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Abstract Chronic myeloid leukemia (CML) is a blood cancer characterized by dysregulated 
production of maturing myeloid cells driven by the product of the Philadelphia chromosome, the 
BCR-ABL1 tyrosine kinase. Tyrosine kinase inhibitors (TKIs) have proved effective in treating CML, 
but there is still a cohort of patients who do not respond to TKI therapy even in the absence of 
mutations in the BCR-ABL1 kinase domain that mediate drug resistance. To discover novel strate-
gies to improve TKI therapy in CML, we developed a nonlinear mathematical model of CML hema-
topoiesis that incorporates feedback control and lineage branching. Cell–cell interactions were 
constrained using an automated model selection method together with previous observations and 
new in vivo data from a chimeric BCR-ABL1 transgenic mouse model of CML. The resulting quan-
titative model captures the dynamics of normal and CML cells at various stages of the disease and 
exhibits variable responses to TKI treatment, consistent with those of CML patients. The model 
predicts that an increase in the proportion of CML stem cells in the bone marrow would decrease 
the tendency of the disease to respond to TKI therapy, in concordance with clinical data and 
confirmed experimentally in mice. The model further suggests that, under our assumed similarities 
between normal and leukemic cells, a key predictor of refractory response to TKI treatment is an 
increased maximum probability of self-renewal of normal hematopoietic stem cells. We use these 
insights to develop a clinical prognostic criterion to predict the efficacy of TKI treatment and design 
strategies to improve treatment response. The model predicts that stimulating the differentiation of 
leukemic stem cells while applying TKI therapy can significantly improve treatment outcomes.
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Introduction
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm of the hematopoietic system, which 
normally produces billions of mature myeloid and erythroid cells on a daily basis, is tightly regulated, 
and accommodates massive increases in the production of individual cell types in response to physio-
logical and pathological stresses. The hematopoietic system is organized hierarchically as a collection 
of progressively more differentiated cells starting from a hematopoietic stem cell (HSC) located in the 
bone marrow (BM) and ending with postmitotic terminally differentiated myeloid and lymphoid cells 
(Rieger and Schroeder, 2012; Liggett and Sankaran, 2020).

CML is characterized by an overproduction of myeloid cells including mature granulocytes (neutro-
phils, basophils, and eosinophils) and their immediate precursors (metamyelocytes, myelocytes, 
and promyelocytes), and of myeloid progenitors (Jamieson et  al., 2004) including multipotential 
progenitors (MPPs) and committed progenitors (common myeloid progenitors [CMP], granulocyte-
macrophage progenitors [GMPs], and megakaryocyte-erythroid progenitors [MEPs]). Untreated, the 
disease has three distinct phases (Chereda and Melo, 2015). In the initial ‘chronic’ phase, the differ-
entiation of myeloid progenitors is essentially normal, resulting in excessive levels of mature postmi-
totic neutrophils and their immediate precursors. In later stages of the disease (accelerated phase and 
blast crisis), differentiation is reduced and expansion of immature progenitors is observed. Additional 
clonal karyotypic abnormalities are typically only observed during the accelerated and blast crisis 
phases (Hehlmann et al., 2020).

CML has one of the simplest cancer genomes. It is driven by a single genetic abnormality arising 
somatically in an HSC, the Philadelphia (Ph) chromosome, the result of a balanced translocation 
between chromosomes 9 and 22 that creates a fusion of the genes for BCR and ABL1. The product 
of the BCR-ABL1 fusion gene is a dysregulated cytoplasmic protein-tyrosine kinase, BCR-ABL1. CML 
thus represents a natural model of dysregulated granulocytopoiesis (Quintás-Cardama and Cortes, 
2009).

Cell biological studies have shown that Ph+ cells expressing markers of normal HSC are capable of 
engrafting immunodeficient mice (Sirard et al., 1996; Lewis et al., 1998), implying that these cells 
are leukemia-initiating or leukemic ‘stem’ cells (LSCs). More mature committed progenitors in CML, 
like normal progenitors, lack sustained self-renewal capacity and cannot stably engraft immunodefi-
cient mice nor generate hematopoietic colonies in vitro upon serial replating (Huntly et al., 2004). 
The proportion of LSCs in the BM is highly variable across CML patients at diagnosis and can range 
from a few percent to nearly 100% (Petzer et al., 1996; Diaz-Blanco et al., 2007; Abe et al., 2008; 
Thielen et al., 2016), perhaps reflecting different periods of time patients spend in chronic phase 
before they are diagnosed, different rates of disease progression, or both.

There is persuasive experimental evidence of significant feedback regulation of different cell 
compartments in the dynamics of myeloid cell production in both normal and CML hematopoiesis, 
including signaling between the normal and CML cells (Jiang et al., 1999; Devireddy et al., 2005; 
Vicente-Dueñas et al., 2009; Naka et al., 2010; Reynaud et al., 2011; Zhang et al., 2012; Krause 
et al., 2013; Walenda et al., 2014; Welner et al., 2015). For instance, experiments in a mouse model 
of CML provided evidence that IL-6, produced by leukemic neutrophils, blocked MPP differentiation 
toward a lymphoid fate, implying feedback from the myeloid lineage onto MPPs (Reynaud et al., 2011). 
Surprisingly, our knowledge of the details of feedback regulation in hematopoiesis is still incomplete, 
especially for granulopoiesis, where even late-stage feedback interactions are poorly understood. For 
example, two cytokines, granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage 
colony-stimulating factor (GM-CSF), can pharmacologically increase neutrophil production, but mice 
lacking both cytokines maintain baseline neutrophil levels and can still increase neutrophil produc-
tion in response to infection (Basu et al., 2000). In many cases, it is not known which cell types are 
providing and receiving the feedback, what signals are used, and what aspects of proliferative cell 
behavior they influence (i.e., proliferation rates, renewal probability, or progeny fate choice).

In spite of this knowledge deficit, CML can be treated quite effectively using selective small-
molecule tyrosine kinase inhibitors (TKIs) of the BCR-ABL1 kinase. TKIs such as imatinib, dasatinib, 
and nilotinib, which inhibit proliferation and increase apoptosis of Ph+ cells, have dramatically lowered 
CML death rates (Gambacorti-Passerini et al., 2011). The response to TKI therapy in CML is moni-
tored primarily by determining the level of BCR-ABL1 mRNA transcripts in peripheral blood, normal-
ized to a control RNA and expressed as a percentage on an International Scale (Arora and Press, 
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2017). BCR-ABL1 transcript levels, an approximation of the proportion of circulating malignant cells 
at any given time, generally decrease exponentially in patients responding to TKI therapy resulting 
in at least two distinct slopes when plotted semi-logarithmically—an initial rapid decline attributed 
to TKI-induced killing of more mature myeloid cells, and a subsequent slower decline postulated to 
represent lower death rates of more primitive leukemic stem/progenitor cells (Michor et al., 2005). 
Clinical resistance to TKI therapy in CML is a significant problem and is classified as acquired resistance 
(increasing BCR-ABL1 transcript levels following a substantial decrease) or primary resistance (lack of 
an adequate initial response). Many patients with acquired resistance have developed mutations in 
the BCR-ABL1 kinase domain that mediate pharmacological resistance to the TKI (Ernst and Hoch-
haus, 2012). By contrast, 10–15% of newly diagnosed CML patients fail to achieve an ‘early molec-
ular response,’ defined as the level of BCR-ABL1 transcripts being less than 10% at 3 mo (Hanfstein 
et al., 2012; Marin et al., 2012). Clinical data indicate that switching TKIs may not benefit these 
patients (Yeung et al., 2012; Yeung et al., 2015), suggesting that this group is destined to do poorly 
regardless of the specific inhibitor used. BCR-ABL1 mutations are generally not present in this group 
of patients (Zhang et al., 2009; Pietarinen et al., 2016), and thus the mechanism(s) underlying this 
primary resistance is unclear. We hypothesized that these variable patient responses to TKI therapy 
arise from nonlinearity introduced by non-cell-autonomous interactions between normal and CML 
cells. To test this hypothesis, we developed a novel mathematical model of CML hematopoiesis and 
TKI treatment that incorporates lineage branching and interactions between normal and CML cells 
through feedback and feedforward regulation.

Mathematical modeling of leukemia has a long history aimed at understanding disease progres-
sion and improving treatment response using single and combination targeted therapies and immu-
notherapy (Whichard et al., 2010; Pujo-Menjouet, 2015; Brunetti et al., 2021; Kuznetsov et al., 
2021; Roeder and Glauche, 2021). Further, recent efforts have been made to integrate mathematical 
modeling in clinical decision-making to design personalized therapies (Hoffmann et al., 2020; Engel-
hardt and Michor, 2021). Many models of leukemia have utilized simplified lineage architectures 
and minimal feedback (Roeder et al., 2006; Komarova and Wodarz, 2007; Horn et al., 2008; Foo 
et al., 2009; Hähnel et al., 2020; Pedersen et al., 2021). While these models can be made to fit the 
multiphasic disease response data of CML to TKI treatment, the simplicity of the models can make 
these fitted parameters of limited clinical value. More physiologically accurate, nonlinear models that 
account for cell–cell signaling and lineage branching are expected to improve clinical relevance. Math-
ematical models that incorporate feedback signaling have been developed in normal (Engel et al., 
2004; Marciniak-Czochra et al., 2009; Mahadik et al., 2019, Mon Père et al., 2021) and diseased 
(Wodarz, 2008; Sachs et al., 2011; Krinner et al., 2013; Stiehl et al., 2014; Stiehl et al., 2015; 
Crowell et al., 2016; Woywod et al., 2017; Jiao et al., 2018; Stiehl et al., 2018; Zenati et al., 2018; 
Park et al., 2019; Sharp et al., 2020) hematopoiesis. Because of the vast number of possible ways 
in which feedback models of normal hematopoiesis and leukemia can be configured, mathematical 
models tend to greatly simplify the lineage architectures and the feedback interactions among the 
cell types. For example, Manesso et al., 2013 developed a hierarchical ordinary differential equation 
(ODE) model of normal hematopoiesis containing multiple cell types and branch points (16 cell types 
and 4 branch points) in the lineage tree. Limiting the feedback loops to involve only local, negative 
regulation (e.g., regulation by self and immediate progenitor/progeny in the lineage tree) results in 
about 106 models, which enabled the use of a stochastic optimization algorithm to obtain parameters 
consistent with homeostasis and a requirement for a rapid return to equilibrium following system 
perturbations.

In the context of leukemia, the model architectures are typically much simpler. Generally, models of 
leukemia introduce a parallel mutant lineage with the same structure as that used to model the normal 
hematopoietic cells but with different parameters. For example, Wodarz developed an unbranched 
lineage ODE model of normal and leukemia stem and differentiated cells in which feedback from the 
differentiated cells controlled whether the stem cells divided symmetrically or asymmetrically, and 
demonstrated this provides a mechanism for blast crisis in CML to occur without additional mutations 
(Wodarz, 2008). Krinner et al. incorporated positive and negative feedback regulation of differentia-
tion and proliferation in an unbranched lineage model that combined a discrete agent-based model 
for the stem cell compartment with an ODE system for the progenitor and differentiated cells to 
provide a detailed view of the stem cell dynamics and to test the effect of therapies (Krinner et al., 
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2013). Stiehl et al., 2015 developed an unbranched lineage ODE model of normal and leukemic 
cells in which only negative feedback regulation of stem and progenitor cell self-renewal fractions was 
considered, and this was further limited to arise only from factors produced by the postmitotic, mature 
normal and leukemic cells. Later work extended this approach to investigate clonal selection and 
therapy resistance (Stiehl et al., 2014), the role of cytokines on leukemia progression (Stiehl et al., 
2018), combination treatment strategies (Banck and Görlich, 2019), and niche competition (Stiehl 
et al., 2020). Clonal competition was also considered in an ODE feedback model of CML (Woywod 
et al., 2017) and a stochastic model with feedback (Dinh et al., 2021). Simpler unbranched lineage 
models of normal and leukemic cells in which only the normal cells respond to feedback but normal 
and leukemic cells compete for space in the BM have been used to investigate regimes of coexistence 
of normal and leukemic cells (Crowell et al., 2016; Jiao et al., 2018) and design combination thera-
pies using optimal control algorithms (Sharp et al., 2020).

Here, we develop a nonlinear ODE model of normal and CML hematopoiesis using a general 
approach that integrates an automated method, design space analysis (DSA; Fasani and Savageau, 
2010), with data gleaned from previously published experiments, and from two new in vivo exper-
iments presented here that separately decrement the number of stem cells and terminally differ-
entiated myeloid cells in the BM of mice. This approach enables us to systematically select among 
plausible model architectures and signaling interactions without a priori knowledge of which cells 
are providing and receiving signaling stimuli. We start with a model for normal hematopoiesis that 
accounts for stem, multipotent progenitor cells, and two types of terminally differentiated cells repre-
senting the myeloid and lymphoid lineage branches. This approach allows us to reduce the potential 
model space from about 60,000 models to a single model class and reveals the existence of feed-
forward and feedback mechanisms. We then extend the model to incorporate CML hematopoiesis 
by introducing a parallel lineage of CML cells with the same model architecture but with different 
parameters. The model captures the dynamics of CML at various stages of the disease and exhibits 
variable response to TKI treatment consistent with that observed in clinical data. The model suggests 
biomarkers of primary resistance, identifies the underlying mechanisms governing the response to TKI 
therapy, and suggests new treatment strategies.

Results
Model of normal hematopoiesis
The primary challenge in developing mathematical models of normal and CML hematopoiesis is 
sorting through the combinatorial explosion of models that occurs when cell–cell signaling interac-
tions are taken into account. Consider the model hematopoietic system shown in Figure 1A, which 
accounts for hematopoietic stem (HSC; S), multipotent progenitor (MPP; P), and two types of post-
mitotic, terminally differentiated cells—myeloid (TDm) and lymphoid (TDl). The HSC self-renew with 
fraction (e.g., probability) p0 or differentiate with fraction 1-p0. That is, the fraction of HSC that remain 
as HSC after division is p0. The MPPs self-renew with fraction p1 and differentiate into either lymphoid 
or myeloid cells with fractions q1 and 1-p1-q1, respectively. The HSC and MPPs divide with rates η1 
and η2 and the myeloid and lymphoid cells die at rates dm and dl, respectively. The ODEs that govern 
the dynamics of the cells are given in ‘Methods.’ Assuming that there is either positive or negative 
regulation of the self-renewal and differentiation probabilities and division rates of any cell type from 
any other cell type results in 59,049 models, counting each combination of regulated signaling as a 
separate model.

To select the most physiologically accurate models, we first filtered the models using an auto-
mated approach (DSA) developed by Savageau and co-workers (Savageau et al., 2009; Fasani and 
Savageau, 2010; Lomnitz and Savageau, 2016) that enables models to be distinguished based on 
their range of qualitatively distinct behaviors, without relying on knowledge of specific values of the 
parameters. This method relies on identifying boundaries in parameter space that separate qualita-
tive behaviors of a particular model, which is much more efficient than searching for model behaviors 
directly. The boundaries can be approximated from a sequence of inequalities that identify regions 
where one term on the right-hand side of each ODE (e.g., the rate of change) dominates all others 
in the sources (positive terms) and another dominates the sinks (negative terms). This is known as a 
dominant subsystem (S-system) of the model. The number of S-systems in each model depends on the 
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number of combinations of positive and negative terms in the rates of change. If the equilibria of the 
S-systems, which are determined analytically, are not self-consistent (e.g., consistent with the assumed 
dominance of terms reflected in the inequalities) or the equilibria are not stable, then the S-system 
is rejected. If all the S-systems of a particular model are rejected, then that model is removed from 

Figure 1. Branched lineage model of normal hematopoiesis with feedback regulation. (A) Branched lineage model consisting of hematopoietic stem 
cells (HSC; S), multipotent progenitor cells (MPP; P), and postmitotic, terminally differentiated myeloid (TDm) and lymphoid (TDl) cells. Modulation of 
the HSC and MPP self-renewal fractions (p0 and p1), division rates (η1 and η2), and fate switching probability (q1) through feedback can arise from any 
cell type. The different line styles correspond to regulation by a particular cell type (dashed for S, solid for P, dot-dashed for TDl, and dotted for TDm). 
(B) Using Design Space Analysis, four candidate model classes are identified that differ in how HSCs are regulated. (C) Using biological data from the 
literature as discussed in the text, we reduced the model space by hypothesizing that factors secreted by terminally differentiated myeloid cells direct 
the fate of MPPs (e.g., IL-6) and those by MPPs suppress HSC self-renewal (e.g., CCL3).

https://doi.org/10.7554/eLife.84149
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further consideration. Models with at least one self-consistent and stable S-system are viable candi-
dates for further analysis. DSA can be easily automated to make the analysis of very large numbers 
of equations feasible. Details are provided in ‘Methods’ and ‘Appendix 1’ (Section 1). The result of 
this procedure is the elimination of all but the four model classes shown in Figure 1B, which require 
negative regulation of the stem cell self-renewal fraction but differ by where this regulation arises. The 
models within the classes share at least one S-system and have common qualitative behaviors. The 
differences between models in a class lie in whether or not there is positive, negative, or no regulation 
on the rest of the parameters from any of the cell types. This reduces the number of possible models 
to 26,244.

Previous work has implicated several feedback mechanisms active in both normal and malignant 
hematopoiesis. Interleukin-6 (IL-6) is produced by differentiated myeloid cells and acts to bias MPPs 
toward a myeloid fate (Reynaud et al., 2011; Welner et al., 2015). Such negative feedback circuits, 
known as fate control, have been shown to provide an effective strategy for robust control of cell prolif-
eration and reduction of oscillations in branched lineages (Buzi et al., 2015). The chemokine CCL3 
(also known as macrophage inhibitory protein α [MIP-1α]), produced in BM by basophilic myeloid 
progenitors (Baba et al., 2016), acts to inhibit the proliferation and self-renewal of normal HSC (Brox-
meyer et al., 1989; Staversky et al., 2018), but CML HSC are relatively resistant to its action (Eaves 
et al., 1993, Baba et al., 2013). In hypothesizing these regulatory networks, we arrived at a single 
model class as shown in Figure 1C. In this class, there are 729 model candidates, which differ only 
in how the HSC and MPP cell division rates and the MPP self-renewal fraction are regulated. These 
above results suggest that IL-6 is a candidate feedback factor expressed in the myeloid compartment 
(TDm) with the ability to negatively regulate the fraction q1 of MPPs that differentiate into lymphoid 
cells. CCL3 is a candidate factor mediating negative feedback from the MPP population onto HSC 
self-renewal. To further constrain the remaining models, we performed cell biological experiments 
in mice to glean information about cell–cell interactions by separately perturbing the stem cell and 
myeloid cell compartments.

Depletion of HSC increases HSC and MPP proliferation
As described in ‘Methods,’ healthy C57BL6/J (B6) mice were treated with low-dose (50 cGy) ionizing 
radiation, previously shown to be selectively toxic to HSC in the BM (Stewart et al., 1998). The BM 
stem/progenitor compartment was analyzed by flow cytometry in untreated mice, and on days 1, 3, 
and 7 post-irradiation, using the gating strategy in Figure 2A. These time points and the number of 
mice analyzed at each time point were informed by a Bayesian hierarchical framework for optimal 
experimental design of mathematical models of hematopoiesis (Lomeli et al., 2021). In particular, the 
Bayesian framework suggests combining early time points (soon after radiation was applied) with late 
time points because the early time points provide more information about division rates, while the late 
time points provide more information about the feedback parameters. One day after treatment, we 
observed an acute approximately twofold decrease in the relative size of the HSC compartment in the 
irradiated mice (Figure 2B), accompanied by approximately threefold increase in proliferation rates 
for both HSC and MPPs (Figure 2C). There was no significant change in MPP population, however, 
and the system returned to equilibrium by day 7. These results suggest that the HSC population exerts 
negative feedback on their own division rate (η1) and inhibits the division of MPPs through a negative 
feedforward loop on η2.

Depletion of mature myeloid cells increases the MPP population
B6 mice were treated with the anti-granulocyte antibody RB68C5 (50 μg), and their BM was analyzed 1 
d after treatment (see ‘Methods’). This treatment resulted in an ~20% decrease in mature BM myeloid 
cells, as measured by CD11b expression (Figure 2D and E), and was accompanied by a concomitant 
increase in the size of the phenotypic MPP compartment (Figure  2E) and a decrease in the HSC 
compartment (Figure  2E). These results suggest that there is a negative feedback loop from the 
myeloid cells onto the MPP self-renewal fraction p1.

Taking all these results into consideration, we arrive at the feedback-feedforward model shown in 
Figure 2F. The negative feedback loops shown in blue correspond to those suggested by previous 
experimental data, while the negative feedback and feedforward loops in red are suggested by the cell 
depletion experiments presented here. See ‘Methods’ for a detailed description of the corresponding 
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Figure 2. Fluorescence-activated cell sorting (FACS) analysis of mouse Lin–Sca-1+c-Kit+ (LSK) bone marrow stem/progenitor cells and the proposed 
branched lineage hematopoiesis model. (A) Gating schema for phenotyping hematopoietic stem cells (HSC, defined as LSK CD34–CD48–) and 
multipotential progenitors (MPP, defined as LSK CD34+ CD48+), and BrdU incorporation in their respective compartments. (B) Distributions of HSC 
(blue), MPP (orange), and other (purple) compartments on days 1, 3, and 7 in the bone marrow (BM) of control (CTRL) B6 mice and mice that received 50 
cGy radiation. (C) Frequency of HSC and MPP proliferation in CTRL (gray bars) and irradiated (blue bars) mice measured by BrdU incorporation on days 
1, 3, and 7. Data are shown as mean ± SEM. *p<0.05. (D) Representative histograms depicting the frequency of myeloid cells as measured by CD11b 
expression in mice 24 hr after intravenous administration of isotype control (iso) or RB68C5 (50 μg) antibody. (E) Left panel: bar graph showing the 
frequency of CD11b+ cells in BM of mice that were treated with isotype control antibody (Iso; orange bar, n = 3 ) or RB68C5 antibody (50 μg; blue bars, 

Figure 2 continued on next page
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ODEs. Although these validation data were derived from mice, we hypothesize that similar cell–cell 
signaling occurs in humans.

Parameter estimation for feedback-feedforward model of 
hematopoiesis
To determine biologically relevant parameters for the feedback-feedforward model in Figure 2F, a 
grid-search algorithm was employed. The full ODE model is given in ‘Methods’ and Appendix 1 
(Section 2). The 12 model parameters (proliferation and death rates, self-renewal and branching 
fractions, feedback/feedforward gains) were sampled using a random uniform distribution for each 
parameter. See ‘Methods,’ Appendix 1 (Section 3), and Appendix  1—tables  2 and 3 for details 
and a full parameter list. Once parameter values were chosen, the model was simulated for long 
times. If a parameter set resulted in steady state values consistent with the range of values previously 
reported for a dynamic human hematopoiesis model (Manesso et  al., 2013), that parameter set 
was accepted. Out of ~106 possible parameter combinations, a total of 1493 parameter sets were 
accepted (Appendix 1—figure 4). We further restricted the candidate parameter sets by considering 
only those with sufficiently large feedforward gains on the MPP division rate (γ5 > 0.01) in order to 
focus on the novel feedforward dynamics. This reduced the number of eligible parameter sets to 
563, and their distributions are shown in Appendix 1—figure 5. Each of these parameter sets can be 
thought of as representing the ‘normal’ condition of a virtual patient by having different individual 
parameters, for example, due to genetic, epigenetic or environment factors, that nevertheless result 
in a ‘normal’ homeostatic hematopoietic system. The different parameter sets thus model a range of 
variability across individual CML patients. The values of the parameters used are given in Appendix 
1, Section 3.

Sensitivity analyses of hematopoiesis model
DSA can be used to determine qualitative model behaviors and how sensitive the model is to pertur-
bations of key parameters. Here, we focused on the feedback gains γ1 and γ3 on the HSC and MPP 
self-renewal probabilities, respectively (see Appendix 1, Section 1.3 for details, and for sensitivity 
analyses for other parameters, see Figure 3—figure supplement 1). As indicated in Figure 3A, DSA 
identifies four regions (design space) in the γ1 and γ3 plane which the dynamics are governed by 
different S-systems. Using a parameter set in each design space region (indicated by white dots) as 
a base value, we performed a parameter sweep in which we vary γ1 and γ3 in a range within 0.9–1.1 
times the magnitude of their original values. In Figure 3B, the evolution of each of the cell popula-
tions is shown, starting from an initial condition in which there are only a small number of HSC. The 
different graphs correspond to the parameter sets (Appendix 1—table 4) in the four regions of the 
design space although the dynamics are shown for the full ODE solutions. The solid curves denote 
results from the original (white dot) parameter set, and the shading denotes the range of behaviors 
when the parameters are varied. The black and blue curves correspond to the HSC and MPPs, respec-
tively, while the dark-green and light-green correspond to the terminally differentiated myeloid and 
lymphoid cells. While the system tends to equilibrium for all parameter combinations, the approach 
to equilibrium is different. The dynamics in regions i and ii are monotonic while those in regions iii 
and iv are not (e.g., the equilibria in regions i and ii are stable nodes, while those in regions iii and 
iv are stable spirals). Further, the larger the γ1, the faster the approach toward equilibrium. The cell 
numbers and proportions in each design space region are different as well. In regions i and ii, the 
HSC dominate while in regions iii and iv the differentiated myeloid cells dominate the population. 
Further, the number of cells in regions i and iii is larger than those in regions ii and iv. The equilibrium 
cell populations in region iii correspond more closely to the physiological populations identified by 
Manesso et al., 2013. Figure 3—figure supplement 2 depicts the effective parameters in region iii 
as it develops toward the physiological steady state.

n = 3). Right panel: HSC (blue), MPP (orange), and other cell type (purple) frequencies from mice that received isotype or RB6-8C5 antibody. Data are 
shown as mean ± SEM. *p<0.05. (F) Proposed feedforward-feedback model of hematopoiesis with associated feedback strengths denoted with γ1–γ5. 
The negative feedback loops shown in blue correspond to those suggested by previous experimental data (Reynaud et al., 2011; Staversky et al., 
2018), while the negative feedback and feedforward loops in red are supported by our cell depletion experiments in (A–E).

Figure 2 continued

https://doi.org/10.7554/eLife.84149
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Figure 3. Qualitative behavior of feedforward-feedback model and parameter sensitivity. (A) The colored regions 
(i–iv) represent areas of design space in which there are distinct qualitative behaviors as a function of the feedback 
gains γ1 and γ3 of the hematopoietic stem cell (HSC) and multipotential progenitor (MPP) self-renewal fractions, 
respectively. White dots denote specific parameter combinations. (B) The dynamics for each cell compartment 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.84149
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We next investigated the sensitivity of the model to perturbations about the equilibrium cell popu-
lation. In Figure 3C, we present the results obtained by reducing the number of terminally differen-
tiated myeloid cells from their equilibrium value by 10% (dot-dashed), 50% (dashed), and 90% (solid) 
and with parameters from design space region iii (Appendix 1—table 4). By initially depleting the 
myeloid cells, which is similar to the experiment in Figure 2D and E, the hematopoietic system is 
shifted away from its steady state. While the presence of the negative feedback loops introduces 
small magnitude oscillations of the HSC, MPPs, and lymphoid cells, the myeloid cell dynamics are 
monotonic and the system robustly returns to its steady state over times that are consistent with those 
established in previous experiments (Reynaud et al., 2011) for similar perturbation studies.

Extension of the hematopoiesis model to CML
Following previous modeling studies, we modeled CML by introducing a parallel lineage of mutant 
leukemic cells (denoted by the superscript L) but with the behavior of that lineage coupled at 
many points to the behavior of non-mutant cells, and vice versa. In particular, the model for normal 
and CML cells shares the same lineage structure and feedback architecture with both normal and 
mutant cell types providing a source of regulating factors, and although all the leukemic parameters 
(Appendix 1—table 3) could be different from their normal counterparts (Appendix 1—table 2), 
we begin by assuming the only difference between the two lineages is a decrease in the feedback 
strength for leukemic HSC (HSCL; SL), as indicated by p0

L in the schematic in Figure 4A. This makes the 
leukemic cells less responsive to negative feedback and enables leukemic cells to gain a competitive 
advantage for growth. One candidate mediator of this negative feedback is CCL3, previously shown 
to inhibit self-renewal and division of normal HSC but HSCL are less sensitive to its inhibitory regula-
tion (Eaves et al., 1993, Dürig et al., 1999, Baba et al., 2016; Staversky et al., 2018). An example 
of CML hematopoiesis is shown in Figure 4B, where it is seen that, after the introduction of a few HSCL 
at equilibrium of the normal hematopoietic system, the CML cells (dashed curves) repopulate the BM 
at the expense of normal cells (solid curves). Because of negative feedback, the system will eventually 
reach a new equilibrium consisting solely of leukemic cells. See Appendix 1—table 5 for the leukemic 
parameter values, and Figure 4—figure supplements 1–5 for parameter sensitivity studies of systems 
containing both normal and CML cells.

We then perturbed each of the leukemic parameters within 10% of the values in Appendix 1—
table 5 and found that only the leukemic stem cell self-renewal parameters—the maximal HSCL self-
renewal fraction ‍p

L
0,max‍ and the feedback gain ‍γ

L
1 ‍ on the HSCL self-renewal fraction—have the potential 

to significantly influence the results. The results are insensitive to changes in the other leukemic cell 
parameters (see Appendix 1, Section 9, Figure 6—figure supplements 2–4). These results are char-
acteristic of even larger changes in the base parameters.

In this and subsequent parameter investigations, we constrained ‍p
L
0,max‍ to be less than or equal to 

‍p0,max‍ , the maximal self-renewal fraction of the normal HSC, motivated by the paucity of evidence 
that ‍p

L
0,max‍ is larger than ‍p0,max‍ , coupled with experimental data suggesting that ‍p

L
0,max‍ is less than or 

equal to ‍p0,max‍ . For example, CML long-term culture initiating cells (LTC-IC; thought to be phenotyp-
ically similar to stem cells) decrease significantly in in vitro cultures while the number of normal LTC-IC 
is unchanged, consistent with a relative decrease in self-renewal probability of the CML cells (Udom-
sakdi et al., 1992). In vivo, HSC self-renewal can be assessed directly through transplantation studies. 

within each of the four design space regions (i–iv). Solid lines represent ordinary differential equation (ODE) 
solutions using the specific parameter combinations (black dots in A) while the lightly colored regions represent 
the range of ODE solutions resulting from perturbations in γ1 and γ3 in a range within 0.9–1.1 times their original 
values. The blue and black curves correspond to the HSC and MPPs, respectively, the green and turquoise curves 
correspond to the myeloid and lymphoid cells. (C) The return to equilibrium following partial depletion of mature 
myeloid cells (10%, 50%, 90%) using the parameter combination (white dot) in region iii.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The dynamics from the steady state with perturbations of each parameter, as labeled, 
ranging from 90% to 110% of the original parameter value from Appendix 1—table 4.

Figure supplement 2. Effective parameters for proliferation, self-renewal, and branching as the solutions to the 
model for the normal hematopoietic system approach steady state.

Figure 3 continued

https://doi.org/10.7554/eLife.84149
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Figure 4. Extension of the model of hematopoiesis to chronic myeloid leukemia (CML). (A) Schematic of two branched lineages consisting of normal 
and CML cell compartments. The two lineages share the same feedback architecture. The difference between the two lineages is the leukemic 
hematopoietic stem cell (HSC) self-renewal is less affected by negative feedback, denoted by p0

L (see text). (B) Dynamics of hematopoiesis upon 
introduction of CML cells. We begin with having normal hematopoiesis at equilibrium. At time 0, 104 leukemic stem cells (HSCL, SL) cells are introduced 
to the system and subsequently expand over time at the expense of the normal cells, which decrease. (C) Sensitivity analyses of the outcomes of CML 
hematopoiesis with values corresponding to the proportion of parameter sets where less than 50% of terminal cells are leukemic. (D) The fitness of the 

leukemic stem cells relative to the normal stem cells, as measured by the ratio of their characteristic self-renewal fractions (‍
−p

L
0 ‍ / ‍

−p0‍) determines whether 

CML will progress and leukemic cells will take over the system after CML stem cells are introduced.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each parameter, as labeled, 
ranging from 90% to 110% of the original parameter value in Appendix 1—table 5.

Figure supplement 2. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each parameter, as labeled, 
ranging from 90% to 110% of the original parameter value in Appendix 1—table 5.

Figure supplement 3. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each parameter, as labeled, 
ranging from 90% to 110% of the original parameter value in Appendix 1—table 5.

Figure supplement 4. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each parameter, as labeled, 
ranging from 90% to 110% of the original parameter value in Appendix 1—table 5.

Figure supplement 5. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each parameter, as labeled, 
ranging from 90% to 110% of the original parameter value in Appendix 1—table 5.

Figure 4 continued on next page

https://doi.org/10.7554/eLife.84149
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In this regard, CML HSC engraft immunodeficient mice variably and inefficiently compared to normal 
human HSC (Wang et al., 1998) while HSC from BCR-ABL1 transgenic mice exhibit an engraftment 
defect upon secondary transplantation into syngeneic recipients (Schemionek et  al., 2010). Both 
results are suggestive of a relative decrease in self-renewal capacity of BCR-ABL1+ stem cells.

Next, we performed a sweep through leukemic stem cell self-renewal parameters ‍p
L
0,max‍ and ‍γ

L
1 ‍ for 

each of the eligible parameter sets for normal hematopoiesis (see below). We found that for the termi-
nally differentiated cell proportion to be at least 50% leukemic (darker regions), there are biological 
constraints upon the combination of ‍p

L
0,max‍ and ‍γ

L
1 ‍ (Figure 4C). As the heat map shows, in order for 

CML to dominate hematopoiesis (e.g., terminally differentiated cell proportion >50% leukemic), the 
CML stem cells should have ‍p

L
0,max‍ sufficiently close to ‍p0,max‍ and ‍γ

L
1 ‍ should be sufficiently small. As the 

ratio ‍p
L
0,max‍ / ‍p0,max‍ decreases from 1, the system requires smaller feedback gains ‍γ

L
1 ‍ to compensate 

and allow for CML to develop. Further, there are threshold values of the parameters required for CML 
hematopoiesis to prevail. Namely, the system is dominated by normal cells (CML cells do not ‘take 
over’) when ‍p

L
0,max‍ / ‍p0,max‍ is sufficiently large or when ‍γ

L
1 /γ1‍ is sufficiently small.

To further examine these biological constraints, we calculated characteristic effective self-

renewal fractions for normal and leukemic stem cells, defined as 
‍

−p
L
0 = pL

0,max/
(

1 + γL
1
−
N
)

‍
 and 

‍

−p0 = p0,max/
(

1 + γ1
−
N
)

‍
, where ‍

−
N = 105‍ , a characteristic value for the size of the MPP population based 

on MPP steady state values (Manesso et al., 2013). The relative fitness of the CML cells defined by 

the ratio of characteristic values of the HSCL and HSC self-renewal fractions: ‍
−p

L
0 ‍ / ‍

−p0‍ . Here, all eligible 
parameter sets representing the states of the normal system are considered and the leukemic param-
eters ‍p

L
0,max‍ / ‍p0,max‍ and ‍γ

L
1 /γ1‍ are varied from 0.6 to 1.0 and 0.1–0.6, respectively. In Figure 4D, we 

examined the relative fitness of leukemic cells through the distribution of the ratio of characteristic 
values colored by leukemic cells outcompeting normal (orange) and normal cells maintaining majority 
(blue). As expected, the larger the relative fitness, the more likely that CML will take over the system 
and dominate hematopoiesis. For further analysis of the leukemic parameter combinations for CML 
hematopoiesis and under treatment, see Figure 4—figure supplement 6, Figure 6—figure supple-
ments 2–4, Figure 7—figure supplement 2, Figure 8—figure supplement 2, Appendix 1, Sections 
9–11, and Appendix 1—figures 11–17 for details.

Validation of the CML model
To test whether our mathematical model recapitulates known features of CML biology, we simu-
lated a published transplant experiment in a transgenic mouse model of CML that recapitulates the 
main features of human CML (Reynaud et al., 2011). In this experiment, either HSCL or leukemic 
MPPs (MPPL) were implanted into sublethally irradiated mice (Figure 5A). Transplantation of HSCL 
enables engraftment and myeloid cell production that leads to CML. On the other hand, trans-
planting MPPLs does not allow for long-term engraftment but results in a larger fraction of donor-
derived lymphoid cells after 35 d (Figure 5B). This study presented evidence that IL-6 produced by 
differentiated myeloid cells reprograms these MPPL progenitors toward a myeloid fate (Reynaud 
et al., 2011). As described in ‘Methods’ and Appendix 1, Section 4, we modeled this experiment by 
reducing the number of cells in equilibrium to mimic the effects of sublethal radiation. We explored 
a range of possible reductions of HSCL, MPPL, and differentiated myeloid and lymphoid cells and 
tracked the outcomes when 4000 HSCL or MPPL were introduced after the decrements from equi-
librium. We then discarded those parameter sets that did not yield results consistent with a simple 
majority of myeloid cells for HSCL transplant and a simple majority of lymphoid cells for MPPL trans-
plant (Reynaud et  al., 2011). In particular, 85 parameter sets were discarded, leaving a total of 
478 parameter sets remaining. Characteristic results are presented in Figure 5C and D when the 
reductions for HSCL, MPPL, and terminally differentiated cells were 55, 35, and 10%, respectively, 
from their equilibrium values. See Figure 5—figure supplement 1 for results using other decre-
ments, the removed parameter set criteria (Figure 5—figure supplement 2), and Figure 5—figure 
supplement 3 for the final parameter distributions. When HSCL are transplanted (solid curves), the 

Figure supplement 6. Variations in the other leukemic parameters and their associated gamma for all eligible parameter sets.

Figure 4 continued

https://doi.org/10.7554/eLife.84149
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donor-derived MPPL (Figure 5C, left) rapidly increased as did the terminally differentiated myeloid 
and lymphoid cells (Figure 5C, right). Consistent with the experiments, there is a larger fraction of 
donor-derived myeloid cells than lymphoid cells after 30 d (Figure 5D). In contrast, when MPPL are 
introduced (dashed curves), their population decreases (Figure 5C, right) because the MPPL do not 
stably engraft. Concomitantly, there is burst of donor-derived myeloid and lymphoid cells at early 
times (Figure 5C, right) as the transplanted MPPL differentiate.

The early time dynamics of the myeloid and lymphoid cells depend on the specific values of the 
MPPL self-renewal (p1) and fate control (q1) fractions, whose values in turn depend on the number of 
myeloid cells through negative feedback regulation. In particular, if ‍1 − p1 > 2q1‍, then more myeloid 
than lymphoid cells will be produced at early times, as in Figure 5C (right), whereas more lymphoid 
cells will be produced if ‍1 − p1 < 2q1‍ . In both cases, because the MPPLs do not stably engraft and 
instead differentiate into lymphoid and myeloid cells, we observe that there is a larger fraction of 
donor-derived lymphoid cells after 30 d (Figure 5D), consistent with the experiments. This occurs 
because there is a decreasing flux of differentiating cells since there is no stable engraftment and the 
lymphoid cells are longer-lived (smaller death rate) than the shorter-lived myeloid cells, which have a 
larger death rate.

Figure 5. Validation of model through simulated transplant. Results of a transplant experiment from Reynaud et al., 2011. Schematic (A) depicting 
the experimental pipeline and results (B), adapted from Figure 2A-C in Reynaud et al., 2011. When HSCL are transplanted into sublethally irradiated 
mice, chronic myeloid leukemia (CML)-like leukemia is induced and the myeloid cells expand. When leukemic multipotent progenitor cells (MPPL, PL) 
are transplanted, they do not stably engraft and transiently produce a larger fraction of differentiated lymphoid cells. (C) Simulated time evolutions 
of donor-derived HSCL, MPPL, and terminally differentiated lymphoid (TDl), and myeloid (TDm) cells when HSCL (solid) or MPPL (dashed) cells are 
transplanted. (D) Bar chart showing model predictions of the percentages of donor-derived myeloid and lymphoid cells after 35 d when HSCL or MPPL 
are transplanted, which is consistent with the experimental data in (B; see text).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Heat map depicting the outcomes of transplant experiments in the presence of decrements of 50–70% HSCL and 30–50% MPPL 
from their equilibrium values (see text for details).

Figure supplement 2. The dynamics of each parameter set that does not match the experimentally observed behavior of the transplant experiments 
from Reynaud et al., 2011.

Figure supplement 3. Distributions of the remaining 478 parameters after removal determined through the depletion sweep.

https://doi.org/10.7554/eLife.84149
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Leukemic stem cell load influences TKI therapy outcomes
We next explored the effects of TKI therapy on CML in the model. While the overall size of the pheno-
typic HSC compartment is not increased in CML patients (Jamieson et al., 2004), the proportion of 
HSCL in the BM can vary widely across newly diagnosed CML patients from a few percent to nearly 
100% (Petzer et al., 1996; Diaz-Blanco et al., 2007; Abe et al., 2008; Thielen et al., 2016). We 
therefore investigated how the HSCL load in the BM affects therapy outcomes. We used one eligible 
parameter set (see Appendix 1—table 4), out of all 478 parameter sets all of which are capable of 
characterizing the normal state of our simplified model of the hematopoietic system and one choice 
of leukemic parameters (see Appendix 1—table 4) in which the only difference between normal and 
leukemic cells is that the HSCL are one half as sensitive to negative feedback regulation compared 

to the normal HSC (‍
γL

1
γ1

= 0.5‍). The initial condition was obtained by simulating the development of 
CML, analogous to that shown in Figure 4B, prior to initiating therapy. TKI treatment was initiated 
at three different times to achieve varying leukemic stem cell load (6, 18, and 36 mo) and was simu-
lated by introducing a death rate of HSCL and MPPL proportional to their proliferation rates, with the 
HSCL proliferation rate lower than that of normal HSC (Jørgensen et al., 2006). While some studies 
have shown that primitive CML stem/progenitor cells are relatively resistant to killing by TKIs in vitro 
(Graham et al., 2002; Corbin et al., 2011), clinical studies suggest that long-term TKI therapy can 
decrement the CML stem cell compartment, at least in some patients (Etienne et al., 2017; Chen 
et al., 2019), consistent with mathematical modeling of patient BCR-ABL1 transcript data (Tang et al., 
2011). This supports the concept that TKIs possess a measure of leukemia stem cell killing ability, 
and we therefore included this effect in our model. The TKI treatment parameters were the same 
across the three cases. See ‘Methods’ and Appendix 1 for details and Appendix 1—tables 4 and 5 
for parameter values. Thus, these cases can be thought of as representing the response of one virtual 
patient to TKI therapy implemented at different times after disease initiation.

At an early treatment time with lower (<90%) initial HSCL fractions (HSCL, Figure 6A), the numbers 
of MPPL (blue-dashed), leukemic terminally differentiated lymphoid (light-green-dashed), and myeloid 
(dark-green-dashed) decrease rapidly at the early stages of treatment and are accompanied by a rapid 
increase in HSCL due to the loss of negative feedback from the MPPL. This loss of negative feedback 
from the MPPL also results in a rapid increase in the number of normal HSC (black solid curves) that 
subsequently drives an increase in the normal MPPs (blue solid). The increased number of HSC and 
HSCL decreases their division rates due to the autocrine negative regulatory loop as well as the divi-
sion rates of the MPPs and MPPL through feedforward negative regulation. This decreases the flux 
into the terminally differentiated cell compartments (both normal and leukemic), thereby decreasing 
their numbers at early times. At later times, both the HSCL and MPPL gradually decrease in response 
to TKI-induced cell death, which drives an accompanying decrease in the leukemic differentiated cells. 
A small, transient increase in MPPL is observed before the gradual decline. This is driven primarily by 
the increase in flux into the MPPL compartment by differentiating HSCL, although there is also a small 
contribution from the feedforward regulation of the MPPL division rate, which lowers the effectiveness 
of TKI therapy on the MPPL. Both of these effects are reduced as the HSCL numbers are decreased by 
TKI therapy. This in turn increases the effectiveness of TKI therapy in killing leukemic cells at later times 
and enables the normal cells (solid curves) to rebound toward their pre-leukemic equilibrium values.

At intermediate treatment time with larger (90–99%) HSCL fractions (Figure 6B), the responses 
of the leukemic and normal cells to TKI treatment at early times are qualitatively similar to those 
observed in the previous case although the effects are more pronounced. The increase in HSCL is 
much larger than the previous case because there are fewer normal cells to compete with in the BM. 
This significantly decreases the HSC/HSCL and MPP/MPPL division rates through the negative feed-
back/feedforward regulation and correspondingly the rates of TKI-induced cell death. Accordingly, at 
later times the MPPL population rebounds, driven by the flux of differentiating HSCL, and eventually 
the system reaches a state in which both normal and leukemic cells coexist. The stem cell compart-
ment is dominated by HSCL which are largely quiescent, while the multipotent progenitor and termi-
nally differentiated cell compartments have a higher fraction of normal cells. This is consistent with 
experimental results from mouse models (Reynaud et al., 2011) and our own unpublished data. In 
this scenario, BCR-ABL1 transcript levels in the peripheral blood are ~1–9%, but the patient would not 
respond further to TKI treatment and hence would not reach MR3; this has been observed clinically 
including one of the patients in our study (see below). The small flux of differentiating normal and 

https://doi.org/10.7554/eLife.84149
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leukemic stem and progenitor cells, combined with the negative feedback loops on the self-renewal 
and branching fractions, supports nearly steady populations of differentiated cells.

When given years to develop and a late time to treatment, the HSCL fraction is nearly 100% 
(Figure 6C), and there are so few normal stem cells that the leukemic cells easily maintain nearly 100% 

Figure 6. The response of chronic myeloid leukemia (CML) to tyrosine kinase inhibitor (TKI) therapy. (A–C) Simulated cell dynamics of normal and 
leukemic cells in response to TKI therapy that is started at different time points in CML development (A, early times; B, intermediate times; C, late 
times). See text. (D) Simulated molecular response curves corresponding to the application of TKIs for each of simulations in (A–C). The simulated 
molecular response from (A) (blue) compares well with clinical data (symbols) measuring treatment responses to two different TKIs (imatinib, dasatinib) 
averaged across a cohort of patients (Glauche et al., 2018). The simulated molecular responses from (B) and (C) (orange solid and dashed curves) 
are indicative of primary resistance. (E–G) Experiments in chimeric mice (see text) that show that the size of the leukemic stem cell clone correlates 
with decreased response to TKI therapy. Peripheral blood (PB) leukocyte counts (E), percentage of PB granulocytes (F), and PB BCR-ABL1+ (leukemic) 
granulocyte chimerism (G) are shown in cohorts of mice treated with dasatinib. Blue symbols are chimeras bearing >90% BCR-ABL1+ HSCL, red-orange 
symbols are chimeras bearing 46–75% BCR-ABL1+ HSCL.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Effective parameters for proliferation, self-renewal, and branching after leukemic stem cells are added to the normal system at 
steady state, and after tyrosine kinase inhibitor (TKI) therapy begins for the cases shown in Figure 6 in the main text.

Figure supplement 2. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each leukemic parameter, as 
labeled, ranging from 90% to 110% of the original parameter value (Appendix 1—table 4 for normal cells, Appendix 1—table 5 for leukemic cells), 
except for ‍p

L
0,max‍, which is never varied above the ‍p0,max‍ value.

Figure supplement 3. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each leukemic parameter, as 
labeled, ranging from 90% to 110% of the original parameter value (Appendix 1—table 4 for normal cells, Appendix 1—table 5 for leukemic cells).

Figure supplement 4. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each leukemic parameter, as 
labeled, ranging from 90% to 110% of the original parameter value (Appendix 1—table 4 for normal cells, Appendix 1—table 5 for leukemic cells).

https://doi.org/10.7554/eLife.84149
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of each cellular compartment even in the presence of TKI therapy. Aside from a short-lived, transient 
decrease in MPPL (and differentiated leukemic cell) numbers, the leukemic cells are largely unrespon-
sive to TKI therapy because the feedback/feedforward negative regulation of stem and progenitor 
cell division rates makes these rates so low that the TKIs are largely ineffective in killing the leukemic 
stem and progenitor cells. As in the previous case, the negative feedback regulation and the small 
fluxes of differentiating leukemic stem and progenitor cells enables the system to approach a steady 
state containing only leukemic cells.

In Figure 6D, we plot the simulated BCR-ABL1 transcript levels over time for the three scenarios. 
As described in ‘Methods,’ the transcripts are modeled using a relative ratio of leukemic and normal 
terminally differentiated myeloid and lymphoid cell numbers. The solid blue curve corresponds to 
CML using the treatment time from Figure 6A, which responds to TKI therapy. Just as in the clinical 
data (symbols), the response to TKI therapy produces a biphasic exponential decrease in BCR-ABL1 
transcripts, which decreases below 10–1, representing a so-called major molecular response (MMR or 
MR3), which represents a major goal of therapy in CML as the risk of relapse and leukemia-related 
death is virtually nonexistent once this milestone is achieved (Hochhaus et al., 2017). Consistent with 
previous interpretations, the rapid initial decrease in BCR-ABL1 transcripts is due to TKI-induced cell 
death of MPPL and the increase in normal HSC and MPPs, which induce corresponding changes in 
the myeloid and lymphoid cells (Figure 6A). The long-term, slower depletion of leukemic cells and 
the stable normal cell populations result in the second phase of the biphasic response. The simu-
lated results compare well with clinical data from the DAISISON study of imatinib versus dasatinib 
in patients with newly diagnosed CML (Cortes et al., 2016) where the data corresponds to mean 
BCR-ABL1 transcripts, with standard deviations, adapted from Glauche et al., 2018 for patients who 
received imatinib (blue) or dasatinib (red).

The two other curves in Figure  6D correspond to the treatment times from Figure  6B (solid 
orange) and C (dashed orange). In these cases, the BCR-ABL1 transcripts do not decrease below the 
MR3 threshold, indicating that neither of these virtual patients responds adequately to TKI therapy. 
There is a partial response in patient from Figure 6B as the transcripts initially decrease due to TKI-
mediated death of MPPL, but this effect soon saturates because the leukemic stem cells are able to 
drive the regrowth and persistence of leukemic progenitor and differentiated cells. For the virtual 
patient with parameters from Figure 6C, there is essentially no change in the BCR-ABL1 transcripts 
when therapy is applied. These behaviors are consistent with those observed in CML patients with 
primary resistance to TKI therapy (Zhang et al., 2009; Yeung et al., 2012; Pietarinen et al., 2016).

HSCL load influences the response to TKI therapy in a mouse CML 
model
The fundamental difference between these three virtual patients is the number of leukemic stem cells at 
the start of therapy, which occurs because treatment is initiated at different times following the devel-
opment of CML (early—6 mo after CML initiation ~93% initial HSCL fraction, intermediate—18 mo 
after CML initiation ~99% initial HSCL fraction, late—36 mo after CML initiation ~99.99% initial HSCL 
fraction). Our results suggest that the higher the HSCL fraction at the start of therapy, the less effec-
tive the therapy. This follows from the feedback/feedforward regulation where increased numbers 
of HSC and HSCL decrease their own proliferation rates as well as those of the MPPs and MPPL (see 
Figure 6—figure supplement 1 and Appendix 1—figure 6 for further explorations of feedback/
feedforward regulation of parameters). This reduces the effectiveness of TKI therapy as evidence 
suggests TKIs preferentially target dividing leukemic cells (Graham et al., 2002; Corbin et al., 2011) 
and suggests a mechanism why some patients are destined to do poorly with TKI therapy.

To test this hypothesis, we created BM chimeric mice containing both normal and leukemic (BCR-
ABL1+) HSC by transplantation of BM from conditional BCR-ABL1 transgenic mice (Koschmieder 
et  al., 2005) into unirradiated congenic recipient mice. Following stable engraftment, BCR-ABL1 
expression is induced in transgenic HSCs by withdrawal of doxycycline (see ‘Methods’). These 
chimeras represent a novel and physiologically accurate in vivo model of early CML development that 
reflects interactions between normal and CML cells in a BM microenvironment unperturbed by radia-
tion (Rodriguez et al., 2022). Two cohorts of chimeric mice bearing either a high HSCL burden (94 ± 
1.5% of the HSC population) or an intermediate HSCL burden (58 ± 12%) were treated with dasatinib 
(25 mg/kg daily by oral gavage). Both cohorts showed a hematological response to TKI therapy, with 

https://doi.org/10.7554/eLife.84149


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Computational and Systems Biology

Rodriguez, Iniguez et al. eLife 2023;12:e84149. DOI: https://doi.org/10.7554/eLife.84149 � 17 of 57

decreased peripheral blood leukocyte counts (Figure 6E) and a decreased percentage of circulating 
granulocytes (Figure 6F). By contrast and consistent with the predictions of the quantitative model, 
while mice bearing smaller populations of HSCL showed a decrease in the percentage of circulating 
BCR-ABL1+ granulocytes in response to TKI therapy, mice with the highest HSCL burden showed virtu-
ally no decrease in circulating leukemic cells (Figure 6H). Because the level of circulating granulocytes 
reflects the proportion of BM HSC (Wright et al., 2001; data not shown), these results demonstrate 
that TKI therapy is unable to decrement the HSCL compartment in mice with predominantly BCR-
ABL1+ HSC at the start of treatment.

HSC self-renewal as an additional determinant of TKI response
While analyses of clinical data also show that patients with lower leukemic stem cell burden are more 
likely to respond to TKI treatment (Thielen et al., 2016), some patients with a high percentages of 
leukemic stem cells at the start of treatment are nonetheless still capable of responding to TKI therapy 
(e.g., see Figure 3 in Thielen et al., 2016). This suggests that leukemic stem cell burden alone does 
not predict the molecular response to TKIs. To investigate this further, we tested the response to TKI 
treatment for each of our 478 parameter sets. In Figure 7A, we present the results using only one 
choice of leukemic parameters (see Appendix 1—table 5). Other choices of leukemic parameters give 
similar results (see Appendix 1—figure 13). The model outcomes bear a striking resemblance to the 
clinical data of Thielen et al., 2016. The leukemic stem cell fraction does influence TKI response, but 
treatment outcomes are seen to vary among virtual patients within the same initial leukemic stem cell 
load. We then asked what characteristics (e.g., parameter sets) distinguish whether a virtual patient 
achieves a MR3 response within 50 mo. We also varied the HSCL parameters, taking into account 
several studies suggesting that CML stem cells are at least 5–10 times less sensitive to CCL3-mediated 
inhibition of self-renewal (Eaves et al., 1993, Chasty et al., 1995; Wark et al., 1998; Dürig et al., 

1999); for example, ‍
γL

1
γ1 ‍ should be less than 0.2. Further, since 10–15% of patients do not respond to 

TKI treatment even in the absence of BCR-ABL1 mutations (Hanfstein et  al., 2012; Marin et  al., 
2012), we estimate ‍p

L
0,max‍ / ‍p0,max ≈ 0.8‍ from Appendix 1—figure 11 to roughly match this proportion 

of nonresponding patients. Taken together, this suggests that the effective leukemic stem cell fitness 

would be ‍
p̄0

L

p0,max
≈ 0.7‍. We thus varied the HSCL parameters accordingly. In Figure 7B, we plot the 

results for ‍
p̄0

L

p0,max
≥ 0.7‍ as a bivariate histogram for ‍

p̄0
L

p0,max ‍ and ‍p0,max‍ with proportion of response (blue) 
and nonresponse (orange) for every parameter set. Surprisingly, we found that although the fitness 

‍
p̄0

L

p0,max ‍ impacts response, the parameter that clearly distinguished responders from nonresponders was 
the maximal self-renewal fraction p0,max for normal stem cells, shown in Figure 7B (marginal y-axis). See 
Figure 7—figure supplement 1 for the distributions as a function of the other parameters using the 
single leukemic parameter set from Figure 7A (see Appendix 1—table 5), and Appendix 1—figures 
15–16 in Appendix 1, Section 10 for different bivariate distributions corresponding to different 

choices of the minimum fitness ‍
p̄0

L

p0,max ‍ . In particular, larger values of p0,max and γ1 are correlated with a 
decreased response to TKI therapy after leukemia develops. Although these parameters are associ-
ated with normal HSC, the self-renewal fraction p0

L of HSCL and feedback strength ‍γ
L
1 ‍ depends on 

these parameters since we assumed the fitness of the CML stem cells ‍
p̄0

L

p0,max ‍ is larger than a minimum 
threshold. Therefore, increasing the self-renewal fraction of the normal stem cells has the effect of also 
increasing the fitness of the CML stem cells.

To understand further the differences between response and nonresponse to TKI therapy, we took 
the parameter set from Figure 6A as a representative patient for response and selected an arbitrary 
nonresponsive parameter set (Appendix 1—table 6) to be a representative patient for nonresponse. 
In Figure 7C, we show that the effective p0

L (the fraction of HSCL self-renewal after feedback) for 
nonresponders (orange) is larger after TKI therapy is applied than for responders (blue). In partic-
ular, as TKI treatment kills the leukemic progenitors, this increases the effective self-renewal fraction 
for both normal and leukemic stem cells because of the release of negative feedback. When the 
maximum self-renewal p0,max is larger, the leukemic stem cells experience an acute increase in self-
renewal, resulting in their dominance over normal stem cells that then leads to a decreased response 
to TKIs.

Clinical data provide support for this mechanism of resistance. Patients with clonal hematopoiesis, 
in which there is a dominant clone driving hematopoiesis, exhibit predominantly normal hematopoiesis 

https://doi.org/10.7554/eLife.84149
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Figure 7. Leukemic stem cell load alone does not predict response to tyrosine kinase inhibitor (TKI) therapy. (A) Scatter plot of the distribution of 
simulated BCR-ABL1 transcripts at 18 mo after start of treatment as a function of the HSCL proportion at the start of TKI therapy for each of the 478 
parameter sets. The time to reach MR3 (BCR-ABL1 transcripts less than 0.1%) is indicated by the color. (B) The proportion of parameter sets that 

achieve MR3 within 50 mo (responders, blue) and those that do not (nonresponders, orange) shown as a joint distribution of the parameters ‍p0,max‍ and 

‍p̄0
L/p0,max‍ using the minimum fitness threshold 

‍
p̄0

L

p0,max
≥ 0.7

‍
, which reveals the maximal self-renewal fraction of the normal HSC, ‍p0,max‍ (y-axis marginal 

distribution), distinguishes response across parameter combinations. (C) Dynamics of the effective leukemic stem cell self-renewal fraction for the 
parameter set used in Figure 6A–D (blue) and an arbitrary representative non-responsive parameter set (orange) during chronic myeloid leukemia 
(CML) development and before initiation of therapy (t < 0), and after application of TKI therapy (t > 0). (D) Early time dynamics (e.g., t = 0–3 mo; left of 
the vertical line) of the transcript levels reveal that it is difficult to distinguish responders (blue) from nonresponders (orange). At later times (e.g., t = 
3–6 mo; right of the vertical line), the two populations are easier to distinguish. (E) Receiver operating curves (ROC) obtained from the 478 parameter 
sets using our new prognostic criterion based on the relative changes in transcript levels (solid) and the transcript halving time (dashed) for the first 3 
mo (blue) and the second 3 mo (orange) after therapy. The prognostic thresholds (symbols) are identified by optimizing true and false positives rates. 
Early molecular response (EMR) at 3 mo (10% transcript levels) and 6 mo (1% transcript levels) are shown by the blue square and orange diamond, 
respectively. Inset: expanded view of the ‘elbow’ region of the ROC curves to display differences between the prognostic tests. Accuracy is improved 
using the 3–6 mo time window, and our new prognostic criterion outperforms the EMR and halving time prognostics in this time window. (F) The 
accuracy of the prognostic criteria applied to CML patient data (n = 7) treated using the same TKI dosing for the 6-month period after therapy is started. 

Figure 7 continued on next page
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but frequently have mutations in the genes, such as TET2, DNMT3A, and ASXL1, that are known to 
increase stem cell self-renewal (Steensma, 2018). Clinical data shows that CML patients whose blood 
cells have mutations in TET2 and ASXL1, some of which may exist prior to development of CML, 
frequently exhibit a poor response to TKI therapy (Kim et al., 2017; Marum et al., 2017). Taken 
together, these data suggest that patients with higher stem cell self-renewal fare worse when their 
CML is treated using TKIs than patients with lower stem cell self-renewal.

Predicting long-term response to TKI treatment
Several measures of the response of CML patients to TKI therapy have been developed, based 
on BCR-ABL1 transcript levels in peripheral blood. Here we test a new, model-driven criterion for 
predicting patient response and compare the results with several other criteria currently used in the 
clinic. A major focus has been on the predictive value of the decline in transcripts over the first 3 mo 
of treatment, principally the so-called ‘early molecular response’ or EMR (defined as BCR-ABL1 tran-
scripts <10% at 3 mo and <1% at 6 mo), where patients with >10% transcripts had significantly lower 
probability of achieving cytogenetic remission and decreased overall survival (Hanfstein et al., 2012; 
Marin et al., 2012). Subsequently, there was an effort to improve the predictive power by focusing on 
the velocity of reduction in transcripts (Branford et al., 2014; Hanfstein et al., 2014; Pennisi et al., 
2019). Because the best predictor of patient response to TKIs, the self-renewal fraction of normal stem 
cells, is very difficult to measure clinically, we searched for an alternative criterion that could accurately 
predict patient response and could still be measured using the data collected in standard practice. 
Therefore, we focused on alternative time frames and calculation methods for assessing BCR-ABL1 
transcript levels (Figure 7D). It is important to be able to predict the long-term TKI response early 
after starting treatment in order to enable changes in therapy. However, since both responders (blue) 
and nonresponders (orange) may show significant decreases in the transcript levels in the first months 
of treatment, it was difficult to distinguish between the two at relatively early time points. By contrast, 
responses in the 3–6-month time frame make it easier to identify the different behaviors of responders 
and nonresponders (Figure 7D).

By calculating the relative changes of the transcript levels from 3 to 6 mo, we developed a prog-
nostic formula: ‍PF

(
3, 6

)
=
(
BCRABL1

(
6
)
− BCRABL1

(
3
))

/BCRABL1
(
6
)
‍. We found that optimizing 

for sensitivity (TPR, the true positive rate) and specificity (1-FPR, with FPR being the false positive 
rate) resulted in a prognostic threshold of ‍PF ≈ −3.2,‍ with sensitivity of ‍≈ 0.91‍ and specificity of ‍≈ 0.91‍ 
(Figure 7E, orange curves) compared to the optimal sensitivity and specificity of the velocity-based 
prognostic (‍≈ 0.89‍ and ‍≈ 0.88,‍ respectively) and ‍≈ 0.77‍ and ‍≈ 0.98‍ for EMR 1% with our parameter 
sets. This demonstrates that this prognostic tool had higher sensitivity and specificity than previously 
developed predictive criteria in separating responders (‍< −3.2‍) from nonresponders (‍> −3.2‍), where 
response is defined as achievement of MR3 within a clinically relevant timeframe of 18 mo. We also 
tested the various prognostics at the 0–3-month interval as is the current clinical practice, but that 
resulted in lower predictive power (Figure 7E, blue curves). These results highlight the importance 
of including the 3–6-month TKI response in predicting the long-term outcome of treatment, instead 
of considering only the first 3 mo. See Appendix 1—figures 7 and 17 in Sections 8 and 12, respec-
tively, for further discussion, comparison of additional prognostic criteria, and the effect of leukemic 
parameters.

We then applied our prognostic criterion to anonymized CML patient data (see ‘Methods’) to 
determine clinical significance and utility. The prognostic tests shown in Figure 7E were calculated for 
both the first 3 mo and the subsequent 3–6-month period after the start of therapy, for the patients 

The results are consistent with the synthetic data in (E). (G) The prognostic criteria applied to patient data (n = 7) in which therapy could be changed 
but those changes were maintained for 6 mo (see text). Although the data are limited, the results are consistent with those in (E) and (F) suggesting 
increased accuracy using the 3–6-month window, and that the prognostic criterion based on relative change may yield more accurate predictions than 
EMR and halving time in the 3–6-month time frame.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Parameter distributions by response to tyrosine kinase inhibitor (TKI) treatment using synthetic data.

Figure supplement 2. Comparison of the proportion of cases that successfully respond to therapy as a function of the ratio of characteristic values of 
leukemic and normal stem cells: ‍̄p

L
0 /p̄0‍.

Figure 7 continued
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who were treated with the same TKI and dosage for the full 6 mo. All the prognostic tests achieved 
a more accurate prediction of patient outcome using the 3–6-month data compared to the same test 
applied to the first 3 mo (Figure 7F). To expand clinical utility, the prognostics were calculated for 
cases where TKI therapy was changed (due either to toxicity or an inadequate response) but then 
maintained for a subsequent 6-month period, which were added to the data from Figure 7F. The 
aggregated data (Figure 7G) reaffirms the improved accuracy in prediction using the 3–6-month tran-
script data compared to that from 0 to 3 mo. Over the first 3 mo, all the prognostic criteria performed 
similarly. Although the number of patients was small, the results suggest that our prognostic criteria 
may perform better than the EMR and velocity-based prognostics that are in current clinical use. For 
comparisons between the prognostic criteria and time frames with patient data, see Appendix 1, 
Section 7, Appendix 1—figures 8–10.

Improving response to therapy: Combining TKIs with interventions that 
promote differentiation
Our model suggests that combination therapy to modulate the stem cell self-renewal rate, in addition 
to directly targeting the leukemic HSC and MPPs with TKI therapy, might counteract TKI treatment 
resistance mediated by high stem cell self-renewal. Such pro-differentiation therapy could be accom-
plished through either direct stimulation of differentiation or through suppression of self-renewal. 
In our modeling experiments, we explored the impact of this approach through the suppression of 
self-renewal (see ‘Methods’ for details). To begin the exploration of the combined TKI-differentiation 
therapy, we performed this combination therapy on each of our 478 parameter sets, which represents 
a population of CML patients with person-to-person variability. We then recorded which parameter 
sets achieved MR3 within 50 mo for each strength of the differentiation therapy (Δ), where Δ is a 
dimensionless constant greater than 0 that constantly suppresses stem cell self-renewal (both normal 
and CML) in the setting of combination therapy (see ‘Methods’ and Appendix 1, Equations 40 and 
41). Using these data, Figure 8A depicts the proportion of parameter sets achieving MR3 given a 
strength of differentiation therapy of Δ. As differentiation therapy strength increases from zero, the 
proportion of parameter sets that achieve MR3 increases before leveling off between Δ = 0.2–0.3, 
with maximum efficacy occurring at a strength of differentiation Δ of about 0.24. The efficacy of 
combination therapy then begins to decline rapidly, and with too great a strength of differentiation 
treatment, the combination therapy becomes inferior to TKI therapy alone.

To investigate how combination therapy effectively targets resistance, and the mechanism of the 
decreased efficacy of combination therapy in achieving MR3 when Δ is large, we returned to exam-
ining parameter distributions. Figure 8B depicts the same distribution of p0,max as in Figure 7B, but 
overlaid with a second histogram (hatched regions) to denote the effect of the differentiation therapy 
at the point of maximum efficacy (see Figure 8—figure supplement 1 for all the parameter distri-
butions). The two types of hatching reveal important factors that determine under which conditions 
combination therapy improves or impairs response. The orange hatching represents transition from 
response to nonresponse by combination therapy; this occurs in individuals with the lowest p0,max. In 
these cases where stem cell self-renewal is already close to the ideal effective self-renewal fraction 
of 0.5, differentiation therapy pushes too many normal cells into differentiation, causing the normal 
cell populations to deplete themselves and decreasing the efficacy as Δ increases beyond 0.24. In 
contrast, the blue hatching shows the desired scenario of nonresponding individuals with high p0,max 
becoming responders and achieving MR3 within 50 mo due to the combination therapy.

To understand further the mechanisms underlying the efficacy of combination therapy, we explored 
treatment dynamics (changes in BCR-ABL1 transcript levels) and the rates of change of both normal 
and leukemic stem cell populations for the nonresponsive individual from Figure 7D. By applying 
two different strengths of differentiation therapy (Δ = 0.24 and 0.5) in combination with TKI therapy, 
for this individual both strengths are able to achieve MR3 at ~18 mo (Figure 8C) in contrast to TKI 
monotherapy, which resulted in a failure to reach MR3 (Figure 7B, orange). Figure 8D and E show 
how the rates of change in the size of the normal and leukemic stem cell compartments vary with 
respect to time for the three different Δ values. For TKI therapy alone (Δ = 0), rates of growth of both 
the normal and leukemic stem cell populations show an increase as a result of the loss of negative 
feedback due to TKI-induced killing of MPPL, but the leukemic stem cells experience a much greater 
numerical increase and outcompete normal cells, resulting in a system that exhibits resistance to 

https://doi.org/10.7554/eLife.84149
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Figure 8. Combining tyrosine kinase inhibitor (TKI) therapy with differentiation promoters enhances response to treatment. (A) The proportion 
of the 478 parameter sets that achieve MR3 under combined TKI and differentiation therapy depends nonmonotonically on the strength Δ of the 

differentiation therapy, with the peak response (86.8%) occurring at Δ = 0.24. (B) The maximum stem cell self-renewal fraction for a single ‍
−p

L
0/p0,max‍ 

in Figure 7B (marginal y) with hatching indicating the effects of the combination of TKI and differentiation therapy with Δ = 0.24. Blue hatching 
indicates nonresponders (who did not achieve MR3) that become responders (achieve MR3) while orange hatching indicates responders that become 
nonresponders upon combined treatment. Differentiation promoters allow nonresponders to TKI therapy with large self-renewal fractions to reach 
MR3. The opposite outcome, loss of MR3 in a TKI responder, primarily occurs only at the smallest self-renewal fractions. (C) Time evolution of BCR-
ABL1 transcripts during combination therapy, with Δ = 0.24 (black) and Δ = 0.5 (blue), using the parameter set from Figure 5B that does not achieve 
MR3 using TKI monotherapy (red). (D, E) The time derivatives of the number of normal (D) and leukemic (E) stem cells during combination therapy. 
The differentiation promoter attenuates the rapid increases in the rates of change at early times after therapy starts in both normal and leukemic cells, 
but the attenuation is much larger in the leukemic cells. This results in the growth of normal cells, while leukemic cells experience restricted growth or 
outright depletion depending upon the differentiation therapy strength. (F) Simplified diagram representing the key interactions between the cells and 
the impact on outcomes of TKI and combination therapy. Green: chronic myeloid leukemia (CML) hematopoiesis depicting the loss of normal stem cells 
and progenitors and the increase in leukemic stem cells and progenitors. Red fill: TKI treatment failure. The TKI-induced death of leukemic progenitors 

Figure 8 continued on next page
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the TKI therapy. Under conditions of maximum efficacy (Δ = 0.24), the normal stem cell population 
rate of change still increases rapidly but to a maximum level below that for TKI monotherapy before 
decreasing more rapidly to zero as the system re-equilibrates. In contrast, under the same conditions 
the rate of change of the leukemic stem cell population is greatly reduced and becomes negative 
after normal stem cells begin to outcompete the leukemic stem cells. Under conditions of stronger 
differentiation therapy (Δ = 0.5), although the accumulation rate of the normal stem cells is substan-
tially reduced, the growth rate of the HSCL is immediately negative. This enables the normal HSC to 
easily outcompete the leukemic cells and restore the system to the normal state. Effectively, for large 
values of HSC self-renewal and corresponding feedback gains, the differentiation promoter acts to 
bring the self-renewal fraction of the normal HSC closer to that of the HSCL, which then enables the 
TKI therapy to disadvantage the leukemic cells, and allow for repopulation and dominance by normal 
cells. For the effect of combination therapy on different combinations of leukemic parameters, see 
Figure 8—figure supplement 2 and Appendix 1, Section 11 for further analysis.

Discussion
In this work, we developed a nonlinear mathematical model of normal and CML hematopoiesis that 
incorporated feedback control, lineage branching, and signaling between normal and CML cells. 
Using ODEs, we modeled the dynamics of the stem, multipotent progenitor, and terminally differen-
tiated cell populations. To filter through the combinatorial explosion of models that occurs when cell–
cell signaling interactions are taken into account, we focused first on normal hematopoiesis. We used 
DSA (Savageau et al., 2009; Fasani and Savageau, 2010; Lomnitz and Savageau, 2013; Lomnitz 
and Savageau, 2016), an approach that enables models to be distinguished based on their range of 
qualitatively distinct behaviors without relying on knowledge of specific values of the parameters, to 
perform an automated search for regions of stability in thousands of proposed models and efficiently 
eliminate unphysiological, unstable models. When combined with previous observations and new in 
vivo data to further constrain cell–cell interactions, we arrived at a new feedback-feedforward model 
(Figure 2F).

Using cell perturbation experiments in mice, we validated several features of the model, including 
feedback from differentiated myeloid cells on MPP self-renewal, and feedforward regulation by stem 
cells on proliferation of stem and MPP compartments. We postulate that these regulatory loops may 
also regulate human blood cell production. While there are some known differences between mouse 
and human hematopoiesis (Parekh and Crooks, 2013), many signaling pathways are conserved 
between species. For example, the role of IL-6 in regulating lymphoid differentiation (e.g., γ4 in 
Figure 2F) has been validated in mice (Reynaud et al., 2011) and human samples (Welner et al., 
2015), while CCL3 mediates negative feedback from progenitors onto stem cell self-renewal (e.g., 
γ1 in Figure 2F) in both mice (Staversky et al., 2018) and humans (Broxmeyer et al., 1989). TGF-β, 
produced by HSC, differentiated myeloid cells, and BM stroma, is a candidate factor regulating nega-
tive feedback of HSC onto their own division rate and that of the MPPs (Zhao et al., 2014b; Naka 
and Hirao, 2017), while IL-6 may inhibit MPP self-renewal and increase myeloid differentiation (Zhao 

relieves negative feedback and increases stem cell self-renewal, resulting in increases in both normal and leukemic stem cells, and eventually their 
progeny (panel 2). The increases are larger for the leukemic cells because their self-renewal fraction is bigger. Increases in the leukemic progenitor 
compartment (panel 3) drive down the self-renewal fraction of normal stem cells proportionally more than for the leukemic stem cells. The increases 
in HSCL also drive down proliferation rates, which makes the leukemic cells less responsive to TKI treatment. Altogether, this makes the leukemic cells 
more fit than the normal cells and results in therapy failure. Blue fill: treatment by combined TKI and pro-differentiation therapy reduces stem cell 
self-renewal relative to TKI monotherapies, equalizes the normal and leukemic self-renewal fractions, which limits leukemic stem cell growth and limits 
decreases in proliferation rates, making the HSCL and MPPL more susceptible to TKI-induced death (panel 2). This allows repopulation of the bone 
marrow by normal stem cells and progenitors to occur (panel 3).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Changes in the parameter distributions from Figure 7—figure supplement 1 when combined differentiation and tyrosine kinase 
inhibitor (TKI) therapy is administered.

Figure supplement 2. Variations in 
‍
pL

0,max
p0,max ‍

 and ‍
γL

1
γ1 ‍ for all parameter sets with combination therapy show improvement of response with combination 

therapy compared to Appendix 1—figure 11 (bottom right).

Figure 8 continued
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et al., 2014a), at least under stress conditions. The role of these candidate hematopoietic regula-
tors could be tested directly in our mouse model via a genetic approach. Moving forward, it will be 
important to validate results from mouse model systems in human studies whenever possible.

We used a grid-search algorithm to determine a set of approximately 500 biologically relevant 
parameter sets for our new model. While we could have used other approaches such as the Latin 
hypercube algorithm to sample our multidimensional parameter space (Read et al., 2018), we chose 
to perform a gridsearch because of the ease of implementation and the fact that our goal was not to 
exhaustively search the full parameter space, but rather to obtain a set of biologically relevant param-
eter values consistent with normal hematopoietic homeostasis. In particular, using each parameter 
set in the model yields steady states that are consistent with normal ranges of hematopoietic cells. 
These parameter sets model a population of individuals with normal cell counts but person-to-person 
variability of parameters due, for example, to genetic, epigenetic and/or environmental differences.

We then extended the model to incorporate CML hematopoiesis by introducing a mutant 
lineage with the same structure as the normal system. We incorporated one of the central features 
of CML pathophysiology, that the leukemic stem cell clone, hypothesized to arise from a single 
HSC that acquires a Ph chromosome, has a competitive advantage over normal HSC and with 
time comes to dominate the stem cell compartment (Dingli et al., 2010; Thielen et al., 2016; 
Holyoake and Vetrie, 2017; Majeti et al., 2022). This competitive advantage could be a conse-
quence of positive feedback (autocrine or paracrine) on the HSCL population or negative feed-
back with different strengths for normal and leukemic stem cells. Candidate mediators of such 
positive and negative feedback include interleukin-3 (Jiang et al., 1999) and CCL3 (Baba et al., 
2016), respectively. Our current model incorporated differential negative feedback of MPPs on 
HSC (Figure 4A) with the HSCL being less sensitive to the negative feedback than are the normal 
HSC, which is consistent with CCL3 (Eaves et al., 1993, Baba et al., 2013). This one difference 
provided leukemic cells with a competitive advantage for growth, and in the absence of treatment, 
the leukemic cells will take over the BM at the expense of normal cells (Figure 4B). Upon explo-
ration of the leukemic parameter space, we found that only the leukemic cell parameters for the 
leukemic stem cells (HSCL)—the maximal HSCL self-renewal fraction ‍p

L
0,max‍ , the feedback gain ‍γ

L
1 ‍ 

on the HSCL self-renewal fraction, and the TKI-induced HSCL death rate ‍TKIHSCL‍—have the poten-
tial to significantly influence the results. The results are insensitive to changes in the other leukemic 
cell parameters (see Figure 4—figure supplement 6, Figure 6—figure supplements 2–4, and 
Appendix 1—figure 11).

When combined with TKI therapy, the feedback/feedforward model exhibited variable responses 
to TKI treatment, consistent with those observed in CML patients. That is, although our 500 param-
eter sets were consistent with normal hematopoietic cell counts, the responses to TKI treatment were 
highly variable, with some sets responding to treatment while others did not. The model predicted 
that a contributor to primary TKI resistance is the overall proportion of HSC that are leukemic, consis-
tent with experimental data in mice (Figure 6G) as well as patient data (Thielen et al., 2016). However, 
leukemic stem cell burden alone does not predict the molecular response to TKIs, as observed both 
clinically (Thielen et al., 2016) and in our data (Figure 7A), since some patients with high HSCL frac-
tions in their BM nonetheless still respond to TKIs.

The model suggested that a key predictor of reduced response to TKI treatment is an increased 
tendency of normal hematopoietic stem cells to self-renew, which in turn influences self-renewal of 
the leukemic stem cells since they were estimated to be sufficiently fit with respect to the normal 
stem cells. This is also consistent with clinical data that suggest that CML patients whose normal and 
leukemic cells share mutations in genes such as TET2 and ASXL1, which are known to increase stem 
cell self-renewal (Steensma, 2018), tend to have inferior outcomes under TKI therapy (Kim et al., 
2017; Marum et al., 2017). This is illustrated in Figure 8F (red panel), where the high initial HSCL 
population and the subsequent decline of progenitor cells reveals the effect that high stem cell self-
renewal has on driving TKI resistance. In our model, the presence of a TET2 or ASXL1 mutation in both 
normal and leukemic stem cells that led to a proportional increase in self-renewal in both populations 
would tend to cause resistance to TKI therapy, provided that the HSCL are sufficiently fit in the pres-
ence of the mutations, which we would expect. The self-renewal-driven resistance we describe herein 
challenges the prevailing paradigm that TKI resistance is proliferation-driven and a consequence of 
HSCL quiescence (Graham et al., 2002; Corbin et al., 2011).

https://doi.org/10.7554/eLife.84149
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Because stem cell self-renewal is hard to quantify experimentally, we developed a clinical prog-
nostic criterion to predict TKI response based on the relative changes in the BCR-ABL1 transcripts 
over a 3-month period. Using the synthetic data from our normal and leukemic parameter sets, we 
found that using changes in transcripts from 3 to 6 mo was very effective in predicting the long-term 
outcome of treatment (e.g., reaching MR3 within 18 mo). In contrast, using transcript data from 0 to 3 
mo resulted in less accurate predictions. This observation also holds for prognostic criteria based on 
EMR and transcript halving time, which are currently used in the clinic. We then tested the prognostic 
criteria on data obtained from small number of anonymized CML patients and found the same conclu-
sions hold. Our results suggest that the relative change prognostic criterion more accurately predicts 
patient response than EMR and the halving time, although more data are needed to confirm this. Our 
cohort of patients was small due to the variable nature of patient treatment and inconsistent data 
collection, for example, patients were frequently switched from one TKI to another or one dosage 
to another (sometimes multiple times), and the patients’ BCR-ABL1 transcript levels were not always 
consistently recorded. However, we believe that this pilot study demonstrates the feasibility of our 
approach. Moving forward, we aim to apply our approach to larger datasets and hope to convince 
others to do the same.

Two strategies can be postulated to overcome TKI resistance. One approach could be to decrease 
stem cell self-renewal either by inhibiting self-renewal directly (e.g., by augmenting TET2 function 
using ascorbate; Agathocleous et  al., 2017; Cimmino et  al., 2017) or by promoting differentia-
tion (e.g., using retinoids; Drumea et al., 2008). By applying combined TKI and pro-differentiation 
therapy, the self-renewal fractions of the normal and leukemic stem cells can be decreased and 
brought closer together, which ultimately disadvantages the leukemic cells because of TKI-induced 
cell death (Figure 8F, blue panel). An alternative or complementary approach would be to increase 
stem cell proliferation via pro-proliferative stimuli such as IFN-alpha (Essers et al., 2009) to increase 
efficacy of TKIs in killing HSCL.

It is apparent that the feedback/feedforward interactions incorporated in our model, which are 
necessarily somewhat restricted, may be further constrained by spatial characteristics of the BM 
microenvironment. Nonetheless, our model still displays consistent and biologically relevant behav-
iors, and although further refinement of the model behaviors is possible, based upon our findings the 
key behaviors (feedback mechanisms and importance of stem cell self-renewal) would be expected to 
remain much the same. To explore experimentally observed phenomena not captured by our current 
model such as treatment-free remission, where a low level of HSCL persists in the absence of TKI pres-
sure without myeloid cell expansion, improvement of the model is necessary. For example, it may be 
necessary to incorporate features of the BM microenvironment such as stem cell–niche interactions 
(MacLean et al., 2014; Lai et al., 2022) and interactions with immune cells (Hähnel et al., 2020). 
The inclusion of a quiescent stem cell state and additional cellular compartments (such as committed 
progenitors) coupled with appropriately constrained cell–cell signaling would also make the model 
more physiologically accurate.

In summary, the feedback/feedforward model we have presented here, while a simplified version 
of normal and CML hematopoiesis, makes novel and testable predictions regarding the origins of 
non-genetic primary resistance, which patients will respond to TKI treatment and suggests a combi-
nation therapy that can overcome primary resistance. Although preliminary evidence was presented 
to support model predictions, future work should focus on designing targeted experiments and 
collecting patient outcomes to generate data to more thoroughly test the model.

Methods
Mathematical model of hematopoiesis
The classical depiction of hematopoiesis is a hierarchy of cell types starting with the hematopoi-
etic stem cell at the top, followed by progenitors and ultimately ending with mature cells located 
in the peripheral blood. Therefore, we model hematopoiesis using a lineage ODE model (Roeder 
et al., 2006; Komarova and Wodarz, 2007; Horn et al., 2008; Foo et al., 2009; Lander et al., 
2009; Marciniak-Czochra et al., 2009; Manesso et al., 2013; Buzi et al., 2015; Hähnel et al., 2020; 
Pedersen et al., 2021) to describe cellular growth dynamics. The modeling allows us to follow the 
similar hierarchical structure by creating an order of differentiation. Our branched lineage model of 

https://doi.org/10.7554/eLife.84149
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hematopoiesis is simplified and only models HSCs, progenitor cells (MPPs), and two types of termi-
nally differentiated cells (myeloid and lymphoid cells). The model can easily include additional cell 
types, such as committed progenitor cell types, which will provide an additional level of detail. The 
model consists of two dividing cell types consisting of S (HSC) and P (MPP) cells with a division rate 
associated to the cells (η1 and η2, respectively). The S cells have the ability to self-renew with frac-
tions (p0) or differentiate (1 p0). The P cells have the ability to self-renew with fraction (p1) or differen-
tiate into either TDl (lymphoid) or TDm (myeloid) cells (q1 or 1-p1-q1, respectively). Both S and P cells 
do not die within the model. The terminal cells form the majority of the hematopoietic system and 
consist of TDl and TDm cells. TDm and TDl cells are postmitotic and die at rates dm and dl, respectively. 
The following equations (Equations 1–4) describe the dynamics of the system:

	﻿‍

x′S = (2p0 − 1)η1 xS

x′P = 2(1 − p0)η1 xS + (2p1 − 1)η2 xP

x′TDL = 2q1η2xP − dlxTDl

x′TDM = 2
(
1 − p1 − q1

)
η2xP − dmxTDm‍�

Further expanded forms of the equations are shown in Appendix 1, Equations 26–29, with the 
addition of feedback regulation for each of the parameters.

Design space analysis
We use an automated method developed by Savageau and collaborators (Savageau et al., 2009; 
Fasani and Savageau, 2010; Lomnitz and Savageau, 2013; Lomnitz and Savageau, 2016) that 
separates models by distinct qualitative behaviors at steady state. The strategy is to deconstruct the 
model of interest at steady state to focus on cases where one production term and one loss term 
dominate, which gives a dominant subsystem (S-System). This implies that particular inequalities hold 
in order to ensure the production and loss terms chosen are larger than the others. The inequalities 
are evaluated at the S-system’s steady state to assess self-consistency. If the inequalities are satisfied, 
the system is self-consistent and the regions where equality holds form boundaries that pertain to a 
particular qualitative behavior associated with the system. The interior region (where strict inequality 
holds) is termed a domain in design space. If all the S-systems associated with a model do not have 
any equilibria that are self-consistent or equilibria that are stable, then the model is rejected. The 
benefits of this method are that it does not require prior knowledge about parameter values, and it 
can enumerate the different types of qualitative dynamics a certain system may have. By eliminating 
subsets of parameters for which the equilibrium is unstable, this approach will automatically select 
models that are robust to parameter variation due to stability. When we applied this method to the 
ODE system in Figure 2F (Appendix 1, Equations 26–29), we found that only the four model classes 
shown in Figure 1B were accepted. See Appendix 1, Section 1, for further details.

Parameter estimation
To approximate biologically relevant parameters for the model a grid-search algorithm was employed. 
Parameters were sampled using a random uniform distribution for each parameter (see Appendix 
1, Section 3.1). Once parameter values were chosen, the model was simulated to steady state. If a 
parameter set resulted in steady-state values consistent with the order of magnitude in Manesso 
et al., 2013, the parameter set was accepted, otherwise it was rejected. Specifically, these inequal-
ities had to be satisfied 104 < HSC < MPPs with MPPs fixed at 105 and MPPs < TDl < TDm. For 106 
iterations, a sample of 1493 parameter sets were accepted. The distribution for these parameter sets 
is shown in Appendix 1—figure 4. To further explore the effect of the feedforward interaction, these 
parameter sets were reduced to the 563 sets with γ5 > 0.01. The distribution for these sets is shown in 
Appendix 1—figure 5. The parameter sets used in Figures 3–7 are provided in Appendix 1—table 
4.

Modeling CML development
To model CML development in the presence of normal hematopoietic cells, we introduce a new 
leukemic cell type for each compartment. Each compartment is then composed of both normal and 
leukemic subcompartments, which exhibit feedback together as a single compartment. We assume 

https://doi.org/10.7554/eLife.84149
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the only difference between the two cell lineages is the feedback strength for leukemic HSC self-
renewal. This small difference gives the leukemic lineage a competitive advantage for growth, consis-
tent with the ability for leukemic HSC to initiate CML (Reynaud et al., 2011; Holyoake and Vetrie, 
2017) and the differential response of the normal and leukemic cells to CCL3 (Eaves et al., 1993, 
Baba et al., 2013), which negatively regulates stem cell self-renewal. The full equations used in the 
model are shown in Appendix 1, Equations 30–37.

Modeling transplant experiments
The model was tested by simulating the transplant experiments (Figure 4C and D) of Reynaud et al., 
2011 where HSCL or MPPL were implanted into sublethally irradiated mice and terminal cell counts 
were measured after 35 d. We used two parallel lineages of leukemic cells with identical parameters 
to mirror the two leukemic cell populations of the experiment. To mimic the effects of sublethal 
radiation, we reduced the cell populations from their equilibrium values by variable amounts. The 
HSCL depletions varied between 50 and 70% and the MPPL depletions varied between 30 and 50% 
while both terminal cells were depleted by 10%. After depletion, an additional 4000 cells of either 
stem or progenitor types were transplanted in accordance with the experiment. We then discarded 
the 85 parameter sets that were not consistent with the results from Reynaud et al., 2011, leaving 
478 eligible parameter sets. The results shown in Figure 4 used depletions of 55% for HSCL, 35% for 
MPPLs. See Appendix 1, Section 4 and Figure 5—figure supplements 1–3 for results using other 
decrements, the discarded parameter sets, and the final parameter distributions.

Modeling TKI therapy
To account for the treatment by TKIs, additional proliferation-dependent death terms are added to 
the equations for leukemic stem cells and leukemic progenitor cells shown in Appendix 1, Equations 
38 and 39 (parameter values are given in Appendix 1—figure 5). These represent the ability of TKIs 
to induce cell death in the leukemic cells. Both cell types have unique death rates, to reflect TKIs 
having different efficacy in killing stem cells and progenitors. The death rates were selected using a 
single parameter set to ensure a reasonable biphasic curve for BCR-ABL1 transcript levels compared 
to patient transcript levels from Glauche et al., 2018. The same death rates were then used across 
every parameter set to ensure consistency. In addition to these changes upon initiation of TKI therapy, 
the leukemic stem cell division rate is reduced. This reduction models the ability of TKIs to drive 
leukemic stem cells to quiescence (Jørgensen et al., 2006).

To approximate the BCR-ABL1 transcript levels, we used a method based upon (Michor et al., 
2005). We use the cell counts of both normal and leukemic terminal cells for both myeloid and 
lymphoid lineages. The terminal cells are used as in our model they are the closest to peripheral blood 
in which transcript levels are measured clinically. This results in the following measure for BCR-ABL1 

transcript levels: 
‍
BCR−ABL1

BCR = TDL
L+TDL

M
TDL

L+TDL
M+2

(
TDL+TDM

)
‍
 .

Modeling combined TKI and differentiation therapy
Combination therapy consists of simultaneously employing TKI therapy, described in ‘Methods’ and 
Appendix 1, Sections 2–3, and the addition of a new differentiation therapy. To model differentiation 
therapy, we altered the form of p0 by including a new constant repressive force that affects both normal 

and leukemic self-renewal, resulting in ‍p0,new = p0,max
1+γ1P+∆‍ and 

‍
pL

0,new = pL
0,max

1+γL
1 P+∆‍

, where ‍P = xPL + xP‍ and 

‍∆‍ is the differentiation therapy strength. We then performed combination therapy using our existing 
parameters, swept through differentiation therapy strengths and recorded which parameter sets 
achieved MR3 within 50 mo. We then determined that a differentiation therapy strength of D = 0.24 
resulted in the highest proportion of parameter sets that achieved MR3 response. The full equations 
for combined TKI and differentiation therapy are shown in Appendix 1, Equations 40 and 41.

CML patient data
Data from newly diagnosed CML patients (n = 21) treated with TKI therapy at UCI Health were 
obtained under an honest broker mechanism from the electronic health record under Exemption 4 for 
human subjects research.

https://doi.org/10.7554/eLife.84149
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Mice
C57BL/6J female mice (Jackson Laboratories), 6–12 wk of age were used for irradiation and myeloid 
depletion experiments. Conditional BCR-ABL1 double transgenic mice (Koschmieder et al., 2005) 
were obtained from Dr. Emmanuel Passegue (Columbia University). All protocols in mice were 
approved by the Institutional Animal Use and Care Committee of University of California, Irvine.

Irradiation of mice
To achieve selective depletion of HSCs, a 50 cGy dose of irradiation from X-ray source (Precision X-rad 
320) was applied. Control mice did not receive irradiation. The distribution of time points at which 
observations were made (days 1, 3, and 7 post-irradiation), and the number of mouse replicates to use 
at each time point (between 2 and 7, totaling 13 mice), were informed by our Bayesian hierarchical 
framework for optimal experimental design (Lomeli et al., 2021).

Myeloid cell depletion
RB6-8C5, an anti-Gr1 antibody (catalog # BE0075, BioXCell) or isotype control (catalog # BE0090, 
BioXCell) was injected intravenously, 50 µg per mouse, and mice sacrificed 24 hr later.

BrdU injections
In irradiation experiments, mice were pulsed with BrdU by IP injection of 200 µl of 10 mg/ml BrdU in 
DPBS. BrdU flow kit (552598) from BD Biosciences was used for detection of BrdU labeling in hema-
topoietic cells by flow cytometry.

Flow cytometry analysis of cell populations
BM cells from femur and tibia of control and dosed mice were isolated by flushing bones. Following 
lysis of red blood cells (RBC lysis buffer, eBiosciences), leukocytes were stained with CD34 antibody 
for 1 hr and subsequently incubated with a cocktail of biotinylated antibodies directed against lineage 
markers (CD3, Gr-1, B220, Ter119) and stem/progenitor markers (c-Kit, Sca-1, CD48) for 30  min. 
Streptavidin (SA)-conjugated fluorochrome was utilized to detect biotinylated antibodies. Following 
fixation, permeabilization, and DNase digestion, anti-BrdU antibody was used to assess BrdU incorpo-
ration. Events were acquired on FACS Arial II and analyzed with Flowjo v.10 software.

Antibodies
Monoclonal antibodies for flow cytometry were biotinylated mouse lineage panel (559971, BD Biosci-
ences), PE-CF594 Streptavidin (562318, BD Biosciences), anti-mouse CD48 (561242, BD Biosciences), 
anti-mouse CD34 eFluor450 (48-0341-82, eBiosciences), anti-mouse Sca-1-PE (108108, BioLegend), 
anti-mouse c-Kit-APC (17-1171-82, eBiosciences), and FITC BrdU flow kit (559619, BD Biosciences).

Generation and TKI treatment of chimeric BCR-ABL1 mice
The full details of the CML mouse model will be published elsewhere (Jena et al., in preparation). 
Briefly, BM cells from conditional BCR-ABL1 double transgenic mice (CD45.2+) (Koschmieder, Gott-
gens et al. 2005) (40 million cells) were transplanted intravenously into unirradiated C57BL/6J recip-
ients (CD45.1+CD45.2+) maintained on doxycycline to suppress BCR-ABL1 expression. Two months 
post-transplant, doxycycline was removed to allow induction of CML-like leukemia. Chimerism was 
assessed by percentage of CD45.1– CD45.2+ granulocytes in peripheral blood. To generate chimeric 
mice with high (>90%) leukemic stem cell burden, the donor and recipient pair was reversed, with 
double transgenic mice transplanted with normal B6 BM. In mice with established CML-like leukemia 
(peripheral blood leukocytes > 20,000/μl and >40% circulating granulocytes), TKI treatment was initi-
ated with dasatinib (25 mg/kg daily by oral gavage).

Data availabality
Code used to generate the figures, determine the S-Systems and files containing parameter sets 
are found at the following GitHub: https://github.com/jonatdr/CML_Treatment (copy archived at 
Jonatdr, 2023).

https://doi.org/10.7554/eLife.84149
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Appendix 1
1 Design space analysis
1.1 Introduction
In this section, we provide details on the application of design space analysis (DSA), developed in 
Savageau et al., 2009; Fasani and Savageau, 2010; Lomnitz and Savageau, 2013; Lomnitz and 
Savageau, 2016 for chemical reaction networks, to a simplified version of the cell lineage model 
considered in the main text (see Figure 1). This enables us to analyze nonlinear dynamical systems 
near steady state to identify the regions in parameter space where common qualitative behaviors 
occur. Applying this analysis allows us to (1) ignore specific parameter values, (2) obtain analytical 
steady states, (3) reduce the search area in parameter space by searching boundaries separating 
regions of common behaviors, and (4) easily automate this process. In this section, we review how 
one can construct a design space given an ODE model. We then apply this analysis to an ODE model 
of cell lineages and show how this model can be used to define regions of stability in parameter 
space.

1.2 Boundaries of design space for general models
In order to apply DSA, the ODE must be a generalized mass action system, shown below in Equations 
1 and 2,

	﻿‍

dXi
dt

=
r∑

k=1
αik

n+m∏
j=1

Xgijk
j −

r∑
k=1

βik

n+m∏
j=1

Xhijk
j ,

‍�
(1)

	﻿‍ Xi
(
0
)

= Xi0,‍� (2)

for  ‍i‍ = 1, ‍n‍. Here, ‍n‍ corresponds to the number of dependent variables and ‍m‍ corresponds to the 
number of independent variables. The ‍αik‍ and ‍βik‍ parameters correspond to rate constants of the 
differential equation and ‍r‍ corresponds to the number of associated rate constants.

DSA takes advantage of the above form by creating a system of deconstructed ODEs where 
one source term and one sink term in the differential equation dominate, known as a subsystem (S-
system). The following is the generalized form of an S-system:

	﻿‍

dXi
dt

= αip

n+m∏
j=1

Xgijp
j − βiq

n+m∏
j=1

Xhijq
j

‍�
(3)

	﻿‍ Xi
(
0
)

= Xi0‍� (4)

where ‍p‍ and ‍q‍ correspond to the number of positive and negative terms of the differential equation, 
respectively. We are interested in solving these solutions at steady state, and therefore solve the 
system by setting the time derivative to zero. We take advantage of the form shown in Equation 3 
and take the log of the system:

	﻿‍
log

(
αip

)
+

n+m∑
j=1

gijp log
(
Xj
)

= log
(
βiq

)
+

n+m∑
j=1

hijq log
(
Xj
)
‍�

(5)

thus, making this a linear solve in log space. In defining the S-systems, we must make assumptions 
about the model and its parameters. To satisfy the S-systems, we impose inequality constraints to 
satisfy the dominating source and sink terms of the S-systems by the following:

	﻿‍
αip

n+m∏
j=1

Xgijp
j > αip̄

n+m∏
j=1

Xgij̄p
j for i = 1,..,n;p̄=1,...,p-1,p+1,...,r

‍�
(6)

	﻿‍
βiq

n+m∏
j=1

Xhijq
j > βiq̄

n+m∏
j=1

Xhij̄q
j for i = 1,..,n;q̄=1,...,q-1,q+1,...,r

‍� (7)

We can then log transform these inequalities to obtain
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 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Computational and Systems Biology

Rodriguez, Iniguez et al. eLife 2023;12:e84149. DOI: https://doi.org/10.7554/eLife.84149 � 37 of 57

	﻿‍
log

(
αip

)
+

n+m∑
j=1

gijp log
(
Xj
)

> log
(
αip̄

)
+

n+m∑
j=1

gijp̄ log
(
Xj
)
‍�

(8)

	﻿‍
log

(
βiq

)
+

n+m∑
j=1

hijq log
(
Xj
)

> log
(
βiq̄

)
+

n+m∑
j=1

hijq̄ log
(
Xj
)
‍�

(9)

These inequalities become our boundaries in parameter space in which qualitative behavior is shared 
once the ‍Xj‍ ’s are evaluated at steady state, where the steady states are obtained from solving the 
log-linear S-system. Not all S-systems will have a unique solution or satisfy the inequality constraints. 
The S-systems that do not satisfy these constraints will be discarded. The analysis is summarized in 
Appendix 1—figure 1.

Appendix 1—figure 1. Flow chart for design space analysis (DSA). Given an ordinary differential equation (ODE), 
we can obtain the design space by obtaining all S-systems, steady states, and evaluated dominance conditions. 
S-systems that do not satisfy the dominance condition are not included in the design space.

1.3 Analysis of a four-cell lineage model
We next apply this analysis to a lineage model with four cell types (see Appendix 1—figure 2). 
The model consists of two dividing cell types consisting of ‍S‍ (HSC) and ‍P‍ (MPP) cells with a division 
rate associated to the cells (‍η1‍ and ‍η2‍, respectively). The ‍S‍ cells have the ability to self-renew with 
fraction (‍p0‍) or differentiate (‍1 − p0‍). The ‍P‍ cells have the ability to self-renew with fraction (‍p1‍) or 
differentiate into either ‍TDl‍ (lymphoid) or ‍TDm‍ (myeloid) cells (‍q1‍ or ‍1 − p1 − q1‍, respectively). ‍TDm‍ 
and ‍TDl‍ cells only have the ability to die at rates ‍dm‍ and ‍dl‍ , respectively. We add negative feedback 
on the self-renewal fraction of the stem cells from the differentiated cells. Appendix 1—figure 2 
shows a schematic of the lineage with the parameters. The corresponding differential equations are

	﻿‍ x′S =
(
2p0 − 1

)
η1xS‍� (10)

	﻿‍ x′P = 2
(
1 − p0

)
η1xS +

(
2p1 − 1

)
η2xP‍� (11)

	﻿‍ x′TDL = 2q1η2xP − dlxTDl‍� (12)

	﻿‍ x′TDM = 2
(
1 − p1 − q1

)
η2xP − dmxTDm‍� (13)

where ‍p0 = p̄0/
(
1 + γxP

)
‍, and ‍p̄0‍ is defined as the maximum stem cell self-renewal fraction and ‍γ‍ is 

the feedback strength.
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Appendix 1—figure 2. Lineage schematic depicting a stem cell and terminally differentiated cell with negative 
feedback onto stem cell self-renewal probability ‍p0‍ .

We begin by rewriting the equations in the form shown in Equation 1.

	﻿‍
x′S =

(
2p̄0x−1

new − 1
)
η1xS‍� (14)

	﻿‍
x′P = 2

(
1 − p̄0x−1

new

)
η1xS +

(
2p1 − 1

)
η2xP‍� (15)

	﻿‍ x′TDL = 2q1η2xP − dlxTDl‍� (16)

	﻿‍ x′TDM = 2
(
1 − p1 − q1

)
η2xP − dmxTDm‍� (17)

	﻿‍ 0 = 1 + γxP − xnew.‍� (18)

Note that we introduce a new variable ‍xnew = 1 + γxP‍ , which is necessary to achieve the form of 
Equation 1. We next find all combinations in which one source term and one sink term dominates 
the system of differential equations.

From Equations 14–18, we obtain 24 S-system combinations, a subset of which is shown in 
Appendix 1—table 1. We continue the analysis with S-system 2 from Appendix 1—table 1. Using 
S-system 2, we set the time derivatives to zero and rearrange the equations such that we obtain 
‍Ax̄ = b̄‍ :

	﻿‍




0 0 0 0 1

1 −1 0 0 0

0 1 −1 0 0

0 1 0 −1 0

0 −1 0 0 1







log
(
x̄S
)

log
(
x̄P
)

log
(
x̄TDl

)

log
(
x̄TDm

)

log
(
x̄new

)




=




log
(
2p̄0

)

log
(

η2
2η1

)

log
(

dl
2q1η2

)

log
(

dm
2η2

)

log
(
γ
)



‍�

such that ‍x̄S‍ , ‍x̄P‍ , ‍̄xTDl‍ , and ‍̄xTDm‍ are the steady-state solutions for the S-system and ‍̄xnew‍ is the 
solution of the newly defined variable at steady state. Solving the linear equation gives us

	﻿‍




log
(
x̄S
)

log
(
x̄P
)

log
(
x̄TDl

)

log
(
x̄TDm

)

log
(
x̄new

)




=




log
(

p̄0η2
γ

)

log
(

2p̄0
γ

)

log
(

4p̄0q1η2
dl

)

log
(

4p̄0η2
dm

)

log
(
2p̄0

)




.

‍�
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We can now construct the boundaries for this S-system. We substitute our steady-state solutions 
obtained above into the logged inequality constraints from Appendix  1—table 1. Thus, the 
inequalities in log space become

	﻿‍ 0 < log
(
2p̄0

)
‍� (19)

	﻿‍ 0 > log
(
2p̄1

)
‍� (20)

	﻿‍ 0 > log
(
q̄1
)
‍� (21)

Out of the 24 possible S-systems, only S-system 2 has a unique steady state that satisfies the 
constraints. We can plot the design space by varying ‍p̄0‍ and ‍γ‍ (see Appendix 1—figure 3). The 
design space shows one region where ‍p̄0 > 0.5‍, a requirement for a positive steady state in the full 
system. The domain in parameter space corresponds to S-system 2 in Appendix 1—table 1.

Appendix 1—table 1. A sample of S-systems from Equations 14–18.

S-system 1 S-system 2 S-system 3 S-system 4

‍x
′
S‍ ‍2p̄0x−1

newη1xS − η1xS‍ ‍2p̄0x−1
newη1xS − η1xS‍ ‍2p̄0x−1

newη1xS − η1xS‍ ‍2p̄0x−1
newη1xS − η1xS‍

‍x
′
P‍ ‍2η1xS − 2p̄0x−1

newη1xS‍ ‍2η1xS − η2xS‍ ‍2p1η2xS − 2p̄0x−1
newη1xS‍ ‍2p1η2xS − η2xS‍

‍x
′
TDl‍ ‍2q1η2xP − dlxTDl‍ ‍2q1η2xP − dlxTDl‍ ‍2q1η2xP − dlxTDl‍ ‍2q1η2xP − dlxTDl‍

‍x
′
TDm‍ ‍2η2xP − dmxTDm‍ ‍2η2xP − dmxTDm‍ ‍2η2xP − dmxTDm‍ ‍2η2xP − dmxTDm‍

0 ‍γxP − xnew‍ ‍γxP − xnew‍ ‍γxP − xnew‍ ‍γxP − xnew‍

Boundary 1 ‍2η1xS > 2p1η2xS‍ ‍2η1xS > 2p1η2xS‍ ‍2η1xS < 2p1η2xS‍ ‍2η1xS < 2p1η2xS‍

Boundary 2 ‍2p̄0x−1
newη1xS > η2xS‍ ‍2p̄0x−1

newη1xS < η2xS‍ ‍2p̄0x−1
newη1xS > η2xS‍ ‍2p̄0x−1

newη1xS < η2xS‍

https://doi.org/10.7554/eLife.84149
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Appendix 1—figure 3. Design space for four-cell lineage model. The design space is showing a slice of 
parameter space varying the max self-renewal probability (‍p̄0‍) and feedback gain for stem cells (‍γ ‍). If we are to 
sample parameters sets (shown by points), we observe oscillatory behavior in the full system, as shown by the time 
evolution plots.

It is possible to relate the S-system back to the true ODE system with classical techniques. 
For example, it was shown in Savageau et al., 2009; Fasani and Savageau, 2010; Lomnitz and 
Savageau, 2013; Lomnitz and Savageau, 2016 that the S-system and full ODE system have the 
same linear stability behavior in the parameter regime appropriate for the S-system. Thus, parameter 
sensitivity analyses of the S-system provide insight on the behavior of the full system.

Performing a linear stability analysis on the S-system that corresponds to the region in parameter 
space shown in Appendix 1—figure 3, we obtain the following eigenvalues:

	﻿‍
λ =

[
−0.5d − 0.125γ

√
(d(−64 + 16d)p̄04)/γ2

p̄02 ,
‍�

(22)

	﻿‍
−0.5d + 0.125γ

√
(d(−64 + 16d)p̄04)/γ2

p̄02

]

‍�
(23)

 

which suggests a stable spiral or stable node depending on the value of d. We also perform the 
linear stability analysis on the full system and obtain the following eigenvalues:

	﻿‍
λ =

[
−0.25dp̄0 − 0.125

√
dp̄02(4d + (32 − 64p0)p̄0)
p̄02 ,

‍�
(24)

	﻿‍

−0.25dp̄0 + 0.125
√

dp̄02(4d + (32 − 64p0)p̄0)
p̄02

]

‍� (25)
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and in the parameter space for the S-system, we obtain the same behavior. Using the full system, 
we can also plot the dynamics in the domain, which are shown as insets in Appendix 1—figure 3. 
When plotting the full system in Appendix 1—figure 3, we observe that the stem and progenitor 
populations oscillate before reaching steady state, characteristics of a stable spiral. The S-system 
and the true system eigenvalues are not identical, but using the same parameters in the appropriate 
S-system parameter space, the systems will have the same behavior. However, outside of the domain 
of validity of the S-system, we cannot conclude anything about the full system’s dynamics from the 
S-system. In fact, from Appendix 1—figure 3, we observe being outside of the domain of validity of 
S-system 2 (e.g., ‍̄p0 < 0.5‍) yields to solutions that tend to the zero steady state.

We use DSA to select among all possible ODE models for normal hematopoiesis consistent with 
the lineage diagram shown in Figure 1A in the main text in which each parameter ‍p0‍ , ‍p1‍ , ‍q1‍ , ‍η1‍ , 
and ‍η2‍ is either unregulated (constant) or is subject to positive or negative regulation from most one 
cell type in the lineage. As described in the main text, there are 59,049 possible models, counting 
each combination as a model. We implement an automated implementation of DSA that enables an 
efficient exploration of this large space of models. Eliminating models with no valid S-systems and 
those with unstable equilibria, we eliminate all but the four model classes shown in Figure 1B in the 
main text.

2 Mathematical model
The complete ODE model of normal hematopoiesis is composed of the following equations:

	﻿‍
x′S =

(
2

p0,max
1 + γ1xP

− 1
)

η1,max
1 + γ2xS

xS
‍�

(26)

	﻿‍
x′P = 2

(
1 −

p0,max
1 + γ1xP

)
η1,max

1 + γ2xS
xS +

(
2

p1,max
1 + γ3xTDm

− 1
)

η2,max
1 + γ5xS

xP
‍�

(27)

	﻿‍
x′TDL = 2

q1,max
1 + γ4xTDm

η2,max
1 + γ5xS

xP − dLxTDL
‍�

(28)

	﻿‍
x′TDm = 2

(
1 −

p1,max
1 + γ3xTDm

−
q1,max

1 + γ4xTDm

)
η2,max

1 + γ5xS
xP − dmxTDm .

‍�
(29)

 

The ODE model for CML hematopoiesis tracks the dynamics of both the normal and CML cells 
(superscript ‍L‍), and assumes that both cell types provide and respond to feedback signaling, 
although the CML stem cells are slightly less responsive to negative feedback regulation, which 
gives them a fitness advantage. The complete system is given by

	﻿‍
x′S =

(
2

p0,max
1 + γ1

(
xP + xPL

) − 1

)
η1,max

1 + γ2
(
xS + xSL

) xS
‍�

(30)

	﻿‍

x′P = 2

(
1 −

p0,max
1 + γ1

(
xP + xPL

)
)

η1,max
1 + γ2

(
xS + xSL

) xS+


2

p1,max

1 + γ3

(
xTDm + xTDL

m

) − 1


 η2,max

1 + γ5
(
xS + xSL

)xP

‍
� (31)

	﻿‍

x′TDL = 2
q1,max

1 + γ4

(
xTDm + xTDL

m

) η2,max
1 + γ5

(
xS + xSL

) xP − dLxTDL

‍� (32)

	﻿‍

x′TDm = 2


1 −

p1,max

1 + γ3

(
xTDm + xTDL

m

) −
q1,max

1 + γ4

(
xTDm + xTDL

m

)

 η2,max

1 + γ5
(
xS + xSL

) xP − dmxTDm

‍� (33)
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	﻿‍
x′SL =

(
2

pL
0,max

1 + γL
1
(
xP + xPL

) − 1

)
ηL

1,max
1 + γL

2
(
xS + xSL

) xSL

‍� (34)

	﻿‍

x′PL = 2

(
1 −

pL
0,max

1 + γL
1
(
xP + xPL

)
)

ηL
1,max

1 + γL
2
(
xS + xSL

) xSL +


2

pL
1,max

1 + γL
3

(
xTDm + xTDL

m

) − 1


 ηL

2,max
1 + γL

5γ5
(
xS + xSL

)xPL

‍
� (35)

	﻿‍

x′TDL
L

= 2
qL

1,max

1 + γL
4

(
xTDm + xTDL

m

) ηL
2,max

1 + γL
5
(
xS + xSL

) xPL − dL
l xTDL

L

‍� (36)

	﻿‍

x′TDL
m

= 2


1 −

pL
1,max

1 + γL
3

(
xTDm + xTDL

m

) −
qL

1,max

1 + γL
4

(
xTDm + xTDL

m

)

 ηL

2,max
1 + γL

5
(
xS + xSL

) xPL − dL
mxTDL

m
.

‍� (37)

When TKI therapy is applied, Equations 34 and 35 are replaced with

	﻿‍
x′SL =

(
2

pL
0,max

1 + γL
1
(
xP + xPL

) − 1 − TKIHSC

)
ηL

1,max
1 + γL

2
(
xS + xSL

) xSL

‍� (38)

	﻿‍

x′PL = 2

(
1 −

pL
0,max

1 + γL
1
(
xP + xPL

)
)

ηL
1,max

1 + γL
2
(
xS + xSL

) xSL +


2

pL
1,max

1 + γL
3

(
xTDm + xTDL

m

) − 1 − TKIMPP


 ηL

2,max
1 + γL

5γ5
(
xS + xSL

) xPL ,

‍
� (39)

where ‍TKIHSC‍ and ‍TKIMPP‍ denote TKI-induced death rates of the CML stem and MPP cells. With the 
introduction of differentiation therapy, Equations 30 and 38 instead become

	﻿‍
x′S =

(
2

p0,max
1 + γ1

(
xP + xPL

)
+ ∆

− 1

)
η1,max

1 + γ2
(
xS + xSL

) xS
‍� (40)

	﻿‍
x′SL =

(
2

pL
0,max

1 + γL
1
(
xP + xPL

)
+ ∆

− 1 − TKIHSC

)
ηL

1,max
1 + γL

2
(
xS + xSL

) xSL .
‍� (41)

3 Parameter estimation
The parameters for the model of normal hematopoiesis, and their descriptions, are listed in 
Appendix 1—table 2. The additional parameters needed to model the CML cell population, and 
the application of TKI therapy are given in Appendix 1—table 3.

Appendix 1—table 2. Parameter values used to model the normal hematopoietic system.

Parameter Description

‍p0,max‍ Maximal self-renewal fraction of HSC

‍p1,max‍ Maximal self-renewal fraction of MPP

‍q1,max‍ Maximum branching fraction from MPP 
to ‍TDL‍

Appendix 1—table 2 Continued on next page
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Parameter Description

‍η1,max‍ Maximum HSC proliferation rate

‍η2,max‍ Maximum MPP proliferation rate

‍γ1‍ Feedback gain on HSC self-renewal 
fraction

‍γ2‍ Feedback gain on HSC proliferation 
rate (from HSC)

‍γ3‍ Feedback gain on MPP self-renewal 
fraction

‍γ4‍ Feedback gain on MPP branching 
fraction

‍γ5‍ Feedforward gain on MPP proliferation 
rate

‍dL‍ Death rate of ‍TDL‍

‍dm‍ Death rate of ‍TDM ‍

HSC: hematopoietic stem cell; MPP: multipotential 
progenitor.

Appendix 1—table 3. Additional parameter values used to model the chronic myeloid leukemia 
(CML) cell population dynamics and effect of tyrosine kinase inhibitor (TKI) therapy.

Parameter Description

‍p
L
0,max‍

Maximal self-renewal fraction of HSC ‍L‍

‍p
L
1,max‍

Maximal self-renewal fraction of MPP ‍L‍

‍q
L
1,max‍

Maximum branching fraction from MPP 
‍L‍ to ‍TDL

L
‍

‍η
L
1,max‍

Maximum HSC ‍L‍ proliferation rate

‍η
L
2,max‍

Maximum MPP ‍L‍ proliferation rate

‍γ
L
1 ‍

Feedback gain on HSC ‍L‍ self-renewal 
fraction

‍γ
L
2 ‍

Feedback gain on HSC ‍L‍ proliferation 
rate (from HSC ‍L‍)

‍γ
L
3 ‍

Feedback gain on MPP ‍L‍ self-renewal 
fraction

‍γ
L
4 ‍

Feedback gain on MPP ‍L‍ branching 
fraction

‍γ
L
5 ‍

Feedforward gain on MPP ‍L‍ 
proliferation rate

‍d
L
L‍ Death rate of ‍TDL

L
‍

‍dL
m‍ Death rate of ‍TDM

L
‍

‍TKIHSC‍ Death rate of HSC ‍L‍ due to TKI therapy

‍TKIMPP‍ Death rate of MPP ‍L‍ due to TKI therapy

HSC: hematopoietic stem cell; MPP: multipotential 
progenitor.

Appendix 1—table 2 Continued
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3.1 Parameter distributions
A grid-search algorithm was used to find parameter values that demonstrate steady-state cell counts 
consistent with Manesso et al., 2013 and time of recovery to steady state from cellular perturbations 
consistent with Reynaud et  al., 2011. The resulting distributions of the 1493 parameters are 
displayed along the diagonal of Appendix 1—figure 4. In the distributions, the feedback gain of the 
feedforward regulation is skewed toward smaller values across all parameter sets. To investigate the 
observed feedforward loop, we selected only the parameter sets with sufficiently large feedforward 
gain ‍γ5 > 0.01‍. This resulted in a reduced distribution of 563 parameter sets and is shown in 
Appendix  1—figure 5. The parameter ranges for the gridsearch were found using the method 
shown in the following pseudo-Python.

for i in range(1e6): 
 
param_gridsearch_dist = dict(p0max = ​np.​random.​uniform(​0.​5, 1.0), 
p1max = ​np.​random.​uniform(​0.​0,​0.​5), q1max = ​np.​abs(​np.​random.​uniform(​0.​0,​0.​
49)), 
eta1max = ​np.​random.​uniform(​0,​0.​5), eta2max = 10**​np.​random.​uniform(–
2,1.5),gam2=10**​np.​random.​uniform(–6,0), gam3=10**​np.​random.​uniform(–6,0), 
gam4=10**​np.​random.​uniform(–6,0), gam5=10**​np.​random.​uniform(–6,0),dL = 
10**​np.​random.​uniform(–4,1), dM = 10**​np.​random.​uniform(–4,1)) 
y=hematopoiesis(param_gridsearch_dist) 
 
if y[0,–1]>.01 and y[0,–1]<y[1,-1]<y[2,-1]<y[3,-1]:​master_​params.​append(​
param_​gridsearch_​dist) 

The specific parameters used to model the normal hematopoietic system in Figures 3–7A, C 
and D in the main text are given in Appendix 1—table 4. When CML cells are introduced, the 
additional parameters of a representative responder associated with the leukemic cell ODEs are 
given in Appendix  1—table 5. A representative parameter set for a nonresponder is shown in 
Appendix 1—table 6.

https://doi.org/10.7554/eLife.84149
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Appendix 1—figure 4. Pairwise parameter distributions for all 1493 parameter sets found from the gridsearch. 
The overall distributions for each parameter are shown along the diagonal.

https://doi.org/10.7554/eLife.84149
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Appendix 1—figure 5. Pairwise parameter distributions for the 563 parameter sets from Appendix 1—figure 4 
that have feedforward gain ‍γ5 > 0.01‍. The overall distributions for each parameter are shown along the diagonal.

https://doi.org/10.7554/eLife.84149
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Appendix 1—figure 6. A spaghetti plot showing the dynamics of the effective proliferation, self-renewal, and 
branching parameters for 50 parameter sets under tyrosine kinase inhibitor (TKI) treatment started at early times.

Appendix 1—table 4. Parameter values used to model the normal hematopoietic system in 
Figures 3–7A, C and D in the main text.

Parameter Value

‍p0,max‍ 0.756641

‍p1,max‍ 0.357913

‍q1,max‍ 0.032241

‍η1,max‍ 0.197639

Appendix 1—table 4 Continued on next page
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Parameter Value

‍η2,max‍ 0.47088

‍γ1‍ 0.513281

‍γ2‍ 0.197639

‍γ3‍ 0.47088

‍γ4‍ 0.513281

‍γ5‍ 0.543987

‍dL‍ 0.000165

‍dm‍ 0.000428

Appendix 1—table 5. Additional parameter values used to model the chronic myeloid leukemia 
(CML) cell population dynamics in Figures 4A ,B, 5–7A, C and D in the main text.

Parameter Value

‍p
L
0,max‍

0.756641

‍p
L
1,max‍

0.357913

‍q
L
1,max‍

0.032241

‍η
L
1,max‍

0.197639

‍η
L
2,max‍

0.47088

‍γ
L
1 ‍

0.2566405

‍γ
L
2 ‍

0.197639

‍γ
L
3 ‍

0.47088

‍γ
L
4 ‍

0.2566405

‍γ
L
5 ‍

0.543987

‍d
L
L‍

0.000165

‍dL
m‍

0.000428

‍TKIHSC‍ 0.201311

‍TKIMPP‍ 0.024757

Appendix 1—table 6. Secondary parameter values used as a representative case to model 
nonresponsive chronic myeloid leukemia (CML) cell population dynamics in Figures 7C, D and 8 in 
the main text.

Parameter Value

‍p0,max‍ 0.838481

‍p1,max‍ 0.009776

‍q1,max‍ 0.418627

‍η1,max‍ 0.226025

‍η2,max‍ 0.247591

Appendix 1—table 4 Continued

Appendix 1—table 6 Continued on next page
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Parameter Value

‍γ1‍ 0.676962

‍γ2‍ 0.000219

‍γ3‍ 0.000326

‍γ4‍ 0.367564

‍γ5‍ 0.168132

‍dL‍ 0.071273

‍dm‍ 0.155649

‍p
L
0,max‍ 0.838481

‍p
L
1,max‍ 0.009776

‍q
L
1,max‍ 0.418627

‍η
L
1,max‍ 0.226025

‍η
L
2,max‍ 0.247591

‍γ
L
1 ‍ 0.338481

‍γ
L
2 ‍ 0.000219

‍γ
L
3 ‍ 0.000326

‍γ
L
4 ‍ 0.367564

‍γ
L
5 ‍ 0.168132

‍d
L
L‍ 0.071273

‍dL
m‍ 0.155649

‍TKIHSC‍ 0.25

‍TKIMPP‍ 30

4 Simulations of transplant experiment
As described in the main text, we simulated a transplant experiment in a transgenic mouse model of 
CML performed in Reynaud et al., 2011. In this experiment, either leukemic stem HSC ‍L‍ or leukemic 
MPP ‍L‍ cells were implanted into sublethally irradiated mice. Transplantation of HSC ‍L‍ enables 
engraftment and myeloid cell production that leads to CML. On the other hand, transplanting 
MPP ‍L‍ cells does not allow for long-term engraftment but results in a larger fraction of donor-
derived lymphoid cells after 35 d. We modeled this experiment by reducing the number of cells in 
equilibrium to mimic the effects of sublethal radiation (see ‘Methods’). Here, we present results of a 
range of possible reductions of HSC ‍L‍ and MPP ‍L‍ cells, and tracked the outcomes when 4000 HSC 
‍L‍ or MPP ‍L‍ were introduced after the decrements from equilibrium. We then determine which of 
our parameter sets are consistent with the experimental outcomes found in Reynaud et al., 2011 
using a simple majority of myeloid cells for HSC ‍L‍ transplant and a simple majority of lymphoid 
cells for MPP ‍L‍ transplant as consistency criteria. The results are summarized in Figure 5—figure 
supplements 1–2. The pairwise parameter distributions of the 478 remaining parameter sets are 
shown in Figure 5—figure supplement 3.

5 Effective parameters
Here, we present the effective proliferation rates and self-renewal and branching factors—that 
is, the values of these parameters that takes the feedback regulation into account. That is, 
the effective stem cell proliferation rate ‍η1 = η1,max/

(
1 + γ2xS

)
‍ in normal hematopoiesis and 

Appendix 1—table 6 Continued
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‍η1 = η1,max/
(
1 + γ2

(
xS + xSL

))
‍ when CML stem cells are present. The other effective parameters are 

defined analogously.
In Figure 3—figure supplement 2, the effective HSC and MPP proliferation rates (‍η1‍ , ‍η2‍), the 

effective HSC and MPP self-renewal fractions (‍p0‍ , ‍p1‍) and branching fraction ‍q1‍ are shown. The 
corresponding effective parameters are shown in Figure 6—figure supplement 1 when CML cells 
are introduced when the normal hematopoietic model system is at steady state and in response 
to treatment by TKIs (starts at the time labeled ‍t = 0‍, as indicated by the vertical line) for the cases 
shown in Figure 6 in the main text. In Appendix 1—figure 6, we plot the effective proliferation, self-
renewal, and branching parameters for 50 parameter sets under treatment at early times.

6 Distributions of model parameters grouped by response to TKI 
treatment using synthetic data (478 parameter sets)
In Figure 7—figure supplement 1, we plot the distributions of all the unregulated proliferation, 
self-renewal, and branching parameters, as well as the feedback gains, grouped by response to TKI 
therapy. In particular, the blue color indicates achievement of MR3 by 50 mo (termed as responders) 
while orange indicates that MR3 is not achieved within 50  mo (termed as nonresponders). The 
only parameters that clearly delineate the responders from nonresponders are ‍p0,max‍ and ‍γ1‍ , with 
responders occurring at the lower values and nonresponders at the higher values.

7 Comparisons of prognostic criteria for predicting response to TKI 
therapy
7.1 Performance of prognostic criteria using synthetic data (478 parameter 
sets)
Using data generated from our 478 parameter sets, we tested whether prognostic criteria could 
correctly identify patients who achieve MR3 within 18  mo after therapy starts. We tested the 
performance of our prognostic criterion (relative change of transcript levels) against two existing 
clinical prognostics: halving time (the time it takes for the BCR-ABL1 transcripts to reach one-half 
of their pretreatment value) and early molecular response (EMR) in which the fraction of BCR-ABL1 
transcripts are 10% or less after 3 mo of treatment. We also tested a prognostic criterion based on 
the ratio of transcript levels. These different prognostic criteria were calculated for both the first and 
second 3 mo after the start of therapy (e.g., 0–3 mo and 3–6 mo). We calculated the corresponding 
receiving operating characteristic (ROC) curves and found the optimal threshold by maximizing the 
difference between true and false positive rates. The results are presented in Appendix 1—figure 
7 and reveal that generally the ratio and relative change prognostics offer similar performance, but 
that both demonstrate somewhat better performance compared to the traditional prognostics. In 
addition, all the prognostic criteria are more accurate when applied 3–6 mo after the start of therapy 
than when applied during the 0–3-month period. We did not calculate the ROC curves for EMR but 
rather we only plotted the point that corresponds to 10% transcript levels at 3 mo (black circle) and 
1% at 6 mo (open black circle). The EMR prognostic criterion has fewer false positives but also fewer 
true positives than the other prognostics.

Appendix 1—figure 7. Comparison between our prognostic and alternate prognostics, as labeled, at the first and 
second 3 mo after the start of therapy.

https://doi.org/10.7554/eLife.84149
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7.2 Performance of prognostic criteria using patient data
The prognostic criteria were tested on anonymized patient data obtained from Dr. Van Etten’s clinical 
practice, again asking whether MR3 at 18 mo after treatment could be correctly predicted. We used 
data in which patients were kept on the same therapy for 6 mo either from the start of therapy or 
after a change of therapy. For patients that achieved MR3 within 3 mo, we did not include their 
data at 6 mo. In Appendix 1—figure 8, the first two columns correspond to results when the same 
therapy is applied for 6 mo after patient diagnoses. The last two columns correspond to patients who 
have had a change of therapy, but the new therapy is maintained for 6 mo. We do not use the EMR 
as a prognostic in the cases when therapy is changed. The figure demonstrates that the prognostics 
are more accurate for the 3–6-month period, as predicted from the synthetic data. Although the 
numbers of patients are small, the relative ratio prognostic criterion is at least as accurate as, or more 
accurate than, the other criteria. In Appendix 1—figure 9, the predictions of the prognostic criteria 
are grouped by whether the patients achieve or do not achieve MR3 by 18 mo and by time period. In 
Appendix 1—figure 10, the prognostic criteria data are aggregated into 3-month windows, where 
0–3 mo contains both 0–3 mo after start of therapy and after a therapy change. The 3–6-month data 
is similarly aggregated. It is clear that the predictions using the 3–6-month data are more accurate 
than those using the 0–3-month window.

Appendix 1—figure 8. The ability of prognostic criteria to predict MR3 by 18 mo is evaluated using anonymized 
patient data (n = 11) in which patients received the same therapy for 6 mo either from the start of therapy or after 
a change in therapy. The first two columns correspond to results when the same therapy is applied for 6 mo after 
patient diagnoses. The last two columns correspond to patients who have had a change of therapy, but the new 
therapy is maintained for 6 mo. The Early molecular response (EMR) prognostic criterion is not used when the 
patients have had a therapy change.

Appendix 1—figure 9. The predictive ability of each prognostic criterion from Appendix 1—figure 8 but 
grouped based upon patient (n = 11) outcome (blue, responder; and yellow, nonresponder) and the time frame for 
prediction.

https://doi.org/10.7554/eLife.84149
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Appendix 1—figure 10. Aggregating the accuracy of prognostic criteria predictions with patient data (n = 11) 
from Appendix 1—figure 8 where a general time of 0–3 mo contains both 0–3 mo after start of therapy and after 
therapy change. The 3–6-month data is aggregated similarly.

8 Combination therapy parameter distributions by response
Finally, in Figure 8—figure supplement 1, we show how the distributions of model parameters 
from Figure 7—figure supplement 1 change when TKI therapy is combined with a differentiation 
promoter. The blue hatching indicates a nonresponder that becomes a responder while the yellow 
hatching indicates that a responder becomes a nonresponder. Here, response is defined as achieving 
MR3 in 50 mo. We observe that differentiation therapy is very effective in driving nonresponders at 
large ‍p0,max‍ and ‍γ1‍ to become responders, but also drives parameter sets that responded to TKI 
monotherapy at small values of ‍p0,max‍ and ‍γ1‍ to no longer achieve MR3 at 50 mo (nonresponders).

9 Impact of intrinsic differences between normal and leukemic cells
In Figure  4—figure supplements 2–4, we explored perturbations ranging from 90 to 110% of 
the original parameter values from Appendix 1—tables 4 and 5 to explore the effect of intrinsic 
differences between normal and leukemic cells. One exception is ‍p

L
0,max‍ , which is limited to a 

perturbation range of 90–100% due to biological constraints as described in the main text. For the 
single parameter set for normal cells from Appendix 1—table 4, perturbations in most leukemic 
parameters yielded insignificant differences at the cellular and response dynamics levels. The three 
parameters that did see significant sensitivity to perturbation were the leukemic stem cell-specific 

parameters ‍p
L
0,max‍ , ‍

γL
1

γ1 ‍ , and ‍TKIHSC‍ . To determine whether this sensitivity applies to the entire 
population of parameter sets, we explored sweeps of the newly added leukemic parameters and 
their associated feedback gain shown in the heat maps of Appendix 1—figure 11 and Figure 4—
figure supplement 6. For a parameter combination to be considered useful, there must be a 
region of the left plots that is of a lower value, such that in a majority of cases leukemic cells can 
dominate the system. Along the bottom right plot, the region should be neither fully light or fully 
dark to give regions where there are both responsive parameter sets and nonresponsive parameter 
sets. Through these parameter combination studies, we find that even on the broader parameter 

set population ‍p
L
0,max‍ and ‍

γL
1

γ1 ‍ are the only cases with significant differences in overall qualitative 

outcomes. Additionally, we find that the domains of ‍p
L
0,max‍ and ‍

γL
1

γ1 ‍ are relatively restricted with the 

only viable values of ‍p
L
0,max‍ being roughly equivalent with ‍p0,max‍ with necessary decreases in ‍

γL
1

γ1 ‍ for 

lower ‍
pL

0,max
p0,max ‍ values to ensure parameter combination viability.

https://doi.org/10.7554/eLife.84149
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Appendix 1—figure 11. Variations in ‍
pL

0,max
p0,max ‍ and ‍

γL
1

γ1 ‍ for the individual parameter set from Figure 6 (top) and all 
eligible parameter sets (bottom). Left heat maps display the proportion of parameter sets that maintain dominance 
of normal cells in the system in the lighter regions and the proportion that possess leukemic cell dominance in the 
darker regions. The right heat maps indicate proportion of cases where parameter sets achieve MR3 within 50 mo 
with lighter values associated with a higher proportion of response. Biologically relevant parameter combinations 
exist within darker regions on the bottom left and regions within orange to purple on the bottom-right plot.

10 Effect of leukemic stem cell parameters on response to TKI therapy
By finding similar qualitative regions of the leukemic stem cell self-renewal heat map in Appendix 1—
figure 11 (lower right), we examined the distributions of response for a few combinations of 
parameters shown in Appendix  1—figure 12. We found that it is possible to achieve similar 
distributions with different combinations of parameters. When ‍p

L
0,max/p0,max = 0.8‍ and ‍γ

L
1 /γ1 = 0.2‍ , in 

33% of the cases the treatment is unsuccessful in achieving MR3 in 50 mo. When ‍p
L
0,max/p0,max = 0.8‍ 

and ‍γ
L
1 /γ1 = 0.1‍ , in 20% of the cases the treatment is unsuccessful in achieving MR3 in 50 mo. When 

‍p
L
0,max/p0,max = 0.9‍ and ‍γ

L
1 /γ1 = 0.3‍ , in 30% of the cases the treatment is unsuccessful in achieving MR3 

in 50 mo. When ‍p
L
0,max/p0,max = 1.0‍ and ‍γ

L
1 /γ1 = 0.5‍, in 39% of the cases the treatment is unsuccessful 

in achieving MR3 in 50 mo.
When we analyzed the role of the pretreatment leukemic stem cell proportion on response to 

TKI therapy (Figure 7A), we find the results to agree qualitatively across the leukemic parameter 
combinations (Appendix 1—figure 13). From this, to determine whether the ‍p0‍ or ‍p

L
0 ‍ is the true 

predictor of response to TKI therapy ‍p0‍, we first calculated a quantity we termed a characteristic 
effective self-renewal fraction to attempt to group these combinations by similarity. The characteristic 

self-renewal fractions for leukemic and normal stem cells are defined as 
‍
p̄L

0 = pL
0,max/

(
1 + γL

1 N̄
)
‍
 

and ‍̄p0 = p0,max/
(
1 + γ1N̄

)
‍ . We take ‍̄N = 105‍ to be a characteristic value of the size of the MPP 

population. We then analyzed the behavior as a function of the maximal HSC self-renewal fraction 

‍p0,max‍ and ‍̄p
L
0,max/p0,max‍ . The results are shown in Appendix 1—figure 14 where all 478 parameter 

sets representing the states of the normal system are considered and the leukemic parameters 

‍p
L
0,max/p0,max‍ and ‍γ

L
1 /γ1‍ are varied from 0.6 to 1.0 and 0.1–0.6, respectively, using blue and yellow 

colors to denote responders and nonresponders. We observe that when the fitness of the ‍HSCL‍ 
(as measured by ‍̄p

L
0,max/p0,max‍) is sufficiently low (e.g., ‍̄p

L
0,max/p0,max < 0.65‍), all the systems respond 

to TKI therapy. When the ‍HSCL‍ increase in fitness, the number of nonresponders increases but 

https://doi.org/10.7554/eLife.84149
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nonresponders are only observed when ‍p0,max‍ is above a critical threshold, which depends on ‍γ
L
1 ‍ 

through ‍̄p
L
0,max/p0,max‍ . Note that the fitness of the HSCL can be increased either by increasing ‍p

L
0,max‍ 

or ‍γ
L
1 ‍ or both.

Appendix 1—figure 12. Combinations of leukemic values with similar overall response rates to tyrosine kinase 
inhibitor (TKI) therapy (see text) yield similar distributions of response.

Appendix 1—figure 13. Simulated distributions of response to tyrosine kinase inhibitor (TKI) therapy as a 
function of initial proportion of leukemic stem cells is qualitatively similar across the parameter combinations from 

Appendix 1—figure 12 (from left to right): ‍
pL

0,max
p0,max

= 0.8
‍ and ‍

γL
1

γ1
= 0.1‍, ‍

pL
0,max

p0,max
= 0.8

‍ and ‍
γL

1
γ1

= 0.2‍, ‍
pL

0,max
p0,max

= 0.9
‍ and 

‍
γL

1
γ1

= 0.3‍, and ‍
pL

0,max
p0,max

= 1
‍ and ‍

γL
1

γ1
= 0.5‍.
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Appendix 1—figure 14. Comparison of trajectories of response as functions of ‍̄p
L
0/p0,max‍ and ‍p0,max‍ . For each 

value of ‍
pL

0,max
p0,max ‍, there is one tree starting from ‍p0,max = 0.5‍, then for each ‍

γL
1

γ1 ‍ up to ‍
γL

1
γ1

= 0.6‍ the tree splits into six 
branches. Dot color denotes whether a parameter set responds (blue) or does not respond (orange).

The overall fitness of the leukemic stem cells relative to that of the normal cells determines 
whether CML will develop and whether treatments will succeed or fail. This is shown in Figure 7—
figure supplement 2. The relative fitness of the CML cells is measured by the ratios of characteristic 
values of the ‍HSCL‍ and ‍HSC‍ self-renewal fractions: ‍̄p

L
0/p̄0‍ . Here, all 478 parameter sets representing 

the states of the normal system are considered and the leukemic parameters ‍p
L
0,max/p0,max‍ and ‍γ

L
1 /γ1‍ 

are varied from 0.6 to 1.0 and 0.1–0.6, respectively. The larger the relative fitness, the more likely 
that CML will develop and take

over the system (Figure 4D) and that the system will be refractory to TKI treatment (Figure 7—
figure supplement 2).

As we described in the main text, we estimated the relative fitness of ‍HSCL‍ as ‍̄p
L
0/p̄0 ≈ 0.70‍ . In 

Appendix 1—figures 15–16 and Figure 7B, we plot the bivariate histogram for response to TKI 
treatment for combinations of leukemic stem cell parameters such that ‍̄p

L
0/p̄0 ≥ 0.50‍ (Appendix 1—

figure 15), ‍̄p
L
0/p̄0 ≥ 0.60‍ (Appendix 1—figure 16), and ‍̄p

L
0/p̄0 ≥ 0.7‍ (Figure 7B). Through exploration 

of bivariate and marginal distributions, we find that ‍p0,max‍ is capable of separating response, while 
the fitness ‍̄p

L
0/p0,max‍ does not have a clear delineation (Appendix 1—figures 15–16 and Figure 7B). 

Additionally, in our virtual patient population we consider variations of ‍p0,max‍ for individual biological 
variation with CML cells operating in a similar capacity across virtual patients to be more meaningful.

https://doi.org/10.7554/eLife.84149
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Appendix 1—figure 15. Bivariate histogram for response to tyrosine kinase inhibitor (TKI) therapy where the 
relative fitness of ‍HSCL‍ is ‍̄p

L
0/p̄0 ≥ 0.50‍. Individual variable marginal distributions are shown along the sub-axes.

Appendix 1—figure 16. Bivariate histogram for response to tyrosine kinase inhibitor (TKI) therapy where the 
relative fitness of ‍HSCL‍ is ‍̄p

L
0/p̄0 ≥ 0.60‍. Individual variable marginal distributions are shown along the sub-axes.

11 The effect of leukemic stem cell parameters on combination therapy 
and prognostic criterion
We checked the combinations of ‍

pL
0,max

p0,max ‍ and ‍
γL

1
γ1 ‍ to ensure that the effectiveness of combination therapy 

and the accuracy of our prognostic criterion are largely unchanged by varying the leukemic stem 
cell parameters. In Figure 8—figure supplement 2, we see combination therapy is still successful at 
improving the proportion of responders. We find that the optimal values from Figure 7E, where a 
single set of leukemic parameters was used, need to be modified when all the leukemic parameter 
combinations that have significant takeover proportions (‍> 60%‍) are considered. Nevertheless, using 
synthetic data we find that the 3–6-month time frame has a better predictivity of TKI response than 
does the 0–3-month time frame (Appendix 1—figure 17).

https://doi.org/10.7554/eLife.84149
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Appendix 1—figure 17. Prognostic value sweep applied to combinations of ‍
pL

0,max
p0,max ‍ and ‍

γL
1

γ1 ‍ with leukemic 
predominance > 60%. Optimal values from Figure 7E are no longer the optimal across all combinations, but the 
3–6-month time frame still outcompetes 0–3-month time frame.

https://doi.org/10.7554/eLife.84149
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