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Reduced selective voluntary motor control (SVMC) is a primary impairment due to
corticospinal tract (CST) injury in spastic cerebral palsy (CP). There are few studies of
brain metabolism in CP and none have examined brain metabolism during a motor
task. Nine children with bilateral spastic CP [Age: 6-11 years, Gross Motor Function
Classification System (GMFCS) Levels II–V] completed this study. SVMC was evaluated
using Selective Control Assessment of the Lower Extremity (SCALE) ranging from
0 (absent) to 10 (normal). Brain metabolism was measured using positron emission
tomography (PET) scanning in association with a selective ankle motor task. Whole
brain activation maps as well as ROI averaged metabolic activity were correlated
with SCALE scores. The contralateral sensorimotor and superior parietal cortex were
positively correlated with SCALE scores (p < 0.0005). In contrast, a negative correlation
of metabolic activity with SCALE was found in the cerebellum (p < 0.0005). Subsequent
ROI analysis showed that both ipsilateral and contralateral cerebellar metabolism
correlated with SCALE but the relationship for the ipsilateral cerebellum was stronger
(R2 = 0.80, p < 0.001 vs. R2 = 0.46, p = 0.045). Decreased cortical and increased
cerebellar activation in children with less SVMC may be related to task difficulty,
activation of new motor learning paradigms in the cerebellum and potential engagement
of alternative motor systems when CSTs are focally damaged. These results support
SCALE as a clinical correlate of neurological impairment.

Keywords: spastic cerebral palsy, PET—positron emission tomography, brain metabolism, selective voluntary
motor control, ankle motor task

INTRODUCTION

Children with spastic cerebral palsy (CP) have developmental brain injuries primarily affecting the
motor systems. Impairments of motor control are observed early in development (Fetters et al.,
2004; Sargent et al., 2017) often preceding the detection of spasticity in children with CP. Deficits in
gross motor function including mobility, strength, and balance are additional impairments. Spastic
CP results from damage to the periventricular white matter containing descending motor tracts
including the corticospinal tracts (CSTs) responsible for voluntary motor control (Bax et al., 2006;
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Volpe, 2009). White matter damage including the CSTs has been
described and quantified in CP and correlated with motor and
sensory function measures using magnetic resonance imaging
(MRI) with diffusion tensor imaging (DTI) techniques (Hoon
et al., 2009; Lee et al., 2011). While damage to the developing
CSTs is a primary etiology in spastic CP, resulting compensatory
adaptations have not been adequately studied relative to brain
structure and activity, especially for lower extremity function in
patients with bilateral involvement.

CSTs that originate in the motor cortex are responsible for
skilled voluntary movement or selective motor control. The
term ‘‘selective voluntary motor control’’ (SVMC) indicates the
deliberate performance of isolated movements upon request
(Fowler et al., 2010). Children with spastic CP and impaired
SVMC may exhibit reduced speed of movement, mirror
movements or abnormal reciprocal muscle activation patterns.
Also, they are often unable to move their hip, knee and
ankle joints in isolation, relying instead on closely coupled
flexion and extension patterns to varying degrees (Fowler and
Goldberg, 2009). In two studies, SVMC was more predictive
of motor function than other aspects of CP (Østensjø et al.,
2004; Voorman et al., 2007). Clinical measures of SVMC
have been shown to correlate with mobility level (Fowler
et al., 2009), gross motor function (Balzer et al., 2016; Noble
et al., 2019) and gait (Fowler and Goldberg, 2009; Steele
et al., 2015; Rha et al., 2016; Chruscikowski et al., 2017;
Zhou et al., 2019).

Following a perinatal injury to the CSTs, alternative motor
pathways develop that are forms of adaptive or maladaptive
plasticity (Eyre, 2007; Friel et al., 2013; Gordon, 2016). This
has been shown for animal models and the upper extremity
of children with spastic hemiplegic CP. Ipsilateral CSTs from
the uninvolved hemisphere can be preserved causing mirror
movements and other impairments. In adults post stroke, it
has been suggested that compensations by areas of the brain
such as the rubrospinal tracts are utilized when damage to CSTs
occur, producing synergistic flexor and extensor patterns in the
involved extremities during voluntary movement (Yeo and Jang,
2010). While children with spastic CP sustain an early injury
to the brain before the development of motor skills, similar
compensatory pathways may be involved (Cahill-Rowley and
Rose, 2014).

The structure of white matter tracts has been the focus
of brain imaging studies in spastic CP (Scheck et al., 2012;
Mailleux et al., 2020). Far less is known about neuromotor
recruitment. Studies of brain activity during movement in CP
have primarily focused on children with unilateral involvement
during upper extremity fine motor or sensory tasks using
functional magnetic resonance imaging (fMRI; Dinomais et al.,
2013; Van de Winckel et al., 2013a,b). Only two fMRI studies
investigating lower extremity movement in CP could be found
(Phillips et al., 2007; Hilderley et al., 2018). All children were
high functioning as they were able to walk and run independently
(GMFCS level I) and could actively dorsiflex the ankle, which
indicates a high level of selective movement. Despite these
stringent inclusion criteria, excessive head movement during
the motor task was problematic during fMRI data collection

resulting in unusable data for some participants (Phillips et al.,
2007) or limiting the number of available trials for analysis
(Hilderley et al., 2018). Brain activation can also be studied
using positron emission tomography (PET), a metabolic imaging
technique that uses radioactive compounds to label functional
brain metabolism (Phelps, 2000). A common biologically active
molecule used is FDG, an analog of glucose. Regional glucose
metabolism and accumulation represent the metabolic activity
of the tissues (Alauddin, 2012). Radiotracer concentrations in
specific regions of the brain are mapped on three-dimensional
images of the brain that are reconstructed from MRI (Lee
et al., 2007; Penny et al., 2011). Only one PET scan study
could be found that investigated brain metabolism in CP
(Lee et al., 2007) but it did not involve a motor task. An
advantage of PET for evaluating neuromotor control is that
motor task performance and tracer uptake occur before the
imaging session. In contrast, the motor task occurs during
imaging for fMRI requiring that head position be maintained
during limb movement, excluding more children with CP
from participation.

The purpose of this study was to examine the relationship
between brain metabolism and SVMC in children with spastic
bilateral CP during movement using PET. SVMC was evaluated
using the Selective Control Assessment of the Lower Extremity
(SCALE; Fowler et al., 2009). We hypothesized that a significant
positive relationship between SCALE and the sensorimotor
cortex would be found. Our secondary hypothesis was that
significant correlations between SCALE and activation of other
motor regions of the brain would be identified.

MATERIALS AND METHODS

Participants
Children with spastic bilateral CP were recruited from clinics
and the community via mailings and flyers. This study was
approved by the Human Subject Committee at the University
of California, Los Angeles, CA, USA. Informed assents and
consents were obtained from the participants and their
guardians. Participants were recruited from the Center for
CP at UCLA/OIC as well as the surrounding Los Angeles
community. Data used for this analysis were collected as
baseline information for a larger treatment intervention study.
Inclusion criteria were: (1) age between 4 and 12 years;
(2) diagnosis of spastic form of CP; and (3) ability to
remain still for a minimum of 15 min. Exclusion criteria
were: (1) attention deficit or hyperactivity disorder; (2) seizure
within the last 6 months; (3) participation in a research study
that involves the use of radiation in the past 12 months;
(4) fear of enclosed spaces, breathing or swallowing problems,
dizziness, or fainting spells; (5) pacemaker, intrathecal baclofen
pump or metal implants in the head or neck, other than
tooth fillings; and (6) mechanical, cystic or other structural
abnormalities on MRI. Following informed consent, each
participant received a structural MRI. Participants who were
unable to lie still or who had MRI exclusion factors were
discontinued from study participation. A physical therapist
assessed mobility using the Gross Motor Function Classification
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System (GMFCS; Palisano et al., 1997) and gross motor
function using the Gross Motor Function Measure (GMFM;
Bjornson et al., 1998).

Selective Voluntary Motor Control
Assessment
Before PET scanning, SVMC was assessed by a physical therapist
using SCALE, a validated and reliable clinical tool, which was
developed for individuals with spastic CP (Fowler et al., 2009;
Balzer et al., 2016). This assessment incorporates components
of CST function including selectivity, reciprocation, and speed
as well as the presence of involuntary movement at other joints
including mirror movements of the contralateral extremity. Hip,
knee, ankle, subtalar and toe joints are assessed using an isolated,
reciprocal movement pattern and each joint is scored 0 (Unable),
1 (Impaired) or 2 (Normal). Scores are summed resulting in a
possible score from 0 (absent SVMC) to 10 (normal SVMC) for
each lower limb.

PET Scan Data Acquisition
PET scanning was used to acquire regional cerebral metabolic
data. Participants were asked to fast for 3 h before the procedure
to optimize glucose uptake. The process of injection and PET
scan required approximately 2 h for completion. An intravenous
line was placed and 185 MBq (FDG) was administered using
standard aseptic technique. A single small blood sample was
obtained to establish the starting level of blood glucose. PET
scans were performed 40 min post-FDG injection.

During this uptake period, the participant performed an ankle
movement task with the lower extremity that demonstrated the
least impairment. The task was limited to one lower extremity
to examine regions of the brain that controlled movement for
the ipsilateral vs. contralateral limb. The child was instructed
by a physical therapist to perform a series of isolated ankle
dorsiflexion and plantar flexion movements that were initiated
every 2 min followed by a brief rest period. If movement
occurred at other joints, verbal feedback was provided for
initial attempts but the feedback was discontinued if the motion
was obligatory.

Whole Brain Analysis
Relative quantification of regional brain activity was performed
using NeuroQTM (Syntermed Inc., Atlanta). This software
corrects for tissue-based attenuation and then implements
an algorithm for automatically measuring the number of
radioactive events emitted by a positron source (gamma-ray
lines of coincidence) per second detected by PET-scanner,
emanating from pixel locations assigned by a computerized
reconstruction algorithm. Statistical parametric mapping (SPM)
methods were performed (Friston et al., 1995a,b) to co-register
participant images and to reorient them into a standardized
coordinate system using the SPM software package (Ashburner,
2009) from the Wellcome Department of Cognitive Neurology,
Functional Imaging Laboratory (London, UK). Data were
spatially smoothed and normalized to mean global activity
as previously described (Silverman et al., 2011), except for
a 12 mm (full-width half-maximum) smoothing filter that

was applied to the images before statistical analysis. The
set of pooled data were assessed with the t-statistic on a
voxel-by-voxel basis, to identify the profile of voxels that
significantly covaried with parameters characterizing each
participant. To identify the anatomical label of the underlying
voxel, we defined 240 standardized ROIs (sROIs) following
the transformation of each PET scan to a template space
(Tai et al., 1997) throughout the transaxial planes across
the field of view. Normalized uptake values were determined
for specific regions of the brain. Whole-brain voxel-wise
Pearson correlations of metabolic activity vs. SCALE scores
were performed. These results were correlated for multiple
comparisons using cluster wise thresholding in SPM. All
240 sROIs and 47 volumes of interest (sVOIs) were used
solely to obtain an anatomic parcellation of the brain and
to identify the anatomical regions where there is cluster-wise
statistical significance.

Secondary ROI Analysis
In the case of bilateral activation, it was necessary to further
identify whether the FDG uptake was ipsilateral or contralateral
to the moving limb. Therefore, a secondary ROI analysis was
performed exclusively for those regions. Mean voxel activity for
the bilateral ROIs was calculated following the transformation of
each PET scan to a template space. This value was automatically
normalized to the mean activity measured throughout that brain
scan for each ROI and was used to correlate with SCALE.
Importantly, for correlation analysis, only the anatomical
ROI-based average instead of the statistical ROI-based average
was used to avoid circular analysis.

RESULTS

Participant characteristics are shown for 10 children who were
enrolled and underwent baseline testing in Table 1. The average
age was 9 years, 4 months. Motor impairment ranged from
mild (GMFCS Level II, GMFM 72.2, SCALE 7 bilaterally) to
severe (GMFCS Level V, GMFM 36.0, SCALE scores ≤ 3). Two
participants exhibited bilateral SCALE score = 0. Four children
could walk and six used wheelchairs as their primary mode
of mobility. One participant was dropped from the study after
enrollment due to a significant structural abnormality that was
identified on MRI. Of the remaining nine participants, eight
had white matter damage including periventricular leukomalacia
on MRI. Bilateral volume loss of the thalamus was additionally
reported for one of these children.

During the ankle motor task, obligatory movement at other
joints was observed in most participants. All six participants
with low limb SCALE scores (0–2) were unable to isolate ankle
motion and exhibited simultaneous hip and knee synergistic
movement. The remaining three participants with limb scores of
≥5 exhibited impaired SVMC at their ankle, due to an inability
to perform at least 15◦ of isolated ankle motion or the presence
of movement at another joint. Mirror movement at the ankle was
observed for one participant.
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TABLE 1 | Participant characteristics.

Demographics n = 10

Age Mean Age (SD) year, month 9, 4 (1, 4)
Age range years 6–11

Gender Male 6
Female 4

Ethnicity Hispanic 4
Race African American 1

Caucasian 9
GMFCS II 2

III 2
IV 3
V 3

CP Diagnosis-distribution Diplegia 5
Quadriplegia 4
Total body involvement 1

GMFM Mean (SD) 53.2 (11.9)
SCALE Left Mean (SD) 2.7 (2.5)

Right Mean (SD) 2.5 (2.6)

SD, standard deviation; GMFCS, gross motor function classification system; GMFM,
gross motor function measure; SCALE, selective control assessment of the
lower extremity.

FIGURE 1 | Metabolic activity maps are shown for (A) an individual with a
low Selective Control Assessment of the Lower Extremity (SCALE) score and
(B) an individual with a high SCALE score. Red arrows indicate the right
cerebellum. The gray scale images (inset) for each row show 1. Participant’s
original positron emission tomography (PET) scan, 2. Template PET scan on
which standardized regions of interest are defined and 3. Activity resampled
on the template. Relative hypoactivity was found in the cerebellum of the
individual with a high SCALE score, indicated by the indigo color using a
rainbow scale (violet being the lowest and red being the highest).

Qualitative Visualization of Whole Brain
Metabolic Activity
Exemplar metabolic activity maps for individuals with
contrasting SCALE scores can be seen in Figure 1. The metabolic
maps in the first two columns are color-coded (rainbow scale)
showing normalized activity for sagittal and axial slices. A
contrast between cerebellar activation levels for two participants
with low vs. high SCALE scores can be seen.

Whole-Brain Analysis
The results of SPM analyses examining correlations between
metabolic activity and SCALE scores are shown in Figure 2.
The sensorimotor (SM) and superior parietal (sPL) cortex
contralateral to the moving limb were significantly positively
correlated with SCALE scores (SM: t = 8.06, sPL: t = 6.70;
p < 0.0005). In contrast, a significant negative correlation

FIGURE 2 | (A) A three-dimensional volumetric rendering of significant
positive correlations between SCALE and metabolic activity in the
sensorimotor and the superior parietal cortex during movement of the
contralateral limb shown on the lateral view and medial cross-section overlaid
on an atlas (p < 0.0005, cluster corrected). (B) Voxels show significant
negative correlations of metabolic activity with SCALE in the cerebellum
(p < 0.01 cluster corrected) on the medial slice. Color indicates a significant
relationship and yellow indicates a stronger relationship as compared to red.
sPL, superior parietal lobe, SM, sensorimotor cortex.

of metabolic activity with SCALE was found in the entire
cerebellum (peak t = 7.23, p < 0.0005). As both sides of the
cerebellum were correlated with SCALE, the level of activation
for the side ipsilateral vs. contralateral to themoving limbwas not
apparent from the whole-brain analysis. Therefore, a secondary
analysis at the ROI level was performed.

ROI Analysis
We exclusively selected the cerebellum for further ROI analysis
as it showed bilateral activation in the whole-brain analysis.
Significant correlations between cerebellar ROI-averaged activity
and SCALE score for the moving limb were found. As justified by
tests of linearity, parametric Pearson correlation coefficients were
used. A strong significant correlation was found between the
SCALE scores for the moving limb and the ipsilateral cerebellum
(t = 5.27, p < 0.001, Figure 3A). While the correlation between
the activation level of the contralateral cerebellum and SCALE
score was significant, the relationship was not as strong (t = 2.43,
p = 0.045, Figure 3B).

DISCUSSION

This is the first study to document a relationship between
impaired lower extremity SVMC and brain metabolic activity
in children with CP. Previous researchers reported greater
metabolism in bilateral motor and visual cortices and the
cerebellum in children with spastic CP relative to typically
developing children using PET; however, a motor task was not
performed (Lee et al., 2007). As expected, children with higher
levels of motor control in the present study exhibited greater
activity in the cortical areas associated with motor function
(sensorimotor and superior parietal cortices) contralateral to the
moving limb. This finding is consistent with the primary motor
cortex being the largest source of CSTs and the sensory cortex
providing feedback during motor tasks. Further, the superior
parietal cortex is known to be involved in adjusting posture
and guiding movement of the limbs, particularly concerning
visual-spatial perception and body awareness (Wolpert et al.,
1998; Wolbers et al., 2003). A related finding from a fMRI study
has shown activations in the primary motor and sensory areas
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FIGURE 3 | Correlation plots for ROI-averaged cerebellar activation
(normalized units) vs. SCALE score (from 0 = absent to 10 = normal) for the
moving limb. (A) Ipsilateral cerebellum vs. SCALE score, R2 = 0.80 and (B)
Contralateral cerebellum vs. SCALE score, R2 = 0.46. Gross Motor Function
Classification System (GMFCS) level for each participant are indicated as
II–IV.

in healthy adults performing a similar ankle dorsiflexion and
plantarflexion task (Orr et al., 2008).

The sensorimotor region associated with the lower extremity
exhibited a stronger correlation with SCALE than that associated
with the upper extremity (Figure 2B). While activation of
the sensorimotor cortex associated with the upper extremity
would not be expected during ankle movement, the location of
cortical activation has been found to vary for individuals with
CP. Recently, motor evoked potentials with cortical stimulation
were compared between adults with and without CP (Condliffe
et al., 2019). Researchers reported that the ‘‘hotspots’’ for the
soleus muscle of normal controls were in a tight cluster 2–3 cm
lateral from the vertex (an anatomical landmark at the superior
midpoint of the skull). For participants with CP, however, the
hot spots were farther away from the vertex, more dispersed
and, in some cases more lateral. Some hot spots appeared to be
closer to the typical atlas site for the upper as compared to the
lower extremity.

A unique aspect of this brain activation study was the
inclusion of children with absent or very low levels of SVMC for
whom greater cerebellar activation was found. Historically, the
role of the cerebellum in normal movement production has been
attributed to the control of balance and coordination. Although
the exact role of the cerebellum is not fully known, studies have
shown that it is involved with motor learning and motor control
(Manto et al., 2012). Authors of a consensus article concluded
that the cerebellar motor systems consist of an intrinsically
connected network involved in the optimization of movement
performance during the early phases of motor learning. It

may also contain internal feedback models associated with
unconscious skilled movement (Manto et al., 2012). This may
explain increased activation in our participants with poor SVMC
for whom this motor task was novel and more challenging.

An alternative explanation for greater cerebellar activation in
children with reduced SVMC may be recruitment via alternative
pathways that communicate with the cerebellum during
movement. Although isolated ankle motion was requested,
children with low SCALE scores produced simultaneous hip
and knee motion (abnormal obligatory synergies). Rubrospinal
tracts, which originate in the red nucleus and communicate
with the cerebellum, have been associated with these more
primitive synergies (Cahill-Rowley and Rose, 2014). Major
afferents project from the cerebellar and cerebral cortices to
the red nucleus and the rubrospinal tract projects to cerebellar
nuclei before reaching the spinal cord (Darras and Volpe, 2018).
Animal studies have shown that when the cerebellar nuclei are
stimulated, stereotyped motor synergies are produced (Rispal-
Padel et al., 1982). This may explain why children with larger
deficits in SVMC may have a greater reliance on the cerebellum
resulting in the production of less skillful patterned movements
when higher centers of motor control are impaired.

While a stronger relationship with SCALE was found for
the ipsilateral cerebellum, significance was also found for the
contralateral side. Typically, there is an ipsilateral association
between the cerebellum and limb movement; however, bilateral
activation during unilateral movement has been reported in
normal controls and adults post-stroke (Cui et al., 2000; Ehrsson
et al., 2002; Nair et al., 2003; Kapreli et al., 2006; Dong et al.,
2007). Normal adults performing a finger tapping task primarily
activated their ipsilateral cerebellum when using their dominant
hand but activated their cerebellum bilaterally when using their
non-dominant hand (Dong et al., 2007). In the same study,
patients post-stroke recruited their contralateral as well as their
ipsilateral cerebellum while performing the task with their
involved hand. While our patient population had bilateral rather
than unilateral limb motor impairment, these data support our
findings. Children with CP with greater impairment exhibited
higher levels of bilateral cerebellar activation than those with
less impairment.

Limitations
This study had a small sample size but comparative fMRI studies
contained even fewer participants with CP (Phillips et al., 2007;
Hilderley et al., 2018). A control group of typically developing
children was not studied. While the goal was to examine
varying levels of brain metabolism based on selective motor
control within CP, knowledge of normal activation patterns
under the same conditions is unknown. A common limitation in
PET is the low anatomical resolution when mapping metabolic
activity. Further, there may be smoothing of the metabolic
maps when they are resampled to the SPM anatomical template,
especially due to the lack of subject-specificMRI anatomical scan.
However, this smoothing may also potentially lead to a gain in
the signal to noise ratio locally over the image. Finally, due to
statistical correction for a large number of voxel-wise multiple
comparisons, there may be a loss of power although this loss
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is mitigated by both cluster-wise thresholding methods and a
separate a priori ROI-based analysis.

CONCLUSION

In this study, we examined neuromotor control during an ankle
motor task that was challenging for children with spastic CP,
particularly for those with low levels of motor control. As
we hypothesized, there was a significant positive relationship
between SVMC andmetabolic activity in the sensorimotor cortex
that was contralateral to themoving limb. Interestingly, we found
that lower motor control was associated with greater cerebellar
activation during the motor task. Decreased cortical and
increased cerebellar activation in children with more impaired
motor control may be related to task difficulty, activation of
new motor learning paradigms in the cerebellum and potential
engagement of alternative motor systems when CSTs are focally
damaged. These results support SCALE as a clinical correlate of
neurologic damage.
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