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ABSTRACT OF THE DISSERTATION

Efficient Reinforcement Learning with Bayesian Optimization

By

Danyan Ganjali

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2016

Professor Athanasios Sideris, Chair

A probabilistic reinforcement learning algorithm is presented for finding control policies in continuous state

and action spaces without a prior knowledge of the dynamics. The objective of this algorithm is to learn

from minimal amount of interaction with the environment in order to maximize a notion of reward, i.e. a

numerical measure of the quality of the resulting state trajectories. Experience from the interactions are used

to construct a set of probabilistic Gaussian process (GP) models that predict the resulting state trajectories

and the reward from executing a policy on the system. These predictions are used with a technique known

as Bayesian optimization to search for policies that promise higher rewards. As more experience is gathered,

predictions are made with more confidence and the search for better policies relies less on new interactions

with the environment.

The computational demand of a GP makes it eventually impractical to use as the number of observations

from interacting with the environment increase. Moreover, using a single GP to model different regions that

may exhibit disparate behaviors can produce unsatisfactory representations and predictions. One way of

mitigating these issues is by partitioning the observation points into different regions each represented by a

local GP. With the sequential arrival of the observation points from new experiences, it is necessary to have

an adaptive clustering method that can partition the data into an appropriate number of regions. This led

to the development of EM+ algorithm presented in the second part of this work, which is an extension to

the Expectation Maximization (EM) for the Gaussian mixture models, that assumes no prior knowledge of

the number of components.

Lastly, an application of the EM+ algorithm to filtering problems is presented. We propose a filtering

algorithm that combines the advantages of the well-known particle filter and the mixture of Gaussian filter,

while avoiding their issues.

ix



Chapter 1

Introduction

The task of iteratively making decisions over an extended period of time to achieve a certain goal appears in

a wide variety of fields and applications. Dynamic Programming (DP) and Reinforcement Learning (RL) are

families of algorithms that are used to solve such problems. DP requires a pre-defined model (a mathematical

representation that can predict the behavior of the environment) of the system, whereas RL does not. Even

though RL does not require this existing knowledge of the model, it can still construct an approximation

of it based on the experience that it has gained from interacting with the environment. The branch of RL

where this approximated model is not required is called Direct RL, whereas Model-based RL constructs the

explicit model of the environment that can be used in planning [1, 2].

Whether a biological or an artificial agent, the task of learning is achieved by interaction with the environ-

ment. RL is learning from these interactions and planning in order to achieve a certain goal. The common

approach is to define a notion of reward (or cost), a numerical performance index assigned to each state tra-

jectory of the system. The problem then becomes the optimization of this reward function over an extended

period of time. The goal of all the algorithms in DP and RL is essentially the same, to find a policy, a mapping

from the states to actions, that maximizes the future rewards [1, 2]. Figure 1.1 depicts the interaction be-

tween the agent and the environment and the rewards received, which is then used in future decision making.

In RL, two definitions of efficiency are considered, data-efficiency and computational-efficiency. The first is

concerned with how much data from the environment is used for learning; in other words, data-efficiency

requires minimal interaction with the environment. On the other hand, computational-efficiency deals with

how much computation is required to achieve learning. Both Direct and Model-based RL have advantages

1



Figure 1.1: Learning and decision making by interacting with the environment.

known reward/cost 
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Agent

Environment

Action

and disadvantages but in general Direct RL is more computationally-efficient, while Model-based approaches

are more data-efficient, find better trajectories and policies, and handle changing goals more effectively [3].

Figure 1.2 illustrates how these different approaches can be integrated together to get the best of both.

The interaction with the environment from executing a policy provides experience for the learning agent in

the form of the trajectories visited and the rewards obtained. This experience can be used for Direct RL,

or for learning/updating the model of the environment, which in turn can be used to generate simulated

experiences that aid the Direct RL. Since the learned model is based on limited interactions with the system,

it performs better in the areas of the environment with more experience and worse in others; in other words

there is uncertainty in the model, and the learning algorithm should be capable of making decisions based

on this uncertain knowledge about the environment1.

1.1 Defining The Problem

Given a problem with no prior knowledge of the dynamics, the objective is to find a policy that achieves

a pre-defined goal. The discrete-time control problem considered has continuous observable states and

corresponding actions of the form

xt+1 = f(xt,ut) (1.1)

where the state is x ∈ RE and u ∈ RU is the action, and the unknown deterministic2 function f(.) maps
1this is similiar to the Dyna structure introduced in [1, 4], with the difference that the experiences from simulation will not

be treated as if they had come from the real-world
2taking an action ut in a state xt always results in the same state xt+1

2



Figure 1.2: Combining Direct and Model-based RL. This is similar to the Dyna structure in [1, 4].
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the state and the action to the state at the next time step. The policy, which is the mapping of the states

to actions is represented by a non-linear function as,

ut = h(xt,θ) (1.2)

where θ ∈ Rm is a vector of parameters specifying the policy.

The total reward for a finite-horizon time of T steps is defined as

V h(x0) =

T∑
t=0

r(xt,ut) (1.3)

where r(xt,ut) is a known immediate reward function. Since the initial state x0 is fixed and the dynamics

are deterministic, the total reward for a finite horizon T is a function of the policy parameters θ. The

unknown policy function can be represented by a function approximator with θ as its parameters, and the

objective becomes finding a set of parameters such that the total reward is maximized,

θoptimal = argmax
θ

V (θ)

= argmax
θ

T∑
t=0

r(xt, h(xt,θ))

(1.4)

Finding the policy function that maps the states to actions corresponds to feedback control. A special case

is when the policy function in equation(1.2) does not depend on the current state, and is only a function of

3



time, where the objective is to find a set of actions/controls θ = {u1, . . . , uT } that are applied consecutively

at each time step.

1.2 Learning the Dynamical Model

Experience is defined as interacting with the system and gathering data, more specifically the current state

and the resulting next state. Trajectories are the chain of states visited, and interactions with the system

results in different trajectories and more experience. A function approximator can be used to fit this data to

represent the experience via a dynamical model that generalizes the behavior of the system throughout the

entire state space. Generally, function approximators divide into two types, parametric and non-parametric.

Parametric models are defined by a predetermined family of functions that are based on a finite number of

parameters. They can be readily trained but are prone to under-fitting or over-fitting unless special care

is taken. Nonparametric approximators however, are less restrictive and don’t make any assumption about

the nature or numbers of the parameters (not upper bounded) [5]. The drawback of nonparametric approx-

imators is that they can be more computationally expensive to train (depending on the size of the training

data); this will be discussed in detail in the coming sections.

The modeling problem is defined as having a set of N training input data as Z = {z1 . . . zN}, where the

input is zi ∈ RD and the scalar noisy observed output is y = {y1 . . . yN} with yi ∈ R. The mapping from

the input to output is given by a latent function f(z) and an independent additive Gaussian noise as

y = f(z) + ϵ (1.5)

where ϵ ∼ N (0, σ2
n). We are interested in making predictions or approximating the value of the function f(.)

at a test input z∗ based on the observed data.

The dynamical model is expected to perform well only around the trajectories that have already been visited.

The prediction of the dynamical model should therefore have higher uncertainty in unknown regions, and

lower in the areas where experience has already been gathered, which can be achieved by a probabilistic

model that puts a belief on the current model. This belief on the model is updated as new training data be-

comes available. The Gaussian process, a type of Bayesian non-parametric function approximator, is suited

for this purpose. It puts a prior on the possible functions that can represent the current data and which is

then updated with the arrival of new data. The content of the next section is from [6].
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Figure 1.3: Gaussian process [6]. Functions are drawn from the prior in (a) and in (b) the updated posterior
of the functions is shown when measurements become available. The gray region refers to uncertainty.
Measurements do not have any noise in this example.

1.3 Gaussian Process (GP)

A GP is formally defined as "a collection of random variables, any finite number of which have a joint

Gaussian distribution" [6]. A GP is completely defined by its mean and covariance function as

f(z), f(z′) ∼ GP([m(z),m(z′)]⊤,k(z, z′)) (1.6)

where the mean function m(.), is often chosen to be zero for simplicity. According to the GP assumption,

the joint distribution between the outputs of the latent function in equation (1.5) is Gaussian and is given

by

f(z1) . . . f(zN ) ∼ N (0,K(Z,Z)) (1.7)

where the symmetric and positive-semi definite matrix K ∈ RN×N is the covariance matrix of the outputs as

a function of the N input vectors in Z. The (i, j) element of this matrix is given by K(zi, zj)
3, a covariance

function picked beforehand. The covariance function conveys information about the similarities between the

data points and the overall behavior of the function.

The Matérn class of covariance functions is defined as
3the covariance between the outputs is a function of the inputs
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KMatern(z) =
21−ν

Γ(ν)
(
√
2ν||z||)νKν(

√
2ν||z||) (1.8)

where ν>0 is a parameter that controls the smoothness of the prior, and Kν is a modified Bessel function [6,7].

For ν → ∞ and ν = 5
2 , equation (1.8) results in two common choices of covariance functions known as squared

exponential (SE) and Matérn-52 (M52)4 given as

KSE(zp, zq) = α2 exp [−1

2
r2(zp, zq)]

KM52(zp, zq) = α2(1 +
√
5r2(zp, zq) +

5

3
r2(zp,zq)) exp [−

√
5r2(zp, zq)]

r2(zp, zq) =
D∑

d=1

(zp(d)− zq(d))
2/l2d

(1.9)

where l = {l1 . . . lD} is a vector of the length-scales for each of the input dimensions, and α2, the coefficient

term added is the signal variance of the latent function f . While the SE and Matérn covariance functions are

the most commonly used, there are numerous other functions in the machine learning literature that include

non-stationary covariance functions [8–10]. Refer to [6, 11] for an overview on the choice and properties of

the various covariance functions in the literature.

As mentioned earlier the measurement noise is independent and additive so the covariance between the noisy

observations is given by

cov(y) = K(Z,Z) + σ2
nI (1.10)

Similar to equation (1.7), the joint distribution of the observations and a new prediction is Gaussian and is

given by

 y

f∗

 ∼ N (0,

 K(Z,Z) + σ2
nI K(Z, z∗)

K(z∗,Z) K(z∗,z∗)

) (1.11)

where f∗ is the prediction of the latent function at a test input z∗. Using the conditional distribution

property in section A.1, we can arrive at the predictive equation of

f∗|Z,y, z∗ ∼ N (µ(z∗), σ2(z∗)) (1.12)
4Refer to chapter 4 of [6] for more details
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where

µ(z∗) = K(z∗,Z)(K(Z,Z) + σ2
nI)

−1y

σ2(z∗) = K(z∗, z∗)−K(z∗,Z)(K(Z,Z) + σ2
nI)

−1K(Z, z∗)

(1.13)

The equation above is the predictive distribution of the output given the training data. It can be derived

in a similar manner for a set of inputs Z∗ = {z∗
1 . . . z

∗
m}, giving the predictive equations for a set of m test

inputs. In short GP behaves like a function approximator with the difference that instead of returning a

deterministic output, it gives a distribution over the output.

1.3.1 Hyperparameters of the GP

The vector of the length-scales l = {l1 . . . lD}, the signal variance α2, and the noise variance σ2
n are called

the hyperparameters of the GP. Changing these values can alter how the GP behaves. Figure 1.4 shows a

modeling example where the input and the output are both 1-dimensional. The GP approximates the latent

target function (blue) based on the available measurements (black dots). In Figure 1.5, it can be seen that

the length-scale (on the input) can change the expected range of the output. Decreasing the length-scale

means that the output is expected to change within a smaller scale of the input, hence resulting in larger

uncertainties away from the measurements. Figure 1.6 shows the results of changing α2; although it affects

the overall uncertainty of the GP, it can be seen from equation (5.3) that α2 is the variance far away from

the measurements. Increasing the measurement noise, σ2
n, results in less certainty about the measurements

and throughout the entire space (Figure 1.7).
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Figure 1.4: measurements (black dots) taken from a latent function (blue line).

7



−10 −8 −6 −4 −2 0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20

x

l = 5, σ
2
= 10

−6, α
2
= 10

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20

x

l = 3, σ
2
= 10

−6, α
2
= 10

(b)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20

x

l = 2, σ
2
= 10

−6, α
2
= 10

(c)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20

x

l = 1, σ
2
= 10

−6, α
2
= 10

(d)

Figure 1.5: Effect of changing the length-scales in a GP. The blue line is the latent function. The black line
is the predicted mean, and the grey region is the 99.7% confidence region.

Generally there are two common approaches in dealing with the hyperparameters of GPs. The first is the

purely Bayesian approach where priors are placed on the hyperparameters and are then integrated out, and

the second is the empirical Bayes approach where the hyperparameters are found by maximizing the marginal

likelihood [12]. Here the latter approach is discussed.

The marginal likelihood or evidence of the GP is given by

p(y|Z) =

∫
p(y|f ,Z)p(f |Z)df (1.14)

where p(y|f ,Z) = N (f , σ2
nI) is the likelihood and p(f |Z) = N (0,K) is the prior. These are both Gaussians,
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Figure 1.6: Effect of changing the hyperparameter α in a GP. The blue line is the latent function. The black
line is the predicted mean, and the grey region is the 99.7% confidence region.

and because the product of two Gaussians is also a Gaussian, the integral can be easily computed which

gives the following marginal likelihood5,

p(y|Z) = N (0,K + σ2
nI) (1.15)

The log likelihood is therefore:

log p(y|Z) = −1

2
y⊤(K + σ2

nI)
−1y − 1

2
log |K + σ2

nI| −
n

2
log 2π (1.16)

The function above is maximized with respect to the hyperparameters, typically by a conjugate gradient-
5this can also be observed directly by writing the distribution of y from equation (1.5)
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Figure 1.7: Effect of changing the hyperparameter σn in a GP. The blue line is the latent function. The
black line is the predicted mean, and the grey region is the 99.7% confidence region.

based optimization technique that results in finding a set of suitable hyperparameters for the model; this

process is called training the GP [6, 12]. Figure 1.8 shows the earlier example of a GP with optimized

hyperparameters.

1.3.2 Issues with GPs

Training the GP as explained above is dominated by the inversion of the matrix (K+σ2
nI), which is required

to be performed at every iteration of the optimization algorithm. This means O(N3) operations per iteration

is required for training, and O(DN2) for prediction in equation (5.3) (N is the number of training pairs and

D is the dimension of the training input). This makes the GP impractical as the size of the data becomes

larger. The simplest way to deal with this is to take a subset of the data or to forget the old trajectories,
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Figure 1.8: Results of optimizing the hyperparameters of the GP used in the example given. The blue line
is the latent function. The black line is the predicted mean, and the grey region is the 99.7% confidence
region.

but by doing this, one might be discarding interesting regions of the state space. There is an extensive part

of the GP literature that deals with this problem and is presented under a unifying view of "sparse" GPs

in [13]. The main idea of these approaches is sparse approximation, which is to approximate the K matrix

by some lower rank M ×M matrix where M << N . The optimization step then typically requires O(NM2)

operations instead of O(N3). This can be achieved by using M points that can be found simply by taking a

subset of the data or as suggested in [14], by using "pseudo-inputs", a collection of M virtual induced points

that can be found along with the hyperparameters by optimizing a modified likelihood function. These

methods consider a global representation of the model, where all the training data is used for prediction.

Although the global sparse representations seem promising for modeling dynamical systems, the issue still

remains that the data is growing as more experience is gained. The number and locations of the pseudo-

inputs may also need to be changed to better represent the new incoming data. An alternative approach

would be to consider local representations. [15] suggests using a set of local GPs assigned to each regions of

the data partitioned by a clustering algorithm. The number of the members of the clusters are kept constant,

and the mean of a prediction at a test input is found by averaging the output of the nearby GPs. This local

representation can be less computationally expensive since the local GPs are smaller in size and are only

re-trained when new members are added. The prediction step also requires less computations since only the

neighboring GPs are used to predict the output of a test input.

In the application considered here, new training points belonging to different regions of the space are dis-

covered incrementally, which means that the clustering algorithm that partitions the training data should

11



be capable of adding new clusters as new regions are discovered. This adaptive process is analogous to a

common issue in clustering problems when the number of clusters are unknown, which by itself is a topic

of extensive research in the literature. The existing approaches and algorithms that attempt to solve this

problem have their shortcomings. In Chapter 4 we present EM+ , a novel algorithm that can be viewed as

an extension to the well-known Expectation Maximization(EM) approach for clustering, that automatically

infers the number of clusters.

1.4 Bayesian Optimization

a

V

Figure 1.9: Bayesian optimization [16]. Three iterations of a 1-D Bayesian optimization is shown here to find
the maximum of the objective function V (θ). The maximum of the acqusition function that is generated
based on the mean and uncertainty of the model of the objective function, tell the algorithm where to sample
next.

Consider the problem defined in equation (1.4), where one would like to optimize an objective function.

The closed-form expression of this function is not available, and only observations can be obtained that are

expensive to evaluate.6 Given such a problem, a class of global, gradient-free approaches called Bayesian
6expense in the control problem defined earlier refers to the amount of interaction with the real-world which is desired to be
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optimization can be utilized [17–21]. Figure 1.9 illustrates three iterations of a "toy" Bayesian optimization

problem; a probabilistic model( i.e. a GP) is put on the observed data and the expected value and the un-

certainty of the objective function at unobserved locations are approximated. Then an acquisition function

based on these values is used to decide where to sample next. A number of acquisition functions that can

be employed will be discussed in the coming sections, but in general they have higher values in promising

regions where improvement over the current highest objective value is more likely. The value of the acquisi-

tion function at a location is evaluated using the mean and uncertainty outputted by the probabilistic model

rather than the objective function and is thus cheaper to evaluate. This conversion to a cheaper function to

optimize, is essentially what the Bayesian optimization aims for. At every iteration the optimization of an

expensive objective function is converted to a cheap optimization of an acquisition function that can be solved

using a global optimization algorithm. The Bayesian optimization approach works well in low-dimensions,

its performance however starts to degrade when the number of parameters to be optimized is above 15-20 [22].

The objective function to be optimized in this work is the total reward, V described in equation (1.3), which

is a function of the policy parameters, θ. A GP is used to construct a probabilistic model between the

set of already-executed policy parameters Θ = {θ1 . . .θn} and their corresponding obtained total rewards

V = {V1 . . . Vn} as

V (θ) ∼ GP(0,K(Θ,Θ)) (1.17)

with the predictive expectation and the variance of a new policy parameter given by equation (5.3). This GP

that maps the policy parameters to rewards will be referred to as the rewards-GP. The Bayesian optimization

uses this GP along with an acquisition function that guides the algorithm to the next promising policy

parameters to execute on the system.

1.4.1 Acquisition Function

The goal of the acquisition function is to guide the optimization process. Its value is high in the regions where

there is potentially a better value, and low where it is unlikely to improve the objective function [16]. The

location that maximizes the acquisition function is used in the next iteration of the Bayesian optimization

algorithm.

The Probability of Improvement (PI) [23] over Vmax, the current maximum of the objective function at θmax,

kept to a minimum.
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is defined as

PI(θ∗) = P (V (θ∗) ≥ Vmax)

= Φ(
µ(θ∗)− Vmax

σ(θ∗)
)

(1.18)

where µ(θ∗) and σ(θ∗) are the predicted mean and standard deviation of V (θ∗) outputted by the GP in

equation (5.3), and Φ is the standard normal cumulative distribution function. This formulation is simply

the area under the curve of the predicted Gaussian distribution of V (θ∗) from Vmax to ∞. Figure 1.10 shows

the PI acquisition function for the case where θ is 1-dimensional.

The consequence of using equation (1.18) is that the points near θmax that have infinitesimally higher ex-

pected values with low uncertainty7 are preferred to locations with high expected values and high uncertainty.

This results in a greedy acquisition function that prefers exploitation over exploration. To prevent this from

happening in the early stages of the algorithm where exploration is preferred, a trade-off parameter ξ ≥ 0 is

added to the current Vmax that results in exploration8 [16, 23]. The formulation of the PI becomes

PI(θ∗) = P (V (θ∗) ≥ Vmax + ξ)

= Φ(
µ(θ∗)− Vmax − ξ

σ(θ∗)
)

(1.19)

The value of ξ is decreased in the later stages of the optimization algorithm to switch from exploration to

exploitation [16,23].

The Upper Confidence Bound (UCB) acquisition function is defined as

UCB(θ∗) = µ(θ∗) + κσ(θ∗) (1.20)

where κ ≥ 0, which much like ξ in PI, is a parameter set by the user that controls the amount of exploration

and exploitation.

Another common acquisition function is derived from maximizing the expected value of the improvement on
7most of the area of the distribution of these locations are concentrated just above Vmax since these Gaussians are very thin
8by doing this the most of the area under these thin Gaussians are not considered, whereas the area under the wide Gaussians

where there is high uncertainty won’t change much
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Figure 1.10: The Probability of Improvement (PI) Acquisition Function. Vmax corresponding to θmax is the
current maximum observation. The PI for a a candidate point θ∗ corresponds to the pink area under the
Gaussian curve from Vmax + ξ to ∞. V (θ∗) is unknown.

the current max, where the improvement function as defined in [20,24] is

I(θ∗) = max{0, Vt+1(θ
∗)− Vmax}. (1.21)

where Vt+1(θ
∗) ∼ N (µ(θ∗), σ2(θ∗)). The new candidate is a point that maximizes the expected value of

improvement, which is the integral given by

E(I) =
∫ I=∞

I=0

I
1√

2πσ2(θ∗)
exp(− (µ(θ∗)− Vmax − I)2

2σ2(θ∗)
)dI (1.22)

which as demonstrated in [20,25] can be calculated analytically as

EI(θ∗) =

 (µ(θ∗)− Vmax)Φ(Z) + σ(θ∗)ϕ(Z) σ(θ∗) > 0

0 σ(θ∗) = 0
(1.23)

where

Z =
µ(θ∗)− Vmax

σ(θ∗)
(1.24)

and ϕ(.) is the standard normal probability density function(PDF).
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1.4.2 Convergence of Bayesian optimization

The EI acquisition function has been shown to converge when the priors on the functions (GP hyperparam-

eters) are fixed [26, 27]. In practice however, the observations arrive sequentially and therefore an existing

set of hyperparameters might not represent the new data well. [25] suggests updating the hyperparameters

based on the observations as they become available. The optimization is carried out in two steps. First the

value of α2 that maximizes the log-likelihood in equation (1.16) (given the other hyperparameters) is found

by solving

∂p(y | Z)

∂α2
= 0

=
1

2
y⊤K−1

y

∂Ky

∂α2
K−1

y y − 1

2
tr(K−1

y

∂Ky

∂α2
)

(1.25)

where Ky = K + σ2
nI. Second, with the obtained value of α2, the other hyperparameters are found by

maximizing equation (1.16) as discussed in section 1.3.1.

For α2 >> σ2
n (or any value of α2 when σ2

n = 0), the closed form expression for α2 can be obtained from

equation (1.25) which gives

α2 =
y⊤R−1y

n
(1.26)

where R is the part of the covariance function in equation (1.9) that doesn’t involve α2 (K = α2R). The

sequential change of the hyperparameters with methods such as the one described above may have an ad-

verse effect on the convergence and can cause the EI to not converge at all. An example of this for a special

case was shown in [28], which was then extended by [27] for a more general setting. [27] addresses this issue

by showing that convergence can still be achieved with the choice of α2 = y⊤R−1y instead of equation (1.26).

The convergence of EI shown in [27] assumes that the measurements are noise-free, which usually is not the

case when dealing with real systems. In practice a small "artificial" noise is added to the diagonal terms of

the covariance matrix even when the measurements are noise-free; this is done to ensure that the covariance

matrix is positive-definite and to avoid badly scaled matrices. The complications of this practice on the

convergence presented in [27] is not clear.

A common issue with the Bayesian optimization approach as illustrated in Figure 1.5 is that the increase of
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the length-scales increases the confidence of the model which results in increasingly more exploitation than

exploration that can cause the search to get stuck in a local optimum. [29] attempts to alleviate this issue

through an algorithm that puts a bound on the length-scales. The upper bound is decreased when the model

becomes too confident, which in turn forces the search to explore more. This will cause the upper bound

to decrease more and more, and approach the lower bound, which is fixed and is initialized by the user at

the beginning of the search. [29] shows the convergence of the EI acquisition function with their algorithm

even when the measurements are noisy. The issue with this approach however is that prolonging the search

of the Bayesian optimization defeats the purpose of using it in the first place and goes against its promise

of minimizing function evaluations. Unfortunately to the best of our knowledge, alternative methods on the

convergence of the EI acquisition function with noisy measurements have not been offered in the literature,

and the question of how best to avoid prolonging the search (possibly infinitely) in order to not get stuck in

local optima, and at the same time assume convergence remains open.

1.5 Related Work

Most of the early work in Direct RL such as TD(λ) [30], Sarsa [31] and Q-learning [32, 33], dealt with dis-

cretized state space and with learning of the Value function, the discounted future rewards of being in a

state and following the current policy, and the Q-function, the discounted future reward from executing an

action in a state, and following the current policy thereafter. This was then extended to continuous state

space by using function approximators that generalize the Value function (or Q-function) for the entire space.

These include the use of sparse-coarse-coded function approximator (CMAC [34]) in [35,36], the neural nets

in [37, 38], the radial basis functions (RBF) in [39] and the Gaussian process in [40]. As mentioned before

these Direct methods of learning require a lot of interaction with the real-world and are not data-efficient,

therefore the focus was shifted to the Model-based methods. In [41], a proposed Model-based learning algo-

rithm used the nonlinear dynamical factor analysis (NDFA) introduced in [42] to represent the dynamical

model. A radial basis function (RBF) was used in [43] to approximate the Value function, with an additional

RBF network used for learning the dynamical model. In [44], a GP was first used to model the dynamical

training data that was obtained by sampling the states-actions and their subsequent states. A second GP

was then used to represent the Value function, and in a very similar fashion to the dynamic programming,

the updating of the Value function, and the search for better policies was done off-line with the use of the

probabilistic model of the dynamics.

One Model-based approach is to use the learned dynamical model to carry out the optimization steps of
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the total rewards in equation (1.4) (with respect to the policy parameters) in simulation. The general steps

of such a simulation-based algorithm is summarized in Table 1.1. PILCO [45, 46] uses this approach that

amongst the Model-based algorithms studied for this work has produced the most efficiency in terms of the

real-world interactions. This is done by learning a probabilistic model of the dynamics of the system by

a GP, and finding a locally optimal set of policy parameters by utilizing a gradient-based optimizer that

evaluates the total expected reward based on simulated runs for T time steps. The new policy parame-

ters are then tried on the real system and if the total reward is close to that of the simulation run, then

the duration of the simulation, T , is increased (since it would suggest that the model is accurate), and

the optimization step is repeated. Such a method does not use the previous policies already executed on

the real system to aid the search for a new policy. Moreover, the uncertainty of the expected total reward

of a policy obtained in the simulation step is not explicitly considered in the decision making of the algorithm.

A Model-based Optimization Algorithm [46]

1: Run initial random policies, gather training data for the dynamical model

2: Train dynamics-GP

3: Find policy by optimizing the rewards function using simulation

4: Execute policy on real-world and observe total reward

5: Optional: increase final horizon time if observed total reward closely

matches the one from simulation

6: Return to 2

Table 1.1: The steps of a Model-based optimizer similar to the work of [46]. The partial derivatives of the
total reward with respect to the policy parameters can be calculated as suggested in [46]

The use of Bayesian optimization to find a control policy was previously presented in [47], where a double-

pendulum was kept in a balanced position by using a control policy consisting of 8 parameters9. Success

was defined as keeping the poles balanced between ±36° and was achieved after 195 evaluations, or episodes

of real-time interactions. Much like other data-inefficient Direct learning algorithms, the dynamical model

is not learned and the real-world trajectories are essentially discarded. The steps of such a simulation-free

algorithm are summarized in Table 1.2.

Our method differs from the above mentioned approaches in that learning is done both with Direct RL from
9The pendulums are already in the up-right position and the goal is to keep them balanced. This is not a difficult problem

to solve and can be achieved by utilizing a linear controller.
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Direct Bayesian Optimization Algorithm [47]

1: Run initial random policies, gather training data for the rewards model

2: Train rewards-GP

3: Find policy by Bayesian optimization

4: Execute policy on real-world and observe rewards

6: Return to 2

Table 1.2: The steps of a Direct Bayesian optimization algorithm as presented in [47].

the model of the rewards function, and with simulations from the probabilistic dynamical model. This is

similar to the Dyna structure mentioned earlier. At the initial stages of the algorithm, learning is primarily

direct, and is then shifted gradually to model-based as the dynamical model is learned better. Throughout

the algorithm, the already-tried policies on the real-system (and simulation), and the corresponding rewards

are stored and used at every policy search in the optimization step, giving a more global view and search for

an optimal solution. Since most of the planning is done from simulations, the real-world interaction is kept

to a minimum.

19



Chapter 2

Proposed Method

As shown in equation (1.4), solving the problem described requires the optimization of the total reward

function, V (θ). To obtain the total reward for a finite-horizon time step, a policy is executed on the system

and the immediate rewards at each state visited are summed together; this will be referred to as a running

a policy on the real-world. The real-world interaction is desired to be kept to a minimum and the goal is

to have an efficient algorithm that can find candidates that maximize V (θ) based on as few real-world tries

as possible. This is where the Bayesian optimization can be utilized as a direct learning algorithm to find

the policy parameters that give the most rewards. As mentioned earlier, [47] implements this approach to

find a policy to keep a double pendulum balanced without learning the dynamics. This approach however

essentially discards the real-world trajectories much like the other direct learning algorithms.

In the proposed method, two probabilistic models are learned based on the interactions with the real-world.

The first model is the rewards-GP (RGP), which as mentioned in section 1.4 maps the policies to the total

rewards. The second model, the dynamics-GP (DGP), is created based on the state trajectories visited

during the real-world interactions, and is used to simulate an estimated state trajectory for a given policy.

Based on this simulated trajectory, an estimate of the total reward is computed. The Bayesian optimization

which is based on the RGP, is used to guide the search for a suitable policy. The suggested policy found

by the Bayesian optimization is executed on the DGP, which will predict the expected total reward and its

uncertainty. This information is used to update the RGP, which as will be shown, results in the reduction of

uncertainty at and around the simulated policy that provide better guidance for the Bayesian optimization

search in that region in the future. The Bayesian optimization step and the update using simulations con-

tinues until a candidate is found that according to both the RGP and the DGP is highly likely to improve
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the current best policy, and only then that candidate policy is applied on the real-world. The trajectory of

states resulting from executing this candidate on the real-world and the obtained total returned reward, are

used to update and re-train the DGP and the RGP. This will decrease the uncertainty of the model of the

dynamics around that trajectory, and also of the model of the rewards around the executed policy, which

result in better decision making in those regions in the future. As more trajectories are visited and more

experience is gained, planning relies increasingly more on simulations using the DGP, which can considerably

reduce the amount of real-world interaction. Before the proposed algorithm is formally presented, its key

components are covered in detail in the following sections.

2.1 Simulation Using the Dynamical Model (DGP)

Simulations are performed by utilizing the learned probabilistic dynamical model based on the training data.

The training data is gathered as input z = (x,u) where x ∈ RE and u ∈ RU are the current state and

current action, and output x′ ∈ RE , which is the next state. As suggested in [44], a GP is used for every

dimension of the state making a total number of E GPs as shown in Figure 2.1. Each of the GPs is trained

based on a training set of N points in the form of Di = {(X,U),X ′(i)}, where i = 1 : E, X ∈ {x1 . . .xN},

U = {u1 . . .uN} and X ′(i) is the ith dimension of the next state.

GP 1

GP E

(x,u) x'GP i

Figure 2.1: Dynamical model. A GP is used for every dimension of the state and are then combined to get
the next state.

The DGP is the collection of these GPs and its predictive output is obtained by putting the outputs of the

E GPs together as

21



x′ ∼ N (


µ1

...

µE

 , diag(σ2
1 . . . σ

2
E)) (2.1)

The GPs are trained after new training data becomes available. The above diagonal predictive covariance

of the dynamical model assumes no correlation between the outputs of each of the GPs, i.e. the state at the

next time step. Such a model that treats outputs as independent does not exploit their possible similarities.

Unfortunately joint prediction of dependent GPs is difficult since defining cross-covariance functions that

result in positive-definite covariance matrices is problematic, and therefore is not considered here. This issue

is discussed in detail in [48] and different ways are suggested for addressing it.

Given a deterministic dynamical model, running the simulation would be simply executing a policy for T

steps and computing the immediate reward at each state visited. But since the dynamical model is proba-

bilistic, there is uncertainty about every visited state during simulation. Two possible ways of performing

simulation with a probabilistic model in order to get the expected rewards and its variance are the following:

the first is to construct/approximate the probability distribution (PDF) of the state at each iteration and

compute the immediate expected reward at each step, and the second is to use a Monte Carlo approximation

method.

Given the initial state and the policy parameters, the distribution of the next state can be computed as the

output of the dynamical model which is Gaussian. Using the work of [49] on the Gaussian process with

uncertain inputs, the Gaussian pdf of this state can be inputted into the GP along with the action (also a

random variable) to give the distribution of the next state. This non-Gaussian output1 is approximated by

a Gaussian distribution using moment matching2 and is used again as the input of the next step

x0 → x1 ∼ N (µ1,Σ1) . . . . . .xT ∼ N (µT ,ΣT ) (2.2)

To avoid the approximation of the distributions as Gaussians at every step, a Monte Carlo method can be

employed. One iteration of the Monte Carlo approximation is to start from the initial state and action, then

draw a sample state from the output of the DGP which is exactly Gaussian. This sampled state, and the

resulting deterministic action, is then passed on to the DGP as an input and the process continues for T

steps. This is done for a number of runs that are used to approximate the expectation and the variance of
1mapping a Gaussian through a non-linear function (in this case a GP) results in a non-Gaussian distribution
2for E > 1 the off-diagonal elements of the covariance matrix can be computed as explained in [46]
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the total reward.

2.1.1 Dealing with Growth of Training Data

As mentioned in Chapter 1, the training data for the DGP continues to grow during the interaction with the

real system. For every real-world interaction, there are an additional T training inputs and output that are

gathered, and if not managed properly, the use of GPs for dynamical modeling becomes infeasible. The goal

here is to have a model that deals with the growing size of the training data by managing the new incoming

data well.

As mentioned in the last chapter, one approach to deal with the growth of the data would be to use local

GPs with a fixed number of members to represent the dynamical model in different regions of the state-

space. An alternative approach to the local GPs taken here is to place an upper limit on the number of data

points of the dynamical model, Nmax. Once this limit is reached, the observations from the state trajectories

that are close to each other are put into different bins by using a clustering algorithm, and the centers of

these bins are used as the training data of a global dynamical model. The clustering algorithm used here

is DP-means from the work in [50], which is explained in detail in section 4.1.3.1. This algorithm is similar

to the K-means, except that a new cluster is created when a point is farther than a distance λ away from

the center of every existing cluster, which means that the maximum radius of every bin is λ. The choice of

λ is problem-dependent and is selected based on the desired resolution on the training points. The topic of

clustering and the limitations of various existing adaptive approaches, such as the computational cost and

the need of prior selection of parameters (e.g. λ in DP-means) is covered in detail in Chapter 4. This inspired

the need of a true adaptive clustering algorithm that is easy and fast to implement, which as mentioned

earlier, led to the development of the EM+ algorithm presented in section 4.2.

2.1.1.1 A Note on Clustering

Figure 2.2 considers a simple clustering problem where the state is x, the horizontal axis, and the output

is y = f(x). Clustering only the x values can be problematic in the region where the slope of the function

is high since the many states closely related on the x-axis pertain to a large range of y values. The same

is true when clustering only the y value in the flat regions of the function. A solution would be to cluster

the x − y values together as shown in the Figure 2.2. When clustering the dynamical data, the data to be
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clustered has the form (x,u,x′), the current state and action, along with the next state.

x x

y y

Figure 2.2: A simple clustering problem. The right graph shows clustering the x-values only, while the left
graph shows clustering x-y values together.

2.2 Rewards-GP (RGP)

In the proposed algorithm, the search for new policies is carried out by the Bayesian optimization, which

uses an acquisition function that is based on the predictions of the RGP. The mapping of policies to rewards

modeled by the RGP is therefore an essential part of the search for better policies. According to [16] the

choice of the covariance function (used by the RGP) is critical in the Bayesian optimization. [51] advises

against using the SE covariance function as it assumes unrealistic smoothness that is not suitable for Bayesian

Optimization. Instead it suggests using the M52 covariance function3 from the Matérn family of functions

explained in section 1.3, which enables the GP to capture sudden changes on the output. To allow more

flexibility in modeling, we use a combination of SE and M52 covariance functions. The hyperparameters of

the RGP are optimized at every step by maximizing the evidence as explained in section 1.3.1.

The choice of the PI and the UCB acquisition functions in the Bayesian optimization both require a selection

of a parameter that promotes exploration at the beginning and exploitation towards the end of the search

(see section 1.4.1). A cooling schedule on this parameter as suggested by [23] can be used, that initially starts

with a high value that promotes global searches, and gradually gets reduced which shifts the search locally

as the algorithm nears its end. Setting this cooling schedule however would require some experimentation

and is problem-dependent. The PI and the UCB acquisition functions are therefore not employed in this

work. Instead the EI acquisition function has been selected, as it automatically combines exploration and
3M52 function looks similar to SE except that instead of having a bell shaped peak, it is thinner on top, which results in

less smoothness
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exploitation, and is the preferred choice in the literature [16,51].

The returned rewards from the real-world provide noiseless observations that are used as training points of

the RGP. The next section explains how simulated runs from section 2.1 are used as uncertain measurements

that are included in the training data set of the RGP.

2.2.1 Combining Predictions of RGP and Uncertain Measurements from Sim-

ulations Using DGP

Given the RGP model with N existing input observations Θ = {θ1 . . .θN}, and output observations V =

{V1, . . . VN} with variance of σ2 = {σ2
1 , . . . σ

2
N}, a prediction for the mean and the variance of a candidate

policy C can be written as

VC,R = K(C,Θ)(K(Θ,Θ) +Σ)−1V

σ2
C,R = K(C,C)−K(C,Θ)(K(Θ,Θ) +Σ)−1K(Θ,C)

(2.3)

where Σ = diag(σ2) (this is the same as equation (5.3) with σ2
1 = . . . = σ2

N = σ2
n). In the above equations

the subscript R means that this prediction has come from the RGP. It was shown in the previous sections

that the simulations done by the DGP can also be used to obtain a prediction of the total reward for the

candidate policy C. This prediction is written as VC,D with variance of σ2
C,D, where the subscript D denotes

that the DGP was used for this prediction. The RGP is updated by adding this uncertain measurement to its

input and output training set, where the input training set become Θ = {θ1 . . .θN ,C}, with the output of

V = {V1, . . . VN , VC,D}, and variance of σ2 = {σ2
1 , . . . σ

2
N , σ2

C,D}. The predictions of this updated RGP will

be now different at the policy C, and also at policies near C. To see exactly how this affects the predictions,

the prediction of the updated RGP at C is written

VC,Rupdated =

[
K(C,Θ) K(C,C)

]
M−1

 V

VC,D



σ2
C,Rupdated

= K(C,C)−
[
K(C,Θ) K(C,C)

]
M−1

[
K(C,Θ) K(C,C)

]⊤
(2.4)

where
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M =


K(Θ,Θ) +Σ K(C,Θ)⊤

K(C,Θ) K(C,C) + σ2
C,D

 (2.5)

By using the matrix block inversion property in equation (A.9) of the section A.1 and some simplification,

the predictive equations above can be rearranged that result the following

VC,Rupdated =

VC,D

σ2
C,D

+ K(C,Θ)(K+Σ)−1V
K(C,C)−K(C,Θ)(K+Σ)−1K(Θ,C)

1
σ2
C,D

+ 1
K(C,C)−K(C,Θ)(K+Σ)−1K(Θ,C)

=

VC,D

σ2
CD

+
VC,R

σ2
C,R

1
σ2
C,D

+ 1
σ2
C,R

(2.6)

σ2
C,Rupdated

=
1

1
σ2
C,D

+ 1
K(C,C)−K(C,Θ)(K+Σ)−1K(Θ,C)

=
1

1
σ2
C,D

+ 1
σ2
C,R

(2.7)

The equations above show the important benefit of updating the RGP with simulations. Including an

uncertain measurement from simulation for a policy C, has the effect that at C, the prediction of the

updated RGP combines the prediction of the original RGP and the simulated measurement as an inverse-

variance weighted sum. The variance of this prediction is less than both σ2
C,D, the variance of the simulated

run, and σ2
C,R, the variance of the original RGP. Since the predictions of the RGP are continuous, the

decrease of uncertainty at C will also mean that the uncertainty of policies near C are reduced. It can also

be seen that the combined prediction of the reward at C puts more weight on the less uncertain prediction,

therefore highly certain measurements in simulated runs act as corrections to the regions of the RGP around

that candidate, effectively reducing the uncertainty. Adversely, no significant change will be made to the

RGP if the measurements from the simulations are highly uncertain.
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2.3 Bayesian Optimization in the Proposed Method

The Bayesian optimization search for policies with higher rewards is performed by the global maximization of

the EI acquisition function. In the Bayesian optimization literature, the DIRECT [52] algorithm, which is a

derivative-free global algorithm that relies on Lipschitzian-based partitioning techniques is a commonly used.

To our experience, this method does not have a clear advantage over other global optimization methods4,

and can often fail where other algorithms succeed. [53] provides a good review and comparison of different

global optimization algorithms5 including the DIRECT method, and the others that are used in this paper.

Unfortunately global optimizers in practice do not guarantee that the solution found is the global optimum

since from a practical point each search can only be done for a number of iterations and a limited time.

Failure in finding a global solution results in the Bayesian optimization suggesting candidates that are less

likely to improve over the best solution, and this may prolong the interaction with the real-world. To reduce

the likelihood of this, two global algorithms are used in series, the first is the DIRECT algorithm, and

the second is the Multi-Level Single-Linkage (MLSL) algorithm [54], which is a multi-start stochastic search

technique that uses a local algorithm to carry out parallel local searches. A common technique in global

optimization is to "polish" the results of the global search by a local search. For this, two local algorithms

are used, the derivative-free COBY LA [55] algorithm, and a derivative based algorithm such a LBFGS6. It

should be noted that global here is referring to a solution within the search bounds of the Bayesian opti-

mization, which are defined by [Lbound, Ubound], where Lbound is the lower bound, and Ubound is the upper

one. As will be seen shortly, during the algorithm, the search regions for a set of parameters can be adjusted

to concentrate the search locally.

Upon the completion of the Bayesian optimization search, a candidate policy is obtained with a corresponding

reward and uncertainty from the RGP. Using the DGP the estimate of the reward is calculated, which can

then be used to update the RGP and obtain the updated estimates of the reward and the variance shown in

equations (2.6) and (2.7)7. The decision to execute this candidate policy on the real-world will be based on

expected improvement percentage (EIP ), which for candidate C is defined as
4Donarl R. Jones has authored both the DIRECT [52] algorithm and one of the most commonly cited papers in Bayesian

optimization [25]
5some that are not free
6the algorithms mentioned here are all included in the NLopt package found at http://ab-

initio.mit.edu/wiki/index.php/NLopt
7predictive equations in (2.4) give the same values as the equations (2.6) and (2.7), although the latter equations are

computationally cheaper and are therefore used in the algortihm
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EIPC =
EI(C, Vmax)

Vmax
(2.8)

where the mean and variance of the updated RGP are used in calculating the EI(C, Vmax), the expected

improvement (EI) in equation (1.23). The EIP is a relative expected improvement over Vmax, the current

best total reward amongst the policies that have been tried on the real-world (not including the simulated

runs). Much like the EI acquisition function values, the EIPC considers both the probability of improvement

and the magnitude of this improvement, where the uncertain regions of the DGP and the RGP with high

expected rewards are encouraged to be explored. If the EIPC value of a candidate is high, it means that

running that candidate on the real-world is likely to improve the current best policy. Regions of the policy

space in which high EIP values are obtained will be referred to as promising regions and the aim is for the

Bayesian optimization to discover these regions. A promising region is declared when the EIPC value of a

policy is higher than a threshold, tolEIP (this threshold can be adaptive). A conservative approach would

be to immediately switch to the real-world once such a policy is found. However, running simulations as

shown earlier can enhance the representation of the RGP, and therefore exploiting the dynamical model by

further search and update could produce better candidates. For this reason the search is continued as long

as the new candidates proposed by the Bayesian optimization search that are simulated produce EIP values

in promising regions. Since the new candidates are always expected to do better than the previous ones, if

the search is to be continued in simulation, the definition of a promising region is redefined by increasing

the current value of tolEIP to the current EIPC . Once a future candidate exists this promising region, the

search is stopped and the last candidate, i.e. the candidate with the highest EIP value, is executed on the

real-world.

The decision making becomes particularly more challenging when candidates with high EIP values are not

found. This can be the result of selecting a tolEIP value that is too high, which means that it is necessary to

have a cooling schedule on tolEIP if candidates offered by the Bayesian optimization step consistently have

EIPC values that are lower than tolEIP . The other scenario that this happens is when predictions using

the current representation of the RGP have little magnitudes of improvement, that results in the search

moving away from the observations into highly uncertain regions where the uncertainty and the predicted

mean flatten out due to the properties of GPs. It is possible for the uncertainty of these regions to be

reduced by better predictions from simulated runs as described above, but if the dynamical model is also

non-informative, the search will become stranded in uncertain regions with low magnitude of improvement8.
8DGP also flattens away from observations
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It should be stressed however, that this does not mean that better results do not exist around current obser-

vations. Instead, it reflects that the current representation of the RGP is possibly unable to predict them9.

This especially happens when the number of parameters of the policy are high, which can makes it difficult

to construct a good representation of the mapping of policy parameters to the rewards with the RGP. To

prevent the search to continuously being carried out in highly uncertain regions, the scope of the search is

reduced to concentrate the search around policies that are known to produce high rewards. In this case if

the RGP fails to give good predictions, the DGP can come to the rescue and reduce the uncertainties. In

scenarios where simulated runs also have high uncertainty but show a high value in the magnitude of the

likely improvement, the use of the EIP encourages exploration by visiting the corresponding regions.

Based on the above if low EIP values are obtained repeatedly for imax number of iterations (e.g. imax = 5

), the definition of a promising region is changed by reducing the value of tolEIP (e.g. tolEIP = 1
2 tolEIP ),

and the bounds on the search in the global optimization of the acquisition function are reduced to focus

the search around θbest, our current best policy with the highest reward that has been executed on the

real-world. For this we define a variable scope, where scope = 1 corresponds to the maximum search scope

on the allowable search region of [Lbounds, Ubounds], where Ubounds is the upper bound, and Lbounds is the

lower bound. The scope of the search is changed by reducing the value of scope (e.g. scope = 1
2scope), and

the new search region will be set to the region of [Lsearch, Usearch] obtained by

Usearch = min(Ubounds,θbest + scope× |Ubounds|)

Lsearch = max(Lbounds,θbest − scope× |Lbounds|)
(2.9)

Figure 2.3 shows an example of reducing the scope of the search.

As a consequence of the above, convergence10 in the algorithm is reached under two conditions. The first is

when the candidates from the Bayesian optimization are highly unlikely to improve the best results so far,

i.e. they have very low EIP values, and the second is when the scope of the search has been reduced to a

point that the relative change between the suggested policies approach zero. This relative change is defined

as
9this has to do with the values of the hyperparameters.

10By convergence here we mean that the algorithm stops improving, this could happen before finding a successful solution
that sets success = 1.
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∆θrelative =
Ubounds − Lbounds

θbest
(2.10)
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(a) full search scope
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(b) reduced search scope

Figure 2.3: Example of search scope for candidate consisting of 20 actions/parameters. The bounds on the
parameters are [−10, 10]. The red line shows the current best policy that was implemented on the real-world,
and the grey area shows the scope of the search where for (a) is set to the original limits at [-10,10], and for
(b) it is recuded by half around the the current best candidate (red line).

2.4 Steps of The Proposed Algorithm

We now present the steps of the proposed algorithm. These steps are summarized in Table 2.1. Success is a

problem-dependent notion that is defined when the objective of the control algorithm has been met, e.g. the

final state of the trajectory is within a tolerance of the pre-defined goal state; this condition is represented

by a boolean value named success which is originally set to zero. convergence is another boolean variable

that is originally set to zero, and is changed to 1 when convergence as described earlier is reached. To begin

the algorithm, a number of random policies are generated and executed on the real-world with the purpose

of gathering the initial data for the DGP and the RGP, which are then trained by maximizing the evidence

as described in section 1.3.1. Following the guidelines explained in the previous section that are outlined in

the next section and in Table 2.2, the algorithm then looks for a new candidate to be tried on the real-world

using the Bayesian optimization with the help of simulations. Once a suitable candidate is found, it is

executed on the real-world. This will result in a set of new experiences that include new state trajectories,

and a new noiseless total reward, which are used as observations of the DGP and the RGP respectively. By

updating and re-training the DGP and the RGP, future decisions are made with more confidence. Previous

policies in the RGP that were updated by the DGP can now be simulated again since a better representation
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of the DGP is available. The estimate of the expected reward and its variance of a candidate obtained by

old simulation are combined with estimates from the new simulation run using the inverse-variance weighted

sum equations in equations (A.14) and (A.15). The combined simulated estimates for a given policy will

have less uncertainty than both the old and new simulated runs and result in better decision making. A

search for a candidate is then carried out again, and the process is continued until either the success or the

convergence is met. Figure 2.4 demonstrates the way different components of the algorithm are connected.

Proposed Algorithm

1: initialize random policies and execute them on real world to gather initial

data for DGP and RGP , set convergence and success to 0

2: while (convergence == 0) && (success == 0)

3: find a new candidate (see Table 2.2 and section 2.4.1 )

4: execute policy on real-world, gather data for DGP and RGP

5: train DGP and RGP

6: re-run and update previous simulations (if any) from step 3

using the updated DGP

7: end

Table 2.1: The steps of the proposed algorithm.

Real-world run 
for T-steps 

Rewards-GP

Dynamics-GP

Simulate ahead for 
T-steps

real-world simulation

Reward 
Experience

Dynamical 
Experience

Switch 
to Real-World

Policy

Yes

No

Bayesian 
Optimization

Uncertain 
Reward Experience

Figure 2.4: The proposed algorithm. Learning can be performed by direct interaction with the real-world
and also by learning the dynamical model and planning with the help of simulations.
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2.4.1 Finding a New Candidate

This section outlines the steps of finding a new candidate to be tried on the real-world by using the Bayesian

optimization search with the help of simulation as discussed in section 2.3. Finding a new candidate consists

of a loop that performs a Bayesian optimization search, runs this candidate in simulation, then decides if the

candidate should be tried on the real-world. Here simulation is used as the means of predicting the outcome

of running the candidate on the real-world, and therefore facilitating the decision making step by updating

the measure of how likely it is that this candidate will improve the rewards of θbest, our current best policy.

In Table 2.2, part A, B and C list the steps of finding a candidate. In part A, a number of parameters

discussed earlier are initialized that include tolEIP (e.g. tolEIP = 0.1) , promising = 0, imax (e.g. imax = 5),

and scope = 1. tolEIP is a parameter that defines the promising regions, i.e. if EIP value of a candidate in

equation (2.8) is greater than tolEIP , the value of promising is set to 1. imax is the maximum number of

failed attempts of finding a candidate in a promising region, which signals the need for re-defining the search

scope by reducing scope. In part B, first a Bayesian optimization search is performed that offers a candidate

policy. After running this candidate policy in simulation and updating the RGP, the corresponding EIP

value is calculated. In part C, the EIP value is used to make decisions. As mentioned earlier, If this value is

greater than tolEIP a promising region has been found, promising is set to 1, the value of tolEIP is increased

to the current EIP value, and the search for a candidate is continued in simulation. This is continued until

the candidate found exits the promising region, i.e. its EIP drops below the current tolEIP value. The last

candidate that has the highest EIP value is selected and is executed on the real-world. If the EIP values

of candidates offered by the Bayesian optimization are less than tolEIP for imax number of times, the scope

of the search is changed by reducing the value of scope (e.g. scope = 1
2scope), and the new search region is

reduced according to equation (2.9). This is followed by changing the definition of a promising region, which

is done by reducing the value of tolEIP (e.g. tolEIP = 1
2 tolEIP ). This is continued until either a promising

region is found, or convergence is met.

2.5 Reward Function

In classical RL it is common to assign a negative or no reward to the states everywhere except at the states

at the target. In such a setting where the target location is unknown to the agent, the search is random

until the target is visited for the first time. It is only then that the algorithm can improve upon the future

rewards. Although this works for easier problems, it is highly data-inefficient. The method used here is to
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Finding a Candidate

A. Initialization:

1: initialize tolEIP , the min value of EIP that correspond to promising region (e.g. 0.1 which is 10%

improvement over the current max)

2: set promising = 0 (not in promising region initially)

3: set imax (e.g. imax = 5), max # of failed searches that don’t result in promising regions

4: set scope = 1, search bounds are initially at the limit, i.e. [Lbounds, Ubounds]

B. Bayesian optimization Search and Update (section 2.3)

1: perform Bayesian optimization, find candidate policy C with corresponding {VC,R, σ
2
C,R}

2: perform simulation (using DGP) with C, get {VC,D, σ2
C,D}

3: update RGP simulation, get {VC , σ
2
C} (equations in (2.4), or equations (2.6) and (2.7))

4: get EIPC with {VC , σ
2
C} (equation (2.8))

5: re-train RGP

C. Decision Making

1: if EIPC > tolEIP

2: promising region is found, set promising = 1 if not set already

3: increase tolEIP to EIPC

4: keep searching by going back to B

5: if EIPC < tolEIP && promising == 1

6: search leaving promising region, Exit, apply last candidate on real-world (line 4 in Table 2.1)

7: if EIPC < tolEIP && promising == 0

8: still in search of promising region, see how many times this has happened

9: if i < imax

10: i++

11: elseif i >= imax

12: if tolEIP → 0 && ∆θrelative → 0 (within a threshold, e.g. 1e-6)

13: set convergence = 1, Exit the algorithm.

14: reset i = 0

15: decrease scope of the search by decreasing scope (e.g. 1
2
scope)

16: decrease tolEIP (e.g. tolEIP = 1
2
tolEIP )

17: continue looking for promising region by going back to B

Table 2.2: The steps of a search for a candidate.



construct the reward function as a mixture of M unnormalized Gaussians centered at a known target state

as

r(x) =
M∑
i=1

aiNun(x | xtarget,Σi) (2.11)

where the diagonal matrix Σ is chosen by the user. The diagonal terms of Σ are the variances around the

target for each state and are chosen to be small numbers such that states far away from the targets receive

almost no rewards. This essentially only gives high rewards to points that are close to the target.

2.6 Policy Approximator

As given in equation (1.2), a non-linear policy function maps the states to actions given some policy param-

eters. A GP named policy-GP was chosen to represent this function. Similar to [46], np artificial support

points are chosen as the training input and output data, which along with the hyperparameters of the policy-

GP (chosen by user), govern the behavior of the output. The support input states are Xp = {x1 . . .xnp},

where each element in xp is in [−1, 1], and the corresponding support output actions are Up = {u1 . . . unp},

where −1 < up < 1. The parameters of the policy-GP are then

θ = {Xp,Up} (2.12)

and a set of hyperparameters of the policy-GP chosen by the user. For a given state, the deterministic

feedback policy is

u(xnormalized) = K(xnormalized,Xp)(K(Xp,Xp) + σ2Inp)
−1Up (2.13)

where K is the SE covariance function, and xnormalized is the result of the normalization of the input state

x by its bounds. For problems that define the permissible region of action between the value of [umin, umax],

the output of the policy-GP is passed though a sigmoid function as

uout =
umax − umin

1 + exp (−b uin)
+ umin (2.14)

where uin is the output of the policy-GP, and b > 0 is a parameter to be chosen. With the support output

points always being in the region of [−1, 1], the value of b is chosen to be 0.4, which in a case of umin = −10

and umax = 10 produces uout in Figure 2.5. During the Bayesian optimization step, a set of policy parameters

are found by moving the support input and output points around in a way that the actions, or the outputs

34



of the policy-GP, maximize the total reward over a finite horizon time.
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Figure 2.5: Sigmoid function
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Chapter 3

Numerical Results

To evaluate the performance of the proposed algorithm two widely known problems, namely the mountain

car problem and the inverted pendulum problem, are considered. The real-world is replaced by a numerical

ordinary differential equation (ODE) integration1 that use the equations of motions listed in section A.3;

although this is often called simulation, we continue to use the term "real-world" to refer to using the ODEs,

and use the term "simulation" only for predicting ahead with the use of the DGP as described in section 2.1.

The following two sections briefly describe each of the two problems and their variations found in the liter-

ature. The proposed algorithm is then used in two different approaches to solve these problems. The first

approach is to find a set of actions, θ = {u1 . . . uT }, that are applied one after the next that would bring

the final state to the target. In the second approach, we find the parameters of a feedback control policy

θ = {Xp,Up} (the hyperparameters are selected in advance and are listed shortly) that are used with the

policy approximator in section 2.6 to find a set of actions applied at each time step to reach the target state.

In both approaches, zero-order-hold control is used, where each discrete-time action is applied continuously

to the system for a known time interval of td seconds. The upper bound on the training size of the DGP

for both cases in set to 500 points, and the λ parameter used in the DP-means algorithm for clustering the

dynamical data (if larger than 500) into different bins is set to 0.1.

The one-step reward function used in solving the two problems is chosen as a mixture of 20 unnormalized

multivariate Gaussians centered at the target in the form of
1The Runge-Kutta method is used. This corresponds to ODE45 function in Matlab
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r(xt) =
20∑
i=1

aiNun(xt | xtarget,Σi) (3.1)

where the ith weight is ai =

i∑
j=1

j, and the covariance matrix Σi = σ2
i I is diagonal, where σ2

1 . . . σ
2
20 are

placed logarithmically between 0.6 and 0.02. Unlike a single Gaussian function (or a similar looking function

such as the t-distribution), the produced function has both a wide tail and a sharp peak at the center, which

gives little reward to states that are far away from the target, and progressively increase the reward as the

states near the target. Using this function results in increasingly higher values of EIP for policies that

produce trajectories that are near the target, hence encouraging the Bayesian optimization to choose these

policies. The one-step reward function in a single dimension with the target at zero is shown in Figure 3.1.
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Figure 3.1: The one-step reward function in equation (3.1) in a single dimension.

3.1 Mountain Car Problem

The mountain car is a well-known problem in machine learning and its earliest form was used in [56]. As

demonstrated in Figure 3.2 a car is positioned between a valley and the goal is to bring the car to the top of
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Figure 3.2: The mountain car problem

the hill. The car does not have enough power by itself to simply drive up the hill (constrained action space)

and it has to swing back and forth to create enough momentum to come up the valley. There are different

variations of this problem in the literature, some with bang-bang control, and others with discrete action

and state [1]. Here we consider continuous action and state space. In the literature success is often defined

as simply getting the car over the hill at any velocity, although here we adopt a more difficult version of the

problem similar to the work in [44], where the goal is to park the car on the hill. Since the car does not have

a hand-brake, keeping the car parked at the target requires applying actions continuously. The two states

are x = (x, ẋ), the action is bounded by u = [−4, 4], and the velocity is bounded by ẋ = [−2m
s , 2

m
s ] . The

equations of the motion of the mountain car problem are given in section A.3. The car is initially at the

bottom of the hill at (x, ẋ) = (−0.5, 0), and the target state is chosen to be at (x, ẋ) = (1, 0). We define the

target region as .95 < x < 1.05 and |ẋ| < 0.05.

The early tabular RL algorithms that were applied to this problem were mostly interested in bringing the

car over the hill, with discretized states and actions. These model-free approaches were extremely data

inefficient. [38] reports the performance of the tabular Q-learning [32] that took 300,000 iteration, each

iteration taking a maximum number of 300 steps, with each step of 0.05 seconds. The direct RL algorithms

with the use of function approximators were generally more data-efficient on this problem; [38] employed an

algorithm named Neural Fitted Q Iteration that used a Neural network to approximate the Q-function, i.e.

the mapping of state-actions to future rewards, and was able to find a policy that brings the car over the top

of the hill (no parking) after 139 seconds of interactions. This and other similar direct RL methods often

assume that it is possible to start a real-world execution at any random initial state, making it more likely
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that states near the target are visited. In [44], a GP was used to represent a value function, i.e. mapping of

states to future rewards, with the objective of parking the car between 0.5 ≤ x ≤ 0.7, with −0.1 ≤ ẋ ≤ 0.1.

It was assumed that the state-action space and the subsequent states could be sampled uniformly before the

algorithm began, and a total of 50 states-actions samples, and their subsequent states after applying each

action for 0.3 seconds were used to represent the dynamical model by a GP. The learning could then be

done in a very similar fashion to the dynamic programming that would provide the algorithm with a prior

probabilistic knowledge of the dynamics. Part of the challenge in learning however, is discovering interesting

regions of the dynamical state-space near the target when policies that take the states there are not available.

Here we assume no prior knowledge of the dynamics, and that sampling the dynamical state-space is not

possible and experience is only gathered by running available policies. In the next two sections, we present

two different ways of solving the mountain car problem starting from the initial state of x = (−0.5, 0).

3.1.1 Finding A Set of Controls for The Mountain Car Problem

Here we find a set of action/controls θ = {u1 . . . uT } that bring the car in the target region in T steps. The

number of steps here are selected based on the suggestion of [22], which states that the performance of the

Bayesian optimization technique degrades when the number of parameters is above 15-20. We therefore pick

T = 20 steps. In order to to bring the car to the top of the mountain in only 20 steps, and still have the

ability to end in the target region, the time-steps td at which the zero-order-hold controls are applied are

chosen to be longer at the beginning of the finite horizon time, and to decrease logarithmically towards the

end. This gives the ability of applying more control as the trajectory nears the target towards the end of

a finite horizon time. For the mountain car problem, the time steps are chosen to decrease logarithmically

from td = 0.2 to td = 0.1 in 20 steps2 that correspond to a total of 2.8876 seconds of real-world execution

time. The change in the time-steps as explained above means that for a given state-action pair, different time

steps produce different subsequent states. The time-steps corresponding to state-action pairs are therefore

included as observations of the DGP, which means that one training sets for the DGP ( see section 2.1) is

in the form of {(x, u, td),x′}.

It is also desired that the last state of the produced trajectory is the closest to the target. This can

be incorporated in the reward function by progressively giving more weights to the rewards of the states

towards the end of the trajectory in the form of
2 This is equal to logspace(-.699, -1, 20) in Matlab
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rtotal(x1:T ) =
1

T∑
t=1

exp(0.5t)

T∑
t=1

exp(0.5t)r(xt) (3.2)

where r is a one-step reward function given in equation (3.1).

To start the algorithm, five random real-world executions are performed, where the actions are drawn ran-

domly from u = [−4, 4]. In Figure 3.3 to Figure 3.5, the results of 6 sample runs of the algorithm are given

that show the progression of the total rewards at each real-world execution, along with the best set of actions

found and the resulting state trajectory from the initial state to the target region. Each run is terminated

when the final state reaches the target region. To get the momentum to go up the hill, the car first swings

to the right in some of the runs, and in others to the left first. The end state of each run is given in Table 3.1.

Table 3.1: The final states for 6 different runs of the algorithm on the mountain car problem in Figure 3.3
to Figure 3.5

Run Position Velocity

Run 1 0.9623 0.0371

Run 2 0.9695 0.0439

Run 3 0.9714 0.0461

Run 4 1.0281 -0.0363

Run 5 0.9563 0.0057

Run 6 0.9591 0.0400
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(e) Run 1 actions at each step
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Figure 3.3: Total observed rewards of the execution of candidates on the real-world (top), the best set of
actions found (bottom) and the produces trajectories from the best set of actions (middle) in run 1 and 2.
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(d) Run 4 state trajectories
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(e) Run 3 actions at each step
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(f) Run 4 actions at each step

Figure 3.4: Total observed rewards of the execution of candidates on the real-world (top), the best set of
actions found (bottom) and the produces trajectories from the best set of actions (middle) in run 3 and 4.
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(c) Run 5 state trajectories
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(d) Run 6 state trajectories
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(e) Run 5 actions at each step
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Figure 3.5: Total observed rewards of the execution of candidates on the real-world (top), the best set of
actions found (bottom) and the produces trajectories from the best set of actions (middle) in run 5 and 6.



The proposed algorithm consistently finds a set of controls that bring the car into the target region. Fig-

ure 3.6 show the number of iterations and the real-world interaction time in seconds that is required for 10

different runs/trials (the first 6 correspond to Figure 3.3 to Figure 3.5) to reach the target after the initial 5

random iterations. It takes an average of 35 iterations for the proposed algorithm to find a solution. As men-

tioned before, each real-world execution amounts to 2.8876 seconds, which means that on average about 101

seconds is needed to find a successful set of actions to park the car in the target region near the x = 1 position.
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Figure 3.6: The number of iterations and time in seconds that it takes the proposed algorithm to find a set
of controls for the mountain car problem in 10 different runs.

In the proposed method, the expected improvements of the candidates that are offered by the Bayesian

optimization step are updated by simulation runs, that result in the execution of only the candidates that

are highly likely to improve on the current maximum reward. This greatly reduces the number of candidate

executions on the real-world. Figure 3.7 demonstrates this reduction by showing the reward of all the 280

candidates offered by the Bayesian optimization (blue lines) in run 1 of Figure 3.3. Amongst these candi-

dates, only the 33 red dots (not counting the first random 5) were tried on the real-world until the target

was reached (the red dots correspond to Figure 3.3 (a)). Based on all the 10 runs, the proposed method
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reduces the amount of real-world interaction on average by a factor of about 9 times.
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Figure 3.7: The observed rewards of the 33 candidates tried on the real-world (red dots), and the real-world
rewards that would have been observed if all the 280 candidates that were tried in simulation were executed
on the real-world (blue lines) for the mountain car problem. This plot corresponds to run 1 in Figure 3.3.

3.1.2 Finding a Feedback Policy for The Mountain Car Problem

In the second approach, a feedback policy that maps the states to the actions is found. A feedback policy

generally requires more parameters than the limit of the Bayesian optimization as suggested by [22] (20

parameters), and is used here to test the performance of the proposed algorithm when the dimension of

the parameters is increased. Using the policy-GP in section 2.6, the objective is to find a set of parame-

ters θ = {Xp,Up}, where Xp = {xp1, . . . ,xpnp} and U = {up1, . . . , upnp} are np pairs of support inputs

and outputs, that bring the car in the target region. The hyperparameters of the policy-GP are picked in

advance and consist of the length-scales, which are all taken to be 1, small number for noise σ2 = 1−6 to

ensure the covariance matrix of the policy-GP is positive-definite, and the signal variance3 α2 = 1. To solve

the mountain car problem, we pick 25 support points, i.e. np = 25, which means that θ comprises of 75

parameters. As stated in section 2.6, the support input points in Xp, and the support output points in Up

are between [−1, 1]. The input states to the policy-GP are therefore normalized to fall within this range,

this is done by dividing the velocities by the velocity by 2 since ẋ ∈ [−2, 2]. Although no bounds are placed
3notice that the choice of the signal variance α2 doesn’t effect the mean of policy-GP
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on the position, it is reasonable to assume that control is desired only in the region of x ∈ [−1.5, 1.5] since

the target is at x = 1, so the positions of the input states to the policy-GP are divided by 1.5.

Using the feedback policy, the goal is to bring the car into the target region and to keep it there for an

extended finite-horizon time. A successful policy is therefore defined as one that during the learning phase

brings the car into the target region in T1 steps, and is then able to maintain it there for an additional

number of steps T2. Keeping the car in the target region for as long as possible suggests giving equal weights

for the reward at each step. The total reward function is defined as

rtotal(x1:T1) =
1

T1

T1∑
t=1

r(xt) (3.3)

where x = (x, ẋ). Furthermore the time step td is fixed to 0.05 seconds, to allow the same policy found

for T1 steps to be applied for an additional T2 steps. For the mountain car problem, T1 is set to 100 steps,

which is equal to 5 seconds of interactions for each real-world execution. T2 is set to 60, which means that

successful policies should hold the car in the target region for an additional 3 seconds.

Figure 3.8 to Figure 3.10 show the results of 6 sample runs of finding a feedback control policy, where the

first 5 policy are generated randomly. The action and trajectory plots are shown for T1 + T2 = 8 seconds

that demonstrate the success of each policy. Similar to the previous approach, the car gets the momentum

it needs for going up the hill by swinging either to the left or right first. Since the car does not have a

hand-brake, and position x = 1 is at a slope, a constant action of about 0.6 to 0.7 (depending on exactly

where the car is held) needs to be applied to maintain the car in the target region.

Despite the increase of the number of parameters from 20 to 75 in this approach, the proposed algorithm

can consistently find a successful policy to bring and hold the car in the target region. Figure 3.11 shows the

number of iterations and the time that it took for the algorithm to find successful policies for 10 different

runs (the first 6 are of the plots above). On average it takes about 17 iterations or real-world tries (not

counting the first random 5) to find a successful policy, which amounts to 85 seconds of interactions.

Figure 3.12 showcases the benefit of using simulations, where the blue line is the total rewards for all the

431 candidates offered by the Bayesian optimization step in run 1 of Figure 3.8, which the majority of are

carried out in simulation. Excluding the first random 5 policies, only 13 of the candidates shown by red

dots were executed on the real-world (the red dots correspond to Figure 3.8 (a) ). Based on all the runs,
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time = 0 1s 2s 3s 4s 5s 6s 7s 8s
-5

-4

-3

-2

-1

0

1

2

3

4

5

Actions

step = 1 20 40 60 80 100 120 140 160

(f) Run 2 actions at each step

Figure 3.8: Total observed rewards of the execution of candidates on the real-world (top), the actions
produced by the best policy for 8 seconds (bottom) and the resulting trajectories for the best policy (middle)
in run 1 and 2 of finding a feedback policy for the mountain car problem.
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Figure 3.9: Total observed rewards of the execution of candidates on the real-world (top), the actions
produced by the best policy for 8 seconds (bottom) and the resulting trajectories for the best policy (middle)
in run 3 and 4 of finding a feedback policy for the mountain car problem.
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Figure 3.10: Total observed rewards of the execution of candidates on the real-world (top), the actions
produced by the best policy for 8 seconds (bottom) and the resulting trajectories for the best policy (middle)
in run 5 and 6 of finding a feedback policy for the mountain car problem.
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Figure 3.11: The number of iterations and time in seconds that it takes the proposed algorithm to find a
feedback policy for the mountain car problem.



the average ratio of candidates tried on simulation to candidates executed on the real-world was about 18 to

1, which means the interaction with the real-world is reduced by a factor of about 18 when a model of the

dynamics is learnt. This factor is twice as much as in the last approach, where a set of actions were found.

This is because here each real-time execution gathers 100 training points for the DGP as opposed to 20, and

furthermore they all have the same time step of td = 0.05 seconds. In other words, the training points of the

dynamical model is not only larger, but each point can be used to predict the next state at any step of the

simulation. This gives the ability to carry out more simulations when compared to before, and subsequently

it takes less time to learn the task.
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Figure 3.12: The observed rewards of the 13 candidates tried on the real-world (red dots), and the real-world
rewards that would have been observed if all the 431 candidates that were tried in simulation were executed
on the real-world (blue lines) for the mountain car problem. This plot corresponds to run 1 in Figure 3.8.
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3.2 Inverted Pendulum

Figure 3.13: The inverted pendulum setup.

The inverted pendulum is another benchmark problem that is often used in reinforcement learning. Fig-

ure 3.13 shows the setup of this problem, where a pendulum is attached to a cart and the goal is to swing

up and balance the pendulum. There is no actuator attached to the pendulum, therefore the cart has to

be moved back and forth in order to swing up and keep the pendulum balanced. Some variations of the

problem in the literature start with the pendulum already in the upright position, and others try to swing

up the pendulum and keep it balanced, with the latter being a much harder problem. The task considered

here is to swing up the pendulum from rest and to keep it balanced, with the velocity of the cart and the

angular velocity of the pole approaching zero. The control is in the region of u = [−10, 10], and the states are

x =
(
x, ẋ, θ̇, sin (θ), cos (θ)

)
, where the last two states define the angle of the pendulum and the quadrant

in which it is in. This avoids issues that arise from only having θ as a state. If θ is used and no bounds are

placed on it, different training states that are essentially the same (e.g. θ = π
4 and θ = 2π + π

4 ) can create

different training points for the dynamical model that are seen to be far apart from each other. This results

in the DGP failing to detect two neighboring states if their pendulum angles are separated by 2π±ϵ, where ϵ

is a small angle. On the other hand, defining θ to be in the region of [−π, π] (or [0, 2π]) creates discontinuity

which still suffers from the same issue (e.g. θ = −π − ϵ and θ = π + ϵ are two similar orientations of the

pendulum, but are far apart from each other numerically). By defining the angle of the pendulum by two

states of sin (θ) and cos(θ), these issues are eliminated. The equations of motion of the inverted pendulum

problem is given in section A.3.

The inverted pendulum has appeared numerous times in the RL literature. [57] used a combination of Q-

learning and local linear controllers to swing-up and balance the pendulum, with the swing-up defined as

the pendulum being within 0.133π of the upright angle, and |θ̇| < 2 rad
s , with success defined as keeping
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the pendulum in that region. This task was completed without learning the dynamical model in 144, 000

seconds. [43] used a radial basis function (RBF) to approximate the value function, with an additional RBF

network used for learning the dynamical model and was able to learn the task of bringing and maintaining

the pendulum within π
4 of the upright position in 16, 000 seconds. In [38, 58] the pendulum started at an

upright position, and the Neural Fitted Q-iteration algorithm was used to approximate the Q-function which

only learnt the task of balancing the pendulum in the region of the pendulum being within π
2 of the upright

position, which took 120 seconds to complete. [41] used a model-based learning algorithm where the dy-

namical system was modeled by the nonlinear dynamical factor analysis (NDFA) based on the work in [42],

and learned the task of swing-up and balance as defined by [57] in 125 seconds. PILCO [46], a model-based

algorithm described earlier in section 1.5, offers the best efficiency in terms of real-world interactions, and

learns the task of swing-up and balance of the pole based on 17.5 seconds of interaction time.

We adopt the swing-up task definition from [57], which is achieved when the pendulum is within 0.133π of

the upright position, and |θ̇| < 2 rad
s , regardless of the velocity of the cart. We however place stricter criteria

on success by defining a target region of |ẋ| < 0.05m
s , |θ̇| < 0.05 rad

s , and −1 < cos(θ) < −.999. This means

that the pendulum should be within 0.0142π (or 2.5 degrees) of the upright angle. In the case of finding a

set of controls for a fixed finite horizon time described next, success is defined as the last state being in the

target region, whereas a successful feedback policy is one that is able to keep the states in this target region

if the finite-horizon time is extended. The bounds on the velocities are ẋ ∈ [−5, 5] and θ̇ ∈ [−4π, 4π]. As in

the mountain car problem the length-scales of the policy-GP are all set to 1, with σ2 = 10−6 and α2 = 1.

The upper limit of the number of point of the DGP is set to 500, with λ = 0.1 in the DP-means algorithm.

3.2.1 Finding A Set of Controls for The Inverted Pendulum Problem

Similar to the mountain car problem, this approach finds a set of 20 actions that bring the inverted pendulum

system from the start state, to the target region in 20 steps. The reward function used is the same as in

equation (3.2), and the 20 time steps are placed logarithmically between td = 0.1 and td = 0.054. The total

time for each real-world execution is 1.4472 seconds.

Each run of the algorithm is started with five real-world executions, where the actions are selected randomly

from the allowable region of the control u = [−10, 10]. The search is then carried out until a successful

set of controls are found. Similar to before, Figure 3.14 to Figure 3.16 show the results of 6 runs of the

algorithm that include the progression of the total reward at each iteration, the best set of controls found,
4 this corresponds to logspace(-1,-1.3,20) in Matlab
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and the trajectory that is resulted from applying the best set of controls on the system. It can be seen in

the produced trajectories that to swing up the pendulum, the cart can either move to the right or to the left

first. The final state of each of the 6 runs are given in Table 3.2.

Table 3.2: The final states for 6 different runs of the algorithm on the inverted pendulum problem.

Run Position Velocity Ang. Velocity Sine Cosine

Run 1 -2.8525 0.0217 -0.0014 0.0008 -1.0000

Run 2 3.6603 -0.0464 0.0492 0.0259 -0.9997

Run 3 -3.3259 0.0169 -0.0113 -0.0134 -0.9999

Run 4 3.3024 0.0005 0.0060 0.0060 -1.0000

Run 5 2.7843 0.0406 0.0469 0.0057 -1.0000

Run 6 2.4960 0.0055 0.0302 0.0128 -0.9999

54



iteration=1 10 20 30 40 50
0

100

200

300

400

500

600

700
Rewards

(a) Run 1 rewards at each iteration

iteration=1 5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700
Rewards

(b) Run 2 rewards at each iteration

time = 0 0.5s 1s 1.5s

-12

-10

-8

-6

-4

-2

0

2

4

6

x
_x
_3
sin(3)
cos(3)

step = 1 5 10 15 20

(c) Run 1 state trajectories

time = 0 0.5s 1s 1.5s
-6

-4

-2

0

2

4

6

8

10

12 x
_x
_3
sin(3)
cos(3)

step = 1 5 10 15 20

(d) Run 2 state trajectories

time = 0 0.5s 1s 1.5s

-10

-8

-6

-4

-2

0

2

4

6

8

10

step = 1 5 10 15 20

(e) Run 1 actions at each step

time = 0 0.5s 1s 1.5s

-10

-8

-6

-4

-2

0

2

4

6

8

10

step = 1 5 10 15 20

(f) Run 2 actions at each step

Figure 3.14: Total observed rewards of the execution of candidates on the real-world (top), the best set of
actions found (bottom) and the resulting trajectories from the best set of action (middle) in run 1 and 2 of
the inverted pendulum problem.
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Figure 3.15: Total observed rewards of the execution of candidates on the real-world (top), the best set of
actions found (bottom) and the resulting trajectories from the best set of action (middle) in run 3 and 4 of
the inverted pendulum problem.
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Figure 3.16: Total observed rewards of the execution of candidates on the real-world (top), the best set of
actions found (bottom) and the resulting trajectories from the best set of action (middle) in run 5 and 6 of
the inverted pendulum problem.



Figure 3.17 shows the number of iterations and time in seconds that are required to find a successful set of

controls (red bars) for 10 different runs of the algorithm. It takes an average of 45 iterations, or 65 seconds

to learn the task of bringing the last state of the trajectory in the target region. The blue bars in the figure

show the number of iterations and time needed for the swing-up task defined earlier. On average it takes

about 13 iterations, or 19.1 seconds of real-world interaction to learn this task.
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Figure 3.17: The number of iterations and time in seconds that it takes the proposed algorithm to find a
set of controls for the swing-up task (blue), and for bringing the last state in the target region (red) for the
inverted pendulum problem.

Figure 3.18 shows the progression of the total rewards in run 1 of Figure 3.14 for all the 536 suggested can-

didates of the Bayesian optimization step (blue lines), and the 46 candidates (red dots) that were executed

on the real-world. Based on all the runs, real-world execution were decreased on average by a factor of 11.

58



50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700
Rewards of candidates tried on real-world
Rewards of all proposed candidates

Figure 3.18: The observed rewards of the 46 candidates tried on the real-world (red dots), and the real-
world rewards that would have been observed if all the 536 candidates that were tried in simulation were
executed on the real-world (blue lines) for the inverted pendulum problem. This plot corresponds to run 1
in Figure 3.14

3.2.2 Finding A Feedback Policy for The Inverted Pendulum Problem

In completing the search for a feedback policy of the mountain car problem using the proposed method, we

were able increase the suggested limit of the number of parameters of the Bayesian optimization from 20 to

75. This meant using 25 input and output support points for the policy-GP, which gave enough coverage

on the two-dimensional state-space that produced a successful control policy. The increase of the number of

states from two in the mountain car problem to five (or 4 if θ is used as an input state of the policy function

instead of sin(θ) and cos(θ)) in the inverted pendulum problem, and also the difficulty of the problem means

that more support points are needed to produce a successful control policy. In a similar set up, [46] used 100

support points which is equal to 500 parameters (400 if θ is used), to complete the swing up and balance

of the inverted pendulum problem, that required the final position of the cart to be also near zero. In the

set up considered here, the final position of the cart is not important when the pendulum is balanced5. We

also convert back sin(θ) and cos(θ) to θ before inputting the states into the policy-GP, which means that a

support point in the policy approximator can have only the three states of (ẋ, θ̇, θ). This suggests that for a

successful policy, the number of parameters can be decreased from 500. The exact number of the policy pa-
5 by observing the equations of motion, one can see that the position does not appear in the equations of the other states,

and therefore does not effect their progress over time. As an example, a policy that can swing-up the pendulum from position
of x1 at rest, can be successfully applied for swing-up when the cart is at x2.
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rameters needed for the feedback control of the inverted pendulum in such a setting is unknown (perhaps in

the range of 200-300 parameters), but to our experience the search for a policy using the proposed algorithm

in its current format did not produce any promising results when the number of parameters were increased

substantially over the 75 used in the mountain car problem.

Instead here we present the results of using only 25 input and output support points, or 100 parameters

for which the performance of the proposed algorithm did not degrade significantly. The time step is set to

td = 0.05, and finite-horizon time in the learning phase is set to 1.75 seconds, or T1 = 35 steps. Similar

to the mountain car problem, successful policy is defined as one that can keep the system in the target

region for an additional T2 steps, where here T2 = 10, or 0.5 seconds. The reward function is the same as

the mountain car problem in equation (3.3). As with all the problems presented, the first five policies are

generated randomly.

The proposed algorithm is able to complete the much easier task of the swing-up, it however fails to reach

the more strict success criteria when it converges after failing to find policies that improve on the current

best (tolEIP → 0 and ∆θrelative → 0 in part C of Table 2.2). Figure 3.19 to Figure 3.21 show the results of

6 sample runs of the algorithm, all of which were able to swing up the pendulum in T1 steps, but failed to

reach the target region except for run 6 in Figure 3.21. Figure 3.22 shows the actions and trajectories that

are resulted when the policy found in run 6 of Figure 3.21 is applied on the real-world for T1 + T2 steps. It

can be seen that the velocity of the cart has exited the target region, and therefore the policy is unsuccessful.

Although this result is promising in getting close to the target region, it is not one that has been consistently

observed from all the different runs. The results suggest that more support points are needed in order to

achieve successful control in bringing the system to the target region and maintaining it there, a task that

the proposed method with the use of the Bayesian optimization is unable to achieve in its current form. In

the next section, we provide possible ways the performance of the Bayesian optimization can be improved

when the number of parameters are increased.
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Figure 3.19: Total observed rewards of the execution of candidates on the real-world (top), the actions
produced by the best policy (bottom) and the resulting trajectories for the best policy (middle) in run 1 and
2 of finding a feedback policy for the inverted pendulum problem.
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Figure 3.20: Total observed rewards of the execution of candidates on the real-world (top), the actions
produced by the best policy (bottom) and the resulting trajectories for the best policy (middle) in run 3 and
4 of finding a feedback policy for the inverted pendulum problem.
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Figure 3.21: Total observed rewards of the execution of candidates on the real-world (top), the actions
produced by the best policy (bottom) and the resulting trajectories for the best policy (middle) in run 5 and
6 of finding a feedback policy for the inverted pendulum problem.



time = 0 0.25s 0.5s 0.75s 1s 1.25s 1.5s 1.75s 2s 2.25s

-10

-8

-6

-4

-2

0

2

4

6

8

10 Actions

step = 1 5 10 15 20 25 30 35 40 45

(a) The actions for T1 + T2 steps

time = 0 0.25s 0.5s 0.75s 1s 1.25s 1.5s 1.75s 2s 2.25s
-6

-4

-2

0

2

4

6

8

10

12

x
_x
_3
sin(3)
cos(3)

step = 1 5 10 15 20 25 30 35 40 45

(b) The trajectories for T1 + T2 steps

Figure 3.22: The actions and trajectories from run 6 in Figure 3.21 when the finite-horizon time is extended
to T1 + T2 steps

Figure 3.23 shows the number of iterations and total time in seconds that it took for 10 different runs of the

algorithm to complete the swing-up task, the first 6 correspond to the runs in the figures above. As stated

before, none of the runs were successful at reaching and maintaining the states in the target region. It takes

an average of 22.95 seconds of real-world interaction, or about 13 iterations to learn the swing-up task.
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Figure 3.23: The number of iterations and time in seconds that it takes the proposed algorithm to find a
feedback policy for the swing-up task in the inverted pendulum problem.



3.3 Discussion

A data-efficient algorithm that attempts to solve a control problem in continuous state and action space

without the knowledge of the dynamics was presented. The main objective of this algorithm was to find a

solution while reducing the amount of real-world interactions. This was done by employing a probabilistic

model of the dynamics that help the Bayesian optimization in reducing uncertainties around policy param-

eters that were tried in simulations. The Bayesian optimization approach without the use of a dynamical

model was previously used in [47], where the parameters for a neural network (8 parameters on average)

were found that kept an already-upright double-pendulum balanced, a task that took 194 real-world execu-

tions each lasting for 10 seconds, or 1940 seconds of total real-world interactions. We used the algorithm

presented here to solve the mountain car and the inverted pendulum problems. To solve these two problems,

two different set-ups were used, the first found a set of actions/controls that were applied at every step for

a fixed finite-horizon time, and the second found a feedback policy that could be applied for an extended

finite-horizon time. For the mountain car problem the set of controls were found on average after 101 seconds

of interactions with the real-world, and the feedback policy was learned in 85 seconds (section 3.1.2 discusses

why the feedback policy is learnt faster). The set of controls that could swing-up the pendulum were learnt

after 19.1 seconds of interactions, and the task of brining the pendulum within 2.5 degrees of the upright

position with the velocities less than 0.05 took 65 seconds of real-world interaction. Although the feedback

policy for the inverted pendulum at times came close to reaching the strict target region defined, it could

only consistently learn the swing-up task, which was learnt on average in 22.9 seconds. In the problems that

were successfully completed, learning a probabilistic model of the dynamics greatly reduced the real-world

interactions; on average only every one out of 12 candidates that were suggested by the Bayesian optimization

were executed out on the real-world. In addition to improving the efficiency of the Bayesian optimization

in terms of the real-world interactions, to our knowledge we are the first that use the Bayesian optimization

approach to find a high number of policy parameters for the purpose of control, which were 75 parameters

in the mountain car problem, and 100 in the swing-up of the inverted pendulum as opposed to 8 parameters

(on average) in [47].

Next, we discuss the limitations and shortcomings of the proposed algorithm, and offer possible ways they

can be addressed. Table 3.3 lists the characteristics of the Bayesian optimization algorithm as suggested

by [47], the PILCO algorithm which is the most data efficient model-based algorithm in the literature [46],

and the proposed algorithm described in this work. The common property in these algorithms is that the

dynamical equations that describe the behavior of the environment are unknown. Since decisions are made
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without having this knowledge and are based on limited experience, the solutions found might not be as

close in reaching the target as algorithms that have the dynamical equations. The notion of success in the

RL literature is therefore often defined in a more "generous" way such as bringing/keeping the states within

a large and often undefined region of the target. Nevertheless in this work, more strict criteria were placed

when defining success, and the results from the previous chapter show that the proposed algorithm can

successfully meet them in most cases.

Table 3.3: A comparison of the different algorithms considered.

Direct Bayesian Optimization PILCO Proposed Algorithm

Type Direct Model-based Direct and Model-based

Dynamics-GP 7 3 3

Rewards-GP 3 7 3

Uncertainty of rewards 6 considered not considered considered

Data-efficient 7 3 3

Comp-efficient 7 7 7

Search Guidance probabilistic, global Bayes opt. deterministic, conj-grad. method probabilistic, global Bayes opt.

Global vs Local global local7 global

Explore vs. Exploit based on rewards-GP based on dynamics-GP based on both

Exploration parameter automatic 8 not automatic 9 automatic

# of policy parameters low high medium

Similar to optimal control methods, RL methods provide local solutions in the sense that success is de-

scribed as finding any solution that meets the goal criteria, and finding the global optimum is not ensured.

Although Bayesian optimization offers a global view for the search of a solution, finding a global optimal

solution in practice would require an infinite amount of interaction with the expensive objective function.

This is due to the fact that the search for a solution depends heavily on the hyperparameters of the GP; the

search can get stuck in local optima due to the over-confidence of the model, and promoting exploration by

changing the hyperparameters (lower values on the length-scales, or higher values on signal variance) and

prolonging the search would need to be repeatedly performed if all possible regions are to be visited. This

issue of exploration vs. exploitation is not unique to the Bayesian optimization approach, and all global

techniques can suffer from missing better solutions in undiscovered regions. Although it has been shown in
6whether or not the uncertainity of rewards is considered in the step of searching for a policy
7 policy search at every iteration is done using a local conjugate gradient method. The overall search might not be local

depending on the amound of exploration.
8if EI acquisition function is used
9there should be more exploration at the begining and less towards the end. Exploration can be encouraged by modifying

the rewards function to include the variance of the rewards
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the literature that with the right choice of the hyperparameters convergence can be achieved, in practice

finding a global solution with the Bayesian optimization, while keeping the amount of interaction with the

environment bounded, cannot be guaranteed.

As mentioned in section 1.4.2, [27] has shown the convergence of the Expected Improvement in theory when

the observations are not noisy. This convergence relies on putting bounds on the length-scales, finding the

signal variance α2 based on the current length-scales, and maximizing the likelihood based on this α2 to find

the updated length-scales. In practice however, choosing the bounds of the length-scales proved to be highly

problem dependent and a challenge all by itself. This is because when the length-scales increase, confidence

in the model is increased, but high values of the length-scales result in bigger α2 values, which would increase

uncertainty away from the observations, and therefore promote exploration. Adaptively changing the bounds

on the length-scales similar to the approach presented in [29]10 would perhaps balance this issue, but our

attempts to incorporate this to ensure theoretical convergence, while at the same time keeping real-world

interaction to a minimum has not been successful. Instead the un-bounded hyperparameters were optimized

together by maximizing the evidence as mentioned in equation (1.16).

A key feature in the PILCO algorithm that enhances the data-efficiency is its ability to extended the finite-

horizon time during the learning phase of the algorithm if the dynamical model is performing well as compared

to the observed trajectories from the real-world. This is beneficial when the feedback policy is expected to

perform well with the extension of time. In the proposed method, each policy parameter is assigned a re-

turned reward for a fixed finite-horizon time, which are then used to construct the observations of the RGP.

If the time during the learning phase is to be extended, previous policies would all have to be executed on

the real-world again to observe the returned rewards for the extended period of time, which would require a

lot of real-world interactions. An alternative to this would be to use the dynamical model to simulate ahead

only the extended portions of the finite-horizon time for the policies already implemented on the real-world.

This however would make all the training data of the RGP up to that point as uncertain measurements,

which could potentially have an adverse effect on the modeling of the RGP. The extension of time should

therefore be performed only when uncertainty is low in the trajectories produced by the DGP, and the mean

of these trajectories are close to the ones observed from the real-world.

One of the issues with the proposed algorithm in its current format is that the number of the parameters to

be optimized (the policy parameters) cannot be large. This stems from an inherent problem of the Bayesian
10which was also used to show convergence of EI in the presence of noisy observations
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optimization approach that is known to work well in low-dimensions, but degrades in performance when

the number of parameters grow large. Previously, [22] reported this degradation in performance to happen

with problems that require above 15-20 parameters. We were able to used the proposed algorithm to find

feedback policies with 75 parameters for the mountain car, and 100 parameters for the swing-up of the

inverted pendulum, but a search for a policy consisting of a few hundred parameters was not successful. The

failure of the Bayesian optimization in such a setting is caused by the inability of its surrogate GP, in our

case the RGP, to model well in higher dimensional space, which then fails to guide the search in the right

direction. In the proposed method this issue was somewhat ameliorated by adaptively changing the scope of

the search around known policies that produce high rewards, and also by the selection of a combination of

covariance functions that can represent both the flat low-reward regions, and regions of the parameter-space

that include sudden increases in the returned rewards. To further improve the performance of the Bayesian

optimization, the mapping of the policy parameters to rewards in the RGP needs to be enhanced as explained

below.

Much like the conventional Bayesian optimization technique, we currently use a single GP to globally map

the policy parameters to the returned rewards. With this global GP, one set of hyperparameters is used

to model the entire parameter-space. At the beginning of a run of the algorithm when high-reward regions

are not yet discovered, the length-scales are set to high values that convey that the expected changes in the

returned rewards from policies that are close to each other are small. At the later stages of the algorithm

however, high-reward regions are discovered. In these regions, policies that are close to each other can pro-

duce very different returned rewards, which calls for the need of small length-scale values to allow the model

to capture these sudden changes on the output from the small changes on the input. The reduction of the

length-scales however, would create large uncertainties in the flat regions that would promote exploration,

and therefore prolonging the search, and as a result the increase in the real-world interactions. To eliminate

this important limitation in the modeling of the RGP, local GPs can be used that would use a different set of

lenght-scales for each region of the parameter-space, with low values for the length-scales in the high-reward

regions, and high values for the length-scale in the flat regions where the expected rewards are low. An

alternative approach to the use of local GPs would be to create a non-stationary covariance function that

can vary the hyperparameters based on the location of the input. Similar to the local GPs, low length-scales

values are assigned to high reward regions, and high length-scales values are assigned to low reward regions.

The use of local GPs would require an algorithm that can adaptively cluster the training data. This is

the topic of the next chapter where we propose EM+, an algorithm based on the expectation maximization
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approach that can automatically infer the number of components needed to model the observations well.
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Chapter 4

EM+ , An Algorithm for Mixture of

Models with Unknown Number of

Components

4.1 Introduction

The Mixture model problems arise in a wide range of fields such as clustering, probability density function

estimation, and local regression models. When the number of components of the mixture model is known,

the Expectation Maximization (EM) algorithm, and its special case, the K-means algorithm, are the most

popular methods used. The problem however becomes a much more difficult one when the number of com-

ponents is unknown. This chapter begins with a formal introduction to a special case of the mixture model

problem, namely the mixture of Gaussians. This is followed by the EM algorithm and its variations that all

assume a prior knowledge of the number of components in the mixture model. Methods that do not assume

this prior knowledge, such as the Dirichlet process (DP), and other methods that seek to find the right

number of components by utilizing some pre-defined measure are then reviewed. We then presents EM+,

an extension to the EM algorithm that takes inspiration from the DP method, and combines its flexibility

with the efficiency of the EM approach that can be used to solve mixture model problems with an unknown

number of mixture components.
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4.1.1 Mixture of Gaussians

We consider mixtures of normal PDFs expressed as1

X ∼ p(x | π1:K ,µ1:K ,Σ1:K) ≡
K∑

k=1

πkN (x | µk,Σk) (4.1)

where the random variable (RV) X takes values in RD and N (x | µ,Σ) is the multivariate Gaussian

distribution

N (x | µ,Σ) = (2π)−
D
2 | Σ |−

1
2 exp(−1

2
(x− µ)⊤Σ−1(x− µ)) (4.2)

with mean µ ∈ RD and covariance matrix Σ ∈ RD×D. The π1:K satisfying

πk ≥ 0, k = 1, . . . ,K,

K∑
k=1

πk = 1 (4.3)

are the mixing proportions for the K components of the mixture. Given N i.i.d. observations X =

{x1, . . .xj . . .xN} ∼ p(x | π1:K ,µ1:K ,Σ1:K), with the latent model identifier vector Z = {z1, . . . , zi, . . . , zN}

having values from 1 . . .K for each of the observations2, the objective is to estimate the mixture parameters

Θ ≡ {µ1:K ,Σ1:K , π1:K} if K is known, and if K is unknown to estimate the number of mixture compo-

nents K and the mixture parameters Θ ≡ {µ1:K ,Σ1:K , π1:K}. The Maximum Likelihood estimate of the

parameters Θ is obtained by maximizing the log-likelihood

ΘML = argmax
Θ

log{l(Θ)} (4.4)

where the likelihood is

l(Θ) =
N∏
i=1

p(xi | π1:K ,µ1:K ,Σ1:K). (4.5)

Alternatively, in a Bayesian setting, one considers the parameters as RV’s, assigns a prior distribution

p(Θ | Ψ), and seeks to compute their posterior distribution p(Θ | x1:N ,Ψ). Here, Ψ denotes the so-called

hyperparameters defining the prior distribution on the mixture parameters. A commonly used point estimate

is the mode of the posterior distribution, that is the Maximum A Posteriori estimate of Θ, obtained as

ΘMAP = argmax
Θ

log {l(Θ) · p(Θ | Ψ)} . (4.6)

MAP estimates avoid certain disadvantages of the ML estimates, such as singularities during the optimiza-

tion, however, they can be criticized for the need of considering an arbitrary prior distribution. The latter
1In equation (4.1) and the remainder of the paper, the notation v1:K signifies collectively the variables {v1, . . . , vK}.
2zi signifies which component xi was drawn from
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issue can be mitigated by employing either a Hierarchical Bayes approach in which higher level priors are

brought in on the hyperparameters or an Empirical Bayes approach in which the hyperparameters are opti-

mally selected based on the data.

The optimization problems (4.4) and (4.6) require a numerical approach in general. However, an analytical

solution is possible if the information about which component of the mixture produced each sample is

assumed to be available. Thus these problems are amenable to Expectation/Maximization (EM) algorithms

( [59,60]). A standard EM algorithm for fitting normal mixtures is briefly reviewed next since the proposed

algorithm builds on it.

4.1.2 EM Algorithm

Although previous works using special cases of the EM approach existed, its general format was first formally

presented in [59], where it was shown that as the algorithm progresses, the likelihood of the observations given

the parameters increases monotonically. With the absence of the model identifier vector Z = {z1, . . . zN}

in practice3, we only have access to an incomplete data. The complete log likelihood for N i.i.d samples,

X = {x1, . . .xN}, is

L(Θ) = log p(X,Z | Θ)

= log

N∏
i=1

p(xi, zi | Θ)

= log

{
N∏
i=1

K∏
k=1

(N (xi | Θk) · πk)
I(zi=k)

} (4.7)

which can be maximized analytically, but the resulting estimates of the parameters become also functions

of Z, which is generally unknown. Instead, the EM algorithm alternates between the Expectation and

Maximization steps as follows. At iteration t of the EM algorithm, let Θ(t) be the current estimate of the

parameters and consider an auxiliary function Q(Θ,Θ(t)) as the expectation of the full log-likelihood with

respect to p(Z | X,Θ(t))

3knowledge of the Z vector would reduce the problem to a far easier one.
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Q(Θ,Θ(t)) = E

[
log

N∏
i=1

p(xi, zi | Θ)

]

=
N∑
i=1

E [log p(xi, zi | Θ)]

=
N∑
i=1

E [log (p(xi | zi,Θ)p(zi | Θ))]

=
N∑
i=1

E

[
log

(
K∏

k=1

N (xi | Θk)
I(zi=k)

K∏
k=1

π
I(zi=k)
k

)]

=
N∑
i=1

E

[
K∑

k=1

I(zi = k) log (πkN (xi | Θk))

]

=
N∑
i=1

K∑
k=1

p(zi = k | xi,Θ(t)) log (πkN (xi | Θk))

(4.8)

In the Expectation step (E-step), p(Z | X,Θ(t)) is computed based on the current parameters. Then in the

Maximization step (M-step), a new set parameters are found4 such that

Θ(t+ 1) = argmax
Θ

Q(Θ,Θ(t)) (4.9)

It can be shown that the likelihood (4.5) is increasing, i.e. l(Θ(t+ 1)) ≥ l(Θ(t)), but only convergence to a

local maximum can be guaranteed in general.

The EM algorithm as described above aims at maximizing the likelihood (4.5) and thus at producing the

maximum likelihood estimates of the parameters ΘML; this will be referred to as the maximum likelihood

approach (EM-ML). When applied to normal mixtures, it may suffer from singularities (i.e. estimated

variances converge to zero) and from slow convergence as the dimensionality of the problem increases [61,62].

An alternative approach has been proposed that instead aims at maximizing the posterior distribution of

the parameters given the samples [63] and thus at producing the maximum a posteriori estimate of the

parameters ΘMAP; this will be referred to as the maximum a posteriori approach (EM-MAP). In the EM-

MAP algorithm, the full log-likelihood in (4.7) is replaced by

L(Θ) +
K∑

k=1

log{p(Θk | Ψ)} = log

{
N∏
i=1

K∏
k=1

(N (xi | Θk) · πk)
I(zi=k)

K∏
k=1

p(Θk | Ψ)

}
. (4.10)

Since the additional term in (4.10) does not depend on Z, the expectation step (4.8) remains the same as in
4for derivation of the estimates of the parameters in M-step, refer to CH 9 of [61]
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(EM-ML); however, the maximization step is replaced by

Θ(t+ 1) = argmax
Θ

{Q(Θ,Θ(t)) + log p(Θ | Ψ)}. (4.11)

In the following, we summarize the formulas implementing the (EM-MAP) algorithm from [61]. We assume

that conjugate Dirichlet and independent Normal-Inverse-Wishhart priors have been selected for the π1:K

and {µk,Σk}, k = 1, . . . ,K parameters, respectively. Namely,

p(Θ | Ψ) = Dir(π1:K | α1:K) ·
K∏

k=1

NIW(µk,Σk | m0, κ0, ν0,S0) (4.12)

where

Dir(π1:K | α1:K) ≡
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

παk−1
k , αk > 0 (4.13)

and

NIW(µ,Σ | m0, κ0, ν0,S0) ≡ N (µ | m0,
1

κ0
Σ) · IW(Σ | S0, ν0), (4.14)

with the Inverse Wishhart prior expressed as

IW(Σ | S0, ν0) ≡
2−

ν0D
2 det(S0)

ν0
2

ΓD(ν0/2)
· | Σ |−

ν0+D+1
2 · exp

{
−1

2
trace(S0Σ

−1)

}
. (4.15)

where ΓD is the multivariate gamma function. Thus, the hyperparameters considered are Ψ ≡ {α1:K ,m0, κ0, ν0,S0}.

In the E-step, one computes the responsibility coefficients, which is p(Z | X,Θ(t)), the posterior probabil-

ities for the indicator variables Z given the data X and the current estimate of the parameters Θ. More

specifically,

Rik ≡ p(zi = k | xi,Θ(t)) =
R̄ik∑K
k=1 R̄ik

(4.16)

where

R̄ik ≡ p(xi | zi = k,Θ(t)) · p(zi = k | Θ(t)) = N (xi | µk,Σk) · πk. (4.17)

Next, using (4.7) and formulas (4.14) and (4.47) for the priors in (4.8), the following expression for the

auxiliary function Q(Θ,Θ(t)) can be readily computed:
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Q(Θ,Θ(t)) =
N∑
i=1

K∑
k=1

Rik log {N (xi | µk,Σk) · πk}+
K∑

k=1

log {NIW(µk,Σk | m0, κ0, ν0,S0)}

+ log {Dir(π1:K | α1:K)} . (4.18)

Finally, the maximization step (4.11) can be analytically carried out by solving the first order optimality

conditions yielding the next parameter iterates from

Nk =
N∑
i=1

Ri,k (4.19)

πk =
Nk + αk − 1

N +
K∑

k=1

αk −K

(4.20)

x̄k =

N∑
i=1

Rikxi

Nk
(4.21)

µk =
Nkx̄k + κomo

Nk + κ0
(4.22)

Sk =

N∑
i=1

Rik(xi − x̄k)(xi − x̄k)
T (4.23)

Σk =
S0 + Sk + κ0Nk

κ0+Nk
(x̄k −m0)(x̄k −m0)

T

νo +Nk +D + 2
. (4.24)

We remark that the responsibilities Rik can be interpreted as the degree to which a sample xi belongs to

cluster k based on current information. Then Rik ·xi can be viewed as the fraction of sample xi that belongs

to cluster k and Nk in (4.19) as the effective number of samples in cluster k. On the other hand, αk − 1

signifies the number of samples belonging to cluster k out of
∑K

k=1 αk−K samples based on our prior belief.

Therefore, the posterior cluster probabilities in (4.20) are naturally given as the fraction of total points from

the prior and those estimated from the data as belonging to each component. Furthermore, the effective

samples Rikxi, i = 1, . . . , N in cluster k are combined to yield cluster sample means x̄k and sample covari-

ances Sk in (4.21) and (4.24), respectively. Then, the estimates in (4.22) and (4.24) naturally represent the

mode of the posterior distributions of the parameters µk and Σk, each being a NIW distribution based on

normal samples with statistics given by (4.21) and (4.24) and our selection of the conjugate NIW prior in

(4.14).
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We also remark that (4.20) is valid when Nk + αk − 1 > 0 for all k = 1, . . . ,K. In the more general case,

(4.20) should be replaced by

πk =


(Nk + αk − 1)

/(∑
k∈K∗

Nk + αk − 1

)
0, k /∈ K∗

(4.25)

with K∗ ≡ {k = 1, . . . ,K | Nk + αk > 1}. This more general case is usually not considered since, if any

Nk + αk − 1 < 0, the maximization of (4.18) with respect to the πk’s is not well defined. This situation can

be avoided by enforcing αk ≥ 1.

4.1.2.1 K-means Algorithm

The K-means algorithm is a popular variation of the EM algorithm for the Gaussian mixture models, where

the covariance of each of the mixtures is assumed to be spherical and fixed to Σk = σ2ID, and the mixtures

weights are fixed to πk = 1
K . The only parameters to be estimated are then the centers of the mixtures,

µk [62]. Therefore we have

p(xi | µk,Σk) =
1

(2πσ2)
D
2

exp(−1

2
||xi − µk||2) (4.26)

In the E-step, the responsibility of the observation xi belonging to mixture j is

Rij =
exp(− 1

2σ2 ||xi − µj ||2)
K∑

k=1

exp(− 1

2σ2
||xi − µk||2)

(4.27)

As σ2 → 0, the denominator term above belonging to component k for which ||xi −µk||2 is smallest goes to

zero more slowly than the others, and therefore responsibilities Ri1 . . . RiK will all go to zero except for the

k component that will make Rik unity. As a result during the E-step of the K-means algorithm, each point

is assigned to its nearest component as

zi = argmin
k

||xi − µk|| (4.28)

which is why the K-means algorithm is often referred to as the "hard EM". In the M-step, the centers of

the mixture are updated by the mean of the points belonging to that mixture by

µk =
1

Nk

∑
i:zi=k

xi (4.29)
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where Nk ∈ Z is the number of observations assigned to mixture K.

4.1.3 Dirichlet Process Mixture Models

So far it has been assumed that K, the number of components of the mixtures model is known. This how-

ever is often not the case which requires approaches that do not require the knowledge of K. The Bayesian

nonparametric mixture modeling gives such flexibility, where it is possible to find a suitable number of mix-

tures by assuming a countable infinite mixture model [64–67]. In such a setting, a Dirichlet process prior

distribution (infinite dimensional Dirichlet distribution) is placed on the parameters. When used in practice

however, only a few of the components dominate, which results in a finite number of mixtures [67].

As introduced by Ferguson in [68], the DP is a probability measure on a space of probability measures. As-

sume that, similar to before, the observations x1, . . . ,xN , which are exchangeable, (i.e. drawn independently

from some unknown distribution) are drawn from some distributions. The distribution which xi is drawn

from is represented by a component of the form f(ϕi), where ϕi is the set of parameters of the corresponding

mixture, e.g. ϕi = (µi,Σi) if f is Gaussian. The prior which the parameters are drawn from is drawn from

a DP, defined by a base distribution G0, and a positive scalar α, known as the concentration parameter.

The model described is

xi | ϕi ∼ f(ϕi)

ϕi | G ∼ G

G ∼ DP(G0, α)

(4.30)

As demonstrated by Sethuraman [69], a constructive representation of G can be written as

G =

∞∑
j=1

πjδϕj
(4.31)

where

ϕj ∼ G0

πj ∼ βkΠ
k−1
m=1(1− βm)

βm ∼ B(1, α)

(4.32)
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where B is the Beta distribution, and δϕj
refers to the Dirac delta measure located at ϕj [67]. This shows

an important property of G, that it is discrete. As a result there is a positive probability that two ϕj ’s will

have the same value, and therefore G has a clustering property, effectively putting the data into a finite

number of mixtures. Small values of α makes G, the samples drawn from the DP, to be composed of small

number of different samples with large weights. On the other hand, for larger values of α, the samples are

likely to be distinct, making G look like the base distribution G0 [65, 70].

An equivalent representation of a DP mixture model can be constructed by taking the limit of the number

of parametric mixture models K approaching infinity [66,67]. Assuming that the mixtures are Gaussian, the

finite Gaussian mixture model of N samples, x = {x1, . . . ,xi, . . .xN}, is the same as equation (4.1)

p(xi | µ1:K ,S1:K , π1:K) =

K∑
k=1

πkN (xi | µk,Sk
−1) (4.33)

where Sk is the inverse of the covariance referred to as the precision. Since the model identifier vector Z

is unknown, for each observation we define a variable ci, that represents the mixture that the observation

currently belongs to. Furthermore a joint prior distribution G0 is placed over the mixture parameters (µ,S).

The finite model is therefore

xi | ci,Φ ∼ N (µci ,Sci
−1)

ci | π ∼ Discrete(π1, . . . , πK)

(µk,Sk) ∼ G0

π | α ∼ Dir(α/K, . . . , α/K)

(4.34)

where Dir() is the dirichlet distribution. In the DP mixture models, priors are placed on the parameters

that are to be found, which can then be inferred by performing Gibbs sampling. In Gibbs sampling, each

parameter to be inferred is sampled from its conditional distribution given all the other current parameters,

which converge to the true conditional distributions on the parameters as the number of samples goes to

infinity [71]. In the case of the indicator variables, Gibbs sampling is used to update every ci from its

conditional distribution given all the other indicator variables [66]. The joint prior on the indicator variables

c = {c1 . . . cN} given π is

p(c | π) =
K∏

k=1

πNk

k (4.35)

79



where Nk ∈ Z is the number of observations in mixture component k. Integrating out the mixture weights

gives the distribution on c = {c1 . . . cN} as

p(c | α) =
∫

p(c | π, α)p(π | α)dπ

=
Γ(α)

Γ(N + α)

K∏
k=1

Γ(Nk + α/K)

Γ(α/K)

(4.36)

The conditional distribution for each individual indicator can be derived by fixing all the indicators but a

single indicator variable (refer to page 3 of [67] for details), which gives

p(ci = k | c−i, α) =
N−i,k + α/K

N − 1 + α
(4.37)

where subscript −i indicates all indices except for i. This means that if mixture component k has Nk

members, and xi currently belongs to mixture component k, then N−i,k = Nk − 1, otherwise N−i,k = Nk.

The infinite DP mixture model is constructed by taking the limit as K → ∞, which gives the conditional

prior of the indicator variable ci as

p(ci = k | c−i, α) =
N−i,k

N − 1 + α
(4.38)

for the components with N−i,k > 0, i.e. mixtures that have observation points associated with them. Since

observation xi only belongs to one components at any given time, the summation of the probabilities of xi

belonging to every mixture component that has observations associated with them is N−1
N−1+α . Therefore, the

probability of xi belonging to all the other infinitely possible components that do not have any observations

associated with them combine to α
N−1+α . In summary, the conditional prior probabilities of an observation

point belonging to each component are

p(ci = k | c−i, α) =


N−i,k

N−1+α k represented

α
N−1+α k unrepresented

(4.39)

To obtain the conditional posterior distribution of the indicators, the prior above is combined with the

likelihood. The likelihood of the unrepresented components is obtained by integrating over the prior of them

which gives
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p(ci = k | c−i,xi, α,ϕ1:K) ∝


p(ci = k | c−i, α) p(xi | ϕi) k represented

p(ci = k | c−i, α)
∫
p(xi | ϕ∗)dG0(ϕ∗) k unrepresented

=


N−i,k

N−1+α p(xi | ϕi) k represented

α
N−1+α

∫
p(xi | ϕ∗)dG0(ϕ∗) k unrepresented

(4.40)

With the above conditional probabilities, conventional Gibbs sampling is only feasible if one can compute

the integral
∫
p(yi | ϕ∗)dG0(ϕ∗). This is generally the case when G0 is the conjugate prior to the likeli-

hood [67] (conjugacy of the joint prior distribution of parameters, i.e. the mean and the precision etc., to

the likelihood [65]). In [67] Neal discusses various ways Gibbs sampling can still be performed when using

both conjugate and non-conjugate priors. In section A.4 we list the details of the sampling process of a DP

for all the parameters as suggested in [66,67].

Although using conjugate priors in the DP mixture models make the integral in equation (4.40) tractable

and Gibbs sampling straightforward to implement, the priors of the mean and the covariance of the mix-

tures become dependent on each other which can result in some unappealing properties, and is usually done

only for mathematical and practical convenience [72]. On the other hand choosing non-conjugate priors

can increase the computational cost. [65] discusses this at length and compares the computational efficiency

and the modeling performance when conjugate and non-conjugate priors are used, and suggests that using

conditionally conjugate priors can improve the modeling with a minor increase in the computation cost.

Despite its mathematical elegance, the drawback of the DP approach is that at every iteration, the Gibbs

sampling is performed on the indicators of each observation. This becomes impractical with the increase of

the number of observations. Furthermore, sampling the indicators means that the observations are constantly

moved around into different mixtures, and although this fluctuation decreases considerably after a number

of iterations, two subsequent iterations can have very different representations, which makes it difficult to

decide which representation should be taken as the final result.
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4.1.3.1 DP-means

A special case of the DP called DP-means outlined in Table 4.1 is derived in [64], where the resulting algo-

rithm behaves very similar to the K-means algorithm, except that new mixture components can be added

when needed. This is inspired by the derivation of the K-means algorithm from the EM algorithm as shown

in section 4.1.2.1, where the covariance is assumed to be Σ = σ2ID, and as σ2 → 0, the responsibilities of

an observation belonging to all mixture components go to zero except for the component which is closest

to the observation. In the same manner, for the derivation of DP-means it is assumed that the covariance

matrices in the DP mixture are spherical in the form of σ2ID. This essentially means that G0 is only the

prior on the mean, which is picked to be µ ∼ N (0, ρID) for some value of ρ. Furthermore it is assumed

that α is a function of σ2 and ρ in the form of α = (1 + ρ
σ2 )

D/2 exp(− λ
2σ2 ) for some λ. It is then shown

that the conditional probabilities of an observation point xi belonging to K existing components and a new

component in equation (4.40) is dominated by the smallest values between {||xi−µ1||2, . . . , ||xi−µK ||2, λ}.

This means that much like the K-means algorithm, observation xi is assigned to the closest component,

unless that closest component is more than a distance λ away. In that case a new component is created

with xi as its new member. By taking the limit of σ2 to zero, it is also shown that similar to the K-means

algorithm, the mean of every component becomes the mean of its members. The algorithm converges when

no observation is a distance λ away from all existing mixtures, and also much like the K-means, the center

of the mixtures stop changing to within some pre-defined tolerance.

4.1.4 Other Mixture Model Methods

Part of the literature related to mixture models is focused on finding the right number of components by

utilizing a relative quality measures to compare a finite set of models having different components. Two of

the most commons measures are the Akaike information criterion (AIC) [73] and the Bayesian information

criterion (BIC) [74]. These methods do not test the quality of the model in an absolute sense, and one would

not know if the best candidate model produces poor representation if all the other models in the finite set

are also poor. [75] provides a review of these comparative methods and evaluates the performance of each

measure.

A related topic presented here arises in filtering with a mixture of Gaussians first shown in [76], and the

ever-growing number of components (see section 5.1.3 for details), that requires a method of combining the

components. [77] presented this in a similar setting of finding a Bayesian solution to tracking a target in a
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DP-means Algorithm

1: initialize λ, set K = 1, µ1 to the mean of the data.

2: set cluster indicator ci = 1 of point xi for i = 1, . . . , N

3: repeat until convergence

3: for each point xi in X = {x1, . . .xN}

4: compute dik = ||xi − µk||2 for k = 1, . . . ,K

5: if mink dik > λ, set K = K + 1, ci = K and µK = xi

6: otherwise, set ci = argmink dik

7: compute Nk, number of members of cluster k based on c1, . . . , cN

and compute mean µk = 1
Nk

∑
j:cj=k

xj , for k = 1, . . . ,K

8: end

Table 4.1: The steps of the DP-means algorithm [64].

random clutter, when the origin of the sensor measurements is uncertain, and proposed how the mixtures

should be combined. This has led to a plethora of mixture reduction algorithms that address this problem

by progressively combining similar mixtures that result in a reduced number of components. [78] used the

Integral Squared Error (ISE) as the similarity measure to combine mixtures in a greedy fashion. In [79], an

upper bound on the Kullback-Leiber (KL) divergence between two un-merged mixtures is instead used as

the pair-selection criteria. [80] uses the result of the method in [79] as the initialization step of a K-means

algorithm between the mixture components in order to group different components together, and represents

the grouped mixtures by the center of that group. A good review of such reduction methods is given in [81],

the problem with these approaches however is that the lower limit on the number of components is assumed

to be known.

The vanilla version of the EM and the K-means algorithms are known to suffer from initialization and can

get stuck in local optima. A common time-consuming approach is to use a multiple random starts and take

the representation with the highest likelihood. [82] uses a greedy EM that iteratively adds components up

to a known K, in such a way that the log-likelihood is increased with the addition of every component. This

is shown to outperform the EM with pre-determined number of components. A similar method presented

in [83] uses the K-means algorithm to iteratively add components up to K components, and suggests ways

for speeding up such execution. [84] proposes an EM-based algorithm using split and merge operations to
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escape from local optima of the likelihood. In [85] a modified EM algorithm is presented that has a property

of annihilating weak components. This approach starts with a relatively high number of components, where

the strong components attract more members and the weaker ones are killed off, until convergence to a

remaining number of components.

Approximate inference approaches rely on the assumption that the distribution between the latent model

indicator and the parameters can be written in factored form as

p(Θ,Z) ≈ q(Θ)

N∏
i=1

qi(zi) (4.41)

this is known as the variational Bayes (VB) EM method based on the work in [86–88], where much like

the EM algorithm, one alternates between updating qi(zi) (variational E-step) and q(Θ) (variational M-

step) [62]. In the absence of the knowledge of the number of components K, a similar approach to [85]

mentioned above can be used, where starting with a large number of components, the weaker mixtures get

pruned and only the stronger ones remain at the end.

In the next section we propose EM+, an algorithm that takes inspiration from both the DP and the EM

approach. EM+ has the flexibility of the DP without its high computational cost, and at the same time

enjoys the simplicity of the EM without the limitation of the prior knowledge of the number of components.

Furthermore, by progressively adding and removing components, EM+ avoids getting stuck in local optima.

4.2 The Proposed EM+ Algorithm

As mentioned before, the standard EM algorithm requires a prior knowledge of the number of components

in the mixture. Our approach can be viewed as an extension of the EM algorithm capable of automatically

figuring out the number of components in the mixture. Several EM algorithms have been proposed previously

with this capability, for example [82, 84]. In all of these approaches, it is assumed that the model has K

components on which the standard EM algorithm can be applied and in addition mechanisms to increase

or decrease K are provided. The main differentiating feature in our approach is that during the course of

the algorithm, we rather focus on estimating the parameters Θ1:K of K components of the model without

restricting at any time the actual number of components Ka. In this perspective, the parameters of the

remaining components are considered as nuisance parameters and are integrated-out from the likelihood.

More specifically, the so-called Integrated Likelihood [89] for a single sample is obtained as follows:
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p(xj | π1:K ,µ1:K ,Σ1:K) =
K∑

k=1

πkN (xj | µk,Σk) +

Ka∑
k=K+1

πk

∫
N (xj | µk,Σk)p(µk,Σk)dµkdΣk (4.42)

Letting the parameter prior p(µk,Σk) be the Normal-Inverse-Wishart conjugate distribution (4.14) allows

the explicit computation of the integral in (4.42), namely

∫
N (x | µ,Σ)NIW(µ,Σ | m0, κ0, ν0,S0)dµdΣ = T (x | m0,

κ0 + 1

κ0(ν0 −D + 1)
S0, ν0 −D + 1) (4.43)

where

T (x | µT ,ΣT , ν) =
Γ( ν+D

2 )

Γ( ν2 )
| πνΣT |−

1
2
[
1 + (x− µT )

T (νΣT )
−1(x− µT )

]− ν+D
2 (4.44)

is the multivariate T -distribution [62]. Therefore, inserting (4.43) in (4.42) and defining

π+ =

Ka∑
k=K+1

πk = 1−
K∑

k=1

πk (4.45)

yields

p(xj | π1:K ,µ1:K ,Σ1:K) =

K∑
k=1

πkN (xj | µk,Σk) + π+T (xj | m0,
κ0 + 1

κ0(ν0 −D + 1)
S0, ν0 −D + 1). (4.46)

4.2.1 Parameter Estimation in the EM+ Algorithm

The parameters Θ1:K = {π1:K ,µ1:K ,Σ1:K} in (4.46) with π1:K satisfying (4.45) rather than (4.3) can be

estimated by using the standard (EM-MAP) algorithm. However, the indicated mixture consists of the

normal components z = 1, . . . ,K with parameters to be estimated and the z = K+ component, which is

the fixed T -distribution component representing undeveloped clusters. Having to consider the K+ cluster

requires updating the prior for the cluster probabilities π1:K as follows:

p(π1:K | Ψ) = Dir(π1:K , π+ | α1:K , α+), (4.47)

that is, α+ must be included in the hyperparameters Ψ. Then in the expectation step, by considering R̄i,k

defined by (4.17) for k = 1, . . . ,K as before, and

85



R̄iK+ ≡ p(xi | zi = K+,Θ(t)) ·p(zi = K+ | Θ(t)) = T (xj | m0,
κ0 + 1

κ0(ν0 −D + 1)
S0, ν0−D+1) ·π+, (4.48)

the responsibilities Ri,k are obtained for k = 1, . . . ,K,K+ from

Rik ≡ p(zi = k | X,Θ(t)) =
R̄ik∑K

k=1 R̄ik + R̄iK+

=
R̄ik

p(xi | Θ1:K)
. (4.49)

Furthermore, the maximization step results in the following equations for the cluster probabilities

πk =
Nk + αk − 1

N +

K∑
k=1

αk + α+ −K − 1

, k = 1, . . . ,K (4.50)

π+ =
NK+ + α+ − 1

N +

K∑
k=1

αk + α+ −K − 1

(4.51)

where Nk is defined again by (4.19) and

NK+ =
N∑
i=1

RiK+ · xi. (4.52)

In the course of the EM+ algorithm, the αk’s are re-estimated under the constraints αk ≥ 1 so that Nk +

αk − 1 ≥ 0 and (4.50) and (4.51) are applicable. Therefore, a component probability πk can become zero,

indicating that this component should be removed from the mixture, only asymptotically. Finally, (4.21) to

(4.24) for updating the parameters µ1:K ,Σ1:K remain unchanged.

4.2.2 Addition of a new component

The standard EM algorithm increases the likelihood at each iteration. The proposed algorithm is initialized

with K = 0 and at each iteration a new component is considered as long as π+ > 0 and is added to the

mixture only if the objective function maximized in (4.6) increases. The addition of new components is

done at the expense of the K+ component and each time a new component is added, a smaller π+ results.

Actually, π+ can decrease by redistributing the probability it represents to existing clusters during the EM

step and without adding new components. The final number of mixture components is implicitly determined

as the K for which the estimated parameters give π+ ≈ 0.
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Let us assume that the current mixture consists of K components (besides the K+ component) and that

π+ > 0. We consider adding a component K + 1 and thus obtain a new mixture

p(x | Θ1:K+1) =

K∑
k=1

πkN (x | µk,Σk) + πK+1N (x | µK+1,ΣK+1) + (π+ − πK+1)T (x | λ)

=

K∑
k=1

πkN (x | µk,Σk) + π+T (x | λ) + πK+1

(
N (x | µK+1,ΣK+1)− T (x | λ)

)
= p(x | Θ1:K) + πK+1

(
N (x | µK+1,ΣK+1)− T (x | λ)

)
(4.53)

where

λ ≡
{
m0,

κ0 + 1

κ0(ν0 −D + 1)
S0, ν0 −D + 1

}
(4.54)

summarizes the hyperparameters of the T distribution in (4.46). In (4.53), Θ1:K ≡ {π1:K , µ1:K , Σ1:K} are

fixed at their current values and the objective is to find πK+1 ∈ (0, π+], µK+1, and ΣK+1 so as to maximize

the MAP log-likelihood

FK+1(Θ1:K+1;Ψ) =
N∑
i=1

log p(xi | Θ1:K+1) +
K+1∑
k=1

log
NIW(µk,Σk | λ0)

NIW(µ∗
k,Σ

∗
k | λ0)

+

logDir(π1:K , πK+1, π+ − πK+1 | α1:K , αK+1, α+) + ηK+1 (4.55)

where λ0 ≡ {m0, κ0, ν0,S0}, µ∗
k = m0 and Σ∗

0 = S0/(ν0 + D + 2) are the mode of the NIW distribution

with parameters λ0, and ηK+1 is a constant, the role of which will be discussed in the following. Of course,

an additional hyperparameter αK+1 needs to included in Ψ.

4.2.2.1 Continuity of the Objective Function

When a new component is added (or as discussed later deleted), structural changes occur in the objective

function since the number of variables and parameters changes. Therefore, it is important to establish

conditions under which such transitions result in an overall continuous objective function. To this end, we

observe that the K + 1-model is essentially equivalent to the K-model if πK+1 = 0. Therefore, we require

that
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max
µK+1,ΣK+1

FK+1(Θ1:K , πK+1 = 0,µK+1,ΣK+1) = FK(Θ1:K). (4.56)

From (4.13), we can write

logDir(π1:K , πK+1, π+ − πK+1 | α1:K , αK+1, α+) = logDir(π1:K , π+ | α1:K , α+)+

log
Γ(
∑K+1

k=1 αk + α+)

Γ(
∑K

k=1 αk + α+) · Γ(αK+1)
+ (αK+1 − 1) log πK+1 + (α+ − 1) log

π+ − πK+1

π+
. (4.57)

Furthermore, using (4.53) and (4.57) in (4.55) yields

FK+1(Θ1:K+1) = FK(Θ1:K) +
N∑
i=1

log

(
1 + πK+1

N (xi | µK+1,ΣK+1)− T (xi | λ)
p(xi | Θ1:K)

)
+

log
NIW(µK+1,ΣK+1 | λ0)

NIW(µ∗
K+1,Σ

∗
K+1 | λ0)

+ log
Γ(
∑K+1

k=1 αk + α+)

Γ(
∑K

k=1 αk + α+) · Γ(αK+1)
+

(αK+1 − 1) log πK+1 + (α+ − 1) log
π+ − πK+1

π+
+ (ηK+1 − ηK). (4.58)

From (4.58), it is clear that upon the introduction of a new component K + 1, we must take αK+1 = 1,

otherwise FK+1 is not well defined for πK+1 = 0. However, the αk’s of existing components are not restricted

to remain equal to 1, since as it is discussed later, they are re-estimated during the course of the algorithm.

The hyperparameter α+ is initialized at a value α0+ ≥ 1 and is optimized along with the α1:K during the

course of the algorithm. With these choices, we obtain from (4.58)

max
µK+1,ΣK+1

FK+1(Θ1:K , πK+1 = 0,µK+1,ΣK+1) = FK(Θ1:K) + log
Γ(
∑K

k=1 αk + α+ + 1)

Γ(
∑K

k=1 αk + α+)
+ ηK+1 − ηK

(4.59)

and for (4.56) to hold, we take

ηK+1 = ηK − log

(
K∑

k=1

αk + α+

)
. (4.60)

Recursion (4.60) is initialized with η0 = 0.

4.2.2.2 Optimization of the Objective Function

We can optimize FK+1 over πK+1, µK+1, and ΣK+1 using standard numerical optimization algorithms,

Alternatively, we can view FK+1 as the MAP objective function of a mixture with K + 2 components

(components from 1 to K + 1 and the K+ component), of which only component K + 1 is variable and the
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component probabilities π1:K of the first K components are also fixed. We can then employ the (standard)

EM algorithm as follows. We first write,

FK+1(Θ1:K+1) =

=
N∑
i=1

log

(
K∑

k=1

πkN (xi | µk,Σk) + πK+1N (xi | µK+1,ΣK+1) + (π+ − πK+1)T (xi | λ)
)

+

K+1∑
k=1

logNIW(µk,Σk | λ0) +
K+1∑
k=1

(αk − 1) log πk + (α+ − 1) log(π+ − πK+1) + const. (4.61)

In (4.61), the log-likelihood of the mixture appears on the first line while the second line contains the terms

due to the parameter priors. Considering the full log-likelihood and performing the Expectation step yields

the auxiliary function

Q(Θ1:K+1,Θ1:K+1(t)) =

=

N∑
i=1

K+1∑
k=1

Rik log {πkN (xi | µk,Σk)}+Ri+ log{(π+ − πK+1)T (xi | λ)}

K+1∑
k=1

logNIW(µk,Σk | λ0) +

K+1∑
k=1

(αk − 1) log πk + (α+ − 1) log(π+ − πK+1) (4.62)

with the responsibilities computed as previously from

Rik =
R̄ik∑K+1

k=1 R̄ik + R̄iK+

(4.63)

where R̄i,k are defined by (4.17) for k = 1, . . . ,K + 1, while for k = K+ from

R̄iK+ = (π+ − πK+1)T (xi | λ). (4.64)

We remark that Ri,K+1 and Ri,+ depend on the current estimate for πK+1 ≡ πK+1(t) and considered

constant for the maximization step. Next, to maximize (4.62) with respect to πK+1, we set

∂Q

∂πK+1
=

N∑
i=1

(
Ri,K+1

πK+1
− Ri,+

π+ − πK+1

)
+

αK+1 − 1

πK+1
− α+ − 1

π+ − πK+1
= 0 (4.65)

and obtain the next iterate
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πK+1 =
(NK+1 + αK+1 − 1) · π+

NK+1 +N+ + (αK+1 − 1) + (α+ − 1)
(4.66)

where Nk =
∑N

i=1 Ri,k and N+ =
∑N

i=1 Ri,+ as before. Given the previous choices αK+1 = 1 and α+ = 1,

(4.66) simplifies to

πK+1 =
NK+1 · π+

NK+1 +N+
. (4.67)

We observe that πK+1 < π+ as N+ > 0 for π+ > 0 and thus π+ can only asymptotically converge to

zero. The optimization of (4.62) with respect to µK+1 and ΣK+1 remains the same as in the general case,

therefore, formulas (4.21) to (4.24) for k = K + 1 give the next iterates for µK+1 and ΣK+1.

Next, we discuss the initialization of πK+1, µK+1, and ΣK+1 for the application of the above EM procedure.

Let us assume that µK+1 and ΣK+1 have been selected and focus on picking πK+1 so that the FK+1 is larger

than for πK+1 = 0. The first and second derivatives of (4.61) with respect to πK+1 can be easily obtained

as follows

∂FK+1

∂πK+1
=

N∑
i=1

δ(xi;µK+1,ΣK+1)

p(xi | Θ1:K) + πK+1δ(xi;µK+1,ΣK+1)
+

αK+1 − 1

πK+1
− α+ − 1

π+ − πK+1
(4.68)

∂2FK+1

∂π2
K+1

=
N∑
i=1

−δ(xi;µK+1,ΣK+1)
2

[p(xi | Θ1:K) + πK+1δ(xi;µK+1,ΣK+1)]2
− (αK+1 − 1)

π2
K+1

− α+ − 1

[π+ − πK+1]2
(4.69)

where we defined

δ(xi;µK+1,ΣK+1) ≡ N (xi | µK+1,ΣK+1)− T (xi | λ). (4.70)

Equation (4.69) implies that FK+1 is a concave function of πK+1 ∈ (0, π+) for αK+1 ≥ 1 and α+ ≥ 1 and in

particular with our previous choice αK+1 = 1, the πK+1 maximizing FK+1 is greater than zero if and only if

∂FK+1

∂πK+1
|πK+1=0 =

N∑
i=1

δ(xi;µK+1,ΣK+1)

p(xi | Θ1:K)
− α+ − 1

π+

=
N∑
i=1

N (xi | µK+1,ΣK+1)

p(xi | Θ1:K)
−

N∑
i=1

T (xi | λ)
p(xi | Θ1:K)

− α+ − 1

π+
> 0 (4.71)

The last two terms in (4.71) do not depend on µK+1 and ΣK+1, so we seek to maximize the first term to

achieve ∂FK+1/∂πK+1 |πK+1=0> 0. The K + 1 mixture component is introduced to accommodate samples
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that are not represented well by the existing K components. Therefore, N (xi | µK+1,ΣK+1) is typically

concentrated about such a sample x∗
i . Then, we can assume that N (xi | µK+1,ΣK+1) is small for xi ̸= x∗

i

and we can approximate:

∂FK+1

∂πK+1
|πK+1=0≈

constant

p(x∗
i | Θ1:K)

−
N∑
i=1

T (xi | λ)
p(xi | Θ1:K)

− α+ − 1

π+
(4.72)

Therefore to maximize ∂FK+1/∂πK+1 |πK+1=0, (4.72) suggests selecting x∗
i such that p(x∗

i | Θ1:K) is small.

We found that minimizing p(xi | Θ1:K) does not always work well since, small p(xi | Θ1:K) may also

indicate a sample from a low probability area and not just a sample not represented well by the existing

K components. Instead, we select x∗
i by sampling the available samples with weights 1/p(xi | Θ1:K). In

this manner, samples from high probability areas, which however, are not well represented in the current

mixture tend to be selected as desired. Nevertheless, should this process result in a component that does

not increase FK+1, this component is rejected and another attempt to add a new component is made in the

next iteration. Since x∗
i is viewed as a sample from a new component N (xi | µK+1,ΣK+1), we obtain our

starting values for µK+1 and ΣK+1 as the mode of the posterior NIW distribution based on a the single

sample x∗
i and the conjugate NIW(µ,Σ | λ0) prior given by (4.14). Namely,

µK+1 =
x∗
i + κomo

κ0 + 1
(4.73)

ΣK+1 =
S0 +

κ0

κ0+1 (x
∗
i −m0)(x

∗
i −m0)

T

νo +D + 3
. (4.74)

Finally, once µK+1 and ΣK+1 are given, the πK+1 maximizing the concave function FK+1 can be obtained

by a one-dimensional search. However, we found that good results are obtained with using the starting value

πK+1 =
π+ ·

∑N
i=1 N (xi | µK+1,ΣK+1)∑N

i=1 N (xi | µK+1,ΣK+1) +
∑N

i=1 T (xi | λ)
, (4.75)

which can be thought as the result of one iteration of (4.67) starting with the value πK+1 = π+/2.

4.2.3 Deletion of weak components

During the course of the proposed algorithm, the probabilities of certain mixture components may become

small and indeed go to zero, indicating that these components are being absorbed by stronger ones. The

removal of a weak component should not affect the MAP log-likelihood in the limiting case of its probability

tending to zero while at the same time resulting in a more parsimonious mixture.
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The process of πk → 0 is promoted by the re-estimation of the hyperparameters α1:K and α+ as discussed

in a following section. Indeed, should πk become relatively small, the term (αk − 1) log πk in FK results in a

small maximizing αk and in case that αk < 1, the next maximization of FK+1 in (4.58) over πk will result in

πk = 0. However, to avoid an unbounded optimal value for the objective function, we impose the constraints

α1:K , α+ ≥ 1 during the estimation of these hyperparameters and as a result component probabilities can

only asymptotically tend to zero.

Next, let us assume without loss of generality that πK+1 → 0 and the K + 1 component is to be deleted.

From the maximization step of the EM algorithm and in particular (4.50), πK+1 → 0 and the imposed

constraint αK+1 ≥ 0 imply that NK+1 → 0 and αK+1 → 0. Therefore, we are justified in arranging that

αK+1 = 1 when deleting cluster K + 1. Also from (4.58), we conclude that as πK+1 → 0 the correspond-

ing component parameters µK+1 → µ∗
K+1 and ΣK+1 → Σ∗

K+1 the mode of the NIW distribution. This

is to maximize the third term in (4.58), which is the only term depending on µK+1 and ΣK+1 once πK+1 = 0.

Therefore, we can express (4.58) at the deletion of cluster K + 1 as

FK(Θ1:K) = FK+1(Θ1:K , πK+1 = 0,µ∗
K+1,Σ

∗
K+1)− log

Γ(
∑K

k=1 αk + α+ + 1)

Γ(
∑K

k=1 αk + α+)
− ηK+1 + ηK . (4.76)

The last three terms in the right-hand-side of (4.76) cancel by the choice of the recursion (4.60) and thus, the

continuity of the objective function during the deletion of the K+1 component with πK+1 = 0 is maintained.

In practice, we remove the component K + 1 when the conditions αK+1 = 1 and πK+1 ≤ π0. Here, π0

is chosen to be small relative to the highest probabilities among mixture components and possibly based

on prior knowledge on the maximum number of components. Since when the K + 1 component is deleted

πK+1 > 0, albeit small, rather than πK+1 = 0, its probability must be distributed to the other components

of the mixture, including the K+ component. A simple approach is to normalize the probabilities of the

remaining components by taking

πk,new =
πk∑

1:K πk + π+
, k = 1, . . . ,K

πk,new =
π+∑

1:K πk + π+
. (4.77)
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Alternatively, we may consider maximizing the MAP log-likelihood FK+1 in (4.55) with respect to the π1:K

and under the constraint
∑K

k=1 πk = 1, i.e. πK+1 = 0. This is possible since αK+1 = 1 is assumed. However,

this optimization requires an iterative approach such as the (standard) EM algorithm where the π1:K need

to be initialized, for example, by (4.77). Since, during the subsequent iterations of the proposed algorithm,

such steps are performed nevertheless and since the probability of deleted component is relatively small,

we choose to use (4.77) for updating π1:K . The deletion process is completed by discarding the parameters

µK+1 and ΣK+1 of the deleted component. We remark that due to the approximation involved during a

practical deletion, a (small) increase in the MAP log-likelihood may occur.

4.2.4 Deletion of the K+ component

The K+ component acts as a placeholder for yet undeveloped mixture components. Its probability π+ is

reduced each time a new component is added but π+ may increase during the EM iteration and the deletion

of a mixture component. The K+ component represents all samples and typically it concedes “ownership”

of sample points against newly introduced components that better represent the clusters of the mixture. We

have observed that generally π+ → 0 and we conjecture that this is true as the number of sample points

N → ∞. From a practical perspective, the K+ component is eliminated when the condition π+ ≤ π0 is met.

Notice that α+ ≥ 1 is always enforced and arguing as in the case of deleting mixture components, when the

K+ component is deleted we can assume that α+ = 1. The deletion of the K+ component proceeds in the

same manner as the deletion of any other mixture component. Namely, we normalize the probabilities of the

mixture using the first equation in (4.77) with π+ = 0, and eliminate the T -distribution component from

the mixture. The objective function F−
K without the K+ component relates to the objective function FK

with the K+ component present as follows

FK(Θ1:K) = F−
K (Θ1:K) +

N∑
i=1

log

(
1 + π+

T (xi | λ)
p−(xi | Θ1:K)

)
+ log

Γ(
∑K

k=1 αk + 1)

Γ(
∑K

k=1 αk)
+ (ηK − η−K), (4.78)

where p−(xi | Θ1:K) is the mixture in (4.46) without the T distribution component. From (4.78), to maintain

continuity in the objective function after the deletion of the K+ component, we must update η−K in F−
K by

η−K = ηK + log
Γ(
∑K

k=1 αk + 1)

Γ(
∑K

k=1 αk)
= ηK + log

(
K∑

k=1

αk

)
. (4.79)

After the K+ component is deleted, it is no more possible to add new components. However, the algo-

rithm continues to run optimizing the existing components through standard EM steps, re-estimating the
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hyperparameters κ0 and α1:K , and deleting components that become weak till convergence is achieved.

4.2.5 Selection of the Hyperparameters

A drawback of the (EM-MAP) algorithm is the introduction of a number of hyperparameters and the need

to set appropriate values for them. Such values are suggested in [60, 63], however, we found that the

behavior of the algorithm can be sensitive to the values used for the hyperparameters. In a hierarchical

Bayesian approach, one brings in priors for the hyperparameters and attempts to integrate them out with

the (well-founded) expectation that the result will be less sensitive to the higher level parameters. On

the other hand Empirical Bayes, considers optimizing over the hyperparameters, preferably after all other

parameters have been integrated out. The latter approach is also called Maximum Likelihood II or Evidence

Maximization [90]. Although, its principles have been questioned in the literature, it offers a practical and

empirically proven successful approach to select values for the hyperparameters in the sense that the values

determined are tailored to the samples at hand [91]. The hyperparameters in the proposed EM+ algorithm

are Ψ = {α1:K , α+,λ0}, where α1:K and α+ define the Dirichlet prior (4.13) and λ0 = {m0, κ0, ν0,S0}

define the NIW prior (4.14). In the following, we first discuss the estimation of m0, ν0, and the combined

parameter Sκ0 ≡ (1 + κ−1
0 )S0. Then, we discuss the estimation of κ0 and S0, and finally the estimation of

α1:K and α+.

4.2.5.1 Estimation of the hyperparameters m0, ν0, and Sκ0 ≡ (1 + κ−1
0 )S0

In the EM+ approach, we integrate out all but K mixture components as shown in (4.42). Using a conjugate

prior for the parameters µ and Σ, the integration can be carried out analytically and obtain the equivalent

expression (4.46). The algorithm starts with K = 0 and with all parameters having been integrated out

resulting in the (log) evidence

L(X | λ0) =

N∑
i=1

log T (xi | m0,
κ0 + 1

κ0(ν0 −D + 1)
S0, ν0 −D + 1)

=
N∑
i=1

log

(
Γ(ν0+1

2 )

Γ( ν0−D+1
2 )

| πSκ0 |−
1
2

[
1 + (x−m0)

T
(
Sκ0

)−1
(x−m0)

]− ν0+1
2

)
(4.80)

and where we used (4.44). We can then obtain the desired estimates as

λ̂0 = argmax
λ0

L(X | λ0). (4.81)
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Note that κ0 and S0 appear in the objective function (4.80) as a unit Sκ0 = (1 + κ−1
0 )S0 and, therefore,

cannot be estimated separately. This optimization is implemented only once in the beginning of the algo-

rithm. The values m0 = x̄ ≡ (
∑

i=1 xi)/N , κ0 = 0.01, ν0 = D+2, and S0 = diag(
∑N

i=1(xi−x̄)2)/N (D+1)/D

suggested in [60] are provided as initial values to the software. The gradient of the objective function (4.80)

with respect to the estimated parameters can be readily computed as follows and is also made available to

the optimization routine.

∂L(X | λ0)

∂m0
=

N∑
i=1

(ν0 + 1)(Sκ0)
−1(xi −m0)

1 + (xi −m0)T (Sκ0)−1(xi −m0)
(4.82)

∂L(X | λ0)

∂Sκ0

= −N

2
(Sκ0)

−1 +

(
ν0 + 1

2

) N∑
i=1

(Sκ0)
−1(xi −m0)(xi −m0)

T (Sκ0)
−1

1 + (xi −m0)T (Sκ0)−1(xi −m0)
(4.83)

∂L(X | λ0)

∂ν0
= −N

2
Ξ(

ν0 + 1

2
)− N

2
Ξ(

ν0 −D + 1

2
)−

−1

2

N∑
i=1

log
[
1 + (xi −m0)

T (Sκ0)
−1(xi −m0)

]
(4.84)

where Ξ(x) ≡ d
dx log Γ(x) is the digamma function. The result in (4.83) is a D×D matrix, the ijth element

of which gives the derivative of L(X | λ0) with respect to the ijth element of Sκ0. Although not necessary,

we maintain for simplicity a diagonal S0, consistent with its starting value and, therefore, only the diagonal

elements of (4.83) are used.

4.2.5.2 Estimation of the hyperparameters κ0, and S0

During the addition of a new component, the hyperparameters λ0 = {m0, ν0, κ0,S0} of the NIW distribution

(4.14) affect the initialization of the parameters µK+1 and ΣK+1 in (4.73) and (4.74), respectively. But

more importantly, they bias the values of µ1:K and Σ1:K during the maximization of the MAP log-likelihood

objective function (4.55) towards the mode of the NIW distribution, namely m0 and S0/(ν0 + D + 2).

In the previous section, the parameters m0, ν0, and the combined parameter Sκ0 have been estimated by

maximizing the evidence (4.80) after all mixture parameters have been integrated out. The covariance matrix

of the predictive posterior in (4.43) is given by Sκ0/(ν0 −D − 1) ∼= S0/κ0, where the latter approximation

holds for initial values κ0 ≪ 1 and ν0 = D + 2. Therefore, S0 should be selected to match the typical

covariance matrix of the components of the mixture, while κ0 should be selected small enough so that S0/κ0

produces a predictive posterior covering the range of the data X. Then, at the start of the algorithm without

any mixture components having been established already, only Sκ0
∼= S0/κ0 can be estimated and not S0

and κ0 separately. The estimation of κ0, and implicitly of S0 = κ0Sκ0/(κ0 + 1), needs to based on the
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already developed components of the mixture and is effected after such components have been optimized

along with a newly added component and by maximizing the MAP log-likelihood

FK(Θ1:K ;α1:K , α+,λ0) =
N∑
i=1

log p(xi | Θ1:K) +
K∑

k=1

log
NIW(µk,Σk | λ0)

NIW(µ∗
k,Σ

∗
k | λ0)

+

logDir(π1:K , π+ | α1:K , α+) + ηK (4.85)

with respect to κ0 in λ0. This is accomplished by explicitly solving for κ0 the first order optimality condition

∂FK(Θ1:K , α1:K , α+,λ0)

∂κ0
=

N∑
i=1

∂

∂κ0
log p(xi | Θ1:K ,λ0) +

K∑
k=1

∂

∂κ0
log

(
NIW(µk,Σk | λ0)

NIW(µ∗
k,Σ

∗
k | λ0)

)
= 0 (4.86)

as explained next. From (4.46), we compute

∂

∂κ0
log p(xi | Θ1:K ,λ0) =

∂p(xi | Θ1:K ,λ0)/∂κ0

p(xi | Θ1:K ,λ0)
=

π+ · ∂T (xi | λ0)/∂κ0

p(xi | Θ1:K ,λ0)
= 0, (4.87)

since κ0 enters in T (xi | λ0) through Sκ0 which is estimated at the beginning of the algorithm and is kept

fixed thereafter.

Furthermore, from the expression for the NIW distribution in (4.14) and (4.15) and plugging in the expres-

sions for its mode µ∗ = m0, Σ∗ = S0/(ν0 +D + 2), we obtain

log

(
NIW(µk,Σk | λ0)

NIW(µ∗
k,Σ

∗
k | λ0)

)
=

= −ν0 +D + 2

2
log | Σk | −κ0

2
(µk −m0)

TΣ−1
k (µk −m0)−

1

2
trace(S0Σ

−1
k )−

−D(ν0 +D + 2)

2
log

(
ν0 +D + 2

2

)
+

ν0 +D + 2

2
log | S0 | +D(ν0 +D + 2)

2
. (4.88)

Substituting S0 = κ0Sκ0/(κ0 + 1) in (4.88), the required derivative is easily computed as

∂

∂κ0
log

(
NIW(µk,Σk | λ0)

NIW(µ∗
k,Σ

∗
k | λ0)

)
=

= −1

2
(µk −m0)

TΣ−1
k (µk −m0)−

1

2(κ0 + 1)2
trace(Sκ0Σ

−1
k ) +

D(ν0 +D + 2)

2κ0(κ0 + 1)
. (4.89)

Then, using (4.87) and (4.89) in (4.86) yields the following equation for the optimal κ0:
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A

κ0(κ0 + 1)
− B

(κ0 + 1)2
− C = 0 (4.90)

where, we defined

A = KD(ν0 +D + 2)

B =
K∑

k=1

trace(Sκ0Σ
−1
k ) (4.91)

C =
K∑

k=1

(µk −m0)
TΣ−1

k (µk −m0)

Equation (4.90) is a cubic equation for κ0 that can be shown to have a unique positive solution corresponding

to a maximum of the MAP log-likelihood FK(Θ1:K , α1:K , α+,λ0) as a function of κ0.

4.2.5.3 Estimation of the hyperparameters α1:K , α+

The hyperparameters α1:K , α+ defining the Dirichlet prior (4.13) are also estimated based on the already

developed and optimized components of the mixture by maximizing the MAP log-likelihood FK(Θ1:K ,Ψ)

over α1:K , α+ subject to the constraints α1:K , α+ ≥ 1. In addition, we impose the constraint

K∑
k=1

αk + α+ = K + α0+. (4.92)

The role of (4.92) is two-fold. On the one hand, it serves the technical purpose of making the variables ηK

in (4.60) independent of the αk, and therefore, these variables can be ignored during their optimization. On

the other hand, it promotes competition amongst the mixture components, with the most fit ones (i.e. the

ones with higher probability πk) achieving through the optimization higher αk at the expense of the less

fit components. This in turn, results in even smaller probabilities for the weak components during the EM

algorithm, thus accelerating their removal. The opportunity for such competition is strengthened by taking

a larger value for the constant α0+. Indeed, if α0+ = 1, the above constraints imply that α1:K = 1 and

α+ = 1 is the only feasible solution and effectively the prior on the πk is rendered uniform. Also, (4.72)

implies that a large value for α0+ hinders the introduction of new components, especially at the beginning

of the algorithm when α+ ≈ α0+. This is desirable to the extent that only strong components are allowed

to develop but it is possible that an overly large value for α0+ can prevent any components from forming at all.

The maximization of FK(Θ1:K , α1:K , α+,λ0) in (4.85) with respect to the α1:K , α+ is equivalent with the
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following program

min
α1:K ,α+

K∑
k=1

(
log Γ(αk)− (αk − 1) log πk

)
+

(
log Γ(α+)− (α+ − 1) log π+

)

subject to :

K∑
k=1

αk + α+ = K + α0+ (4.93)

αk ≥ 1, k = 1, . . . ,K, α+ ≥ 1

We approach solving (4.93) via a partial duality approach in order to take advantage of its inherent structure.

Specifically, by considering the Lagrange multiplier µ corresponding to the equality constraint in (4.93), we

maximize the dual function

max
µ

ϕ(µ) ≡

(
K∑

k=1

min
αk≥1

fk(αk,µ) + min
α+≥1

f+(α+,µ)

)
(4.94)

where we defined

fk(αk,µ) ≡ log Γ(αk)− (αk − 1) log πk + µ · αk (4.95)

f+(α+,µ) ≡ log Γ(α+)− (α+ − 1) log π+ + µ · α+ (4.96)

Thus, the evaluation of the dual function requires solving K +1 decoupled scalar minimization subproblems

that can be readily shown to be convex. Furthermore, the first and second derivatives of ϕ(µ) can be

easily obtained and program (4.94) is shown to be concave. We employ a safeguarded Newton’s method to

efficiently solve all of these subproblems.

4.3 Experimental Results of The EM+ Algorithm

The steps of the proposed EM+ algorithm are summarized in Table 4.2. Here we present the results of using

the EM+ algorithm on different sets of synthetically generated data. For a one-dimensional example, we

first construct the underlying "actual" distribution shown as the blue lines in Figure 4.1 (for three different

cases of (a), (b) and (c)), as a mixture of 10 Gaussians that have normalized random weights. We then

take 1000 samples from this distribution which provides the observations of the EM+ algorithm shown by

their histogram (normalized by area) in Figure 4.1. The means of the 10 Gaussians that the samples are
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The EM+ Algorithm

1: Initialize hyperparameters λ0 = {m0, ν0, κ0,S0}, see section 4.2.5

2: while N+
k is not empty || convergence not reached

3: new component K + 1

initialize parameter of new component, πK+1 in (4.75), µK+1 in (4.73), ΣK+1 in (4.74)

find parameters such that objective function is maximized

add component if objective function in (4.61) is increased and set K = K + 1, see

section 4.2.2

4: E-step: update responsibilities

compute RiK+ and RiK for all other components in (4.49)

5: M-step: update parameters

compute µ1:K in (4.22)

compute Σ1:K in (4.24)

compute π1:K and π+ in (4.50) and (4.51)

6: update α1:K and α+, see section 4.2.5.3

7: delete week components, see section 4.2.3

8: update κ0 and S0, see section 4.2.5.1

9: end

Table 4.2: The steps of the EM+ algorithm.



generated from are selected randomly between [−20, 20]. The variance of the components will determine

how much overlap there will be between each component, and for this three different cases are considered

shown as (a), (b) and (c) in Figure 4.1. In the first case Figure 4.1 (a), the variance of each component of

the "actual" distribution is randomly selected between [0.1, 0.5], which creates components that are apart.

In the other two cases, Figure 4.1 (a) and (b), the variance of each component is selected between [0.5, 2]

and [2, 5], which will increases the overlaps of the resulting mixtures in each case. The results of the EM+

are shown with the red lines, that can be seen to closely follow the latent "actual" distribution in the blue

lines. The EM+ generally takes less iterations to converge for the case where the components are apart from

each other (Figure 4.1 (a)) since each region can be represented by a single Gaussian, and the estimated

parameters by the algorithm quickly converge to Gaussians that represent each region well.

In a similar manner, the EM+ algorithm is implemented on three sets of two-dimensional observations gen-

erated from three different mixtures each consisting of 10 Gaussians components. The components of the

"actual" mixtures are represented by the blue ellipses in Figure 4.2 (a), (b) and (c). Each dimension of the

means (centers) of the components are randomly drawn from [−20, 20] similar to before, and three different

cases are considered for the covariances that are in the form of diag(σ2
1 , σ

2
2). Figure 4.2 (a) corresponds to

drawing the σ2 values randomly in the range of [0.1, 0.5], and Figure 4.2 (a) and (b) to [0.5, 2] and [2, 5]

respectively; the amount of overlapping between the components increases from (a) to (c). The observations

that are drawn from the "actual" distribution are represented by black dots in each case, and the resulting

components from the EM+ algorithm are shown in red. Similar to before, case (a) converges faster. It can

be seen in case (b) and (c) that the overlapping components can often be represented by a single component.

Next, we implement the EM+ algorithm on the spiral data set presented in [84]. The three-dimensional

noisy observations are generated from the spiral function as the following

x = (x1, x2, x3) = (13− 0.5t)cos(t),−(13− 0.5t)sin(t), t) + v (4.97)

where t ∈ [0, 4π] and v ∼ N (0, σ2I), with σ2 = 0.52.

The vanilla EM algorithm is sensitive to the initialization of the parameters that can often get stuck in local

optima and produce undesirable results as shown in Figure 4.3. As mentioned before, [84] addresses this

issue by splitting and merging components throughout the algorithm, which results in escaping from the

local optima.
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Figure 4.1: 1D example of the EM+ algorithm. The bars are the histogram of the observations (normalized
by area), which are generated from the "actual" distribution in blue. The red is the result of the EM+

algorithm. The number of components found and iterations it took is shown on top of the plots.
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Figure 4.2: Two dimensional example of the EM+ algorithm. In each plot, the dots represent the observations,
which are generated from the "actual" components in blue ellipses. The red ellipses are the result of the
EM+ algorithm. The number of components found and iterations it took is shown on top of the plots.
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Figure 4.3: The vanilla EM is prone to getting stuck in local optima and producing undersireable results.
The blue line is the spiral funciton, and the red dots are the generated observations. The black lines represent
the detected components.

By progressively adding and deleting components, the proposed EM+ is also capable of escaping local optima

and unlike the vanilla EM, is not sensitive to the initialization of the parameters. Moreover, the number of

clusters are detected automatically. Figure 4.4 shows the results of the EM+ algorithm on the spiral data set,

where (a) shows the histogram of the number of components detected for 100 different runs of the algorithm,

and (b) shows the results of the most frequent number of components found, K = 10. In the next chapter,

we present a filtering algorithm that utilizes the EM+ for generating the predictive distribution as a mixture

of Gaussians from samples.
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(b) result of the EM+ when 10 components are detected

Figure 4.4: Results of EM+ on the spiral data set. (a) shows the histogram of the number of components
detected for 100 different runs of the algorithm, with the most common result, when K = 10 shown in
(b). The blue line is the spiral funciton, and the red dots are the generated observations. The black lines
represent the detected components.



Chapter 5

Filtering with EM+

5.1 Introduction

The problem of filtering arises in a variety of different areas of science, where the objective is to estimate

the state of the system based on noisy observations of the states from measurements. Consider a stochastic

non-linear dynamic system defined by a Markovian process of

xt = ft(xt−1) + vt−1 (5.1)

where x ∈ RDx , f() is the non-linear dynamics function, and vt−1 ∼ N (0,Σvt−1) is the process noise at

time t− 1.

The measurement of the state at each time is defined by

zt = ht(xt) + qt (5.2)

where z ∈ RDz , h() is a non-linear measurement function, and qt ∼ N (0,Σqt) is the measurement noise at

time t.

In a Bayesian perspective the filtering problem is updating some belief in the state conditioned on the mea-

surements. Given an initial prior p(x0) and a dynamic system described above, the goal of filtering is to

recursively infer the distribution on the hidden state xt by incorporating the sequential measurements.
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The posterior probability distribution function (pdf) p(xt | z1:t) can be updated recursively using Bayes’s

theorem in two stages, the prediction step and the update step. The prediction step is obtained by using

the Chapman-Kolmogorov equation as

p(xt | z1:t−1) =

∫
p(xt | xt−1)p(xt−1 | z1:t−1)dxt−1 (5.3)

and once a measurement zt becomes available, it is used to update the prior via Bayes’ rule to obtain the

posterior of the current state

p(xt | z1:t) =
1

c
p(zt | xt)p(xt | z1:t−1) (5.4)

where

c = p(zt | z1:t−1) =

∫
p(zt | xt)p(xt | z1:t−1)dxt (5.5)

Obtaining the density in equation (5.4) gives the most complete description of the state at each iteration,

which means that the filtering problem can be regarded as solved [76,92].

5.1.1 Gaussian Filtering

If the state transition in equation (5.1) is linear in the form of

xt = F txt−1 + vt−1 (5.6)

and the the measurement in equation (5.2) is also linear as

zt = Htxt + qt (5.7)

and vt−1 and qt are drawn from Gaussian distributions (which is the case here), then the posterior on the

state at every iteration is Gaussian and the Kalman filter gives the optimal filtering set of equations for

updating the belief in the state [76,92]. The steps of the Kalman filter are summarized in Table 5.1.

Unfortunately these highly restrictive assumptions are not true in most cases and the Kalman filter cannot

be used, or needs to be modified in order to be applied to non-linear systems. The most popular variation of

the Kalman filter is the Extended Kalman filter (EKF) that estimates the state by using local linearization of

the state transition and measurement equations around the mean of the current state prediction. To obtain
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The Kalman Filter

1: initialize prior distribution on the state p(xt−1 | z1:t−1) = N (µt−1|t−1,Σt−1|t−1)

2: get prediction

p(xt | z1:t−1) = N (µt|t−1,Σt|t−1)

µt|t−1 = F tµt−1|t−1

Σt|t−1 = Σvt−1 + F tΣt−1|t−1F
⊤
t

3: measurement zt comes in

4: compute the Kalman gain matrix

Kt = Σt|t−1H
⊤
t (HtΣt|t−1H

⊤
t +Σqt)

−1

5: update (get posterior)

p(xt | z1:t) = N (µt|t,Σt|t)

µt|t = µt|t−1 +Kt(zt −Htµt|t−1)

Σt|t = Σt|t−1 −KtHtΣt|t−1

6: estimate state based on p(xt | z1:t)

7: set t = t+ 1, set prior equal to the posterior, and go back to 2.

Table 5.1: The steps of the Kalman filter.



a closed-form solution of the prediction step of the filter, ft(xt−1) is linearized around µt−1|t−1. Ommiting

the higher terms of the Taylor series expansion, the linearized state transition equation around µt−1|t−1 is

ft(xt) ≈ ft(µt−1|t−1) + F̂ t[xt−1 − µt−1|t−1] (5.8)

where

F̂ t =
∂ft

∂xt−1
(µt−1|t−1) (5.9)

Similarly to obtain a closed-form solution of the posterior of the filter, ht(xt) is linearized around µt|t−1, as

Ht(xt) ≈ Ht(µt|t−1) + Ĥt[xt − µt|t−1] (5.10)

where

Ĥt =
∂ht

∂xt
(µt|t−1) (5.11)

The steps of the EKF are given in Table 5.2. The local linearization used in the EKF and other variations of

the Kalman filter generally do not capture the non-linearity away from centers of the linearization. Moreover,

since the posterior of these filters at every iteration is Gaussian, they can never represent the true density

in a multimodal system. Instead, they act more as a maximum likelihood estimator, and follow one of the

peaks of the density function [76].

5.1.2 Particle Filtering

The particle filter is used when the system is non-linear, and the probability distribution on the states are

non-Gaussian at each time step. The earliest form of the particle filtering was introduced in [93], where the

central idea was to approximate the posterior density function by a set of weighted particles as

p(xt | z1:t) ≈
Ns∑
i=1

wi
tδ(xt − xi

t) (5.12)

where x1:Ns
t are the particles at time step t, with associated weights of w1:Ns

t that sum to 1. The particles

are selected based on a technique known as importance sampling. The importance sampling is used when it

is difficult to draw samples from a distribution p(x) ∝ r(x), but one can evaluate r(x). Then samples are

drawn from a user-defined proposal distribution s(), and p(x) is approximated as
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The Extended Kalman Filter

1: initialize prior distribution on the state p(xt−1 | z1:t−1) = N (µt−1|t−1,Σt−1|t−1)

2: linearize ft around µt−1|t−1, compute F̂ t, get prediction

p(xt | z1:t−1) = N (µt|t−1,Σt|t−1)

µt|t−1 = ft(µt−1|t−1)

Σt|t−1 = Σvt−1 + F̂ tΣt−1|t−1F̂
⊤
t

3: measurement zt comes in

4: linearize ht around µt|t−1, compute Ĥt, compute the Extended Kalman gain matrix

Kt = Σt|t−1Ĥ
⊤
t (ĤtΣt|t−1Ĥ

⊤
t +Σqt)

−1

5: update (get posterior)

p(xt | z1:t) = N (µt|t,Σt|t)

µt|t = µt|t−1 +Kt(zt − ht(µt|t−1))

Σt|t = Σt|t−1 −KtĤtΣt|t−1

6: estimate state based on p(xt | z1:t)

7: set t = t+ 1, set prior equal to the posterior, and go back to 2.

Table 5.2: The steps of the Extended Kalman filter.



p(x) ≈
Ns∑
i=1

wiδ(x− xi) (5.13)

where the weights are

wi ∝ r(xi)

s(xi)
(5.14)

and are normalized to sum to 1. In the particle filter one can derive the update formulas for the weights

of the particles from one step to the next by using the posterior update in equation (5.4) (for a detailed

derivation refer to [92]), which gives

wi
t ∝ wi

t−1

p(zt | xi
t)p(x

i
t | xi

t−1)

s(xi
t | xi

t−1, zt)
(5.15)

which are again normalized to sum to 1. The state transition probability p(xt | xi
t−1) is an intuitive and

common choice for the proposal distribution, which means that the weights of the particles are updated

according to

wi
t ∝ wi

t−1p(zt | xi
t) (5.16)

The posterior of the filter in equation (5.4), which gives the complete description of the state at the next

iteration, is then approximated by the updated weights that result from equation (5.16). In the next iteration

of the filter, the updated particles become the currents ones, and the same process is repeated.

A common issue with the particle filter is that after a number of iterations, all but a few particles will have

negligible weights; this is known as the degeneracy problem. This means that most of the computation is

spent on updating the small weights that don’t contribute to approximating the posterior distribution. The

effect of the degeneracy can be reduced by a better choice of the proposal distribution, and also by a process

known as resampling. When degeneracy is detected, the discrete distribution in equation(5.12) is sampled

Ns times (with replacement) which will result in the elimination of the particles with small weights. This

however can lead to the issue of "particle collapse", i.e. the loss of diversity amongst particles, that results

in poor representation of the posterior distribution [92].

The choice of the proposal distribution, and the resampling step are crucial in the performance of the particle

filter. The variations of the particle filter in the literature are concerned with the selection of the proposal

distribution, and when and how the resampling process should be performed in order to reduce the effect
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of degeneracy and the loss of diversity amongst particles. The sampling importance sampling (SIR) filter

in [93] uses p(xt | xi
t−1) as the proposal distribution and performs resampling from the discrete posterior

distribution at every iteration. As mentioned above, this can quickly suffer from the collapse of particles

(especially if the process noise is small). To address this issue the regularized particle filter (RPF) [94]

performs resampling on a continuous approximation (as opposed to discrete) of the posterior distribution

created by p(xt | z1:t) ≈
Ns∑
i=1

wi
tK(xt − xi

t), where K() is a Kernel density of choice. Another common

particle filter is the auxiliary particle filter (APF) [95], which is a variation of the SIR filter that uses the

knowledge about the next observation to infer which particles are likely to be compatible with the future

measurement, and therefore should have a higher chance of surviving in the resampling step. An excellent

review on the various approaches of the particle filter is given in [92], and a benchmark problem in the

filtering literature is used to compare their performance. In section 5.3, we use the same problem to compare

the results of the proposed filtering method to the particle filters.

5.1.3 Filtering with Mixtures of Gaussians

Non-linear state estimation with the use of mixtures of Gaussians dates back to the work of [76]. Suppose

that in the prediction step, the distribution of the state is represented by a finite summation of Gaussians as

p(xt | z1:t−1) =

K∑
i=1

π(i)N (xt | µ(i)
t|t−1,Σ

(i)
t|t−1) (5.17)

where π(i) is the weight of each Gaussian and K is the total number of components of the mixture. Using

Bayes’ rule in equation (5.4) and the likelihood given by

p(zt | xt) = N (zt | ht(xt),Σqt) (5.18)

the posterior p(xt | z1:t) can be written as

p(xt | z1:t) ∝
K∑
i=1

π(i)N (xt | µ(i)
t|t−1,Σ

(i)
t|t−1)N (zt | ht(xt),Σqt) (5.19)

Since the measurement function ht(xt) in N (zt | ht(xt),Σqt) is non-linear, the expression above cannot be

written in closed-form. To obtain a closed-form solution of the posterior of the filter, ht(xt) is linearized

around µ
(i)
t|t−1, the center of each mixture in p(xt | z1:t−1). Omitting higher terms of the Taylor series

expansion, the linearized measurement function around µ
(i)
t|t−1 is

ht(xt) ≈ ht(µ
(i)
t|t−1) + Ĥ

(i)

t (xt − µ
(i)
t|t−1) (5.20)
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where

Ĥ
(i)

t =
∂ht

∂xt
(µ

(i)
t|t−1) (5.21)

after linearization of the measurement function, the two Gaussians in equation (5.19) for each µ
(i)
t|t−1 combine

into one, and the posterior as shown in [76] can be written as

p(xt | z1:t) =
K∑
i=1

π′(i)N (xt | µ(i)
t|t ,Σ

(i)
t|t) (5.22)

where

K
(i)
t = Σ

(i)
t|t−1H

(i)
t

⊤
(H

(i)
t Σ

(i)
t|t−1H

(i)
t

⊤
+Σqt)

−1

µ
(i)
t|t = µ

(i)
t|t−1 +K

(i)
t (zt − ht(µ

(i)
t|t−1))

Σ
(i)
t|t = Σ

(i)
t|t−1 −K

(i)
t H

(i)
t Σ

(i)
t|t−1

π′(i)
un ∝ π(i)N (zt | ht(µ

(i)
t|t−1),H

(i)
t Σ

(i)
t|t−1H

(i)
t

⊤
+Σqt)

π′(i) =
π
′(i)
un

K∑
j=1

π′(j)
un

(5.23)

One can see that the parameters obtained above for each of the components of the posterior mixture, are

the parameters that would be obtained when using an extended Kalman filter. Therefore representing the

predictive distribution as a summation of K Gaussians, and the linearization of the measurement function

around the means of each of the components, is equivalent to finding the posterior distribution by running

K extended Kalman filters in parallel [76].

To get the predictive distribution of the next state, [76] suggests linearizing the dynamics around µ
(i)
t|t , the

means of the posterior mixture above that gives

ft+1(xt) ≈ ft+1(µ
(i)
t|t) + F̂

(i)

t+1(xt − µ
(i)
t|t) (5.24)

where

F̂
(i)

t+1 =
∂ft+1

∂xt
(µ

(i)
t|t) (5.25)
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Using the Chapman-Chapman-Kolmogorov integral in equation (5.3), the predictive distribution will result

in

p(xt+1 | z1:t) =
K∑
i=1

π′(i)N (xt+1 | ft+1(µ
(i)
t|t), F̂

(i)

t+1Σ
(i)
t|t F̂

(i)

t+1

⊤
+Σvt) (5.26)

In the predictive mixture above, if the plant covariance Σvt is large compared to Σ
(i)
t|t , the variance of each

of the Gaussians will be increased by the large plant noise that results in the mixtures having large overlaps

with each other; this means that the linearization is no longer valid. Furthermore, the next measurement

will cause the means of the Gaussians to be nearly the same, which will reduce the mixture filter into only

one extended Kalman filter. To prevent this from happening, the large Gaussian plant noise is written as a

summation of K2 "thinner" Gaussians as

p(vt) =

K2∑
j=1

γ(j)N (vt | µ(j)
vt ,Σ

(j)
vt

) (5.27)

the linearization of dynamic function around µ
(i)
t|t results in the state transition distribution as a summation

of Gaussians

p(xt+1 | xt) =

K2∑
j=1

γ(j)N (xt+1 | ft+1(µ
(i)
t|t) + F̂

(i)

t+1(xt − µ
(i)
t|t) + µ(j)

vt ,Σ
(j)
vt ) (5.28)

and the result of the predictive integral will now be a summation of K1K2 Gaussians as

p(xt+1 | z1:t) =

K1∑
i=1

K2∑
j=1

π′(i)γ(j)N (xt+1 | µ(ij)
t+1|t,Σ

(ij)
t+1|t) (5.29)

where

µ
(ij)
t+1|t = ft+1(µ

(i)
t|t) + µ(j)

vt

Σ
(ij)
t+1|t = Σ(j)

vt
+ F̂

(i)

t+1Σ
(i)
t|t F̂

(i)

t+1

⊤ (5.30)

The above however will result in the number of the components of the next prediction step to grow by a

factor of K2, and thereafter resulting in an exponential growth of the number of components. It is suggested

in [76] to reduce the number of mixtures by combining the similar components. The ever-increasing number

of mixtures was also demonstrated in a similar setting in [77], which highlighted the need of merging similar

components. As stated before this led to many publications on the topic of mixture reduction algorithms,
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some of which were discussed earlier. In the next section, we propose a filter that avoids encountering this

issue by utilizing the EM+ algorithm presented earlier.

The Mixture of Gaussians Filter

1: initialize prior distribution on the state p(xt−1 | z1:t−1) =

K1∑
i=1

π′(i)N (µ
(i)
t−1|t−1,Σ

(i)
t−1|t−1)

2: write distribution on process noise as a mixture of K2 components

p(vt−1) =

K2∑
j=1

γ(j)N (vt−1 | µ(j)
vt−1

,Σ(j)
vt−1

)

3: linearize ft around µ
(i)
t−1|t−1, compute F̂

(i)

t , get prediction

p(xt | z1:t−1) =

K1∑
i=1

K2∑
j=1

π′(i)γ(j)N (xt | µ(ij)
t|t−1,Σ

(ij)
t|t−1)

µ
(ij)
t|t−1 = ft(µ

(i)
t−1|t−1) + µ

(j)
vt−1

Σ
(ij)
t|t−1 = Σ(j)

vt−1
+ F̂

(i)

t Σ
(i)
t−1|t−1F̂

(i)

t

⊤

4: measurement zt comes in

5: reduce mixture in step 3 to K components, find new π(i), µ(i)
t|t−1 and Σ

(i)
t|t−1

p(xt | z1:t−1) =
K∑
i=1

π(i)N (xt | µ(i)
t|t−1,Σ

(i)
t|t−1)

6: linearize ht around µ
(i)
t|t−1, compute Ĥ

(i)

t , compute the EKF gain matrix for each component

K
(i)
t = Σ

(i)
t|t−1H

(i)
t

⊤
(H

(i)
t Σ

(i)
t|t−1H

(i)
t

⊤
+Σqt)

−1

7: update by getting posterior

p(xt | z1:t) =
K∑
i=1

π′(i)N (µ
(i)
t|t ,Σ

(i)
t|t)

µ
(i)
t|t = µ

(i)
t|t−1 +K

(i)
t (zt − ht(µ

(i)
t|t−1))

Σ
(i)
t|t = Σ

(i)
t|t−1 −K

(i)
t H

(i)
t Σ

(i)
t|t−1

π
′(i)
un ∝ π(i)N (zt | ht(µ

(i)
t|t−1),H

(i)
t Σ

(i)
t|t−1H

(i)
t

⊤
+Σqt)

π′(i) =
π′(i)
un

K∑
j=1

π′(j)
un

8: estimate state based on p(xt | z1:t)

9: set t = t+ 1, K1 = K, set prior equal to the posterior, and go back to 2.

Table 5.3: The steps of the mixture of Gaussian filter
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5.2 Proposed Filtering Method with EM+

In the proposed method, the particle filter and the mixture of Gaussians filter are combined in a way that their

advantages are exploited, while eliminating the disadvantages that both approaches suffer from. Assuming

that the prior distribution, p(xt−1 | z1:t−1) is known, Ns samples {x1
t−1 . . .x

Ns
t−1} are taken, which are then

passed through the non-linear state transition function in equation (5.1) which results in

xi
t = ft(x

i
t−1) + vi

t−1 (5.31)

for i = 1, . . . , Ns, where vi
t−1 is a sample from N (0,Σvt−1). The produced samples are essentially samples

of the predictive distribution p(xt | z1:t−1), which can then be used with EM+ to construct the underlying

distribution as

p(xt | z1:t−1) =

K∑
i=1

π(i)N (xt | µ(i)
t|t−1,Σ

(i)
t|t−1) (5.32)

The flexibility of EM+ allows for estimating the means and covariances, and for automatically inferring

the number of mixture components needed above to construct a distribution that represents the samples

well. Once the predictive distribution is represented as a mixture of Gaussians, the posterior is obtained by

linearizing the measurement equation around µ
(i)
t|t−1, the mean of each component similar to the mixture of

Gaussian filter discussed earlier. This will produce the same posterior distribution in equation (5.22), which

is

p(xt | z1:t) =
K∑
i=1

π′(i)N (µ
(i)
t|t ,Σ

(i)
t|t) (5.33)

where

K
(i)
t = Σ

(i)
t|t−1H

(i)
t

⊤
(H

(i)
t Σ

(i)
t|t−1H

(i)
t

⊤
+Σqt)

−1

µ
(i)
t|t = µ

(i)
t|t−1 +K

(i)
t (zt − ht(µ

(i)
t|t−1))

Σ
(i)
t|t = Σ

(i)
t|t−1 −K

(i)
t H

(i)
t Σ

(i)
t|t−1

π′(i)
un ∝ π(i)N (zt | ht(µ

(i)
t|t−1),H

(i)
t Σ

(i)
t|t−1H

(i)
t

⊤
+Σqt)

π′(i) =
π
′(i)
un

K∑
j=1

π′(j)
un

(5.34)
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In the next iteration of the filter, the posterior above becomes the prior mixture distribution, which is then

sampled again Ns times. These samples are passed through the non-linear state transition function as men-

tioned above and the results are used to construct the predictive distribution with the EM+ algorithm. By

using samples to represent the predictive distribution, the state transition function is not linearized and

the problem of the ever-increasing number of Gaussians is averted. Furthermore, the need for a proposal

distribution and the problems of degeneracy and collapse of the particles in the particle filter are avoided.

The steps of the proposed filter are given the Table 5.4. In the next section, we compare the results of the

EKF, the particle filter and the proposed filter on a simple example commonly used in the filtering literature.

The Proposed Filter

1: initialize prior distribution on the state p(xt−1 | z1:t−1) =

K1∑
i=1

π′(i)N (µ
(i)
t−1|t−1,Σ

(i)
t−1|t−1)

2: take Ns samples from the prior {x1
t−1, . . . ,x

i
t−1, . . . ,x

Ns
t−1}

3: get samples from predictive distribution by passing each samples through state transition

function as xi
t = ft(x

i
t−1) + vi

t−1, where vi
t−1 is a sample from N (0,Σvt−1)

4: measurement zt comes in

5: represent the samples in step 3 with a mixture of Gaussians distribution using EM+ algorithm

p(xt | z1:t−1) =
K∑
i=1

π(i)N (xt | µ(i)
t|t−1,Σ

(i)
t|t−1)

6: linearize ht around µ
(i)
t|t−1, compute Ĥ

(i)

t , compute the gain matrix for each component

K
(i)
t = Σ

(i)
t|t−1H

(i)
t

⊤
(H

(i)
t Σ

(i)
t|t−1H

(i)
t

⊤
+Σqt)

−1

7: update by getting posterior

p(xt | z1:t) =

K∑
i=1

π′(i)N (µ
(i)
t|t ,Σ

(i)
t|t)

µ
(i)
t|t = µ

(i)
t|t−1 +K

(i)
t (zt − ht(µ

(i)
t|t−1))

Σ
(i)
t|t = Σ

(i)
t|t−1 −K

(i)
t H

(i)
t Σ

(i)
t|t−1

π
′(i)
un ∝ π(i)N (zt | ht(µ

(i)
t|t−1),H

(i)
t Σ

(i)
t|t−1H

(i)
t

⊤
+Σqt)

π′(i) =
π′(i)
un

K∑
j=1

π′(j)
un

8: estimate state based on p(xt | z1:t)

9: set prior equal to the posterior, and go back to 2.

Table 5.4: The steps of the proposed filter
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5.3 Results

The benchmark non-linear time series model that is used here has been analyzed before in many publications

[92]. The state space and measurement equations of the model are

xt = ft(xt−1, t) + vt−1

zt =
(xt)

2

20
+ wt

(5.35)

where

ft(xt−1, t) =
xt−1

2
+

25xt−1

1 + x2
t−1

+ 8cos(1.2t)

vt−1 ∼ N (0, 10)

wt ∼ N (0, 1)

(5.36)

[92] reports the results of the EKF and three variations of the particle filter mentioned earlier, the SIR,

the APF, and the RPF. In addition to this, a filter named the "likelihood" particle filter which uses the

likelihood in the proposal distribution, is designed to work well for this specific example. Table 5.5 shows

the root mean squared error (RMSE) values averaged over 100 MC runs, where each run consists of 100 time

steps. The particle filters each use 50 particles, and are resampled at every iteration. It can be seen that a

single EKF gives poor results. The results of the SIR, and the Regularized particle filters are close to each

other. The APF performs better than both of these filter, and the "likelihood" particle filter has the best

performance. For this problem, since the likelihood is far tighter than the prior, the posterior will look more

similar to the likelihood, therefore using an importance density based on the likelihood that resembles the

posterior will produce better results. It is important to note however that this is not in general true and

the good results produced by this filter on this example is only used to show the importance of the proposal

distribution in the performance of the particle filter [92].

The proposed filter with the use of the EM+ algorithm uses 50 samples in step 3 of Table 5.4. The result of

the proposed filter shown in Table 5.5 significantly improves the RMSE value over a single Extended Kalman

filter. Moreover there is an improvement over the general-purpose SIR, the APF and the RPF. The results

of the proposed filter is slightly better than the "likelihood" particle filter that was designed to work well

for this problem.

117



Algorithm Root Mean Squared Error

Extended Kalman filter (EKF)* 23.19

Sampling importance sampling particle filter (SIR) [93]* 5.54

Auxiliary particle filter (APF) [95]* 5.35

Regularized particle filter (RPF) [94]* 5.55

"Likelihood" particle filter [92]* 5.30

Proposed filter with EM+ 5.29

Table 5.5: RMSE values of different filtering algorithms averaged over 100 MC runs. The results of * are
taken from [92].

5.3.1 Summary

A filter that combines the advantages of the particle filter and the mixture of Gaussians filter, while avoiding

the disadvantages of the two was presented. The use of samples in the prediction step of the filter avoids the

problem of the ever-increasing number of components in the mixture of Gaussians filter. Furthermore, the

main issues of the particle filter, which are the dependency of its performance on the choice of the proposal

distribution, the degeneracy in the particles over time, and the collapse of particles are averted by having an

explicit distribution of the prior as a mixture of Gaussians for sampling in the prediction step of the filter.

The results in Table 5.5 show that the performance of the proposed filter is better than both the general

purpose, and the customized particle filter that were used on a non-linear example shown in the previous

section. The proposed filter can be used for non-linear problems and is able to represent the multimodality

of the distributions at the prediction and update steps of the filter by inferring the number of Gaussians

needed using the EM+ algorithm. This makes it applicable to a wide range of filtering problems without the

need of modifications.
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Appendix A

Appendix

A.1 Mathematical Background

A.1.1 The Gaussian Distribution

A multivariate Gaussian distribution of x ∈ RD with mean µ ∈ RD and covariance matrix Σ ∈ RD×D is

given by

p(x) = (2π)−
D
2 |Σ|− 1

2 exp(−1

2
(x− µ)⊤Σ−1(x− µ)) (A.1)

and is written as x ∼ N (µ,Σ)

The standard normal probability density function is defined as

ϕ(x) =
1√
2π

exp(−1

2
x2) (A.2)

The standard normal cumulative distribution function is defined as

Φ(x) =
1√
2π

∫ x

−∞
exp(− t2

2
)dt (A.3)

which can be written in terms of the error function as

Φ(x) =
1

2

[
1 + erf(

x√
2
)

]
(A.4)

if x1 and x2 are jointly Gaussian,
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x1

x2

 ∼ N (

µ1

µ2

 ,

Σ11 Σ12

Σ21 Σ22

) (A.5)

then the conditional distributions of x1 given x2 is

p(x1|x2) = N (µ1 +Σ12Σ
−1
22 (x2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21) (A.6)

A.1.2 Multivariate T-distribution

In general the multivariate t-distribution is written as

T (x | µT ,ΣT , ν) =
Γ( ν+D

2 )

Γ( ν2 )
|πνΣT |−

1
2

[
1 + (x− µT )

T (νΣT )
−1(x− µT )

]− ν+D
2 (A.7)

For the set of λ = {m0,S0, κ0, ν0} used in this work the t-distribution can be written as

T (x | λ) = T (x | m0,
κ0 + 1

κ0 ν0 −D + 1︸ ︷︷ ︸
ν

S0, ν0 −D + 1︸ ︷︷ ︸
ν

)

=
Γ( ν+D

2 )

Γ(ν2 )
(π

κ0 + 1

κ0
)−

D
2 |S0|−

1
2

[
1 +

κ0

κ0 + 1
(x−m0)

T (S0)
−1(x−m0)

]− ν+D
2

(A.8)

A.1.3 Matrix Algebra

For non-singular square matrix A, and D −CA−1B, the following block-wise inversion property holds

A B

C D


−1

=

A−1 +A−1B(D −CA−1B)−1CA−1 −A−1B(D −CA−1B)−1

−(D −CA−1B)−1CA−1 (D −CA−1B)−1

 (A.9)
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A.2 Combining Two Uncertain Estimates

Two independent estimates of an unknown from different sources with different uncertainties (both Gaussian)

can be combined to create a better estimate. If {V1, σ
2
1} and {V2, σ

2
2} are two uncertain estimates of V , it

is desired to obtain an estimate of the mean of the combined measurement. The joint likelihood, or the

conditional probability of obtaining the measurement given V is

L(V ) = p(V1, V2 | V )

= p(V 1 | V )p(V 2 | V )

(A.10)

a good estimate of V is then a value that maximizes the likelihood above

V̂ = argmax
V

L(V ) (A.11)

this is solved by taking the derivative of equation (A.10) w.r.t V and setting it to zero. This operation would

be easier on the log-likelihood which is proportional to

log(L(V )) ∝ − (V1 − V )2

2σ2
1

− (V2 − V )2

2σ2
2

(A.12)

and

∂L(V )

∂V
=

(V1 − V )

σ2
1

− (V2 − V )

σ2
2

= 0 (A.13)

which gives

V̂ =

V1

σ2
1
+ V2

σ2
2

1
σ2
1
+ 1

σ2
2

(A.14)

the variance of the estimate above is

Var[V̂ ] =
1

1
σ2
1
+ 1

σ2
2

(A.15)
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A.3 Equations of Motion

A.3.1 Mountain Car

Figure A.1: The Mountain Car
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The mountain is described by the following equation

H(x) =

 x2 + x x < 0

x√
1+5x2

x ≥ 0

and the dynamics of the car (unknown to the algorithm) is given by:

ẋ =
a

M
√

1 +H ′(x)2
− gH ′(x)

1 +H ′(x)2
(A.16)

where M = 1 kg and g = 9.8 m
s2 .

A.3.2 Inverted Pendulum

Figure A.2: The inverted pendulum set up

The equations of motion of the inverted pendulum system are the following
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(mc +mp)ẍ+
1

2
mplθ̈ cos θ −

1

2
mplθ̇

2 sin θ = u− bẋ

2lθ̈ + 3ẍ cos θ + 3g sin θ = 0

(A.17)

where mc and mp are the masses of the cart and the pendulum respectively, u is the force applied to the

cart, and b is the kinetic friction coefficient. Please refer to [46] for the derivation of the equations of motion.
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A.4 Gibbs Sampling for Dirichlet Process Mixture Models

Here we summarize the non-conjugate model given in [66], along with the Gibbs sampling technique used to

update each of the parameters (Algorithm 8 in [67]). The process given here is for a 1-D case but can be

easily extended for higher dimensions.

The prior on the mean is Gaussian taken to be

p(µk | λ, r) = N (λ, r−1) (A.18)

where λ and r are hyperparameters that are updated later. Their priors are broad (vague) Gaussians and

gamma taken to be

p(λ) = N (µx, σ
2
x) p(r) = G(1, σ−2

x ) (A.19)

where µy and σ2
y are the mean and variance of the observations.

The prion on the precision, sk, is given by

p(sk | β, ω) = G(β, ω−1) (A.20)

with hyperparameters having priors

p(β−1) = G(1, 1) ⇒ p(β) ∝ β− 3
2 exp(− 1

2β
) p(ω) = G(1, σ2

y) (A.21)

The prior on α, the concentration parameter of the DP is

p(α) = G(1, 1) (A.22)

This hyperparameter will also be updated below.
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A.4.1 Monte Carlo Sampling

In a DP, the upper bound on the number of clusters is infinity, but in practice only a number of clusters

will be representer, i.e. have observations associated with them. Here the number of represented clusters

at any given time will be referred to as kref . One iteration of the Gibbs sampling based on the conditional

posteriors is:

1. For i = 1 : n

sample indicator variable ci according to Algorithm 8 in [67]

End

2. Update krep, the number of represented mixtures

3. For k = 1 : krep

Update Nk, the number of elements belonging to cluster k

Update mixing weights: πk = Nk

N+α

End

Update overall weight of unrepresented mixtures, π = α
N+α

4. For j = 1 : krep

Sample µk from its conditional distribution:

p(µk | c,X, sk, λ, r) = N
(
x̄kNkσ

2 + λr

Nkσ2 + r
,

1

Nkσ2 + r

)

p(sk | c,X, µk, β, ω) = G

β +Nk,

[
1

β +Nk
(ωβ +

∑
i:ci=k

(xi − µk)
2)

]−1


where x̄k = 1
Nk

∑
i:ck=j

xi, the members in cluster k.

End

5. Update hyperparameters by sampling from their conditional posteriors:
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p(λ | µ, r) = N


µxσ

−2
x + r

krep∑
k=1

µk

σ−2
x + krepr

,
1

σ−2
x + krepr



p(r | µ, λ) = G

krep + 1,

 1

krep + 1

σ2
x +

krep∑
k=1

(µk − λ)2

−1


p(ω | s, β) = G

krepβ + 1,

 1

krepβ + 1
(σ−2

x + β

krep∑
k=1

sk)

−1


p(β | s, ω) ∝ Γ(
β

2
)−krep exp

(
−1

2β

)(
β

2

) krepβ−3

2
krep∏
k=1

(skω)
β
2 exp

(
−βskω

2

)

p(α | krep, N) ∝
αkrep− 3

2 exp(− 1
2α )Γ(α)

Γ(N + α)

p(α | krep, N) is log-concave and can be sampled using Gibbs sampling methods such as the adaptive rejec-

tion sampling (ARS) presented in [96].

In step 1, the indicator variables are sampled from the posterior given by

p(ci = k | c−i, µk, sk, α) ∝


N−i,k

N−1+αs
1
2

k exp(− sk
2 (xi − µk)

2) k rep

α
N−1+α

∫
p(xi | µk, sk)p(µk, sk | λ, r, β, ω)dµkdsk k unrep

Gibbs sampling is performed only for those θk’s that are currently have observations associated with them

[67].
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