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ABSTRACT: Methods for assessing compound identification confidence in
metabolomics and related studies have been debated and actively researched
for the past two decades. The earliest effort in 2007 focused primarily on
mass spectrometry and nuclear magnetic resonance spectroscopy and
resulted in four recommended levels of metabolite identification
confidence�the Metabolite Standards Initiative (MSI) Levels. In 2014,
the original MSI Levels were expanded to five levels (including two
sublevels) to facilitate communication of compound identification
confidence in high resolution mass spectrometry studies. Further refinement
in identification levels have occurred, for example to accommodate use of
ion mobility spectrometry in metabolomics workflows, and alternate
approaches to communicate compound identification confidence also have been developed based on identification points schema.
However, neither qualitative levels of identification confidence nor quantitative scoring systems address the degree of ambiguity in
compound identifications in the context of the chemical space being considered. Neither are they easily automated nor transferable
between analytical platforms. In this perspective, we propose that the metabolomics and related communities consider identification
probability as an approach for automated and transferable assessment of compound identification and ambiguity in metabolomics
and related studies. Identification probability is defined simply as 1/N, where N is the number of compounds in a database that
matches an experimentally measured molecule within user-defined measurement precision(s), for example mass measurement or
retention time accuracy, etc. We demonstrate the utility of identification probability in an in silico analysis of multiproperty reference
libraries constructed from a subset of the Human Metabolome Database and computational property predictions, provide guidance
to the community in transparent implementation of the concept, and invite the community to further evaluate this concept in
parallel with their current preferred methods for assessing metabolite identification confidence.

■ INTRODUCTION
Comparing Molecular Identification Among Omics

Measurements. In biomedical research, systems biology
studies1−3 are used to discover new disease biomarkers and
elucidate underlying biological mechanisms. Such studies are
driven by multiple high-throughput omics technologies:
genomics,4,5 transcriptomics,6 proteomics7,8 and metabolo-
mics.9,10 Genomics and transcriptomics are the most mature,
owing to the more limited chemical diversity of DNA and RNA
relative to proteins or metabolites,11,12 the fidelity and accuracy
of the associated measurement techniques (i.e., sequencing),5

and the breakthrough of having a complete human genome
reference sequence as a result of the Human Genome Project.13

Today, whole genomes can be sequenced in just 1−2 days with
error rates <0.1%,14 using modern high throughput sequencing
technology (e.g., Illumina NovaSeq) and exploiting the fidelity

of DNA polymerase for molecular replication and the specificity
of fluorophores read from labeled base pairs.5

Proteomics is next in technical maturity. This is because
proteins have only slightly greater chemical diversity compared
to DNA and RNA, as they are composed of 22 amino acids.
However, the complexity of the proteome can increase greatly if
all possible protein post-translational modifications (PTMs; e.g.
phosphorylation) are considered, and the computational time
required for processing mass spectrometry-based proteomics
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data scales exponentially with the number of PTMs considered.
Mass spectrometry-based proteomics7,8 exploits several charac-
teristics of proteins and their constituent peptides. First, proteins
are direct readouts of the genetic code, and if the genome is
known, then associated protein sequences can be determined.15

Second, peptides dissociate characteristically around the amide
bond during a tandem mass spectrometry (MS/MS) measure-
ment, allowing for accurate prediction of their fragmentation
spectra.16,17 These characteristics have led to analytical
workflows that can determine the proteomes of moderately
complex samples, as well as methods for estimating and
controlling peptide and protein identification false discovery
rates (FDRs).18,19 Completely measuring the proteomes of
highly complex samples (e.g., human blood plasma) requires a
balancing of time and cost. In addition, comprehensive
determination of post-translationally modified proteins20 and
hybrid peptides21 remains challenging.

Metabolomics is the least mature among the omics sciences,
with high-throughput, untargetedmeasurements having the goal
of identifying and quantifying as many nonprotein, small
molecules (e.g., 50−1500 Da) as possible. Given their high
sensitivity and broad molecular coverage, a variety of mass
spectrometry-based techniques, such as gas and liquid
chromatography−mass spectrometry (GC-MS and LC-MS),
are used in untargeted metabolomics. Typically, LC-MS assays
yield thousands of features that each represent a potential small
molecule of interest. However, these features may also be due to
chemical noise or contamination and chemical variants of small
molecules such as protonated- or sodiated-adducts. A significant
challenge in untargeted metabolomics is discerning among these
signals to annotate the chemical structures associated with the
detected features. The current paradigm for confident
metabolite identification involves comparing experimental MS
(or nuclear magnetic resonance spectroscopy; NMR) data from
biological measurements to comparable data in reference
libraries that were populated from purified reference metabolites
that were measured under similar conditions, preferably in the
same laboratory. Unlike proteomics, where the analytes of
interest are encoded by the genome and limited to linear
polymers of repeating amino acids, the chemical space being
profiled in metabolomics is essentially unconstrained, especially
if exogenous metabolites (such as food products), microbial
transformations and other chemical exposures are considered.
As a result, much less is known about the complete composition
of the human metabolome than the genome or the proteome.
This is because relatively few reference standards are available
relative to the known chemical space, and the measured
properties such as mass fragmentation patterns are less
predictable for metabolites than peptides. Consequently,
metabolite identification in metabolomics is often prone to
more errors or uncertainties than other omics technologies.
Even if we could computationally predict all metabolites likely to
exist in a given organism or biofluid, based on genomes or
proteomes, the search would not be complete due to interaction
of the organism with nonbiological sources. As a result, even
though metabolomics reference libraries continue to grow,22,23

they are unlikely to ever be complete. This has inspired efforts to
increase reference data through enzymatic biotransformation of
drugs and other xenobiotic chemicals.24

Current Landscape and Use of Reference Libraries for
Compound Identification. Reference libraries contain
varying levels of curated information about compounds (e.g.,
structure, properties, and classifications). At a minimum, useful

reference libraries contain compound structures in machine
readable formats or public identifiers that map to chemical
structures, alongside derived properties such as molecular
formulas and exact monoisotopic masses. In particular, many
reference libraries developed for use with specific analytical
approaches contain measurable observables, such as observed
precursor ions and MS/MS or NMR spectra. They also include
experimental metadata that define these spectra, such as the type
of instrument used or e.g., details of the MS/MS fragmentation
method that was applied. For the case of high-resolution MS
(HRMS), the data can be used to directly search against exact
masses of known, expected, and even predicted chemical
structures. If HRMS data accuracy of <0.002 Da is achieved,
molecular formulas can be inferred using a variety of different
software tools, especially if MS/MS and isotope ratio
information is included.25−29

Many open-access reference libraries exist in the form of
compound collections that contain mass, formula and structure
information for millions of known or predicted compounds
(Table 1). These include PubChem30 which has nearly 119

million compounds, ChEMBL31 with 2.1 million compounds,
and the US-EPA CompTox Chemicals Dashboard32 with 1.2
million compounds. All of these support mass and formula
searching. However, they also include a large fraction of
anthropogenic molecules, making these libraries somewhat
more suited for exposomics33 or environmental studies and less
suitable for metabolomics studies that focus on physiological
metabolites. A number of reference libraries exist that focus on
storing only known biologically related compounds. For
example, the Human Metabolome Database (HMDB) now
accounts for 248,097 compounds,34 Lipid Maps35 lists 45,684
compounds, KEGG36 denotes 18,784 compounds, and

Table 1. Representative Compound Collection Reference
Librariesa

library
number of
compounds URL citation

ChemSpider >129,000,000 http://www.chemspider.
com/

38

PubChem >119,000,000 https://pubchem.ncbi.nlm.
nih.gov/

39

CompTox Chemicals
Dashboard

>1,200,000 https://comptox.epa.gov/
dashboard/

32

RaMP-DB 2.0 >256,000 https://rampdb.nih.gov/ 40
Human Metabolome
Database (HMDB)

>248,000 https://hmdb.ca/ 34

Metabolomics
Workbench

>164,000 https://www.
metabolomicsworkbench.
org/

41

Chemical Entities of
Biological Interest
(ChEBI)

>160,000 https://www.ebi.ac.uk/
chebi/

42

LipidMaps >45,000 https://www.lipidmaps.
org/databases/lmsd/
overview

35

Natural Products Atlas >33,000 https://www.npatlas.org/ 43
MetaboLights >27,000 https://www.ebi.ac.uk/

metabolights/index
44

Kyoto Encyclopedia of
Genes and Genomes
(KEGG)

>19,000 https://www.genome.jp/
kegg/

36

MetaCyc >16,000 https://metacyc.org/ 37
aThese representative reference libraries function primarily as
collections of compounds and include chemical structures, molecular
formulae, masses and physicochemical properties, among other data.
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MetaCyc37 includes 16,861 compounds. Many of these
databases continue to expand in coverage and content and
such databases are much more suitable for traditional
metabolomics studies.

While m/z or formula searching is relatively easy to perform,
and the sizes of the reference libraries mentioned above are often
very large, the reliability of these single parameter matches is
often quite poor. Indeed, it is often possible to get hundreds of
potential matches with a singlem/z, or even formula, query.45,46

Additional “observable” information is needed to add specificity
and increase confidence in tentative compound identifica-
tions.47,48 Generally, the most accessible and reproducible
experimental measurements, beyond mass, are spectral or
separations data. This includes MS/MS spectra (for LC-MS or
CE-MS), electron ionization (EI) spectra (for GC-MS) orNMR
spectra, and retention times (RT; for LC) or retention indices
(RI; for GC) and drift times or collision cross sections (CCS)
for ion mobility spectrometry (IMS) data. More recent
technology developments allow for the collection of infrared
spectra in-line with IMS andMSmeasurements.49 The intensity,
position, number and character of the peaks seen in MS/MS or
NMR spectra is often considered sufficient to make identi-
fications of metabolites; however, MS/MS spectral match alone
is insufficient for providing unambiguous matching of
metabolites when using large reference libraries. Several
different scoring schemes are available to facilitate spectral
matching and scoring and offer superior results to simply
matching based on a mass or formula.50−52 The chromato-
graphic and separation parameters are related to physicochem-
ical properties (e.g., size, shape, charge, boiling point, hydro-
phobicity) and provide information that is fundamentally
different from measured mass or fragmentation spectra. RI
and CCS values can be relatively instrument- or condition-
independent with proper calibration, making them highly
reproducible and suitable for compound identification. CCS
values are particularly reproducible, with relative standard
deviations <1% reported in interlaboratory comparisons and
under standardized conditions.53 Fragmentation spectra (from
GC-MS or LC-MS/MS) are generally relied upon the most in

identification workflows due to their specificity and wide
availability of associated instrumentation. GC-electron ioniza-
tion mass spectra were standardized over 60 years ago. Yet, in
comparison, measured spectra from LC-MS/MS are harder to
standardize due to the variability between instruments, the
fragmentation conditions and the collision energies used.
Therefore, MS/MS libraries often contain multiple spectra for
each compound.

Because of their utility in providing additional confidence in
metabolite identification, there are a growing number of both
commercial and open-access reference libraries that contain
various properties from experimental measurements of pure
reference compounds and that are available for matching to
metabolomics data. Representative reference libraries that
contain mass spectral data are MassBank.eu, MassBank of
North America (MassBank.us), the NIST spectral library,51

METLIN,22 and mzCloud. Other resources exist that contain
both spectra from analysis of pure compounds but also large
numbers of spectra of unknown compounds from analysis of real
samples, such as GNPS.54 Some of the more popular NMR
spectral libraries are the BioMagResBank,55 NMRShiftDB,56

NP-MRD,57 and COLMAR,58 as well as commercial libraries
produced by Bruker and Chenomx. Representative reference
libraries that contain RI and/or CCS include: the NIST RI
library, the FiehnLib RI library,59 the Unified CCS Compen-
dium,60 the Sumner CCS library61 and several commercial CCS
libraries from instrument vendors such as Bruker, Agilent and
Waters. MassBank.us contains many metabolites with LC-based
retention times, including for hydrophilic interaction chroma-
tography (HILIC).62 In contrast to standardized gas chroma-
tography RI and CCS measurements, LC RT and electro-
phoretic mobilities are not easily translated from instrument to
instrument or from one configuration to another. As a result,
reference libraries for LC RT and electrophoretic mobility are
often quite small. Recently, however, the developers of
METLIN released a reference library containing >80,000 RTs
measured for small molecules, called SMRT.63 These data, the
largest of their kind, were collected using a single standard
chromatographic protocol but have not been validated yet by

Table 2. Representative Reference Libraries of Observable Dataa

library
number of
compounds

number of experimental
reference values URL citation

Metlin >860,000 5 million spectra https://metlin.scripps.edu/ 64
NIST2023 EI-MS library >347,000 >394,000 spectra https://www.nist.gov/programs-projects/nist23-updates-nist-

tandem-and-electron-ionization-spectral-libraries
N/A

NIST2023 RI library >180,000 >491,000 retention
indices

https://www.nist.gov/programs-projects/nist23-updates-nist-
tandem-and-electron-ionization-spectral-libraries

N/A

NIST2023 Tandem MS library >51,000 >2.4 million spectra https://www.nist.gov/programs-projects/nist23-updates-nist-
tandem-and-electron-ionization-spectral-libraries

N/A

MassBank of North America (MoNA) >227,000 >197,000 spectra https://mona.fiehnlab.ucdavis.edu/ N/A
mzCloud >21,000 >10.7 million spectra https://www.mzcloud.org/ N/A
MassBank Europe >15,000 >90,000 spectra https://massbank.eu/MassBank/ N/A
Biological Magnetic Resonance Data
Bank (BMRB)

>1,300 >10 million chemical
shifts

https://bmrb.io/ 55

NMRShiftDB >40,000 >68,000 spectra https://nmrshiftdb.nmr.uni-koeln.de/ 56
Natural Product Magnetic Resonance
Database (NP-MRD)

>87,000 >1500 spectra https://np-mrd.org/ 57

FiehnLib RI library >1200 >1200 retention indices https://fiehnlab.ucdavis.edu/projects/fiehnlib 59
AllCCS >2100 >3500 CCS http://allccs.zhulab.cn/ 65
Unified Collision Cross Section
Compendium

>1700 >3700 CCS https://mcleanresearchgroup.shinyapps.io/CCS-Compendium/ 60

aThese representative reference libraries contain listings of compounds and their observable data, such as mass spectra, retention indices, NMR
spectra. and CCS values.
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independent means. Amore detailed listing of reference libraries
focused on housing data from analyses of pure reference
compounds, their contents, and the number of entries found is
provided in Table 2.

Recent Advances in In Silico Tools for Expanding
Reference Libraries. As can be seen from Table 2, measured
observable data are very limited compared to the number of
structures we know or suspect to exist. While many reference
libraries containing experimentally determined values exist,
most are currently too small or too incomplete to satisfy the
needs of metabolomics studies. The most comprehensive
untargeted MS-based metabolomics experiments that rely on
today’s reference libraries can identify up to 10% of the observed
features.66 However, such ratios depend on the type of data
processing and assay: for GC-MS based metabolomics or in
lipidomics assays, the ratio of identification is typically at 30% of
features that have associated mass spectra.67 In fact, high quality
data processing should include measures of blank sample
corrections, adduct deconvolution and the use of pooled sample
quality controls to reduce the number of spurious features in
assessments of metabolome coverage statements.

One route for increasing the amount of observable data in
reference libraries is through the synthesis or isolation of
molecules of interest. However, if one assumes that the total
number of all known and predicted metabolites, as well as all
known anthropogenic chemicals, found in humans is ∼2 million
compounds and the cost to isolate or synthesize and to
comprehensively characterize these compounds is ∼ $5000/
chemical, such an effort would cost in excess of $10 billion USD.
This initiative would easily take 20+ years and consume a
significant portion of the NSF or NIH budget. In other words,
the time and cost to make the comprehensive reference library
required for the metabolomics community is simply not feasible.
A more cost-effective approach will have to be developed. We
believe that a viable option, and the future of reference library
growth, is via in silico approaches. Simply stated, computational
approaches could be used to generate in silico (i.e., predicted)
observable data, based on validated methods. We propose this
because of the foundational developments in chemistry and
physics and the need to identify a vast number of unidentified
features. Development of various machine learning- or quantum
chemistry-based approaches (reviewed in ref 68) and tools for in
silico prediction of various types of spectra and other observables
has increased the size and chemical appropriateness of existing
reference libraries. Indeed, there are now several well-developed
software tools for predicting electron ionization-mass spectrom-
etry (EI-MS), electrospray ionization-tandem mass spectrome-
try (ESI-MS/MS) and NMR spectra, CCS, and RT values using
combinatorial approaches, machine and deep learning methods,
and quantum mechanical techniques. For example, for ESI-MS/
MS spectral prediction, several machine learning methods
including MetFrag,69 CFM-ID,70 MS-FINDER,71 ChemDistil-
ler,72 and MAGMa73 have appeared. CFM-ID, MS-FINDER
and MAGMa in particular have shown excellent performance in
terms of spectral prediction accuracy in multiple independent
tests.74,75 For EI-MS spectra, two machine learning methods
(CFM-ID-EI76 and NEIMS77) have been described and both
perform well. Separately, a quantum mechanical method called
QCEIMS78 has been developed to predict EI-MS spectra and
more recently ESI-MS/MS spectra with QCxMS.79 QCEIMS
and QCxMS are significantly slower than the ML methods, but
they provide useful insights into the EI and ESI fragmentation
processes. We describe advances in predicting NMR spectra,

CCS and RT values, and novel metabolite structures (e.g.,
through biotransformation predictions) in the Supporting
Information.

Placing Confidence in Metabolomics Identifications.
Insufficient knowledge of, or constraints placed upon, which
small molecules might be present in a sample creates unique
challenges when attempting to identify the chemical structure
associated with a feature detected in metabolomics analyses.
Even with the most recent developments in software and
innovative computational methods that can automate steps in
the informatics workflow,80,81 a critical question is the level of
confidence that one has in the identifications proposed. Features
detected in untargeted metabolomics analyses are typically
identified based on the extent to which their experimental data
matches to reference data. In addition to accurate mass
(monoisotopic m/z) data and MS/MS spectra obtained from
a MS measurement, complementary data from additional
analytical measurements (e.g., RT, CCS, NMR spectra, different
ionization modes or chemical derivatizations) improve identi-
fication confidence by limiting the number of potential
compounds that satisfy the given match criteria.47 However,
currently there are very few methods for quantifying the
ambiguity in a metabolite identification in context of the
chemical space being considered, and particularly when
extending beyond just MS/MS spectral match. Accurately
estimating total FDR in compound identifications is still in its
infancy in metabolomics.52,82,83

In 2005, a Metabolomics Standards Workshop84 was
convened by the U.S. National Institutes of Health and the
Metabolomics Society with the goal of establishing a
Metabolomics Standards Initiative (MSI)85 that would consider
and recommend minimum reporting standards for describing
various aspects of metabolomics experiments. The MSI
consisted of five working groups comprised of international
experts in metabolomics research and that developed recom-
mended requirements for biological context, chemical analysis,
data processing, ontology, and data exchange associated with
metabolomics studies. In 2007, the Chemical Analysis Working
Group of the MSI published the seminal paper on the minimum
information for reporting the chemical analysis metadata
associated with a metabolomics study, including a 4-level,
qualitative scheme for reporting metabolite identification
confidence.47 These MSI-levels have been revised to include
additional considerations,48 or other data types,86 and focus on
specific classes of molecules,87 but have remained largely
unchanged. In 2014, Sumner et al.88 and Creek et al.89 proposed
a transition from the existing qualitative metabolite identi-
fication confidence levels to a quantitative scoring system based
on identification points (IP), citing the bias of the traditional
identification confidence levels toward identifications made in
the context of data from authentic reference compounds or the
need for more granularity in the levels, respectively. Most
recently, Alygizakis and colleagues used a machine learning
approach to develop a new IP-based system.90

Reporting qualitative confidence levels in metabolite
identifications is infrequently and inconsistently used by
members of the metabolomics community. This is likely
because assigning confidence scores is still a subjective process
for most data reporters. Recipients of such data reports lack
sufficient information or tools to independently verify
metabolite identifications. Many reports include only chemical
names, but not chemical or structure identifiers like PubChem
Compound Identifiers (PubChem CIDs), Chemical Entities of
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Biological Interest (ChEBI), or International Chemical
Identifiers (InChIs).91 Chemical names can be highly
ambiguous and misleading for data consumers and easily lead
to problems in comparing data across different biological
studies, as recently highlighted by arguments in the lipidomics
literature.92 For scientists who process LC-MS/MS data,
deciding whether a given experimental MS/MS spectrum
matches a reference spectrum is dependent on the metric
used, the threshold set, and many other ambiguous decision
points.52 The current best alternative to confidence levels is to
provide both raw and processed data in public repositories such
as the Metabolomics Workbench41 and MetaboLights44 to
support claims of reported metabolite identifications and to
allow for independent verification.

Expanding from Measures of Confidence to Measures
of Ambiguity. For both qualitative levels of metabolite
identification confidence47,48,86 and quantitative scoring sys-
tems,88,89 the methods are not easily transferable between
analytical platforms (e.g., MS and NMR) and the degree of
ambiguity or uncertainty in identifications is not fully
represented. That is, given a reference library of a certain size
and composition, and an analytical approach of certain
resolution and precision, what is the likelihood of one
identification being more correct than another given the
available evidence? Here, we introduce a concept for moving
from levels of identification confidence or cumulative point
scoring systems to a universal method that assigns a
mathematical probability to a given identification being correct.
Importantly, this concept considers the composition and size of
the reference library used, the numbers and types of measure-

ment dimensions included in the experimental analysis, and each
measurement’s precision. It is also easily automated and the
concept transferable between analytical platforms.

■ INTRODUCTION TO METABOLITE IDENTIFICATION
PROBABILITY

In this section, we introduce the concept of metabolite
identification probability and evaluate its implementation
using a randomly chosen subset of the Human Metabolome
Database (HMDB).34 The subset was classified into a chemical
ontology using the ClassyFire tool,93 and 27,359 compounds
with an invalid chemical classification value (“NA”) were
excluded, resulting in a nonlipids subset and a lipids subset
consisting of 22,077 and 44,537 molecules, respectively
(Supplemental Table S1). For each molecule, the protonated
mass was calculated from the protonated molecular formula,
CCS values were predicted using CCSbase,94 RTs were
predicted using Retip62 under hydrophilic interaction liquid
chromatography (HILIC) conditions for nonlipid molecules or
reversed-phase chromatography conditions for lipid molecules,
and MS/MS spectra were predicted using CFM-ID 4.095 at a
“medium” collision energy level of 20 eV. The nonlipid and lipid
molecule subsets were placed in separate matrices, together with
their protonated mass (m/z), RT, CCS, and MS/MS spectra for
each molecule.

Logic Supporting the Concept. Metabolite identification
probability represents a first step in moving away from assigning
levels of identification confidence or IP-based methods toward a
universal, automated method. Importantly, while methods for
estimating FDRs for nonpeptide small molecules have been

Figure 1. Demonstration of the metabolite identification probability concept using 4-amino-2-methylenebutanoic acid as the target molecule.
Conventional metabolite identification (left panel) is based on manual or semiautomated comparison of experimental data to similar data contained in
reference libraries, with final identification confidence determined by a data analyst. Probability-based identification (right panel) is similarly based on
comparison of experimental and reference library data and is automatable. Identification probability is defined as 1/N, where N is the number of
molecules in the reference library that match an experimentally measured feature within the precision(s) of the given measurement technology or
method and the user-defined tolerances allowed in the measurement precision(s). In the examples shown, the target molecule is 4-amino-2-
methylenebutanoic acid, and the reference library is a subset of HMDB consisting of 22,007 nonlipid molecules. In the top row, identification is based
on a single dimension of analysis, formula match (1). In the middle row, identification is based on the combination of ±5 ppm and ±1%CCSmatching
(2). In the bottom row, identification is based on the combination of ±5 ppm, ± 1% CCS, and ≥850 cosine similarity score match (3).
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explored in the context of MS/MS spectral matching, these have
not been extended to other technologies (e.g., NMR) and data
types (e.g., retention times, CCS values). The identification
probability concept that we introduce here can be applied to any
metabolomics measurement technology or method that relies
on reference libraries (e.g., MS, GC-MS, LC-MS, LC-IMS, LC-
IMS-MS, LC-IMS-MS/MS, NMR, LC-NMR, etc.). Identifica-
tion probability is defined as follows:

NIdentification Probability 1/=

where N is the number of molecules in a reference library that
match an experimentally measured feature within the
precision(s) of the given measurement technology or method
and the user-defined tolerances allowed in the measurement
precision(s)

Higher dimensional analytical approaches or those that
provide measurements of more properties should provide
higher probability in a compound identification due to their
ability to provide higher resolution of chemical space, while
larger reference libraries would make it more difficult to
completely resolve molecules in chemical space due to higher
potential for conflicts.

Let us consider a single dimension or single property analysis
to start. MS when used alone produces mass spectra, and the
spectra will have a given resolution, based on the type of mass
spectrometer used. Fourier transform ion cyclotron resonance
(FTICR)-MS provides the highest mass resolution among
current mass spectrometers used for metabolomics and related
studies and can lead to extremely high accuracy in determining
the exact molecular formulas that correspond to detected
isotope patterns in the mass spectrum. The determined
molecular formulas can then be searched against an appropriate
reference library consisting of known molecular formulas; in our
example, we consider a subset of the Human Metabolome
Database (HMDB)34 consisting of 22,077 nonlipid molecules
for which computationally predicted reference data were
generated (Supplemental Table S1). If one were to perform a
metabolomics experiment and detect a feature with protonated
exact mass equal to 116.07115 Da, then the calculated molecular
formula would be C5H9NO2, which may correspond to the
target molecule 4-amino-2-methylenebutanoic acid. When that

formula is searched against the HMDB library subset, we find
that there are 9 compounds with the same formula; the
probability of the experimentally measured formula C5H9NO2
actually being 4-amino-2-methylenebutanoic acid (or any of the
9 candidates) is thus 1/9 or 11% (Figure 1). Now, let us consider
a multidimensional analysis, such as IMS-MS/MS. From this
analysis, we would determine an IMS drift time or CCS value, a
MS/MS spectrum and an accurate mass. The individual
measurement precisions of any of these dimensions is not
sufficiently high as to allow exact determination of any given
property, and so matching of experimental data to the library
proceeds within ranges or tolerances determined by typical
experimental precision: ± 5 ppm for mass, ± 1% for CCS, and
≥850 for cosine similarity score (for MS/MS spectral
matching). In the example shown in Figure 1 for the target
molecule 4-amino-2-methylenebutanoic acid, the combination
of ±5 ppm and ±1% CCS reduces the candidates in the
reference library to 7, and the identification probability for all
candidates is 1/7 or 14%. For the same example, the
combination of ±5 ppm, ± 1% CCS, and ≥850 cosine similarity
score reduces the candidates in the reference library to 1, and the
identification probability is 1/1 or 100% for the measured
feature corresponding to the target molecule 4-amino-2-
methylenebutanoic acid. A key advantage to higher dimensional
analysis is that the likelihood in complete overlap among
property sets for library entries can decrease as dimensionality of
the analysis is increased.

Impacts of Reference Library Size, Property Match
Tolerances, and Analysis Dimensionality. To evaluate how
library size, property match tolerances, and dimensionality of
analytical analysis might impact metabolite identification
probabilities, we further explored the 22,077 nonlipid molecules
from HMDB, as well as the complementary set of 44,537 lipid
molecules (Supplemental Table S2), from the same source, by
matching each of the two molecule sets and their calculated/
predicted properties to themselves.

Impact of Reference Library Size. To evaluate the impact of
reference library size onmetabolite identification probability, we
performed Monte Carlo simulations to randomly draw smaller
library subsets (e.g., 1,000, 5,000, or 10,000 molecules) from the
full lipids and nonlipids libraries. We evaluated 100 randomly

Figure 2. Impact of reference library size on metabolite identification probability. Monte Carlo simulations were performed to randomly draw subsets
of the full lipids (left panel) and nonlipids (right panel) reference libraries of size 1K, 5K, and 10K. Match probability is shown on the x-axis, and the
proportion of compounds in each data set matched within ±5 ppm and with a given probability is shown on the y-axis. For example, for nonlipids, a
little over 40% of compounds are matched with an identification probability of 100%whenmatching the full library to itself with a mass tolerance of ±5
ppm. Solid lines indicate the mean value, and shaded regions indicate ±1 standard deviation from the mean based on 100 Monte Carlo simulations
(note that no shaded region exists for the full data set, for which random subsets were not drawn).
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drawn subsets for each library size, matched each subset to itself
by mass (±5 ppm), aggregated results, and compared the
number ofmatches returned per database search (Figure 2). Our
results demonstrate that as the size of the library increases, the
relative proportion of matches at a given probability decreases;
thus, smaller reference libraries will tend to yield artificially high
identification probabilities. Comparing lipids vs nonlipids, the
impact of reference library size on identification probability is
more pronounced for libraries with more heterogeneous
content.
Impact of Property Match Tolerances and Dimensionality

of Experimental Analysis. We next evaluated the impacts of
individual property match tolerances and the dimensionality of
the experimental analysis on metabolite identification proba-
bility, selecting a range of property match tolerances as might be
encountered with a variety of instrumentation (e.g., FTICR vs
time-of-flight for mass accuracy). Overall, varying property
match tolerance has different impacts on the number of matches
with 100% probability depending on the property considered.

For instance, the evaluated m/z match thresholds gave rise to
little, if any, change in the proportion of matches with 100%
probability from both the lipids and nonlipids data sets, either
alone or in combination with other properties (Figure 3). We
hypothesize that the low variance in match performance across
m/z tolerances can be attributed to the relative density of
compounds occupying m/z space vs the variability of the error
thresholds in practical terms. For instance, at an m/z of 800 Da
(close to the median m/z for lipids of 821.8 Da), the error
thresholds of ±0.1, 1, and 5 ppm correspond to ±0.00008 Da, ±
0.0008 Da, and ±0.004 Da, respectively. The resolutions may
not differ sufficiently to change the number of matches within
each corresponding tolerance significantly.

In contrast to m/z, CCS search tolerance has a more
pronounced impact on the number of matches with 100%
probability. While searching by CCS alone produces zero or
near-zero matches with 100% probability across both lipids and
nonlipids data sets, when used in combination with other
analytical dimensions, the effect of CCS search tolerance

Figure 3. Impact of property match tolerances and dimensionality of experimental analysis on metabolite identification probability for lipids (left) and
nonlipids (right). Each boxplot summarizes the fraction of each database that is matched with 100% probability (k = 1) when varying the search
tolerances evaluated in each dimension (m/z, CCS, RT, and MS/MS, respectively) as shown. The first set of boxplots in each plot represent results
when only considering the dimension of interest and varying search tolerance within that single dimension, with the subsequent boxplots depicting
results upon inclusion of additional search dimensions but only varying the search tolerance of the first dimension. For each dimension, search
tolerances includem/z± 0.1 ppm, ± 1 ppm, and ±5 ppm; CCS ± 0.1%, ± 1%, and ±3%; RT ± 0.1min, and ±0.5min; andMS/MS cosine score ≥750,
≥ 850, and ≥950.
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becomes much more pronounced. In some cases, we observe a
2-fold or even greater increase in the fraction of the data set
which can be definitively matched, particularly in the case of
lipids (Figure 3). Our simulation data suggests that when used in
conjunction with other measurements, accurate CCS measure-
ments have the potential to increase the number of confident
identifications. However, we note that the highest-accuracy CCS
error threshold evaluated is a CCS error of ±0.1%, which may be
achievable experimentally only using very high-resolution ion
mobility separations, such as structures for lossless ion
manipulations (SLIM).96 Inclusion of CCS in compound
matching at this tighter threshold produced marked improve-
ments in the proportion of matches with 100% probability.

Neither of the two RT thresholds evaluated (±0.1 min and
±0.5 min) produced any matches in the database with 100%
probability using RT alone for the lipids or nonlipids data sets
(data not shown). However, as with CCS, RT combined with
additional measurement dimensions produced more confident
matches (Figure 3). Reducing the RT tolerance from 0.5 to 0.1
min correspondingly increases the proportion of matches with
100% probability. While the observed effect is smaller than the
impact of CCS, the inclusion of RT still substantially improves
matches with 100% probability, especially compared with m/z.

Finally, we evaluated the impact of theMS/MS spectral match
threshold. We chose to use cosine similarity score due to its
ubiquitous use; however, we note that alternative scoring
algorithms, such as spectral entropy,52 have demonstrated
improvements over cosine similarity. Based on the range of
typical scoring thresholds used for MS/MS matching, we
evaluated cosine similarity thresholds of 750, 850, and 950. Our
results show that among both lipids and nonlipids, MS/MS
score alone is the best-performing singular measurement in
terms of matching compounds with 100% probability (Figure
3). In contrast to m/z, however, increasing the MS/MS cosine
score threshold resulted in significant increases to the
proportion of compounds matched with 100% probability in
both the lipids and nonlipids libraries. In fact, when matching by
MS/MS cosine score alone, 63% of nonlipids can be accurately
matched with a cosine similarity score of ≥950, compared to just
24% with a cosine score of 750. As before, the MS/MS
dimension can be combined with other measurement
dimensions to achieve an even greater fraction of compounds
matched with 100% probability; in fact, all the best-performing
multidimensional search parameter sets include MS/MS.

While the example data and metabolite identification
probability analyses discussed above are LC-MS-centric, the
concept is applicable for any workflow that produces metabolite
identifications through matching experimental data to similar
data in reference libraries, such as NMR and GC-MS. Indeed,
many NMR spectral matching algorithms, such as those used in
MagMet,97 Bayesil98 and Chenomx,99 use concepts similar to
the cosine similarity score used in MS/MS. Likewise, GC-MS
uses equivalent concepts as LC-MS/MS for spectral matching.

Guidelines for Appropriate Reference Library Size and
Composition. Both the size and composition of reference
libraries will impact the assessment of metabolite identification
probability. A reference library that is too small can result in
reduced identification error rate and seemingly accurate, and
thus overly confident, identification probabilities. One that is too
large can result in increased identification error rate due to the
addition of compounds that are highly unlikely to be found in
such a sample and reduced identification probabilities.82

Similarly, one should select the appropriate source of

compounds to include in the reference library for a given
sample type and use case. For example, if a study focuses on a
specific organism in a laboratory-controlled setting, then only
those molecules potentially produced or consumed by the
organism, present in growth media, for example, or known as
common contaminants present in the chosen analytical method
should be included in the reference library. That is, to prevent
misidentifications, one should use organism-specific or sample-
specific reference libraries of appropriate size and composition.
By comparison, the proteomics community typically uses an
appropriate protein FASTA file containing the amino acid
sequences of all proteins expected in the organism(s) under
study and that are based on translations of the corresponding
genomes when searching peptide MS/MS spectra. More
detailed guidelines for appropriate reference library size and
composition are discussed in the Supporting Information.

■ CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE IMPLEMENTATION OF METABOLITE
IDENTIFICATION PROBABILITY

In this perspective, we have introduced a new concept of
metabolite identification probability and have demonstrated its
utility in mock identifications using reference libraries
constructed from subsets of HMDB and computationally
generated RT, CCS, m/z, and MS/MS data. The method is
computationally simple, automatable, and transferable among
analytical platforms. It requires only processed metabolomics
data, appropriately defined tolerances allowed in the associated
measurement precisions, and reference libraries that are
comprehensive and appropriate for the system being queried.
We recommend that themetabolomics and related communities
(e.g., the nontarget analysis community) join us in further
exploring the metabolite identification probability approach to
more fully reveal its potential and limitations, using real data
from real studies and in parallel with their current preferred
methods for assessing metabolite identification confidence (e.g.,
MSI levels), in order to accumulate data on method perform-
ance relevant to state-of-the-art. Further extension of these
concepts to unidentified features will be required to fully address
e.g., unknown chemical hazards of the exposome.33,100

Metabolite identification probability is heavily dependent on
the richness of the experimental data being matched to the
reference library, the dimensionality and therefore overall
resolution of the analytical measurement, the overall measure-
ment precision(s), and the composition and size of the reference
library itself. A key requirement for successful implementation of
the metabolite identification probability concept is thus the
availability of comprehensive and system-appropriate reference
libraries. Further research and discussion within the community
are needed to determine the repertoire of metabolites and
related molecules that should comprise a reference library for a
given system, such that metabolite identification probabilities
are neither over- nor underestimated. Related, because of the
limitation of commercial availability of reference compounds for
all system-relevant small molecules, we recommend that the
community begin adopting computational approaches for
calculating or predicting the associated observable properties,
such as spectra, such that reference libraries can be made
complete. The accuracy of computationally predicted data
should improve with time as methods and technology improve.

Finally, in order that reported metabolite identification
probabilities can be transparent, we recommend that individual
laboratories version their in-house reference libraries and make
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them available to the rest of the community as e.g., open mass
spectral libraries (OMSL). Besides increasing transparency in
calculations of identification probabilities, versioned OMSL and
other libraries will be a tremendous resource to the
metabolomics research community, as has already been
demonstrated by resources such as GNPS54 and enabled
through workflows such as FragHub.101 As inspiration for how
such sharing might be implemented, the metabolomics
community can look to the Universal Protein Knowledgebase
(UniProtKB)102 as an example. UniProtKB is a freely accessible
database of curated protein sequences that are used, among
other purposes, as “reference libraries” for proteomics data
searches.
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