
UC Berkeley
Recent Work

Title
The User Experience of Software-as-a-Service Applications

Permalink
https://escholarship.org/uc/item/8d79h3kj

Author
Rhoads Lindholm, Katrina

Publication Date
2007-03-02

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8d79h3kj
https://escholarship.org
http://www.cdlib.org/

The User Experience of

Software-as-a-Service Applications

Katrina Rhoads Lindholm

2007 Information & Service Design Symposium
The School of Information, UC Berkeley

UCB iSchool Report 2007-005
February 2007

Abstract

Over the last several years we have seen a dramatic increase in the number of software
applications offered over the internet. The ability to release user interface changes on a
potentially daily basis has forced user experience professionals to rethink their
traditional linear methodologies. With a new set of internet-based usability techniques
as well as the remarkable ability to receive real-time, continuous feedback from end
users, designers today have the potential to create the most usable and competitive
software user interfaces to date.

The User Experience of Software-as-a-Service Applications Katrina Rhoads Lindholm

2007 Information & Service Design Symposium 1

Introduction

The software-as-a-service (SaaS) delivery model has grown in popularity
over the last decade as computers and the internet have gained acceptance in
both the corporate world and in the home. In conjunction with this movement,
there have been significant changes in how software is developed. Shorter
development cycles and more frequent releases are becoming the norm for web-
based software. New agile development processes which promote increased
productivity through shorter cycles have also gained popularity in the software
industry. Accordingly, user experience tasks such as interface design and
usability testing have been forced to adapt. This paper will discuss the user
experience challenges and solutions that have emerged in response to the
advancement of SaaS.

Growth of the SaaS Delivery Model

Progress in technology has enabled software providers to look beyond
disks and CD’s as a medium for delivery; today an increasing number of
companies like Google, Yahoo! and Salesforce.com are offering their software in a
web-based environment that can be accessed at any time and from any computer
across the globe. A 2005 report found that of the North American professionals
surveyed, 79% said that they were already using or were considering using SaaS
applications.1

Advancements in computing and the internet are the primary reason that
SaaS providers have been able to gain a foothold in the software market.
Decreasing hardware costs, increasing computational power and improved
network reliability have encouraged both businesses and consumers to invest in
computers and internet services. Nearly 70% of people who connect to the
internet at home in the U.S. do so with a high-speed connection.2 Within the
business setting, 89% of workers access the internet with a high-speed
connection.3 This widespread adoption of high-speed internet service has
enabled SaaS applications to perform at speeds competitive with traditional,
locally-installed applications. Furthermore, secure connections and encryption
techniques have helped convince the public that the internet is a safe medium for
exchanging sensitive data.

In addition to the technical factors involved in the growth of SaaS
acceptance, there are several benefits over the traditional software delivery model
that have attracted businesses and consumers. One such benefit is derived from
the one-to-many model that is intrinsic to SaaS applications. This means that the
SaaS provider maintains a single code base on its own set of servers from which
every customer instance is derived. This is a powerful architectural design that
makes it possible to roll out a release across all customers at the same time,
without the need for customer-specific modifications.

Because SaaS software is not hand-tailored to the needs of the customer,
providers often build a set of tools into the interface that allow users to customize
the application themselves. For example, Salesforce.com delivers an identical
product to each new customer. However, the customer can choose which

The User Experience of Software-as-a-Service Applications Katrina Rhoads Lindholm

2007 Information & Service Design Symposium 2

modules they would like to use, which tabs appear on the page and what fields
appear in each form.

Another benefit of the SaaS delivery model is that the responsibility of
maintenance is shifted almost entirely to the SaaS provider. Because the software
is hosted by the provider rather than installed locally at the customer’s site, all
hardware and software maintenance must be performed by the provider. In a
business setting, this means that a special IT team is not required in order to
install updates, maintain hardware and back-up data. For consumers using SaaS
software, it means that any information they enter into the software will persist
even if their own personal computer fails.

Cost is another major factor. Many consumer SaaS applications are
completely free of charge; the provider earns revenue from advertising. Business
SaaS applications are typically tied to a subscription model which is attractive
because the upfront costs are minimal and the contract can be terminated at any
time.

There is also reason to believe that customer support is enhanced by the
SaaS delivery model. This may be partially due to the fact that it is easier for
providers to diagnose and solve problems when the server environment is in-
house and predictable. In addition, the single code base of SaaS providers
eliminates the need to support legacy versions, simplifying the work of customer
support representatives. Another factor that may lead to improved customer
support is the ability of SaaS providers to monitor the usage of their product in
real-time. Analysis of these logs can help providers gain intimate knowledge of
customer behavior and may lead to faster problem resolution in the short term
and fewer bugs in the long term.

Release Early, Release Often

For years, the development of software closely modeled the traditional
design and manufacturing processes of physical products. Feature planning and
design take place upfront, followed by a long development phase and concluded
with QA testing, bug fixes and, ultimately, the release of a new version. This
process might last anywhere from six months to several years. Microsoft, for
example, recently announced the debut of its latest Windows version, Vista,
which took over five years to develop.4

This lengthy waterfall-style development process is a natural fit for
versioned software that is delivered via a physical medium such as a CD because
1) it is not economical for companies to repeatedly issue new disks, packaging
and printed documentation and 2) it is not practical to ask customers to purchase
and install a new version more than once a year. If software developed in this
fashion could be guaranteed to be perfect, infrequent updates might be
acceptable. But in reality, there are always bugs that QA overlooks, spelling
mistakes that copy editors miss and, worse, the not uncommon situation in which
the market changes before the software has even shipped.

Today, the internet as a delivery medium has helped revolutionize the
software development process. Traditional desktop software providers like
Microsoft are now utilizing the web to allow customers to install new versions

The User Experience of Software-as-a-Service Applications Katrina Rhoads Lindholm

2007 Information & Service Design Symposium 3

and to download the latest bug and security patches. Meanwhile, SaaS providers
that rely entirely on the internet to deliver their products are able to push out
changes both large and small to their software as often as they desire. For
example, Flickr, an online photograph sharing website, is said to have released
new code as frequently as once every half hour5, while Netflix, an online movie
rental company, maintains a consistent two-week update cycle.6

From Version Numbers to Beta Labels

Frequent releases have also changed the way that companies communicate
the state of the software to their customers. Version numbers are unable to keep
up with changes that take place on a potentially daily basis. Instead, we are
seeing more and more new SaaS applications labeled with the words “alpha” and
“beta” which quickly provide users with a rough indication of the stage of
development.

By labeling an application as “beta,” some believe that the provider is
simply making an excuse for any bugs, mistakes or incomplete features in the
software. Others think that the beta label is an honest declaration to customers
about the state of the software and a powerful way to gather valuable feedback
and conduct live user testing. Either way, the beta phase has allowed SaaS
companies to beat would-be rivals to the market and to innovate in a way that
may have been considered too risky just a few years ago.

“I think that people are maybe ashamed of their products and are worried about
releasing something that's not perfect. It feels like it's almost an excuse. They're
putting something out there and saying, ‘Use this, but if it's not perfect, it's not
our fault.’”7

In addition, some SaaS providers are including sections on their website

that showcase new features and applications in their infancy. For example, the
Google Labs page lists several new applications such as Google Ride Finder and
Google Code Search that, according to Google, “aren’t quite ready for prime
time.” YouTube also has a section called Test Tube where they feature “recipes
and concoctions that aren't quite fully baked” for users to experiment with.
Similar to the beta label, these experimental sites allow SaaS providers to gain
valuable feedback from customers that they can then incorporate into subsequent
releases.

User Experience Best Practices for SaaS

The ability to release software updates on an as-needed basis can be a
powerful advantage for SaaS providers when implemented properly. With that
said, the company has a responsibility to the end users to take care in how user
interface changes and new features are released.

Unlike traditional shrink-wrapped software, changes to SaaS applications
are made live the very next time the user logs into the system. As a result, the
customer has very little say in what changes will be released. They also lack the

The User Experience of Software-as-a-Service Applications Katrina Rhoads Lindholm

2007 Information & Service Design Symposium 4

option of uninstalling the new version and reinstalling the previous one as they
did with traditional software. It is not surprising then that changes to a user
interface can disrupt and even anger users who are accustomed to a certain page
organization and set of tools for accomplishing their tasks.

In early September 2006, the social networking site Facebook released a
news feed feature with the purpose of helping members keep track of changes
that friends made to their pages. The feature received an enormous amount of
criticism with approximately 700,000 members signing a petition for its
immediate removal. 8 The Facebook team clearly did not anticipate such a
reaction and may have avoided it by performing usability testing during the
design and development phases. If standard usability tests failed to reveal the
issue, there are several effective user experience techniques for SaaS applications
that could have given Facebook more control over the situation.

Limited Releases

One technique that has been used successfully by companies like MSN and
Yahoo! is to offer a new feature or an updated look-and-feel to a small percentage
of the user-base. MSN employed this technique when they were redesigning their
home page a few years ago. Rather than forcing the change onto all of their users,
they advertised a preview to a small percentage of their users. They used the
feedback they received to gauge the users’ reaction, make improvements and then
eventually released the new home page to all of their users.

“Don’t people hate it if you change the pages every two weeks? Of course. If you
have enough traffic, test the changes on a slice of users.”9

In the case of Yahoo! Mail, existing users were shown a link that invited

them to try out the new Yahoo! Mail Beta application. Yahoo! Mail Beta offered
“Web 2.0” features such as drag-and-drop and automatic completion of email
addresses and was a drastic change from their existing Mail application. Yahoo!’s
invitation strategy helped them avoid angering existing users by forcing a drastic
user interface change on them. Users who voluntarily opted to try the new
application were given a very prominent link to switch back if they preferred the
previous version. Like MSN, the real-time usage statistics and feedback were
incorporated into subsequent updates, creating a more mature, stable
application.

Supporting Older Features

YouTube has dealt with rolling out major feature changes in a similar
fashion. Hong Qu, a UI designer at YouTube, explained in a telephone interview
that they mitigate the rejection of changes to popular features by first performing
several iterations of traditional usability testing and then, following a public
release, by allowing users to continue to access the previous version of the
feature. Over time, even the reluctant users tend to adopt the new version of the

The User Experience of Software-as-a-Service Applications Katrina Rhoads Lindholm

2007 Information & Service Design Symposium 5

feature. By performing log analysis, YouTube can determine when the old
version is no longer being used and will subsequently remove it from their site.

“We are really careful – every time something new comes out, the users are
hesitant to accept it. We are careful to preserve the impression that we are
supporting the old feature.”10

 Like many other SaaS providers, YouTube also maintains a close watch on
customer feedback in order to validate interface changes. Several times a week,
Hong will check-in with the customer support department to find out what
features customers are requesting and what they are having difficulty with.

Gradual Change

Another strategy is to avoid major design overhauls altogether. Rather,
design the end result and then slowly release elements of it overtime. This slow-
release process ensures that a user’s productivity is not impeded by having to
learn a whole new interface. Ideally, the user will not even notice the changes.

There is an unconfirmed anecdote about EBay taking this approach after
they attempted a drastic change from a yellow background to a white background
and elicited severe criticism from their end users. Rather than give up on the
idea altogether, they decided to slowly fade the color from yellow to white over an
extended period of time. Because the change was so gradual, users did not even
notice.11

Gradually releasing small changes to a user interface is also beneficial
because it allows the user experience team to pinpoint the exact cause of positive
or negative feedback. If several changes are made, it can be difficult to determine
which one was the true cause. Furthermore, it is easier to remove a small change
from an interface than a large change if it is found that it is not being used or is
disliked by users.

Different Breeds of SaaS Applications

Certainly, there are differences between SaaS providers that make some
user experience techniques more practical and effective than others. Although
the line is fuzzy, there appear to be two main camps of SaaS applications which
are divided primarily by target audience and cost structure:

1. Business-to-Business SaaS: Applications that are sold to small-to-

medium sized businesses and that charge a monthly subscription
fee. Examples: Salesforce.com, WebEx, SugarCRM and 37 Signals.

2. Business-to-Consumer SaaS: Applications that are made available

to individual consumers and that are either free to use or may
charge a nominal fee. Examples: Google GMail, Google
Spreadsheet, Yahoo! Mail, PayPal and Flickr.

The User Experience of Software-as-a-Service Applications Katrina Rhoads Lindholm

2007 Information & Service Design Symposium 6

It may be that the greatest difference lies in how critical the application is
to the end user. As one may expect, end users of a business-to-business (B2B)
SaaS application such as Salesforce.com are not using the application voluntarily.
Rather, their employer has selected the software on their behalf. The software’s
availability, stability and usability are of utmost importance to the customer.
This is particularly true in the realm of customer relationship management
(CRM) software because the productivity of the employee using the software is
directly related to the success of the company. As a result, changes to this type of
SaaS software cannot be taken lightly.

“…if you're running an online billing system, hosted CRM, online banking or
hosted VOIP services - you can't afford to screw things up for your users. At the
end of the day, consistent quality is the key to keeping customers happy - and
generating revenue for you.”12

Salesforce.com’s longer release cycles may be indicative of this criticality

factor. Although they recently converted to an agile development process in an
effort to increase the number of yearly releases, Salesforce.com must still
meticulously navigate new features and user interface changes in order to
maintain a high level of customer satisfaction.

When Salesforce.com started thinking about updating the look and feel of
their navigational tabs in 2005, they utilized their successforce.com community
website to collect comments from current customers on three potential designs.
When the change was later implemented in early 2006, they released the new
look and feel for all new customers but allowed existing customers to revert back
to the “classic” style if they so desired. Even a year later, Salesforce.com is
supporting a small percentage of users who are using the old look and feel. This
underscores the value of giving customers an option when significant interface
changes are implemented.

For Salesforce.com, it is not just about what is perceived to be better for
the customer. Each design decision they make has the potential to cause
productivity loss and an increase in human error. Furthermore, for larger
customers, changes to the interface can mean weeks lost in retraining employees.
As a result, Salesforce.com tries to conduct as much usability testing as possible
and leverages online and offline communities to receive feedback about features.
They will also often make new features optional by providing on and off switches
in the software’s administration panel. At the end of the day, these safeguarding
tactics must be balanced with the need to constantly evolve in order to stay
competitive with other SaaS CRM providers.

“When considering the value of a conceptual feature or usability change, ask
‘What does the customer do with what she has today, will she still be able to do it
tomorrow, and does she need what I plan to give her next?’”13

For SaaS applications that cater to consumers (B2C), the story can be quite

different. Applications like Flickr, Facebook and Google Earth are predominantly
used for social networking, community building or as a leisure activity. They are

The User Experience of Software-as-a-Service Applications Katrina Rhoads Lindholm

2007 Information & Service Design Symposium 7

all offered free of charge. Certainly, one would expect that these factors would
substantially influence the expectations of the users.

Although it would be erroneous to say that users of free B2C SaaS
applications are accepting of design flaws and reckless change, in some cases they
may be more flexible than users of B2B software. Furthermore, there may be an
inherit expectation that these types of applications should remain cutting-edge,
thus demanding the constant addition of new features and an updated look and
feel.

“One cool thing about these constant updates, is that it involves the user in the
development process, even just a little bit. It makes me feel like I can direct how
the software goes, even if I'm not the one actively working on it. I think I only get
this feeling because of the _immediate_ feedback. If I made a request and it gets
implemented a few months later, I probably would have forgotten about it
already.”14

While there is no evidence that users of B2C SaaS applications are more

open to interface changes, we know that providers like Netflix, Flickr, Facebook,
MySpace and Google are constantly tweaking their interfaces in an effort to stay
competitive in a market driven by rapid innovation.

It Comes Down to the Users

As satisfying as it would be to draw a thick line in the sand between B2B
and B2C SaaS applications, the reality is that design practices always need to
come back to the needs of the users. B2B SaaS applications will often have a less
technical, more conservative user base and B2C SaaS applications will sometimes
offer an opportunity to push the limits of design. But there are exceptions to
every rule.

Microsoft’s Hotmail application is a good example. The designers of
Hotmail, one of the first free email programs on the web, took one look at
Google’s GMail and decided it was time for a major upgrade. The team designed
and developed a major overhaul to the interface including all of the cutting-edge
“web 2.0” bells and whistles. Their first set of user testing delivered good results.
However, when they started broadening their tests to a more representative set of
users, they began getting some unexpected feedback. Users actually preferred the
existing Hotmail interface.15

The rationale was two-fold. First, many of these users had held a Hotmail
account for almost ten years and were very comfortable with the current
functionality. Furthermore, Hotmail’s design had not changed substantially over
its lifespan so users were not accustomed to change. The second reason for the
negative reaction was that the proposed design took significantly longer to load in
the browser than the current design. With a large number of users relying on
dial-up internet access, the exciting new “web 2.0” features ended up being less
usable than the features they were replacing.

The User Experience of Software-as-a-Service Applications Katrina Rhoads Lindholm

2007 Information & Service Design Symposium 8

User Experience and Agile

Another trend in software development that is gaining popularity among
many SaaS software providers is the agile development process. Agile attempts
to make development more productive and efficient by replacing a single long
cycle with several shorter ones. Each of these “sprints” focuses on a prioritized
set of user stories and is intended to deliver real, functional value. Typically
lasting between a week and a month, a sprint will cycle through the phases of
design, coding and testing.

Companies that have implemented agile have had to reevaluate the role of
the user experience team within the development process. In a traditional user-
centered design process, almost all of the user interface (UI) design work is done
upfront. User needs serve as the foundation for creating a series of rough
mockups which eventually evolve into high-fidelity interactive prototypes
through several iterations of customer testing. When the team is satisfied with
the design it is typically handed off to the development team for coding. Ideally,
user experience members will have the opportunity to work closely with
engineering to ensure that the code stays true to the design. A final round of
usability testing will reveal any unexpected issues and minor changes can be
made before releasing the feature to the public.

With agile, however, long periods of upfront planning are discouraged. In
fact, some user experience professionals have criticized the agile methodology
because it seems to leave UI design and usability testing entirely out of the
process. However, companies that have adopted agile but want to continue
supporting the user-centered design process have started to find ways to
reconcile the two seemingly opposing methodologies.

Most user experience professionals agree that some design work still needs
to be completed upfront along with the initial feature planning. This is because
highly usable software is not derived just by how things look and work on a single
page but how well the various pages interact with one another. For particularly
large features or features spanning multiple sections of an application, taking a
holistic perspective in the design process is a necessity. With a holistic design
completed, the UI Designer can then segment the design to fit the needs of each
sprint.

Alias, a graphics software company, has said to have effectively integrated
user experience work into their agile development process. They complete their
design work one iteration ahead and conduct usability testing on the features
developed in the previous iteration.16 In this arrangement, the team is designing
and testing in a single sprint and never holding up the work of development or
QA. Any recommendations for change that stem from usability testing can be
prioritized and then incorporated into a subsequent sprint.

Salesforce.com, which transitioned from a standard waterfall approach to
a Scrum agile development process in the fall of 2006, has also had to make
adjustments in order to align the user-centered design process with their agile
schedule. According to Jerry Sherman, Senior Director of Development Services
at Salesforce.com, it is nearly impossible to fit the full user-centered design cycle
into a 2 or 4-week sprint although the company considers this step to be critical

The User Experience of Software-as-a-Service Applications Katrina Rhoads Lindholm

2007 Information & Service Design Symposium 9

to getting the feature right. Their solution has been to have the user experience
team start their work several cycles ahead of development.

“We're focusing on having the designers work proactively with project managers
several sprints ahead of the rest of the team. The goal is to have fully-tested
prototypes ready to hand off to development before the release sprints start.”17

Some claim that, when done properly, the agile process naturally enhances

the usability of the software. For example, the short sprints may prevent
designers from become overly attached to the feature and therefore they may be
more open to changing or even throwing out their work if usability testing reveals
flaws or if market demand has changed. In addition, frequent updates to the
software give the user experience team an opportunity to see real-time usage
statistics and determine if the change was accepted by the end users. In the case
where a change or feature receives a negative reaction when made live, it can be
removed or modified in the very next release.

“In an agile world, teams are allowed to be wrong and quickly change their
course.”18

The Future of SaaS

The benefits of software-as-a-service applications are myriad. More
attractive pricing models, reduced dependency on IT and convenience of access
are all reasons why companies and individuals will continue to embrace SaaS
applications. But with those advantages aside, there are three fundamental
reasons why the internet will become the dominant method for delivering
software: the ability to watch, listen and react to users in near real-time.

It is difficult to identify another industry today that has such a direct
connection to the needs and wants of their users. With SaaS software, the
interface can be tweaked and moments later users are flooding the customer
support department with feedback. Furthermore, server logs are able to provide
insights into customer behavior. For example, it is possible to see where users
are clicking and what they were doing when they decided to leave the site.

User experience teams working for SaaS companies truly have every
resource at their disposal for creating innovative and highly-usable interfaces.
However, the advantage of continuous evolution via ad-hoc code updates must be
balanced with the users’ needs for consistency, efficiency and transparency. SaaS
providers that practice intelligent user-centered design and that can form a two-
way line of communication with their users by leveraging user feedback and log
data will be able to differentiate themselves from the competition.

The User Experience of Software-as-a-Service Applications Katrina Rhoads Lindholm

2007 Information & Service Design Symposium 10

References

1 Erin Traudt, Amy Konary, 2005 Software as a Service Taxonomy and Research Guide, June 2005,
<http://www.idc.com/getdoc.jsp?containerId=33453&pageType=PRINTFRIENDLY> (9 December 2006).

2 Website Optimization, April 2006 Bandwidth Report, April 2006,
<http://www.websiteoptimization.com/bw/0604/> (9 April 2006).

3 Ibid.

4 Peter Galli, Pushing Forward - the next version of Windows, 30 July 2001, eWeek.com,
<http://www.eweek.com/article2/0,1759,113701,00.asp> (11 December 2006).

5 Tom Coates, Cal Henderson on "How We Built Flickr"..., 20 June 2005,
<http://www.plasticbag.org/archives/2005/06/cal_henderson_on_how_we_built_flickr/> (9 December
2006).

6 Joshua Porter, The Freedom of Fast Iterations: How Netflix Designs a Winning Web Site, 14 November
2006, <https://www.uie.com/articles/fast_iterations/> (9 December 2006).

7 Jason Fried, Mo' Beta Testing Blues, 29 May 2004, Wired.com,
<http://www.wired.com/news/infostructure/0,1377,63631,00.html> (9 December 2006).

8 Bruce Schneier, Facebook and Data Control, 21 September 2006,
<http://www.schneier.com/blog/archives/2006/09/facebook_and_da.html> (9 December 2006).

9 Walter Underwood, in response to The Freedom of Fast Iterations: How Netflix Designs a Winning Web
Site, 15 November 2006,
<https://www.uie.com/brainsparks/2006/11/14/uietips-article-the-freedom-of-fast-iterations-how-netflix-
designs-a-winning-web-site/> (9 December 2006).

10 Hong Qu, Telephone Interview, 8 February 2007.

11 Jared M. Spool, The Quiet Death of the Major Re-Launch, 20 May 2003,
<http://www.uie.com/articles/death_of_relaunch/> (9 December 2006).

12 Matt Smith, in response to Ultra-fast release cycles and the new plane, 17 March 2006,
<http://headrush.typepad.com/creating_passionate_users/2006/03/ultrafast_relea.html> (9 December
2006).

13Frank Fulton, Release 101 for SaaS and Web 2.0, 3 October 2006,
<http://blog.klir.com/klir_technologies_weblog/2006/10/release_101_for.html> (9 December 2006).

14 Skrud, in response to Ultra-fast release cycles and the new plane, 17 March 2006,
<http://headrush.typepad.com/creating_passionate_users/2006/03/ultrafast_relea.html> (9 December
2006).

15 Ina Fried, Hotmail’s New Address, 26 April 2006, <http://news.com.com/Hotmails+new+address/2009-
1038_3-6064507.html> (11 December 2006).

16 Jared M. Spool, Joshua Porter, Agile Development Processes: An Interview with Jeff Patton, 12
September 2006, <https://www.uie.com/articles/patton_interview/> (9 December 2006).

17 Jerry Sherman, Email Conversation, 12 February 2007.

18 Jared M. Spool, Joshua Porter, Agile Development Processes: An Interview with Jeff Patton, 12
September 2006, <https://www.uie.com/articles/patton_interview/> (9 December 2006).

