene, -toluene, -phenol, and -aniline. The Journal of Organic
Chemistry 2008, 73 (7), 2607-2620.

4. Brunner, E., Solubility of hydrogen in 10 organic solvents at 298.15, 323.15, and 373.15 K.
Journal of Chemical & Engineering Data 1985, 30 (3), 269-273.

5. Curtis, C. J.; Miedaner, A.; Ellis, W. W.; DuBois, D. L., Measurement of the Hydride Donor
Abilities of [HM(diphosphine)2]+ Complexes (M = Ni, Pt) by Heterolytic Activation of
Hydrogen. Journal of the American Chemical Society 2002, 124 (9), 1918-1925.
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Chapter 4

Thermodynamic Targeting of

Electrocatalytic CO2 Reduction:

Advantages, Limitations, and Insights for

Catalyst Design

4.1 Introduction

Electrochemical reduction of CO2 to value-added products represents an attractive ap-

proach to mitigating the adverse effects of anthropogenic emission of CO2 while simultaneously

manufacturing economically desirable products.1−5 The two-electron, two-proton reduction of

CO2 to carbon monoxide or formic acid, are two pathways of particular interest due to their

applications in Fischer-Tropsch and formic acid fuel cells, respectively.4,6 Our lab and others

have studied homogeneous metal hydride tuning as a means of targeting efficient catalysts for

CO2 reduction.7−15 Hydricity (∆G◦H−), is the propensity of hydride transfer from a hydride donor

and plays a key role in determining the subsequent reactivity of the metal hydride donor with a
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given substrate. In the case of CO2, thermodynamically favorable hydride transfer from a metal

hydride to CO2 to produce formate requires the hydricity of the hydride donor to be stronger than

formate (∆G◦H− < 44 kcal mol−1 in acetonitrile).12 (Figure 4.1)

Figure 4.1: Thermochemical cycle for hydride transfer to CO2.

In an effort to tune and target hydride donors to catalyze CO2 reduction, our lab has

recently expanded on a useful scaling relationship that was initially noted by Berning et al. in 2001

between hydricity and the first reduction potential of the parent metal complex (E1/2(Mn+/(n−1)+))

(Figure 4.4). This relationship is well-modeled by eq 8 (Figure 4.2),16−17 and not only provides a

mechanism for predicting hydricity based on E1/2(Mn+/(n−1)+) but also establishes a road map for

targeting highly reactive transition metal hydride species: Since hydricity is directly proportional

to E1/2(Mn+/(n−1)+), more hydridic hydrides can be accessed through the consideration of ligand

field effects.

Figure 4.2: Hydricity in terms of BDFE and E1/2(Mn+/(n−1)+).
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However, electrocatalytic CO2 reduction can give rise to a variety of distinct mechanistic

pathways, each resulting in different product selectivity, which is very clearly discussed by the

Yang group in a recent perspective article.13 We herein describe the electrochemical reactivity

of a recently-reported heteroleptic nickel complex bearing highly σ-donating N-heterocyclic

carbenes (NHC’s) to target reactive hydrides with CO2. This marks an illustrative example of

these divergent pathways and the challenges associated with rational design of selective CO2

reduction electrocatalysts.

4.2 Results and Discussion

4.2.1 Overview of the System Studied

In an effort to probe and study the scaling relationship between hydricity (∆G◦H−) and

the first reduction potential of the parent metal complex (E1/2(Mn+/(n−1)+)) we began exploring

several N-heterocyclic carbene nickel complexes in conjunction with eq. 8 to target first-row

transition metal hydrides capable of catalyzing the reduction of CO2 to formate.18−2− By this

relationship, the hydricity of the metal hydride complex is predicted to increase with increasing

electron density at the metal center; i.e. ∆G◦H− becomes more negative as E1/2(Mn+/(n−1)+)

becomes more negative. While nickel bis-diphosphine complexes would be a convenient starting

point, we opted to investigate their heteroleptic analogues that feature the bis-NHC ligand:

1,l’:3,3’-bis(1,3-propanediyl)dibenzimidazolin-2,2’-diylidene, as even the most donating nickel

bis-diphosphine complex [Ni(dmpe)2]2+ (dmpe = 1,2-Bis(dimethylphosphino)ethane) does not

yield hydrides of sufficient reactivity under standard conditions.8,21 Furthermore, the geometric

constraints of the bis-NHC ligands allows synthesis of several to heteroleptic nickel diphosphine

complexes where further tuning of the electron density at nickel can be attained.20

Estimation of the hydricity for complex 1 was obtained through application of eq. 8 using

the fixed-slope line in our scaling relationship (Figure 4.4). Cyclic voltammograms of complex
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Figure 4.3: Complex 1 and bis-NHC ligand.

1 (Figure 4.5) show a reversible two electron reduction at -1.87 V vs Fc+/0 which predicts a

hydricity for the corresponding hydride to be ∼37.8 kcal mol−1. This is in excellent agreement

with the experimentally benchmarked value which is found to be less than 40.6 kcal mol−1.20

These values indicate that hydride transfer to CO2 is thermodynamically favorable by ∼6 kcal

mol−1 with a driving force of at least ∼3.4 kcal mol−1.

4.2.2 Electrocatalytic CO2 Reduction

In the presence of phenol, 1 shows significant current enhancement at the Ni(II/0) couple

which corresponds to hydrogen evolution with 100% FE (Figure 4.5b). Interestingly however,

upon the introduction of a CO2 atmosphere, a significant change in the electrocatalytic response is

observed (Figure 4.5a), indicative of either an entirely different catalytic process or the emergence

of a competing process. The electrocatalytic current is significantly reduced in the presence of

CO2, exhibiting a decrease in icat /ip from 13.8 at 0.4 M phenol under N2 to 9.34 at 0.4 M phenol

under CO2, where icat and ip correspond to the plateau catalytic current and the peak current in

the absence of substrate, respectively.22 This suggests that the competing process is slow with

respect to the hydrogen evolution observed in the presence of phenol under an inert atmosphere

or simply blocks it from proceeding.

Secondly, introduction of a CO2 atmosphere results in a significant change in the shape of

the catalytic wave, suggesting a kinetically distinct catalytic processes. In the absence of CO2,

the catalytic wave exhibits near ideal S-shaped behavior, indicative of “pure kinetic” conditions
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Figure 4.4: Plot of known hydricities of d8/9 metals versus E1/2(Mn+/(n−1)+) (adapted from
ref. 17). The hydricity of formate (44 kcal mol−1) is indicated by the cyan line. The predicted
hydricity of 1 (based on the fixed-slope line) and the experimentally-determined upper bound
thereof are denoted by the blue star and dashed line, respectively.

corresponding to fast catalysis unhindered by substrate consumption in the diffusion layer.23

Conversely, a peak-shaped current response is observed under an atmosphere of CO2, most

often indicating substrate consumption or other “side phenomena” such as substrate inhibition or

catalyst deactivation.24−25

While the electrocatalytic response from the CVs under a CO2 atmosphere would initially

suggest the possibility of competitive hydride transfer to CO2, yielding formate, CPE experiments

performed under identical conditions at -1.75 V show only the production of CO and hydrogen at

25% and 55% FE respectively (Figures 4.10-11). The remaining unaccounted passed charge is

most likely due to catalyst degradation under these conditions (vide infra).
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Figure 4.5: a) Cyclic voltammograms of 1 (1 mM) in the presence of phenol (up to 0.4 M)
under an atmosphere of CO2. Conditions: 0.1 M Bu4NPF6 in acetonitrile saturated with CO2 at
100 mV s−1; glassy carbon working electrode; platinum counter electrode; Ag/AgCl reference
electrode. b) Cyclic voltammograms of 1 (1 mM) in the presence of phenol (up to 0.4 M) under
an atmosphere of N2. Conditions: 0.1 M Bu4NPF6 in acetonitrile at 100 mV s−1; glassy carbon
working electrode; platinum counter electrode; Ag/AgCl reference electrode.

In order to suppress hydrogen evolution, methanol can be utilized as the added proton

source to avoid protonation of the electrochemically-generated hydride. Addition of methanol

followed by introduction of a CO2 atmosphere yields mild current enhancement at the Ni(II/0)

couple in conjunction with a disappearance of the hydride oxidation feature at -1.15 V vs.

Fc+/0. (Figure 4.14) And while CPE studies under these conditions demonstrate successful

suppression of hydrogen evolution (FEH2
= 4%), generation of methoxide by deprotonation of

methanol convolutes product analysis. Though trace formate (FE = 1%) and CO (FE = 22%) are

observed upon electrolysis work up, (Figures 4.13-15) methoxide is known to readily catalyze

carbonylation of methanol to methyl formate in the presence of CO.26 Therefore, due to the

possibility of carbonylation activity and the degradation pathways of 1 discussed herein (vide

infra), we refrain from assigning observed formate to be a result of hydride transfer to CO2.

However, the significant production of CO in the presence of phenol indicates reactivity

of the Ni(0) state directly with CO2, which is typical of other systems such as [Ni(cyclam)]2+,

which has been shown to bind CO2 upon reduction of the nickel center followed by reductive
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disproportionation to generate CO.27 Indeed, cyclic voltammograms of 1 under CO2 in the

absence of a proton source result in a complete loss in reversibility of the Ni(II/0) couple with no

observable increase in current. (Figure 4.6) This response is consistent with electron transfer to

the catalyst followed by a chemical step (EC). In this system, the chemical step is believed to be

irreversible binding of CO2 to the electrochemically-generated, charge-neutral Ni(0) state.

Figure 4.6: Cyclic voltammograms of 1 (1 mM) with no added proton source under nitrogen
(black) and under CO2 (blue). Conditions: 0.1 M Bu4NPF6 in acetonitrile at 100 mV s−1; glassy
carbon working electrode; platinum counter electrode; Ag/AgCl reference electrode.

4.2.3 Infrared Spectroelectrochemistry

Infrared spectroelectrochemical (IR-SEC) studies of this interaction indicate that upon

reduction, 1 directly binds CO2 to leading to the formation of a Ni(0) dicarbonyl species in both

the presence and absence of an added proton source. In the absence of an added proton source,

upon scanning to –1.8 V vs. a Ag pseudoreference electrode intense bands at 1951 and 1881
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cm−1 are observed to grow in coinciding with the growth of an additional set of bands at 1686,

1648, and 1608 cm−1.

We assign the bands at 1951 and 1881 cm−1 to the formation of a [Ni(bis−NHC)(CO)2]0

species, which is consistent with the A1 and B1 ν(CO) modes in the expected C2V geometry. This

assignment is supported by previously reported Ni(0) dicarbonyl disphosphine complexes where

the A1 and B1 ν(CO) modes are observed in a similar vicinity.28−29 The bands at 1686, 1648,

and 1608 cm−1 however, most likely correspond to formation of a bicarbonate species generated

by disproportionation of the Ni(0)–CO2 adduct resulting in bicarbonate and the nickel carbonyl

species. These observations are analogous to previous studies when [Ni(cyclam)]+ is used as

the catalyst.27 Interestingly, formation of the nickel dicarbonyl species is still observed in the

presence of phenol. (Figure 4.18) These findings suggest that binding of CO2 to the Ni(0) state

is a competitive pathway that persists, even in the presence of a proton source and supports the

observation of significant poisoning under catalytic conditions.

When the identical experiment was performed with 13CO2 (Figure 4.17), a redshift of

46 and 41 wavenumbers is observed for the higher and lower energy ν(CO) modes, respec-

tively. These findings are consistent with the expected isotopic shift for the generation of

[Ni(bis−NHC)(13CO)2]0. These findings are further supported by density functional theory

(DFT) calculations. At the B3LYP level of theory, the DFT simulated FTIR spectrum of the

[Ni(bis−NHC)(CO)2]0 (Figure 4.16), is in striking agreement with the experimental FTIR spec-

trum, with ν(CO) modes at 1901 and 1838 cm−1.

4.2.4 Computational Studies

Attempts to chemically isolate the doubly reduced state 10 and the hydride complex 1H

were unsuccessful and we therefore employed DFT calculations to support their predicted geome-

tries and qualitative molecular orbital structures. Calculations were carried out for complexes 1,

10, and 1H using Restricted Kohn-Sham (RKS) calculations in the ORCA software suite (version
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Figure 4.7: IR-SEC of 1 (3 mM) in CO2-saturated acetonitrile in the absence of an added
proton source, sweeping from 0 to -1.8 V vs. Ag pseudoreference electrode. Conditions: glassy
carbon working electrode; platinum counter electrode; silver pseudoreference electrode; 0.1 M
tetrabutylammonium hexafluorophosphate supporting electrolyte.

3.0.3) at the B3LYP level of theory. Further details on computational studies including input files

and optimized coordinates are provided in Appendix C.

We previously reported the structural characterization of 1 and the phenyl-substituted

analogues of both 1 and 10, [Ni(bis−NHC)(dppe)]2+ and [Ni(bis−NHC)(dppe)]0, respectively

(dppe = 1,2-bis(diphenylphosphino)ethane).20 The optimized structure of 1 shows the expected

square planar geometry and is in close agreement with the solid state bond lengths (Table 4.1).

The doubly reduced state, 10, is consistent with a tetrahedral Ni(0) d10 complex, which exhibits

mild lengthening of 0.04 Å at the Ni-C bonds, and closely matches the crystallographic bond

distances of the analogous tetrahedral [Ni(bis−NHC)(dppe)]0 crystal structure.

However, most notable is the optimized geometry and molecular orbital structure of

1H , which adopts a pseudo-trigonal bipyramidal geometry. The optimized structure provides
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Table 4.1: Selected calculated and experimental bond lengths.

Bond

Complex

Calculated Bond Length (Å) Crystallographic Bond Length (Å)20

1 10 1H 1 [Ni(bis−NHC)(dppe)]2+ [Ni(bis−NHC)(dppe)]0

Ni-P1 2.20 2.20 2.17 2.1859(14) 2.2196(7) 2.1642(9)
Ni-P2 2.20 2.20 2.53 2.1710(14) 2.2063(7) 2.1643(8)
Ni-C1 1.92 1.96 1.91 1.900(4) 1.894(3) 1.921(3)
Ni-C2 1.92 1.96 1.94 1.899(5) 1.900(2) 1.914(3)
Ni-H - - 1.49 - - -

direct insight into the observed instability of these species, displaying clear labilization of the

phosphine ligand. The distorted 5-coordinate geometry exhibits significant lengthening of the

Ni-P2 bond length from 2.20 Å in 1 and 10 to 2.53 Å in the calculated 1H structure. Investigation

of the frontier orbital structure of this species reveals that the HOMO is antibonding in nature

with respect to one of the phosphorus atoms of the dmpe ligand. The interaction consists of

a dz2 , nickel-based orbital in combination with an out-of-phase colinear phosphine σ orbital

with calculated Mulliken reduced orbital populations of 47.0% at the nickel and 20.8% at the

phosphorus. We postulate that this antibonding HOMO interaction results in instability of the

5-coordinate hydride species via labilization of the phosphine chelate, which yields susceptibility

of attack at that position, leading to dissociation of the phosphine chelate.

4.2.5 Proposed Mechanism

Given these electrocatalytic and spectroscopic studies, we propose a series of divergent

mechanistic pathways depicted in Figure 4.8. All three possible pathways are initiated by the

two-electron reduction of 1 to afford 10. Upon formation of 10, either direct interaction with CO2

or protonation to form the proposed Ni(II) hydride 1H can occur. Protonation of 1H by a second

equivalent of acid yields molecular hydrogen, regenerating 1. Interestingly however, density

function theory (DFT) studies indicate that 1H may be susceptible to phosphine labilization
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Figure 4.8: DFT-calculated HOMOs and LUMOs of complexes 1, 10, and 1H . Hydrogen atoms
are omitted for clarity with the exception of the hydride of 1H .

(vide supra). However, near ideal, S-shaped catalytic responses observed in cyclic voltammetry

experiments of 1 in the presence of phenol and stable current densities through several catalyst

turnovers for HER in previous studies suggest that hydride protonation is fast with respect to

hypothesized phosphine loss.20

While the hydricity of 1H was experimentally benchmarked to be less than 40.6 kcal

mol−1, which establishes hydride transfer to CO2 to be exergonic by at least 3.4 kcal mol−1,

no significant formate was observed in controlled potential electrolysis experiments. Hydride

transfer kinetics are generally quite slow at first row transition metals,30−32 and we therefore

postulate that fast protonation and instability of 1H preclude interaction of this species with CO2

under catalytic conditions.

However, 10 readily reacts with CO2 in both the presence and absence of an added

proton source. Detection of CO as a reduction product in controlled potential electrolysis and

spectroscopic observation of bicarbonate formation via IR-SEC experiments indicate a reductive
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Figure 4.9: Proposed mechanistic pathways of CO2 reduction and hydrogen evolution by 1.

disproportionation pathway, which is well established for [Ni(cyclam)]2+ catalysts.27 However, 1

suffers greatly from instability through this pathway as the CO-poisoned, dicarbonyl degradation

product is observed by IR-SEC under an atmosphere of CO2 at potentials negative of the Ni(II/0)

couple both in the presence and absence of added acid.

4.2.6 Insights for Future Catalyst Design

Directing selective electrocatalysis requires finely balancing catalyst intermediate re-

activities, which becomes particularly convoluted when multiple substrates are required. Our

focus over the course of these recent studies was to target strong hydricities at nickel to select

for thermodynamically favorable hydride transfer to CO2. However, tuning pre-catalyst redox

couples to such negative potentials in the pursuit of such reactive hydrides results in the generation

of particularly electron-rich reduced states. In this case, the electrochemically-generated Ni(0)
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state becomes extremely nucleophilic, yielding direct binding of CO2 to undergo reduction to CO

in addition to deleterious catalyst poisoning.

This underscores the give-and-take nature of scaling relationships: the highly electron-rich

catalyst sites required to access reactive hydride intermediates can in turn produce divergent

substrate reactivity and instability. In the case of 1, stability issues may be remedied by the

utilization of new ligand frameworks. While the bis-NHC ligand described herein successfully

pushes reduction potentials at nickel to highly negative potentials, the instability of 1H , may be a

product of the orthogonal chelation geometry of this ligand, which we have shown previously to

be quite rigid and pinched in comparison to typical 5-membered chelation motifs. However, even

if greater stability of the hydride is achieved, the propensity for CO2 binding at the reduced state

of the catalyst would likely persist. Therefore, kinetic tuning to favor hydride formation over

direct interaction with CO2 through the installation of proton shuttles such as the well-studied

P2N2 ligand family may represent a fruitful approach to improving pathway selectivity.

However, a more elegant goal to develop new hydride transfer catalysts for CO2 reduction

would be to diverge from the hydricity scaling relationship altogether. Inspection of eq 8, which

describes hydricity as a function of E1/2(Mn+/(n−1)+), shows that ∆G◦H− is also dependent on the

bond dissociation free energy of the metal hydride bond. This term varies relatively little across

most transition metal hydride complexes, which accounts for the strong fit in this relationship.

This is even more notable in the same relationship for organic hydride donors, wherein there exists

less variation in BDFE, resulting in still better fit.17 Carbon-hydrogen bonds are on average ∼20

kcal mol−1 stronger than metal-hydride bonds and the linear hydricity relationship is subsequently

translated vertically to hydricities that are approximately ∼20 kcal mol−1 weaker, given the same

corresponding redox potential. Moving in the opposite direction by selecting for weaker hydride

BDFE’s in new systems while simultaneously tuning E1/2(Mn+/(n−1)+) may prove to be a more

desirable approach to targeting hydridic hydrides. Less electron-rich metal centers with weaker

M-H bonds could produce similarly hydridic hydrides while avoiding nucleophilic intermediates
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capable of direct interaction with CO2 and providing the added benefit of less negative operating

potentials.

4.3 Conclusion

Targeting catalysts for efficient and selective electrocatalytic reduction of CO2 marks an

important goal to improve fundamental mechanistic understanding of such catalytic processes.

Homing in on the thermodynamic parameters governing hydride reactivity of catalyst intermedi-

ates with CO2, we have established a route to electronically tune first-row hydrides to regimes

capable of CO2 reduction. However, we find that despite accessing unprecedented hydricities,

desired reactivity is circumvented by divergent mechanistic pathways. This not only underscores

both the utility and limitation of thermodynamic scaling relationships in catalyst design, but also

provides insight on the manner in which future design strategies may be steered to break from

such relationships.

4.4 Experimental

General Considerations

All reactions were carried out under a nitrogen atmosphere using standard Schlenk

and glovebox techniques. Solvents were sparged with argon, dried on a custom dry solvent

system over alumina columns, and stored over molecular sieves before use. All reagents were

obtained from commercial suppliers and used without further purification unless otherwise noted.

Tetrabutylammonium hexafluorophosphate (TBAPF6, Aldrich, 98%) was twice recrystallized

from methanol and dried under a vacuum at 90◦C overnight before use. 1 was prepared according

to a previously-reported procedure.20
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Instrumentation

1H NMR spectra were recorded on a Bruker 300 MHz spectrometer. 1H NMR chemical

shifts are reported relative to TMS (σ = 0) and referenced against residual solvent proton peaks.

Electrochemical experiments were performed in 0.1 M tetra-n-butylammonium hex-

afluorophosphate solution in acetonitrile using a Gamry Reference 600 potentiostat. A single-

compartment cell was used for cyclic voltammetry experiments with a glassy carbon working

electrode (3 mm in diameter, Bioanalytical Systems, Inc.), Pt wire counter electrode, and Ag/AgCl

pseudo-reference electrode. All potentials are referenced to the Fc+/0 couple using ferrocene

as an internal reference. Controlled potential electrolysis experiments were carried out in a

custom 90 mL cell designed in our laboratory. The setup included a glassy carbon working

electrode, graphite rod counter electrode separated from the solution by a porous glass frit, and

Ag/AgCl pseudo-reference electrode separated from the solution by a Vycor tip. For the catalytic

electrolysis studies, the cell was charged with nickel catalyst (1 mM) and phenol (0.1 M) in 0.1

M tetra-n-butylammonium hexafluorophosphate solution in acetonitrile. Hydrogen and CO were

quantified by analyzing 1 mL aliquots of the headspace on a Hewlett-Packard 7890A Series gas

chromatograph with two molsieve columns (30 m x 0.53 mm ID x 25 µm film). The partial

pressure of H2 and CO in the headspace was determined by comparison to gas standard samples.

Restricted Kohn-Sham (RKS) calculations were performed in the ORCA software suite

(version 3.0.3) using the B3LYP functional with the RIJCOSX approximation. All carbon,

hydrogen and nitrogen atoms were treated with Ahlrichs DEF2-SVP/J basis set while Ahlrichs

DEF2-TZVP/J basis set was used for nickel and phosphorus. Dispersion corrections were applied

using the Becke-Johnson damping scheme (D3BJ) and solvation was accounted for using the

COSMO solvation model in acetonitrile.
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4.6 Appendix C

Figure 4.10: Controlled potential electrolysis at -1.75 V vs. Ag/AgCl in the presence of 1 under
CO2. Conditions: 0.1 M TBAPF6 in acetonitrile with 0.1 M phenol, glassy carbon working
electrode, graphite rod counter electrode, Ag/AgCl reference electrode.

Figure 4.11: Plot of charge passed vs. gas products produced during controlled potential
electrolysis shown in Figure 4.11. Slopes of 0.27593 and 0.12374 for the 2-electron products of
H2 and CO correspond to Faradaic Efficiencies of 55% and 25%, respectively.
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Figure 4.12: Cyclic voltammograms of 1 (1 mM) under nitrogen with no added proton source
(black), with 0.8 M methanol under nitrogen (blue), and 0.8 M methanol under CO2 (red).
Conditions: 0.1 M Bu4NPF6 in acetonitrile at 100 mV s−1; glassy carbon working electrode;
platinum counter electrode; Ag/AgCl reference electrode.

Figure 4.13: Controlled potential electrolysis at -1.75 V vs. Ag/AgCl in the presence of 1 under
CO2. Conditions: 0.1 M TBAPF6 in acetonitrile with 0.4 M methanol, glassy carbon working
electrode, graphite rod counter electrode, Ag/AgCl reference electrode.
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Figure 4.14: Plot of charge passed vs. gas products produced during controlled potential
electrolysis shown in Figure 4.13. Slopes of 0.01849 and 0.10916 for the 2-electron products of
H2 and CO correspond to Faradaic Efficiencies of 4% and 22%, respectively.

Figure 4.15: 1H NMR of bulk work-up of CPE from Figure 4.13 in D2O, showing formate
resonance at 8.21 ppm and maleic acid internal standard at 6.40 ppm. Identical workup of control
CPE under the same conditions save for the absence of 1 was void of a formate resonance.
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Figure 4.16: Experimental (blue) and DFT-calculated (red) FTIR spectra of the carbonyl
stretches of the proposed degradation species [Ni(bis−NHC)(CO)2]0. For details on optimized
structure used for calculations and input files, see Computational Methods section below.

Figure 4.17: IR-SEC of 1 (3 mM) in 13CO2-saturated acetonitrile in the absence of an added
proton source, sweeping from -1.2 to -1.7 V vs. Ag pseudoreference electrode. Conditions:
glassy carbon working electrode; platinum counter electrode; silver pseudoreference electrode;
0.1 M tetrabutylammonium hexafluorophosphate supporting electrolyte.
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Figure 4.18: IR-SEC of 1 (3 mM) in CO2-saturated acetonitrile in the presence of phenol
(0.1 M), sweeping from -1.1 to -1.8 V vs. Ag pseudoreference electrode. Conditions: glassy
carbon working electrode; platinum counter electrode; silver pseudoreference electrode; 0.1 M
tetrabutylammonium hexafluorophosphate supporting electrolyte.
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Computational Details

Density Functional Theory Analysis. Calculations were performed in the ORCA software

suite (version 3.0.3) at the B3LYP level of theory with the RIJCOSX approximation.1−5 Nickel

and phosphorous atoms were treated with the DEF2-TZVP basis sets while DEF2-SVP was used

for all other atoms.6−14 Dispersion corrections were applied using the atom-pairwise dispersion

correction with a Becke-Johnson damping scheme (D3BJ), while solvation was accounted for

using the COSMO solvation model in acetonitrile.17−19 Analytical frequency calculations were

performed at the same level of theory to ensure all optimized structures were minima. Molecular

graphics were constructed with the UCSF Chimera package.20

Representative input file:

%pal nprocs 8 end

! RKS B3LYP/G RIJCOSX D3BJ def2-SVP def2-SVP/J

! COSMO(Acetonitrile) SlowConv GRIDX5 FinalGrid6 VeryTightSCF opt

%basis

newgto Ni ”def2-TZVP” end

newgto P ”def2-TZVP” end

end

%SCF

MaxIter 2000

end

* xyz “Charge” “Multiplicity”

“XYZ Coordinates”

*
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Table 4.2: Optimized geometry coordinates for complex 1.

Atom X Y Z

Ni 4.97707778 8.40393549 21.1819899

P 5.11146001 8.24230151 23.3727802

P 4.72682809 10.5719634 21.4589486

N 3.78649624 8.15910268 18.5226092

N 5.95504704 8.38351775 18.4328389

N 4.14397913 5.67407972 20.5751104

C 4.63057078 4.48842091 20.0169429

N 6.31233968 5.89671774 20.4782489

C 5.16668374 6.52348727 20.8400985

C 6.02914044 4.63207297 19.9533793

C 4.14734712 7.90446513 17.1960975

C 3.61431425 7.52351375 24.1029398

H 2.72826234 8.08634822 23.7782275

H 3.6819742 7.55209834 25.2005726

H 3.51503741 6.47986302 23.7744312

C 3.3983534 7.56564175 16.0674815

H 2.31475844 7.44708599 16.1086992

C 6.48668504 7.28868343 24.0619961

H 6.41748076 6.24734443 23.718364

H 6.44969969 7.31186786 25.1613009

H 7.44088408 7.7149659 23.7228788

C 5.54597852 8.0510361 17.13789

C 4.80831397 2.32078403 19.0536834
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H 4.34934172 1.39931432 18.6896665

C 7.34996808 8.50959993 18.8556068

H 7.37088324 9.16867522 19.7341824

H 7.89209692 9.02521016 18.0511206

C 2.07871234 6.55147213 19.4316854

H 0.98944351 6.52469009 19.5887468

H 2.28717256 5.87913539 18.5836735

C 2.72558306 6.00522652 20.7089924

H 2.63127499 6.73386026 21.5254513

H 2.20370868 5.09293174 21.0276646

C 5.50522235 7.52565369 14.8187415

H 6.01882089 7.36604231 13.8684285

C 7.63834518 6.51290983 20.4917451

H 8.36280677 5.72837138 20.7480543

H 7.65172194 7.24641486 21.3104224

C 8.03931146 7.17910159 19.1720387

H 9.11877943 7.38577777 19.2355161

H 7.90695993 6.47334244 18.3357395

C 2.43731483 7.99417387 19.0616385

H 1.73304121 8.36993608 18.3071096

H 2.35115154 8.64933114 19.9393635

C 6.84650666 3.62392451 19.4386365

H 7.930708 3.73157962 19.3835491

C 6.2529592 7.86866043 15.9479193

H 7.33661576 7.98288811 15.8971644
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C 4.88608576 8.43514064 19.2645612

C 6.24766081 11.4851131 21.0772453

H 7.0898825 11.0755512 21.6510718

H 6.12066341 12.5488967 21.3271196

H 6.46763048 11.3900238 20.0049462

C 3.41784259 11.4038758 20.5269719

H 3.60222391 11.2835 19.4500607

H 3.39904098 12.4751828 20.7760892

H 2.44452357 10.9591096 20.7762902

C 4.10525909 7.37613362 14.8776231

H 3.55959791 7.10310157 13.972294

C 5.24603449 9.93429628 24.0723948

H 4.95232777 9.93389463 25.1324475

H 6.30849537 10.22012 24.0256954

C 3.99200654 3.32920902 19.5716329

H 2.90823208 3.21281209 19.6183572

C 6.20867449 2.46560451 18.9879593

H 6.80979211 1.65356904 18.5737611

C 4.3863018 10.8840831 23.2347119

H 4.57217283 11.9401604 23.4800896

H 3.31394905 10.6914811 23.3969502
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Table 4.3: Optimized geometry coordinates for complex 10.

Atom X Y Z

Ni 4.95745898 8.39721725 21.251133

P 3.35589443 9.4195295 22.3559524

P 6.4370423 9.35396602 22.5742975

N 3.81529631 8.07376176 18.5118471

N 5.98164367 8.29774121 18.4468967

N 4.12389949 5.63382117 20.4840434

C 4.59999967 4.55725395 19.7466026

N 6.29039018 5.85855655 20.4217565

C 5.14306624 6.4778652 20.8979814

C 6.00290208 4.7028629 19.7062487

C 4.20788259 7.64949679 17.2483944

C 2.64352089 10.943032 21.5817948

H 3.47267785 11.5735323 21.2300682

H 2.01309619 11.5205638 22.2789535

H 2.0408304 10.6643266 20.7042942

C 3.4963338 7.16371997 16.1500455

H 2.41227816 7.04056183 16.180045

C 1.80602981 8.74161605 23.1091354

H 1.12986312 8.40013067 22.310711

H 1.27167611 9.48556923 23.7245268

H 2.06186547 7.87362511 23.7353614

C 5.61044126 7.79596599 17.2055622

C 4.77340239 2.55347811 18.4532243
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H 4.3058028 1.70125558 17.9539469

C 7.3637685 8.46036932 18.8656578

H 7.3461101 9.12596889 19.7371363

H 7.9131825 8.96338317 18.0535049

C 2.04496212 6.52013142 19.3907046

H 0.95716618 6.53100862 19.5720255

H 2.20727564 5.84448837 18.5345215

C 2.71126089 5.93406184 20.6432234

H 2.63733036 6.63894836 21.4805671

H 2.19067714 5.00428517 20.9237853

C 5.62505263 6.98017712 14.9579361

H 6.16631269 6.70855479 14.0482966

C 7.62066583 6.44073198 20.4941558

H 8.33415307 5.63777711 20.7381917

H 7.60446236 7.15274281 21.3276792

C 8.07768059 7.14693562 19.2108576

H 9.14968712 7.37708208 19.3302006

H 8.00711679 6.45093749 18.3578758

C 2.45355813 7.94803911 19.0060237

H 1.77001414 8.32003178 18.2260553

H 2.37460554 8.60940197 19.8757991

C 6.80835841 3.77878306 19.0390362

H 7.89345475 3.89006437 18.9992727

C 6.33991776 7.46677633 16.0621964

H 7.4250538 7.57753829 16.0250482
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C 4.89562328 8.46008291 19.2923689

C 7.12369019 8.33674461 23.9605726

H 6.28923055 7.83887704 24.4759856

H 7.69526001 8.93813197 24.6877718

H 7.77985815 7.55145589 23.5553612

C 7.96520639 10.311206 22.1524096

H 8.71266791 9.63578582 21.7082085

H 8.41545541 10.7968383 23.0343488

H 7.71381185 11.0799019 21.4059916

C 4.22912312 6.83076438 15.0016034

H 3.70244998 6.44450806 14.125523

C 4.12214383 10.173088 23.8790836

H 3.49048476 10.9821451 24.2841537

H 4.15738236 9.3712972 24.6358228

C 3.9641943 3.48269445 19.1229

H 2.87889796 3.36783234 19.1477651

C 6.16977104 2.69906227 18.4117713

H 6.77184313 1.95842167 17.8795265

C 5.53710719 10.6565968 23.5563328

H 6.09951561 10.9288072 24.4656576

H 5.49749178 11.5519894 22.9139774
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Table 4.4: Optimized geometry coordinates for complex 1H .

Atom X Y Z

Ni 4.90001326 8.20598014 21.2126126

P 3.75563287 9.94589505 21.8323588

P 6.87846636 9.37175224 22.2800915

N 3.71506885 7.96684746 18.5635187

N 5.86245689 8.27490475 18.3864369

N 4.23855841 5.47930557 20.5399182

C 4.73189685 4.34198548 19.901465

N 6.38393315 5.79224697 20.330019

C 5.23824791 6.37273927 20.7901114

C 6.11800926 4.5434154 19.765836

C 4.03199267 7.70644361 17.2303674

C 3.50031766 11.2422543 20.5718314

H 4.47667999 11.5444664 20.1684056

H 2.99000222 12.1217365 20.99252

H 2.90224429 10.8384081 19.7427302

C 3.25679534 7.31759426 16.1355594

H 2.18155162 7.15465078 16.2206666

C 2.09255327 9.72822975 22.5491183

H 1.41141194 9.29286077 21.804132

H 1.67972925 10.6921726 22.8830702

H 2.15999285 9.04001035 23.4033679

C 5.41937267 7.9071772 17.1154043

C 4.93326689 2.22657732 18.8226375
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H 4.48632569 1.30592124 18.4415009

C 7.26987191 8.45492563 18.723101

H 7.30698702 9.10943269 19.5990474

H 7.74615448 8.98659069 17.8872254

C 2.09747932 6.28305182 19.5060412

H 1.01563758 6.21476469 19.7029382

H 2.29572134 5.62578018 18.6434046

C 2.81899761 5.7448225 20.7480082

H 2.74473046 6.45608157 21.5813216

H 2.34789913 4.80279953 21.0625758

C 5.31074224 7.34137955 14.8036363

H 5.79489349 7.18751554 13.8367806

C 7.6974374 6.42559457 20.3019013

H 8.44582936 5.64250115 20.4855165

H 7.73612278 7.12252118 21.1467184

C 8.02595143 7.14867417 18.9905118

H 9.09900325 7.39691168 19.0215961

H 7.8949184 6.45839743 18.1407816

C 2.38802457 7.73951073 19.126921

H 1.65250049 8.0755715 18.3826517

H 2.2897115 8.38708669 20.004093

C 6.93799761 3.59157259 19.1567627

H 8.0122463 3.74474688 19.0436462

C 6.08500417 7.73236886 15.9004107

H 7.16053397 7.88806038 15.8054187
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C 4.83116737 8.30031463 19.2789475

C 7.25535459 8.54972448 23.8770674

H 6.31430393 8.29850605 24.3851509

H 7.87126972 9.18661857 24.5312474

H 7.79229035 7.60900701 23.683221

C 8.55994232 9.95894057 21.8032595

H 9.1883047 9.10372897 21.5140348

H 9.0527941 10.4914859 22.6322163

H 8.48374932 10.6367358 20.9397632

C 3.92248554 7.13664972 14.9194575

H 3.35254655 6.82722238 14.0409549

C 4.65273992 10.8267653 23.1727778

H 4.18113829 11.8051504 23.3550182

H 4.51992513 10.2203589 24.0820544

C 4.1136123 3.18036266 19.4341109

H 3.03908463 3.02047251 19.5346367

C 6.32006782 2.42873173 18.68604

H 6.92720773 1.66131867 18.2008018

C 6.13716107 10.9745301 22.8337462

H 6.70160051 11.3822925 23.6876176

H 6.2665529 11.6795472 21.9963811

H 4.58919521 7.8416483 22.6215854

132



Appendix C References

1. Neese, F., An improvement of the resolution of the identity approximation for the formation of
the Coulomb matrix. J. Comput. Chem. 2003, 24 (14), 1740–1747.

2. Kossmann, S.; Neese, F., Comparison of two efficient approximate Hartee–Fock approaches.
Chem. Phys. Lett. 2009, 481 (4–6), 240–243.

3. Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U., Efficient, approximate and parallel Hartree–
Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock
exchange. Chem. Phys. 2009, 356 (1–3), 98–109.

4. Izsák, R.; Neese, F., An overlap fitted chain of spheres exchange method. J. Chem. Phys. 2011,
135 (14), 144105.

5. Neese, F., The ORCA program system. Wiley Interdisciplinary Reviews: Computational
Molecular Science 2012, 2 (1), 73–78.

6. Huzinaga, S.; Andzelm, J.; Radzio-Andzelm, E.; Sakai, Y.; Tatewaki, H.; Klobukiwski, M.,
Gaussian Basis Sets for Molecular Calculations. Elsevier Science: 1983; Vol. 16, p 434.
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