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Abstract 

'fra.ditional momentum-space methods for dealing with infrared diver­

gences depend upon the neglect of certain terms that become dominant 

when the primary scattering function is evaluated on a singularity. Con­

sequently, those methods lead to predictions that are highly inaccurate in 

the mesoscopic and macroscopic domains, and in fact violate the physi­

cally mandated correspondence-principle connection to classical physics 

in the macroscOpic limit. These deficiencies can be remedied by a more 

. precise treatment in which the infrared part of the problem is solved 

exactly, in the following sense: photons are divided into hard and soft 

photons, and a Feynman coordinate-space perturbation serieS is set up 

for the hard photons and massive particles alone, with all soft photons 
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temporarily omitted. Each contribution to this series, before the integra­

tion over the locations (x11 ... , xn) = x of the n vertices, is represented 

by a spacetime diagram D(x). The soft photons are then separated into 

classical photons and quantum photons. For processes with no charged 

external particles the contributions from all numbers of classical photons 

can be summed exactly. This sum is a unitary operator which acting on 

the photon vacuum gives a quantum coherent state. This coherent state 

corresponds to the soft-photon part of the classical electro-magnetic field 

radiated by a classical charged particle moving along the charged-particle 

trajectory defined by the spacetime diagram D( x ). The bulk of the virtual 

and real soft-photon effects are contained in this well-defined unitary op­

erator, and the remaining factor should contain no infrared divergences. 

This expected convergence property is confirmed here, to all orders in the 

remaining soft photons (i.e., the quantum photons), for the case in which 

the charged-particle lines of D(x) form a triangle. It is also shown that 

strongest singularity on the triangle-diagram surface has the usual log t.p 

character, and that the discontinuity around it is given by the Cutkosky 

formula. This property allows one to obtain, from the factorization prop­

erty of the Cutkosky formula, the scattering functions for processes with 

charged initial or final particles. These analyticity properties also en­

sure the validity of the classically prescribed larg~cale behavior. In 

the course of establishing these result a detailed formalism is developed 
that is suited to practical calculations of the consequences of quantum 

electrodynamics in the mesoscopic and macroscopic domains. 
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1. Introduction 

Quantum systems composed of particles of nonzero mass enjoy three im­

portant general properties: conservation of energy-momentum, cluster decom­

position, and pole factorization. Conservation of energy-momentum needs no 

~lanation. Cluster decomposition is the property whereby if a system is di­

vided into two parts, and these are, in a succession of cases, shifted further 

and further apart in any spatial direction, then these parts become dynamically 

independent in the limit of large separation: in this limit the individual parts 

separately conserve energy-momentum, and each part is separately invariant un­

der translations in space and time. These properties ensures that if several parts 

of the quantum system are located at large distances from each other then these 

parts can be considered separately. This feature is one of the pillars of physics: 

it entails -insofar as the effects of massless particles can be neglected-that 

one can ignore the parts of the universe that are far away from a system being 

studied. 

Pole factorization is the first correction to cluster-decomposition, and is 

almost as important. It is the feature according to which the largest correction 

to the cluster decomposition property can be understood in terms of the idea 

that a small physical object, which moves in accordance to the laws of classical 

physics, is emitted from one of the two partial systems and absorbed by the 

other. The energy-momentum transferred between the two systems is precisely 

that carried by such a particle. Moreover, the only information carried from one 

partial system to the other is information that can be carried by the degrees 

of freedom of this object. These pole factorization properties are crucial to the 

entire idea that the world can, in some sense, be considered to be built out of 

"particles". The experimentalist makeS essential use of these properties when 

he interprets his experiment at an accelerator facility in terms of the idea that 

the accelerator is emitting particles that may eventually hit a target. And the 

theorist is using the idea when he attempts to express the general interaction 

in terms of diagrams whose lines represent "particles". That diagrammatic 

procedure is essentially an expansion around the large-distance limit. 

In view of the basic importance of the pole-factorization property to both 

the interpretation of quantum theory and our basic computational procedures 

it would seem worthwhile to see whether this property carries over to quantum 
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electrodynamics, which is, after all, our premier quantum theory. It is apparent 

that this property does in fact hold true in nature, to a good approximation, 

even for charged particles. For example, a beam of electrons emerging from. 

an accelerator beh~ves at large distances approximately like a beam of clas$ical 

particles. Basic physical theory ought to explain why this is so, just as it did in . 

the case where all particles had nonzero mass. 

There are also important practical reasons why quantum electrodynamics 

ought to be developed so as to be able to resolve questions pertaining to large­

distance behaviour. The first has to do with the extension of the scope of the 

theory to cover cases that are not in the realm of atomic physics proper, and, 

in particular, to the case of the physics of materials. This field is, of course, 

a highly developed subject, but there is nonetheless a problem of principle, 

namely the need to disentangle in a rational way the quantum and classical 

aspects of the properties of materials. The· quantum properties of materials 

are enmeshed in a matrix of classical properties, and this relationship should 

emerge in a logical way from quantum theory itself, rather than being put in 

essentiallyby intuition. This problem of the quantum/classical connection is 

closely connected to another problem, namely the technical one of coping with 

infrared divergences in situations where the basic momentum-space scattering 

function is not free of singularities. These three problems-the large-distance 

behavior, the emergence of classical structure, and the infrared divergences a.t 

singularities-are, from a technical point of view, intimately interwoven. The 

task of the present work is the resolution of t}:le technical problems that lie at . 

the core of this tangled complex of physical problems. 

For systems involving no massless particles quantum theory covers immedi­

ately the macroscopic domain. Consider a multiparticle system in which stable 

particles travel large distances between collisions mediated by short-range in­

teractions. If the distances between collisions aie large, in comparison to the· 

range of the interactions, then the quantum formalism immediately entails the 

accuracy of a certain classical idea: the intermediate stable particles can be 

conceived to propagate between the collisions as classical particles. This result 

follows directly from the fact that the asymptotic behavior of the scattering 

amplitude in coordinate space is controlled by its singularities in momentum 

space, and in particular by the Landau singularity corresponding to the relevant 
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multiple-scattering diagram. The discontinuity around this singularity surface 

is given by the Cutkosky rule: it is essentially the product of the various rel­

evant collision amplitudes. The fact that the stable particles are propagated 

by Feynman propagators, which have pole singularities in momentum space, 

leads precisely to the correct geometric fall-off in coordinate space, namely the 

fall-off associated with the straight-line propagation of classical point particles 

between the short-range collisions. Hence the validity of this classical concept 

in the macroscopic regime emerges directly from the Landau-Cutkosky singu­

larity structure of scattering amplitudes in the physical region-if all particles 

are massive. 

Straight-forward perturbation calculations in quantum electrodynamics in­

dicate that these pertinent singularities in momentum space are stronger than 

what they would be in theories where all particles are massive, and that the long­

distance fall-off of the charged-particle propagator is correspondingly slower than 

what classical concepts demand. Such a result, if really correct, would seriously 

jeopardize the consistency of quantum theory, which is normally thought to be 

compatible with the idea that charged electrons propagate over large distances 

in an approximately classical way. 

This large apparent disparity between classical concepts and asymptotic 

properties in quantum theory arises from the presence of massless particles, 

and is closely connected to the problem of the infrared divergence of quantum 

electrodynamics. Yet from a strictly mathematical point of view there is no 

infrared divergence here. One can do the calculations and exhibit the form 

of the pertinent scattering functions, and the integrals are infrared convergent 

{Appendix A).The problem arises not from a divergence of the actually occurring 

integrals, but rather from the fonn of the singularity: the form of the singularity 

is stronger than what it is expected to be. Consequently, when one tries to 

compute the 'residue of the pole' of a singularity that is stronger than a pole 

one naturally gets a nonsensical result. The problem, therefore, from a strictly 

mathematical point o~ view, is to show that the fonn of the singularity is what 

is required on physical grounds: if the form of the singularity can be shown 
to be correct then the infrared finiteness of the result will follow from general 

mathematical principles. 

The problem of deducing the correct form of the pertinent singularities was 
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partly solved in an earlier work. In the context of a coordinated-space, diagram­

matic, perturbative expansion of the hard-photon part of the electromagnetic 

interaction a certain 'classical part' of the soft-photon interaction was defined, 

and summed to all orders to give a unitary operator. This operator, acting on 

the photon vacuum, generates a quantum-mechanical coherent state that corre­

sponds to a certain classical electromagnetic field. This latter field is precisely 

the soft (low-frequency) part of the electromagnetic field classically radiated by 

charged point particles moving on the spacetime trajectories specified by the 

hard-photon spacetime diagram. 

The reaction of this classical part of the soft-photon field upon the electron is 

small: there are energy-momentum adjustments that tend to zero as the largest 

soft-photon energy-momentum magnitude lkl tends to zero. Hence this part 

has no infrared divergence. The remaining 'quantum' part of the soft-photon 

interaction has extra numerator powers of k, and is expected to be likewise 

infrared convergent. One of our aims here is to confirm this expectation. 

The standard detailed description of how to get infrared finite results from 

quantum electrodynamical computations was given by Yennie, Frautschi, and 

Suura,1 and by Grammer and Yennie.2 However, those treatments do not cover 

points where the basic scattering amplitude under consideration is singular. But 

these are precisely the points that control the large-distance behavior. 

Efforts have been made3
•
4

•
5

•6 to extend the general methods of Yennie et.al., 

to cases where some internal particles are on mass shell. However, these exten­

sions do not yield the correct results. The problem is that a key step in the 

standard procedure is to ignore terms with factors (eikv- 1), on the grounds 

that for finite y these terms vanish as k --+ 0. But this argument does not hold in 

the macroscopic limit, where the appropriate limit is y --+ oo, with k small but 

finite. Moreover, in the present context it is not possible to dismiss terms simply 

because they are finite. For our problem is to determine the dominant contri­

butions to the asymptotic behavior. Consequently, all terms, even finite ones, 

must be carefully controlled, in order to single out the dominant large-distance 

contributions. 

Described in more detail the failure of traditional infrared methods to give 

the correct forms of singularities arises in this way. To avoid infrared divergences 

the soft photons corresponding to the classical bremsstrahlung radiation asso-
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ciated with the deflections of the charged particles is separated out for special 

treatment, leaving a remainder that can be calculated by standard perturba­

tive methods. However, what is traditionally separated out is not the actual 

bremsstrahlung radiation itself, but rather the bremsstrahlung radiation that 

would be produced if all the deflections were to occur at some single point, 

conventionally taken to be the origin of spacetime. This approximation in­

volves, typically, replacing a factor eila: by unity, where x is the point where 

the deflection occurs. If x were confined to a bounded region then this approx­

imation would become increasingly accurate ask, the photon four-momentum, 

approaches zero. However, the character of momentum-space singularities is 

controlled by the rate at which the coordinate-space functions fall off in the 

limit lxl -+ oo. Thus, for any fixed nonzero k, the approximation is not accu­

rate in the regime that controls the character of the singularity. 

This effect can be understood also in more physical terms. If a charged 

particle is deflected at a point x, and travels to a point y were it is again 

deflected, then there will be bremsstrahlung radiation associated with each of 

these two deflections. The approximation of the actual bremsstrahlung by the 
bremsstrahlung that would be obtained if both deflections were to occur at the 

origin is, for each nonzero value of k, a poor approximation in the asymptotic 

regime in which x and y tend to infinity in different directions. Thus the in­

frared photons that are separated out for special treatment in this traditional 

approximation are not the physically relevant infrared photons in the regime 

that is controlling the singularity structure. To obtain the physically relevant 

infrared photons one must include all the neglected terms in the expansion of 
eila:. 

The way to correct this inaccuracy is evident: one should place the sources 

of the separately-treated soft photons at the points where the deflections occur. 

However, the calculations are normally done in momentum space, where these 

points do not appear. 

A procedure for placing the sources of the specially treated soft photons at 

precisely the points where the deflections occur has been constructed in ref. 7. 

The photons are first divided into hard photons, which have lkl > 8, and soft 

photons, which have lkl ~ 8, where lkl is the Euclidean norm of k, and 8 is very 

small on the scale of the electron mass. The calculation of the hard-photon 
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contributions is set up in coordinate space, as a Feynman-type perturbation cal­
culation. The coordinate variables Xi specify the points where the hard, photons 

interact with the charged particles~ Prior to the integrations over the variables 
x; each contribution is represented by a spacetime diagram D in which vertices 

located. at the points x; are connected by line segments representing charged 

particles. The propagation of a charged particle to a point x from a point y is 

represented by a Feynman propagator P(x,y). 

Holding the hard-photon vertices Xi fixed one introduces the contributions 
associated with soft photons. But the points where soft photons interact are not 
held fixed .. Instead, one transforms the soft-photon variables into momentum 

space. At this stage, with the hard-photon vertices x; held fixed, one separates 
out the. soft photons corresponding to the classical bremsstra.chlung radiation 
arising from the deflections of the charged particles at the various hard-photon 

vertices Xi. This separation is achieved as follows. The interaction of a soft 
photon having momentum k; with a charged-particle running from a hard­

photon vertex y to a hard-photon vertex x is separated into two parts by means 

of the formula 

ll' = c,. + Q,., {1.1) 

where 

C,. = z,. }!;(zk; + io)-1
. (1.2) 

Here ,,.. is the usual Dirac matrix associated with the photon interaction, }!; = 
k'J"'iv, and z is the coordinate difference 

z,. = (x,.- y,.). (1.3) 

The soft photons that couple into the hard-photon diagram D are classified 
as "classical" or "quantum" in the following way: any soft photon that has a 
quantum coupling Q,. on at least one end is a quantum photon; all other soft 

photons are classical photons. 

, Holding fixed the hard-photon interaction points x; one can now explicitly 

sum to all orders the contributions of all classical photons. One finds7
, for the 

case of processes with no external charged particles, that this sum defines a 
1,mitary operator U(D) that generates precisely the soft photons corresponding 
to the classical bremsstrahlung radiation from the classical spacetime process 
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represented by the spacetime diagram D. Specifically, the operator U(D) acting 

upon the soft-photon vacuum generates the soft-photon coherent state that 

corresponds to the classical electromagnetic field radiated at the deflection points 

x,. Thus the separation/,.= Cp. + Q,. achieves the objective of separating out 

precisely the soft photons that correspond to the classical radiation field. The 

source of each classical photon is, for each term in the perturbative expansion of 

the hard-photon field, located at exactly the point x, where the deflection that 

produces the classical photon takes place. 

This operator U(D) appears in the equation 

F'(D') = U(D)F(D'), {1.4) 

where F(D') is an operator representing the process associated with the diagram 

D' consisting of the hard-photon diagram D plus some specified set of Iine5 
representing soft quantum photons, and F'(D') is the operator that represents 

this process D' together with all classical-photon corrections to it. 

It was shown in ref. 7 that if the function F(D'), expressed in momentum 

space, has the normal analytic structure (i.e., the one in which stable particles 

correspond to poles) then the coordinate-space function F'(D') will have the 

correct physically mandated fall off and factorization properties. These prop­

erties allow the functions representing processes with charged initial or final 

particles to be defined by identifying appropriate factors in processes ·of the 

· kind discussed above, which involve only neutral external particles. 

The argument just mentioned depends, as stated, on the assumption that 

the function F(D'), expressed in momentum space, is well defined (i.e., is not 

infrared divergent) and possesses th~ requisite analyticity properties. Since the 

bulk of the very soft photon contributions should be contained in the classical 

part represented by U(D) these required properties of F(D') are expected to 

hold. 

A principal aim of this work is to confirm that the funCtions F(D') do 

have the requisite finiteness and analyticity properties for an important class of 

diagrams D'. These are the diagrams D' obtained by inserting quantum-photon 

lines into a diagram D formed from three charged-particle line segments, joined 

together to form a triangle, plus external neutral-particle lines . In the course 

of deriving this result we shall develop and apply the basic machinery needed 
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for general calculations of the singularity structure, and hence large-distance 

behavior, in quantum theories involving (massless) photons. 

The plan of the paper is as follows. In the following section 2 rules are estab­

lished for writing down the functions F(D') directly in momentum space. These 

rules are expressed in terms of operators that act on the original momentum­

space Feynman function corresponding to diagram D'. These operators convert 

each original coupling"'!,. either to C,. or to Q,., according to the operator chosen. 

It is advantageous always to sum together the contributions corresponding 

to all ways in which a photon can couple with C-type ·coupling into each indi­

vidual line xy of D. This sum can be expressed as a sum of just two terms. In 
one term the photon is coupled into the endpoint x, and in the other term it 

is coupled into the end pointy. Thus all C-type couplings become converted 

into couplings at the hard-photon vertices of D. This conversion introduces an 

important property. The charge-conservation (or gauge) condition k"J,. = 0 

normally does not hold in quantum electrodynamics for individual diagrams: 

one must sum over all ways in which the photon can be inserted into the dia­

gram. But in the form we use, with each quantum vertex Q coupled into the 

interior of a line of D, but each classical vertex C coupled into a hard-photon 

vertex of D, the charge-conservation equation (gauge invariance) holds for each 

diagram separately. 

In section 3 the modification of the charged-particle propagator caused by 

inserting a single quantum vertex Q,. is studied in more detail. The propagator 

is re-expressed as a sum of three terms. The first two are "meromorphic" terms 

having poles at p2 - m2 and r + 2pk + k2 - m2 , respectively, in the variable p2 • 

Because of the special form of the quantum coupling QIJ each residue is of first 

order ink, relative to what would have been obtained with the usual coupling 

"'!,..This extra power of k will lead to the infrared convergence of the residues of 

the pole singularities. 

The third term is a nonmeromorphic contribution. It is a difference of two 

logarithms, and this difference has a power of k that renders the contribution 

infrared finite. 

In section 4 the results just described are used to study the function corre­

sponding to a diagram D' that is formed by inserting into the triangle diagram 
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D a single quantum photon that has Q-type interactions at each end. In or­

der to treat in a rigorous way the contribution from the neighborhood of the 

point k = 0 we introduce polar coordinates k = rn, nfl = 05 + n . n = 1. 

For the meromorphic contributions it is found that the integrand of the inte- . 

gral that defines the residue behaves like rdr near the end point r = 0, and 

that the compact domain of integration in the variable n can be distorted away 

from all singularities. This shows that there is no infrared divergence. The two 

meromorphic contributions from each line lead to four contributions to F(D'). 
One of them gives the normal log cp singularity on the Landau triangle-diagram 

surface cp = 0, and the other three give weaker singularities. The contributions 

from the nonmeromorphic contributions also give weaker singularities. 

The aim of the remaining sections is basically to prove that the analogous 

results hold for all diagrams D' constructed from D by the addition of quantum­

photon lines, and to construct an efficient general machinery for computing the 

physical-region singularity structure, or equivalently the large-distance behavior. 

In section 5 we examine the generalized propagator that corresponds to 

propagation between two hard-photon vertices x andy with an arbitrary number 

of Q-type insertions. The meromorphic part is exhibited explicitly: there is one 

pole term for each of the original energy denominators. The residues factorize, 

and each factor (unless it is unity) has one factor of~ beyond what would occur 

if the couplings were the original/,. couplings. This single extra factor of~ in 

each residue factor will lead to infrared convergence of the meromorphic parts. 

This infrared convergence result, for our general diagram D', is proved in 

sections 6 and 7, subject to the assumption that, in analogy to what occurred in 

the simple case, the n contours can be distorted so as to avoid all singularities. 

This distortion assumption reduces the problem to one of counting powers of 

r. However, it is not sufficient to merely count overall powers of r. One must 

show that, for every possible way in which the variables ~ can tend to zero, 

there is convergence of every sub-integral. This argument can be regarded as 

a systematization and confirmation of the argument for infrared convergence 

given by Yennie, Frautschi, and Suura. 

The distortion property assumed in sections 6 and 7 is proved in section 

8. The proof is rather lengthy, but the fact that pinches of the contour of 

integration can be avoided is essential to any rigorous treatment of infrared 
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divergence problems. New methods are introduced. 

In section 9 the results of the earlier sections are gathered together to give 

the result that singularity on the triangle diagram surface coming from the mero­

morphic parts of the contributions arising from the quantum photons are no 

stronger than logarithmic. In sections 10 and 11 the similar results for the non­

meromorphic parts are obtained. Section 12 gives a comparison of the present 

treatment to other treatments of the infrared divergence problem. Appendices 

contain some technical details, and the evaluations of certain classes of integrals 

that are needed in the proofs. 

One principal motivation for this refinement of the treatment of infrared 

photons is to establish in quantum electrodynamics two of the most secure 

and important features of relativistic quantum field theory obtained for massive 

particles, namely the physically mandated fall-off and factorization properties 

associated with the long-range propagation of stable particles, and the associ­

ated normal analytic structure in momentum space. These properties emerge in 

quantum-electrodynamics when one separates out, in the way discussed above, 

the classically describable soft-photon component. 

The need for these sophisticated methods to establish the large-distance 

behavior in QED suggests the need for similar methods in the more difficult 

case of QCD, but we have made no effort in this direction. 

A related motivation for the present work arises from the apparent need 

for an accurate treatment of the classical and macroscopic aspects of quantum 

electrodynamics in order to study what is perhaps the most important funda­

mental problem in contemporary physics, namely the problem of the interface 

between the quantum and classical domains. Quantwn theory was originally 

designed to cover phenomena in the domain of atomic physics, and its orthodox 

interpretation depends upon the idea that the quantum system is first prepared 

and later detected by classically described devices, and that during the interval 

between its preparation and detection the quantum system does not act upon 

its classically described environment. This conception does not fit the situation 

encountered in, for example, quantum cosmology, in which the quantum system 

is the whole universe, which has no external system of observers and devices. 

Moreover, as emphasized by Bohr, this conception does not fit the situation 

that prevails in the study of biological systems, where "the incessant exchange 
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of matter which is inseparably connected with life will even imply the impossi­

bility of regarding the organism as a well-defined system of material particles 

like the system considered in any account of the ordinary physical and chemi­
cal properties of matter."8 Finally, contemporary technological advances in the 

fields of microfabrication and cryogenics are bringing to science a wealth of data 

in which quantum effects are important in systems that are not adequately con­

ceived of as systems that are prepared and later detected by classically described 

devices, and that are, in the interim, not acting upon their environment. If one 

is to develop a form of quantum theory that is better able to cope with systems 

that lie at the interface between the quantum and classical domains then it will 

probably be necessary to have an accurate treatment of the classical and macro­

scopic aspects of quantum theory itself. For without an accurate evaluation of 
these effects one cannot study carefully the way in which quantum concepts give 

way to classical ones as one moves from small syst~ms to large ones. 
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2. Basic Momentum-Space Formulas 

The separation of the soft-photon interaction into its quantum and classical 

parts is defined in Eq. {1.1). This separation is defined in a mixed representation 
in which hard photons are represented in coordinate space and soft photon.S 

are represented in momentum space. In this representation one can consider a 

"generalized propagator". It propagates a charged particle from a hard-photon 

vertex y to a hard-photon vertex x with, however, the insertion of soft-photon 

interactions. 

Suppose, for example, one inserts the interactions with two soft photons 

of momenta k1 and k2 and vector indices 1'1 and 1'2. Then the generalized 
propagator is 

P,.1.,.2 {x, y; k1, k2) 

= j J.4p e-ip:r+i(p·H•1+k:z)v 
(2rr)4 

i i i 
x ""' ·o'"l .LL u ·o'"2 ""'_j_ u u ·o. (2.1) I'-m+ t rr 1'"1- m + 1 rr 1'"1+ ,.2-m+ l 

The generalization of this formula to the case of an arbitrary number of inserted 

soft photons is straightforward. The soft-photon interaction '"i is separated 
into its parts Q,.j and C,.j by means of (1.1), with the X and y defined as in 

(1.3). 

This separation of the soft-photon interaction into its quantum and classical 

parts can be expressed also directly in momentum space. Using (1.2) and (1.3), 

and the familiar identities 

_1_ ~ 1 1 1 
p-m P+ ~-m = p-m- p+ ~-m' (2.2) 

and 

(2.3) 

one obtains for the (generalized) propagation from y to x, with a single classical 
interaction inserted, the expression (with the symbol m standing henceforth for 

m-iO) 
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P,.(x,y;C,k) =·I t:f4p (-i- ~ i ) z,. e-ipz+ikv 
(211" )4 p- m P+ ~- m zk + io 

. I tJ4p ( i ~ i ) . 1 ( ia ) -ipz+ikv 
= (21r)4 p-m P+ ~-m zk+io apiA e 

x ( -i a~) ( p ~ m ~ P+ ; - m) {2.4a) 

= I t:f4p lim( -i) r' d.\ e-i(p->.k)z+iktJ-•>. 
(211")4 •-<> lo 

. 8 ( i i ) 
X apiA p-m- P+ ~-m 

= ~· t:f4p lim( -i) (""d.\ ( e-i(p-AA)z - e-i(p-1<->.k)z)e-c>. 
(27r)4 •-<> lo 

xe'A"- --...... a ( i ) 
apiA p-m 

I t:f4p li ( ") 11 
d' -i(p->.k)z -.>. '"" a ( i ) =--m-l Ae exe---

{271")4 •-<> o apiA p- m 

{2.4b) 

_ _P_e-ipz+ikt/ d.\ ' ' tJ4 1 ( • • ) -I (271")4 k p +.X~- m 1" p +.X~- m · 

(2.4c) 

Comparison of the .result (2.4b) to (2.1) shows that the result in momentum 
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space of inserting a single quantum vertex j ·into a propagator i(p- m)-1 is 

produced by the action of the operator 

(2.5) 

upon the propagator i(p- m)-1 that was present before the insertion of the 

vertex j. One must, of course, also increase by k; the momentum entering the 

vertex at y. The operator O(p-+ p + ).;k;) replaces p by p + ).;k;. 

Suppose. that there were already a soft-photon insertion on the charged 

-particle line L so that the propagator before the insertion of vertex j were 

(2.6) 

And suppose the vertex j is to be inserted in all possible ways into this line 

(i.e., on both sides of the already-present vertex 1). Then the same argument 

as before, with (2.2) replaced by its generalization9 

I 
p-m 

I I 
#; .L.t_ u l!'l .Li.. u u 

yo ,..; - m rr ,..;+ 1"1 - m 

1 I I 
+ p- m lPl p+ #1 - m #; P+ #;+ #1 - m 

1 I 
---"'( 
- p- m "1 P+ #1 - m 

I 1 
- P+ #; - m 1"1 p+ #;+ #1 - m' 

(2.7) 

shows that the effect in momentum space is again given by the operator C,.Ak;) 
defined in (2.5). 

This result generalizes to an arbitrary number of inserted classical photons, 

and also to an arbitrary generalized propagator: the momentum-space result of 

inserting in all. orders into any generalized propagator P,.1 ••• ,. .. (p; k1, · · · k,.) a set 

of N classically interacting photons with j = n + 1, · · · , n + N is 
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n+N _ 1 1 N ( () ) II C11i(k;)P,.1 , ••• ,,._, (p; kt, • • • 1 k,.) = Ia .. ·Ia d.An+t. • • dAn+N II -i-
0 
-. 

j=n+1 · 0 0 j=1 J:>""+J 

P,."' .. ,,.., (p +a; k1 , • • ·, k,.) (2.8) 

where a= An+1 k,.+l + · · · + An+Nk,.+N· The operations are commutative, and 
one can keep each .A; = 0 until the integration on .A; is performed. 

To obtain the analogous result for the quantum interactions we introduce 

the operator D11i(k;) whose action is defined as follows: 

- i i 
DPi (k;)p-m "'P.t P+ ~1-m 

i i i 
= p- m "{,.i P+ ~; - m 7111 p+ ~;+ ~1 - m' 

i i i 
+ -.i -"{,., .i 1.l "/pi ...{_j_ u 1.l , 

I' - m p+ 1"1 - m PT ,..;+ 1"1 - m 

etc. 

(2.9) 

That is, D11i(k;) acts on any generalized propagator by inserting in all possible 

ways an interaction with a photon of momentum k; and vector index J.L;. Then 

one may define 

(2.10) 

Then the result in momentum space of inserting in all possible ways (i.e., in 

all possible orders) into any generalized propagator P of the kind illustrated in 

(2.1) a set of J quantum interactions and a set of J' classical interactions is 

II Cp.;(k;·) II QP.j(k;)P. 
j'(JI jd 

(2.11) 

Consideration of (2.3) and (2.9) shows that the operators Ci and Qi appearing 
in (2.11) all commute, provided we reserve until the end all integrations over 

the variables >.i, in order for the action of the operators D; to be well defined. 
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One may not wish to combine the results of making insertions in all or­
ders. To obtain the result of inserting the classical interaction at just one 

place, identified by the subscript je{1, · · ·, n}, into a (generalized) propaga­

tor P,.1 • • ·,... (p; k1 , • • ·, k,.), abbreviated now by P,.i, one begins as in (2.4) with 
kji Pvi in place of the quantity appearing in the bracket. However, one does 

not introduce (2.2), which led to the restriction of the integration to the range 

1 ~ ).; ~ 0. Then, provided kJ =j 0, equation (2.4a) gives for the result in 
momentum space the result produced by the action of 

c,.j(k;) _ 

{oo d). ·O(p· -+ p· +). ·k·) (-~) lo 3 ' ' 
3 1 8pPi 

(2.12) 

upon kji Pvr 

For kJ =j 0 this integral converges at the upper endpoint. The indefinite 
integral can then be defined so that it vanishes at).= oo. We define C,.Ak;) at 
kJ = 0 by then using uniformly only the contribution from the lower endpoint 
). = 0, as was entailed from the start by the initially finite value of e in (2.4). 

(Strictly speaking, one should use a Pauli-Villars regulator to define the integral 

in p space-then no special treatment is needed for kJ = 0) 

To obtain a form analogous to (2.12) for the quantum interaction one may 

use the identity 

ej roo d).·(-~) P. .(p + ).-k·) 
3 lo 3 8pPi "1 3 1 

= f d).. (-_i_) P. (p +). ·k·) 
0 J 8).j Pi J J 

(2.13) 

Then the momentum-space result produced by the insertion of a quantum cou­

pling in P,_.1 ... ,... (p; k1 , • • • k,_.) = P,..i at the vertex identified by p.; is generated by 

the action of 
(2.14) 

upon Pvi . 
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An analogous operator can be applied for each quantum interaction. Thus 

the generalized momentum-space propagator represented by a line L of D into 

which n quantum interactions are inserted in a fixed order is 

• • • X lt7n p+ fl+ ~l + ... ~ _ m , (2.15) 

where 

(2.16) 

If some of the inserted interactions are classical interactions then the cor­

responding factors (o';:kji- 8~~kji) are replaced by (8~~kji). 

These basic momentum-space formulas provide the starting point for our 

examination of the analyticity properties in momentum space, and the closely 

related question of infrared convergence. 

One point is worth mentioning here. It concerns the conservation of charge 

condition k~'J~'(k) = 0. In standard Feynman quantum electrodynamic this 

condition is not satisfied by the individual photon-interaction vertex, but is 

obtained only by summing over all the different positions where the photon 

interaction can be coupled into a diagram. This feature is the root of many of 

the difficulties that arise in quantum electrodynamics. 

Equation (2.14) shows that the conservation- law property holds for the 

individual quantum vertex: there is no need to sum over different positions. 

The classical interaction, on the other hand, has a form that allows one easily 

to sum over all possible locations along a generalized propagator, even before 

multiplication by k~'. This summation converts the classical interaction to a 

sum of two interactions, one located at each end of the line associated with the 

generalized propagator. (See, for example, Eq. (7.1) below). We always perform 

this summation, which simplifies calculations. Then the classical parts of the 

interaction are shifted to the hard-photon interaction points. This shift bring the 
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classical interaction into conformity with the classical idea that electromagnetic 

radiation comes from places where a charged particle is deflected, not from places 

where it is moving along a straight line in spacetime. 

At each such point of defl.ection there are, for eadt deflected charged parti­
cle, two parts of the classical interaction, one from the incoming leg and one from 

the outgoing leg. The sum of the5e two classical interactions satisfies the con­
servation law property. Thus in this formulation the conservation-law property 

holds at each vertex separately: there is no need to sum over different diagrams. 

To confirm these properties of the classical interaction one can use '(7.1) for 
the meromorphic part, or, more generally, (2.8) and the fact that k'J;8f8~; is 

equivalent to 8/8>.; therein. 
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3. The Quantum Vertex 

Suppose a single quantum interaction is inserted into a line of D. Then 

the associated generalized propagator is given by (2.11), (2.10), (2.9), (2.5) and 

(2.3): 

P,. (p; Q, k) 

i i 
=--~,. 

p-m P+ ~-m 
1 • . 

-'d).. ' ' lo p+>..~-m 1"p+>..~-m· 

The first terni in (3.1) is 

i i 
p-m 1"p+ ~-m 

(p+m) (P+ ~+m) 
= r- m21"(p + k)2- m2 

= -(p + m)l,.(p+ ~ + m) 

( 
1 1 1 1 ) 

X rfl-m2 2pk+k2 -2pk+k2 {p+k)2 -m2 

= _ [-(p'l- m2)-y,. + (p + m)(2p,. + "{,. ~ 
(2pk + k2){r - m2) 

_ -((p + k)2 - m2)"'y,. + (2p,. + 2k,.- ~"t,.)(P+ ~- m)] 
(2pk + k2)(r - m2) 

[ 
2p,. 2p,. + 2k,. 

=- (p- m)(2pk + k2) - (p+ ~- m)(2pk + k2) 

(3.1) 

+ 1 
X IP ~ + ~"{,. X 

1 ] (3 2) 
(p- m) (2pk + k2) (2pk + k2) (P+ ~- m) ' · 

where {"!,., P}+ = 2p,. has been used, and pk represents pk + iO. 

The second term in (3.1) can be computed from standard integral tables. 

Then it can be cast into a form similar to (3.2) by first considering it to be a 

function of the variable t = p2 -m2 , with pk and k2 regarded as parameters, next 

separating it. into its meromorphic and nonmeromorphic parts in this variable 

t, and finally evaluatii:~g its meromorphic part as a sum of poles times residues. 
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This gives for the meromorphic part 

[ rl dA 1 1 ] 
Jo p + A~ - m 

1
" p + A~- m Mero 

= [(p+m)l,.(p+m) _ (P+ ~+m)I,,(P+ ~+m)] 
2pk (p2- m2 ) 2(p + k)k ((p + k)2- m2) Mero 

2p,. 2p,. + 2k,. 
= 2pk (p-m)- 2(p+k)k (p+ ~-m)' (3.3) 

where a term not depending on (p2 - m 2) has been dropped from the last line. 

The singularities of this function at pk = 0 and (p + k )k = 0 are artifacts of 

the separation into meromorphic and non meromorphic parts: their sum does 

not have singularities at generic points on these surfaces. Thus we may replace 

pk by pk+iO in both the meromorphic and non meromorphic parts and introduce 

the identities 

-- 1+-1 1 ( k2) 
2pk - 2pk + k2 2pk 

{3.4a) 

and 

2pk : 2k2 = 2pk ~ k2 ( 1 
- 2pk ~ 2k2) . 

(3.4b) 

Then the combination of (3.2) and (3.3) gives 

(
(2p,. + 2k,.)k2 

+ 2pk +2k2 
(3.5) 

This function is of zeroth order in lkl, whereas the individual contributions (3.2) 

and (3.3) are each of order lkl-1
. 

The result (3.3) can be obtained also directly by inspection of the integral 

appearing on the left-hand side, written in the form 

[t dA(p+A ~+m)l,.(p+). ~+m) 
lo (p2- m2 + 2pkA + k2).2)2 · 

The singularities of this integral lying along the surface p2 = m2 arise from the 

endpoint ). = 0 of the domain of integration. Thus the analytic character of these 
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singularities is controlled by the character of the integrand in an arbitrarily small 

neighborhood of this endpoint. Positive powers of .A in the numerator diminish 

the contributions from this endpoint, and lead to singularities on p2 = m2 that 

are, in form, not as strong as the singularity coming from the terms that are 

of zeroth order in .A. Thus to find the strongest singularity we may set the .A's 

appearing in the numerator to zero. For similar reasons we can set the .A2 terms 

in the denominator equal to zero, provided the coefficient 2pk of the first power 

of .A is nonzero. Thus the strongest singularity of the integral arising from the 

lower endpoint is 

I d.A (p+mh~.CP"+m) 
lo (p2 - m2 + 2pk.A)2 

(p+m)t,.(p+m) 
= 

2pk(p2- m 2) 
{3.6) 

This is just the result obtained from the full calculation. The other term in 

(3.3) comes from the other endpoint, .A = 1. Because the strongest or dominant 

singularities coming from the two endpoints are poles any other singularities 
coming from these endpoints belong to the nonmeromorphic part. 

The full nonmeromorphic part of P,. (p; Q, k) is, by direct calculation, 

P,. (p; Q,~)NonMero 

= [c.P + m)t,.(p + m) ( -~~
2

) 

X [ 1 l (1-~) r"(l og _B_ 
V -a 1 + 2pk+2k~ 

__ 1_ 10 ( 1 - ~) + 2 _ 2.] 
R g 1 + B. 2pk + 2k2 2pk 

. 2pk 

(3.7) 

where -d = {2pk)2 - 4k2(p2 - m 2 ) = (2(p + k)k)2 - 4k2 ((p + k)2
- m2

). The 
two non-log terms in the final square bracket cancel the pole singularity in 
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t = p2 - m2 at d = 0 that would otherwise arise from the small-d behavior of 

the log terms. 

The singularity surfaces of P,. (p; Q, k) are shown in Fig. 1. 

- ..... 

. I ' 
;' ·? ::.,.....'-

' ..r. '\. ~~: -- IC ,- '" . 

p/t:.O 

Fig. 1 The singularities of P,.(p; Q, k) are confined to the surfaces 
p'l-m2 = 0, (p+k)2 -m2 = 0, and the branch of d = 0 lying between 

pk = 0 and pk = -P. 

The singularities of P,.(p; Q, k) are confined to the surfaces p2 -m2 = 0, (p+ 

k)l- m2 = 0, and to the portion of the surfaced= 0 that lies between pk = 0 

and pk = -k2 • Except at points of contact between two of these three surfaces 

the function P,.(p; Q, k) is analytic on the three surfaces 2pk = 0,2pk + k2 = 0, 
and 2pk + 2k2 = 0, and has the form d-312 on the singular branch of the surface 

d = 0. It has both pole and logarithmic singularities on the surfaces p2 -m2 = 0 

and (p + k)2 - m2 = 0. The iO rule associated with d = 0 matches the iO rules 
at p2 = m2 and (p + k)2 = m2 at their points of contact. 

The meromorphic and nonmeromorphic parts of P,. (p; Q, k) each separately 

have singularities on the surfaces 2pk = 0, 2pk + P = 0 and 2pk + 2k2 = 0. 

The results of this section may be summarized as follows: the insertion 
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of-a single quantum interaction into a propagator i(p- m)-1 associated with 

D converts it into a sum of three terms. The first is a propagator i(p- m)-1 

multiplied by a factor that is zeroth order in r = lkl. The second is a propagator 
i(P+ ~- m)-1 multiplied by a factor that is zeroth order in r. The third is a 
vertex-type term, which has logarithmic singularities on the two surfaces p2 -

m2 = 0 and (p + k)2 - m2 = 0. This latter term has a typical vertex-correction 
type of analytic structure even though it is represented diagrammatically as (the 
nonmeromorphic part of) a simple vertex insertion. 
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4. Triangle Diagram Process 

In the introduction we described a hard-photon process associated with a 

triangle diagram D. In this section we describe the corrections to it arising from 

a single soft photon that interacts with D in the way shown in Fig. 2. 

' ........... v. 
........ ----

~---~~~----· 
....... J":\ <, __ .. ~ .,. 

...... .... ....... 

Fig. 2 Diagram representing a soft-photon correction to a. hard­

photon triangle diagram process. Hard and soft photons are repre­

sented by dashed and wiggly ·lines, respectively. 

Each external vertex v; of Fig. 1 represents the two vertices upon which the 
two external hard photons are incident, together with the charged-particle line 

that runs between them. The momenta of the various external photons can be 

chosen so that the momentum-energy of this connecting charged-particle line 

is far from the mass shell, in the regime of interest. In this case the associated 

propagator is an analytic function. We shall, accordingly, represent the entire 

contribution associated with each external vertex v; by the single symbol V., and 

assume only that the corresponding function is analytic in the regime of interest. 

The analysis will then cover also cases outside of quantum-electrodynamics. 

In Fig. 2 the two solid lines with Q-vertex insertions represent generalized 

propagators. We consider first the contributions that arise from the meromor­
phic or pole contributions to these two generalized propagators. 

Each generalized propagator has, according to {3.5), two pole contributions, 

one proportional to the propagator i(p- m)-1 , the other proportional to 

i ( p+ fi - m) - 1
• This gives four terms, one corresponding to earll of the four 

diagrams in Fig. 3. Each line of Fig. 3 represents a propagator i(p;- m)-1 or 

i(p;+ ~-m)-1 
, with i = 1 or 2labelling the two relevant lines. The singularities 

on the Landau triangle-diagram surface <p = 0 arise from a conjunction of three 
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such singularities, one from each side of the triangle. 
.... J"" .... , 

. ~ -· ''.... ,.-' 

,,:~ ...... .. ' .. . 

(C) 

......... ,.-

·---~/-
--~, ..,, ' 

.. (d) ~ 

Fig. 3 Diagrams representing the four contributions that arise 

from inserting into each of the two generalized propagators repre­

sented in Fig. 2 the sum of the two meromorphic terms given by 

(3.5). 

The diagram (a) represents, by virtue of (3.5), the function 

F. I d:'p r d:'k .(k2 ·o)-1 
a = (2rr )4 J11ci~S (2rr )4 ' + ' 

Tr{i(p + m) Vi {P1 + m) (2Pt~o~P(2ptk)-1 
- 'Y~o~ ~) 

p2 - m2 p~ - m 2 2p1k + k2 

~ (2P2~o~k2(2pzk)-1 - h~o~2) (rh+m)~} (4.!) 
2P2k + k2 p~ - m 2 

wher~ p1 = p + q11 P2 = p- q3 , p;k = p;k + iO, and q; is the momentum-energy 
carried out of verte.x v; by the external hard photons incident upon it. The 

vector p = P3 is the momentum-energy flowing along the internal line that runs 

from v1 to v3. 

To give meaning to the function (k2 +i0)-1 at the point k = 0 we introduce 

polar coordinates, k = d1, and write10 
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Then Fa becomes 

Fa = j r:J4p {6 2rdrj r:I4n ic(n5 + fi2 -1) 
{271" )4 Jo {271" )4 n 2 + iO 

Tr{i(p + m)Vi (Pt + m) (2pt,..n
2
{2ptn)-

1
- "'!,.. ~) 

r - m2 p'f - m2 2ptn + rn2 

l.l. (2P2,..n
2
{2P2n)-

1
- ~"'!,..) (P2 + m) \t.} 

2 2P2n + rn2 ~ - m2 3 • 
(4.3) 

where Pin represents Pin+ iO. 

The integrand of this function behaves near r = 0 like rdr. Hence the 

integral is infrared finite. 

We are interested in the form of the singularity at interior points of the 

positive-a branch of the Landau triangle-diagram surface cp = 0. Let q = 
(q1,q2,q3) be such a point on cp(q) = 0. The singularity at q is generated 

by the pinching of the contour of integration in p-space by the three surfaces 

p~- m2 = 0. This pinching occurs at a point in the domain of integration where 

the three vectors (Pt.P2 1PJ) lie at a point {pt(q),P2(q),PJ(q)) that is determined 

uniquely by the value q on cp = 0.11 At this point none of these vectors is parallel 

to any other one. Consequently, in view of the iO rules described in connection 

with Fig. 1., it is possible, in a sufficiently small p-space neighborhood of 

{p1(q),P2(q),PJ(q)), for sufficiently small c, to shift the contour of integration 

in n space simultaneously into the regions Im p1n > 0 and Im P2n > 0, and 

to make thereby the denominator factors Pin and Pin+ rn2 ,for i E {1,2}, all 

simultaneously nonzero, for all points on then contour. In this way the factors 

in ( 4.3) that contain these denominator functions can all be made analytic in 

all variables in a full neighborhood of the pinching point. Consequently, these 

factors can, for the purpose of examining the character of the singularity along 

cp = 0 be incorporated into the analytic factor l/2. 
The computation of the form of the singularity on cp = 0 then reduces 

to the usual one: the singularity has the form log cp, and the discontinuity is 

given by the Cutkosky rule, which instructs one to replace each of the three 

propagator-poles i(p~- m2
) by_ 271"8(pf- m2

). 

This gives most of what we need in this special case: it remains only to be 

shown that the remaining singularities on cp = 0 are weaker in form than logcp. 
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H one were to try to deal in the same way with the function represented 

by Fig. 2, but with the original vertices"'(,. rather than Q,., then (3.2) would be 

used instead of (3.5) and the integration over r in the_ expression replacing {4.3) 
would become infrared divergent. The definition of k'l + iO embodied in (4.2) is 

insufficient in this case. A proper treatment {see Appendix A) shows that the 

dominant singularity on the surface cp = 0 would in this case be {logcp)2 • · 

The diagram {b) of Fig. 3 represents the function 

f. o:tp [s f o:tn io(~ + fl2 -1) 
Fb = (211" )4 Jo 2rdr (211" )4 0.2 + iO 

Tr { i(p + m)Vt ((2p;,. + 2ri1,.)0.2(2pln + 2ri12)-1- Yl."'f,.) 
r -m2 . 2Pt0.+r0.2 

{p1 +r ?l+m) u 
X Y2 

(pl + r0.)2 - m2 

X (2]J2,.0.
2
(2P20.) - ll' ?l) (~ + m) ~} 

2P20.+r0.2 ~ -m 
(4.4) 

where p;O. represents p;O. + iO. This integral also is free of infrared divergences. 
It is shown in Appendix D that its singularity on cp = 0 has the form cp2 log cp. 

The same result is obtained for diagrams (c) and {d) of Fig. 3. 

The remaining contributions to the process represented in Fig. 2 involve the 

nonmeromorphic parts of at least one of the two generalized propagators. These 

nonmeromeorphic parts are given by (3.7). This expression gives logarithmic 

singularities on Pl - m 2 = 0 and (p; + rU)2 
- m2 = 0, for i = 1 and 2. It gives 

singularities also on p;O. = 0 and p;O. + rU2 = 0, and a lf;3
/

2 singularity on the 

portion of the surface d; = 0 that lies between p;U = 0 and p;O. + r0.2 = 0. 

For p in a small neighborhood of the fixed pinching point one can. again, 

for sufficiently smalls, distort then contour simultaneously into the upper-half 

planes of both p10. and P2n, and thereby avoid simultaneously the zeros of p;O., 

p;O. = rU2 , and also those of 

d;(2r)-2 = (p;0.)2
- (p?- m2)0.2. 

Thus for every point on the n contour the nonmeromorphic part of the propa­

gator associated with line i takes, near the pinching point, the form 

A 
11 (p; + rf2)2 - m2 

;- og 2 2 , 
r Pi -m 

(4.5) 
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where A, is analytic in all variables. 

If we combine the two factors (4.5), one from each end of the photon line, 

then the two displayed powers of r-1 join with rdr to give drfr. Consequently, 

if each of the two logarithmic factors in {4.5) were treated separately then an 
infrared divergence would ensue. However, the entire (4.5), taken as a unit, is 

of zeroth order in r, and it gives no such divergence. It is therefore necessary in 

the treatment of the nonmeromorphic part to keep together those contributions 

coming from various logarithmic singularities, such as the two logarithmic sin­

gularities of (4.5), that are naturally tied together by a cut. By contrast, in the 

meromorphic part it was possible to treat separately the contributions from the 

two different pole singularities associated with each of the two sides i = 1 and 

i = 2 of the triangle: for the meromorphic part each of the four terms indicated 

in Fig. 3 is separately infrared convergent. 

The product of the two factors ( 4.5) gives an integrand factor of the form 

(4.6) 

The dominant singularity on cp = 0 generated by this combination is shown in 

Appendix E to be of the form cp2 (1og<p)2 • If one combines the nonmeromorphic 

part from one end of the soft-photon line with the meromorphic part from 

the other end then the resulting dominant singularity on cp = 0 has the form 

cp log cp. Replacement of one of the two Q-type interactions in Fig. 2 by a C­
type interaction does not materially change things. The results are described in 
Appendix F. 

We now turn to the generalization of these results to processes involving 

arbitrary numbers of soft photons, each having a Q-type interaction on at least 
one end. 
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5. Residues of Poles in Generalized Propagators 

Consider a generalized propagator that has only quantum-interaction in­

sertions. Its general form is, ru:::cording to (2.15), 

rrn [(rrr.~k~j - OP~k~j) 100 

d). • (-~)] 
• " 1 J " 1 J 0 J 8nPj J=l y. 

i i i 
( P+ ~ - m ""'t7t P+ ~+ ~1 - m "Yt72 P+ ~+ ~1 + ~2 - m 

• • • X "Yt7n """"P+-~..,....+-~.,.,..1-. '-: .-+---:":'~---m) (5.1) 

where 
(5.2) 

The singularities of (5.1) that arise from the multiple end-point >.1 = >.2 = 
• · · An = 0 lie on the surfaces 

2 2 Pi =m, (5.3) 

where now (in contrast to earlier sections) 

(5.4) 

At a point lying on only one of these surfaces the strongest of these singularities 
is a pole. As the first step in generalizing the results of the preceding section to 
the general case we compute the residues of these poles. 

The Feynman function appearing in (5.1) can be decomposed into a sum of 
poles times residues. At the point a = 0 this gives 

(5.5) 

where for each i the numerator occurring on the right-hand side of this equation 
is identical to the numerator occurring on the left-hand side. The denominator 

factors are 

Dli = il(2p;k;; + (~;)2 + iO), 
j<i 
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and 

where 

D2i = I1(2p,/q; + (/q;? + iO), 
j>i 

/qj = ±[(kl + ... + k;)- (kl + ... + /q)]. 

(5.6b) 

(5.7) 

The ± sign in (5.7) is specified below Eq. (8.3c). Since the singularities 

in question arise from the multiple endpoint At = · · ·An = 0 it is sufficient 
for the determination of the analytic character of the singularity to consider an 

arbitrarily small neighborhood of this endpoint. We shall consider, for reasons 

that will be explained later, only points in a closed domain in the variables k; 
upon which the parameters p,k; and 2p,/q; + (/q;)2 are all nonzero. Then the 

factors D1/ and D;/ are analytic functions of the variables .A; in a sufficiently 

small neighborhood of the point At = · · · = An = 0. Hence a power series 

expansion in these variables can be introduced. 

The dominant singularity coming from the multiple end point >.1 = · · · = 
An = 0 is obtained by setting to zero all the >.; coming from either the numerators 

Nli and N2; or the power series expansion of the factors D1/ and D;/. Then 
the only remaining .A;'s are those in the pole factor ((pi+ a)2 - m2)-t itself. 

Consider, then, the term in (5.1) coming from the ith term in (5.5). And 

consider the action of the first operator, j = 1, in (5.1)~ This integral is essen- · 

tially the one that occurred in section 3. Comparison with (2.3), (3.6), and (3.3) 

shows that the dominant singularity on p~ - m2 = 0 is the function obtained by 

simply making the replacement 

Each value of j can be treated in this way. Thus the dominant singularity of 

the generalized propagator (5.1) on p[- m2 = 0 is 

n 

II [(s:;kij- o~ik?) Pip;(P;k;)-1
] 

i=l 

Nt;i(p; + m)N2i 
X Dt;(p? - m 2)D2; · 
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The numerator in (5.9) has, in general, a factor 

i(pi- /4 + m)-y.,)(Pi + m)"Ya;+1 i(pi+ /4+t + m) 

= i(pi- /4 + m)"Ya;i((pi + m)i(2Pw;+1 + 'Ya;+l 14+t) 

+ i(pi- /4 + m)Ja;"'ta;+l (p;- m
2

) 

= i{2Pw;- /4'Ya; )i{p + m)i(2Pia;+1 + 'Ya;+1 14+t) 

+ i(p~ - m2ha; (2Pw;+l + 'YaHt /4+t) 

+ i(pi- /4 + m)Ja;"'ta;+1 (p~- m2
) (5.10) 

The last two terms in the last line of this equation have factors p~- m2 • 

Consequently, they do not contribute to the residue of the pole at P? - m2 = 0. 

The terms in {5.10) with a factor 2Pia;+1 , taken in conjunction with the factor 

in (5.9) coming from j = i + 1, give a dependence 2pipi2Pwi. This dependence 

upon the indices Pi and Uj is symmetric under interchange of these two indices. 

But the other factor in (5.9) is antisymmetric. Thus this contribution drops out. 
The contribution proportional to Pia; drops out for similar reasons. 

Omitting these terms that do not contribute to the residue of the pole at 

P? - m2 one obtains in place of (5.10) the factor 

(5.11) 

which is first-order in both /4 and /4+t· 

The above argument dealt with the case in which i =/: 0 and i =/: n: i.e., the 

propagator i is neither first nor last. If i = 0 then there is no factor k; = ko in 

(5.11): in fact no such ki is defined. Hi= n then there is no factor lco+t = k..+t 
in (5.11): in fact no such k; is defined in the present context. Thus one or the 
other of the two k- dependent factors drops out if propagator i is the first or 

last one in the sequence. 

This result (5.11) is the generalization to the case n > 1 of the result for 

n = 1 given in {3.5). To obtain the latter one must combine (5.11) with {5.9). 

The effect of (5.11) is to provide, in conjunction with these pole singularities, a 

"convergence factor" for the factors lying on either side of each pole factor in 
the pole-residue decomposition (5.5). That these "convergence factors" actually 

lead to infrared convergence is shown in the following sections. 

31 



6. Infrared Finiteness of Scattering Amplitudes. 

Let D be a hard-photon diagram. Let D' be a diagram obtained from it by 

the insertion of soft photons. Suppose at first that each soft photon is connected 

on both ends into D by a Q-type interaction. 

Each charged-particle line segment L of D is converted into a line L' of D' 
by the insertion of n 2: 0 soft-photon vertices. The line L' of D' represents a 

generalized propagator. Let the symbols L;, with i E {0, ... n}, represent the 

various line segments of L'. 

In this section we shall be concerned only with the contributions coming 

from the pole parts of the propagator described in section 5. In this case each 

generalized propagator is expressed by (5.9) as a sum of pole terms, each with 

a factorized residue enjoying property (5.11). 

One class of diagrams is of special interest. Suppose for each charged line 

L' of D' there is a segment L; such that the cutting of each of these segments 

L;, together perhaps with the cutting of some hard-photon lines, separates the 

diagram D' into a set of disjoint subdiagrams each of which contains precisely 

one vertex of the original diagram D. In this case the soft-photon part of the 

computation decomposes into several independent parts: all dependence on the 

momentum k; of the soft photon j is confined to the functional representation 

of the subdiagram in which the line representing this photon is contained. 

The purpose of this section is to prove infrared convergence for the special 

case of separable diagrams defined by two conditions. The first condition is that 

the diagram D' separate into subdiagrams in the way just described. We then 

consider for each line L' of D' a single term in the corresponding generalized 

propagator (5.9). The second condition is that in this term of (5.9) the factor 

i(p; + m)(p[- m2)-1 correspond to the line segment of L; that is cut to produce 

the separation into subdiagrams. Then each subdiagram will contain, for each 

charged-particle line that either enters it or leaves it, a half-line h that contains 

either the set of vertices j 2: i, or, alternatively, the set of vertices j < i, of that 

charged-particle line. 

It is also assumed that the diagram D is simple: at most one line segment 

(i.e., edge) connects any pair of vertices of D. 

The contributions associated with diagrams of this kind are expected to give 
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the dominant singularities of the full function on the Landau surface associated 

with D. If the functions associated with' all the various subdiagrams are well 

defined when the momenta associated with all lines of D are placed on-mass­

shell then the discontinuity of the full function across this Landau surface will 

be a product of these well defined functions. By virtue of the spacetime fall-<>ff 

properties established in paper I these latter functions can then be identified 

with contributions to the scattering functions for processes involving charged 

external particles. The purpose of this section· is to prove the infrared finiteness 

of these contributions to the scattering functions. 

Each subdiagram can be considered separately. Thus it is convenient to 

introduce a new labelling of the set of, say, n soft photons that couple into 

the subdiagram under consideration. To do this the domain of integration 0 $ 

lkil $ 8, j E {1, ... , n }, is first decomposed into n! domains according to the 

relative sizes of the Euclidean magnitudes lkil· Then in each of these separate 

domains the vectors k. are labelled so that lk1l ~ lk2l ~ ... ~ l!c,.l ~ 0. A 

generalized polar coordinate system is then introduced: 

(6.1) 

Here lrd $ 8, and hi $ 1 for j = 2, ... n, and nn = (hj0)2 + (Oj)2 = 1. 

The factors in D;(a = 0), as defined in (5.6), are 2p;k.i + (k.j)2 • However, 

the k;j are no longer given by (5.7). With our new labelling the formula (5.7) 

becomes 

k.j = 2: ± kj', 
j'EJ(i,j) 

(6.2) 

where the signs ± are the same as the signs in (5.7): only the labelling of the 

vectors is changed. 

Let j(i,j) be the smallest number in the set of numbers J(i,j). Then 

singling out this term in k;j one may write 

(6.3) 
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where R is bounded. 

The zeros of the factors (2p;f2;(i.J) + R) play an important role in the in­

tegration over n space. However, our objective in this section is to prove the 

convergence of the integrations over the radial variables r;, under the condition 

that the n contours can be distorted so as to keep all of these 0-dependent 

factors finite, and hence analytic. The validity of this distortion condition is 

proved in Section 8. 

To prove infrared convergence under this condition it is sufficient to show, 

for each value of j, that if the differential dr; is considered to be of degree one in 

r; then the full integrand, including the differential dr;, is of degree at least two 

in r;. This will ensure that the integration over r; is convergent near r; = 0. 

The power counting in the variables r;• is conveniently performed in the 

following way: the factor lk;l d lk;l arising from a:tk;/kJ + iO gives, according to 

(6.1), a factor that has, in each variable rj', the degree of (r1 • • • r;)2 • This factor 

may be separated into two factors (r1 • • • r;), one for each end of the photon line. 

Then each individual generalized propagator can be considered separately: for 

each coupling of a photon j carrying momentum kj = r 1 • • • r;f2; into a half-line 

h we assign to hone of the two factors (r1 • • • r;) mentioned above. Thus each 

half-line h will have one such numerator factor for each of the photon lines that 

is incident upon it, and this numerator factor can be associated with the vertex 

upon which the photon line is incident. On the other hand, (6.3) entails that 

there is a dominator factor r 1 • · · r;(iJ) associated with the jth interval of h. 

Finally, if the photon incident upon the endpoint of h that stands next to the 

interval that was cut is labelled by e then there is an extra numerator factor 

ri · · · re: it comes from the factor JC;+t (or /4) in (5.11). 

We shall now show that these various numerator and denominator factors 

combine to produce for each j, and for each half-line upon which the soft photon 

j, is incident, a net degree in r; of at least one, and for every other half-line a 

net degree of at least zero. 

Consider any fixed j. To count powers of r; we first classify each soft photon 

j' as "nondominant" or "dominant" according to whether /2:: j or j' < j. Any 
line segment of h along which flows the momentum k;, of a dominant photon j' 

will, according to (6.3), not contribute a denominator factor r;. 
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Thus the denominator factors that do contribute a power of r1 can be 

displayed graphically by first conSidering the line h that starts at the initial 

vertex j = e, which stands, say, just to the right of the cut line-segment L,, and 

that runs to the right. Soft photons are emitted from the succession of vertices 

on h, arid some of these photons can be reabsorbed further to the right on h. 
In such cases the part of h that lies to the right of the vertex where a dominant 

photon is emitted but to the left of the point where it is reabsorbed may be 

contracted to a point: according to (6.3) none of these contracted line segments 

of h carry a denominator factor of ri. If a dominant soft photon is emitted but 

is never reabsorbed on h then the entire part of the line h lying to the right of 

its point of emission can be contracted to this point. 

If the line obtained by making these two changes in h is called h' then, by 

virtue of (6.3), there is exactly one denominator factor ri for each line segment 

of h'. 

Self-energy and vertex corrections are to be treated in the usual way by 

adding counterterms. Thus self-energy-diagram insertions and vertex-rorrection 

diagrams should be omitted: the residual corrections do not affect the power 

counting. This means that every vertex on h', excluding the last one on the 

right end, will be either: 

1. An original vertex from which a single nondominant photon is either emit­

ted or absorbed; or 

2. A vertex formed by a contraction. Any vertex of the latter type must 

have at least two nondominant soft photons connected to it, due to the 

exclusion of self-energy and vertex corrections. 

The first kind of vertex will contribute one power of r·i to the numerator, 

whereas the second kind of vertex will contribute at least two powers of ri. 

Every line segment of h' has a vertex standing immediately to its left. Thus 

each denominator power of ri will be cancelled by a numerator power associated 

with this vertex. This cancellation ensures that each half-line will be of degree 

at least zero in ri. 

If the soft-photon e incident upon the left-hand end of h' is nondominant 

then one extra power of ri will be supplied by the factor ~e coming from (5.11). 

35 



If the soft photon e is dominant then there are two cases: either the left-most 
vertex of h' is the only vertex on h', in which ~ there are no denominator 

factors of r;, but at least one numerator factor for each k; vertex incident on 
h; or the left most vertex of h' differs from the rightmost one, and is formed by 
contraction, in which case at least two nondominant lines must be connected 

to it. These two lines deliver two powers of r; to the numerator and hence the 

extra power needed to produce degree one in r;. 

This result for the individual half lines means that for the full subdiagram 

the degree in r; is at least one for every j. Hence the function is infrared 
convergent. 

The arguments of this section cover specifically the special class of separable 
diagrams D'. It is shown in section 8.6 how the argument is adapted to cover a 

g~neral diagram D' constructed from a triangle diagram D. 
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1. Inclusion of the Classical Interactions 

The power-counting arguments of the preceeding section dealt with pro­

cesses containing only Q-type interactions. In that analysis the order in which 

these Q-type interactions were inserted on the line L of D was held fixed: each 

such ordering was considered separately. 

In this section the effects of adding C-type interaction are considered. Each 
C-type interactions introduces a coupling k11"'f11 =fo. Consequently, the Ward 

identities, illustrated in (2.7), can be used to simplify the calculation, but only 

if the contributions from all orders of its insertion are treated together. This we 

shall do. Thus for C-type interactions it is the operator C defined in (2.5) that 

is to be used rather than the operator C defined in (2.12). 

Consider, then, the generalized propagator obtained by inserting on some 

line L of D a set of n interactions of Q-type, placed in some definite order, and 

a set of N C-type interactions, inserted in all orders. The meromorphic part of 

the function obtained after the action of then operators Q; is given by (5.9). 

The action upon this of theN operators C; of (2.5) is obtained by arguments 
similar to those that gave (5.9), but differing by the fact that (2.5) acts upon 

the propagator present before the action of C;, and the fact that now both limits 
of integration contribute, thus giving for each C; two terms on the right-hand 

side rather than one. Thus the action of N such C; 's gives 2N terms: 

where 

2fl n n+N ( ipf? ) 
= E Sgn(0) E IT ~~i. 

6=1 i=Oj=n+l Pi J 

X { Iln [(t:.~ei - 8Pik~i) (~)]} 
. P.J J P.J J pf? k . 

J=l I J 

N~ i(lf + m) Nil 
x D?; (p~)2 - m2 D~' 

0 = (0n+t. · · ·, 0n+N ), 

0; = +1 or 0, 
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Pi = P + k1 + · · · +~, (7.2) 

and the superscript 0 on the N's and D's means that the axgument Pi appearing 

in (5.5) and (5.6) is replaced by P?. Note that even though the action of C; and 

Q; involve integrations over >. and differentiations, the meromorphic paxts of 

the resulting generalized propagators are expressed by (7.1) in relatively simple 

closed form. These meromorphic parts turn out to give the dominant contribu­

tions in the mesoscopic regime, as we shall see. 

The essential simplification obtained by summing over all orders of the C­
type insertions is that after this summation each C-type interaction gives just 

two terms. The first term is just the function before the action of C; multiplied 

by iPi~o~j(pik;)-1 ; the second is minus the same thing with Pi replaced by Pi +k;. 

Thus, apart from this simple factor, and, for one term, the overall shift in Pi• 

the function is just the same as it was before the action of C;. Consequently, 

the power-counting axgument of section 6 goes through essentially unchanged: 

there is for each classical photon j one extra denominator factor (pik;) coming 

from the factor iPiuAPik; }-1 just described, but the powers of the various ri in 

this denominator factor axe exactly cancelled by the numerator factor (r1 • • ·r;) 

that we have associated with the vertex C;. Because of this exact cancellation 

the C-type couplings do not contribute to the power counting. Hence when C­

type couplings axe allowed the axguments of section 6 lead to the result that the 

meromorphic paxt of the function F associated with the quantum photons is of 

degree at least one in each of the variables r;. Hence is infraxed convergent. 
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8. Distortion of the n Contours 

8.1 Landau Equations, D!agrams, and Distortion Conditions 

In this section we show that it is possible to distort the n contours in such 

a way as to avoid all n-d.ependent singularities in any term in the pole-residue 

decomposition of the function corresponding to a simple triangle diagram with 

an arbitrary number of photon-line insertions, each having a quantum-type 

vertex on at least one end. The simple triangle diagram is shown in Fig. 4. 

Figure 4. The basic charged-particle triangle diagram. The 

momentum-energy p 3 flows along side s of the triangle . in the di­

rection of the arrow. Here P? > 0, pg < 0, and pg > 0. 

The momenta p1 , -[>2, and P3 represent the momenta flowing from v2 to 

vH from v2 to v3 , and from v1 to v3 , respectively. Conservation of energy­

momentum is represented by introducing a dosed loop carrying momentum p, 

and two open paths carrying momenta q1 and q3 , respectively, in the directions 

indicated by the arrows. Then p1 = p + q1, P2 = p- q3 , and P3 = p. 

The function associated with this Feynman diagram has a singularity on 

the positive-a Landau-Naka.nishi triangle-diagram singularity surface cp(q) = 0, 

where q = ( q1, q2, q3) and q3 = -q1 - q2. For each point q on this surface cp. = 0 

there is a uniquely defined set of three four-vectors p1(q),P2(q), and PJ(q) such 

that the singularity at q of the Feynman function FD(q) corresponding to the 
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diagram D of Fig. 4 arises from an arbitrarily small neighborhood 

P::::: p(q) = Pl(q)- q1 = J'2(q) + q3 = PJ(q) (8.la) 

in the domain of integration of the Feyn.man function. These three four-vectors 

p.(q) satisfy the mass-shell constraints 

(8.16) 

and the (Landau-Nakanishi) loop equation 

(8.lc) 

where the a. are nonnegative real numbers. This loop equation implies that 

for each q on <p(q) = 0 the three four-vectors p.(q) lie in some two-d.imensional 

subspace of the four-dimensional energy-momentum space. 
( 

We shall consider a fixed interior point q of the surface cp = 0. In this case 

each of the three parameters a. is nonzero, and each of the three four-vectors 

vectors p.(q) is nonparallel to each of the other two. 

Consider now a diagram D' obtained by inserting some finite number of 

soft-photon lines i (id) into D. Each inserted line begins on a line of D and 

ends on a line of D. The bound 8 on the Euclidean norms 1~1 of the photon 
momenta is taken shall enough so that 

nS < 8' << m, (8.2) 

where n is the number of photon lines in the diagram. 

Momentum-energy conservation is now maintained by introducing a sepa­

rate closed loop for the momentum ~ of each photon line. Momentum ~ flows 

along the photon line segment i in the direction indicated by the arrow placed 

on that. line segment. It then continues to flow through the diagram by flow­

ing along certain charged-particle lines of the diagram D'. This continuation 
through D' is specified by the condition that it pass through at most one of the 

three vertices v1,v2,v3. 

The arrow on photon line i is chosen so that every term p.~ that occurs in 

any Feynman denominator occurs with a plus sign. Consequently, the Feynman 

rule that m2 represents m2 - iO is compatible with the rule that each p.~ 
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represents p~Jc. + iO. No condition is placed on the sign of the energy component 

k?. 
Each charged-particle line segment j has an arrow placed on it. The mer 

mentum flowing along the charged-particle segment j in the direction of this 

arrow is called 'L,;. It is the momentum p. flowing along the side of the triangle 

upon which segment j lies, as defined in Fig. 4, plus the sum of photon momenta 

Jc. carried by the photon loops that pass along this segment j. 

Our interest here. is in the functions that arise from inserting the pole­

residue decomposition formula (5.5) into the generalized propagators corre­

sponding to the three sides of the original triangle diagram D. For the simple 

diagram D' of Fig. 2 this decomposition gives a sum of the four terms repre­

sented by the four graphs of Fig. 5 

(a..) ( b> 

(C) 

Figure 5. The graphs representing the four terms that arise from 
inserting the pole-residue decomposition formula (5.5) into the func­

tion represented by the diagram D' of Fig. 2. 
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The asterisk on a line segment indicates that it is the segment associated 

with the denominator pr - m2 + iO in the pole-residue decomposition (5.5). 

Each of the other charge-particle segments j is associated with a pole-residue 

denominator function 

1; = 2p;n;; + p;;n~; + io 

where, in the notation of (6.3), 

and 

n;; = (n;(iJ> + ... ). 

(8.3a) 

(8.3b) 

(8.3c) 

Each of the remaining terms in the parentheses in (8.3c) is a product of some 

±n~. with a product of a non empty set of factors rh(h ~ 2). 

Each of the pole-residue factors !; is formed by first taking the difference 

a;lLJ- 2::~), where 2::; is the momentum-energy flowing along segment j in 

the direction of the arrow on that segment, and Ls is the momentum-energy 

flowing along the * segment on the same side s of the charged-particle triangle, 

and then dividing out the common factors rh(h ~ 1). (~he vector Ls was called 

p; in sections 5, 6 and 7.) The sign a;s is the sign that makes the term 2pskt in 

a;a(2::J- 2::~) that has the smallest value of e appear with a positive sign. 

The iO rule for this difference is fixed in the following way: in order to 

make the pole-residue formula well defined each quantity Psk; is replaced by 

p8 k; +it:; with e; >> e;+l > 0, for the ordering (6.1). Thus each e; is taken 

to be much larger than the next smaller one, so that it dominates over any 

sum of smaller ones. This makes each difference of denominators that occurs in 

the pole-residue decomposition well defined, with a well-defined nonvanishing 

imaginary part. Then the sign of ±iO in (2::J- 2::;;) is fixed so as to agree with 

the sign of the imaginary part of the difference 2::] - 2::;; defined in this way. 

This yields the +iO shown in (8.3). 

The full set of functions ]; whose zero's define the locations of the singu­

larities of the four functions F represented by the diagrams of Fig. 5 are given 

in Fig. 6. The functions ]; for j = (1, ... , 6) correspond to denominators ]; + iO. 

The function fr corresponds to the a-function constraint S(nn- 1), and Is 
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corresponds to the Heaviside function O(r). 

(a) 
!I=f22 
h = 2P20+r02 

h = (P2 + r0)2 - m2 

14 = 6>I + r0)2 
- m2 

is= 2p10 + r02 

Is =1'5 -m2 

/r=Ofl-1 
ls=r 

(c) 
It =02 

h =p~-m2 

h = 2P20+r02 

14 = 6>I + r0)2 
- m2 

Is= 2p10 + r02 

ls=P5 -m2 

/r=Ofl-1 
is=r 

(b) 
11 =02 

h =2P20+r02 

h = (P2 + r0)2 - m2 

I4 = 2p10 + r02 

Is =pi -m2 

Is =1'5 -m2 
fr=Ofi-1 
ls=r 

(d) 
Il =02 

h =p~-m2 

h =2P20+r02 

I4 = 2pl0 + r02 

Is =pi -m2 

Is =p5 -m2 

I7 =on -1 

Is=r 

Figure 6. The functions !; whose zeros define the singularity 
surfaces of the four functions F represented by the graphs of Fig. 5. 

Here, and in what follows, the vectors p., s = 1, 2, 3, are the vectors 

defined beneath Fig. 4. 
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The necessary (Landau-Nakanishi) conditions12- 15 for a singularity (in the 

original real domain of definition) of one of these functions F is that there be 

a set of real numbers a 1, ••• ,a8 , not all zero, a real number r;:::: 0, and a pair of 

real four-vectors 0 and p, with Pt = p + qh P2 = p - (}3, and P3 = p, such that 

and 

a;/;= 0 

8 8!­
l:a;-1 = 0 
i=j ax, 

where Xt = fl, X2 = r, X3 = p, and 

a;;:::: 0 

Also, 

all je{1, ... ,8}, 

all ie{1,2,3}, 

je{l, ... ,6}. 

h = 0, and r < < m. 

(8.4a) 

(8.4b) 

(8.4c) 

(8.4d) 

The contribution from the upper end points of the r integrals are neglected 

because these end points are artificially introduced, and hence do not represent 
singularitieS of the full function. 
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The Landau matrix L;; = !8!; I ax, for the function represented. by the 

graph of Fig. 5a is shown in Fig. 7. The Landau (loop) equations (8.4b) are 

formed by multiplying each row j of this matrix by a; and requiring the sum of 

each of its columns to va.D.ish. 

!; dU dr dp 

It =112 n 0 0 

h = 2P211+r112 P2+r11 !U2 2 n 
h = (P2 + rU)2 - m2 r(P2 +r11) (P2 +rn)n P2+r11 
f 4 = <Pt +r11)2 -m2 r(p1 +r11) (pl + rn)n P1+ri1 
is= 2pln + r112 P1+rn !U2 2 n 
!6 =~ -m2 0 0 P3 
fr=Ufi-1 fi 0 0 

fs =r 0 ! 0 2 

Figure 7. The Landau matrix Lu corresponding to the graph in 

Fig. 5a. The u;. 's are negative for j = 2 and j = 5. 

There are two cases: r =f. 0, and r = 0. If r =f.· 0 then the equation (8.4a) 

implies as = 0. If one forms the combination of columns UdU-rdr and compares 

the entries to equation (8.4a), a;!;= 0, then one finds that the only term in the 

resulting loop equations is a 7Ufi = 0, with nfi = 1 This entails a 7 = 0. If, on 

the other hand, r = 0 then the dr column of L;; has an entry in row 8, and hence 

it cannot be used in this way. But for r = 0 this column does not contribute to 
rdr. So in either case the conclusion holds: ar = 0, and the nfi = 1 row does 

not contribute. 

Similar arguments in the case of graphs with more lines show that one can 

always eliminate all of the rows corresponding to n,fi; - 1. In the general case 

it is the combination of columns U;dU;- r;dr; + ri+1dr;+l that is used to show 

the vanishing of the row corresponding to n,fi, = 1. (See Appendix B.) 

Consider now the function corresponding to the graph in Fig. 5d, and the 

corresponding set of functions f; in Fig. 6d. This graph is a graph of the 

separable kind: cutting the three * segments separates it into three disjoint 

parts. 

If one considers the dU column with the nfi = 1 row deleted then one im-
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mediately concludes from a look at Fig. 6d, and from the nonparalled character 

of P2 + r!l, and p1 + r!l, and the impossibility of the simultaneous vanishing 

of ft and either h or / 4 , that the only solution of the implied n loop equa­

tion [and (8.4a)] is the trivial one in which all three contributions are zero-i.e., 

a1 =a3 =~=0 

In this situation we may invoke a basic lemma16: "For any sets of real 

numbers 7]ba and ).co the system of equations 

(8.5a) 

has a solution s = { s .. } if and only if the system of equations 

L:ab7]ba + Lf3c).cn = 0 ab ~ 0, Lab> 0 (8.5b) 
b c 

has no solution (a,/3)." 

Identifying (7Jba, >.en) with the entries in the dO and dr columns of £1;, with 
b = je{l, .... 6} and c = je{7, 8}, and identifying s .. = SO .. , for ae{O, 1, 2, 3}, as 

an imaginary displacement of the four-vector contour-of-integration variable n, 
we find from this lemma, and the above-mentioned fact [that the only solution 

of these equations is the trivial one with every term equal to zero], that at every 

point in the space of integration variables p and n where some set of functions /; 

vanishes there is a displacement of the contour in n space that shifts the contour 

away from every 0-<l.ependent vanishing!;: by virtue of (8!;/80)80 > 0 [i.e., 

(8.5a)] every such function /;(fl.) is shifted by this distortion into its upper-half 

plane. 

We are particularly interested in the functions represented by separable 

graphs, i.e., by graphs that separate into three disjoint parts when the three·* 

segments are cut. 

The argument just given for the graphs of Fig. 5d generalizes to all separable 

graphs: for all such graphs the 0; contours can be distorted away from their 

singularities. To obtain this result, consider first the example shown in Fig. 8 
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Figure 8. The graph representing a term in the pol~residue 

decomposition. This graph separates into three disjoint parts when 

one cuts the three * segments. 

Consider first the case where all r, =I 0. In this case the Landau equa­

tions are equivalent to the Landau equations that arise from using the k-space 

variables, instead of the (r, n) variables. Then the Landau equations associated 

with the function represented by the graph shown in Fig. 8 can be expressed 

in a simple geometric form: these equations are equivalent to the existence of 

a "Landau diagram" (a diagram in four-dimensional space) that has the form 

shown in Fig. 9. 
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Figure 9. The Landau diagram associated with the graph of Fig. 

8. We distinguish 'Landau diagrams' from 'graphs: the former are 

geometric, the latter topological. 

This Landau diagram is a diagram in four-dimensional space (thought of 

a.S spacetime), and each segment of the diagram represents a four vector. The 

rules are these: 

1. Each directed photon line segment i represents the vector 

(8.6a) 

where ~ is the momentum flowing along segment i of the graph in the 

direction of the arrow, and a,;::: 0. 

2. Each directed charged-particle segment j corresponding to a pole-residue 

factor /; represents the vector 

(8.6b) 

where E; is the momentum flowing along segment j of the graph in the 

direction of the arrow on it, and 

(8.6c) 
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where the sign u;, is defined below (8.3). 

3. Each directed charged-particle line segment s corresponding to a pole de­

nominator CL:~ -m2 + iO) is represented by a star (asterisk) line segment 

s, and it represents the vector. 

(8.6d) 

where 2:, is the momentum flowing along * line segmen~ s of the graph in 

the direction shown, and 

· a: = a, - L {3;,. (8.6e) 
jGJ(,) 

Here a, is the Landau parameter a corresponding to the function J, = 
E~ -m2 + iO, and for each sides the set J(s) is the set of indices j that 

label the pole-residue denominators that are associated with side s of the 

triangle graph. 

4. Three line segments appear in the Landau diagram that are not images of 

segments that appear in the graph. They are the three direct line segments 

that directly connect pairs of vertices from the set { v1, U2, v3}. The vector 

V. associated with the direct segments is 

V. = a,~.+ L f3;,(E; - E,). 
jGJ(•) 

(8.61) 

It is equal to the sum of the vectors corresponding to the sequence of * 
and non * charged-particle line segments that connect the pair of vertices 

v, between which the direct line segment s runs. 

The p loop equation is represented by the closed loop formed by the three 

direct line segments V. specified in {8.6f) The photon loop equation associated 

with the photon line carrying momentum ks is formed by adding to a,ks the 

sum of the vectors corresponding to the charged-particle segments needed to 

complete a closed loop in the diagram (See Appendix C). Thus the existence of 

a (nontrivial) solution of the Landau equations is equivalent to the existence of 

a (nonpoint) Landau diagram having the specified topological structure, with 

its line segments equal to the vectors specified in (8.6). 
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Although Figs. 8 and 9 represent a separable case the rules described above 

general: they cover all cases in which all r, are nonzero. 

For each s we~ use in the Landau diagram either v: or Va. We shall 

henceforth use always 'Va, the segment that directly connects a pair of vertices 

v,, rather than v;, and we shall place a star (asterisk) on each of these three 

direct line segments. These three direct line segments are geometrically more 

useful than the V;'s because they display immediately the p loop equations, and 

also the relative locations of the three external vertices Vi, and because each one 

has only a single contribution, a.E., of well-defined sign and direction, in the 

limit lea =? 0, provided condition (8.8) holds. 

We specify the way that photon loops pass through Landau diagrams: a 

photon loop shall pass through the star lines of a Landau diagram (i.e., along 

the direct line segment s) if and only if the corresponding loop in the graph 

passes through the star line s of the graph. 

We are considering first only QQ type photons: these have Q-type vertices 

on both ends, and propagate according to the usual Feynman rule. 

The positivity of the photon-line a,'s entails that each directed vector a1ka 
of Fig. 9 points in the positive (energy/time) direction (i.e., to the left) if the 

energy k? is positive, and in the negative direction (i.e., to the right) if the 

energy k? is negative. This fact entails that positive energy is carried by each 

nonzero (length) photon line segment of Fig. 9 out of the vertex that stands on 

its right-hand end and into the vertex that stands on its left-hand end. This 

result is true independently of the direction in which the arrow points, or of the 

sign of the energy component k?. 
In the general separable case some of the non * segments may have ai = 0, 

and hence contract to points. Consequently several photons may emerge from, 

or enter into, a single vertex of the Landau diagram. 

·we now assert a main result: for almost all points .on the triangle diagram 

Landau surface the only solutions to these Landau equations {for graphs with 

no self~nergy parts) are those in which every non* segment (charged-particle 

and photon) contracts to a point: i.e., every ai vanishes except possibly for the 

three a/s associated with the three * segments. 
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8.2 Separable Case; All r; =f 0. 

To prove this result for the separable case, and when all r, :f. 0, let us 

consider any one of the three disjoint partial diagrams of non * segments. Let 

V be the set of vertices of this partial diagram that lie on an end of at least 

one photon line that is not contracted to a point. Let VR be any element of V 

such that every nonzero-length photon line incident upon VR has its other end 

lying to the left of VR. Let VL be any element of V such that every nonzero­

length photon line that is incident upon VL has its other end lying to the right 

of VL. Then the total momentum K carried into either VR or VL by all photons 

incident upon it satiSfi.es K =/:- 0 and J(2 ~ 0: these properties follow from the 

fact that each photon line of nonzero length incident upon VR must carry a 

light-cone-directed momentum-energy with positive energy out of VR, and each 
photon line of nonzero length incident upon VL must carry a light-cone-directed 

momentum-energy with positive energy into VL. However, <:'ne cannot satisfy 

2pK + K 2 = 0 with p ~ p1,P2 or PJ, and with a small K =/:- 0 satisfying K 2 ~ 0. 

Consequently the charged-particle line segments of the partial Landau diagram 

lying on the outer extremities of the two charged particle lines must contract 

to points, by virtue of (8.4a): the associated Landau parameter a; must vanish. 

Recursive use of this fact entails that all of the lines in this partial diagram must 

contract to a single point. 

The existence of zero-length photon lines whose ends do not lie in V does 

not disturb this argument, provided self-energy diagrams are excluded. 

This result, that each non * line contracts to a point, means that every entry 

in every !'21 loop equation vanishes. Under this condition the lemma expressed 

by Eq. (8.5) shows that every n, contour can be distorted away from every 

!'2;-dependent singularity. 

We next show that this result continues to hold when some or all of the r; 

vanish. 
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8.3 Separable Case; Some ri = 0 

Let us first consider the simple example shown in Fig. 10. 

Figure 10. Part of the diagram of Fig. 9. 
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The Landau matrix for the diagram of Fig. 10 is shown in Fig. 11. 

h dill cm2 

02 1 n1 0 

02 2 0 02 

2Pt01 +r10~ Pt + r101 0 

2pl(Ol + r202) + r1(01 + r202)2 Pl + r101 + r1r202 r2(p1 + r101 + r1r202) 

2P2(01 + r202) + r1(01 + r202)2 P2 + r101 + r1r202 r2(Pt + r101 + r1r202) 

2P202 + r1 r20~ 0 P2 +r1r202 

Figure 11. The Landau matrix corresponding to the diagram of 

Fig. 10. The rows corresponding to the conditions Oiii = 1 have 

been removed, by using the argument given in Appendix B. 

If rl =J 0 =J r2 then one can multiply the n~ row by rl' multiply the n~ 
row by r1r~, multiply the last row by r 2 , and divide the dn2 column by r 2 • This 

brings the matrix into an equivalent one in which r 1 and r 2 occur only in the 

combinations k1 = r10 1 and k2 = r 1r202: this is the equivalent k form that was 

previously used for the case r 1 =J 0 =J r2. 

If r 1 = 0 and r 2 =J 0 then one can perform the same transformations 

involving r 2 , and bring the equations to the same form as before, except that 

the vector associated with the photon line segment 1 is now a 10 1 instead of 

a 1k17 and the vector associated with the photon line segment 2 is now a 2r 20 2 

instead of a2k2. The vectors r 10 1 and r1r202 that occur summed with p1 or 

P2 become zero. Thus the situation is geometrically essentially the same as in 

the case r 1 =J 0 =J r2 , though slightly simpler: .the small additions k1 and k2 to 

the vectors p1 and P2 now drop out. The important point is that the critical 

denominators 2pi< + [( 2 of the earlier argument now take the form 2pi1, with 
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112 ~ 0 and n #- 0. Such a product cannot vanish. Thus the earlier r; #- 0 

argument goes through virtually unchanged. 

If r 1 #- 0 and r2 = 0 then the 0 1 and O:z loop equations can be considered 

separately. The earlier r; #- 0 argument of section 8.2 can be applied to the first 

part alone, and it shows that each line segment on the 01 loop must contract 

to a point. Next the 0 2 equation can be considered alone, with each segment 

along which the 0 1 loop flows contracted to a point. Then the earlier r 1 = 0 

arguments can be applied now to this O:z part of the diagram (with r 2 in place of 

r1): it shows that each of the segments along which 0 2 flows also must contract 

to a point: the corresponding aj must be zero. 

The case r 1 = r:z = 0 is not much different from the case just treated: r 1 

enters Fig. 11 only in an unimportant way. 

The generalization of this argument ,from the case of Fig. 11 to the gen­

eral separable case is straightforward. Let r9 be the first vanishing element of 

the ordered set r 11 r 2 , ••• , rn. Then the set of 0 columns of the Landau matrix 

separates into one part involving only the 0; columns for i < g, and a second 

part involving only the 0; columns fori~ g. For the first part of this matrix 

the argument given above for the case with all r; #- 0 holds, and it entails that 

every line segment in this part must contract to a point. With all of the rows 

corresponding to these contracted segments omitted one may apply the r 1 = 0 

argument (with r 9 in place of r 1) to the part i ~ g, and proceed iteratively. 

This arguments leads to conclusion that the only solution to all of the 0; loop 

equations is the trivial one where every entry in every 0 column is zero. Hence 

the lemma expressed by Eq. (8.5) ensures that each 11; contour can be distorted 

away from all of its singularities, in the general separable case. 

As one moves from the domain where all r; > 0 to the various boundary 

points where some r; = 0 two kinds of changes can occur. Certain conditions 

that particular vectors 0; be in the upper-half plane with respect to a variable 

like {p1 + r 10 1 + r 1r 20 2 ) • 0; becomes slightly simplified when an r; becomes 

zero. Since the different conditions of this kind correspond to vectors Pt, P:z, and 

P3 that are well separated, the passage to a point r; = 0 causes no discontinuous 

change in the set of vectors that satisfy such conditions. The second kind of 

change is that some contributions to particular d!l; 's may suddenly drop out if 

some r; vanishes. (See Fig. 11 with r2 = 0). These changes at the boundary 
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points of the region r, ~ 0 do not entail any discontinuity in the distortion of 

then contours on the boundary. The possibility of using a distortion inn space 

that is everywhere continuous in (r, n) follows from the continuousness of the 

gradients of the functions j, (r, n), and the fact that at every point in the domain 

of integration the set of gradients of the set of vanishing J1 form a convex set: 

the Landau equations cannot be satisfied. 

8.4 Nonseparable Case; All r, # 0. 

We. consider next the functions represented by ~aphs such that the cutting 

of the three * segments does not separate the graph into three disjoint parts. 

The same result about distortions of n, contours can be obtained also for these 

functions. 

To obtain this result we consider first, as before, the case in which all r, -f 0. 

Then we may use the k form of the Landau equations gtven in (8.6). 

The argument proceeds as before, by making use of the vertices VR and VL. 

No such vertex can join together two pole, residue segments j of nonzero length: 

it is impossible to satisfy both 2pK1 +K~ = 0 and 2pK2 +Ki = 0 if K 1 -K2 = K 
satisfies K2 ~ 0 and K =I 0, and K 1 and 1<2 are small compared to the timelike 

p. Likewise, neither VR nor VL can join a * segment to a pole,residue segment 

j with Ctj =I 0: one cannot satisfy 2pK + K 2 = (2p + K)K = 0 if K2 ~ 0 and 
K =I 0, and K is much smaller than the timelike p. Consequently each of the 

vertices VR and VL must be confined to the set of external vertices u,: 

(8.7) 

In the nonseparable case some of the signs Uj6 will be negative. Conse, 

quently some of the vectors corresponding to pole,residue factors fi will point 

in the 'reversed' direction, because their /3i,'s, defined in (8.6c), are negative. 

There are also some (sometimes-compensating) reversals of the ways that cer­

tain photon loops run. These latter reversals arise because we have used, in 

the Landau diagrams, the three line segments that directly connect the pairs in 

{ Vt. u2, v3 }, rather than the images of the three star lines of the original graph. 

For example, the graph of Fig. 5c gives a Landau diagram of the form shown in 

Fig. 12. 
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13. 

Figure 12. The Landau diagram corresponding to the graph (c) 

of Fig. 5. This diagram represents the equations obtained from ' . 

Fig. 6c, with /I multiplied by r 2
, hand / 4 multiplied by r, and rS'l 

replaced by k. These changes recover the k form of the equations. 

The backward orientation of the vector a 5p1 arises from the negative 

sign of u5,1 • However, this vector is oriented against the direction of 
the photon loop. Consequently all contributions to this photon-loop 
equation proportional to any p6 have the form ajpa: the two reversals 

of the line segment j = 5 compensate for each other. 

A second example is the function represented by the graph shown in Fig. 
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7 

Figure 13. A graph representing a term in the pole-residue de­

composition. 

The functions /; and the Landau matrix corresponding to the function 

represented by the graph in Fig. 13 are shown in Fig. 14, for lktl > 1~1 > 0 

I; dkt dk2 dp 

It= k? kt 0 0 

h=lei 0 k2 0 

fa= 2ptkl +k? Pt +kt 0 kt 

14. = (p1 + kt)2 - m2 Pt +kt 0 Pt +kt 

Is = 2ptk2 + 2kt k2 +lei k2 Pt + kt +k2 k2 

Is= 2pt(kt- ~) + k?- lei Pt + kt -(pl + k2) kt -k2 

h = 2P2k2 +lei 0 P2+k2 k2 

Is =p~-m2 0 0 P2 
19 =p~ -m2 0 0 P3 

Figure 14. The Landau matrix for the function represented by 

the graph in Fig. 13, for lkd > lk2l > 0. The sign of O'jt is min.us for 
j = 3 and 6, and otherwise plus. 
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. The Landau diagram corresponding to the Landau matrix in Fig. 14 is 

shown in Fig. 15 

c(.£4- (p1 + R, J ~ o(~ ~I 
+ <II(S" ~'I. + ot, ( k,- k .. } 

Figure 15. The 'Landau diagram' that represents the Landau 

equations associated with the Landau matrix shown in Fig. 14. This 

diagram is not a true Landau diagram, because, for example, the 

vector a;~ cannot be a light-cone vector. Moreover, condition {8.7) 

is not satisfied. Were it not for the non-negativity condition on 

a 3 one could satisfy the Landau equations with a 3 = -Ct.t, and 

a1 = a2 = as = 0'6 = 0'7 = 0. 

The argument leading to {8.7) entails more than (8.7). It shows, in the 

present case where all k; =/: 0, that each vertex of the diagram that does not 

lie in { u1 , t12, v3 } and that has at least one nonzero-length photon line segment 

incident upon it must have at least two nonzero-length photon lines incident 

upon it: each such vertex must lie on the right-hand end of at least one such 

photon line segment, and on the left-hand end of some other such photon line 

58 



segment. Consequently, every nonzero-length photon line must lie on a 'zig-zag' 

path of photon lines that begins at aver~ in the set { v1 , t12, V:J}, moves always 

to the left, and ends on another vertex in {v1Jt12,V:J}: only in this way can the 

conditions J(2 ;::: 0 and K =I 0 used in the derivation of (8. 7) be overcome, if all 

kt are different from zero. 

Consider, then, an example with vertices labelled as in Fig. 16. 

v, 

Figure 16. A triangle graph with photon vertices labelled by 

numbers, and charged-particle line segments labelled by letters. The 

segments h, c, and n are * segments associated with the pole-residue 

decomposition (5.5). The photon lines have been suppressed. 
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Suppose VL = V:3 and VR = v1 are the unique VL and VR. Then some 
sequence of photon lines of nonzero length must join together to give a zig-zag 

path from v1 to V:J. Three examples are shown in Fig. 17. 

Figure 17. Three diagrams with zig-zag paths of photons con­

necting v1 to V:J. 

To analyse such diagrams we assume temporarily that for all pertinent 

solutions of the Landau equations 

(8.8) 

where B is some fixed finite number. That is, we exclude temporarily the case 

where some cr; becomes unbounded, with the cr. bounded. Then as one lets the 
S' in (8.2) tend to zero the vector V. defined in (8.6f) and, for jeJ(s), the vectors 

Vj defined in (8.6b) all become increasingly parallel to p •. 
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Consider then a sequence of bounds c5~, t = 1, 2, ... , that tend to zero, and 

a corresponding sequence of solutions S, to the Landau equations in which: 

(1), kt ::/; 0, i = 1, ... , n; (2}, lktl ~ c5;/n, i = 1, ..• , n; (3), some et;kt ::/; 0; and (4}, 

condition (8.8} holds. If q' = ( qL q~, c£) is the vector q = ( qh q2, 113) specified by 
S,, then any accumulation point 7j of the set { qt} must be specified by a limiting 

diagram in which every charged-particle segment is parallel to one of the vectors 

p., s = 1, 2, 3, and in which some zig-zag path of light-cone vectors runs leftward 

from a vertex VR of {vt,V:z,V:J} to a vertex VL of {v1 ,V:z,V:J}, but carries zero 

momentum-energy. The limit point 7j must therefore lie on the Landau triangle 

diagram singularity surface 1p(q) = 0. However, the presence of the zig-zag 

photon line connecting two of the three vertices v; imposes an extra condition, 

which define a codimension-one submanifold of 1p(q) = 0. These submanifolds 

are finite in number (for any fixed diagram D'), and hence are nondense in the 

interior of IP = 0. If a point qe{ 1p = 0} lies at a nonzero distance from each of 

these submanifolds then no solution of the kind specified above can occur, and 

hence for some sufficiently small neighborhood N of q, and for some sufficiently 

small c5', any solution to the Landau equations for qeN satisfying 0 < I kt I ~ c5' f n 
for all i, and conditions (1) and (4), can have only zero-length photon lines: i.e., 

for all photon lines i 
(8.9) 

We are interested here in the singularity structure at a general point on 
1p = 0, rather than at special points where other singularity surfaces are relevant. 

Hence we may restrict our attention to a neighborhood N in 1p = 0 where (8.9) 
holds. 

Condition (8.9) says that every photon line segment i must have zero length. 

This condition entails the stronger result that every segment on every photon 
loop i in the Landau diagram must contract to a point. 

1o obtain this stronger result consider in order the loop equations corre­
sponding to the sequence of variables kt. ... , k,., as defined in (6.1). 

Consider first, then, the closed loop 1 in the Landau diagram. For each 
charged-particle segment on this loop the kt. with smallest e that flows along this 
loop 1 is k1 itself. Consequently the orientations of all of the segments along 

this loop are unambiguously determined: for each se{1, 2, 3} every contribution 
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to the loop 1 that arises from a charged-particle segment on side s adds to the 

loop equation a vector that is very close to a non-negative multiple of p., just 

as in Figs. 12 and 15. Use can be made here of the facts11•14•15 that the triple 

of four-vectors (v11 v2, v3) specified by the three external vertices v; constitute 

a normal to the Landau surface (in q = (q11 q2,CJ3) space) associated with the 

diagram, and that this surface can be tangent to the triangle diagram Landau 

surface cp( q) = 0 at a point q only if the directions of the three vectors Va are 

the same as they are for the simple Landau diagram that corresponds to figure 
4. Because we are staying away from exceptional points of lower dimension the 

three vectors V. must be parallel to the three vectors p.. Alternatively, one can 

use the condition (8.8), anq take 8' sufficiently small, in order to deduce that V. 
is approximately equal to a.p •. 

Each photon loop passes along at most two sides s of the triangle. Hence, 
on any single photon loop in the Landau diagram, each charged-particle segment 
points approximately in the direction of one or the other of at most two of the 

three vectors p.. (See Figs. 12 and 15.) Hence the contraction to a point, 
demanded by (8.9), of the remaining segment of the loop, namely a 1k11 forces 
every segment on loop 1 to contract to a point. 

Consider next the loop 2. All segments along which k1 runs have now 

been contracted out. Thus the kt with the smallest value of e that flows along 
the surviving part of loop 2 is k2 itself. Hence each segment on this loop also 

must contract to a point, by the same argument that was just used for loop 1. 

Proceeding step by step one finds that every segment on every photon loop must 
contract to a point. 

In this nonseparable case with all r; =/: 0 at least one photon line must 
pass along a star line. Hence at least one of the three star lines of the Landau 

diagram must also contract to a point. But then the other· two sides of the 
triangle (v1, v2 , V3) must also contract to points, since, in accordance with the 
conditions imposed below Eq. (8.1 ), the three sides of the triangle connecting the 

three vertices v; are nonparallel. But then every segment of the Landau diagram 

is forced to a point, and thus there is no solution of the Landau equations, in 

this nonseparable case with all r; =/: 0. 

This conclusion was derived under the assumption (8.8). However, that 

assumption is not necessary. Suppose we normalized the solutions by the re-
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quiring that max lv;- v;l = 1, and drop (8.8). Then the direction of v;, is not 

constrained, but its Euclidean length is. 

Consider, under these conditions, the sequence of loops i. A first part of 

loop 1 consists of either the zero, one, or two vectors V. that are included on 

the loop. Their directions are indeterminate, but their magnitudes are at most 

unity. In fact the magnitude of the sum of these segments is at most unity. 

A second part of this closed loop is the segment corresponding to the photon 

1 itself. The length of this segment is limited by the fact that any nonzero-length 

photon line segment must lie on a zig-zag path that runs between two of the 

vertices v;, and is composed of leftward pointing light-cone vectors. Since the 

Euclidean distance between the endpoints of this zig-zag path is bounded by 

unity, the individual segments along this path are likewise bounded. Thus these 

first two parts of loop 1 are bounded. 
I 

The third and final part of loop 1 is the sum of the contribution of the 

segments j associated with the pole-residue denominators /;. All of these con­

tributions to the loop are essentially of the form a;Pa, with all the a;'s positive, 

and s ranging over either o,;e or two of its three possible values. (See Figs. 

12 and 15). We can impose the condition that at the points qe:{ cp = 0} under 

consideration the three vectors Pa are Jar from parallel. In this case the bound 

on the first two parts of the closed loop 1 imposes a comparable bound on the 

third part, and, in particular, a bound on the sum of the a; corresponding to 

those segments j that lie on loop 1. 

We then turn to loop 2, Bounds are established as before for all parts of loop 

2 that are not pole-residue segments j, and also for all pole-residue segments 

j that lie on loop 1. Since the contributions from the pole-residue segments j 

that lie on loop 2 but not loop 1 have the form a;p4 , with a; ;::: 0, and with 

s ranging over at most two of the three possible values, we can now establish 

upper bounds on the sum of these new a;'s. Proceeding in this way w~ establish 

bounds on all of the a;'s associated with all the pole-residue denominators J;. 
Then for a sufficiently small {;' we can ensure that, for eam value of s, the 

contribution to V., specified by (8.6f), that arises from the photon momenta k; 

is small compared to this vector. V. itself. This is the result that in the earlier 

argument was obtained from (8.8), which we therefore no longer need. 
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8.5 Nonseparable Case; Some r; = 0. 

The results for the k; =/: 0 case carry over to the general situation, provided 

the (r, 0) variables are retained. 

The argument for the case where some r; = 0 proceeds much as in the 

case of separable diagrams. Let r 9 be the first vanishing member of the ordered 

sequence rt, r2, ... , rn. Then the Landau matrix separates into two parts. The 

first consists of the ~ columns for i < g, plus the dp column; the second 
consists of the~ columns fori~ g. By multiplying and dividing various rows 

and columns of the Landau matrix by appropriate nonzero factors r; (i <g) one 

can convert the i < g part to the k form, with all kj for j ~ g set to zero. The 

r; =/: 0 argument can then be applied to these i < g Landau equations: they 
imply the vanishing of the aj's corresponding to all segments j of the Landau 

diagram along which run the photon loops i with i <g. 

The remaining columns, which give the i ~ g part of the Landau equations, 

can be separated into sectors, where each sector begins with a column ~ such 

that r; = 0, and is followed by the set of columns dn;+l, ... , dni+h such that 

r;+l, •.• , r;+h are all nonzero. These latter r's can be changed to unity without 
altering the content of the Landau equations. We shall do this, . purely for 

notational convenience. 

The rows corresponding to the three pole denominators do not contribute 

to the· i ~ g equations because 

due to r 9 = 0. 

One proceeds step-by-step, starting with the i < g part, then considering 
the various individual sectors, in order of increasing values of i. The Landau 
equations for each one of the individual sectors can be expressed by a Landau 
diagram constructed in accordance with the rules (8.6), with, however, the fol­

lowing changes: (1), the three vectors V. corresponding to the three direct line 
segments s are set to zero; (2), all the segments of the Landau diagrams that 

occur at earlier stages of the step-by-step process are contracted to points; and 
(3), the photon propagator contribution a;k; to each dO; column that belongs 
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to the sector in question is replaced by a;il;. 

The Landau diagram corresponding to a sector S has a 'spider' form: it 

consists of a single central vertex v, which represents the three coincident vertices 

v;, plus a web of segments sprouting out from v. All segments of the Landau 

diagrams corresponding to the previously considered sectors are contracted to 

the single point v, together with all of the segments that constitute the part 

i < g. All charged-particle segments of the Landau diagram along which run 

none of the photon loops that constitute S are also contracted to points. 

The Landau diagram that corresponds to any individual sector S can be 

shown to contract to a point by using the arguments developed earlier: the 

argument involving VR and VL shows that no photon line of nonzero length 

can occur in the spider diagram, and then the step-by-step consideration of the 

photon loops i, in the order of increasing i, shows that each of these loops must 

contract in turn to a point. 

We thus conclude that, apart from the three a, 's corresponding to the three 

pole denominators, all of the aj's must vanish. The three a,'s escape only in 

case the i < g part is separable or empty. 

The implication of this result is that for every point in the compact domain 

of integration in r; space (away from the conventionally pla.ced limiting surface 

r 1 = 8) one can distort all of the n, contours away from all of the singularities 

other than the three poles, and away also from these poles if their locations 

depend upon the !l's. 
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8.6 Infrared finiteness in nonseparable diagrams. 

The derivation in section 6 of the infrared finiteness of the integrations over 
the photon momenta was explicitly restricted to the case of separable diagrams. 
However, the argument applies essentially unchanged to the general case. 

The restriction to separable diagrams fixed the directions that the photon 
loops flowed along the half-line h under consideration: each photon loop i inci­

dent upon h flowed away from the * line that lies on one end of h. This entails 

that for any line segment j lying in h the associated function fi contains a term 
2psks if and only if the following oondition is satisfied: exactly one end of the 

photon loop i that carries momentum k; is incident upon the half-line h between 

the segment j and the * segment that lies on one end of h. 

This key property of h follows in general, however, directly from the formula 

/j = CTjs(EJ- E;) 

= CTja{Ej + E.){Ej- E.) 

= CTja(2ps(I<j - J<,) +I<} - J(;) 

where L:; = p. +I<;. and E. = p. +I< •. The difference K; - K. consists, apart 
from signs, of the sum of the ks associated with the the photon loops i that 

are incident upon h precisely once in the interval between the * segment and 
segment j. This entails the key property that was obtained in section 6 from the 
separability assumption, which is therefore not needed: the argument in section 

6 covers also the nonseparable case. 
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8.7 QC Photons. 

The arguments of the preceding subsections pertain to QQ photons, which 

are the photons having quantum, or Q-type, vertices on both ends. These 

photons propagate in accordance with the usual Feynman rule. This rule entails, 

as previously explained, that positive energy always flows from right to left along 

each QQ line segment of a Landau diagram. This fact played an important role 

in the preceding arguments. 

In equation (2.36) of ref. 7 the propagation of QC photons is governed 

by the retarded propagator. This modification of the usual Feynman rule was 

a consequence of shifting the classical-part operator U(L(x)) to the right of 

the quantum-photon operator F. This shift breaks the original Feynman-rule 

QC oontribution into two terms. The first arises from a (retarded) QC-line 

contribution to the c-number part of the operator P:;;,.; the second arises from the 

contraction of a creation operator (associated with a Q-type interaction) in P:;;,. 
with an annihilation operator in U(L(x)). The sum of these two contributions 

brings the net contribution back to the form given in equation (2.25) of ref. 7, in 
which the Feynmam propagator of the QC photon is used in the evaluation of the 
c-number function FD(x). We shall use this original Feynman-propagator form. 

That allows us to include QC lines in the arguments used above to prove the 
possibility of distorting then contours away from all n-dependent singularities. 
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9. Contributions of the Meromorphic Terms to the Singularity on the 

Triangle-Diagram Surface cp = 0. 

In this section we describe the contributions to the singularity on the 

triangle-diagram singularity surface cp = 0 arising from the meromorphic parts 

of the three generalized propagators. 

The arguments of sections 6, 7, and 8 show that in the typical pole-residue 

term (5.9) we can distort the contours in the nj variables so as to keep the 

residue factors analytic, even in the limit when some or all of the rj 's become 

zero. In that argument we considered separately an individual half-line, but the 

argument is 'local': it carries over to the full set of six half-lines, with all the 1~1 

ordered. Thus for each fixed value of the set of variables (r;, ... , rn; !21 , ••• , nn) 
the integration over the remaining variable of integration p gives essentially a 

triangle-diagram function: it gives a function with the same log cp-type singular­

ity that arises from the simple Feynman triangle diagram itself, with, however, 

the location of this singularity in the space of the external variables (q;,q2,q3 ) 

shifted by an amount (K1 , K2 , K3 ), where the three vectors K. are related to the 

photon momenta flowing along the three star lines of the original graph. Specif­

ically, if we re-draw the photon loops so that they pass through no star line of 

the original graph (or equivalently through no star line of the Landau diagram), 

but pass, instead, OUt of the diagram at a vertex Vt, V:l Or V3 1 if necessary, and 

then define the net momentum flowing out of vertex v. to be 

(9.1) 

where K. is the net momentum flowing out of vertex v8 along the newly directed 

photon loops, then, for fixed k, the function in ( ql! q2 , q3) space will have a normal 

log cp triangle-diagram singularity along the surface cp(q1(k), q2(k), q3(k)) = 0. 

For example, the original singular point at the point cj in (ql! q2 , q3) space will 

be shifted to the point (q1,q2,q3) =· (q11 q2,q3) + (I<11 K2,I<3). This shift in the 

external variables q's shifts the momentum flowing along the three star lines to 

the values they would have if the photon moments k; were all zero: it shifts the 

kinematics back to the one where no photons are present. 

It is intuitively clear that the smearing of the location of this log cp sin­

gularity caused by the integration of the variables ~ will generally produce a 
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weakening of the log singularity at lf'(q) = 0. For, in general, only the endpoint 

r 1 = 0 of the r 1 integration will contribute to the singularity at lf'(q) = 0, and 

there is no divergence at r 1 = 0, by power counting, and hence no contribution 

from this set of measure zero in the domain of integration. The only exception 
arises from the set of separable diagrams. For these diagrams the K. are all 

zero, and hence the integrations produce no smearing, and thus no weakening, 

of the log cp singularity. 

To convert this qualitative argument to quantitative form we begin by sep­

arating the set of photon lines into two subsets that enter differently into the 

calculations. Let a bridge line in a diagram D' that corresponds to a term in 

the pole-residue decomposition (7.1) be a photon line j that 'bridges' over a 

star line: any closed loop in D' that contains the photon line segment j, and 

is completed by charged-particle segments that lie on the triangle D, passes 

along at least one star line. Let i be the smallest j such that photon line j 

is a bridge line. (Here we are using the ordering of the full set (1, 2, ... , n) of 

photon labels that was specified in (6.1), not the ordering used in (7.1)). Thus 

each k; = p;f2; = r 1 ••• r;f2; that appears in a star-line denominator, and hence 
in (9.1), contains a factor p; = r 1 ••• r;. Let the set of variables (kit ... , Jc;_1) be 

denoted by k .. , and let the set of variables (k;, ... , k,..) be denoted by kb. And let 

ra and rb, and n .. and nb be defined analogously. Then the function represented 

by D' can be Written in the form 

(9.2) 

where 

Here R is the product of the three residue factors. 

These intuitive conclusions are confirmed in Appendix G, where it is shown 

that in the nonseparable case the ~ingularity on the surface cp(q) = 0 is contained 
in a finite sum of terms of the form Amlf' (log If' )m, where m is a positive integ~r 
that is no greater than the number of photons in the diagram, and Am is analytic. 
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10. Operator Formalism. 

We have dealt so far mainly with the meromorphic contributions. In or­

der to treat the nonmeromorphic remainder it is convenient to decompose the 
operator ci into its "meromorphic and "nonmeromorphic" parts, Cfl and of. 

The operator ci is defined in (2.5): 

_ Ll a 
iCiF(P) = 

0 
dA.i o]Y" F(p) (10.1) 

where 

p=p+A.i~· (10.2) 

Suppose 

F(p) = A(p)B(p), (10.3) 

where A(p) is analytic and B(p) is (p2 - m2)-1 • An integration by parts gives 

r [ !>.' = lo d>-., (ol"iA)- (8Af8>-.,) . al"i 

+A (c5(>-.i -1)- c5(>-.,)) j>.' ol"i] B, (10.4) 

where the difference of delta functions, (c5(A.i- 1)- c5(>-.,)) indicates that one is 
to take the difference of the integrand at the two end points. 

The indefinite integral, computed by the methods used to compute (3.3), 

(3.6), and (3.7), is 

Because the factor in front of the square bracket in (10.5) is independent 
of>-., one can use a second integration by parts (in reverse) to obtain 
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fo
1 

d>.i [ (8~A)- ( a~i A) ~=~ 
( ( ) 

2pl'i 
+A S >.i -1 - S(>.i)) 2P~ 

- 4 (pl'ikr- ~l'ip~) A 
d 

4(pl'ik'f- ~l'ip~) k'f(p2
- m 2)A]B 

+ d ' (p~)2 I 
(10.6) 

where the final term comes from the 1/p~ term in the square bracket in (10.5) 

and has no si~gularity at (r - m 2) = B-1 = 0 for p~ -:f:. 0. 

Since all of the Ai dependence in A is in p = p + Ai~ we may write 

(10.7) 

Hence the first two terms on the right side of (10.6) cancel, and one is left with 

(10.8) 

where 

(10.8a) 

(10.8b) 

·c[{AB = 4(pl'ik'f- k,..;p~) {
1 
d>.·[ (~A) 

' I d lo I 8>.; 

-A(S(>.;-1) -S(>.;))]P~ 
_ 4(p,..,k'f- ~l'ipk;) {1 . k?(p2 - m 2) 

- d lo d>.l (pk;)2 AB. (10.8c) 

Notice that the contribution C;R Ca.ncels the poie at d = 0 of the contribution 
-N C;. 
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To efficiently manipulate these operators their commutation relations are 

needed. Recall from section 2 that the operators C, commute among themselves, 

as do the D,: 
{10~9a) 

and 

[D,,DiJ = 0. {10.9b) 

The operators 8, and 75;, properly interpreted, also commute: 

(10.9c) 

To verify {10.9c) note first that Dj acts on generalized propagators (See 
(2.9)), and, by linearity, on linear superpositions of such propagators. However, 
Eq. (2.3) shows that the action on such an operand of the operator ( -8f8p111 ) 

in 8, is the same as a D, with k; = 0. Moreover, the replacement p -+ p + 
).1k; commutes with 75;. Thus (10.9c) is confirmed, provided we stipulate that 
the integrations over the variables .X, shall be reserved until the end, after the 
actions of all operators J5. and differentiations. In fact, we see from {10.8) 
that the various partial operators Cfl, Cf, and Ct:'" all commute: ifwe reserve 
the .X integrations until the end then each of the operations is implemented 

by multiplying the integrand by a corresponding factor, and those operations 

commute. 
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11. Nonmeromorphic Contributions 

The D-coupling paxt of a Q-type roupling is meromorphic. Thus each of 

the C- and Q-type couplings can he expressed as by means of {10.8) as sum of 

of its meromorphic, nonmeromorphic, and residual paxts. Then the full function 

can he expanded as a sum of terms in which each coupling is either C-type or 

Q-type, and is either meromorphic, nonmeromorphic, or residual. If any factor 

is residual then the term has no singularity at {p2 -m2) = 0, and is not pertinent 

to the question of the singularity structure on cp = 0. Thus these residual terms 

can he ignored. 

We have considered previously the terms in which every coupling is mero­

morphic. Here we examine the remainder. Thus terms not having least one 

nonmeromorphic coupling Cf or Qf' axe not pertinent: they can also he ig­

nored. 

All couplings of the form Qfl can he shifted to the right of all others, 

and this product of factors Qfl can then he re-expressed in terms of the cou­

plings Qfl. That is, the terms corresponding to the different orderings of the 

insertions of the meromorphic couplings Qr into the chaxged-paxticle lines can 

be recovered by using (2.9), (2.15), and (5.8). The various couplings Cf axe 

then represented, apaxt from the factor standing outside the integral in (10.8b), 

simply by an integration from zero to one on the associated variable .X;. 

In this paper we axe interested in contributions such that every photon has 

a Q-type coupling on at least one end. In sections 6 and 7 the variables p; 's 

corresponding to photons i having a tir-type coupling on (at least) one end were 

expressed in terms of the variables rj, and it was shown that the contributions 

from all of the tir-type couplings lead to an rj dependence that is of order at 

least one in each rj. The Cf/-type couplings do not upset this result. Thus 

the general form of the expression that represents any term in the pole-residue 

expansion of the product of meromorphic couplings tir and cr is 

{11.1) 

where thee; axe nonnegative integers, and A and B have the forms specified in 

section 10, provided then contours axe distorted in the way described in section 

8. (For convenience, the scale has been defined so that the upper limit 8 of the 
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integration over r 1 is unity.) 

For these meromorphic couplings the integrations over the variables .X; have 

been eliminated by the factors 8{-\- 1) and c5(.X;); But for any coupling C{' 
there will be, in addition to the integration from zero to one on the variable r;, 

also an integration from zero to one on the variable .X;: it comes from {10.8b). 

The calculations in Appendices I and J show that in the nonmeromorphic 

case the singularities on the triangle diagram singularity surface <p = 0 are no 

stronger than <p{log <p )"+1, where n is the number of photons in the diagram. 
Even if the log factors from the diagrams of different order in e2 should combine 
to give a factor like <p-(1/1~) this, wh~ combined with the form <p{log <p )"+1, 
would not produce a singularity as strong as the log <p singularity that arises 
from the separable diagrams. 
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12. Comparison to Other Works 

Block and Nordsieck17 recognized already in 1937 tha.t the bulk of the very 

soft photon contribution to a. scattering cross-section was correctly predicted by 

cla.ssica.l electromagnetic theory, tha.t the process therefore involved arbitrarily 

large numbers of photons, and tha.t this circumstance rendered perturbation 

theory inapplicable. They ca.lcula.ted the probability for the scattering of a. 

charged pa.rticle by a. loca.l interaction V by taking the absolute va.lue squared of 

the matrix element of V between charged-pa.rticle states "clothed" with a. cloud 

of bremsstrahlung soft photons. This cloud has components with a.rbitra.rily 

la.rge numbers of photons. 

The basic ideas of Block and Nordsieck were cast into a. more modern form 

by Yennie, Fra.utschi, and Suura.1 . The sources of the dominant contributions 

· to soft-photon processes were identified as the incoming and outgoing cha.rged­

pa.rticle legs of a. Feynman diagram. Due to the softness of the photons incident 

upon these legs, the Feynman propagators corresponding to the va.rious · seg­

ments of these external legs all remain close to the ma.ss shell, and this lea.ds 

to apparent infra.red divergences. However, by summing over all of the different 

orders in which the photons can couple into the external lines the net effects 

were converted into exponential forms, and the exponentials for the real and 

virtual photon processes were shown to nea.rly cancel, provided cross sections 

were ca.lculated. This argument, though simple in principle, was nonrigorous, 

a.wkwa.rd, and a.rduous in pra.ctice. 

A major conceptual advance was ma.de by V. Chung,3 who recognized that 

not only cross sections but also the scattering amplitudes (i.e., the S-matrix) 

could be ma.de well defined if one used final states constructed not from the 

ordinary photon va.cuum, but rather from the coherent states associated with the 

classica.l fields derived from classica.l electromagnetic theory. Chung's arguments 

rested, however, on the nonrigorous results of Yennie, Frautschi, and Suura. 

Kibble5 formulated the ideas of Chung in a. more rigorous wa.y, and ex­

amined the structure of the Green's functions of field theory, as contrasted to 

the structure of the S matrix. In field theories that deal only with ma.ssive 

particles one can extra.ct the S-ma.trix from the Green's function by means of 

reduction formulas. These formulas exploit the pole character of the single-
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particle propagator--and also the factorizatio~ property of the residue of that 

pole-to identify the S matrix as a factor in the residue of a multiple-pole in 
the Green's function. However, IGbble showed that in QED this method en­

countered difficulties, arising from the fact that the singularity corresponding to 
a charged-particle leg appeared to be not a pole, but rather a gauge dependent 

power of (p2 -m2)-1 • Moreover, in computing the "S-matrix" from the Green's 
function the result depended on the order in which the limits are taken to the 

mass shell of the propagators of the various incoming and outgoing charged 

particles. These peculiarities were further studied by Zwanziger.6 

The present work began as an effort to resolve these problems, by making 

use of the fact that if the charged-particle propagator is defined in a way that is 

closely related to physical properties then this propagator must have a factoriz­
able pole singularity. For this is the unique form of singularity that corresponds 
to the physically observed fact that a stable particle propagates, without dis­
sipation, from source to sink (at least in simple idealized cases) along straight 

lines in spacetime, and carries from source to sink only the information carried 
in its momentum and spin state.11 

To make the problem better defined mathematically and more closely re­
lated to physics the situation under consideration was changed from the one 
considered by Kibble. The first change was to consider a. process in which charge 
was strictly conserved. The action of an operator that creates charge at a. point 

x is not physical, because it upsets charge conservation. Even letting charges 
move in from infinity can create problems, because there are then contributions 
to currents from line integrals that extend to infinity, and the simple form of 

gauge in variance, 8,. J,. = 0, fails to hold if ill-defined contributions from infinity 

are ignored. [See ref. 7 Eq. (1.7), and ref. 5(b) Eqs. (3.20) and (4.5)]. 

The second change was to invoke the essential idea of Block and Nord­
sieck - namely the incorporation of the classical aspect of the problem into the 
description before the application of the perturbation procedure. This incorpo­

ration is here done at the level of the in- out transition operator (rather that 
at the level of "in" and "out" states) and is done in coordinate space, which is 

where the connection between quantum and classical electrodynamics is most 
easily formulated. In the usual momentum space this connection is not so simple 
because for an n-photon system the Fourier transform leads to 3n dimensional 
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configuration space, rather than 3 dimensional physical space. The key next 

step was the recognition that the "classical part" of the transition operator can 

be generated by an appropriate "cl~ical part" of the quantum-mechanical in­
teraction term. The integration of this classical part of the interaction leads 
to a unitary transformation that incorporates already into the scattering oper­

ator the cancellation between the real and virtual process that was identified 

by Yennie, Frautschi, and Suura at the level of the transition probability. The 

unitarity transformation generates a coherent state that yields, automatically, 

the detailed combinatoric factors derived by Chung's lengthy calculations. 

The formulas for the residual "quantum" part of the computation are similar 

to those obtained by Grammer and Yennie.2 However, our residual part is what 
is left after the full classical part is removed, not merely the first approximation 
to it, obtained by shifting all soft bremsstrahlung photons to the origin. 

It is this shift of the classically prescribed part from the "in" and "out" 
states to the transition operator itself, and the associated shift of the source 
points of the soft bremsstrahlung photons to the spacetime points where the 
deflections of the charged particles occur, that is the essential charge inaugu­
rated by the work pursued here? Without this shift the classical part does not 
accurately represent the dominant contribution in the large-distance limits. 

After reference 7 was submitted several works related to ours have appeared. 

Morchio and Strocchi18 have continued their work within the general arena of 
Wightman-type field theories, endeavoring to provide a foundation for a Haag­

Ruelle scattering theory that would apply to QED. That their work is somehow 
related to ours is suggested by a conjecture they have made,19 which brings in 
some formulas similar to some of ours. However, their approach has still some 
way to go before it could address the detailed questions about the triangle­

diagram function addressed and answered in the present work. 

d'Emilio and Mintchev20 have initiated an approach that is more closely 
connected to the one pursued here. They have considered charged-field operators 
that are nonlocal in that each one has an extra phase factor that is generated 

by an infinite line integral along a ray that starts at the field point x. Their 

formula applied to the case of a _product of three current operators located at 
the three vertices (x 11 x2, x3 ) of our closed triangular loop could be made to yield 

precisely the phase that appears in Eq. (1.7) of ref. 7. However, that would 
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involve making the direction of the ray associated with each field operator t/J(x) 

depend upon the argument of the other field operator in the coordinate-space 

Green's function (Tt/J(x)'if;(x')}o in which it appears. 

d'Emilio and Mintchev do not follow that tack. Instead, they keep the 

direction of the ray associated with each field operator ,P(x) fixed, then go to 

momentum space, and then find, for some simple cases (charged-particle prop­

agation and vertex correction), that reasonable results are obtained only if the 

directions of the rays associated with the charged-particle operators that create 

or destroy the electrons are set equal to the momenta of the particles that are 

created or destroyed. 

Of course, charged-particle propagators generally occur under integral signs, 

whereas the directions of the rays are treated as constants. If these "constant" 

directions are allowed to depend upon the momentum p then the inverse Fourier 

transform would, of course, not yield the original coordinate-space Feynman 

function. 

The "intuitive"· reason given why the one particular choice of the directions 

of the rays gives reasonable answers relies on the idea of "the classical currents 

responsible. for the emission of soft photons". But classical-current arguments 
ought to be formulated in coordinate space. 

Such a formulation {i.e., a coordinate-space formulation) would suggest let­
ting the direction of the ray that occurs in the d'Emilio-Mintchev formula be the 

direction of the line between the two arguments x and x' of the coordinate-space 

charged-particle propagator. Then, due to a partial cancellation, the two infinite 

line integrals would collapse to a single finite line integral running between the 

two points x and x'. Then, in the case of our triangular closed loop, the phase 

factors associated with the lines on the three sides of the triangle would combine 

to give just the phase factors appearing in {1.7) of reference 7. 

This coordinate-space procedure, which would seem to be the physically 

reasonable way to proceed, would bring the d'Emilio-Mintchev formulation to 

the first stage of the work pursued here and in reference 7. Whether their 

alternative momentum-space formulation would give results comparable to those 

obtained here is a question that remains as yet unanswered. Also, it is not 

clear· how their formulas are connected to the standard Feynman rules: Are 
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their formulas derivable from the standard rules by a. change of the order of 

summation (as ours are), or will their theory, when spelled out in detail, be 

basically inequivalent to the standard QED as defined by the Feynman rules? 

Many of the problems dealt with in the present work, such as those that arise 

from the singular character of the singularity surface k2 = 0 of the photon prop­

agator a.t k = 0, and the subtle problems that arise when many photon momenta. 

simultaneously tend to zero a.t different rates, should not be changed much by a 

shift from our basically coordinate-space approach to other approaches. These 

are basic technical problems that will inevitably arise in practical calculations, 

and they have to be dealt with adequately. 

The introduction of the line integral of A" along the path of the charged 
particle seems to play a key role in the adequate treatment of the long distance, 

classical, and infrared properties of quantum electrodynamics. Thus one would 

expect that some similar procedure would be necessary in the case of other gauge 
theeries of massless particles. However, we have made no effort to extend the 

methods developed here to those other interesting cases. 
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Appendix A. The (log r,o)2 singularity. 

It was shown in reference 17 that the function corresponding to the diagram 

of Fig. 2, but with ordinary Feynman vertices [v for the couplings, is well defined 

(for photon mass equal to zero) but has a leading singularity of the form (log r,o)2 
on the Landau triangle diagram surface r,o = 0. This (log r,o )2 form "explains", in 

a certain sense, the ill-defined character of the vertex function associated with 

the small triangle diagram in Fig. Sd: if that vertex function did not diverge 

then the contribution to the singularity of r,o = 0 from this diagram would 

necessarily be of the form (log r,o), which it is not. Thus the divergence of this 

vertex function is a signal that the singularity on r,o = 0 is stronger than log r,o. 

This (log r,o )2 singularity, if not mitigated in some way, would produce a 

violation of the geometric fall-off properties required by the classical concept of 

stable particles. However, it has been known since the time of Block and Nord­

sieck that the logarithm divergence (in k,.;n, or photon-mass cut off) a.Ssociated 

with the small triangle in Fig. Sd is in fact mitigated by the effects of the ra­

diated photons, and that one can obtain the finite physically correct results by 

means of perturbative corrections to a zeroth-order non-perturbative result that 

incorporates with sufficient precision the classically describable aspects of the 

electromagnetic field. The program initiated in reference 7 was precisely to treat 

these classically describable aspects. with sufficient precision to allow physically 

and mathematically correct results to be obtained in the macroscopic domain. 

By a judicious splitting of the photon field into classical and quantum parts, 

the full effect of all of the classical photons was combined into a well-defined 

unitary operator U, leaving over a residual quantum-photon operator F. The 

compensating effects of the real and virtual photons are incorporated into the 

unitary operator U. In the present work it is shown that the residual operator F 
has, irt the c-number sector, on the triangle diagram surface r,o = 0, the normal 

log r,o character that generates, in conjunction with U, the physically mandated 

asymptotic fall-off properties in coordinate space that are associated with the 

process that is represented by this diagram. 
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Appendix B. Proof of the triviality of the contribution from the factor 

c5(0;0;- 1) to the Landau loop equations. 

In discussing the singularities of the meromorphic parts in §8 we made full 

use of the fact that the row in the Landau matrix corresponding to n;fi;- 1 

reduces to zero under the closed loop conditions for n;-column, the r;-column 

and the rj+1-column. We give here a proof of this fact. 

In view of the definition of the integral, the functions /; other than the 

various n],n;fi; -1 and r; have the following form (B.1) or (B.2), where em, 

and G are each either 0 or +1 or -1: 

f; = 2(pe + .Eemrt···rmOm)(n~ + .Ee~r•+l···rtOt) 

+ rt ... r.(n .. + .E~r•+l···rt0t)2 • 

(B.1) 

(B.2) 

Let H; denote the first-order differential operator given by 0; 8~. - r; 8~. + 
J J 

r;+tar:+
1

• Then the following equations hold: 

H;(pe + .E emrt···rmOm) = 0 for any j and l.. 

H;(n~ + .E~r•+t···rtOt) 

= {n" + L:G
0
r•+I···rtnt if i = s 

if j =Is' 
H;(rt ... r.(f2. + .E ~r•+I···rtf2t?) 

= {rJ ... r,(f2~ +L:
0
Gr•+I···rtf2t) 2 if j = s 

if j =Is 

(B.3) 

(BA) 

(B.5) 

Hence H; annihilates each /i of the form (B.l) and each f; of the form (B.2) 

with s =/: j, and it reproduces each /i of the form ( B.2) with s = j. 

Since the f2;-column etc. in the Landau matrix is given by 8f;/8f2; etc., 
this property of the operator H; entails, under the 0;, r;, and r;+t closed-loop 
conditions, that 
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~ 2 -= L...J asf, + 2ajnj + 2{3jnjnj - /jrj + /j+lrj+t, 
id{i} 

where I(j) denotes the set of indices i such that J, is of the form (B.2) with s = j, 

and aj,/3j and /j denote the Landau parameters associated with n;, njfij- i, 
and rj, respectively. It follows from (8.4a) that all terms except for /3jO.jfij = {3j 

on the right-hand side of {B.6) vanish. This entails the required fact, namely 

that the row corresponding to O.jfi; - 1 must have coefficient /3; == 0 and hence 
give no net contribution to the Landau loop equations. 
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Appendix C. The Landau diagram corresponding to a term in the 

pole-residue decomposition. 

To confirm the geometric representation of the Landau equations described 

in connection with Eq.(8.6) recall first that the pole-residue denominators cor­

responding to non * charged lines are 

(C.1) 

where the sign Uj6 is defined below (8.3). For each side se{1, 2, 3} one may verify 

immediately that the contribution from the side s of the triangle of direct lines v;, 
is just the contribution to the p loop equation arising from the charged-particle 

line segments that lie on side s of the original graph. 

For the photon loop l there is first a contribution aekt, and then the con­

tributions corresponding to charge-particle line segments along which the loop 
flows. There are contributions of this latter kind only from segments correspond­

ing to those (one or two) sides s of the triangle along which the loop runs, and 

we can consider separately the contributions from each of those sides s. 

There are three cases: 

Case 1. The photon loop l in the Feynman graph runs along the segment 

jeJ(s) but does not run along the * segment lying on side s. In tl-Js case the 
contribution to the £loop equation proportional to CXj is 

1 ofi 1 a 2 2 
CXj2 8kt = Uj.CXj2 8kt (Ej -E.) 

= f3i.Ei. (C.2) 

Case (2a). The loop l of the Feynman graph flows along the * segment of 
sides, but does not flow along the non* segment j lying on sides. Then the 
contribution to the £loop equation proportional to CXj is 

1 ofi 1 a < 2 2) 
CXj2 8ke. = ui.ai2 8ke Ei -E. 

= {3i.( -E.). (C.3) 

Case (2b). The loop l of the Feynman graph flows along the * segment 

of side s of the graph and also along the non * segment jeJ(s). Then the 
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contribution to the e loop equation proportional to a; is 

(C.4) 

Notice that, according to (C.2), (C.3),.and (C.4),there is, for each jeJ(s), a 

contribution /3;.'£; to the photon loop equation e if and only if the loop e in the 

graph passes along the segment j. There is also, for each jeJ(s), a contribution 

-{3;.'£. if and only if this loop passes along the star line s in the graph. There 

is also a contribution a.E. if and only if this loop passes along the star line s of 

the graph. These results are summarized by the rules (8.6). 
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Appendix D. The contribution from a one-photon nonseparable mero­
morphic part. 

As is shown in §8 for the general case, we can distort the 0-contour so 

that Imf22 > 0 at 0 2 = 0, and lmpin > 0 (j = 1, 2) at Pin = 0. Then each 

denominator of the integrand ofF, of Fig. 3 except for three pole-factors, i.e., 

p2 - m2, (p1 + rf2)2 - m2 and ~ - m2, is different from 0. The r-integration 

Jl rdrf[(p1 + rf2)2 - m2] Can. be explicitly performed, and when Ptn f: 0 its 
dominant singularity along p~ = m2 is 

{p~ - m2) log(p~ - m2) 
4(ptf2)2 

Combining this singularity, instead of the ordinary pole 1/(p~- m2), with the 
other two poles, i.e., l/(p2- m2) and 1/(p~- m2), we perform the p-integration 

and find a singularity A( q, f2)1,0( q)21og 1,0( q), with A being analytic. Performing 

the n-integration along the compact distorted contour' the dominant singularity 

of Fb is 1,02log It'· 

Appendix E. The contribution from a pair of non-meromorphic parts 
arising from one photon. 

The contribution of I in ( 4.6) to the amplitude is 

F = f d"n f6drj<f4 1 I (qt+va+rf2)2-m2+i0 
JIOI=t 0 2 + iO lo r Pa~- m2 + iO og (qt + va)2- m2 + iO 

(E.1) 

{in the notations given in Fig. 4 in §8.1.) Here the 0-contour is deformed so 
that lmf22 > 0 and lmpi!l > 0 (j = 1, 2) (cf. §8). Performing the va-integration 
we find 

where 
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Since 

holds by the Landau equation, we can find non-vanishing functions a( q1 , q3 , r, 0) 

and b(q~o 113) for which 

holds (Cf. App. H). Similar decompositions hold also for cp(q1 + rO,q2) and 

cp(q1,q2 + rn). Hence application of the resultS in Appendix I to It ~(G(qt + 
rO,q3 + rn)- G(q1,q3)) etc. entails that the r-integration in (E.2) produces 

a singularity of the form cp(q1,q3)2 (1og(cp(q1 ,1]3) + i0)2 near cp = 0. Since the 
0-integration (along a suitably detoured path) is over the compact set, F itself 

behaves as cp2 (1og(cp + i0))2 • 

Appendix F. The contribution from a coupling of a non-meromorphic 

part with either a meromorphic part or a C-part. 

If a meromorphic part is coupled with a non~meromorphic part, the RHS 

of {E.1) is replaced by an integral of the following form: 

{ cf4n [6 d jtt 1 l {q1 + P3 + r0)2
- m2 + iO 

liOI=l 0 2 + iO lo r P3P5- m2 + iO og (q1 + P3)2 - m2 + iO 

1 1 
(F.1) 

(P3- q3)2 - m2 + iO 2{P3- q3)n + r02 + iO · 

By deforming the 0-contour as in §8 so that /m02 > 0 and /mpin > O(j = 1, 2) 

[with p1 = q1 + P3,P2 = P3- q3 ], we find the singularity of this integral near 
cp(q1, q3 ) = 0 is cp log(cp + iO), as there is no potentially divergent factor 1/r. 

If the meromorphic part is replaced by a C-terrn, then the dominant sin­

gularity is given by an integral similar to (F.1) but with the replar.ement of 
the residue factor 1/(2(P3- q3)0 + r02) by 1/r{P3- q3)0. Hence a potentially 
divergent factor 1/r arises. ·But this problem is circumvented by combining 

the singularity originating from log((q1 + P3 + r0)2 - m2 + iO) and that from 
log((q1 + P3)2 - m2 + iO); the results in Appendix I show, with a reasoning sim­
ilar to (but simpler than) that in Appendix E, that the resulting singularity is 

cp(log(cp + i0))2
• 
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Appendix G. Weakness of the singularity in the general non-separable 

meromorphic case. 

To confirm the weakness of the singularity in the non-separable meromor­

phic case we first need to verify 

a -a cp(q- .C.)I<;>=O # o, 
Pi 

(G.1) 

where Pi = r 1 • • • ri, with i being the index labelling the first bridge line; i.e., 
i is the smallest j such that the photon line j has a meromorphic coupling on 

both ends, and completes to a closed loop - constructed according to the rules 

specified below Eq.(8.2) -that flows along at least one *-segment. The k;­
dependent vector .6. is chosen so that at <p = 0 the pole factor associated with 

each *-segment can be evaluated at the critical point p3 (q- .6.) (s = 1,2,3), 

defined below Fig. 4, with q = (q11 q2 ,q3 ) the set of external variables defined 

there. 

The vector .6. is constructed in the following way. Introduce for each bridge 

line i an open flow line L(k;) that passes along this photon line i, but along no 
other photon line, and along no *-segment. Instead, the flow line L(k;) enters 

the diagram at one of the three vertices Vi and leaves at another. Specifically, 

let e be an end-point of the photon line i, and let s be the side of the triangle 

on which e lies. This point e separates s into two connected components, s0 

and s*, where s* is the part of s that contains the *-segment. Run L(k;) along 

the component s0 • At the end-point of s0 that coincides with a vertex Vi of the 

triangle diagram, run L(k;) out along the external line (/j (j = 1,2 or 3). Do 
the same for the other end-point of the line i. Include on L(k;) also the segment 

i itself. This produces a continuous flow line. Orient it so that it agrees with 
the orientation of the line i. This oriented line is the flow line L(k;). Then for 

each external line (/j along which L(k;) runs add to the vector q; either +k; or 

-ki according to whether the orientation of L(ki) is the same as, or opposite 

to, the orientation of the external line q; along which L(k;) runs. Sum up the 
contributions from all of the bridge lines. This shift in q = (q11 q2 , q3 ) is the 

vector .6.. 
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The function of interest has the form 

n r n {1 i {1 
F(q) =ITJr.- dSl; rr lo rjidr;ITlo rjidr; 

j=1 OjOj=l j=i+l 0 i=1 0 

x A{q,Sl,r)logcp(q-.6.), 

where 

and A, D, and E are holomorphic. 

Here 

and 

n 

P1 = P + q1 + L E1mk,., 
m=i 

n 

P2 = P- q3 + L E2mk... 1 

m=i 

with each eam either zero or one. 

(G.2) 

(G.3) 

{G.4) 

We are interested in the singularity of this function at the point q on cp(q) = 
0. This singularity comes from the p-space point ji = p(q), and we can consider 

the p-space domain of integration to be some small neighborhood of p. Similarily, 

the domain in (r, Sl) is confined to a region R in which the following conditions 

hold: 
n 

{P + ?1) · L E1mk.../ p; :=:: ie1 
tn=1 

n 

{P- q3)· L E2mk.../ p; :=:: ie2 
m=1 

n 

fi· L E3mk.n/ p; :=:: ie3. (G.5) 
m=1 

That is, the real parts of the three denominators in (G.3) are close to zero, and 

the imaginary parts are positive: e. ~ O(s = 1, 2,3); L: e, > 0. It was shown in 
section 8 that the contours can be distorted in a way such that (G.5) holds in a 

neighborhood of the points contributing to the singularity at q. 
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Note that all of the~ that contribute to (G.5) belong to bridge lines, and 

hence have a factor p;. Thus none of the'rj{j ::5 i) enter into (G.5). Hence the 

region R is independent of the variables ri(j ::5 i). 
The quantity 6. = (6.1,62,6.3) is added to q = {q11q2,q3), and it satisfies, 

in analogy to L: q; = 0, the condition L: 6; = 0. This trivector 6. is a sum of 

terms, one for each bridge line. For each bridge line j the corresponding term in 

6. is proportional to ki. If line j bridges over {only) the star line on sides== 1 

then the contribution to D.. is ( -kj, kj, 0). If line j bridges over {only) the star 

line on sides= 2 then the contribution to 6. is {0, -kj, ki)· If the line j bridge 

(only) over the star line on side s = 3 then the contribution to D.. is ( ki, 0, - ki). 

The gradient of <p(q) is also a trivector. The condition ):q; = 0 in q 
space means that the gradient (which is in the dual space) is defined modulo 

translations: 6.; -+ 6.; +X, all i. Thus one can take '\l<p to have a null second 

component. Then at the point q of interest the gradient has the form 15 

(G.6) 

provided the sign and normalization of <p are appropriately defined. Hence the 

quantity on the left-hand side of (G.l) is, at q- D..= q, 

8<p(q- D..) = - '\l<p. 86. 
8p; 8p; 

3 n 

= L L a.P.eamk.n/ Pi (G.7) 
a= I m=i 

which, according to {G.5), is nonzero, as claimed in (G.l). Use has been made 

here of the Landau equation L: a.p. = 0. 

Using (G.l) we now employ the result in Appendix H to normalize the 

defining function <p of the Landau surface so that we may apply Proposition 

1.3 of Appendix I to the integral Fin question. It follows from Lemma H.l in 

Appendix H that the following normalization holds on a neighborhood of the 

point in question: 

<p(q- D.)= B(q,pi,k'/pi) (Pi- <p(q)/C(q,k'/Pi)), (G.8) 

where B and C are different from 0 at any point in question, and k' denotes the 

totality of the bridge lines ki. Note that each bridge ki contains a factor Pi and 
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that k' / p; is independent of p;. Let us now apply Proposition 1.3 in Appendix I 

to the following integral I: 

I= t r~1 dr1 fo1 

r?dr2 · · · fo1 

ri1dr; log(p;- tpfC). (G.9) 

Then we find [modulo a function analytic at tp = 0] 

I= E(q,k'fp;) (tp(q)fC(q,l'fp;))N (ta;(q,k'fpi) 

X (log(tp(q)fC(q,k'fp;)))i) (G.lO) 

with N ~ I, and E and a; being holomorphic in their arguments, and, in 

particular, in the r;'s (j > i). 
The function A in ( G.2) is holomorphic. This factor has no important effect 

on the result: it can be incorporated by using Remark I.3(ii) of Appendix I. 
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Appendix H. A normalization of the function defining a Landau sur­

face. 

The purpose of this section is to prove the following lemma, which is an 

adaptation of.the implicit function theorem (or the Weierstrass preparation the­

orem in the theory of holomorphic functions of several variables) to the Landau 

surface shifted by a vector .6. determined by photons that bridge star lines. (d. 

§11. ). 

Lemma H.l. Let cp(q) denote a defining function of the Landau surface for the 

triangle diagram and let ij be a point on the surface. Let i be the smallest j such 

that j identifies a bridge photon line. (A bridge photon line is a photon line that 

has meromorphic couplings on both ends and that completes - via the rules 

defined below (8.2) -to a closed photon loop that passes along at least one star 

line.) Then on a sufficiently small neighborhood of q0 and for sufficiently small 

p; = r 1 · • • r; there exist non-vanishing holomorphic functions B(q,p;, k' I p;) and 

C(q,k'lp;) such that 

cp(q- .6.) = B(q,p;, k' I p;)(p;- cp(q)IC(q, k'l p;)) (H.l) 

holds, where k' denotes the collection of bridge lines. 

Proof. Since i is the first bridge photon line, any bridge photon line kt has 

the form kt = p;ri+l · · · rtf2t. Hence k' I p; is actually independent of p;. It 

follows from (G.l) of Appendix G that 8cp(q-.6.)l8p;lp;=O =I 0 holds. Hence the 

Weierstrass preparation theorem guarantees the local and unique existence of a 

non-vanishing holomorphic function B(q, p;, k' I p;); 'and a holomorphic function 

R(q,k'lp;), which vanishes for q; = q0 , for which the following holds: 

cp(q- .6.) = B(q, p;, k' I p;)(p;- R(q, k' I p;)) (H.2) 

Setting p; = 0 in (H.2) we find 

cp(q) = B(q, 0, k' I p;)( -R(q, k' I p;), 

that is, 

R(q, k'l p;) = cp(q)f( -B(q, 0, k'l p;)). 

Hence by choosing C(q,k'lp;) = -B(q,O,k'lp;) we obtain (H.l). 
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Appendix I. Some auxiliary integrals. 

The purpose of this appendix is to find an explicit form of the singularities 

of several integrals that we encounter in dealing with infrared problems. The 
simplest example is this sort is the following integral 1(t): 

1(t) = fo6 
nog(r + t + iO) -log(t + iO)]drfr, (o > 0). 

In spite of the divergence factor 1/r, 1(t) is well defined as a (hyper) function 
oft. In order to see this, it suffices to decompose 1(t) as 

lat/2 16 (log(r + t) -logt)dr/r + (log(r + t) -logt)drfr 
0 ~ . 

with 1m t > 0: the well-definedness of the second integral is clear, while the 

fact that 
r r 

log(r + t) -logt = log(1- t) "'t 
holds in the domain of integration of the first integral entails its well-definedness. 
Furthermore 1(t) (thus seen to be well-defined) satisfies the following ordinary 
differential equation: 

t ~1(t) = log(t + iO) -log(t + o + iO). {1.1) 

Hence (t1t) 2 is holomorphic near t = 0. Then it follows from the general theory 

of ordinary differential equations that 1(t) has the form 

C2(log(t + i0))2 + C1(log(t + iO)) + h(t), {1.2) 

where C1 and C2 are constants and h(t) is holomorphic near t = 0. Furthermore, 
by substituting (1.2) into (I.l) and comparing the coefficients of singular terms 

at t = 0, we find c2 = 1/2. 

This computation can be generalized as follows: 

Proposition 1.1. Let J(a,j;t) (a# 0,1,2, .. ·;j ~ 1) denote the following 

integral: 

16=PO dp1 !aPt dP2 lPj-2 dpj- 1 lPj-1 . a 
- -··· -- (t+pi+tO) dpi. 

0 PI 0 P2 0 Pi-1 0 
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Then the singularity of J(a,j;t) near t = 0 is of the following form with some 

constants Ct (t = 0, · · · ,j- 1): 

{ 
(t + iO)~+l(E~ Ct(log(t + iO))t), if a# -1 (1.

3
) 

L:'~ Ct(log(t + iO))I.+t, if a= -1. 

Remark 1.1. If a is a non-negative integer, the integral J(a,j; t) is not singular 

at t = 0. 

Proof of Proposition I. 1. The well-definedness can be verified by the same 

method as was used for the above example J(t). To find its singularity structure, 

we again make use of an ordinary differential equation as follows: 

(t.!!_- (a+ 1))J(a,j;t) = (t!!_- (a+ 1)) {
6 

dp1 fP
1 

d/>7. ·· · 
~ & k ~k P2 

[Pi-2 dpj-1 ((t + Pi-1 + iO)a+l- (t + iO)a+l)/(a + 1) 
lo Pi-t 

·~a6 dp11Pl d/>7. !oPj-2 dpj-1 l = - - · · · --(t(t +Pi-t+ iO)a- (t +Pi-t+ iOt+ ) 
o Pt o P2 o Pi-t 

1
6 dp1 1P1 d/>7. !oPi-2 . 

=- - - · · · (t + Pi-1 + iOtdPi-t = -J(a,j -1; t)(j;;::: 2). 
o P1 o P2 , o 

Repeating this computation, we finally obtain 

and hence we find (tft- (a+ 1))iJ(a,j; t) is holomorphic near t = 0. Again, 
by using the general theory of ordinary differential equations, we obtain the 

required formula (I.3). 

Remark 1.2. Although we do not need the exact values of Ct's, we note that 

Cj-1 in (I.3) is simply given by (-1)i-2J(j -1)!(a+ 1) if a =f' -1. In order to 

find this value it suffices to insert (I.3) into the recurrence relation ( td/ dt- (a+ 

1))J(a,j;t) = -J(a,j -1;t) and use the trivial relation 

(t~ -(a+1))J(a,2;t) =-16

(t+p1+iO)adp1 

= ((t + iot+1 /(a+ 1))- ((t + 8 + iO)a+l /(a+ 1)) 
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as the starting point of the induction. Similarly C;-1 for a = .,.-1 is equal to 
(-1)ijj!. The coefficient of the most singular term can be similarly computed, 
explicitly for the integrals to be dealt with in subsequent propositions. 

The following modification of Proposition 1.1 is often effective in actual 
computations. 

Proposition 1.2. (i) Let I<(a,j; t) (a'# 0, 1, · · · ;j ~ 1) denote the following 
integral: 

la
s dp1 laP1 dfJ2 lapr2 dp; 1 laP;-1 

- -··· --- p;(t+p;+iOtdp;. 
o P1 o P2 o Pi-1 o 

Then its singularity near t = 0 is of the following form for some constants 

Ct(f = 0, · · · ,j - 1): 

{ 
(t + i0)'"+2 (2:~ Ct(log(t + iO))l) if a'# -1,-2 

f'"+2 (2:~ Ct(Iog(t + iO))l+1) if a= -1 or -2 · (
1

.4) 

(ii) Let n be a non-negative integer and let 1(n,j; t)(j ~ 1) denote the 

following integral: 

[ 
dpl laP1 d/)2 laPj-2 dpj 1 laPj-1 
- -··· --- (t+p;tlog(t+p;+iO)dp;. 

o Pt o P2 o Pi-t o 

Then its singularity near t = 0 is of the following form with some constants 

Ct(f = 0, · · · ,j- 1): 

(1.5) 

(iii) Let l(n,j; t)(n; a non-negative integer, and j ~ 1) denote the following 

integral: 

1
S dp1 1P1 d/)2 1Pj-2 dpj l 1Pj-1 . 

- -··· --- p;(t+p;tlog(t+p;+iO)dp;. 
0 PI 0 P2 0 Pi-l 0 

Then its singularity near t = 0 is of the following form with some constants 

Ce(f = 0, · · · ,j- 1): 

(

j-1 ) 
tn+:! t; Ct(!og(t + i0)/+1 

• (1.6) 
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Proof. Since Pi(t+pi)a = (t+pi)a+l_t(t+pi)a, (i) and (iii) follow respectively 

from Proposition 1.1 and from (ii) above. Hence it remains to prove (ii). Since 

<f\+1 n • n! 
d +1 ((t +Pi) log(t +Pi+ tO))= .

0 
+ Pn, 

tn t +Pi+ t 

where Pn is a polynomial of (t +Pi), Remark 1.1, entails that 

<f\+1 . 
dtn+t 1(n,j;t) + n!J(-1,j;t) + h(t) (1.7) 

holds with a holomorphic function h(t). On the other hand, near t = 0 a 

straightforward computation shows 

Jt dt tn(Io (t+iO))m = tn+l ~ (-1tm!(log(t+iO)m-r 
g n+ 1 ~ (m -r)!(n+ 1)r 

(1.8) 

holds for non-negative integers n, and m-,1. Combining (1.7) and Proposition 

I.l, we use (!.8) repeatedly to find (1.5). We also note that Remark 1.2 entails 

Gi-l= ( -1); fj!(n + 1) in this case. 

The following proposition is a key result of this Appendix. 

Proposition 1.3. Let 1(t) denote the following integral (1.9), where ei (j = 
1, 2, · · ·, n) is a non-negative integer: 

fo6 
r~1 dr1 11 

r~dr2 · · ·la1 

r~"drn log(t + r1 · · · rn + iO). (1.9) 

Then its singularity near t = 0 is a sum of finitely many terms of the form 

(1.10) 

with a constant C and positive integers N(?:. min e; + 1) and m(:$ n). 

EI:QQf.. First of all, let us re-scale the parameter r 1 and the variable t as 
follows: 

rl = or~' t = OS 

Then I becomes 

o-e1
-

1 fo 1 
(r~)e1 dr~ fo1 

r~dr2 ••• fo1 
r~"drn(log(s + r~ r2 • • • rn) +logo). (1.11) 

The contribution from logo in (1.11) is a finite constant. Thus we may assume 

from the first that o = 1. Then the roles of rjs in (1.9) are uniform, and hence 
we may re-number the index j sci that 

(1.12) 
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Let us introduce new variables u; by 

(!.13) 

Because of the re-numbering done abOve, the u;(j $ n- 1) may be different 

from the p; introduced in Appendix G. The integral I (with 8 = 1) can be now 

expressed as 

lot ut1 {1 u? 1""-, u""11 lo"n-1 -dut -du2 · · · ~cWn-1 u':;'dun log(t+un+iO), (!.14) 
0 U1 0 U2 0 Un-1 0 

where d; = e;- e;+I· The number d; is nonnegative by (1.12), and this non­

negativity makes our reasoning much simpler: that is why we re-numbered the 

index j. 

The first integration in (!.14), i.e . .Jo"-1 u!"dun Iog(t+un +iO), can be done 

in a straightforward manner: using the identity ue = Ej=Oc;ti(t + u)e-;, where 

c; is some constant, we find it is a sum of terms of the form 

Cti{(t + Un-1)e,.-j+lJog(t + Un-1 + iO) 

- ten-i+IJog(t + iO)} 

and polynomials of the form 

C'tj { (t + Un-t)en-i+t - te,.-j+1 }, 

where C and C' are some constants. 

(!.15) 

If d..-1 ~ 1, the same computation can be done for the second integration 

(1.14). In this case we do not need to combine the first term and the second 

term in (!.15). That is, we perform the integration of these terms separately. If 

dn-1 is equal to 0, we first define an integral J by 

lo
t qd1 [l q~, 1"n-:l dun 1 
-dut -. du2 · · · ---{(t+un-tt Iog(t+un-1+i0)-ta log(t+iO)}, 

0 U1 0 U2 0 Un-1 

where a= en- j + 1 is a positive integer. Then we have 

d 
(t dt - a)J(t) 

11 ut1 1171 u~, 1 ... ,._, 1 = -du1 -du2 · · · dun-1 {- a(t + Un-t)a- log(t + Un-1 + i0) 
0 Ut 0 U2 0 

+ ((t + O"n-t)a-1- ta-1)/un-1} 
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Since the contribution from ((t + O'n-d"'-1 - t"'-1)/un-l is finite and analytic 
in t (actually a. polynomial), the ma.iri contribution to J(t) is from -a(t + 

O'n-1)"'-1 log(t + un....:1 + iO). But this is the sa.me integral discussed at the first 

step. Repeating this procedure we finally find that I ha.s the form L:j:.O ti I;, 
where I; satisfies the following equation: 

n(j) d 
II (t-d - at(j))I;(t) = L:(C,.log(t + iO) + C~)tk +A, 
l=1 t k 

(I.17) 

where A is analytic at t = 0. Here n(j) :5 n -1, crt(j) is an integer ~ e,.- j + 1, k 

ranges over a finite subset of integers ~ e,.- j + 1, and C,. and Cf. are eonstants. 

As a solution of the equation (1.17), I;(t) [modulo a. function analytic at t = 0] 
is a. sum of terms of the form 

with a constant C and integers N ~ e,.- j + 1 and m :5 n. Thus I(t) consists of 

terms of the required form (1.10). Note that min e; = e,. by the re-numbering 
of the index j. 

Remark 1.3. (i) If log (t + rl···rn + iO) in (!.9) is replaced by (t + r1 ... rn + iO)"' 
(a: non-integer), the resulting integral is a finite sum of terms of the form 

Ct"'+"(Iog(t + iO))m (1.10') 

with an integer e ~ mine;+ 1 and a. non-negative integer m :5 n- 1. If a = -1, 

then the condition on e is the sa.me a.s above but the condition on m is replaced 

by m ::5 n. 

(ii) Let a(r') be an analytic function of r' = (r~ ... , r~), in a closed "cube" 
C = [e, 1] x ... x [e, 1](e > 0). Then the following integral F(a) ha.s the sa.me 

singularity a.s I(t), or a weaker one : 

F(a) = 11 
dr~···1

1 

dr~,a(1-') Ia( r~1 dr1 ••• J: r~"drn log(t + r~ ... r~, ... rn + iO). 

In fact, for r' in C we find 

t r~1 dr1 ••• {' r~"drn log(t + r~ ... r:,.r1 ... rn + iO) lo lo 

= tr~1 dr1 ••• f'r~"drn{log(-,-t-+ri···rn+iO) lo lo r 1 .•. r'm 

+ log(r~ ... r:._)}. 
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Since the contribution from log(~ ... r'm) to F( a) is an analytic function, it suffices 

to consider the contribution from log(~ .. ~r'.,, + r 1 ••• rn + iO). Proposition 1.3 then 
tells us that it is a sum of terms of the form 

1
1 dr~···ll dr~,a(r') (~ t: )N(log(t + iO) -log(r~ ... r~,))m. 

~ ~ t··· n' 

Hence the singularity of F(a) near t =Dis a sum of terms of the form (1.10). 

Note that the effect of changing the upper end-point of the integral in (1.9) to 
e is absorbed by the harmless change of scaling in r variables and t variable (as 

was employed at the beginning of the proof of Proposition 1.3), on the condition 

that e is a fixed positive constant. 

To generalize Proposition 1.3 to the form needed in Appendix J we prepare 

the following Lemma: 

Lemma 1.1. Let Lm(t; a)(n = 1, 2, ... ;a a strictly positive constant), denote the 

following integral: 

1° {logw)m 
.
0

dw. 
o t+w+t 

Then the singularity structure of Lm near t = 0 is as follows: 

m+l 

Lm = E C;(log(t + iO))j + h(t) 
j=l 

(1.18) 

where C;(j = 1, ... , m + 1) are some a-dependent constants and h(t) is an a­
dependent holomorphic function near t = 0. 

Proof. Since {log w)mlJ(w)O(a-w)(a > 0) is well-defined as a product oflocally 

summable functions, the convolution-type integral Lm(t; a) is well-defined, and 

it is a boundary value of a holomorphic function on {Im t > 0} near t = 0. To 

find out its explicit form (1.18), we first apply an integration by parts: 

L li { 1°m(log(w+i0))m-ll ( 'O)d 
m = m - ·o og t + w + t w 

JC!O JC W + t 

+(log a)m log(a + t + iO)- (log(~>:+ iO))m log(t + ~>: + iO)} 

=lim{ -1° m(log(w+.iO))m-llo (t + w: iO) dw 
JC!O IC w + tO g t + tO 

(1° m(log(w + iO))m-1 ) 
- ,. w + iO dw log(t + iO)- (log(~>:+ iO))m log(t + ~>: + iO)} 
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+ (loga)m log( a+ t+ iO) 

=lim{ -1a m(log(w +.io))m-tlo (t + w ~ iO) dw 
~e!O IC w + tO g t + tO 

· . · t + 11: + iO} t + a + iO 
-(log(~~:+ tO))m log t + iO +(log a)m log t + iO (/.19) 

Let us note that, if Im t > 0, 

. t + IC + iO 
(log(te + tO))m log .

0 t+t 

as 11: l 0. Hence we obtain 

Lm = Mm- (log a)m log(t + iO) +(log a)m log(t +a+ iO), (/.20) 

where 

Mm=lim(- {"m(log(w+.iO))m-llog t+w~iOdw). (/.21) 
IC!O 1 IC w + tO t + tO 

Since (log (w + iO))m-l is locally summable, the reasoning used to verify the 

well-definedness of the integral fs dr log t + r ~ iO ( cf. the beginning of this 
lo r t +t 

appendix) is applicable also to Mm. To find out the explicit form of Mm, let us 
first note 

Mt = C2(log(t + i0))2 + C1 (log(t + iO)) + h(t) 

holds near t = 0 for some constants C1 , C2 and some holomorphic function h(t). 
(Cf. (!.2)). Thus we can verify (I.18) for n = 1. For n > 1, we use mathematical 
induction: Let us suppose (I.18) is verified for 1 ~ m ~ mo. Since 

t!!_M _ (" (m0 + 1)(log(w + io))mo d _ ( 1)£ 
dt mo+l - lo t + w + iO w - mo + mo' (/.22) 

using the induction hypothesis, we find that (tft)mo+l Lmo is holomorphic near 
t = 0. This means that (tft)mo+2 Mmo+l is holomorphic near t = 0. Otherwise 
stated, 

mo+2 
Mmo+l = L Cj{log(t + iO))i + h(t) 

i=l 
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holds near t = 0 for some constants Cj{j = 1, ... , mo + 2) and some holomorphic 

function h(t). Therefore (!.20) implies that (I.18) is true for m = mo + 1. Thus 

the induction proceeds. 

Proposition 1.4. (i) Let Kn,m(t)(n, m = 1, 2, 3, ... )denote the following integral 

(with s > 0) : 

(/.23) 

Then the singularity structure of Kn,m(t) near t = 0 is as follows: 

n+m+1 
Kn,.n(t) = E C;(log(t + iO))j + h(t), (/.24) 

j=1 

where Cj(j = 1, ... , n + m + 1) are some constants and h(t) is some holomorphic 

function near t = 0. · 

(ii) Let Jn,m(t)(n, m = 1, 2, 3, ... ) denote the following integral: 

{6 . {1 r n 

Jo (logro)mdro Jo ···Jo ITdrjlog(t+ror1···rn+i0). 
0 0 0 j=1 

(1.25) 

Then the singularity structure of Jn,m(t) near t = 0 is as follows: 

n+m+1 
Jn,m(t) = L Cjt(log(t + iO))j + h(t), (1.26) 

j=1 

where Cj(j = 1, ... , n + m + 1) are some constants and h(t) is some holomorphic 

function near t = 0. 

Proof. (i) Let pj(j = 0, 1, ... , n) denote Tif=0 r;. Then Kn,m assumes the follow­

ing form: 

{6 (log Po)m dPo [PO dpt ... [P"-~ dpn-1 [P"-t dpn(t + Pn + i0)-1 .. 
lo Po lo Pt lo Pn-1 lo 

Hence we find 

(-t!!_)" J( (t) = r (log Po)m dPo. 
dt n,m Jo t + Po + iO 

Therefore Lemma I.l shows that ( -t1t)n+m+l Kn,m(t) is holomorphic near t = 0. 

This entails (!.24). 
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(ii) Since 1;,Jn,m = Kn,m 1 the result (i) entails 

d n+m+l . 
-d Jn = L C;(log(t + iO))J + h(t) 
t j=l 

(/.27) 

holds for some constants C; and a holomorphic function h(t). Hence, by inte­

grating both sides of (!.27), we find (!.26). Here we have used a formula 

The following generalization of Proposition 1.4 is used in Appendix J. 

Proposition 1.5. Let Ln,m(t)(n, m = 1, 2, 3, ... ) denote the following integral 

(with S0 > 0), where e;(i = 0, 1, ... , n) is a non-negative integer: 

Then the singular part of Ln,m(t) near t = 0 is a finite sum of terms of the 

following form: 
CN,p tN (log(t + iO))P, (/.28) 

where CN,pis a constant, N is a non-negative integer(~ 0~~n e; + 1) and pis a 

.. positive integer (~ n + m + 1). 

Proof. Making use of the scaling transformation of r0 and t as in the proof 

of Proposition !.3, we may assume without loss of generality that S0 = 1. Fur­
thermore, as the role of variables r;(i = 1, ... , n) is uniform, we may assume, by 

re-labelling of the variables r;(i = 1, ... ,n), that e1 ~ e2 ~ ... ~en. If eo~ e1 

then the method used in the proof of Proposition !.3, supplemented by Lemma 

!.1, establishes the required result. However, this condition cannot be expected 

to hold in general, and hence we must generalize. Introducing the new variables 

u; = ror1 .. r; (j = 0, 1, ... , n) we find 

Ln,m(t) 
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where dj = ej- ej+l· As noted above, the proof is finished if do ~ 0. Let us 

consider the case do < 0. We then use mathematical induction on m. When 

m = 1, we use the following: 

Choosing 

d 
-d ((loguo)ugoF(uo,t)) 

O"o 

as F(u0 ,t), we obtain 

(1.29) 

(1.30) 

For notational convenience, let Aj(j = 1, 2, 3, 4) denote the j-th term in RHS of 

(1.30). Since F(1, t) is a well-defined integral ( cf. Proposition 1.3), A1 vanishes 
because of the trivial fact log 1 = 0. To confirm that A2 also vanishes, we note 

that 

It +
1uJ $ c~ 

holds if Im t ~ e > 0 and O"n is real. Then we find, for uo ~ 0, 

Therefore 

IF(uo, t)l $ c~ fo170 

ut1-1dul··· ["-l u~dO"n 
- c.ug1+1 

- flj=l(ej + 1)" 

IA21 < C. lim (log uo)ugo+l = 0. 
- troLO IlJ=1 ( ej + 1) 

Since e is an arbitrary positive number, this means that A2 vanishes. 
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The term A3 has the same structure as the integral discussed in Proposition 

1.3, and hence its singular part is a sum of terms of the form (I.28). Note that we 

can re-label all variables including ro if we go back tor-variables from 0'-variables 

in the integral ~i the factor log O'o has disappeared in ~. 

Finally let us study~. As it has the form Ln-l,h we can apply the above 

procedure to it. Repeating this procedure , we eventually end up with one of 

the following two integrals (i) or (ii), together with terms of the form (1.28): 

(i) Ln•,t(n' < n) with do~ 0 

(ii) J~(log O'o)O'QO+llog(t + O'o + iO)do-o. 

By using Lemma I.1 together with the method of the proof of Proposition 1.3, 

we can verify that the singular part of either of them is a sum of terms of the 

form (I.28). 

Thus the proof is finished if m = 1. Let us consider next the case m ~ 2. 

We then use 

d . 
duo ((log O'o)mO'go F(O'o, t)) 

= do(log O'o)mO'go-l F(O'o, t) + m(log O'o)m-lO'go-l F(O'o, t) 

(1 )
m c1o 8F( O'o, t) + ogO'o O'o a . . O'o (1.31) 

. As before, we concentrate our attention on the case do < 0. Choosing as F(O'o, t) 
the same integral as was used when m = 1, we find that the same-reasoning as 

before applies to the contribution from the LHS of (1.31) and the third term 

on the RHS of (1.31). When integrated over (0, 1] (with respect to 0'0 ), the 

second term on the RHS of (1.31) turns out to be mLn,m-l· Thus the induction 

proceeds, completing the proof. 
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Appendix J. Computation for the Nonmeromorphic Case 

The computation in the nonmeromorphic case is similar to the computation 

for the meromorphic case described in Appendices G and H. Let the special index 

i be now the smallest integer such that photon line i is either a bridge line or a 

photon line with a nonmeromorphic coupling on at least one end. 

If line i is a bridge line (and hence, by definition, has a meromorphic Cou­

pling on each end, and bridges across a *-segment) then the argument used for 

the meromorphic case continues to work. This is because the condition (G.l) 
of appendix G continues to hold, and each variable >..; associated with a non­

meromorphic coupling acts just like a variable r;(j > i) of appendiceS G and 

H. 
If, on the other hand, the index i labels a line with a nonmeromorphic 

coupling on at least one end then (G.l) may fail, because in this case the variable 

~may enter into tl. only in the form>..;~ (or>..~~). For example, if the photon 

line i runs between two different sides, s and s', and has a nonmeromorphic 

coupling on both ends then, according to (10.8b), the vector ~ enters into tl. 
only in the combinations>..;~ or>..~~~ where>..; and>..~ are the variables associated 

with the two different nonmeromorphic couplings of line i. Hence the derivative 

on tl. occurring in (G.7) will introduce a factor >.., or >..~ into each ~-dependent 
contribution to (G.7). Since>.., and >..i vanish in the domain of integration, and 

all other contributions have factors r;(j > i), which can vanish, the property 

(G.l) can fail. 

Similarly, if only one end of line i is coupled nonmeromophically, say into 

the side s, but the closed loop i does not pass through the star line for either 

of the other two sides s' =/: s, then again (G.l) can fail, for essentially the same 

reason. 

These failures of (G.l) cannot be avoided by simply using Pi = >.,p, (or 

>.~p;) in place of p;, because the condition in (H.l) on k' fp, fails if p; is replaced 

by Pi· 
In this appendix the "self-energy" photons that couple nonmeromorphically 

on both ends onto the same side s will be ignored: they are treated in Appendix 

K. 

To deal with the new cases we introduce the set of variables xj{jd) to 
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represent both the rj(j > i), and also the occurring variables Aj(j ~ i) and 

>.j(j ~ i). Tlus set xi(jeJ) replaces the. set ri(j > i) that occurs in the argu­

ments of Appendices G and H. 

Using the evaluation (G.6) for the constant gradient vector "\lcp we define a 

new variable 

p =-'Vcp·~ 

3 n 

= 2:::2::: a.p.e'_.k.n, (J.6) 
•=1 m=i 

where the reasoning leading to (G.7) has been used. However, e'sm can be 0, 1, 

Am, or>.~, with the latter two possibilities coming from the possible nonmero­

morphic couplings. 

In the case under consideration the photon line i has a nonmeromorphic 

coupling on one or both ends. If this line i has a nonmeromorphic coupling 

on only one end, and the e',n associated with the other end is 1, ·then (G.1) 

again holds, and the method used in the meromorphic case again works. In the 

remaining, cases (namely those for which e',n -:/: 1 for all s) the function r 0 = pf Pi 

has a term AiPsni (or >.~p.0.i) and no other dependence on >.i (or >.D. Hence the 

variable r 0 may be introduced as a new variable, replacing Ai (or >.D, provided 

the associated coefficient p. · ni is nonzero. 

The arguments of section 8, slightly extended to include the Aj, show that 

p • . ni can be taken to be nonzero near points in the integration domain that 

lead to a singularity of the integral at q. Hence the transformation to the new 

· set of variables (with r0 repiacing Ai or >.D is a holomorphic transformation: all 

analyticity properties are maintained. 

The derivative at (q- ~) = q of cp(q- ~)with respect top is 

8cp(q- ~) = "\lcp. 8( -~) 
8p 8p 

= 
8(-"\lcp. ~) 

8p 
8p 

= -= 1. 
8p 

(J.7) 

Thus (G.l) is now satisfied (with p = r 0 r 1 ... ri in place of Pi= r 1r 2 ... ri), and we 

can use the method of Appendices G and H. 
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The function F(q) of (G.2) now takes the form 

" r • 1 I F(q) = fl1r. -._ df2; IT !a rjidr;- droG(q,r,r0), 
i=1 o,n,-1 i=1 o 

(J.8) 

where 

x A(q,!l,r,x)log<p(q-6.), (J.9) 

and log<p(q- A) is defined in (G.3) and (G.4), but with the ~ ..... in place of 

the e.,.,.. Notice that the I dro can be cancelled by the S function to give the 

generalization of (G.2) engendered by the action of the no~eromorphic-part 

operators of (10.8b). 

The expression for G given in (J.9) is well defined only for real V (i.e., only 

for real k;(j ~ i)). A more general definition is this: (1), leave the I dr0 and 

S function out of (J.8) and (J.9); (2), change the variable A; (or Ai) to r 0 ; (3), 
replace the IdA; (or I dAi) by I dro; (4), identify G as the integrand of this 
integral over dr0 • 

Near the point q one can write 

<p(q- A) ~ <p(q)- V<p ·A 

= <p(q) + p. 

Insertion of (J.lO) into (J.8) and (J.9) gives 

where 

F(q) = fjloini=
1 

d!l; iJ11 

rjidr; J dr0 log(<p(q) +p) 

X f(ro, r, !l, q), 

(J.lO) 

(J.ll) 

J(ro,r,!l,q) = ll 11 

xji dx;S(ro + V<p · .3.)A(q,!l, r,x), (J.l2) 
j<J 0 

and .3. =D./ p;. 

Equation (J.ll) exhibits the smearing of the log <p(q) singularity. If J(r0 , r, n, q) 
were to have a 6 function singularity at r0 = 0 then the expression (J.12) would 
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yield a singularity of the form log fP(q). But iff has only a milder singularity 

at r0 = 0 then F(q) will have a weaker singularity at fP(q) = 0. 

Let US examine, then, the form of j(ro, r, 11, q). Let the particular Xj that is 

).i be called simply .A. Then VIP· 6.. will be (a.A + P), where Pis a sum of terms 

each of which is a coefficient of the form p,(q)Oi times a product ri+Iri+2 ••• rj, 

or ri+Iri+l···rj.Aj, or ri+1ri+2···rj.Aj. Eventually the coefficients p,(q)Oj will be 
shifted to nonzero complex numbers. But we shall evaluate the integrals first at 

points where each p,(q)Oi = 1, a= A= 1, and each ei = 0. 

Consider first, then, for 0 < r 0 < 1, the simple example 

f(ro) =fold). fol d:x1 fol d:x2 C(ro-).- XtX2)· (J.13) 

Using the c function to eliminate the I d). we obtain (with e the Heaviside 

function) 

11 d:x1 lro 
=ro -+ dxx 

. ro Xt 0 

= ro( -logro + 1). (J.14) 

Thus in this case the singularity of the function f(r0 ) is much weaker than S(r0): 

f(r0 ) is bounded and tends to zero as r0 tends to zero. 

The general form of f(ro) is 

f(ro) =II 11

dxj E>(ro- P), (J.15) 
jeJ 0 

where Pis as defined above. One sees immediately that f(r0 ) is bounded, and 

tends to zero with ro. 

To begin the study of the general form of J(r0 ) let us consider a case slightly 

more complicated than (J.14): 

f(ro) = fo
1 

dx1 fo1 
dx2 11 

dx3 0(ro- xxx2x3) 
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where (for 0 < h < 1) 

= fo1 
dx1 fo1 

dh 6(ro- X1h) 

x 11 
dx2 11 

dx3 6(h- x2x3) 

= 11 dxt fol dh e(ro- Xth)H(h), (J.16) 

(J.17) 

Notice that the last line of (J.16) has the same form as the first line of 
(J.14), but with a different function H. Substituting the function H(h) from 
(J.17) into (J.16) one obtains, for 0 < r0 < 1, . 

f(ro) = {1 
dxl r dh e( ro -h)( -log h) 

~ ~ Xt 

11 1ro/:z:1 
= dx1 dh( -log h) 

ro 0 

+ foro dx1 fo
1 

dh( -log h) 

= L Cnm(ro)"{log ro)m, 
n,m 

where only a finite number of the constant coefficients Cnm are nonzero. 

(J.18) 

A function of one variable x having, in 0 < x < 1, the form L:Cnmx"(logx)m, 
and bounded in 0 ~ x ~ 1, with some finite number of nonzero coefficients Cnm, 

will be said to have form F. Thus the functions f(ro) specified in (J.14) and 
(J.16) both. have form F. 

In fact, the general function /(ro) of the form specified in (J.15) has form 
F. To see this note first that if we replace the factor H(h) = (-log h) in (J.16) 
by any function H(h) of form F then /{r0 ) has form F: 

J(ro) = 11 
dxt rot:z:

1 
dh H(h) 

ro Jo 
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+ f dxt fo1 

dh H(h) 

{1 dx' rr 
= ro lro (x')2 lo dh H(h) 

+ ro 11 

dh H(h) (J.19) 

Then (I.S) gives the result that if H(h) has_ form F then f(ro) 
has form F. (Note that every term in Jt dhH(h) has a factor x', and hence the 
denominator (x')2 is reduced to x'.) So our problem is to show that f(r0 ) can 

be reduced to the form (J.16) with .IJ(h) having the form F. 

To show this let I (g) be some furiction of form F and consider the integral 

operator Hh defined by 

Then, for 0 < h < 1, 

Hh[I(g)] = fo1 
dx L1 

dg o(h- xg)I(g). 

11 dx' 
= - I(x'), 

h x' 

(J.20) 

(J.21) 

where x' = hjx. Then (1.8) and Lemma 1.1 entail that if I has form F, so does 

Hhi. 

Repeated application of this result shows that if P = x1x2···Xp then f(ro) 
has form F. One first combines x,_1xp into hp, then combines xp_2 hp into hp-1 , 

etc.. At each stage the furictions I and H have form F, and hence one finally 
gets (J.16) with H(h) having form F, as required. 

The general form of Pis not just a single product ri+l···ri: it is a sum of 
such terms with different values of j, some of which can be multiplied by >..i 
or >..j. However, these other terms can be brought into the required form by a 
generalization of the operator technique used above. 

Let us again consider first a simple case: 

f(r0 ) = fo1 
dx fo1 

dg k1 
dt 0(r0 - xt- xg)I(g), (J.22) 
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where I(g) has form F, and t could be a >..i. Then 

where 

Thus 

J(ro) = fo1 

dx fo2 

dh 0(ro- xh)H(h), 

H(h) = fo1 

dg fo1 

dt 6(h- t- g)l(g). 

f(ro) = fo1 

dx fo1 

dh 0(ro- xh)H(h) 

+ fo1 

dx 12 
dh 0(ro- xh)H(h). 

For 0 < h < 1 the function H(h) is 

H(h) = fo1 

dg fo1 

dt 6(h- t- g)l(g) 

= fo1 
dg l(g)0(h- g)0(1- (h- g)) 

= fo" dg l~g), 

(J.23) 

(J.24) 

(J.25) 

(J.26) 

which has form F. Thus the first term in (J.25) gives a contribution ft(ro) to 

f(r0 ) that has form F. The second term is, for 0 < r0 < 1, 

h(ro) = fo1 

dx 12 

dh 0(ro- xh)H(h) 

11 12 r 0 11 = dx dh 0(-- h) dg l(g) 
0 1 X h-1 

11 1ro/= ro ro 11 = dx dh 0(- -1) 0(2- -) dg l(g) 
0 1 X X h-1 , 

11 12 r 0 11 + dx dh 0(-- 2) dg l(g) 
0 1 X h-1 

1ro 1rol= 11 = dx dh dg l(g) 
ro/2 1 h-1 

1ro/2 !.2 11 + dx dh dg l(g) 
0 1 h-1 

!.
2 dx' j"'' 11 = r0 -( ) 2 dh _ dg l(g) + (r0 /2) X const. 

1 x' 1 h-1 

= ro x const., (J.27) 
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which is also of form F. 

The two important points are: (1), that the integral operator that reduces 

a sum t + g to a single h, just like the operator that reduces a product tg to h, 
preserves form F; and (2), the extra part h > 1 does not disrupt the argument: 

it adds only a term r0 x const. 

By taking combinations of these two kinds of operators, and a third kind 

with t fixed at unity, rather than being integrated over, one can reduce any one 

of the possible functions (r0 - P) to (ro- x 1h) combined with an H(h) ofform 

F. Thus all functions f(ro) of the kind (J.15) will be of the form F , provided 

we make the simple assignments 1 = a = A = p.n; = e; + 1. The remaining 

task is to show that essentially the same result follows even when we do not 

make these simple assignments. One other problem also needs to be addressed: 

we have computed the integrals on the variables r; under the assumption that 

the variables n; are held fixed, whereas the distortions in the variables n; can 

depend on the r;. 

By following through the arguments just given, but with the e; now allowed 

to be nonnegative integers, one finds that the conclusions are not disrupted: the 

positive power n of r0 in f(r0) can be increased, and the positive power m of 

log r0 can be decreased, but ~anges in the opposite direction do not occur. 

Hence the singularities are at most weakened. 

To deal simultaneously with the problems of the dependence of A( q In, r, X) 
upon (r,x), and the dependence of the distortion inn upon (r,x), we introduce 

a sufficiently small number e = 1/N > 0, and divide the domain of integration 

0 < x < 1 in each of the variables x; and r; into a sum of N intervals of length 

e, such that (1), the distortion of the set of n variables can be held fixed over 

each separate product interval, and (2), for any subset 0' of the set of variables 

r; and Xj 1 and for the corresponding space 5 formed by the product over 0' of 

the corresponding set of leading intervals 0 < (r;,x;) < e, the dependence of A 

on these variables can be represented by a power series that converges within S 
for each point in the space formed by the product over the complementary set 

of variables of the nonleading intervals e < x < 1. (See Remark I.3(ii).) The 

variables can then be re-scaled so that the original integration domains run from 

0 to N, and the leading intervals (formerly from 0 to e) now run from from 0 

to 1. The earlier arguments can then be applied to the re-scaled problem, with 
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the concept 'form F' replaced by 'form F': a function of one variable x is said 

to have form F' if and only if it is bounded in the interval 0 ~ x ~ 1, and in 

0 < x < 1 can be written in the form 

m 

where the sum is over a finite set of integers m, and each A.n(x) is analytic on 

0 < x < 1. The contributions from the integrations over the nonleading domains 

1 < x < N do not disrupt the arguments, and formula (1.8) shows that extra 

factors n + 1 are introduced into the denominators at each integration, so that 

convergence at the level of the integral is, if anything, improved over the original 

convergence at the level of the integrand. This takes care of these two problems. 

The final step is to remove the assumption that the coefficients of the various 

terms of P are unity: these coefficients are actually the quantities p.O;. 

There is no problem in allowing these coefficients to be strictly-positive 

!l-dependent functions: the constants Cnm• or the functions Am, then simply 

become analytic functions of the variables p,!l; over these strictly-positive do­

mains. In fact, these coefficients can be continued into the complex domain 

without affecting the character of the singularity at r0 = 0 provided we keep 

each coefficient away from the cut along the negative real axis in that variable, 

and keep the point C in the space of the collection of these coefficients away 

from all points where a>.+ P(C,x;,r;) = 0 for some point in the product of 

the open domains of integration 0 < >. < 1, and (for all j) 0 < x; < 1 and 

0 < r; < 1. Here a= p.!l;. 

The points in the domain of integration over the variables r;,x;,!l; that 

contribute to the singularity at cp = 0 are points where each of the three star­

line factors is evaluated at, or very close to, the associated pole. The arguments 

in section 8 show that in this region the first of the variables p,!l;, namely 

p,O; = a can be shifted into upper-half plane Ima > 0, ~d the collection of 

contours C can be distorted so that a>. + P is shifted into the upper-half-plane 

provided 0 < >. < 1 and, for all j, 0 < r; < 1 and 0 < x; < 1. This is exactly the 

condition that is needed to justify the extension of the results obtained above 

for positive real coefficie~ts to the complex points of interest. 

The dependence of the distortion of the contour on >. needs to be described. 

When one introduces the nonmeromorphic couplings, and hence the J d>., into 
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the formula, the Landau matrix acquires a new column, the d). column. How­

ever, the parameter >.. enters in an alm6st trivial way: the pole residues asso­

ciated with the side s of the triangle into which the vertex associated with ). 

is coupled are changed from p.(n; + ; .. ) into (p. + Aik;)(!l; + ... ), and the pole 

denominator (p.)2 - m2 is changed to (p. + ,\ik;)2 - m2• The new set of Landau 

'equations can be satisfied at each of the two end points >..i = 1 and Ai = 0. 

These two solutions correspond to diagrams in which the vertex associated with 

>.i is placed at one end or the other of the side s of the triangle. Both solutions 

to the triangle-diagram equations exist, and, because of the null contributions in 

all ciD; columns, the two solutions yield two different ways of distorting the f2; 

contours, .6.1 and .6.o, the first corresponding to Ai = 1, the second correspond­

ing to Ai = 0. An allowed distortion that gives these two cases and smoothly 

interpolates to the intermediate values of Ai is Ai.6.1 + (1- ,\i).6.0 • It keeps the 

imaginary part of the pole denominator strictly positive (near the ze~ of the 

real part) for all values of >.i in the domain 0 ~ Ai ~ 1. This distortion, or some 

approximation to it, can be used in the argument given above. 

For the remaining integrations on the dr; (j ~ i) one uses Propositions 

L4(ii) and !.5, and Remark L3(ii). This gives for the singular part of F(q) at q 
a function of form F', in some appropriately scaled variable cp(q), multiplied by 

an analytic function of q. 
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Appendix K. Computation for Self-Energy Case. 

Contributions from photon lines j coupled nonmeromorphically on both 

ends into the same side s of the triangle were excluded from th~ discussion in 

Appendix J. For these values of j one can, in order to exclude double counting, 

impose the condition >.;~ .Aj, where Aj is the .A-parameter associated with the 

nonmeromorphic coupling on the tail of photon line j, and >.j is the >.-parameter 

associated with the noruneromorphic coupling on the head of line j. Momentum 

kj Bows along line j from its tail to its head, according to our conventions. · 

The formulas of section 2 refer to momentum ki flowing out of the charged­

particle line at the tail of the photon lin~ j. The coupling at the head can 

be treated like the coupling at the tail, but with a reversal of the sign of ki. 

Then the effect of the two couplings into the same side s is to replace P• by 

p .. + (>.i - >.j)ki, and to integrate on >.i from zero to one and on .Aj from zero 

to Aj· The condition Im p.ni > 0 then retains its usual from. The reduction of 

the domain of integration does not upset the arguments of Appendix J. 

To bring this case into accord with Appendix J we use the following trans­

formations: 

11 d>-1). d>.' !((>.- >.')k) 

= 11 >.d>-11 d>." !( >.(1 - >.")k) 

= fo1 >.d>-11 d>.'"J(>.>."'k) 

= fo
1 
dhf(hk) la1 

>.d>.fo
1 
d>."'6(h- >.>."') 

= r dhf(hk) r1 
d>- r1 

d>-"'6(!:. _ >-"') 
lo lo lo >. 

= fo1 
dhf(hk) 11 

d>. 

= fo
1 
dhf(hk)(l- h). 

The variable h plays the role played by >. in appendix J. 
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