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ABSTRACT OF THE DISSERTATION 

 

Regularized Equally Sloped Tomography Algorithm for  
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By 
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Doctor of Philosophy in Physics 
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Professor Jianwei Miao, Chair 

 

 

X-ray Computed Tomography is widely used in a broad range of fields including astronomy, 

geophysics, material science, biology and radiology. It has the advantage to achieve the cross 

section information of the object without physically damaging or penetrating it, which is 

especially important for in-vivo biology imaging systems or clinical imaging systems. However, 

due to the requirement of sufficiently high flux projections from multiple directions for 

achieving high quality images, a major concern in X-ray CT is the unavoidable radiation dose 

delivered to the imaging objects, especially to the more radiosensitive patients or biology 

specimens. With the conventional unregularized tomography algorithms, the accuracy of the 

reconstruction images has to be compromised by lowering the number of projections or reducing 

the source flux per projection. Therefore, many more sophisticated reconstruction algorithms 



iii 

 

have been developed recently to solve the missing data and suppress the noise level in the low 

dose tomography modalities by incorporating mathematical regularization techniques into a real 

space iterative process. These methods perform well under certain circumstances but also have 

the limitation in computational speed, which is crucial for real time imaging systems. 

 

In this dissertation, an efficient iterative Fourier based reconstruct technique termed Equally- 

Sloped Tomography (EST), which combines the efficiency of Fourier transform and advanced 

iterative process and allows for accurate tomographic reconstruction from low flux and 

undersampled projection data, is presented and investigated. This work focuses on integrating the 

mathematical regularization methods into the EST algorithm, studying its performances through 

numerical experiments, comparing the results with other reconstruction algorithms and 

developing the data preparation procedure for three major tomography geometries: parallel 

beam, fan beam and helical cone beam. Furthermore, the algorithm was implemented into two 

important tomography systems: the X-ray medical CT and phase contrast X-ray mammography 

CT. The performances were studied by conducting experiments using phantom and clinical data 

at different low dose levels. After carefully evaluated by both visualized comparisons and 

quantified measurements, the results demonstrate that the regularized EST algorithm is capable 

to computational efficiently achieve significant radiation dose reduction through both the 

reduction of flux and the number of projections, while producing comparable image quality 

results as the full-dose conventional reconstructions do. 
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CHAPTER 1 

INTRODUCTION 

 

Tomography is a widely used imaging method. In Greek, totmos means section and graphy 

means to write, and how the word is derived explains well how the method works: first obtain 

projections using penetrating wave, then compute an image by combining the projections. 

Tomographic imaging is specifically developed for revealing hidden structures that are not 

directly accessible. For this reason, tomographic imaging is widely used in a broad range of 

fields including astronomy, geophysics, material science, biology and radiology. As an example, 

tomographic implementations of transmission X-ray imaging modalities, such as X-ray 

absorption and phase contrast imaging, present important applications to biology and medicine 

(1-7). For instance, absorption imaging allows for tunable elemental mapping of specimens, 

while phase contrast imaging offers 100-1000 times increased sensitivities in the hard x-ray 

region relative to absorption imaging hence allows for low contrast object’s imaging (1). Another 

example is the X-ray computed tomography (CT) which was introduced in the 1970s and has 

become a revolutionary medical tool in the diagnosis of a large number of diseases as well as the 

visualization of critical interventional procedures today (8).  

 

With all kinds of applications and implementations, the underlying computational questions for 

all tomographic imaging methods are essentially the same: how to obtain projections with 

minimum radiation dose and what is the best way to achieve most accurate reconstruction from 

the projections. In real world, projections are never free of noise, and sometimes even have 
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missing parts. Theoretically, projections with higher signal-to-noise ratio can be obtained by 

using higher flux X-ray and such projections will lead to better and cleaner reconstruction, while 

more number of projections can provide more information and prevent the under sampled 

artifacts in the reconstructions. However, the limitation of device output and the potential 

negative impact of radiation dose imparted to biological specimens and patients in biology and 

radiology applications put constrains on the acquisition source flux or sample size. In biological 

and medical imaging, the control of high flux used for transmission tomography is of particular 

concern. Similar to other tomographic imaging method, transmission tomographic imaging 

systems reconstruct object cross-section by mathematical reconstructing projections. In order 

that a good cross-section is obtained, projections shall to be taken with sufficiently high flux, and 

from reasonable number of different directions. But a high dose can potentially impair the 

biological specimens and patients. For example, in vitro imaging of cells and macromolecules 

using transmission electron tomography, conformal changes due to radiation damage can be 

readily visualized if the number of projections is not limited. The concern of potential negative 

effect from high radiation dose is even more severe in medical imaging modality. The radiation 

dose from CT procedures represents the most significant source of man-made radiation to the 

public and disproportionally accounts for more than 70% radiation dose in medical procedures 

(9). The typical effective doses in medical CT procedures are one to two orders of magnitude 

higher than a typical chest radiograph for example, depending on the type of procedure (10). Due 

to the rapid increase in the popularity and frequency of CT procedures, a significant concern is 

the potential for radiation carcinogenesis, specifically to the more radiosensitive populations 
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such as pediatrics. Such concern urged the development of computed tomographic image 

reconstruction method that works on projections obtained from low radiation dose.  

 

In theory, radiation dose can be reduced through two ways given a fixed energy spectrum and 

scanner configuration. The first way is to reduce of the number of projections while maintaining 

the flux in each projection. This solution relies on under-sampling the number of tomographic 

projections, which is capable of simultaneously reducing both the acquisition time and radiation 

dose. But conventional reconstruction algorithms are not able to reconstruct accurate results due 

to the violation of Nyquist sampling criteria. The tomographic reconstruction in undersampling 

condition faces an ill-imposed problem due to the missing projection information. It was 

demonstrated that reduced number of projections adversely affects the accuracy of 

reconstructions (11). In coherent diffraction microscopy imaging studies where missing 

information problem is also encountered due to missing phase data of the diffraction recordings, 

previous works proved that iterative oversampling Fourier methods is capable of solving for 

missing information under noisy conditions for noncrystaline and nanocrystal samples (12-15).  

In this dissertation, such method was developed and applied to aid the recovery missing 

information in low dose X-ray tomography reconstruction. More specifically, an exact Fourier 

based oversampling method for tomographic reconstruction, termed Equally-Sloped 

Tomography (EST), was developed and investigated to solve the missing data problem due to 

undersampled projections. EST is an iterative Fourier based reconstruction that combines the 

exactness of the exact and novel Fourier transform, the physical and mathematical constraints, 

the oversampling method and the strictly measurement enforcement(16-18).  In this dissertation, 
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it will be demonstrated that EST is capable of reconstructing better image less number of 

projections without sacrificing the image quality. The algorithm was implemented and evaluated 

on the synchrotron X-ray phase contrast mammography CT system at European Synchrotron 

Radiation Facility (ESRF) in France. A human breast sample with breast cancer was imaged with 

2000 projections and the reconstructions were performed by manually removing the number of 

projections from 2000 to 200, which is only one tenth of the original projections and radiation 

dose. The reconstruction results were evaluated by both quantitative measurements, visualization 

comparison with conventional Filtered-Back Projection (FBP) reconstruction algorithms and 

blind evaluation by five independent radiologists. It is been proved that, our advanced EST 

algorithm can reduce the radiation dose and acquisition time by ~74% relative to conventional 

phase contrast x-ray tomography, while maintaining high image resolution and image contrast. 

As large-scale and compact synchrotron radiation facilities are currently under rapid 

development worldwide, the implementation of the advanced EST reconstruction algorithm into 

low dose X-ray phase-contrast CT could find broad applications in biology and medicine fields. 

 

The second way to reduce the radiation dose, on the other hand, is to reduce the flux of source. 

Previous work suggested that reducing the radiation dose by lower the flux leads to a significant 

degradation of resolution, low contrast visibility, and geometrical fidelity due to the increasing 

noise level (8, 19). So in this low flux and high noise conditions, we incorporated advanced 

mathematical regularization constraints into our EST algorithm to suppress the noise on 

reconstructed images, such as the Total Variation (TV) (20) and Non Local Total Variation 

(NLTV) (21) regularization techniques. A series of numerical experiments were conducted in 
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this thesis, different levels of Poisson noise were added to the projections and the regularized 

EST algorithm results were compared with both conventional FBP algorithm and the newly 

developed regularized iterative algebraic and statistics reconstruction algorithms such as ART 

and EM (19). The numerical results indicate that the regularized EST algorithm can efficiently 

remove the noise on the reconstructed image without the compromise of image quality and 

computational time. Furthermore, the regularized EST algorithm was extended to fan beam, 

helical cone beam geometries and them implemented onto to the clinical Siemens SOMOTOM 

Sensation 64 medical CT scanner. The EMMA phantom and clinical pediatric patient data was 

collected and the reconstruction performance at different flux levels were evaluated from the 

perspective of resolution, contrast ,shape fidelity and noise level with the quantification metrics 

such as Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR). The result indicate that 

since the radiation dose is linearly proportional to the X-ray flux, in this case, the regularized 

EST algorithm enable a reduction of the CT dose by about 70% without compromising the image 

quality and accuracy compared to the conventional FBP reconstruction method. The 

regularization techniques can help the EST iterative process to suppress the noise while the 

iterative process can always keep the result consistent with the measurement and prevent the 

regularization step removing the fine structures from the image. This is to say, the regularized 

EST algorithm is an efficiency reconstruction method to remove the image noise in the low flux 

X-ray tomography modalities.  

 

To summarize, a regularized EST iterative reconstruction algorithm is developed and described 

in this dissertation, which is capable of producing accurate reconstructions in the low radiation 
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dose tomography conditions, such as using less number of projections or using the projections 

obtained through low radiation dose flux. This new EST reconstruction algorithm provides a 

promising solution to reduce the negative effects on biological specimens and the potential risk 

of harm on patients taking X-ray tomography imaging. This thesis will describe the theoretical 

background, algorithm development, numerical experiment, real system implementation, and 

performance evaluation of the proposed acquisition and reconstruction method. In the study of 

the new EST algorithm’s application in synchrotron X-ray phase contrast tomography set up and 

medical X-ray CT scanner, a series of image quality studies on phantoms, human breast cancer 

sample and clinical pediatric patient data sets at various simulated dose levels were used. We 

quantitatively assessed the performance of this regularized EST algorithm and compared it to the 

existing reconstruction methods. To quantify the potential for dose reduction from this new 

method, we measured across a series of image quality metrics the factor by which the number of 

projections or the source flux can be reduced while still achieving comparable results relative to 

conventional reconstruction at full dose. In the study of phase contrast X-ray mammography CT 

with the human breast sample, a ~74% dose reduction can be achieved while in the study of 

medical X-ray CT scanner, a potential radiation dose reduction in the range of 65-80% was 

observed by using the proposed EST reconstruction algorithm. 
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CHAPTER 2 

 

REGULARIZED EQUALLY SLOPED TOMOGRAPHY ALGORITHM 

 

2.1. Introduction 

 

Transmission tomography technique has been recognized as one of the most widely used 

methods to reconstruct the cross-section of objects. It has broad applications in different fields 

such as in-vivo biology images and clinical medical systems. However, due to the requirement of 

multiple projections taken from different angles at high flux setting for accurate tomography, it is 

inherently a high radiation dose imaging technique. There are two direct ways to reduce radiation 

dose in tomography modalities, one is to reduce the number of acquisition projections, and the 

other is to reduce the source flux for per projection. But for the conventional Filtered-Back 

Projection (FBP) reconstruction algorithm, the former way would cause the sampled projections 

not satisfy the Nyquist sampling requirement, while the latter option will introduce heavier noise 

to the image then degrade the reconstructed image quality (1, 2). Therefore, how to compromise 

between low radiation dose and high reconstructed image accuracy has been a challenge for 

conventional tomography algorithms. Accordingly, many advanced iterative algorithms have 

been developed recently trying to use the portion of data to recover the missing data or 

incorporate the mathematical regularization into the iterative process to guide the image to a less 

noisy stage (3-10). Though these methods perform well under certain circumstances, because of 
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the limitations mainly in computation speed, currently the most popular method in tomographic 

field remains FBP and its variations (11).   

 

In 2005, a Fourier-based iterative method, denoted equally sloped tomography (EST) was 

developed to allow the 3D image reconstruction from a limited number of projections. It has 

been demonstrated that EST is an effective method for significant reduction of radiation dose in 

several tomographic applications, including transmission electron tomography, X-ray diffraction 

microscopy, and synchrotron based X-ray phase contrast and transmission CT (12-17). More 

recently, it has been proved that EST can be used for 3D structure determination of 

nanomaterials at atomic scale resolution (18) as well as for high resolution, low dose phase 

contrast X-ray imaging of human breast cancers in three dimensions (19). Previous works on 

EST are mainly focus on maintaining the reconstructed image quality while reducing the number 

of projections. In this chapter, we incorporate advance mathematical regularization technique 

into the EST algorithm, and after the introduction to the conventional FBP algorithm and 

iterative reconstruction algorithms such as ART and EM, our Fourier based regularized EST 

iterative algorithm is explained in details with simulation results and compared with other 

reconstruction algorithms. At the end, the implementation of EST algorithm for three most 

widely used tomography geometries: parallel beam, fan beam and helical cone beam were 

achieved in the simulation stage. 

 

 

 



12 

 

2.2 Computed Tomography Reconstruction Theory and Algorithms 

 

2.2.1. Fourier Slice Theorem 

 

The foundation of tomography is Fourier Slice Theory. It makes possible for the transformation 

from the object space image projections to the Fourier space image information.  The theory 

states that the 1D Fourier transform of a parallel geometry projection Pθ(t) at angle θ gives the 

value of the 2D Fourier transform of the reconstructed image at the same angle (1).  Eq. 2.1 

shows the simplest case when θ = 0: 

 

       
                            

 

  

   
 

  

 

  

                                      

 

In Eq. 2.1, t is the distance of the each point on the detector from the center of detector, f(x,y) is 

the reconstructed image. Fig. 2.1 shows the scheme of Fourier Slice Theorem. 



13 

 

 

 

Figure 2.1. Illustration of the Fourier Slice Theorem. It states that 1D Fourier transform of a 

parallel geometry projection Pθ(t) at angle θ gives the value of the 2D Fourier transform of the 

reconstructed image at the same angle 

 

Using the Fourier Slice Theorem, the direct algorithm to reconstruct image from measured 

projections has two steps. First, perform a 1D Fourier transform to transform the measured 

projections to the points in the Fourier spaces. The second step is to perform an inverse 2D FFT 

on the Fourier space points then achieve the image in the real space. Since the data is acquired 

along equally increase angles, the value set has a polar grid distribution in the Fourier space. The 

implementation difficulty for this direct method is that, there is no exact Fourier transform 

between polar grid in Fourier space and Cartesian grid in image space (20-22). So before the 

inverse 2D FFT, a regridding step is required to interpolate the points from polar grid to 
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Cartesian grid in Fourier space. Unlike the interpolation in object domain, in which the error is 

constraint to a local region, each point in Fourier space correspond to the whole image in object 

space and the interpolation error may degrade the quality of the whole image.  

 

2.2.2. Filtered Back Projection Reconstruction Algorithm 

 

Because of the regridding requirement in the direct Fourier method, nowadays, the most popular 

reconstruction algorithm in CT systems is Filtered-Back Projections (FBP). It was independently 

developed by Bracewell et.al in 1967 (23) and Ramachandran et.al in 1971(24). The basic idea of 

back-projection is to retrieve the image by simply back projecting the measured projections, 

smearing the values in the direction from where the radiation beam came.  But as the measured 

projections are distributed on polar grid in Fourier space as the blue lines in Fig.1, the low 

frequency grid points are distributed denser than the high frequency points away from the center. 

If the measured projections are used directly for back-projection, the low frequency information 

will be over emphasized compared to the high frequency information and cause the blur on the 

edge and fine structures. To overcome this issue, the projections in Fourier domain will multiply 

a necessary high-pass filter before the back-projection step, which gives the term “Filtered” in 

FBP algorithm. The most common high-pass filter used in FBP ׀q׀ is linearly increased with the 

frequency variation and is called Ramp-Like filter. The FBP algorithm can be expressed by Eq. 

2.2, in which N is the number of total projections,  n(u) is the 1D Fourier transform of the n
th

 

projection.  
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FBP has the advantage of fast computational speed, easy implementation and its independency of 

parameter adjustment. However, a good FBP reconstruction requires large number of less-noisy 

projections. This is the mainly drawback since the newly developed tomography systems try to 

further reduce the radiation dose by  reducing either the number of projections or the flux from 

source. In these conditions, The FBP algorithm is a one step process without any feed- back 

system and lacks the flexibility as the advanced iterative algorithms do. 

 

2. 2. 3. Iterative Algebraic and Statistical reconstruction algorithms 

 

For the low dose tomography systems, algebraic and statistical iterative reconstruction methods 

could be served as alternatives methods. Actually, the first CT image was reconstructed by the 

algebraic reconstruction techniques (ART). Unlike the FBP algorithm which simply smears the 

filtered projections back to retrieve the reconstruction images, the iterative algorithms work as 

searching the most fitted solution by applying constraints in each iteration. The most widely used 

methods are algebraic reconstruction techniques (ART) and statistical reconstruction techniques 

such as Expectation Maximization method (EM).  Fig. 2.2 shows the idea and scheme of ART 

algorithm (1), which can be considered as solving a set of linear equations through an iterative 

approach. Fig. 2.2 (a) shows the idea of that, in the tomography imaging system, for each ray, it 

can be presented as a linear equation of the sum of all the pixels that it goes through. So the set 
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of linear equations in Fig. 2.2 (a) can be written as Eq. 2.3. For this simple 2 x 2 system, there 

are 4 unknown values f1 ~ f4 and 8 linear equations.  Since the number of equations is larger than 

the number of unknown values in this case, the unknowns can be calculated easily with the 

equations. 

 

     
          
      

               

     
          
      

               
         
          

                               

 

In the ART method implemented for the real tomography system as shown in Fig. 2.2 (b), the 

width of the X-ray beam ∆ξ is taken into account, then each projection can be viewed as an area 

weighting sum of all the pixels that it goes through. Eq. 2.4 expresses the equation for this 

system in which the area weight     is between the interval of 0 and 1. 

 

      
                                     

                     

          

 

   

                                                

 

And in the real tomography systems, the unknown values are of ~ 10
6
, while the number of 

projection equations can be as many as 10
6
. So it is almost impossible to solve the equation set 

by a directly matrix inversion. Therefore, in ART algorithm, instead of direct matrix 

computation, the resolution is approached iteratively as Eq. 2.5.  
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                               (a)                                                                     (b) 

Figure 2.2. Schematic for ART iterative reconstruction algorithm. (a) The basic idea is to solve 

the image pixels as several unknowns while taking the projections as multiple independent linear 

integral equations. There are 4 unknowns and 8 linear equations in the example with a size of 2 x 

2. (b) ART takes into account the width of each ray, so each point in the projection is an area 

weighting sum of all the pixels that it goes through. For example, the weighting of the projection 

Pi goes through the pixel fj is aij.  

 

One drawback of the ART algorithm is that, as it takes the measured projections as “ground 

truth” and always tries to match the measurements with reconstruction, when the source flux is 

low and the projections are noisy, the reconstructed images will be noisy as well. In this kind of 

low dose tomography condition, statistical reconstruction algorithm such as EM is more suitable 

f1 f2 f3

fj

fN

Pi

αij

∆ξ
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since it incorporate the noise model into the algorithm. The EM algorithm for the transmission 

tomography iterates between an expectation (E) step, which creates the expectation function 

using the estimated reconstructed image, measured projections and Poisson noise model, and the 

maximization (M) step, which computes the next generation of the reconstructed image to 

maximize the expected log-likelihood function established in the E step (25). The algorithm can 

be expressed as Eq. 2.6, in which N is the total number of voxels to be reconstructed, each voxel 

has a constant attenuation factor fj .  bi is the i
th

 measured projections, M is the number of total 

projections and A is the discrete Radon transform, n is the index for current iteration number. 

 

  
     

      
  

          
   

   

    
 
   

   
                                                 

 

Both the algebraic and statistical reconstruction techniques have the advantage that they are 

flexible to incorporate constraints, such as mathematical regularization methods or some physical 

constraints. This benefits most for the low dose radiation CT protocols, when the sample set 

(number of projections) is very low or the noise level is high. But compared to FBP algorithm or 

Fourier based methods, these real space iterative algorithms have high computational complexity 

that keeps them away from widely implementation in the tomography systems especially for 

clinical CT systems. 
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2.3. Regularized Equally Sloped Tomography 

 

2.3.1. Pseudo-Polar Fast Fourier Transfer (PPFFT) 

 

From Fourier slice theory, we can learn that in theory if infinity projections are acquired around 

the object, after one 1D Fourier transform and one 2D inverse FFT the reconstructed image can 

be achieved. But in the real acquisition progress, the number of projections can be acquired is 

limited and the equally angle acquisition method would always result in a polar grid distribution 

in the Fourier space. Since there is no exact Fourier transform between polar grid in Fourier 

space and Cartesian grid in object space an interpolation step is required in the Fourier space 

before the inverse FFT step. There are several approaches for the interpolation in Fourier space, 

such as the typical interpolation schemes like nearest neighboring, linear, cubic or the more 

advanced and accurate method include non-uniform FFT (NUFFT) (20-21,26-27) . But unlike 

the interpolation in object domain, in which the error is restricted to a local area, each point in 

Fourier space correspond to the whole image in object space and the interpolation error may 

degrade the quality of the whole image. Luckily, if we acquire the projections not along the 

equally increase angels, but along the equally increase slopes, there exists a direct and exact fast 

Fourier transform termed pseudo-polar fast Fourier transform(PPFFT) between the pseudo-polar 

grid in Fourier domain and the Cartesian grid in the object domain (28,29). As shown in Fig. 2.3, 

for an N x N Cartesian grid, the pseudo-polar grid is defined by a set of 2N lines, each line 

consisting of 2N grid points mapped out on N concentric squares. The 2N lines are subdivided 

into two groups: a horizontal group (in blue) defined by y = s*x and a vertical group (in red) 
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defined by x = s*y, in both equations s represents the slope and ׀s1 ≥׀. These pseudo-polar lines 

are termed “equally-sloped” since the successive lines in both groups change by an equal sloped 

increment as opposed to a fixed equal angled increment as in the polar grid. This pseudo-polar 

grid consists with “concentric squares”, which is geometrically more close to the Cartesian grid 

then the polar grid’s “concentric circles” distribution. And unlike the polar grid, the distance 

between sampling points on the individual lines of the pseudo-polar grid varies from line to line. 

So the fractional Fourier transform (FrFT) is necessary here to replace the conventional Fourier 

transform when calculating the vary output sampling distance in the Fourier domain (30).  The 

1D FrFT is defined as: 

                  

   

   

      

 
                

 
 

 
 

      
                

 

      
                  

                     

 

In Eq. 2.7,       is the 1D FrFFT, )(xf  is the 1D tomographic projection, k and x are the 

coordinates in Fourier and object space, and α is the parameter that determines the distance 

between the sampling points in each of the 2N lines. When α = 1, the FrFFT converts to a regular 

FFT, while when α = -1, the FrFFT converts to a regular inverse FFT. By varying the value of α 

for the equally-sloped acquired projections, the Fourier space data on the pseudo-polar grids can 

be calculated. The pseudo-polar grid was proposed in 1974 (28) but the mathematical proved 

exact PPFFT and inverse PPFFT algorithms weren’t developed until recently in 2004 (29).   

Originally the algorithm was developed to interpolate tomographic projections from the polar to 

the Cartesian grid in reciprocal space. And the idea of equally slope increment data acquisition 
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method and then incorporate the pseudo-polar grid and PPFFT into iterative algorithms for 

tomographic reconstructions was first proposed by Miao et al. in 2005 (12). 

 

 

 

Figure 2.3. Pseudo Polar grid and PPFFT. It shows the transformation between Object domain in 

Cartesian grids and Fourier Domain in pseudo-polar grids. PPFFT and inverse PPFFT are exact 

ways to perform Fourier transform between these two domains.  The dashed line indicates the 

resolution circle. 

 

2.3.2. Equally Sloped Tomography Iterative reconstruction 

 

Only the exactness of PPFFT and inverse PPFFT cannot provide all the information needed for 

direct reconstruction. There are three main reasons for this.  First, knowledge of 2N data points 

along the 2N equally-sloped lines is needed to fully occupy the pseudo-polar grid and accurately 

invert the Fourier data using PPFFT (29). This requires a large number of projections and is not 
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desirable in practical applications. Secondly, the pseudo-polar grid points outside the resolution 

circle (indicated by the dotted circle in Fig. 2.3) cannot be experimentally obtained so there are 

always part of the points on pseudo-polar grid are unknown. Third, the real measurements are 

always with noise, especially for the low radiation dose tomography protocols. Because of all 

these reasons, an iterative algorithm is necessary to recover the missing data and minimize the 

noise of the reconstructed image through regularization.  In a manner similar to the oversampling 

Fourier algorithm that was used to solve the phase problem in diffraction imaging (31,32), we 

developed the regularized Equally-Sloped Tomography (EST) iterative reconstruction algorithm, 

which iterates between object space and the oversampled Fourier space, with physical and 

mathematical constraints enforced in each iteration.  

 

The EST algorithm is initialized by padding zeros on both sides of the projections, followed by a 

1D FrFT to map the projections onto the corresponding lines in the pseudo-polar grid. The 

oversampling is achieved by surrounding the object in real space by mathematical zeros, a region 

we called ‘support’ and utilized as constraints in the object space. These zeros do not provide 

any extra information about the object itself, but they provide additional constraints in the real 

space and can extract more correlated information among different projections in Fourier space 

during the iterative process.  For the equally sloped lines that have no measurements or the 

points on the grid outside the resolutions, the initial values are set to be zero. The j
th

 iteration of 

the algorithm can then be considered as the following 5 steps: (i), apply the adjoint transform to 

the Fourier-space slices )(kF j


 , and obtain an real-space image, )(rf j


. Here we use the adjoint 

PPFFT to replace inverse PPFFT since the former is implemented without the conjugate gradient 
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method used to calculate inverse PPFFT and therefore can be computed much faster without 

compromising the accuracy (15)
 

. (ii), a new object )(rf r

j


is derived by enforced the 

mathematical regularization on )(rf j


. EST provides a platform that can easily incorporate any 

real or Fourier space regularization methods. The way to apply mathematical regularization 

could be very flexible, the frequency, the strength and the method of the regularization can be 

chosen based on different tomography modalities or imaging objects. (iii), is enforcing support 

and positivity constraints on )(rf r

j


to achieve )(' rf j


 . Here the support S is determined based on 

the zero padding of the projections to achieve oversampling. The points outside the support are 

set to zeros as a constraint. Inside the support, all the negative values are set to zeros as a 

positivity physical constraint. Eq. 2.8 shows the equation of the enforcement of support and 

positivity constraint: 

 

)(' rf j


  

   
                 r


        )(rf r

j


  

                       r

       )(rf r

j


  

                                                        
        

 

(iv), Apply the PPFFT to )(' rf j


 and obtain updated Fourier-space slices, )(' kF j


. (v)  Updating 

the Fourier-space slices by replacing )(' kF j


 with the measured Fourier slices. The Fourier 

domain values outside the resolution circle and on the missing Fourier slices are remaining 

unchanged. The iterations are monitored by the error metric as Eq. 2.9, where )(kF


 represents 



24 

 

the measured Fourier slices,  )(' kFj


 is the calculated Fourier slices in the j

th
 iteration, and R is 

the radius of the resolution circle.  
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                                               (Eq. 2.9) 

 

The algorithm then is automatically terminated when the error reach a stable stage. It normally 

takes about 20 iterations, depends on the tomography modality and the regularization method.  

 

2.3.3. Mathematical Regularizations 

 

One advantage of EST algorithm is that the prior information or regularization methods can be 

easily inserted and applied on the reconstructed image. Lower the source flux can reduce the 

radiation dose, but it will concurrently increase the noise. Many regularization methods have 

been developed in the field of image processing and could be implemented in reconstruction 

algorithms. However, most of the mathematical regularization methods require the properly 

chosen of one or more parameters to optimize the regularization result. For one step back 

projection FBP algorithm, the reconstruction result could be very sensitive to the parameters 

since there is no feedback after the regularization is applied, which means, even if the image is 

over-smoothed, the error cannot be corrected after the reconstruction. As a contrast, the EST 

algorithm provides a platform so that the regularization methods can be easily inserted, and its 

iterative process provides a feedback loop to control the strength of regularization. Even when 
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the reconstructed image is over-smoothed and has some patch artifacts generated by the 

regularization in the object domain, when the algorithm iterates back to Fourier domain, the 

measured projections are enforced which can prevent the spreading of artifact. The EST 

algorithm is always searching for a solution which is a balance between minimized noise level 

and measured data fidelity. In our study, we first implemented and studied the advanced 

regularization method termed Total Variation (TV), which is introduced by Rudin, Osher and 

Fatemi (33). TV method regularizes the image by minimizing the total variation of the image f 

(r) over a domain Ω as shown in Eq. 2.10: 

 

                    

 

                                                                 

 

After incorporating the data fidelity term, the whole TV regularization process is performed by 

minimizing the standard TV denoising model in Eq. 2.11. TV is a nonlinear imaging denoising 

technique that has been widely used to remove the noise and other small artifacts while 

preserving sharp edges in the image. P and P
T 

are the forward and backward projectors, y is the 

measured projection. The strength or TV regularization is controlled by adjusting parameter λ, 

when λ is getting smaller, the TV term has more weight and the regularization strength is 

stronger.  
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In the EST algorithm, the TV regularization method can suppress noise while preserving the 

sharp edge if the parameter is properly chosen.  

 

2.3.4. Data Preparation for Various Acquisition Geometries 

 

According to the formation of Fourier slice theorem, to achieve the data on one line at a specific 

angle in Fourier slice, 1D Fourier transform needs to be performed on the 1D parallel projection 

values along the same angle. As a result, to directly utilize the information in Fourier based 

reconstruction algorithm such as EST, the input projection data must be in the parallel beam 

geometry (27). However, in the modern tomography systems, especially in medical CT systems, 

2D fan-beam geometry or 3D cone-beam geometry are also utilized to increase the data 

acquisition efficiency.  So we also developed the data preparation process to transform the data 

measured in fan beam or helical cone beam geometry adaptive for EST algorithm. For fan beam 

geometry, we utilized the common rebinning method before reconstruction, which was 

implemented by two 1D interpolations (34) that can transform the fan beam geometry data to 

parallel beam geometry that along the equally-sloped angels. The relation of the coordinates 

between a ray in the fan beam geometry p(θ, ψ) and a ray in the parallel geometry p(ϕ  ξ  is 

defined in Eq. 2.12, where θ is the projection angle in the fan beam geometry, ψ is the fan angle 

of the ray, ϕ is the projection angle in the parallel beam geometry, ξ is the perpendicular distance 

from the pixel position to the origin, and D is the distance from source to rotation center.   
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The rebinning and reconstruction for helical cone beam geometry requires more sophisticated 

steps. We implemented the Advanced Single-Slice Rebinning (ASSR) method (35), which is an 

effective algorithm that uses virtual tilted reconstruction planes along a helical path to Z-

interpolate the images onto a Cartesian grid. The key step in ASSR is to rebin the helical cone-

beam data into a series of 2D projections along virtual tilted planes that can be reconstructed by 

using conventional 2D FBP. In our implementation, we first used ASSR to rebin the helical 

cone-beam projections into a series of tilted slices along a helical path. Each tilt slice was 

reconstructed by EST and the series of 2D reconstructions was then interpolated along the Z axis 

to obtain a 3D image. The rebinning steps for fan-beam or cone beam geometry generate some 

interpolation error, but since a large number of projections were utilized in most conventional 

tomography system, the rebinning error could be restricted to a small value.  

 

 

2.4. Numerical experiments  

 

To evaluate the performance of EST algorithm and compared the results with conventional FBP 

reconstruction algorithm in the low dose tomography conditions, we designed and conducted a 

series of numerical experiments using the 160 x 160 pixels Zubal phantom, which was a 
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segmented head phantom based upon the high resolution scans of a human (36). The simulated 

detector has a width of 512 pixels and a total of 180 projections were calculated using a precise 

Fourier based discrete Radon transform (37) followed the equally- angle acquisition for FBP) or 

equally-sloped acquisition (for EST). To evaluate the algorithms performance under low dose 

tomography conditions, the Poisson noise with different flux levels (7.0x10
5
 m

-2
 and 7.0x10

4
 m

-

2
)
 
was added to the calculated noise-free projections. The Total Variation regularization methods 

were implemented into EST algorithm. The parameter is optimized for each noise level and fixed 

for both EST and FBP reconstructions. The FBP reconstruction was performed with the high 

resolution preserved un-cropped Ramp-Like filter and precise cubic interpolation.  

 

The comparisons of the reconstruction quality and computation time among the numerical 

experiments of the regularized EST reconstruction algorithm, TV regularized FBP, TV base 

ART and TV based EM. The experiment was conducted for fan-beam geometry CT data using a 

256 x 256 2D Shepp-Logan phantom with the detector size of 512 pixels and a total of 360 

projections were acquired along equally increment angels. A fan to parallel rebinning step with 

two 1D cubic interpolations was performed for EST reconstruction input. For the FBP 

reconstructions, the un-cropped Ramp-Like filter was used to preserve high resolution 

information and the TV regularization was performed directly onto the reconstructed image. For 

the iterative reconstruction algorithms TV-ART and TV-EM, the TV regularization was applied 

in an alternative way every iteration on the current image (38, 39). For a fair comparison, all the 

iterative algorithms used the same number of iterations, the same rectangular support and the 

positive constraint. The computational time for each algorithm was recorded for computation 
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speed comparison. A numerical experiment for 3D helical cone beam EST reconstruction was 

also performed with a 3D Shepp-Logan phantom. Table 1 shows the parameters used to generate 

the helical cone beam data. The comparison reconstruction was performed by the conventional 

FDK method (40) and conventional ASSR method (35). 

 

Detector type Cylindrical 

Detector row 64 

Detector column 512 

Pixel width  0.78 mm 

Pixel height 0.78 mm 

Distance from the source to the detector 1005 mm 

Distance from the source to the center 570 mm 

The helical pitch 1.4 

Total projections in each circle 720 

 

 

Table 2.1. Simulation parameters used for the helical cone beam CT numerical experiment. The 

support of the 3D Shepp–Logan phantom is an ellipsoid with half axes of 69 mm, 92 mm and 90 

mm along the x- y- and z-axes, respectively. The size of reconstructed images is 512 x 512 

pixels. 
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2.5. Results 

 

We firstly performed the conventional FBP reconstruction on the Zubal phantom with various 

numbers of simulated projections. Fig. 2.4 (1-e) shows the FBP reconstruction results with 1, 4, 

45, 90 and 360 projections, respectively. This series of images show that the idea of FBP is to 

smear the values in the direction from where the radiation beam came.  So a certain number of 

projections are needed to reconstruct the image or there will be severe streaking artifacts on the 

images. Fig. 2.4 (f) is the reconstructed image from a simple back projection without any high 

pass filter in the Fourier space as Fig. 2.4 (e) did, so it proves that because of the imbalance of 

low and high frequency information in the Fourier domain, a filtered is needed to preserve the 

edge or details in the image. Fig. 2.4 also indicates that, since conventional FBP is a one step 

reconstruction algorithm without regularization, the artifacts or noise causing by low dose 

tomography conditions cannot be corrected and will affect the whole image quality. 
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Figure 2.4. FBP reconstruction with different number of projections. (a)-(e) are the FBP 

reconstruction results of Zubal phantom with 1, 4, 45, 90, 360 projections, respectively. The 

Ramp-Like filter was applied. (f) is the simple back projection of the same Zubal phantom with 

the same 360 projections as (e) but without incorporating any filter. In all these reconstructions, 

the projections were evenly distributed from 0 to 180 degrees in parallel beam geometry. 

 

Fig. 2.5 shows the comparisons between conventional FBP reconstruction and EST 

reconstruction in different dose levels. From (a) to (c), as the flux was changing from infinity 

(noise free) to 7.0x10
4
 m

-2
, the streaking artifact and noise on the images become more obvious. 

Both the resolution and contrast of the image are degraded. For a contrast, for the regularized 

a b c

d e f



32 

 

EST reconstructions, all the (d) to (f) images, the regularization technique successfully 

suppressed the noise and made the images clean without artifact and noise, and the contrast and 

detailed features were still maintained and detectable due to the iterative process. 

 

 

 

Figure 2.5. Comparison between FBP and EST reconstructions of Zubal phantom under various 

flux levels. (a) FBP reconstruction of Zubal phantom with no noise added (b) FBP reconstruction 

of Zubal phantom with flux of 7.0x10
5
 m

-2
 (c) FBP reconstruction of Zubal phantom with flux of 

7.0x10
4
 m

-2
 (d)-(f) are the EST reconstructions of the Zubal phantom with the same noise levels 

as (a)-(c). For the EST reconstruction, total number of iterations is 20, TV regularization was 

incorporated. 
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Fig. 2.6 shows the comparisons between the EST and other iterative reconstruction methods. 

ART+TV methods obtained comparable good-quality images with a flux of 7.0x10
5
 m

-2 
(low 

noise), but EST achieved better image quality than ART+TV with a flux of 7.0x10
3
 m

-2
 (high 

noise). EST and ART+TV clearly outperformed ART due to the lack of noise regularization in 

the low dose conditions. The reconstructions of EM+TV have better noise performance than 

ART+TV especially in the extremely low dose situation because the statistical algorithm takes 

into account the Poisson noise model, which is beneficial for removing the noise in the 

reconstruction. Therefore, the EM+TV results have similar resolution and noise performance as 

EST in both dose cases of 7.0x10
5
 m

-2 
and 7.0x10

3
 m

-2
. But as shown in Table 2 which lists the 

computation time of FBP, ART, ART+TV, EM+TV and EST with a flux of 7.0x10
3
 m

-2
, EST 

requires only one-fifth of the computation time of ART+TV and EM+TV due to the advantage of 

faster computational speed of Fourier transform over real domain forward and backward 

projections.  And to be noted that, for EST reconstruction, there is an extra step of rebinning and 

performing Fractional Fourier transform before the iterative process for fan beam geometry, it 

costs less than 0.5s in this case, which can be neglected compared to the  total reconstruction 

time. 
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Figure 2.6.  Comparisons of Zubal phantom reconstructions using ART, ART+TV, EM+TV and 

EST under various flux levels. The number of projections is 360 and the number of iteration in 

each algorithm is 20. (a) ART; flux=7.0x10
5
 m

-2
. (b) ART+TV; flux=7.0x10

5
 m

-2
. (c) EM+TV; 

flux=7.0x10
5
 m

-2
. (d) EST; flux=7.0x10

5
 m

-2
. (e) ART; flux=7.0x10

3
 m

-2
. (f) ART+TV; 

flux=7.0x10
3
 m

-2
. (g) EM+TV; flux=7.0x10

3
 m

-2
. (h) EST; flux=7.0x10

3
 m

-2
. EM+TV and 

EST+TV outperforms ART or ART+TV in the exteam low dose (high noise) conditions. 
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Methods Total time (s) Time per iteration (s) 

FBP (‘ifanbeam’ in matlab) 2.0 

ART, 20 iterations 259.0 13.0 

ART+TV, 20 iterations 272.0 13.6 

EM+TV, 20 iterations 286.3 14.3 

EST, 20 iterations 53.3 2.7 

 

Table 2.2 Computation time comparison for FBP, ART, ART+TV, EM+TV and EST. 

Computation time of FBP, ART, ART+TV, EM+TV and EST with a flux of 7.0x10
3 

m
-2

 (360 

projections number; 512 detectors; 256 x256 pixel reconstruction matrix). The numerical 

experiment was conducted on Intel® Core™ 2 Duo CPU P8700 with 2.53 GHz and 2.96 GB 

Memory. The computation time of one iteration EST is comparable with FBP, but EST has much 

better image quality performance. Compared to ART+TV and EM+TV, EST requires only one 

fifth of the computational time. 

 

In the numerical experiment for the helical con-beam geometry, we computed the 

reconstructions of the 3D Shepp-Logan phantom by using FDK, conventional ASSR, and EST 

with ASSR. Fig. 2.7 shows three different horizontal slices (Z=-30 mm, 0 mm and 23 mm) 

reconstructed by FDK, ASSR, and EST with ASSR. Visually, ASSR and EST with ASSR 

produced better image quality reconstructions than FDK. The FDK reconstruction exhibits some 

artifacts due to the use of a large helical pitch (Fig. 2.7 a-c). Quantitatively, the horizontal and 

vertical line scans, shown in Figs. 2.7 (j) and (k), indicate that EST with ASSR generated a 3D 

reconstruction with highest image fidelity and least noise among the three reconstruction 

methods.  
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Figure 2.7. Numerical experiment on the reconstruction of helical cone-beam CT data by FDK, 

conventional ASSR, and EST with ASSR. (a-c) Three representative slices of the FDK 

reconstruction with Z=-30 mm, 0 mm and 23 mm. (d-f) The same three slices reconstructed by 

the conventional ASSR method with 2D FBP and TV regularization. (g-i) The same three slices 

reconstructed by EST with ASSR and TV regularization. (j) Line scan along the yellow line for 

(a,d,g). (k) Line scan along the white line for (a,d,g). 

 

2.6. Conclusion and discussion 

 

The numerical experiments using Zubal phantom and Shepp-Logan phantom indicate that the 

regularized EST algorithm outperforms the conventional FBP algorithm in the low dose 

tomography modalities. This is mainly due to the exactness of PPFFT and inverse PPFFT in 

EST, the advanced regularization method incorporated and the ability and flexibility of the 

iterative process that accurately solved the missing values in the Fourier space and guided the 

reconstructed image to a state, where is a balance between minimized noise and highly consistent 

with the measurements. We have also implemented and compared EST reconstruction with other 

regularized iterative reconstruction algorithms such as ART+TV and EM+TV. Though they are 

all with the iterative structure and denoising techniques, the EST reconstructions still have better 

low dose performance than ART+TV results when the projections are very noisy. And while the 

EST method and the EM statistical algorithm produced reconstructions with comparable image 

quality, EST requires only one fifth of the computation time relative to EM or ART. And finally, 

the extension of EST to fan-beam and helical cone beam geometry CT data has been 
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implemented and investigated. Our numerical experiment suggests that the combination of EST 

with ASSR achieves better reconstructions than FDK and the conventional ASSR method in 

term of image quality and noise level. Since the main factor that obstructs the utilization of real 

space iterative algorithm into the real tomography system is the computational speed so far, the 

computational efficiency and the flexibility to different tomography geometries of the Fourier-

based EST algorithm has demonstrated its potential to be implemented into broader tomography 

applications in the future. 
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CHAPTER 3 

 

DOSE REDUCTION RECONSTRUCTION FOR MEDICAL X-RAY CT THROUGH 

EQUALLY SLOPED TOMOGRAPHY 

 

3.1. Introduction 

 

Since its inception in the 1970s, X-ray computed tomography (CT) has become a revolutionary 

medical tool in the diagnosis of diseases and visualization of critical interventional procedures 

(1-4). However, due to the requirement of sufficiently high flux projections from multiple 

directions for achieving high quality images in tomography, a major concern in medical CT is 

the unavoidable radiation dose delivered to the patient, especially to the more radiosensitive 

population such as pediatrics (5-9). According to the 2009 report from the National Council on 

Radiation Protection & Measurements (10), CT accounts for about 15% of the total radiological 

examinations, but is disproportionately responsible for approximately 50% of the medical 

radiation exposure and nearly 25% of the total population exposure. Compared to conventional 

X-ray chest radiograph, the effective dose of typical medical CT procedures are of one or two 

orders magnitude higher. Recently many CT device manufacturers and research groups have 

dedicated to the study to reduce the radiation dose in CT procedures from different approaches, 

ranging from improving the hardware limitation to developing novice reconstruction algorithm. 

Among all these works, the combination of real space iterative algorithms with modern 
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optimization methods has been investigated and proved to be an effective way to reduce 

radiation dose in CT (11-18).  

 

In this chapter, we incorporated the advanced Non-Local-Means Total Variation regularization 

into our EST algorithm. We proposed a Fourier based iterative reconstruction algorithm which is 

adapted for fan beam medical CT scanner. We implemented the algorithm on Siemens 

SOMATOM Sensation 64 scanner at UCLA 100 Medical Plaza and performed a series 

experiments with image quality phantoms and clinical pediatric patient data sets.  For the 

contrast and resolution image phantoms, we performed the experiments and measured the 

projections while systematically lowering the radiation dose by reducing the photon flux, then 

carefully evaluated the image quality of the results from both EST algorithm and conventional 

FBP algorithm. The comparison evaluations are both quantitative and qualitative.  For the 

pediatric patient data set, we simulated a series low dose conditions by adding Poisson noise to 

the measured projections then performed reconstructions by both EST and FBP. The results are 

also compared and evaluated. 

 

3.2. Methods 

 

3.2.1. Data preparation  

 

All the experiment data sets were acquired from the Siemens SOMOTOM Sensation 64 CT 

scanner (Siemens Medical Solutions, Forchheim, Germany) at UCLA 100 Medical Plaza. The 
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array detector of the scanner consists of 40 rows in the longitudinal (z) direction; the central 32 

rows are of 0.6mm slice width while the outer 8 rows have a width of 1.2mm each. In each row, 

there are 672 physical detector channels (19, 20). We utilized the collimation set up of 32*0.6 

mm and choose the projections acquired from the center slice (slice 16) for our fan beam 

reconstructions. The fig.1a shows the geometry of the scanner at the central slice: the red dot 

represents the source while the blue dot represents the rotation center. The distance from the 

source to the isocenter is RF = 570mm, the distance from the source to detector is RFD = 1040mm 

and fan angle equals to   = 52º.  

 

 

Figure 3.1. Geometry of the central slice of Siemens SOMATOM Sensation 64 CT scanner.  

Red dot represents the source, blue dot represents the isocenter. RF = 570mm is the distance from 

source to isocenter; RFD = 1040mm is the distance from source to detector. The fan angle   = 

52º.  Δβ = 180
0
/2320 is the physical detector angular increment.   
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Before inputting the measured projections into the reconstructions, there are two data preparation 

steps are necessary for the EST reconstruction algorithm. First, this specific medical scanner we 

studied utilized a technique termed Flying Focal Spot (FFS) to doubling the sampling density to 

reduce the aliasing artifact while increase the projection resolution by 2. So in the transaxial 

direction, there are actually 1344 data channels when the α-FFS is using with the size of each 

channel is ½ of the physical channel size. In the z direction, there will be actually 64 slices when 

the z-FFS is turned on. z-FFS was optional turned off during our experiment while α-FFS was 

enforced on. Therefore, an interlace step is required before any reconstruction. Fig. 3.2 (a) shows 

the α-FFS geometry. The variation in RF due to ∂ α is negligible and ∂ α is given by Eq. 3.1(19). 

  

    
 

 
   

   
  

                                 

 

The raw data structure read by MATLAB is shown as Fig. 3.2 (b).  When the source moved from 

the initial gantry position θ1, because of the α-FFS, the source will wobbling at two nearby 

positions then row1 and row2 were recorded. Then the source moved to the next gantry position 

θ2, row3 and row4 were recorded. There are 672 channels for each row. A interlace between 

row1 and row2, row3 and row4, row5 and row6… were performed. Since the scans we 

performed were all in full axial mode, there are total 1160 gantry positions for each scan and the 

after interlaced fan beam sinogram size is 1160 in rows and 1344 in channels. Fig. 3.3 (b) shows 

an example of the fan beam sinogram after the interlaced procedure. 

 

The beneficial of Fourier based reconstruction algorithm such as EST is that, through the central 
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slice theorem and the existence of PPFFT and adjoint PPFFT, the calculation of forward and 

backward projection can be achieved in more efficient and accurate compared to image based 

reconstruction algorithms. However, according to the formation of central slice theorem stated in 

Chapter1, to achieve the data on one line at a specific angle in Fourier slice, 1D Fourier 

transform needs to be performed on the 1D parallel projection values along the same angle. As a 

result, to directly utilize the information in Fourier space, the projection data must be in the 

parallel beam geometry (21). To increase the efficiency of data acquisition, most medical CT 

scanners nowadays are in the cone beam geometry, which means the central slice of the 

projections are in fan-beam geometry. Furthermore, to take full advantage of the EST algorithm, 

the input projections should be along the equally-sloped lines in the pseudo-polar grid instead 

along the equally angle increment lines in the polar grid. Because of these two reasons, prior to 

initiating the EST iterative algorithm, the second step in the data preparation is to transform the 

fan beam projections to equally-sloped lines in a pseudo-polar grid. We utilized the common 

rebinning method, implemented with two 1D interpolations (4). The relation of the coordinates 

between a ray in the fan beam geometry ),( p  and a ray in the parallel geometry ),( p  is 

defined as:  

 

 

            

         
ξ 

 
 
                                                                                  

 

where θ is the projection angle in the fan beam geometry, ψ the fan angle of the ray,   the 

projection angle in the parallel beam geometry, ξ the perpendicular distance from the origin, and 
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D the distance from source to rotation center. Fig. 3.3 (a) shows this parallel beam geometry and 

the fan beam geometry. The main change we made to the common rebinning method is that   is 

at equally-sloped angular intervals. Note that, although the rebinning step requires interpolations, 

our numerical simulations indicate that this process does not introduce much additional noise or 

artifacts as long as the fan-beam projections are finely sampled. It is also important to point out 

that the rebinning process needs to be applied only once, prior to the initiation of the iterative 

process, after which point, the Fourier transform of the rebinned projections are utilized as 

measurement constraints. Additionally, the parallel projections are not calculated at all the 2N 

lines of the pseudo-polar grid, rather only limited portion of the pseudo-polar grid in Fourier 

space are filled with these rebinned measurement data, and the rest of the lines are filled in by 

the iterative algorithm as the reconstruction is solved for. 
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(a) 

           

(b) 

Figure 3.2. The geometry and data structure from the α-Flying Focal Spot (α-FFS) technique. 

The technique is implemented in Siemens SOMATOM Sensation 64 slice CT scanner. (a) the 

focal spot is wobbling at two positions for each acquisition angle in the transaxial plane. (b) Raw 

readout data structure. The two rows indicated by the blue and red arrows from the same θ store 

the projections recorded from two focal spot positions at the same acquisition angle.  
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(a) 

 

(b) 

 

(c) 
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Figure 3.3. Fan beam to parallel beam rebinning. (a) Parallel-beam geometry (left) and the Fan-

beam geometry (right).  (b) and (c) are the sinogram of the central slice of one scan of EMMA 

phantom with 400mAs flux setting. (b) The fan-beam sinogram after detector interlaced. It is 

1344 in detector channels and 1160 in projection angles. (c) The parallel beam geometry 

sinogram of (b) after rebinning procedure. It is 1344 in detector channels and 512 in projection 

angles. The angels are followed the EST acquisition angle rules. 

 

3.2.2. Non-Local Total Variation Based Equally Sloped Tomography 

 

In the conventional 2D tomography reconstructions, the series of projections are acquired around 

the isocenter with constant angular increment. This equally-angled acquisition type, after 

performing 1D Fourier transform along these projections, will result in a polar distribution of 

measured data, while the reconstructed images have to be in the Cartesian grid. And since it is 

believed that there is no direct exact FFT algorithm can be constructed between the polar and 

Cartesian grids (22-24), one directly way is to do interpolation in the Fourier space from the 

polar grid distribution points to Cartesian grids. However, unlike the interpolation in object 

domain which is constrained in local region, each point in Fourier space corresponds to all the 

points in the image domain, which means that, the interpolation in Fourier space could introduce 

error and degradation all over the whole reconstructed image. Recently, it has been shown the 

existence of an algebraically exact FFT algorithm between the pseudo-polar and Cartesian grids 

denoted the PPFFT (25, 26). Fig. 3.4 shows the pseudo-polar grid and PPFFT. As depicted in the 
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Fig. 3.4, for a N N Cartesian grid, the pseudo-polar grid is defined by a set of 2N lines, each 

line consisting of 2N grid points mapped out on N concentric squares. The 2N lines are 

subdivided into two groups: a horizontal group (in gray) defined by y = s*x and a vertical group 

(in red) defined by x = s*y, in both equations s represents the slope and ׀s1 ≥׀. These pseudo-

polar lines are termed “equally-sloped” since the successive lines in both groups change by an 

equal sloped increment as opposed to a fixed equal angled increment as in the polar grid. Unlike 

the polar grid, the distance between sampling points on the individual lines of the pseudo-polar 

grid varies from line to line as indicated in Fig. 3.4. So instead of using the conventional 1D Fast 

Fourier transform (FFT), the fractional Fourier transform (FrFT) can be used here to vary the 

output sampling distance of the Fourier transform (28).  The 1D FrFT is defined by 

 

                  

   

   

      

 
                

 
 

 
 

      
                

 

      
                  

                     

 

In this equation, )(kF is the 1D FrFFT, )(xf  is the 1D tomographic projection, k and x are the 

coordinates in Fourier and object space, and  is the parameter that determines the distance 

between the sampling points in each of the 2N lines. The pseudo-polar grid and the PPFFT 

algorithm were originally developed to interpolate tomographic projections from the polar to the 

Cartesian grid in reciprocal space (25, 26). The idea of acquiring tilt-series at equal slope 

increments and then combining the PPFFT with iterative algorithms for tomographic 

reconstructions was first proposed by Miao et al. in 2005 (29). 
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Figure 3.4.  Geometrical representation of a Cartesian and a pseudo-polar grid. The grids are 

related by the algebraically exact PPFFT. The dotted circle represents the resolution circle. 
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Figure 3.5. Schematic of the EST method that iterates back and forth between real and Fourier 

space. The forward transform from a Cartesian grid in real space (bottom-left) to a pseudo-polar 

grid in Fourier space (top-left) is performed by the PPFFT. The backward step from Fourier 

space to real space is performed by the adjoint transform of the PPFFT (PPFFT
+
). In each 

iteration, physical and mathematical constraints are enforced in real space (bottom-right), while 

measured data (red lines in top-right) is applied in Fourier space. An error metric is used to 

monitor the convergence of the iterative algorithm. 

 

Although the PPFFT and its inverse provide an algebraically exact way to do the FFT between 

the Cartesian and pseudo-polar grids, three difficulties limit its direct application to tomographic 

reconstructions. First, to accurately invert the Fourier data using the PPFFT, knowledge of 2N 

data points along the 2N equally-sloped lines is needed (26). This requires a large number of 

projections and is not desirable in experiment due to radiation dose or technical restrictions. 

Secondly, the pseudo-polar grid points past the resolution circle (indicated by the dotted circle in 

Fig. 3.4) cannot be experimentally obtained (27) and thus exact reconstructions through the 

inverse PPFFT are not possible. Third, the clinical measurements are always with noise due to 

the restriction or concern of the radiation dose delivered to patient. Less flux is always 

designated but it will degrade the projections quality by having higher noise level. In order to 

enhance the image quality and reduce radiation dose at the same time, physical constraints and 

mathematical regularization have to be applied in the image reconstruction. To overcome these 

difficulties, the EST method for medical CT was developed, which iterates back and forth 

between real and Fourier space (28-35) and structured to reach the compromise between both 
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spaces, applying physical and mathematical constraints in object space and enforcing experiment 

projections in Fourier space.  The algorithm starts with padding each projection with same 

number of zeros on both sides and calculating its oversampled Fourier slice in the pseudo-polar 

grid (red lines in Fig. 3.5 top-right) through 1D FrFT, which will not introduce any interpolation 

in Fourier space as the conventional FFT does. The oversampling concept (i.e. sampling the 

Fourier slice at a frequency finer than the Nyquist interval) has been widely used to solve the 

phase problem in coherent diffraction imaging (36-38). In the EST method, we achieve 

oversampling by surrounding the object in real space by mathematical zeros, a region we called 

‘support’ and utilized them as constraint in object space. These zeros does not provide any extra 

information about the object, but they provide additional constraints in real space and extract 

more correlated information among different projections in Fourier space during the iterative 

process.  Following the interlacing and rebinning process described before, in the first iteration, 

the grid points outside the resolution circle and on the missing projections (blue lines in Fig. 3.5 

top-right) are set to zero. The algorithm then iterates back and forth between real and Fourier 

space using the PPFFT. As shown in Fig. 3.5, the j
th

 iteration consists of the following 6 steps: 

i) Apply the adjoint transform to the Fourier-space slices )(kF j


 , and obtain a real-

space image, )(rf j


 (Fig. 3.1 (b) bottom-right). Here the adjoint PPFFT instead of the 

inverse PPFFT is used.  Because the former is implemented through a conjugate 

gradient method and can be computed much faster than the latter without 

compromising the accuracy (31).  

ii) Derive a new object, )(rf r

j


, by applying mathematical regularizations to

 
)(rf j



(41,41). In our reconstructions, we applied the non-local total variation regularization 
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(NLTV) (41) once in every other iteration. The nonlocal total variation regularization 

is defined as: 

 

    2121

2

21 ),()()()( dpdpppwpfpffJ hW
                               (Eq. 3.4) 

 

           Where the weight function ),( 21 ppwh  describing the similarity between the patches 

around different pixels 
1p  and

2p  and h is the parameter to define the similarity 

between patches .The object is regularized by minimizing: 

 

2

2
)(min jw

f
fffJ 


                                                 (Eq. 3.5) 

 

λ is the parameter that controls the strength of TV-regularization. The smaller the λ, 

the stronger the regularization is. Compared to the local TV, NLTV presents a new 

way to do image regularization. The local TV performs local smoothing and can 

preserve the edge well. But sometimes it will over-boost or over-smooth the texture 

and eliminating the small scale features. It works best for piece-wise constant type of 

images. The clinical CT images are much more complicated and have much more 

important small features compared to piece-wise constant phantom images, which 

means simply apply TV on the image would likely to produce artifact patches while 

suppressing noise. On the other hand, the NL-TV searches the similar patches 

around the defined window and performs a weighting TV minimization based on the 
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similarity. It has the assumption that the natural images contain repeated structures 

instead of repeating pixels. The method has been proved to be able to adopt the 

advantage of edge preserving in local TV but the nonlocal weighted graph it uses 

present the similarity of different pixels instead of direct subtraction, which can 

preserve fine structures and textures better.  

iii) A support S is determined based on the zero padding of the projections to achieve 

oversampling. Outside the support  )(rf r

j


 is set to zero and inside the support, the 

negative values of )(rf r

j


 are set to zero as a physical constraint (Eq. 3.6). A new 

image is obtained, defined as )(' rf j


 (Fig. 3.5 bottom-left).    

)(' rf j


  

   
                 r


        )(rf r

j


  

                       r

       )(rf r

j


  

               
        

iv) Apply the PPFFT to )(' rf j


 and obtain updated Fourier-space slices, )(' kF j


(Fig. 3.5 

top-left);  

v) Obtain the Fourier slices for the (j+1)
th

 iteration, (Fig. 3.5 top-right), by replacing

)(' kF j


 with the measured Fourier slices (red lines in Fig. 3.5). The grid points outside 

the resolution circle and on the missing Fourier slices remained unchanged.  

vi) An error metric is calculated, 

 

Rkk j

k Rk
j

kFkF

kFkF
Error












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'





                                                     (Eq. 3.7) 
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where )(kF


 represents the measured Fourier slices,  )(' kFj


 is the calculated Fourier slices in 

the jth iteration, and R is the radius of the resolution circle. 

 

In general, the algorithm is stopped when the error does not decrease by more than 1% from the 

previous iteration. In actual experiments, it is automatically terminated when the error becomes 

stabilized after about 20 iterations. In order to have the reconstruction consistent with the 

measurement and will not be over smoothing, the object space regularization step was turned off 

for the last iteration.  

 

3.3. Experiment Design 

 

The EST method has been validated thoroughly for the parallel beam geometry in our former 

research work (28-35). In this work, the data sets were acquired from a Siemens SOMATOM 

Sensation 64 scanner with axial mode on and only the central slice was selected to validate the 

feasibility of the EST method for the fan beam geometry for the first time in this paper. A total of 

1160 projections were acquired from 0°-360° with equally angle increment. After data 

interlacing and correcting due to the α-FFS, there were 1344 detector channels and the 

reconstruction matrix size was 1344x1344 pixels. A rebinning step was performed prior to 

initiating the algorithm in order to transform the fan beam projections to parallel projections 

along equally-sloped lines of the pseudo-polar gird as described before.  
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3.3.1. Phantom Studies 

 

The Siemens image quality phantom (EMMA) (42) was used to quantify the amount of CT dose 

reduction achievable by the EST method. The phantom contains resolution inserts to measure the 

image resolution, and contrast inserts to measure the image contrast (42). The three inserts are 

shown in Fig. 3.6. The diameter of the contrast inserts in Fig. 3.6 (a) & (b) are 3 mm, 5 mm, 7 

mm, 10 mm, 20 mm, with varying normalized electron density ratios, relative to solid water 

background, 1.01 (1% signal), 1.03 (3% signal), 1.05 (brain), 1.07 (liver), 1.09 (inner bone), 1.17 

(acrylic), 1,48 (bone), and 0.001(air), respectively for the regions labeled with number 1 to 8. 

The information for the resolution insert is shown in Table. 1, the resolution bars, which consist 

of air, start at a resolution of 0.067 line pairs per mm in group 1, to a resolution of 1 line per mm 

in group 11. The EMMA phantom was systematically scanned at different flux settings, ranging 

from a maximum of 583 mAs to a minimum of 39 mAs. All scans are performed under axial 

mode with the tube current modulation off, z-FFS off, α-FFS was turned on and the voltage set to 

120kVp. The FBP reconstructions are performed with a standard uncropped ramp filter in 

conjunction with cubic interpolation for the back projection process for all doses. In the case of 

39 mAs dose, the FBP reconstruction result is at last denoised by nonlocal total variation 

regularization (i.e. FBP+NLTV). The 39 mAs EST reconstruction was computed by using the 

iterative algorithm described in II.B. Both FBP+NLTV and EST used the same regularization 

parameter (0.0035).  
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Figure 3.6. The three inserts from Siemens’ image quality EMMA phantom. (a) Low contrast 

insert. (b) High contrast insert. (c) Resolution insert.  

 

 

 

Table 3.1.  Information for the resolution insert for EMMA phantom. The width, height and 

resolution value for the bar groups in the resolution insert from Siemens’ image quality phantom, 

EMMA are shown in the table. 
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3.3.2. Patient Studies 

 

To further quantify the radiation dose reduction in clinical environment with the EST method, a 

pediatric patient data set consisting of a cranial scan of an anonymous 8 year old boy was used. 

The scan was originally acquired under axial mode with a voltage of 120kVp and a flux setting 

of 140mAs. There are 6 contiguous axial scans total, the central slices of which were used for 

study and reconstruction. However, unlike the phantom studies, it is not possible to acquire 

repeated scans of the patient at different flux settings due to radiation dose concerns. To address 

this issue, an algorithm to simulate low dose patient data based on existing scans (43, 44) was 

implemented. Using this algorithm and the pediatric patient data set with a flux setting of 140 

mAs, we generated CT scans at 39 mAs, the lowest possible flux setting of the Siemens 

Sensation SOMATOM 64 scanner. In addition, the setting of 14 mAs, which is one of tenth of 

the original data set, is simulating. Both the FBP and EST reconstructions are computed in the 

same manner as the phantom studies.  

 

3.3.3. Evaluation methods 

 

We firstly evaluate overall image quality of the reconstruction results by observing the visibility 

of the fine and low contrast structures relative to the reconstruction of such objects acquired 

under high dose acquisition protocols that provide the benchmark image. The correlation 

between the reconstructed image and the benchmark image can then be quantified by using 

cross-correlation. In the phantom studies, the contrast and resolution inserts are used to evaluate 
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the image contrast and image resolution at different flux levels. In phantom studies, quantitative 

comparisons are done by measuring the mean values and their standard deviation at various 

contrast regions to calculate the SNRs and the CNRs as Eq. 3.8. ROII  represents the pixel values 

in regions of interest.  

 

)()(

)()(2

)(

)(

21

21

ROIROI

ROIROI

ROI

ROI

IStdIStd

IMeanIMean
CNR

IStd

IMean
SNR








        (Eq. 3.8) 

 

The resolution performance is evaluated by comparing the reconstruction results from the 

resolution insert in different flux setting. The line profiles along the high resolution bars are 

plotted and compared. The reconstruction results of pediatric data sets are also compared by 

different flux and reconstruction method. SNRs and CNRs are measured for the regions of 

interests.  

 

3.4. Results 

 

3.4.1. Contrast Phantom  

 

The detectability of low contrast features is one of the important criteria in low dose 

reconstructions, especially when using an iterative algorithm that incorporates regularization 
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methods. The regularization methods, which are usually controlled by one or more parameters, 

could possibly erase the small low contrast features when they are not implemented or chosen in 

a proper way. So we have quantified the image contrast and quality of the EST and FBP 

reconstructions at different flux settings by using the medium and low contrast inserts of the 

EMMA phantom. Figs. 3.7 (a-e) show the FBP reconstructions at 583 mAs, 140 mAs, 39 mAs, 

FBP+NLTV reconstruction at 39 mAS and EST reconstruction at 39 mAs of the medium 

contrast insert, respectively. This inserts consist of 4 different sets of the cylinders, and the 

zoomed views of the lowest contrast set (9% signal)   of the cylinders are shown in Fig. 3.2 (f-j). 

The SNRs and the CNRs were also calculated for the largest diameter cylinder (indicated in Figs. 

3.7 (f-j)). Compared to the FBP and FBP+NLTV reconstructions at 140mAs and 39mAs, the 

EST reconstruction at 39mAs (Figs. 3.7 (e) and (j)) exhibits better image quality and are almost 

consistent with the reference reconstruction (FBP at 583mAs). As indicated by the arrows in the 

zoomed views (Fig. 3.7 (f-j)), the smallest cylinder (3mm in diameter) in the 39mAs EST 

reconstruction is as visible as that in the 583 mAs FBP reconstruction, but it almost disappears in 

140 mAs FBP, 39 mAs FBP and FBP+NLTV reconstructions. Also, the SNRs and CNRs of the 

39mAs EST reconstruction outperform all FBP, FBP+NLTV ones, including the 583 mAs 

reference reconstruction. However, the SNRs and CNRs have kind of limitations and depend on 

the place chosen. Also, NLTV denoising could help to improve SNRs and CNRs but potentially 

results in patchiness phenomenon in the case of heavy noise.  

 

Fig. 3.8 shows the reconstruction images for the low contrast inserts of EMMA phantom. Low 

dose resulted in serious noises which influence the image quality of the reconstructions of low 
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contrast inserts. It should be noticed that the lowest contrast set (0.1% signal higher than 

background) is not clear visible for all the reconstructions. For the highest contrast set (7% 

signal), all the five cylinders can be identified clearly in all the reconstructions except for the 

FBP+NLTV. This shows that the regularization method could erase some small low contrast 

details and these details cannot be recovered because the onetime back projection algorithm such 

as FBP is lack of the feedback system. On the other hand, the EST can retrieve these lost details 

though the iterative process. The Figs. 3.8 (f-j) show the zoomed view of the second highest 

contrast set (5% signal) of the cylinders. The second smallest cylinder (5mm in diameter) 

indicated by arrows completely disappears in the 39 mAs FBP and FBP+NLTV reconstructions 

and is almost invisible in the 140 mAs FBP reconstruction, while it is still visible in the 39 mAs 

EST reconstruction.  

 

For both medium and low contrast inserts, the SNRs and CNRs of the 20 mm cylinder regions 

circled by dashed lines in Fig. 3.7 and Fig. 3.8 are calculated. The CNRs were calculated relative 

to the uniform center region. The calculated results for the 9% signal and 5% signal contrast sets 

are shown in the zoomed views in Fig. 3.7 and Fig. 3.8. It is noted that the SNR and CNR for the 

39mAs EST reconstruction is higher than all the other reconstructions, including 583mAs FBP, 

140mAs FBP, 39mAs FBP and 39mAs FBP+NLTV. However, we cannot say that 39mAs 

EST+NLTV has better performance than 583mAs FBP since the regularization method always 

minimize the noise and boost the calculated values of SNR and CNR. But compared to 140mAs 

FBP, 39mAs FBP, visually the 39mAs EST images are much cleaner with less grainy noise, and 

the contrast sets can be detected better from the background. And the 39mAs FBP+NLTV 
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images, though are also quite clean and high in SNR and CNR values due to the regularization 

algorithm, lost small low contrast features and are degraded by the artifact patches. It is the 

evidence of the fact that the advanced iterative process in EST provides a feedback loop that 

corrects the artifact caused by regularization while minimize the noise on the images. 
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Figure 3.7. Comparative reconstructions of the medium contrast insert of the EMMA phantom. 

Grayscale window: [-1000,1000] HU. Reconstructions of (a) 583 mAs FBP, (b) 140 mAs FBP, 

(c) 39 mAs FBP, (d) 39 mAs FBP+NLTV and (e) 39 mAs EST. (g)-(j) Zoomed images of the 

rectangular region from (a)-(e), where the SNRs and CNRs were calculated for the largest 

diameter cylinder, indicated by the circle in (f). 
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Figure 3.8. Comparative reconstructions of the low contrast insert of EMMA phantom. Gray 

window: [-200,500] HU (a) 583 mAs FBP, (b) 140 mAs FBP,  (c) 39 mAs FBP (d) 39 mAs 

FBP+NLTV and (e) 39 mAs EST. (f)-(j) Zoomed views of the rectangular region. The 5mm 

diameter cylinder is indicated by arrows. The SNRs and CNRs of the circled region, labled in (f), 

were calculated for all the reconstructions. 
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3.4.2. Spatial Resolution Phantom 

 

We quantified the image spatial resolution of the FBP and EST reconstructions by using the 

resolution insert of the EMMA phantom. Figs. 3.9 (a-e) show bar groups 10 and 11 in the 

resolution insert obtained from the 583mAs FBP, 140mAs FBP, 39mAs FBP, 39 mAs 

FBP+NLTV and 39mAs EST reconstructions, respectively. The standard uncropped ramp filter 

was used in all the FBP reconstruction in order not to degrade the resolution.  The line profiles 

along the dotted line in Fig. 3.9 (a) are plotted in Fig. 3.9 (f). The smallest bar group 11 (1 line 

pair per mm) is not clearly differentiable in all reconstruction, but the second smallest bar group 

10 (0.8 line pairs per mm with a width of 0.62 mm per bar) is visible in all reconstructions. In 

contrast to FBP reconstructions at 140 mAs and 39 mAs, in which noise degrades the 

geometrical fidelity of the bars as sharp rectangular objects, the 39mAs EST reconstruction (Fig. 

3.9 (e)) maintains a noise-free appearance similar to the 583mAs FBP reconstruction (Fig. 3.9 

(a)). From these results, it can be concluded that incorporating the advanced regularization 

algorithms in the low flux, low dose setting will not significantly degrade the high contrast 

resolution. 
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Figure 3.9. Comparative reconstructions of the resolution insert of the EMMA phantom. Gray 

window: [-200,800] HU. Zoomed images of two smallest bar groups 10 and 11 for the 

reconstructions of (a) 583 mAs FBP, (b) 140 mAs FPB, (c) 39 mAs FBP, (d) 39 mAs 

FBP+NLTV and (e) 39 mAs EST. (f) The line profiles along the dotted line in (a) are plotted. 

 

 

 



70 

 

3.4.3. Pediatric Patient Data 

 

Figs. 3.10 and 3.11 show two representative head slice from two different scans from the same  

anonymous pediatric patient reconstructed by 140 mAs FBP, 39 mAs FBP and 39 mAs EST. 

Relative to the protocol setting of 140 mAs, the 39 mAs reconstructions simulate with 70% less 

imaging dose. It is noted that the low-dose EST reconstructions at 39 mAs contains noise 

characteristics similar to FBP at 140 mAs, while the image quality of the low-dose FBP 

reconstructions at 39 mAs are degraded by noise. The 39 mAs EST reconstruction still contains 

most of low-contrast structures while the 39 mAs FBP reconstruction has higher noise. 

Calculation of the cross-correlation coefficient resulted in a higher correlation for the EST 

reconstructions in both Figs. 3.10 and 3.11. The low contrast regions indicated by the arrows in 

39 mAs EST are in great agreement with the 140 mAs FBP, while its visibility is degraded by 

the high noise level in 39 mAs FBP. Comparative reconstructions were also performed by using 

140 mAs FBP, 39 mAs FBP with NLTV regularization, and 39 mAs EST with the same NLTV 

regularization parameters (Fig. 3.12).  Circled regions indicate the degradation of fine features by 

simply applying the NLTV regularization to the 39 mAs FBP reconstruction.  This evidence 

further proves that the regularization only is not enough to generate a noise-free image with high 

contrast and resolution information. The advanced iterative EST algorithm provides a platform 

for the regularization method, achieves the balance between the noise regularization and the data 

consistency with real experiments. 
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Figure 3.10.  Comparative reconstructions of a head slice from a pediatric patient. Gray window: 

[-400,500] HU. (a-c) Whole slice reconstructions for 140 mAs FBP, 39 mAs FBP, 39 mAs EST. 

(d-f) The corresponding zoomed images of the rectanglular region with fine and low-contrast 

structures. The white arrows point  to some fine features. 

a b c

d e f
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Figure 3.11.  Comparative reconstructions of another head slice from the pediatric patient data 

set. The gray windows for (a-c): [-400,800] HU and for (d-f): [-400,600] HU. (a-c) Whole slice 

reconstructions for 140 mAs FBP, 39 mAs FBP, 39 mAs EST. (g-l) The corresponding zoomed 

images of the rectangular region with fine and low-contrast structures.  
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Figure 3.12.  The effect of regularization on EST and FBP. Comparative reconstructions by 140 

mAs FBP (a), 39 mAs FBP with NLTV regularization (b), and 39 mAs EST with the same 

NLTV regularization parameters (c). Circled regions indicate the degradation of fine features by 

simply applying the NLTV regularization to the 39 mAs FBP reconstruction. Grayscale windows: 

[-400,600] HU. 

 

3.5. Discussion 

 

There is no single metric that can adequately quantify image quality, and in the analysis of image 

quality and aggregate of metrics, both subjective and objective, must be considered along with 

purpose of the imaging task. The purpose of this chapter is to address the feasibility of 

performing low dose reconstructions using an efficient Fourier based algorithm and 

regularization method. Due to the complexity of the analysis of image quality, in general, one 

cannot readily derive a specific dose reduction factor in simplistic terms. However, the results in 

this work demonstrate an enhanced performance of the proposed algorithm, relative to the 

conventional method, in the realm of low dose fan beam CT. The evaluation utilized is firstly a 

d b ca
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comparison to a high dose reconstruction. Accordingly, for the image quality phantom analysis, 

data sets, acquisitions and reconstructions were made the highest possible flux setting of the 

scanner at 583 mAs, protocol setting of 140 mAs, followed by EST reconstructions of 39 mAs 

which deliver 70% lower dose than the protocol 140 mAs. Although equivalence cannot be 

claimed in such low dose reconstructions due to the complexity of image analysis, it is 

demonstrated that in both the EMMA imaging quality phantom and a pediatric patient data 

acquired from a clinical CT scanner, that the 39mAs EST reconstruction produces comparable 

image quality, resolution and contrast relative to 140mAs FBP reconstruction.  

 

The proposed EST method also provides an efficient way to enforce measured data in Fourier 

space, which through the PPFFT constitutes an accurate and fast method for calculating the 

equivalent of forward and back projections. This allows any regularization constraint to be 

implemented in manner such that the final reconstruction result is strictly consistent with the 

measured, since in each iteration, including the final step of the iterative algorithm, the measured 

data is reinforced data in Fourier space. This is to be contrasted by a method that simply applies 

denoising or regularization to FBP reconstructions, as by doing so, there is no guarantee that the 

final image is consistent with patient measurements, or that over-smoothing and loss of 

important features have not occurred. To demonstrate this more thoroughly, the NLTV 

regularization was simply applied to the FBP reconstructions in both the phantom and patient 

data. As expected, the high contrast resolution is not considerably affected by such a procedure; 

however the fine contrast features, such as those shown Figs. 10 and 11 by the arrows are 

degraded. Fig. 12 shows a comparison of regions for the pediatric patient data using NLTV with 
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the exact same parameters as the EST algorithm, which demonstrate that some structures (shown 

in dashed circles) are lost if such a simple method is attempted. 
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CHAPTER 4 

LOW DOSE X-RAY PHASE CONTRAST MAMMOGRAPHY CT RECONSTRUCTION OF 

THROUGH EQUALLY SLOPED TOMOGRAPHY 

 

4.1. Introduction 

 

Human breast cancer is a type of cancer originating from breast tissue. Worldwide, breast cancer 

comprises 22.9% of all cancers (excluding non-melanoma skin cancers) in women. (1)  In 2008, 

breast cancer caused 458.503 deaths worldwide (13.7% cancer deaths in women). The cure and 

survival rates of breast cancer greatly depend on the cancer type and staging (1), which is 

directly related to the accuracy of screening and diagnosis techniques. Mammography is now the 

primary imaging tool for early detection of breast cancers. While more advanced technologies 

such as digital mammography have been developed to improve its image quality (2), there are 

three potential risks associated with mammography. First, mammograms miss up to 20% of 

breast cancers that are present during the time of screening (3). Second, in some cases 

mammograms appear abnormal, but no breast cancers are actually present (4). Third, repeated 

mammography examinations have the potential of causing cancers (5). Dedicated breast 

computed tomography (CT) can reduce some of these risks, but its spatial resolution (~400 m) 

is mainly limited by the x-ray dose deliverable to the radiation-sensitive human breast and its 

detection of micro-calcifications is inferior to mammography (6). Furthermore, some tumours 
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are not visible in CT because its image contrast is based on the x-ray absorption coefficients and 

is intrinsically low between tumours and normal tissues. 

 

To improve the future detection accuracy while further reducing the radiation dose for human 

breast cancer screening and diagnostics, we combined the “phase contrast x-ray tomography 

(PCT)” with our EST reconstruction algorithm; performed experiment with a whole human 

breast sample with an invasive ductal cancer. This approach has been demonstrated as a high 

resolution, high contrast and low dose PCT method.  

 

4.2. Methods 

 

4.2.1. Phase Contrast X-ray CT 

 

The behavior of x-rays as they travel through an object can be described in terms of a complex 

index of refraction n, of which the real part (δ) and the imaginary part (β). The relations between 

n, δ and β can be expressed as: 
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Where   ,  ,   and   represent classical electron radium, x-ray wave length, electron density and 

the linear absorption coefficient. δ represents the x-ray absorption by the object while β 

represents the phase shift (refraction). The ratio of δ and β is determined by: 

 

 

 
  

     

 
                                                                                

 

For some low Z material such as biological soft tissue, as indicated in equation 4, the variation of 

the linear attenuation coefficients is typically on the order of 0.1-0.3 cm
-1

 in the x-ray energy 

range of 10-60 keV (7) that is commonly used in radiology. As a result, the image contrast based 

on x-ray absorption may not be sufficiently high enough to image the normal and diseased 

tissues in a sample. Compared to the x-ray absorption, the phase shift in the hard x-ray energy 

range is two to three orders of magnitude higher (8). Therefore, radiographic techniques that are 

sensitive to the variation of the phase shift can significantly enhance the image contrast relative 

to the x-ray absorption based techniques. Over the past few decades, phase contrast x-ray 

imaging has been under rapid development and various methods for detecting the refracted x-

rays have been implemented (9-18). However, presently two of the major challenges prevent 

PCT from becoming an in vivo imaging tool for clinical application. First, in order to achieve 

high resolutions (i.e. tens of microns) for accurate diagnosis, PCT requires several thousands of 

projections from a whole human breast. The total radiation dose delivered to the breast is thus 

higher than that in dual-view mammography. Second, PCT uses sophisticated x-ray optics and 

the acquisition time for several thousands of projections is usually too long for clinical 

application. 
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4.2.2. Equally Sloped Tomography for Phase Contrast CT 

 

EST reconstruction algorithm, because of its characteristic of utilizing much fewer number of 

projections to achieve higher contrast and higher resolution images, can overcome the over dose 

and long data acquisition time problem of PCT while fully addressing the advantage of contrast 

performance of PCT. 

 

Figure. 4.1. Schematic layout of the iterative EST algorithm for Phase contrast CT. 
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Unlike conventional CT reconstruction methods, EST utilizes a pseudo-polar grid and the 

pseudo-polar fast Fourier transform (PPFFT) as addressed before. The algorithm starts with 

padding each projection with zeros and calculating its oversampled Fourier slice in the pseudo-

polar grid (red lines in Fig. 4.1 top-right). The grid points outside the resolution circle (the circle 

with dashed lines in Fig. 4.1) and on the missing projections (black lines in Fig. 4.1 top-right) are 

set to zero. The algorithm iterates back and forth between real and Fourier space by the 

following steps (19-23). 

  

i) A real-space image is obtained (Fig. 4.1 bottom-right) by applying the adjoint PPFFT to the 

Fourier-space slices. Here the adjoint PPFFT instead of the inverse PPFFT is used because the 

former is implemented through a conjugate gradient method and can be computed much faster 

than the latter without compromising the accuracy (22).  

ii) A support is determined from the image based on the zero padding of the projections. Outside 

the support the voxel values are set to zero, and inside the support the negative values are set to 

zero. A new image is obtained (Fig. 4.1 bottom-left).  

iii) By applying the PPFFT to the new image, an updated set of Fourier-space slices is obtained 

(Fig. 4.1 top-left).  

iv) Those Fourier slices corresponding to red lines in Fig. 4.1 are replaced with the measured 

ones, while the grid points outside the resolution circle and on the missing Fourier slices (i.e. 

black lines) remained unchanged. The revised set of the Fourier slices is used for the next 

iteration. 
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v) An error metric is calculated to monitor the convergence of the algorithm, defined as 

normalized difference between the measured and calculated Fourier slices. 

 

In this experiment, the algorithm was automatically terminated when the error became stabilized 

after about 20 iterations. 

 

After the iteration process was finished, a non-local means technique was applied to the 

reconstructed image (27). This technique has proven to be effective in removing noise while 

preserving edge contrasts. In our case the non-local means filter was carefully set to partially 

eliminate noise but not fine structures.  

 

4.2.3. Experiment setup 

 

The experiment was conducted on the biomedical beamline at the European Synchrotron 

Radiation Facility (ESRF) (24). The sample was a human breast mastectomy specimen (~9.5 cm 

in diameter) issued from a 75-year-old woman with an invasive ductal cancer and fixed in 4% 

formalin. The reason that we chose an invasive ductal carcinoma is because it is the most 

frequent breast cancer entity. The study was conducted in accordance with the Declaration of 

Helsinki and was approved by the local ethics committee. A collimated x-ray beam with energy 

of 60 keV was monochromatized by a double Si (111) crystal system and an additional single Si 

(333) crystal (Fig. 4.2). The use of high energy x-rays (60keV) was justified to reduce the 

radiation dose to the sample and allow for the imaging of thick tissues. The breast cancer sample 
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was mounted on a rotary stage and placed in the x-ray beam. The refracted and scattered x-rays 

by the sample were analyzed by a Si (333) perfect silicon analyzer crystal. The analyzer crystal 

acts as an extremely narrow slit which can select with extremely high sensitivity (≈10
-6

 rad) the 

x-rays exiting the sample. It was rotated according to the incoming x-ray beam and set at an 

angle close to the Bragg diffraction condition. After each rotation, the sample was vertically 

displaced relative to the x-ray beam, allowing a different region to be imaged. A 60µm thick 

Gadox fluorescent screen was used to convert the x-rays into visible light to be recorded by the 

fast readout and low noise 2048 x 2048 pixel charge coupled device (CCD). The image were 

taken with a 2 x 2 binning in order to have an effective 92 x 92  µm pixel size, which sets the 

spatial resolution of the imaging technique. The total acquisition time is ~25.1 minutes.  

 

The image contrast of this experimental set-up is determined by the rocking curve (RC) of the 

analyzer crystal. The analyzer modulates the beam by converting the small angular change of the 

x-ray propagation to the intensity variation on the detector. Depending on the position of the 

analyzer crystal, the image contrast varies because the Bragg condition is fulfilled by the 

refracted and scattered x-rays at different angles from the sample. In this study, we set the 

position of the analyzer about 40% to the left of the rocking curve peak. The phase contrast x-ray 

images were measured by a fast-readout and low-noise CCD detector (25).  

 

To achieve high spatial resolution in conventional PCT, the number of projections (N) required is 

determined by N ~ D/(2P) where D is the thickness of the sample and P the detector pixel size. 

In this experiment, 2000 projections from 0 ~ 180 degrees with a increment of 2000/180 degree 
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were measured from the whole breast cancer sample. Although the acquired projections are a 

mixture of the x-ray absorption, refraction and scatter effects, the application of CT 

reconstruction methods remains valid due to the small refraction angle approximation for soft 

tissues (26).   

 

 

Figure 4.2. Schematic diagram of the phase contrast X-ray imaging setup. A collimated x-ray 

beam with energy of 60 keV was monochromatized by a double Si (111) crystal system and an 

additional single Si (333) crystal. The breast cancer sample was mounted on a rotary stage and 

placed in the x-ray beam. The refracted and scattered x-rays by the sample were analyzed by a Si 

(333) analyzer crystal. The analyzer crystal was rotated according to the incoming x-ray beam 

and set at an angle close to the Bragg diffraction condition. After each rotation, the sample was 

vertically displaced relative to the x-ray beam, allowing a different region to be imaged. A fast 

readout and low noise charge coupled device (CCD) camera with 2048 x 2048 pixels was used to 

measure the phase contrast x-ray images. 
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4.2.4. Evaluation Methods  

 

We performed the conventional PCT reconstruction of the whole breast cancer sample from 

2000 projections using the gold-standard filtered back projection (FBP) with a Hamming filter 

(28). The same volume was computed with the EST reconstruction using 512 out of the 2000 

projections. For a comparison purpose, a FBP reconstruction was also computed with 512 

projections. In order to explore the limit of the EST method and investigate the possibility of 

further reducing the radiation dose and the acquisition time, we also performed an EST 

reconstruction with only 200 projections.  For FBP reconstruction, equally-angled acquisition is 

maintained after we manually removed the number of projections from 2000 to 512. The angle 

increments in these cases are 512/180. For EST reconstruction, since equally-sloped acquisition 

is desired, we performed nearest neighbor interpolation to achieve the projections at 512 and 200 

cases.  

 

Both human study and quantitative comparisons were performed on the reconstructed images for 

performance evaluation. For the four sets of reconstructions (FBP 2000 projections, EST 512 

projections, FBP 512 projections and EST 200 projections), two sets of images (one set for axial 

view and one set for sagittal view) were selected and blindly examined by five independent and 

experienced radiologists. The images from different reconstruction conditions were mixed and 

disordered on purpose and displayed to the radiologists. Based on the current clinical image 

evaluation systems, in an attempt to standardize image evaluation in conventional 

mammography, the American College of Radiology (ACR) and the European Commission (EU) 
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have published guidelines which include characteristics for image quality control (29).  The ACR 

guidelines include positioning of the breast, compression, exposure level, contrast, sharpness, 

noise and artifacts. The EU guidelines comprise amongst others: sharp reproduction of 

glandular tissue, retroglandular fat tissue, visualization of skin outline and reproduction of 

vascular structures, vessels, fibrous strands and skin structure. These criteria were summarized 

as “evaluation of different structure”. The different tumour borders, skin layers, fatty tissues and 

collagen strands were easily identified by the radiologists. To make the evaluation quantitative, 

five criteria were adopted by the radiologists based on current clinical image evaluation systems 

as mentioned. The criteria include i) overall image quality, ii) image sharpness, iii) image 

quality, iv) evaluation of different structure, and v) noise level. We also added the criterion of 

“overall image quality” as a summary of all these criteria. They were evaluated in a range from 1 

to 5 (1 being the worst and 5 the best).  For quantitative measurements, histogram curves for 

different reconstruction cases were plotted and compared. Line profile plottings along some fine 

features in the reconstructions were also compared to evaluate the image resolution and contrast 

performance of different reconstruction conditions. 

 

4.2.5. 3D Tumour Segmentation Method 

 

Because of the limitation of radiation dose, most conventional mammography techniques take 

only two projections at different angles. This greatly enhances the difficulty of tumour especially 

early stage tumour detection and localization. But with the breakthrough of our PCT image 

technique combining with EST reconstruction algorithm, three dimensional whole tumour 
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segmentation and detection become possible. In our study, the tissue segmentation on the EST 

512 reconstruction has been performed using a segmentation method based on 3D marker-

controlled viscous watershed transform (30). This method is well adapted for the intrinsic nature 

of the PCT images which are characterized by a strong signal at the borders of each feature. The 

algorithm computes the gradient of the image, some points that belong to the tumour and others 

belonging to the exterior were selected manually, and then a flooding simulation by a viscous 

fluid was performed. Results of the flooding are a labeling of all pixels of the images belonging 

to the tumour. The segmentation results were confirmed and consistent with trained radiologist’s 

interpretation. 

 

4.3. Results 

 

4.3.1. 2D visualization 

 

Both axial and saggital views of the three dimensional reconstruction volume was compared 

between conventional PCT and EST reconstruction algorithm. Fig. 4.3 shows the same axial 

slice of the FBP 2000, EST 512, FBP 512 and EST 200 projections reconstructions, separately. 

The zoomed views of the breast tumour region are shown in Fig. 4.3 (e~h). Visually, the EST 

512 reconstruction looks very consistent with FBP 2000 projections, while FBP 512 exhibits 

high noise, degraded features (indicated by the white arrows) and blurred boundary of the 

tumour. When pushing the limit to 200 projections, as shown in Fig. 4.3 (f) and (h), though the 

image quality is limited by the extremely low projection number, the fine features indicated by 
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the arrows can still be preserved better compared to FBP 512 projections. To better 

quantitatively visualize the result, Fig 4.4 shows the histograms of the axial slices of the 

reconstructions in Fig. 4.3 (a~d). It is clear that compared to FBP 2000, EST 512 shows most 

similarity value distribution. The peak of the histogram for EST 200 degrades compared to 

FBP2000 and EST 512 but still outperforms FBP 512.  The higher noise level in FBP 512 

spreads out the curve of histogram and blurs the reconstructed image. 
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Figure 4.3. Comparison reconstructions of human breast sample using EST and FBP with 

various numbers of projections. A 92 m thick axial slice reconstructed by (a) FBP 2000, (b) 

EST 512, (c) FBP 512 and (d) EST 200, in which the white rectangle indicates a tumour region. 
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Zoomed view of the tumour region (the white rectangle) reconstructed by (e) FBP 2000, (f) EST 

512, (g) FBP 512 and (h) EST 200, in which the white arrows indicate the visibility of detailed 

features inside the tumour regions. A Hamming filter was used in the FBP reconstructions, while 

a non-local means filter was applied to the EST reconstructions. 

 

 

 

Figure 4.4.   Comparison of histogram plots of the reconstructed axial slices between EST and 

FBP with various numbers of projections. The plots corresponding to Fig 3 a~d from FBP 2000 

projections, EST 512 projections, EST 200 projections and FBP 512 projections.  

 

The same saggital slice of the reconstruction volume from FBP 2000 projections, EST 512 

projections, FBP 512 projections and FBP 200 projections were compared in Fig. 4.5. The white 

rectangular in Fig. 4.5 indicates the tumour region. All the fine details in FBP 2000 can be seen 
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in EST 512, but later utilized only about one quarter number of projections and one quarter of the 

radiation dose. On the other hand, visually FBP 512 shows significant higher noise level all over 

the whole image compared to EST 512. The noise blurs the high resolution tissues and degrades 

the contrast. Fig. 4.6 shows the similar comparison results of another slice from saggital view. 

To better visualize the resolution performance of EST reconstruction, Fig. 4.7 (b~e) show the 

zoomed in views of the tumour region in Fig. 4.6 from FBP 2000 projections, EST 512 

projections, FBP 512 projections and EST 200 projections. The white arrows point out some 

small features in the images. It can be seen that the same features can be visualized clearly in 

FBP 2000, EST 512 and even EST 200, but the high resolution lines and boundaries are blurred 

or hard to detect in FBP 512.  To better compare the resolution performance in a quantitative 

way, the line profiles along the dashed white line in Fig. 4.7 (a) in all four reconstructions are 

shown in Fig. 4.7 (f). From the plotting, EST 512(red) fits FBP 2000 (black) closely in all 

maximum, minimum values and curves, while significant difference can be seen between FBP 

2000 and FBP 512. This demonstrates the conventional PCT reconstruction algorithm cannot 

recover fully resolution information when using less number of projections while our advance 

EST algorithm can still keep the high resolution information in the reconstructed images. 
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Figure 4.5. Comparison reconstructions of a 92 m thick saggital slice using FBP and EST with 

various numbers of projections. The slices were reconstructed by (a) FBP 2000, (b) EST 512, (c) 

FBP 512 and (d) EST 200, in which the white rectangular indicate the tumour region. A 

Hamming filter was used in the FBP reconstructions, while a non-local means filter was applied 

to the EST reconstructions. 
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Figure 4.6. Comparison reconstructions of another saggital slice using FBP and EST with 

various numbers of projections. Another 92 m thick saggital slice reconstructed by (a) FBP 

2000, (b) EST 512, (c) FBP 512 and (d) EST 200, in which the white rectangular indicate the 

tumour region.  
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Figure 4.7. Reconstruction comparisons between the conventional PCT and EST 

reconstructions. (a), A 92 m thick saggital slice of the FBP 2000 reconstruction, in which the 

rectangle indicates a tumour region. Zoomed view of the tumour region reconstructed by FBP 
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2000 (b), EST 512 (c), FBP 512 (d) and EST 200 (e). The arrows indicate that FBP 2000 and 

EST 512 have the highest image quality, while FBP 512 exhibits high noise, degraded features 

and blurred boundary of the tumour. A Hamming filter was used in the FBP reconstructions, 

while a non-local means filter was applied to the EST reconstructions. The line profiles along the 

white dashed line of all four reconstruction slices are shown in (f).  

 

In the previous results, a hamming filter was applied in all the FBP reconstruction while a Non-

local filter was applied in all the EST reconstruction. To demonstrate that the high resolution and 

high contrast EST reconstructed images are resulted from the characteristics of the advanced 

reconstruction algorithm not the de-noising filter, we also applied same Non-local filter onto 

FBP reconstruction. Fig. 8 shows the image quality comparison between EST 512 and FBP 512. 

The Non-local filter was applied to both the EST and FBP reconstructions. Though with the 

same filter, the noise level in FBP 512 is still higher than EST512, and the fine features indicated 

by the white arrows were still blurred and hard to identify for FBP512 reconstruction. This result 

suggests that the improvement of the image resolution and contrast is mainly due to the EST 

method but not the Non-local means filter. 
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Figure 4.8. Reconstruction using EST and FBP with non-local means filter added with 512 

projections.  Image quality comparison between (a) EST 512 and (b) FBP 512. A non-local 

means filter was applied to both the EST and FBP reconstructions. Zoomed views of the tumour 

region by (c) EST 512 and (d) FBP 512. The white arrows indicate that, with the same non-local 

means filter, EST 512 shows more fine features in the tumour region than FBP 512.  

 

4.3.2. Identification, segmentation and 3D visualization of tumour  

 

The low dose and good quality PCT with EST reconstruction technique significant increase the 

capability of different tissue identification and tumour localization from the 3D reconstruction.  

A reformatted 92 m thick sagittal slice and an axial slice from the EST 512 reconstruction are 

shown in Fig. 4.9. The fine details of the tumour, collagen strands, glandular tissue and fat are 

clearly resolved. Fig. 4.9 (b) and (d) shows a zoomed view of the tumour region, in which the 
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border of the tumour is distinctly visible and exhibits sharp edges. The partially discrete 

spiculations are a sign of malignancy in mammography.  

 

 

Figure 4.9. Identification of fine features in the tumour region and its surrounding tissues in the 

EST 512 reconstruction. (a), A 92 m thick sagittal slice (the rectangle indicates the tumour 

region). (b), Zoomed view of the tumour region in the sagittal slice. (c), A 92 m thick axial 

slice (the square indicates the tumour region). (d), Zoomed view of the tumour region in the axial 

slice. The arrows indicate various fine features in the EST 512 reconstruction: 1) collagen 

strands; 2) glandular tissue; 3) speculations; 4) fat; 5) skin; and 6) formalin. 
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Using the segmentation method described before, the 3D tumour segmentation volume is shown 

in Fig. 4.10. Fig. 4.10 (a) shows the segmented tumour in an axial slice, in which the yellow 

contour line indicates the tumour boundary. Three perpendicular slices of the segmentation are 

shown in Fig. 4.10 (b) and the whole 3D volume renderings are displayed in Fig. 4.10 (c). The 

3D segmented tumour (in red) and its surrounding tissues such as skin, lobules and lactiferous 

duct are clearly visible, and the total volume of the elongated tumour was estimated to be ~2.7 

cm
3
.  When rotating the 3D volume rendering result, a movie can be generated for better 

visualization and diagnosis purpose. Fig. 4.11 shows six snap shots from the movie, which shows 

the tumour in the breast sample from six different angles. 
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Figure 4.10. 3D visualization of the tumour from the EST 512 reconstruction. (a), a segmented 

tumour in an axial slice, in which the yellow contour line indicates the tumour boundary. (b), 

three perpendicular slices of the segmented tumour (in red). (c), 3D volume renderings of the 

tumour (in red) in which the arrows indicate different fine features: 1) lobules; 2) tumour; 3) 

skin; and 4) lactiferous duct. 
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Figure 4.11. Snapshots from the 3D tumour visualization movie from the EST 512 

reconstructions. After segmentation, the 3D tumour cell can be localized and identify clearly in 

the breast sample. The boundary of the tumour is separated from the other soft tissues. 
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4.3.3. Radiologist Blind Test 

 

Table 4.1 summarizes the results of the experienced and independent radiologists’ blind 

evaluation, suggesting that EST 512 outperforms FBP 2000 in all five categories. Furthermore, 

the EST 200 reconstruction is not only superior to FBP 512 (outperforms in 4 out of the total five 

categories), but also shows an image quality with fine structures that is still clinically acceptable.  

  

 

 FBP 2000 EST 512 FBP 512 EST 200 

Overall Image Quality 4.3 ± 0.9 4.5 ± 0.5 2.2 ± 0.4 2.7 ± 0.9 

Sharpness 4.0 ± 0.7 4.3 ± 0.5 3.3 ± 0.5 2.2 ± 0.8 

Image Contrast 4.0 ± 0.5 4.8 ± 0.4 3.0 ± 0.7 3.4 ± 1.0 

Evaluation of  

Different Structure 
4.1 ± 0.6 4.8 ± 0.4 2.6 ± 0.5 2.9 ± 1.0 

Noise Level 4.2 ± 0.6 4.8 ± 0.3 1.8 ± 0.8 3.3 ± 0.8 

 

Table 4.1. Results of a blind evaluation made by five independent, experienced radiologists. 

Two sets of images each consisting of the FBP 2000, EST 512, FBP 512 and EST 200 

reconstructions were used in the evaluation based on five criteria: overall image quality, image 

sharpness, image quality, evaluation of different structure and noise level, where “5” means the 

best and “1” the worst. A Hamming filter was used in the FBP reconstructions, while a non-local 

means filter was applied to the EST reconstructions. 
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These visualization results along with the radiologists’ evaluation and quantitative comparisons 

demonstrate that the EST method not only significantly reduces the number of projections 

relative to the standard FBP method, but also preserves the high resolution and sensitivity of 

PCT in discriminating the fine 3D structures and morphology of the tumour and soft tissues.  

 

4.4. Discussions 

 

The radiation dose for the FBP 2000 and EST 512 reconstructions was estimated based on the 

measurement using an ionization chamber installed on the biomedical beamline. The Mean 

Glandular Dose (MGD), calculated by Monte Carlo simulations (31), is 7.7±0.1 mGy for the 

FBP 2000 reconstruction and 2.0±0.1 mGy for the EST 512 reconstruction, indicating a radiation 

dose reduction of ~74%. Furthermore, according to the US Food and Drug Administration 

(FDA), the MGD of the U.S. dual-view screening mammography system was estimated to be 

~3.0-3.52 mGy (32). This suggests that the combination of the EST method with PCT can not 

only provide high resolution and high contrast 3D diagnosis of human breast cancers, but also 

requires radiation doses less than that in dual-view screening mammography. According to the 

blind evaluation by five radiologists, while the overall image quality is lower than that of EST 

512 and FBP 2000, EST 200 still outperforms FBP 512 and the 3D breast tumour structure 

remains visible. The total radiation dose in EST 200 is reduced to 0.8±0.1 mGy, which is about 

four times lower than that in dual-view screening mammography.   
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Compared to the conventional PCT reconstruction (i.e. FBP), the EST method utilizes an 

iterative process to search for the missing information based on a limited number of projections 

and physical constraints, while keeping the reconstruction consistent with the experimental data. 

Furthermore, the EST method implemented in this study requires no interpolation in Fourier 

space, and is automatically terminated when a solution is reached. Because of the use of a fast 

Fourier transform in the iterative process, the computational time for the EST reconstruction of a 

2048 x 2048 pixel slice (21 iterations) is about 1.4 minutes on a 2.66 GHz Intel Nehalem with 

4GB of RAM computer. By combining this general reconstruction method with PCT, we not 

only achieved high contrast 3D imaging of a human breast cancer sample with a pixel size of 92 

m, but also reduced the radiation dose by ~74% relative to the standard FBP method. As 

importantly, the significant reduction of the number of projections also implies that the 

acquisition time can in principle be improved by a factor of ~74% (i.e. reduced from 25.1 to 6.6 

minutes), which is another critical factor in pursuing in-vivo imaging and clinical application of 

PCT. Furthermore, if a slightly higher noise level is tolerable, the EST method can be applied to 

the screening and diagnosis of human breast cancers with an even lower radiation dose (~0.8±0.1 

mGy) and a faster acquisition time (~2.5 minutes).  

 

In conclusion, we have demonstrated that, compared to current clinical mammography, the 

method reported here can not only provide the 3D information of soft tissues and tumours at 

higher resolution and better contrast, but also deliver less radiation doses to the sample. As 

compact x-ray sources and dedicated medical imaging beamlines are currently under rapid 

development worldwide (24, 33-37), this work represents an important step towards the clinical 
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application of PCT for 3D screening and diagnosis of human breast cancers. Finally, while in 

this study we used a human breast cancer sample as a proof of principle, this method can in 

principle be applied to other medical tomography fields where high resolution, high contrast, low 

radiation doses and fast data acquisition are crucially needed (28). 
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