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Abstract of the Dissertation

The unfolded Seiberg-Witten Floer spectrum:

Definition, properties and applications

by

Jianfeng Lin

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2016

Professor Ciprian Manolescu, Chair

In this thesis, we define different versions of unfolded Seiberg-Witten Floer spectra

for general 3-manifolds. They generalize Manolescu’s and Kronheimer-Manolescu’s

construction of Floer stable homotopy type. We prove some properties of these new

invariants and give some topological applications (Joint works with collaborators.)

Along the way, as an application of the Seiberg-Witten Floer spectrum, we study

the Pin(2)-equivariant Seiberg-Witten Floer KO-theory and prove new Furuta-type

inequalities on the intersection forms of spin cobordisms between homology 3-spheres.
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CHAPTER 1

Introduction

1.1 The Seiberg-Witten equations and the monopole Floer

homology

In 1994, following up the work of Seiberg and Witten [62], Witten [67] introduced a

set of nonlinear partial differential equations over spinc 4-manifolds. These equations

(later called the Seiberg-Witten equations) turn out to be extremely powerful in the

study of four dimensional topology. In particular, by counting the number of solutions

(called the Seiberg-Witten invariant), topologists are able to distinguish many smooth

4-manifolds that are homeomorphic to each other. For example, Fitushel and Stern

proved the following theorem:

Theorem 1.1.1 (Fintushel-Stern [14]). Let X be a closed, oriented, simply connected

smooth 4-manifold with b+2 (X) > 1. Suppose that X has nonzero Seiberg-Witten in-

variant (e.g. X admits a symplectic structure) and contains a homologically essential

torus T of self-intersection 0 and π1(X \ T ) = 1. Then there exist infinitely many

smooth structures on X.

In dimension three, following the idea of Floer [16] in the setting of the anti-self-dual

Yang-Mills equation, Kronheimer and Mrowka [33] developed the corresponding theory

for 3-manifolds, i.e., the theory of monopole Floer homology. Roughly speaking, the

monopole Floer homology of a 3-manifold Y is defined as the homology of a certain

chain complex, whose generators are the critical points of the Chern-Simons-Dirac

functional (corresponding to the solutions of the Seiberg-Witten equations on Y ) and

differential given by counting the number of negative gradient flow lines connecting
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these critical points (corresponding to the finite-energy solutions of the Seiberg-Witten

equations on R× Y ). The monopole Floer homology, together with its counter parts

(instanton Floer homology and Heegaard Floer homology), is now an important tool

in 3-dimensional topology and has many remarkable applications.

1.2 The Seiberg-Witten Floer spectrum for rational homolo-

gy 3-spheres

In the contexts of symplectic Floer theory and instanton Floer theory, Cohen, Jones

and Segal [9] posed a question of constructing a “Floer spectrum,” an object whose

homology recovers the Floer homology. (Recall that a spectrum is a generalization of

a topological space in the setting of stable homotopy theory.) In 2003, Manolescu [40]

first constructed the Seiberg-Witten Floer spectrum for rational homology 3-spheres

by incorporating Furuta’s technique of finite dimensional approximation in Seiberg-

Witten theory [21] and Conley index theory [10]. It has been just recently shown by

Lidman and Manolescu [36] that the homology of this spectrum is isomorphic to the

monopole Floer homology.

Working with the Seiberg-Witten Floer spectrum has several advantages. First,

suppose that the Seiberg-Witten equations have a certain “additional symmetry” (e.g.

the underlying 3-manifold has a spin structure or has a finite group action). Then

defining the “equivariant Seiberg-Witten Floer theory” is usually easier in the context

of a spectrum invariant. A major reason is that the construction of a spectrum invari-

ant requires very weak (or no) transversality conditions, while obtaining equivariant

transversality in the setting of Morse homology is usually more difficult. A remarkable

application in this direction is the following theorem (we stick to the case of integer

homology spheres):

Theorem 1.2.1 (Manolescu [43]). To each integer homology sphere Y , by studying the

Pin(2)-equivariant Seiberg-Witten Floer spectrum of Y , we can associate an invariant

β(Y ) ∈ Z with the following properties:
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• If −Y denotes the orientation reversal of Y , then β(−Y ) = −β(Y );

• The mod-2 reduction of β(Y ) equals the Rohlin invariant µ(Y );

• Suppose Y0, Y1 are homology cobordent to each other. Then β(Y0) = β(Y1).

Combining the earlier work of Galewski-Stern [25] and Matumoto [45], Theorem

1.2.1 disproves the Triangulation Conjecture in high dimensions:

Corollary 1.2.2 (Manolescu [43]). For every n ≥ 5, there exists a closed n-dimensional

topological manifold that does not admits a simplicial triangulation.

Remark. A different construction of Pin(2)-equivariant Seiberg-Witten Floer homolo-

gy was given by Lin in [37]. Instead of doing finite dimensional approximations, Lin

extends Kronheimer-Mrowka’s construction to the Morse-Bott setting. This construc-

tion gives an alternative disproof of the triangulation conjecture.

The second advantage of the Seiberg-Witten Floer spectrum is that: in principle,

this invariant contains more information than the monopole Floer homology. For

example, by applying the K-theory or KO-theory functor to the spectrum invariant,

one can define “Seiberg-Witten Floer K-theory” or “Seiberg-Witten Floer KO-theory”

and obtain interesting topological applications. This leads us to the topic of the next

section.

1.3 Pin(2)-equivariant Seiberg-Witten Floer KO-theory

In this section, we discuss the following natural question in 4-dimensional topology:

Question 1.3.1. Which nontrivial symmetric bilinear form can be realized as the

intersection form of a smooth, spin 4-manifold X (closed or with boundary)?

We first assume that X is closed. In this case, the intersection form should be even

and unimodular. Therefore, it is indefinite by Donaldson’s diagonalizability theorem

[12, 13]. After changing the orientation of X if necessary, we can assume that the

signature σ(X) is non-positive. Then the intersection form can be decomposed as

3



p(−E8) ⊕ q ( 0 1
1 0 ) with p ≥ 0, q > 0. Matsumoto’s 11/8 conjecture [44] states that

b2(X) ≥ 11
8
|σ(X)|, which can be rephrased as q ≥ 3p

2
. An important result is the

following 10/8 theorem of Furuta.

Theorem 1.3.2 (Furuta [21]). Suppose X is an oriented closed spin 4-manifold with

intersection form p(−E8)⊕ q ( 0 1
1 0 ) for p ≥ 0, q > 0. Then we have q ≥ p+ 1.

Furuta’s proof made use of the finite dimensional approximation of the Seiberg-

Witten equations on closed 4-manifolds and Pin(2)-equivariant K-theory. By doing

destabilization and appealing to a result by Stolz [64], Minami [47] and Schmidt [60]

independently proved the following improvement:

Theorem 1.3.3 (Minami [47], Schmidt [60]). Let X be a smooth, oriented, closed spin

4-manifold with intersection form p(−E8)⊕ q ( 0 1
1 0 ) for p ≥ 0, q > 0. Then we have:

q ≥


p+ 1, p ≡ 0, 2 mod 8

p+ 2, p ≡ 4 mod 8

p+ 3, p ≡ 6 mod 8.

(1.1)

Remark. p is always an even integer by Rokhlin’s theorem [55].

An interesting observation is that Schmidt’s calculation in [60] about the Adams

operations actually implies an alternative proof of the following further improvement,

which was first proved by Furuta-Kametani [22]. As a natural by-product of defining

the Seiberg-Witten Floer KO-theoretic invariants, we will give this alternative proof

in Section 4.2.

Theorem 1.3.4 (Furuta-Kametani [22]). Let X be a smooth, oriented, closed spin

4-manifold with intersection form p(−E8)⊕ q ( 0 1
1 0 ) for p, q > 0. Then q ≥ p+ 3 when

p ≡ 0 mod 8.

Now we turn to the case that X is not closed but has boundary components, which

are homology 3-spheres. The intersection form of X is still even and unimodular but

can be definite now. For the definite case, various constrains are found in [17, 18, 19,

51, 31, 40].
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For the indefinite case, Furuta-Li [24] and Manolescu [42] proved the following

theorem independently1.

Theorem 1.3.5 (Furuta-Li [24], Manolescu [40]). To each oriented homology 3-sphere

Y , we can associate an invariant κ(Y ) ∈ Z with the following properties:

(i) Suppose W is a smooth, spin cobordism from Y0 to Y1, with intersection form

p(−E8)⊕ q ( 0 1
1 0 ). Then:

κ(Y1) + q ≥ κ(Y0) + p− 1.

(ii) Suppose W is a smooth, oriented spin manifold with connected boundary Y ,

with intersection form p(−E8)⊕ q ( 0 1
1 0 ) and q > 0. Then:

κ(Y ) + q ≥ p+ 1.

Both Furuta-Li and Manolescu proved this theorem by considering the Pin(2)-

equivariant K-theory on the Seiberg-Witten Floer spectrum. Some new bounds can

be obtained from this theorem. For example, the Brieskorn sphere +Σ(2, 3, 12n + 1)

does not bound a spin 4-manifold with intersection form p(−E8)⊕ p ( 0 1
1 0 ) for p > 0.

The main purpose of Chapter 4 will be extending Theorem 1.3.3 to the case of spin

cobordisms tor get more constraints on the intersection form of a spin 4-manifold with

boundary. The results in this chapter have also appeared in the paper [39].

Here is the first result:

Theorem 1.3.6. For any k ∈ Z/8, we can associate an invariant κok(Y ) to each

oriented homology sphere Y , with the following properties:

• (1) 2κok(Y ) is an integer whose mod 2 reduction is the Rokhlin invariant µ(Y ).

• (2) Suppose W is an oriented smooth spin cobordism from Y0 to Y1, with in-

tersection form p(−E8) ⊕ q ( 0 1
1 0 ) for p, q ≥ 0. Let p = 4l + m for l ∈ Z and

m = 0, 1, 2, 3. Then for any k ∈ Z/8, we have the following inequalities:

1We give Manolescu’s statement here. Furuta-Li’s statement is slightly different.
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(i) If (µ(Y0),m) = (0, 0), (0, 3), (1, 0), (1, 1), then:

κok(Y0) + 2l + h(µ(Y0),m) ≤ κok+q(Y1) + βq
k+q. (1.2)

(ii) If (µ(Y0),m) = (0, 1), (0, 2), (1, 2), (1, 3), then:

κok+4(Y0) + 2l + h(µ(Y0),m) ≤ κok+q(Y1) + β4+q
k+q . (1.3)

Here βj
k =

j−1∑
i=0

αk−i where αi = 1 for i ≡ 1, 2, 3, 5 mod 8 and αi = 0 for i ≡

0, 4, 6, 7 mod 8 (β0
k is defined to be 0). The constants h(µ(Y0),m) are listed

below:

m = 0 m = 1 m = 2 m = 3

µ(Y0) = 0 0 5/2 3 3/2

µ(Y0) = 1 0 1/2 3 7/2

.

Remark. When m is even, µ(Y0) = µ(Y1) and h(µ(Y0),m) is an integer. When m is

odd, µ(Y0) ̸= µ(Y1) and h(µ(Y0),m) is a half-integer.

Setting p = q = 0 in (2) of Theorem 1.3.6, we get:

Corollary 1.3.7. If two homology spheres Y0, Y1 are homology cobordant to each other,

then κok(Y0) = κok(Y1) for any k ∈ Z/8.

The definition of κok is similar to that of κ [24, 42]. Roughly, κok(Y ) is defined

as follows. Pick a metric g on Y . By doing finite dimensional approximation to the

Seiberg-Witten equations on (Y, g), we get a topological space Iν with an action by

G = Pin(2). After changing Iν by suitable suspension or desuspension, we consider

the following construction: The inclusion of the S1-fixed point set IS
1

ν induces a map

between the equivariant KO-groups i∗ : K̃OG(Iν)→ K̃OG(I
S1

ν ). We choose a specific

reduction φ : K̃OG(I
S1

ν ) → Z. It can be proved that the image of φ ◦ i∗ is an ideal

generated by 2a ∈ Z. We define a as κok(Y ). Different k ∈ Z/8 correspond to different

suspensions.

In Section 8, we calculate some examples using the results in [42] about the Seiberg-

Witten Floer spectrum of ±Σ(2, 3, r).
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Theorem 1.3.8. (a) We have κoi(S
3) = 0 for any i ∈ Z/8.

(b) For a positive integer r with gcd(r, 6) = 1, let Σ(2, 3, r) be the Brieskorn spheres

oriented as boundaries of negative plumbings and let −Σ(2, 3, r) be the same Brieskorn

spheres with the orientations reversed. Then κoi(±Σ(2, 3, r)) are listed below:

κo0 κo1 κo2 κo3 κo4 κo5 κo6 κo7

Σ(2, 3, 12n− 1) 1 1 1 0 0 0 0 0

−Σ(2, 3, 12n− 1) 0 0 −1 −1 0 0 0 0

Σ(2, 3, 12n− 5) 1/2 1/2 1/2 −1/2 −1/2 −1/2 −1/2 −1/2

−Σ(2, 3, 12n− 5) 3/2 3/2 1/2 −1/2 −1/2 −1/2 −1/2 1/2

Σ(2, 3, 12n+ 1) 0 0 0 0 0 0 0 0

−Σ(2, 3, 12n+ 1) 0 0 0 0 0 0 0 0

Σ(2, 3, 12n+ 5) 3/2 3/2 1/2 −1/2 −1/2 −1/2 1/2 3/2

−Σ(2, 3, 12n+ 5) −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2

.

Remark. We see that κok(−Y ) ̸= −κok(Y ) in general, while κok(Y#(−Y )) is always

0 by Corollary 1.3.7. Therefore, κok is not additive under connected sum.

If we apply (2) of Theorem 1.3.6 to the case Y0 = Y1 = S3, the result is weaker than

Theorem 1.3.3. As is the case in K-theory (See [42]), we can remedy this by considering

the special property of Y0 ∼= S3, which is called the Floer KOG-split condition.

Theorem 1.3.9. Let W be an oriented, smooth spin cobordism from Y0 to Y1, with

intersection form p(−E8) ⊕ q ( 0 1
1 0 ) and p ≥ 0, q > 0. Suppose Y0 is Floer KOG-split.

Let p = 4l +m for l ∈ Z and m = 0, 1, 2, 3. Then we have the following inequalities:

(1)If (µ(Y0),m) = (0, 0), (0, 3), (1, 0), (1, 1), then:

κo4(Y0) + 2l + h(µ(Y0),m) + 1 ≤ κo4+q(Y1) + βq
4+q. (1.4)

(2)If (µ(Y0),m) = (0, 1), (0, 2), (1, 2), (1, 3), then:

κo4(Y0) + 2l + h(µ(Y0),m) + 1 ≤ κoq(Y1) + β4+q
q . (1.5)

Here β∗∗ and h(µ(Y0),m) are the constants defined in Theorem 1.3.6.
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In particular, S3 is Floer KOG-split. Applying Y0 = S3 to the previous theorem,

we get the following useful corollary:

Corollary 1.3.10. Let W be an oriented smooth spin 4-manifold whose boundary is

a homology sphere Y . Suppose the intersection form of W is p(−E8) ⊕ q ( 0 1
1 0 ) with

p ≥ 0, q > 0. Then we have the following inequalities:

• If p = 4l, then 2l < κo4+q(Y ) + βq
4+q.

• If p = 4l + 1, then 2l + 5
2
< κoq(Y ) + β4+q

q .

• If p = 4l + 2, then 2l + 3 < κoq(Y ) + β4+q
q .

• If p = 4l + 3, then 2l + 3
2
< κo4+q(Y ) + βq

4+q.

Remark. If we set Y = S3 in Corollary 1.3.10, we will recover Theorem 1.3.3. However,

Corollary 1.3.10 is not enough to prove Theorem 1.3.4. In order to get the relative

version of Theorem 1.3.4, we have to apply similar constructions on the fixed point set

of the Adams operation. This will not be done in the present paper.

Combining the results in Theorem 1.3.8 with Corollary 1.3.10, we get some new

explicit bounds on the intersection forms of spin 4-manifolds bounded by ±Σ(2, 3, r).

We give two of them here and refer to Section 4.7 for a complete list.

Example 1.3.11. We have the following conclusions:

• −Σ(2, 3, 12n−1) does not bound a spin 4-manifold with intersection form p(−E8)⊕

(p+ 1) ( 0 1
1 0 ) for p > 0.

• −Σ(2, 3, 12n−5) does not bound a spin 4-manifold with intersection form p(−E8)⊕

p ( 0 1
1 0 ) for p > 1.

1.4 The unfolded Seiberg-Witten Floer spectrum for general

3-manifolds

From the discussion in previous sections, we see that it is natural and desirable to

extend Manolescu’s construction to any 3-manifold Y with b1(Y ) > 0, as monopole
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Floer homology is defined for general 3-manifolds. In [29], Khandhawit gave an ap-

proach to constructing Seiberg-Witten Floer spectrum for a general case. The main

goal of Chapter 5 and Chapter 6 is to rigorously construct the “unfolded” version of

Seiberg-Witten Floer spectrum for general 3-manifolds. These results are joint with

Khandhawit and Sasahira, and have also appeared [28].

Our invariants come with two variations: type-A invariant and type-R invariant.

The letters “A” and “R” stand for attractor and repeller, which are notions in dynam-

ical system and play a role in our construction.

Theorem 1.4.1. Let Y be a closed, oriented 3-manifold and let s be a spinc structure

on Y . Given a Riemannian metric g on Y and a spinc connection A0 which induces a

connection on the determinant bundle of the spinor bundle with harmonic curvature,

we can define

swfA(Y, s, A0, g;S
1) and swfR(Y, s, A0, g;S

1)

as a direct system and an inverse system in the S1-equivariant stable category. These

objects are well-defined up to canonical isomorphisms in the corresponding categories.

In the case that c1(s) is nontorsion and l = gcd{(h ∪ [c1(s)])[Y ] | h ∈ H1(Y ;Z)},

the objects swfA(Y, s, A0, g;S
1) and swfR(Y, s, A0, g;S

1) are l-periodic in the sense that

Σ
l
2
CswfA(Y, s, A0, g;S

1) ∼= swfA(Y, s, A0, g;S
1),

Σ
l
2
CswfR(Y, s, A0, g;S

1) ∼= swfR(Y, s, A0, g;S
1).

When the metric g or the connection A0 changes, the objects swfA(Y, s, A0, g;S
1) and

swfR(Y, s, A0, g;S
1) can change only by suspending or desuspending by copies of the

complex representation C of S1.

In the case that c1(s) is torsion, we can normalize the above objects to obtain

invariants

SWFA(Y, s;S1) and SWFR(Y, s;S1)

of the spin-c manifold (Y, s).
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For further reference, we denote the S1-equivariant stable category by C and denote

the category of inductive systems (resp. projective systems) in C by S and (resp. S∗).

(See Section 3.1 for the precise definition.)

Note that, for rational homology 3-spheres, the invariants SWFA and SWFR are

the same and they agree with Manolescu’s spectrum. In the case b1(Y ) = 1 and s

is nontorsion, swfA(Y, s, A0, g;S
1) is equivalent to SWF0(Y, s, g, A0) constructed by

Kronheimer and Manolescu.

Remark. According to Furuta [23], one could set up a periodically graded category so

that it is possible to define SWFA(Y, s;S1) and SWFR(Y, s;S1) as invariants of the

manifold in the nontorsion case.

When s is a spin structure, there is an additional Pin(2)-symmetry on the Seiberg-

Witten equations. The Pin(2)-equivariant Seiberg-Witten Floer spectrum for a ratio-

nal homology sphere is instrumental in Manolescu’s solution [43] of the Triangulation

Conjecture. For a general spin 3-manifold, we have the following generalization:

Theorem 1.4.2. Let Y be a closed, oriented 3-manifold and let s be a spin structure

on Y . We can obtain

SWFA(Y, s;Pin(2)) and SWFR(Y, s;Pin(2))

as Pin(2)-equivariant analogs of SWFA(Y, s;S1) and SWFR(Y, s;S1).

Let us try to explain the motivation of our “unfolded” construction. Intuitively,

the monopole Floer homology is a Morse-Floer homology of a quotient configuration

space Coul(Y )/H1(Y ;Z), where Coul(Y ) is a Hilbert space of configurations with

gauge fixing. We see that this is a Hilbert bundle when b1(Y ) > 0 but we cannot

simply use vector spaces for finite dimensional approximation. Actually, there is a

topological obstruction to finding a good sequence of subbundles for finite dimensional

approximation (cf. [32, Proposition 6]). Thus, we instead do finite dimensional ap-

proximation on Coul(Y ). Since the Seiberg-Witten solutions and trajectories are no

longer compact on Coul(Y ), we will be required to consider spectra obtained from an

10



increasing sequence of bounded sets with nice properties on Coul(Y ). Our unfolded

spectrum is then obtained as a direct (or inverse) system from these spectra.

From the construction, we expect the homology of our unfolded invariants to a-

gree with monopole Floer homology with fully twisted coefficients, i.e. homology with

a local system on the blown up configuration space whose fiber is the group ring

Z[H1(Y ;Z)]. By equivalence of monopole Floer homology and Heegaard Floer homol-

ogy, the corresponding Heegaard Floer group with totally twisted coefficient HF (Y, s)

is constructed by Ozsváth and Szabó [53, Section 8]. This inspires us to use underline

notation SWF for the unfolded spectrum. Moreover, it should be possible to give a

rigorous proof of this speculation with techniques developed by Lidman and Manolescu

[36]. However, this is not the aim of this thesis.

In another direction, Sasahira [58] defined a folded version of Seiberg-Witten Floer

spectra in the case that the topological obstruction, as mentioned above, vanishes.

Khandhawit [30, Chapter 6] also gave an approach to defining a folded invariant,

called the twisted Floer spectrum, for general 3-manifolds as a twisted parametrized

spectrum. These theories will not be discussed here either.

In general, our invariants are quite difficult to compute. However, by using Mrowka-

Ozváth-Yu’s explicit description of the Seiberg-Witten moduli space for Seifert mani-

folds [48] and a refinement of the rescaling technique developed by Khandhawit [29], we

are able to give explicit computation of the invariants in torsion cases of the following

manifolds:

1. The manifold S2 × S1;

2. Large degree circle bundles over surfaces;

3. All nil manifolds;

4. All flat manifolds except T 3.

Example 1.4.3. Let Y be the circle bundle over T 2 with degree d > 0. Then Y has

11



a canonical spinc structure s0. The spectrum invariants for s0 are given by

SWFA(Y, s0;S
1) ∼=

(
C+ →

2∨
S0

C+ →
3∨
S0

C+ → · · · , 0, d− 17

8

)

and

SWFR(Y, s0;S
1) ∼=

(
(C2)+ \ (S1)← (C2)+ \ (

2⨿
S1)← (C2)+ \ (

3⨿
S1)← · · · , 0, d− 1

8

)
.

Here the connecting morphisms are given by natural inclusions. The notation (∗, 0, x)

indicates that we formally desuspend the inductive/projective system by x-copies of

C.

We refer to Section 8.1 for other examples and refer to [28] for the detailed proofs.

1.5 Invariance of the spectrum

Chapter 6 is devoted to proving that our construction is well-defined, i.e. it does not

depend on choices involved in the construction up to canonical isomorphisms. Let us

explain this more carefully. We focus on SWFA(Y, s;S1) and the other versions are

similar.

Choices of auxiliary parameters are involved in our construction of the spectrum

invariant. For example, we need to fix a Riemannian metric on Y and we need to

choose an specific index pair for each isolated invariant set. See the beginning of

Chapter 6 for a complete list of parameters involved. For now, let us just denote by

A1 the set of all possible combinations of parameters. Instead of a single object in

S, we obtain a family {SWFA(Y, s;S1)a} of objects in S, parameterized by a ∈ A1.

Moreover, for any a, b ∈ A1, there exists an isomorphism

ϕa,b : SWFA(Y, s;S1)a → SWFA(Y, s;S1)b

with the following properties

• ϕa,a is the identity morphism for any a;
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• ϕb,c ◦ ϕa,b = ϕa,c for any a, b, c ∈ A1.

The spectrum invariant SWFA(Y, s;S1) actually consists of the set A1, the family of

objects {SWFA(Y, s;S1)a} and a collection of isomorphisms ϕ = {ϕa,b}.

An alternative view (following [33]) is that SWFA(Y, s;S1) is an object of a new

category S/CAN. An object x in S/CAN consists of a set A, a family {xa} of objects

in S parameterized by a ∈ A and a collection ϕ of isomorphisms ϕa,b for all a, b

satisfying the above two properties. A morphism m from {A, {xa}, ϕ} to {B, {yb}, ψ}

is a collection of morphisms ma,b : xa → yb for all (a, b) ∈ A×B, satisfying the relation

ψb′,b ◦ma′,b′ ◦ ϕa,a′ = ma,b.

Note however that to specify m, it suffices to give a single morphism ma,b for some

a, b.

To make the current thesis more readable, we will not use the language of CAT/CAN.

Instead, we will just talk about objects that are well-defined up to canonical isomor-

phisms. Note that the main applications of our theory will be to apply different kinds

of generalized cohomology functors on the spectrum invariant to obtain a well-defined

object in the category GROUP/CAN, while there exists a functor from GROUP/CON

to GROUP (the category of groups). This functor assigns an object (A, {Ga}, ϕ) to the

group of “cross sections”: the subgroup of ΠGa consisting of collections {ga} satisfying

ϕ(ga) = gb for any a, b ∈ A. By composing with this functor, we can obtain an actual

group instead of “a group well-defined up to canonical isomorphisms”.

We end this section by mentioning that one of the main complication in proving

the well-definedness of our invariants is that we need to perturb the Chern-Simons-

Dirac functional in the construction. First, we perturb the functional by a nonexact

2-form so that the functional is balanced (see Section 2.1). Second, we require that the

set of critical points is discrete modulo gauge otherwise we cannot construct a good

sequence of bounded subsets to apply finite dimensional approximation. As a result,

the space of such perturbations may not be path connected and we cannot use standard

homotopy argument here. (Note that this difficulty was avoided in Manolescu’s original
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construction because perturbations are not necessary in the case of homology spheres.)

We sketch the idea as follows and refer to Chapter 6 for more detailed discussion.

As before, we focus on the case of SWFA(Y, s;S1). This invariant is an inductive

system in the S1-equivariant stable category. Let f and f̃ be two perturbations on the

Chern-Simons Dirac functional and let

S1 : I
+
1 → I+2 → I+3 → · · ·

and

S2 : Ĩ
+
1 → Ĩ+2 → Ĩ+3 → · · ·

be the corresponding inductive systems. In order to obtain an isomorphism between

S1 and S2, we just need to construct a “mixed system”

S1,2 : I
+
m1

i+1−→ Ĩ+m2

i+2−→ I+m3

i+3−→ Ĩ+n4
· · · (m1 < m2 < m3 < · · · )

that contains both a subsystem of S1 and a subsystem of S2. The connecting morphism

i+k is obtained by considering a “mixed perturbation” fk: a perturbation that equals f

on some subset of Coul(Y ) and equals f ′ on another subset of Coul(Y ). We note that

a technical difficulty in this argument is to prove a uniform boundedness result for the

noncompact family {fk}k∈Z of perturbations. This will be done in Lemma 6.3.9 and

Lemma 6.3.11.

1.6 The relative Bauer-Furuta invariants for 4-manifolds with

boundary

In [8], Bauer and Furuta used the finite dimensional approximation technique to define

an invariant Ψ of closed 4-manifolds. This invariant takes values in the equivariant

stable cohomotopy groups of spheres. As shown by Bauer [7], the Bauer-Furuta in-

variant is strictly stronger than the Seiberg-Witten invariant. For example, by doing

Fintushel-Stern knot surgeries on the manifold X = K3#K3, one can obtain an infi-

nite family of smooth manifolds {Xp}p∈Z such that each Xp is homeomorphic to X and

14



has vanishing Seiberg-Witten invariant (just like X). However, these manifolds are

not diffeomorphic to each other because they have different Bauer-Furuta invariants.

In [40], Manolescu extended the Bauer-Furuta invariant to 4-manifolds whose

boundary components are all rational homology 3-spheres. This invariant is called

the relative Bauer-Furuta invariant. In Chapter 7, we will extend the definition of the

relative Bauer-Furuta invariants to all compact, oriented 4-manifolds with boundary.

Just like our spectrum invariants, the relative Bauer-Furuta invariants also have differ-

ent versions: namely the type-A invariant and the type-R invariant. To define them,

we need the following topological inputs:

• A spinc 4-manifold (X, ŝ) with boundary (Y, s);

• A base point ô ∈ X;

• A based path data [γ⃗]: that is an equivalent class of pathes (γ1, γ2, · · · γb0(Y )) from

ô to each component of Y (see Definition 7.1.1).

Theorem 1.6.1. Let (X, ŝ, ô, [γ]) be defined as above. Given a Riemannian metric

g on the boundary Y and a spinc connection A0 with FAt
0
harmonic, we have an ob-

ject T (X, ŝ, A0, g, ô;S
1) of the equivariant stable homotopy category, well-defined up

to canonical isomorphisms. (We call this object the S1-equivariant Thom spectrum

associated to the virtual index bundle of the Dirac operator.)

By doing finite dimensional approximation on the Seiberg-Witten equations over

X, we can define two versions of relative Bauer-Furuta invariants

bfA(X, ŝ, A0, g, ô, [η⃗];S
1) ∈ morS(Σ

−I+(X)T (X, ŝ, A0, g, ô;S
1), swfA(Y, s, A0, g;S

1))

and

bfR(X, ŝ, A0, g, ô, [η⃗];S
1)

∈ morS∗(Σ−(I+(X)⊕coker(H1(X;R)→H1(Y ;R)))T (X, ŝ, A0, g, ô;S
1), swfR(Y, s, A0, g;S

1))

(I+(X) denotes a maximal non-negative subspace of im(H2(X,Y ;R)→ H2(X;R)) un-

der the cup product pairing.) When (A0, g) changes, these invariants can only change

by suspension or desuspension by copies of the complex S1-representation C.
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In the special case that s = ŝ|Y is torsion, we can normalize these invariants to

define

BFA(X, ŝ, ô, [η⃗];S1) ∈ morS(Σ
−I+(X)T̃ (X, ŝ, ô;S1), SWFA(Y, s;S1))

and

BFR(X, ŝ,ô, [η⃗];S1)

∈ morS∗(Σ−(I+(X)⊕coker(H1(X;R)→H1(Y ;R)))T̃ (X, ŝ, ô;S1), SWFR(Y, s;S1)),

where T̃ (X, ŝ, ô;S1) is the normalized Thom spectrum. These normalized invariants

are topological invariants of (X, ŝ, ô, [γ⃗]).

There are several remarks that we want to make here. First, both the source and the

target of the relative Bauer-Furuta invariants depend on the choice of some parameters

(e.g. the Riemannian metric ĝ on X). Therefore, instead of a single morphism (in the

category S or S∗), we get a collection of morphisms that are compatible to each other

under the natural isomorphisms on both the source and the target. In other words,

our type-A (resp. type-R) relative Bauer-Furuta invariant is actually a morphism in

the category S/CAN (resp. S∗/CAN).

Second, we do not remove the base point ô and the based path data [γ⃗] from our

notations of the invariants (even when s is torsion). The reason is that our invariants

actually depend on the choice of (ô, [γ⃗]). (In fact, the author is even unaware of a

canonical way to identify the Thom spectra for different base points.) To relate the

relative Bauer-Furuta invariants associated to different (ô, [γ⃗]), we have to define the

spectrum invariant of Y as inductive/projective system in the (S1)b0(Y )-equivariant

stable category and to introduce the notion of twisting a morphism by a map from

the Picard torus to (S1)b0(Y ). Since this is beyond the scope of the current thesis, we

simply include (ô, [γ⃗]) as the topological input.

Note that in either one of the following two cases, the dependence on (ô, [γ]) can

be avoided and we remove (ô, [γ⃗]) from our notations.

• If Y is connected, then we can choose any ô ∈ Y and set γ to be the constant

path. It can be proved that any choice of such (ô, [γ]) gives the same result;
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• If the map H1(X;R) → H1(Y ;R) is injective, then the relative Picard torus

Pic0(X, Y ) (see (7.4)) is a single point and we can construct a natural isomor-

phism between the relative Bauer-Furuta invariants given by two different choices

of (ô, [γ]).

Third, suppose the type-A spectrum invariant of Y is defined as an inductive system

I+1
i+1−→ I+2

i+2−→ I+3 −→ · · ·

To define the type-A relative Bauer-Furuta invariant, we will define a morphism ψ+
m

from a suspension of the Thom spectrum to I+m for all m greater or equal to a certain

constant m0. In order to show that ψ+
m represents the same morphism in the cate-

gory S, we have to show that these morphisms are compatible with the connecting

morphisms in the following sense:

i+m ◦ ψ+
m = ψm+1 for any m ≥ m0. (1.6)

Similarly, suppose the type-R spectrum invariant of Y is defined as a projective

system

I−1
i−1←− I−2

i−2←− I−3 ←− · · · .

Then the type-R Bauer-Furuta invariant will be given by a collection of morphisms

ψm satisfying

i−m ◦ ψ−m+1 = ψm for any m ≥ 1. (1.7)

Proving (1.6) and (1.7) is one of the main difficulties in the definition of relative

Bauer-Furuta invariants. This turns out to be a problem in Conley index theory.

The corresponding results are Proposition 3.2.18 and Proposition 3.2.19. In order to

prove these results, we prove Theorem 3.2.14, an quantitative refinement of Theorem

3.2.7 by Manolescu [40], which states the existence of index pairs containing a pre-

pair. We note that Theorem 3.2.14 also plays an important role in the proof of the

gluing theorem [27] because we need to use it to get a uniform control on the length

of the neck as we do finite dimensional approximations. We also note that results in

subsection 3.2.2 may be of independent interest for some readers.
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Last, we mention that the relative Bauer-Furuta invariants fit into the general

framework of the TQFT-property of Floer theories : these invariants assign morphisms

(from the Thom spectra to the spectrum invariants of Y ) to the cobordism X (from

the empty set to the boundary Y ). However, we are still not able to define unfolded

Seiberg-Witten Floer spectra as functors from a cobordism category to the category

of spectra. A major difficulty is the loss of compactness because of our unfolding

operation. It would be an interesting question to set up a suitable cobordism category

and define the functors corresponding to our invariants.

We end this section by the following theorem about the Pin(2)-equivariant relative

Bauer-Furuta invariants for spin 4-manifolds with boundary.

Theorem 1.6.2. When ŝ is a spin structure, we can define the normalized Thom spec-

trum as an object T̃ (X, ŝ, ô;Pin(2)) of the Pin(2)-equivariant stable category. In this

case, we have two versions of the Pin(2)-equivariant relative Bauer-Furuta invariant

BFA(X, ŝ, ô, [η⃗];Pin(2)) ∈ morSPin(2)
(Σ−I+(X)T̃ (X, ŝ, ô;Pin(2)), SWFA(Y, s;Pin(2)))

and

BFR(X, ŝ, ô, [η⃗];Pin(2))

∈ morS∗
Pin(2)

(Σ−(I+(X)⊕coker(H1(X;R)→H1(Y ;R)))T̃ (X, ŝ, ô;Pin(2)), SWFR(Y, s;Pin(2))).

Both of them are topological invariants of (X, ŝ, ô, [γ⃗]).

1.7 Further developments

Finally, we close this introductory chapter by listing the further developments on the

theory of the unfolded Seiberg-Witten Floer spectrum. We refer to later chapters

(mostly Chapter 8) for the precise statements of the results and refer to our papers

[28], [26] and [27] for detailed proofs.

• By applying different equivariant generalized cohomology functors to the spec-

trum invariants, we will define all kinds of Frøyshov-type numerical invariants

for a general 3-manifold
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– S1-equivariant homology: dA and dR;

– Pin(2)-equivariant homology: αA, βA, γA and αR, βR, γR;

– Pin(2)-equivariant K-theory: κA, κR.

All of them are invariant under homology cobordisms. Using these invariants, we

will give new constraints on the intersection form of 4-manifolds with boundary.

• We will define the smash product as a bifunctor C × C → C. This makes C

a symmetric monoidal category. Similar result holds for the Pin(2)-equivariant

stable category CPin(2);

• We will define the Spanier-Whitehead duality between the categories S and

S∗ (and also between SPin(2) and S∗Pin(2)). Under this definition, the type-A

invariants of Y and the corresponding type-R invariants of −Y are Spanier-

Whitehead dual to each other;

• The statement of a gluing theorem for the relative Bauer-Furuta invariants will

be given. Under certain technical assumptions, this will allow us to compute the

Bauer-Furuta invariant of a closed 4-manifoldX = X1∪YX2 in terms of the type-

A relative Bauer-Furuta invariant of X1 and the type-R relative Bauer-Furuta

invariant of X2. This is a generalization of a gluing theorem by Manolescu [41],

which corresponds to the case that Y is a rational homology sphere;

• We will give various applications of the generalized gluing theorem: behavior of

the fiberwise Bauer-Furuta invariant under surgery along loops, generalization of

Bauer’s connected sum theorem [7]; nonexistence of essential spheres with trivial

normal bundle in a 4-manifold with nontrivial Bauer-Furuta invariant.

• Using a variation of the above mentioned gluing theorem, we will prove a con-

nected sum formula for Manolescu’s spectrum, i.e.

SWF(Y1#Y2, s1#s2;S
1) ∼= SWF(Y1, s1;S

1) ∧ SWF(Y2, s2;S
1)

when Y1, Y2 are rational homology spheres. Similar result holds for the Pin(2)-

spectrum invariants.
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1.8 Outline

The outline of this thesis is as follows. In Chapter 2, we first cover some of the basics of

the Seiberg-Witten equations and then prove some analytical results which are needed

in our later constructions. In the first half of Chapter 3, after defining the stable

categories and the S1-fixed point functor(s), we set up the Spanier-Whitehead duality

between these categories. In the second half of Chapter 3, we review some elementary

facts about the Conley index theory. Some further results on Conley index theory are

also given here. These results are needed in Chapter 6. In Chapter 4, we construct the

unfolded Seiberg-Witten Floer spectrua, as objects of the stable categories we defined

in Chapter 3. The invariance of these spectra is proved in Chapter 5. In Chapter 6,

we define different versions of relative Bauer-Furuta invariant for a general 4-manifold

with boundary. In Chapter 7, we discuss some further developments in this theory.

In particular, the statements of the results mentioned in Section 1.7 will be given and

some of the proofs will be sketched.
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CHAPTER 2

The approximated Seiberg-Witten flow

2.1 The Chern-Simons-Dirac functional and Seiberg-Witten

trajectories

Let Y be a closed, oriented (but not necessarily connected) 3-manifold endowed with a

spinc structure s and a Riemannian metric g. We denote its connected components by

Y1, . . . , Yb0 and denote by b1 = b1(Y ) its first Betti number. Let SY be the associated

spinor bundle and ρ : TY → End(SY ) be the Clifford multiplication. After fixing a

base spinc connection A0, the space of spinc connections on SY can be identified with

iΩ1(Y ) via the correspondence A 7→ A− A0.

Let At
0 be the connection on det(SY ) induced by A0. We choose A0 such that the

curvature FAt
0
equals 2πiν0, where ν0 is the harmonic 2-form representing −c1(s). For

a 1-form a ∈ iΩ1(Y ), we let /DA0+a be the Dirac operator associated to the connection

A0 + a. We also denote by /D := /DA0
the Dirac operator corresponding to the base

connection, so we have /DA0+a = /D + ρ(a).

The gauge group Map(Y, S1) acts on the space iΩ1(Y )⊕ Γ(SY ) by

u · (a, ϕ) = (a− u−1du, uϕ),

where u ∈ Map(Y, S1) and (a, ϕ) ∈ iΩ1(Y ) ⊕ Γ(SY ). In practice, we will work with

the Sobolev completion of the spaces iΩ1(Y )⊕ Γ(SY ) and Map(Y, S1) by the L2
k and

L2
k+1 norms respectively. We fix an integer k > 4 throughout the paper and denote

the completed spaces by CY and GY respectively. We will also consider the following

subgroups of GY :

• GeY := {u ∈ GY | u = eξ for some ξ : Y → iR};
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• Ge,0Y := {u ∈ GeY | u = eξ with
∫
Yj
ξdvol = 0 for j = 1, . . . , b0};

• GhY := {u ∈ GY | ∆(log u) = 0} the harmonic gauge group, where ∆ = d∗d;

• Gh,oY := {u ∈ GhY | u(oj) = 1 for j = 1, . . . , b0} the based harmonic gauge group,

where oj is a chosen base point on Yj.

Note that GeY ∼= G
e,0
Y × (S1)b0 and GhY ∼= G

h,0
Y × (S1)b0 .

The balanced Chern-Simons-Dirac functional CSDν0 : CY → R is defined as

CSDν0(a, ϕ) := −
1

2

(∫
Y

a ∧ da−
∫
Y

⟨ϕ, /DA0+a(ϕ)⟩dvol
)
.

Note that this is a perturbation of the standard Chern-Simons-Dirac functional by the

closed but nonexact 2-form ν0 so that CSDν0 becomes invariant under the full gauge

group (cf.[33, Definition 29.1.1]). The formal L2-gradient is given by

gradCSDν0(a, ϕ) = (∗da+ ρ−1(ϕϕ∗)0, /Daϕ), (2.1)

where (ϕϕ∗)0 is the traceless part the endomorphism ϕϕ∗ on SY .

If we slightly perturb CSDν0 , the critical points of CSDν0 are discrete modu-

lo gauge transformations. To ensure this property, we will need to pick a function

f : CY → R which is invariant under GY and consider a twice perturbed functional

CSDν0,f := CSDν0 + f . We will make use of a large Banach space of perturbations

constructed by Kronheimer and Mrowka [33, Section 11].

Definition 2.1.1. Let {f̂j}∞j=1 be a countable collection of cylinder functions as in [33,

Page 193]. Given a sequence {Cj}∞j=1 of positive real numbers, we consider a separable

Banach space

P =

{
∞∑
j=1

ηj f̂j

∣∣∣∣∣ηj ∈ R,
∞∑
j=1

Cj|ηj| <∞

}
, (2.2)

where the norm is defined by
∥∥∥∑∞j=1 ηj f̂j

∥∥∥ =
∑∞

j=1 |ηj|Cj. An element of P will be

called an extended cylinder function.

The Banach space P will be fixed throughout the paper. In particular, we will

choose a real sequence {Cj}j satisfying our requirements as in the following result.
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Proposition 2.1.2. The sequence {Cj}j can be chosen so that any extended cylinder

function f̄ in P has the following properties:

(i) f̄ is a bounded function;

(ii) The formal L2-gradient grad f̄ is a tame perturbation (see [33, Definition 10.5.1]);

(iii) For any positive integer m, the gradient grad f̄ defines a smooth vector field on

the Hilbert space L2
m(iΩ

1(Y ) ⊕ Γ(SY )). Moreover, for each nonnegative integer

n, we have

∥Dn
(a,ϕ) grad f̄∥ ≤ C pm,n(∥(a, ϕ)∥L2

m
),

where pm,n is a polynomial depending only on m,n and C is a constant depending

on m,n and f̄ . The norm of Dn
(a,ϕ) grad f̄ is taken considering Dn

(a,ϕ) grad f̄ as

an element of

Multn(×nL
2
m(iΩ

1(Y )⊕ Γ(SY )), L
2
m(iΩ

1(Y )⊕ Γ(SY ))).

(iv) {Cj}j is taken so that the statement of Lemma 6.3.7 and 6.3.10 holds.

Proof. By the definition of cylinder functions, each f̂j is bounded. Therefore, prop-

erty (i) can be ensured by taking {Cj}j increasing fast enough. Property (ii) is a

consequence of [33, Theorem 11.6.1]. For property (iii), let f̂j be a cylinder function

from the collection. By [33, Proposition 11.3.3], the gradient grad f̂j defines a smooth

vector field over L2
m(iΩ

1(Y )⊕ Γ(SY )) with the property that

∥Dn
(a,ϕ) grad f̂j∥ ≤ C ′j,m,n(1 + ∥ϕ∥L2)n(1 + ∥a∥L2

m−1
)m(1 + ∥ϕ∥L2

m,A0+a
),

where C ′j,m,n is a constant and ∥ · ∥L2
m,A0+a

denotes the L2
m-norm defined using the

connection A0+ a. Therefore, we only need to estimate ∥ϕ∥L2
m,A0+a

by a polynomial of

∥(a, ϕ)∥L2
m
.

Notice that the expansion of∇(m)
A0+aϕ consists of terms of the form∇(n1)a·∇(n2)a · · · ∇(ni)a·

∇(ni+1)
A0

ϕ where ∇ denotes the Levi-Civita connection and i, n1, . . . , ni+1 are nonnega-

tive integers satisfying n1+n2+ · · ·+ni+1+ i = m. As we want to control the L2-norm

of this term using ∥(a, ϕ)∥L2
m
, there are three cases:
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• i = 0: This is trivial since ∥ϕ∥L2
m
≤ ∥(a, ϕ)∥L2

m
;

• i = 1 and n1 = m − 1: We apply Sobolev multiplication L2
1 × L2

m → L2 and

obtain
∥∥∇(m−1)a · ϕ

∥∥
L2 ≤ C

∥∥∇(m−1)a
∥∥
L2
1
∥ϕ∥L2

m
≤ C∥(a, ϕ)∥2L2

m
. The case i = 1

and n2 = m− 1 can be done in the same manner;

• Otherwise, we will have i ≥ 1 and n1, . . . , ni+1 < m − 1. Similarly, we consider

nmax = max {n1, . . . , ni+1} and apply Sobolev multiplication

L2
m−n1

× · · · × L2
m−ni

× L2
m−ni+1

→ L2
m−nmax

↪→ L2.

Putting these together, we can find a polynomial pm,n (independent of j) such that

∥Dn
(a,ϕ) grad f̂j∥ ≤ C ′j,m,n pm,n(∥(a, ϕ)∥L2

m
).

For each j, take a constant Cj with

Cj ≥ max{ C ′l1,l2,l3 | 0 ≤ l1, l2, l3 ≤ j }.

We will prove that condition (iii) is satisfied. Take any element f̄ =
∑

j ηj f̂j of P.

Then we have

∥Dn
(a,ϕ) grad f̄∥ ≤

∑
j

|ηj|∥Dn
(a,ϕ) grad f̂j∥

≤
∑
j

|ηj|C ′j,m,npm,n(∥(a, ϕ)∥L2
m
)

≤

( ∑
1≤j≤N

|ηj|C ′j,m,n +
∑
j≥N

|ηj|Cj

)
pm,n(∥(a, ϕ)∥L2

m
).

Here N = max{m,n}. Putting C :=
(∑

1≤j≤N |ηj|C ′j,m,n +
∑

j≥N |ηj|Cj

)
, we obtain

∥Dn
(a,ϕ) grad f̄∥ ≤ Cpm,n(∥(a, ϕ)∥L2

m
).

Thus P satisfies (iii).

By further shrinking Cj, we may suppose that Cj satisfies Lemma 6.3.7 and Lemma

6.3.10 (2). That is, condition (iv) is satisfied.
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The perturbation we consider in the current paper will be of the form

f(a, ϕ) = f̄(a, ϕ) +
δ

2
∥ϕ∥2L2 ,

where f̄ is an extended cylinder function and δ is a real number. We sometimes write

the above perturbation as a pair (f̄ , δ).

Definition 2.1.3. A perturbation f = (f̄ , δ) is called good if the critical points of

CSDν0,f are discrete modulo gauge transformations.

When δ = 0, we know that good perturbations are generic in P by virtue of [33,

Theorem 12.1.2]. It is immediate to extend the result to a general case and we only

give a statement here.

Lemma 2.1.4. For any real δ, a subset of extended cylinder functions f̄ in P such

that (δ, f̄) is a good perturbation is residual.

Remark. To define our invariants, it is sufficient to take δ = 0. We include the term

δ
2
∥ϕ∥2 as it will facilitate computations of many examples.

Our main object of interest is the negative gradient flow of the functional CSDν0,f

on the space CY modulo the gauge group. Let I ⊂ R be an interval. A trajectory

γ : I → CY of the negative gradient flow is described by the equation

− ∂

∂t
γ(t) = gradCSDν0,f (γ(t)).

As in [40] and [29], it is more convenient to study the flow on the subspace called

the Coulomb slice

Coul(Y ) = {(a, ϕ) | d∗a = 0} ⊂ CY .

Since any configuration (a, ϕ) ∈ CY can be gauge transformed into Coul(Y ) by a

unique element of Ge,0Y , the Coulomb slice is isomorphic to the quotient CY /Ge,oY with

residual action by the harmonic gauge group GhY .

Let Π : CY → CY /Ge,oY
∼= Coul(Y ) be the nonlinear Coulomb projection. The

formula for Π is given by

Π(a, ϕ) =
(
a− dξ̄(a), eξ̄(a)ϕ

)
, (2.3)
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where ξ̄(a) : Y → iR is a unique function which solves

∆ξ̄(a) = d∗a and

∫
Yj

ξ̄(a) = 0 for each j = 1, . . . , b0. (2.4)

To describe the Seiberg-Witten vector field on Coul(Y ), we first consider a trivial

bundle Tk−1 over CY with fiber L2
k−1(iΩ

1(Y ) ⊕ Γ(SY )). Note that the vector field

gradCSDν0,f is a section of Tk−1. Similarly, we have a trivial bundle Coulk−1 over

Coul(Y ) whose fiber is the L2
k−1-completion of ker d∗ ⊕ Γ(SY ). At a point (a, ϕ) ∈

Coul(Y ), the pushforward Π∗ : Tk−1 → Coulk−1 of the Coulomb projection Π is given

by

Π∗(a,ϕ)(b, ψ) =
(
b− dξ̄(b), ψ + ξ̄(b)ϕ

)
. (2.5)

We now project the negative gradient flow lines from CY to Coul(Y ) using Π. Such

projected trajectories γ : I → Coul(Y ) are described by an equation

− ∂

∂t
γ(t) = Π∗ gradCSDν0,f (γ(t)). (2.6)

From (2.1) and (2.5), we can write down an explicit formula for the induced vector

field on Coul(Y ) as a section of Coulk−1

Π∗ gradCSDν0,f (a, ϕ) = l(a, ϕ) + c(a, ϕ), (2.7)

where l = (∗d, /D) is a first order elliptic operator and c = (c1, c2) is given by

c1(a, ϕ) = ρ−1(ϕϕ∗)0 + grad1 f(a, ϕ)− dξ̄(ρ−1(ϕϕ∗)0 + grad1 f(a, ϕ)), (2.8)

c2(a, ϕ) = ρ(a)ϕ+ grad2 f(a, ϕ) + ξ̄(ρ−1(ϕϕ∗)0 + grad1 f(a, ϕ))ϕ. (2.9)

Note that l is linear and the nonlinear term c has nice compactness properties which

will be explored in Section 2.2. We will call those trajectories γ satisfying (2.6) the

Seiberg-Witten trajectories. By the standard elliptic bootstrapping argument, γ is

actually a smooth path in Coul(Y ) when restricted to interior of I.

We would also like to interpret the vector field Π∗ gradCSDν0,f from (2.6) as a

gradient vector field on Coul(Y ). However, Π∗ gradCSDν0,f is not the gradient of
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the restriction CSDν0,f |Coul(Y ) with respect to the standard L2-metric and we need to

introduce another metric on Coul(Y ). Roughly speaking, we have to measure only the

component of a vector on Coul(Y ) which is orthogonal to the linearized gauge group

action. More specifically, consider a bundle decomposition over CY

Tk−1 = Jk−1 ⊕Kk−1,

where the fiber of Jk−1 at (a, ϕ) consists of a vector of the form (−dξ, ξϕ) where ξ ∈

L2
k(Y ; iR) with

∫
Yj
ξ = 0 and the fiber of Kk−1 is the L

2-orthogonal complement. Note

that this decomposition is slightly different from the decomposition which appeared

in [33, Section 9.3] as we use the derivative of the action of Ge,0Y rather than GeY . Let

Π̃ be the L2-orthogonal projection onto Kk−1. Explicitly, the projection Π̃ at (a, ϕ) is

given by

Π̃(a,ϕ)(b, ψ) =
(
b− dξ̃(b, ψ, ϕ), ψ + ξ̃(b, ψ, ϕ)ϕ

)
,

where ξ̃(b, ψ, ϕ) : Y → iR is a unique function such that −d∗(b − dξ̃(b, ψ, ϕ)) +

iRe⟨iϕ, ψ + ξ̃(b, ψ, ϕ)ϕ⟩ is a locally constant function and
∫
Yj
ξ̃(b, ψ, ϕ) = 0. It is

not hard to see that we have a bundle isomorphism

Coulk−1

&&MM
MMM

MMM
MM

Π̃ // Kk−1
Π∗

oo

yyttt
tt
tt
tt

Coul(Y )

since both are complementary to the derivative of the action of Ge,0Y .

We now define a metric g̃ for the bundle Coulk−1 by setting

⟨(b1, ψ1), (b2, ψ2)⟩g̃ := ⟨Π̃(b1, ψ1), Π̃(b2, ψ2)⟩L2 .

Since Π̃ and Π∗ are inverse of each other and Π̃ is an orthogonal projection, we have

the following identity

⟨Π∗v, w⟩g̃ = ⟨v, w⟩L2 whenever v ∈ Kk−1.

Since CSDν0,f is gauge invariant, gradCSDν0,f lies in Kk−1. From this point on, we

will denote by g̃rad the gradient on Coul(Y ) with respect to the metric g̃ and put

L := CSDν0,f |Coul(Y ).
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We then have

g̃radL = Π∗ gradCSDν0,f = l + c and ∥ g̃radL∥g̃ = ∥ gradCSDν0,f∥L2 . (2.10)

Note that analogous results hold for any functional on CY which is Ge,0Y -invariant.

2.2 Analysis of approximated Seiberg-Witten trajectories

In this section, we review some boundedness and convergence results relevant to finite

dimensional approximation which will be used in the main construction.

Definition 2.2.1. A smooth path in Coul(Y ) is called finite type if it is contained in

a fixed bounded set (in the L2
k-norm).

It can be proved that a Seiberg-Witten trajectory γ(t) = (α(t), ϕ(t)) is of finite type

if and only if both CSDν0,f (γ(t)) and ∥ϕ(t)∥C0 are bounded (cf. [40, Definition 1]).

Recall that the set of the Seiberg-Witten solutions is compact modulo the full gauge

group. However, there is a residual action by the group Gh,oY
∼= H1(Y ;Z) on Coul(Y ).

This motivates us to consider a strip of balls

Str(R) = {x ∈ Coul(Y ) | ∃h ∈ Gh,oY s.t. ∥h · x∥L2
k
≤ R},

where R is a positive real number.

Since CSDν0,f is invariant under the full gauge group GY , we have a uniform bound

for the topological energy of all finite type trajectories (see [29, Proposition 10]). As

a result, we have the following boundedness result.

Theorem 2.2.2 ([29]). There exists a constant R0 such that all finite type Seiberg-

Witten trajectories are contained in the interior of Str(R0). In particular, the set

Str(R0) contains all the critical points of L and trajectories between them.

We now discuss finite dimensional approximation of Seiberg-Witten trajectories

following [40] and [30]. To describe various projections, we first specify the L2
m-inner

product (m ≥ 1) on iΩ1(Y )⊕Γ(SY ). From the Hodge decomposition Ω1(Y ) = ker d∗⊕
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im d, we will just define an inner product on each summand. On i ker d∗ ⊕ Γ(SY ), we

use the elliptic operator l = (∗d, /D)

⟨(a1, ϕ1), (a2, ϕ2)⟩L2
m
:= ⟨(a1, ϕ1), (a2, ϕ2)⟩L2 + ⟨lm(a1, ϕ1), l

m(a2, ϕ2)⟩L2 .

For β1, β2 ∈ i im d, we define

⟨β1, β2⟩L2
m
:= ⟨β1, β2⟩L2 + ⟨∆mβ1, β2⟩L2 .

Definition 2.2.3. With the Sobolev inner product defined above, a projection π will

be called a nice projection if it satisfies the following properties:

(i) π is an L2
m-orthogonal projection for any m ≥ 0;

(ii) π extends to a map on a cylinder I × Y with ∥π∥L2
m(I×Y ) ≤ 1 for any m ≥ 0.

Consider the spectral decomposition of Coul(Y ) with respect to the eigenspaces of

l = (∗d, /D). For any real numbers λ < 0 ≤ µ, let V µ
λ be the span of the eigenspaces

of l with eigenvalues in the interval (λ, µ] and let pµλ be the L2-orthogonal projection

onto V µ
λ . It is not hard to see that pµλ is a nice projection.

Recall that a Seiberg-Witten trajectory is an integral curve of the vector field l+ c

on Coul(Y ). This leads us to consider a trajectory on a finite-dimensional subspace

γ : I → V µ
λ satisfying an equation

−dγ(t)
dt

= (l + pµλ ◦ c)(γ(t)).

Such a trajectory will be loosely called an approximated Seiberg-Witten trajectory. We

will also call a sequence of approximated Seiberg-Witten trajectories
{
γn : I → V µn

λn

}
n∈N

an exhausting sequence when −λn, µn → ∞. The next proposition is the main con-

vergence result of this section.

Proposition 2.2.4. Let {γn : [a, b]→ V µn

λn
} be an exhausting sequence of approximated

Seiberg-Witten trajectories whose L2
k-norms are uniformly bounded. Then there exists

a Seiberg-Witten trajectory γ∞ : (a, b) → Coul(Y ), such that, after passing to a sub-

sequence, γn(t) → γ∞(t) uniformly in any Sobolev norm on any compact subset of

(a, b).
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The proof of this proposition will be at end of this section. We basically follow

the same strategy as in the proof of [40, Proposition 3] and [29, Proposition 11].

Since our vector field l + c has an extra term coming from grad f , we need to assure

that the nonlinear part c still has nice compactness properties similar to those of the

quadratic term in the Seiberg-Witten equation. For this purpose, we recall the notion

of “quadratic-like” map and related results in [29, Section 4.2]. Since our setting here

is slightly different, we give out some details for completeness.

Definition 2.2.5. Let E be a vector bundle over Y . A smooth map Q : Coul(Y ) →

L2
k(Γ(E)) is called quadratic-like if it has the following properties:

(i) The map Q sends a bounded subset in L2
k to a bounded subset in L2

k;

(ii) Let m be a nonnegative integer not greater than k− 1. If there is a convergence

of paths over a compact interval ( d
dt
)sγn(t)→ ( d

dt
)sγ∞(t) uniformly in L2

k−1−s for

each s = 0, 1, · · · ,m, then we have ( d
dt
)mQ(γn(t))→ ( d

dt
)mQ(γ∞(t)) uniformly in

L2
k−2−m;

(iii) The map Q extends to a continuous map from L2
m(I × Y ) to L2

m(I × Y ) (with

suitable bundles understood) for each integer m ≥ k − 1. Here I is a compact

interval.

The sum of two quadratic-like maps is obviously quadratic-like. Furthermore, it

can be shown that the pointwise tensor product of two quadratic-like maps is also

quadratic-like (cf. [29, Lemma 10]).

Lemma 2.2.6 (cf. Lemma 9 of [29]). Let f be a perturbation given by a pair (δ, f̄)

with δ ∈ R and f̄ ∈ P. Then the map grad f : Coul(Y ) → L2
k(iΩ

1(Y ) ⊕ Γ(SY )) is

quadratic-like.

Proof. We see that grad f(a, ϕ) = (0, δϕ)+ grad f̄(a, ϕ) and the first term is obviously

quadratic-like. We just need to show that grad f̄ is quadratic-like. First, we will check

properties (i) and (ii) when m = 0 of Definition 2.2.5 .
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For two configurations (a0, ϕ0) and (a1, ϕ1), we consider a straight segment (at, ϕt) =

(1− t)(a0, ϕ0) + t(a1, ϕ1) joining them and apply the fundamental theorem of calculus∥∥grad f̄(a1, ϕ1)− grad f̄(a0, ϕ0)
∥∥
L2
j
=

∥∥∥∥∫
[0,1]

D(at,ϕt) grad f̄(a1 − a0, ϕ1 − ϕ0)dt

∥∥∥∥
L2
j

≤ C

∫
[0,1]

pj,1(∥at, ϕt∥L2
j
) ∥(a1, ϕ1)− (a0, ϕ0)∥L2

j
dt,

where the last inequality follows from Proposition 2.1.2 (iii). When j = k and

(a0, ϕ0) = (0, 0), this implies property (i) of Definition 2.2.5. Property (ii) when

m = 0 also follows from the above inequality when j = k − 1.

We now check property (ii) when 1 ≤ m ≤ k − 2. Suppose that ( d
dt
)sγn(t) →

( d
dt
)sγ∞(t) uniformly in L2

k−1−s for each s = 0, 1, . . . ,m. We observe that an expansion

of ( d
dt
)m grad f̄(γ(t)) consists of terms of the form

Ds
γ(t) grad f̄

((
d

dt

)α1

γ(t), . . . ,

(
d

dt

)αs

γ(t)

)
with αi ≥ 1 and α1 + · · ·+ αs = m.

From Proposition 2.1.2 (iii), ∥Ds
γ(t) grad f̄∥ ≤ C pk−1−m,s(∥γ(t)∥L2

k−1−m
) as an element

of Mults(×sL
2
k−1−m, L

2
k−1−m). We see that γn is uniformly bounded in L2

k−1−m and

that the convergence ( d
dt
)αiγn(t) → ( d

dt
)αiγ∞(t) is uniform in L2

k−1−m as αi ≤ m.

These imply property (ii).

Properties (iii) easily follows from the fact that grad f̄ is a tame perturbation.

As a result, we can deduce compactness property of the induced vector field on

Coul(Y ).

Corollary 2.2.7. The nonlinear part c of the induced Seiberg-Witten vector field in

(2.7) is quadratic-like.

Proof. It is clear that the composition of a quadratic-like map with a linear opera-

tor of nonpositive order is quadratic-like. Since the operator ξ̄ in (2.3) is of order

-1, Lemma 2.2.6 and closure under pointwise multiplication imply that the map c is

quadratic-like.
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We are now ready to prove Proposition 2.2.4. Although, we will only give outline

of the proof as the reader can find more details in [40] and [29].

Proof of Proposition 2.2.4. Let {γn} be an exhausting sequence of approximated tra-

jectories which are all contained in a ball B(R) in L2
k. The norm ∥ d

dt
γn(t)∥L2

k−1
is

uniformly bounded by boundedness of the map l + c. By the Rellich lemma and the

Arzela-Ascoli theorem, we can pass to a subsequence of {γn} which converges to a

path γ∞ uniformly in L2
k−1. Moreover, it can be shown that γ∞ is a Seiberg-Witten

trajectory. By property (ii) of Definition 2.2.5 of c, we can inductively prove uniform

convergence ( d
dt
)m(γn(t))→ ( d

dt
)m(γ∞(t)) in L

2
k−1−m for m = 1, . . . , k−1. This implies

that γ̂n → γ̂∞ in L2
k−1([a, b]×Y ). (Here we treat γn(t) and γ∞(t) as sections over I×Y

and denote them respectively by γ̂n and γ̂∞.) Property (iii) of Definition 2.2.5 allows

us to do the bootstrapping argument over any shorter cylinder I × Y . This finishes

the proof of the proposition.

Proposition 2.2.4 has the following consequence.

Corollary 2.2.8. For a closed and bounded subset S of Coul(Y ) in L2
k, there exist

large numbers −λ̄, µ̄,−T̄ ≫ 0 such that if λ < λ̄, µ > µ̄ and T > T̄ then for any

approximated Seiberg-Witten trajectory γ : [−T, T ] → V µ
λ contained in S, we have

γ(0) ∈ Str(R0). Here R0 is the universal constant from Theorem 2.2.2.

Proof. Suppose the contrary: we can find an exhausting sequence of approximated

trajectories γn : [−Tn, Tn] → V µn

λn
∩ S, with Tn → ∞, with γn(0) /∈ Str(R0). Since S

is bounded, we can apply Proposition 2.2.4 and the diagonalization argument to find

a Seiberg-Witten trajectory γ∞ : R → S of finite type such that, after passing to a

subsequence, γn(0) → γ∞(0) in L2
k. However, γ∞(0) is in the interior of Str(R0) by

Theorem 2.2.2. This is a contradiction.

Remark. In Corollary 2.2.8, we can also consider more generalized approximated tra-

jectories. For example, we can use interpolation between two projections for approxi-
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mation, i.e. a trajectory satisfying

−dγ(t)
dt

=
(
l + ((1− s)pµλ + spµ

′

λ′) ◦ c
)
(γ(t)),

where 0 ≤ s ≤ 1 and λ′ < λ < λ̄ and µ′ > µ > µ̄.
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CHAPTER 3

Categorical and topological preliminaries

3.1 The stable categories.

3.1.1 Definition of the stable categories

In this subsection, we briefly review algebraic-topological constructions which will be

needed later. In particular, we will define three S1-equivariant stable categories C,S

and S∗ in which our invariants live as objects. The categories S and S∗ are defined

as direct systems and inverse systems of C respectively. In the end, we will also define

CPin(2),SPin(2) and S∗Pin(2). These are Pin(2)-analogue of C,S and S∗ respectively.

Our treatment follows closely with [40] and [42]. See [1] and [46] for more systematic

and detailed discussions regarding equivariant stable homotopy theory.

The category C, which was defined in [40], is the S1-equivariant analog of the

classical Spanier-Whitehead category with R∞ ⊕ C∞ as the universe. In other words,

we will only consider suspensions involving the following two representations:

1. R the one-dimensional trivial representation;

2. C the two-dimensional representation where S1 = {eiθ|θ ∈ [0, 2π)} acts by com-

plex multiplication.

For a representation V , we will denote by V + its one-point compactification and

by V S1
its S1-fixed point set. Note that the transposition (Ru1)+∧ (Ru2)+ → (Ru2)+∧

(Ru1)+ is homotopic to identity only when u1 or u2 is even.

The objects of C are triples (A,m, n) consisting of a pointed topological space A

with an S1-action, an even integer m and a rational number n. We require that A is
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S1-homotopy equivalent to a finite S1-CW complex. The set of morphisms between

two objects is given by

morC((A,m, n), (A
′,m′, n′)) := colim

u,v→∞
[(Ru ⊕Cv)+ ∧A, (Ru+m−m′ ⊕Cv+n−n′

)+ ∧A′)]S1 ,

if n−n′ ∈ Z, where [·, ·]S1 denotes the set of pointed S1-equivariant homotopy classes.

We define morC((A,m, n), (A
′,m′, n′)) to be the empty set if n − n′ ̸∈ Z. As in [40],

there is a full subcategory C0 inside of C consisting of objects of the form (A, 0, 0),

which we also denote by A. For an object Z = (A,m, n) ∈ obC, an even integer m′

and a rational number n′, we also write (Z,m′, n′) for (A,m+m′, n+ n′).

We now turn to the description of the category S. An object of S consists of a

collection Z = ({Zp}, {ip})p∈N) of objects {Zp}p∈N of C and a collection of morphisms

{ip ∈ morC(Zp, Zp+1)}p∈N. In other word, an object Z of S is a direct system

Z1
i1−→ Z2

i2−→ · · · .

For two objects Z = ({Zp}p, {ip}p) and Z ′ = ({Z ′p}p, {i′p}p) of S, we define the set of

morphisms as

morS(Z,Z
′) := lim

∞←p
lim
q→∞

morC(Zp, Z
′
q). (3.1)

The identity morphism and the composition law are defined in the obvious way. Notice

that here we first take the direct limit and then take the inverse limit. This order should

not be changed.

As for the category S∗, its objects are the inverse systems

Z̄1
j1←− Z̄2

j2←− · · · ,

where Z̄p ∈ obC and jp ∈ morC(Z̄p+1, Z̄p). For two objects Z̄ = ({Z̄p}p, {jp}p) and

Z̄ ′ = ({Z̄ ′p}p, {j′p}p) of S∗, we define the set of morphisms as

morS∗(Z̄, Z̄ ′) := lim
∞←q

lim
p→∞

morC(Z̄p, Z̄
′
q). (3.2)

Again, we first take the direct limit and then take the inverse limit.

Remark. The full subcategory of C consisting of objects {(A,m, n) | m ∈ 2Z, n ∈ Z}

can be naturally embedded into the homotopy category of the S1-equivariant spectra
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modeled on the standard universeR∞⊕C∞. Therefore, an object ({(Ap,mp, np)}p, {ip}p)

of S (resp. S∗) with mp ∈ 2Z and np ∈ Z corresponds to an inductive system (resp.

projective system) of S1-equivariant spectra. For this reason, we call an object of S

an ind-spectum and an object of S∗ a pro-spectrum. However, this is not so accurate

because, in the usual sense, an ind-spectrum (resp. pro-spectrum) refers to an induc-

tive system (resp. projective system) in the category of spectra, not the homotopy

category of spectra. Also, with a slightly abuse of language, we call all our invariants

spectrum invariants.

Now we turn to the Pin(2) case. Recall that the group Pin(2) is defined as the the

subgroup S1 ∪ jS1 ⊂ H of the algebra of quaternions, containing S1 as the set of unit

complex numbers. We are interested in the following real representations of Pin(2):

1. R the trivial one-dimensional representation;

2. R̃ the nontrivial one-dimensional representation where S1 acts trivially and j

acts as multiplication by −1;

3. H the 4-dimensional representation where Pin(2) acts by left quaternionic mul-

tiplication.

We introduce the category CPin(2), SPin(2) and S∗Pin(2) which are the Pin(2)-

version of the categories C,S and S∗. The objects of CPin(2) are triples (A,m, n)

consisting of an even integer m, a rational number n and a pointed Pin(2)-space

A which is Pin(2)-homotopy equivalent to a finite Pin(2)-CW complex. The set

morCPin(2)
((A,m, n), (A′,m′, n′)) is given by

colim
u,v,w→∞

[(Ru ⊕ R̃v ⊕Hw)+ ∧ A, (Ru ⊕ R̃v+m−m′ ⊕Hw+n−n′
)+ ∧ A′)]Pin(2)

when n − n′ ∈ Z and is empty otherwise. The objects of SPin(2) (resp. S∗Pin(2)) are

the sequential direct systems (resp. sequential inverse systems) in CPin(2). We call

an object of SPin(2) a Pin(2)-equivariant ind-spectrum and call an object of S∗Pin(2)

a Pin(2)-equivariant pro-spectrum. The sets of morphisms are defined in the same
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way as (3.1) and (3.2). For an object W of CPin(2), SPin(2) and S∗Pin(2), the natation

(W,m, n) will be used as in the S1-case.

We end this subsection with the following useful lemma, which is directly implied

by our definition.

Lemma 3.1.1. Let Z = ({Zp}p∈N, {ip}p∈N) be an object of S. For any infinite sequence

of positive integers 0 < p1 < p2 < · · · , the subsystem

Zp1

ip2−1◦···◦ip1−−−−−−−→ Zp2

ip3−1◦···◦ip2−−−−−−−→ Zp3 → · · ·

of Z is canonically isomorphic to Z as an object of S. Similarly, let Z̄ = ({Z̄p}p∈N, {jp}p∈N)

be an object S∗, then the subsystem

Z̄p1

jp1◦···◦jp2−1←−−−−−−− Z̄p2

jp2◦···◦jp3−1←−−−−−−− Z̄p3 ← · · ·

of Z̄ is canonically isomorphic to Z̄ as an object of S∗. Similar result holds for SPin(2)

and S∗Pin(2).

3.1.2 The S1-fixed point functor

The S1-fixed point functor will play an important rule when we define the Froyshøv

type numerical invariants in Chapter 8. Before discussing these functors, we briefly

introduce some more categories

C̄, S̄, S̄∗, C̄Z2 , S̄Z2 and S̄∗Z2
.

They correspond to the S1-fixed point sets of C, S, S∗, CPin(2), SPin(2) and S∗Pin(2)

respectively.

An object of C̄ consists of an integer m and a pointed topological space H̄, which is

homotopy equivalent to a finite CW complex. An object of C̄Z2 consists of an integer

m and a pointed Z2-space H̃, which is Z2-homotopic equivalent to a finite Z2-CW

complex. We define

morC̄((H̄,m), (H̄ ′,m′)) := colim
k∈Z

[(Rk)+ ∧ H̄, (Rk+m−m′
)+ ∧ H̄ ′],

morC̄Z2
((H̃,m), (H̃ ′,m′)) := colim

k,l∈Z
[(Rk ⊕ R̃l)+ ∧ H̃, (Rk ⊕ R̃l+m−m′

)+ ∧ H̃ ′]Z2 ,
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where we treat R̃ as a nontrivial Z2-representation.

Having defined C̄ and C̄Z2 , we can define the other four categories as follows:

• S̄: the category of sequential direct systems in C̄;

• S̄∗: the category of sequential projective systems in C̄;

• S̄Z2 : the category of sequential direct systems in C̄Z2 ;

• S̄∗Z2
: the category of sequential projective systems in C̄Z2 .

Now we discuss the fixed point functors. First, we can define the functor ΦS1

C :

C→ C̄ by

ΦS1

C (A,m, n) := (AS1

,m) and ΦS1

C ([f ]) := [fS1

].

The functor

ΦS1

CPin(2)
: CPin(2) → C̄Z2

can be defined by the same formula. By extending these two functors in an obvious

way, we can define the other four functors:

ΦS1

S : S→ S̄;

ΦS1

S∗ : S∗ → S̄∗;

ΦS1

SPin(2)
: SPin(2) → S̄Z2 ;

ΦS1

S∗
Pin(2)

: S∗Pin(2) → S̄∗Z2
.

We call all these functors the S1-fixed point functors.

Remark. The functors ΦS1

∗ correspond to the “geometric fixed-point functor” (see [46,

Page 166]), which should be distinguished with the usual fixed-point functor in the

equivariant stable homotopy theory (see, for example, [35, Page 21]). A further dis-

cussion about this difference can be found in [1, Section 7].
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3.1.3 Smash product and suspension/desuspension functors

In this subsection, we establish the symmetric monoidal structure on the category C.

To do this, we will define the smash product as a bifunctor ∧ : C × C → C. First, we

define the smash product of two objects as

(A1,m1, n2) ∧ (A2,m2, n2) := (A1 ∧ A2,m1 +m2, n1 + n2)

where A1 ∧ A2 denotes the classical smash product on pointed topological spaces.

Next, we define the smash product of morphisms. Suppose for i = 1, 2, the map

fi : (Rji ⊕ Cli)+ ∧ Ai → (R(ji+mi−m′
i) ⊕ C(li+ni−n′

i))+ ∧ A′i

represents a morphism [fi] ∈ morC((Ai,mi, ni), (A
′
i,m

′
i, n
′
i)). We define the map

f1 ∧ f2 : (Rj1 ⊕ Rj2 ⊕ Cl1 ⊕ Cl2)+ ∧X1 ∧X2 →

(R(j1+m1−m′
1) ⊕ R(j2+m2−m′

2) ⊕ C(l1+n1−n′
1) ⊕ C(l2+n2−n′

2))+ ∧X ′1 ∧X ′2

by putting the suspension indices for f1 on the left and the indices for f2 on the right.

We let [f1]∧ [f2] be the morphism represented by f1∧ f2. To prove that this operation

is well defined, we need to check that for a, b ∈ N, we have

id(Ra⊕Cb)+ ∧(f1 ∧ f2) ∼= (id(Ra⊕Cb)+ ∧f1) ∧ f2 ∼= f1 ∧ (id(Ra⊕Cb)+ ∧f2),

where ∼= means S1-equivariant stably homotopic. This a consequence of equivariant

Hopf theorem (cf. [66, Section 2.4]). Note that to prove the second isomorphism, we

make use of the assumption that mi and m
′
i are even. There is an isomorphism

τ(A1,m1,n1),(A2,m2,n2) : (A1,m1, n1) ∧ (A2,m2, n2)→ (A2,m2, n2) ∧ (A1,m1, n1)

represented by the obvious homeomorphism A1 ∧ A2 → A2 ∧ A1. It is not difficult to

prove that τ is actually an natural isomorphism (again here we need the assumption

that m1,m2 are even). Once the well definedness of ∧ and the naturality of τ are

established, we can prove the following lemma easily by checking the axioms at the

level of topological spaces.
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Lemma 3.1.2. Under the operations ∧ and τ , the category C is a symmetric monoidal

category, with the unit given by S = (S0, 0, 0).

An S1-representation E is called admissible if it is isomorphic to Ra⊕Cb for some

nonnegative integers a, b. For such representation E, we define SE as (E+, 0, 0) and

define S−E as (ES1
, 2a, 0), where ES1

denotes the S1-fixed point set of E. Now we

choose an identification

I : E → Ra ⊕ Cb

and consider the composition maps

E ⊕ ES1 I⊕IS1

−−−→ Ra ⊕ Cb ⊕ Ra τ2,3−−→ Ra ⊕ Ra ⊕ Cb

and

ES1 ⊕ E IS
1⊕I−−−→ Ra ⊕ Cb ⊕ Ra τ2,3−−→ Ra ⊕ Ra ⊕ Cb.

Here IS
1
denotes the restriction of I to the S1-fixed point set and τ2,3 denotes the map

interchanging the second and the third factor. These maps induce isomorphisms

ι+ : SE ∧ S−E
∼=−→ S and ι− : S−E ∧ SE ∼=−→ S. (3.3)

By equivariant Hopf theorem, one can check that ι± do not depend on the choice of I.

For an admissible representation E, we define the suspension functor ΣE : C → C

as the left smash product by SE. We also define desuspension functor Σ−E : C → C

as the left smash product by S−E. We have the following lemma, whose proof is

straightforward.

Lemma 3.1.3. For any admissible S1-representations E, we have canonical isomor-

phisms

ι∗+ : ΣE ◦ Σ−E → id and ι∗− : Σ−E ◦ ΣE → id

induced by ι± in (3.3). Here id denotes the identity morphism on C.

Note that the suspension and desuspension functors can be extended to the cate-

gory S and S∗ in an obvious way and Lemma 3.1.3 still holds.
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Now we briefly discuss the Pin(2)-case. The smash product ∧ and the commuting

operation τ can be defined on the category CPin(2) in exactly the same way as before.

As a result, the category CPin(2) is also an symmetric monoidal category. An Pin(2)-

representation E is called admissible if it is isomorphic to R̃a⊕Hb for some nonnegative

a, b. For such representation E, we define the objects SE := (E+, 0, 0) and S−E :=

(ES1
, 2a, b). As before, the functors ΣE and Σ−E are defined as the left smash product

with SE and S−E respectively. These two functors can be extended to the categories

SPin(2) and S∗Pin(2). A similar result as Lemma 3.1.3 holds in the current case.

3.1.4 Equivariant Spanier-Whitehead duality

In this subsection, we will set up the equivariant Spanier-Whitehead duality between

the categories S and S∗. Although we will mostly focus on the S1-case for simplicity,

all definitions and proofs can be easily adapted to the Pin(2)-case. As a result, a

duality between SPin(2) and S∗Pin(2) can also be set up in a similar way.

The following definition is motivated by [46, Chapterr XVI Theorem 7.6].

Definition 3.1.4. Let U,W be objects of C. Suppose there exists morphisms

ϵ : W ∧ U → S and η : S → U ∧W

such that the compositions

U ∼= S ∧ U η∧id−−→ U ∧W ∧ U id∧ϵ−−→ U ∧ S ∼= S

and

W ∼= W ∧ S id∧η−−→ W ∧ U ∧W ϵ∧id−−→ S ∧W ∼= W

are the respective identity morphisms. Then we say U,W are Spanier-Whitehead dual

to each other and call ϵ, η the duality maps.

Now we generalize Definition 3.1.4 to define the duality between S and S∗. Let

Z : Z1 → Z2 → Z3 → · · ·
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be an object of S and

Z̄ : Z̄1 ← Z̄2 ← Z̄3 ← · · ·

be an object of S∗. We consider an element

ϵ ∈ lim
∞←m

lim
n→∞

MorC(Z̄n ∧ Zm, S)

represented by a collection of morphisms {ϵm,n : Z̄n∧Zm → S}m>0,n≫m and an element

η ∈ lim
∞←n

lim
m→∞

MorC(S,Zm ∧ Z̄n)

represented by the collection of morphisms {ηm,n : S → Zm ∧ Z̄n}n>0,m≫n.

Definition 3.1.5. For Z ∈ obS and Z̄ ∈ obS∗, we say that Z and Z̄ are Spanier-

Whitehead dual to each other if there exist ϵ and η as above satisfying the following

conditions:

• For any m > 0, there exists n large enough relative to m and m′ large enough

relative to n such that the composition

Zm
∼= S ∧ Zm

ηm′,n∧id−−−−−→ Zm′ ∧ Z̄n ∧ Zm
id∧ϵm,n−−−−→ Zm′ ∧ S ∼= Zm′

equals the connecting morphism Zm → Zm′ in the inductive system Z.

• For any n > 0, there exists m large enough relative to n and n′ large enough

relative to m such that the composition

Z̄n′ ∼= Z̄n′ ∧ S id∧ηm,n−−−−−→ Z̄n′ ∧ Zm ∧ Z̄n

ϵm,n′∧id
−−−−−→ S ∧ Z̄n

∼= Z̄n

equals the connecting morphism Z̄n′ → Z̄n in the projective system Z̄.

In this case, we call ϵ, η the duality morphisms.

We end this subsection by introducing the smashing operation ϵ̃(·, ·), which will be

used to give the statement of gluing theorem for the Bauer-Furuta invariant.
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Definition 3.1.6. Let Z ∈ obS and Z̄ ∈ obS∗ be objects that are S1-equivariant

Spanier-Whitehead dual to each other, with duality morphisms given by ϵ, η. Given

two morphisms

ρ = [ρm] ∈ morS(W,Z) and ρ̄ = {ρ̄n}n>0 ∈ morS∗(W̄ , Z̄),

whereW, W̄ belong to the subcategory C, we define the morphism ϵ̃(ρ, ρ̄) ∈ morC(S,W∧

W̄ ) as the composition

S
ϵm,n−−→ Zm ∧ Z̄n

ρm∧ρ̄n−−−−→W ∧ W̄

for any n large enough relative to m. It can be proved that ϵ̃(ρ, ρ̄) does not depend

on the choice of m,n and ρm. (Note that ρ̄n is determined by n and ρ̄.)

3.2 The Conley index

3.2.1 Definition and basic properties

In this section, we recall basic facts regarding the Conley index theory. See [10] ,[40]

and [57] for more details.

Let V be a finite dimensional manifold and φ be a smooth flow on V , i.e. a C∞-

map φ : V ×R→ V such that φ(x, 0) = x and φ(x, s+ t) = φ(φ(x, s), t) for any x ∈ V

and s, t ∈ R. We denote by inv(φ,A) := {x ∈ A | φ(x,R) ⊂ A} the maximal invariant

set of A. We sometimes write inv(A) when the flow φ is obvious from the context.

A compact set A ⊂ V is called an isolating neighborhood if inv(A) lies in the

interior of A. A compact set S ⊂ V is called an isolated invariant set if there exists

an isolating neighborhood A such that inv(A) = S. In this situation, we also say that

A is an isolating neighborhood of S. For an isolated invariant set S, a pair (N,L) of

compact sets L ⊂ N is called an index pair of S if the following conditions hold:

(i) inv(N \ L) = S ⊂ int(N \ L), where int(N \ L) denotes the interior of N \ L;

(ii) L is an exit set for N , i.e. for any x ∈ N and t > 0 such that φ(x, t) /∈ N , there

exists τ ∈ [0, t) with φ(x, τ) ∈ L;
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(iii) L is positively invariant in N , i.e. for x ∈ L and t > 0, if we know φ(x, [0, t]) ⊂ N ,

then we have φ(x, [0, t]) ⊂ L.

We list two fundamental facts regarding index pairs:

• For an isolated invariant set S with an isolating neighborhood A, we can always

find an index pair (N,L) of S such that L ⊂ N ⊂ A.

• The pointed homotopy type of N/L with [L] as a base point only depends on S

and φ. More precisely, for any two index pairs (N,L) and (N ′, L′) of S, there is

a natural pointed homotopy equivalence N/L→ N ′/L′ induced by the flow.

These lead to us the definition of the Conley index.

Definition 3.2.1. Given an isolated invariant set S of a flow φ, we denote by I(φ, S,N, L)

the pointed space of (N/L, [L]), where (N,L) is an index pair of S. This is called the

Conley index of S. We will always suppress (N,L) from our notation and write I(φ, S)

instead. We may also write I(S) when the flow is clear from the context.

Remark. In [57], the Conley was defined as a connected simple system of pointed

spaces. I.e., a collection of pointed spaces (given by different index pairs) together with

natural homotopy equivalences between them (given by the flow map). In Definition

3.2.1, we actually pick a representative of this connected simple system by making

a choice of the index pair (N,L). As we will see in next section, we need to make

choices of all kinds of index pairs in our construction of spectrum invariants. Just

like the Riemannian metric g and the perturbation on f , these choices will be treated

as auxiliary data involved in the construction and we will prove that our spectrum

invariant is independent of this data upto canonical isomorphism.

We further provide relevant properties of the Conley index.

1. (Product flow) If φj is a flow on Vj for j = 1, 2 and Sj is an isolated invariant

set for φj, then we have a canonical homotopy equivalence I(φ1×φ2, S1×S2) ∼=

I(φ1, S1) ∧ I(φ2, S2), where “∧” is the smash product.
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2. (Continuation) Let φt is a continuous family of flows parametrized by t ∈ [0, 1].

Suppose that A is an isolating neighborhood of φt for any t ∈ [0, 1], and let

St be inv(φt, A). Then we have a canonical homotopy equivalence I(φ0, S0) ∼=

I(φ1, S1).

The following concept will be useful for explicitly computing the Conley index.

Definition 3.2.2 ([56]). For a compact subset A, we consider the following subsets

of its boundary

n+(A) := {x ∈ ∂A | ∃ϵ > 0 s.t φ(x, (−ϵ, 0)) ∩ A = ∅},

n−(A) := {x ∈ ∂A | ∃ϵ > 0 s.t φ(x, (0, ϵ)) ∩ A = ∅}.

A compact subset N is called an isolating block if ∂N = n+(N) ∪ n−(N).

It is easy to verify that an isolating block is an isolating neighborhood. When N

is an isolating block, its index pair can be given by (N, n−(N)).

Next, we consider a situation when an isolated invariant set can be decomposed to

smaller isolated invariant sets.

Definition 3.2.3.

(i) For a subset A ⊂ V , we define its α-limit and ω-limit set as

α(A) = ∩
t<0

φ(A, (−∞, t]) and ω(A) = ∩
t>0

φ(A, [t,+∞)).

(ii) Let S be an isolated invariant set. A subset T ⊂ S is called an attractor (resp.

repeller) if there exists a neighborhood U of T in S such that ω(U) = T (resp.

α(U) = T ).

(iii) When T is an attractor in S, we define the set T ∗ := {x ∈ S | ω(x) ∩ T = ∅},

which is a repeller in S. We call (T, T ∗) an attractor-repeller pair in S.

Note that an attractor and a repeller are always an isolated invariant sets. We give

an important result relating Conley indices of an attractor-repeller pair.
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Proposition 3.2.4 (Salamon [57]). Let S be an isolated invariant set with an isolating

neighborhood A and (T, T ∗) be an attractor-repeller pair in S. Then there exist compact

sets Ñ3 ⊂ Ñ2 ⊂ Ñ1 ⊂ A such that the pairs (Ñ2, Ñ3), (Ñ1, Ñ3), (Ñ1, Ñ2) are index pairs

for T, S and T ∗ respectively. The maps induced by inclusions give a natural coexact

sequence of Conley indices

I(φ, T )
i1−→ I(φ, S)

i2−→ I(φ, T ∗)→ ΣI(φ, T )→ ΣI(φ, S)→ · · · .

We call the triple (Ñ3, Ñ2, Ñ1) an index triple for the pair (T, T ∗) and call the maps

i1 and i2 the attractor map and the repeller map respectively.

By Corollary 4.4 of [57], the attractor maps are transitive in the following sense.

Suppose that S1 is an attractor in S2 and S2 is an attractor in S3. Then S1 is also an

attractor in S3. Moreover, the corresponding attractor maps

i1 : I(φ, S1)→ I(φ, S2), i
′
1 : I(φ, S2)→ I(φ, S3) and i

′′
1 : I(φ, S1)→ I(φ, S3)

satisfy the relation i′′1 = i′1 ◦ i1. Similar statements hold for the repeller maps.

Lastly, we briefly discuss the equivariant Conley index theory, which has been

developed in [15] and [54]. Let G be a compact Lie group acting on V while preserving

the flow φ. For a G-invariant isolated invariant set S, we can find a G-invariant

isolating neighborhood as well as a G-invariant index pair (N,L). As in the non-

equivariant case, with the choice of (N,L), we denote by IG(φ, S) the pointed G-

space (N/L, [L]), whose G-equivariant homotopy type only depends on S and φ. In

particular, IG(φ, S) is the G-equivariant Conley index of S. All the non-equivariant

results stated above can be adapted to the G-equivariant setting. From now on, we

will work on this equivariant setting with G = S1 or Pin(2).

3.2.2 Further properties of Conley index

In this subsection, we collect some further properties and prove some results regard-

ing Conley index theory that will be needed in Chapter 7. These results may be of

independent interest for some readers. Although we focus on the non-equivariant case
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for simplicity, all the results can be adapted to the equivariant setting. Throughout

this subsection, we fix a smooth flow φ : V × R→ V , an isolated invariant set S and

an isolating neighborhood A for S. We use the notation f ∼= g to indicate that two

maps f, g are pointed homotopic to each other.

Notation. For B ⊂ A and I ⊂ R, we define

BI := {x ∈ A | φ(x, I) ⊂ B}.

We also write B[0,+∞) and B(−∞,0] as B+ and B− respectively.

3.2.2.1 The flow map

As mentioned in the remark after Definition 3.2.1, different Conley indices for S form

a simple connected system. In particular, they are connected to each other by natural

homotopy equivalences, whose precise formula is given in the following theorem.

Theorem 3.2.5 (Kurland [34], Salamon [57], Conley-Zender [11]). If (N,L) and

(N ′, L′) are two index pairs for the same isolated invariant set S, then there exists

T̄ > 0 such that

• φ(x, [−T̄ , T̄ ]) ⊂ N ′ \ L′ implies x ∈ N \ L;

• φ(x, [−T̄ , T̄ ]) ⊂ N \ L implies x ∈ N ′ \ L′.

Moreover, for any T ≥ T̄ , the map sT : N/L→ N ′/L′ given by

sT ([x]) :=

 [φ3T (x)] if φ(x, [0, 2T ]) ⊂ N \ L and φ(x, [T, 3T ]) ⊂ N ′ \ L′

[L] otherwise

is well defined and continuous. For different T ≥ T̄ , the maps sT are all homotopic to

each other and they give natural homotopy equivalences between N/L and N ′/L′. We

call sT the flow map at time T (also called the Salamon map at time T ).

3.2.2.2 T -tame pre-index pair and T -tame index pair

Definition 3.2.6. A pair (K1, K2) of compact subsets of A is called a pre-index pair

if
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• For any x ∈ K1 ∩ A+, we have φ(x, [0,+∞)) ⊂ int(A);

• K2 ∩ A+ = ∅.

Theorem 3.2.7 (Manolescu [40]). For any pre-index pair (K1, K2), there exists an

index pair (N,L) satisfying

K1 ⊂ N ⊂ A, K2 ⊂ L. (3.4)

We call such (N,L) an index pair containing (K1, K2).

Theorem 3.2.8 (Khandhawit [30]). Let (K1, K2) be a pre-index pair and (Nj, Lj)

(j = 1, 2) be two index pairs containing (K1, K2). Denote by lj : K1/K2 → Nj/Lj the

map induced by the natural inclusion. Then we have

st ◦ l1 ∼= l2 for t≫ 0,

where st : N1/L1 → N2/L2 is the flow map at time t.

For an pre-index pair (K1, K2), by Theorem 3.2.7, we can find index pair (N,L)

containing it and define l(K1,K2,N,L) : K1/K2 → I(φ, S,N, L). Moreover, by Theorem

3.2.8, for different choices of (N,L), the maps l(K1,K2,N,L) are compatible with each

other. This allows us to suppress N,L (and also φ) from our notations and simply

write the map as

l : K1/K2 → I(S). (3.5)

We call this map the canonical map for (K1, K2).

Next, we discuss the quantitative refinement of Theorem 3.2.7, which will be espe-

cially useful when defining the relative Bauer-Furuta invariant and proving the gluing

theorem. We first introduce some definitions.

Definition 3.2.9. For T ∈ R>0, an isolating neighborhood A is called a T -tame

isolating neighborhood if it satisfies the following condition:

A[−T,T ] ⊂ int(A).
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Definition 3.2.10. Let (K1, K2) be a pre-index pair in a T -tame isolating neighbor-

hood A. We call (K1, K2) a T -tame pre-index pair if it satisfies the following condi-

tions:

(1) There exists a compact set A′ satisfying

• A[−T,T ] ⊂ A′ ⊂ int(A);

• If x ∈ K1 ∩ A[0,T ′] for some T ′ ≥ T , then φ(x, [0, T ′ − T ]) ⊂ A′.

(2) K2 ∩ A[0,T ] = ∅.

Lemma 3.2.11. Let (K1, K2) be a pre-index pair in an isolating neighborhood A. Then

there exists T > 0 such that A and (K1, K2) are both T -tame. This also implies that

A and (K1, K2) are T̄ -tame for any T̄ ≥ T .

Proof. We know that A(−∞,+∞) ∩ ∂A = ∅ and K2 ∩ A[0,+∞) = ∅. Since both ∂A and

K2 are compact, we have A[T,T ] ∩ ∂A = ∅ and K2 ∩ A[0,T ] = ∅ for T ≫ 0. Therefore,

we are left with checking condition (1) of Definition 3.2.10. Suppose it does not for

any T . Then we can find sequences {xj} ⊂ K1, {Tj} and {T ′j} such that Tj → +∞,

T ′j ≥ Tj, φ(xj, [0, T
′
j ]) ⊂ A and φ(xj, T

′
j − Tj) → y ∈ ∂A. If T ′j − Tj does not goes

to infinity, then after passing a subsequence, we can assume that (xj, T
′
j − Tj) →

(x∞, T
′′) ∈ K1 × R≥0. We have φ(x∞, [0,+∞)) ⊂ A and φ(x∞, T

′′) = y ∈ ∂A. This

is a contraction with Definition 3.2.6. Now suppose T ′j − Tj goes to infinity. For any

t ∈ R, we have T ′j − Tj + t ∈ [0, T ′j ] for j ≫ 0, which implies φ(xj, T
′
j − Tj + t) ∈ A.

Notice that φ(y, t) = lim
j→∞

φ(xj, T
′
j − Tj + t). Therefore, we have y ∈ A(−∞,+∞). This

is a contradiction because A(−∞,+∞) ∩ ∂A = ∅.

Definition 3.2.12. For T ∈ R>0, an index pair (N,L) in an isolating neighborhood

A is called a T -tame index pair if it satisfies the following conditions:

(i) Both N,L are positively invariant in A;

(ii) A[−T,T ] ⊂ N ;

(iii) A[0,T ] ∩ L = ∅.
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One important reason that we are interested tame index pair is the following lemma.

Lemma 3.2.13. Let (N,L) and (N ′, L′) be two index pairs in A. For T > 0, suppose

(N,L) is T -tame and the flow map sT : N/L → N/L′ is defined. Then we have the

following equivalent definition of sT

sT ([x]) =

 [φ3T (x)] if φ(x, [0, 3T ]) ⊂ A and φ(x, [T, 3T ]) ⊂ N ′ \ L′

[L] otherwise
.

Proof. We need to show that for any x ∈ N the following two conditions are equivalent.

(1) φ(x, [0, 3T ]) ⊂ A and φ(x, [T, 3T ]) ⊂ N ′ \ L′;

(2) φ(x, [0, 2T ]) ⊂ N \ L and φ(x, [T, 3T ]) ⊂ N ′ \ L′.

It is easy to see that (2) implies (1). To see the converse, we pick any x satisfying (1).

Then since N is positively invariant in A, we have φ(x, [0, 3T ]) ⊂ N . By condition

(iii) of 3.2.12, we have φ(x, [0, 2T ]) ∩ L = ∅. Therefore, x satisfies (2).

Theorem 3.2.14. For any T > 1, let A be a (T − 1)-tame insolating neighborhood

and (K1, K2) be a (T − 1)-tame pre-index pair contained in A. Then there exists a

T -tame index pair (N,L) that contains (K1, K2).

To simplify the proof, we introduce the following notation:

Notation. For subsets B,B′ ⊂ V , we define the set

PB′(B) := {φ(x, t) | x ∈ B, t ≥ 0 and φ(x, [0, t]) ⊂ B′}.

Proof of Theorem 3.2.14. The proof is an adaption of the argument in [40, Appendix

A]. Let K̃1 = K1 ∪ A[−T+1,T−1]. We claim that (K̃1, K2) is also an pre-index pair. To

see this, we need to show that φ(y, [0,+∞)) ⊂ int(A) for any y ∈ K̃1 ∩ A+. This is

clear when y ∈ K1 ∩ A+ because (K1, K2) is a pre-index pair. For those y belonging

to A[−T+1,T−1] ∩ A+ = A[−T+1,+∞), we have

φ(y, [0,+∞)) ⊂ A[−T+1,T−1] ⊂ int(A),
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where the second inclusion make use of the condition that A is (T−1)-tame. Therefore,

the claim is verified.

Now since (K̃1, K2) is a pre-index pair, by Theorem 3.2.7, there exists an index

pair (N,L) containing (K̃1, K2). We have

A[−T,T ] ⊂ A[−T+1,T−1] ⊂ K̃1 ⊂ N.

Condition (ii) in Definition 3.2.12 is verified.

Recall that in the proof of Theorem 3.2.7 [40], the index pair (N,L) is constructed

as

(PA(B) ∪ PA(A \ Ṽ ), PA(A \ Ṽ ))

where A, Ṽ are certain specific subsets of A. (The notation V is used in [40] as Ṽ

here.) Since PA(∗) is always positively invariant in A and the union of two positively

invariant sets in A is again positively invariant in A. We see that both N,L are

positively invariant.

We are left with checking condition (iii). To do this, let us recall the construction

of the set Ṽ in [40]. Let C be a compact subset of A, with the following properties:

1. C is a neighborhood of A+ ∩ ∂A in A;

2. C ∩ PA(K̃1) = ∅;

3. C ∩ A− = ∅.

Then Ṽ is any open neighborhood of A+ satisfying the following conditions:

4. Ṽ \ C ⊂ int(A);

5. K2 ∩ Ṽ = ∅.

Now we construct specific C, Ṽ that meet all these requirements: Let A′′ be a compact

set such that

A′′ ⊂ int(A), A′ ∪ A[−T+1,T−1] ⊂ int(A′′),

where the set A′ ⊂ int(A) has the following property:
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• For any T ′ ≥ T − 1 and x ∈ A[0,T ′] ∩K1, we have φ(x, [0, T ′ − T + 1]) ⊂ A′.

Such A′ exists because (K1, K2) is a (T−1)-tame pre-index pair (see Definition 3.2.10).

Now we fix two numbers T − 1 < T2 < T1 < T and set

C0 = (A \ int(A′′)) ∩ A[0,T2] and Ṽ0 = A[0,T1].

We have the following observations:

• C0 ∩ A− = ∅: This is because

C0 ∩ A− = (A \ int(A′′)) ∩ A[−∞,T2] ⊂ (A \ int(A′′)) ∩ A[−T+1,T−1] = ∅.

We their distance by d1. This is positive since both sets are compact.

• The distance between C0 and PA(K̃1), denoted by d2, is positive: Assume the

contrary. Notice that C0 is compact. We can find sequences {xj} ⊂ K̃1 and

{tj} ⊂ R≥0 that satisfy φ(xj, [0, tj]) ⊂ A and φ(xj, tj)→ y ∈ C0. There are two

cases:

– Suppose tj does not goes to infinity. Then after passing to a subsequence,

we can assume (xj, tj)→ (x∞, t∞) ∈ K̃1×R≥0. We have φ(x∞, [0, t∞]) ⊂ A

and φ(x∞, t∞) = y. If x∞ ∈ K1, then since φ(y, T − 1) ⊂ A, we have

y ∈ A′ by our choice of A′. This is impossible because A′ ∩ C0 = ∅. If

x∞ ∈ A[−T,T ], then y ∈ A[−T−t∞,T2] ⊂ A[−T+1,T−1]. This is also impossible

because A[−T+1,T−1] ∩ C0 = ∅.

– Suppose tj → +∞. Then for any t ≥ 0, we have φ(y,−t) = lim
j→∞

φ(xj, tj −

t) ∈ A. This is a contradiction because C0 ∩ A− = ∅.

• Ṽ0 \ C0 ⊂ A′′: This is because T1 > T2.

• K2 ∩ Ṽ0 = ∅: This is because (K1, K2) is (T − 1)-tame and T2 > T − 1. Denote

the distance between K2 and Ṽ0 by d2. We have d2 > 0 because K2 and Ṽ0 are

both compact.
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Let d3 > 0 be the distance between ∂A and A′′. We choose any positive number d4

strictly smaller than min(d0, d1, d2, d3) and set our specific C, Ṽ to be

C = {x ∈ A | d(x,C0) ≤ d4}; Ṽ = {x ∈ A | d(x, Ṽ0) < d4}.

Now we show that C, Ṽ satisfy the requirements: Conditions 1, 2, 3, 5 are directly

implied by our choice of d4. As for condition 4, for any y ∈ ∂A∩ ¯̃V , there exists y′ ∈ Ṽ0

such that d(y, y′) ≤ d4 < d3. This implies that y′ /∈ A′′. Since Ṽ0 \ C0 ⊂ A′′, we have

y′ ∈ C0, which implies y ∈ C. Therefore, condition 4 is verbified.

Now we have L = PA(A \ Ṽ ) and we want to verify condition (iii) in Definition

3.2.12 (i.e., L∩A[0,T ] = ∅). Suppose x ∈ PA(A\Ṽ )∩A[0,T ]. Then we can have x = φt(y)

where y /∈ Ṽ and φ[0,T+t](y) ⊂ A. This is a contradiction because A[0,T+t] ⊂ Ṽ .

3.2.2.3 The attractor-repeller pair arising from a strong Morse decompo-

sition

In our later construction of spectrum invariants, our isolating neighborhood will have

a nice decomposition, which gives an attractor-repeller pair with good properties. To

clarify the situation, we give the following definition.

Definition 3.2.15. Let (A1, A2) be pair of compact sets. We call (A1, A2) a strong

Morse decomposition of A if

• A = A1 ∪ A2;

• For any x ∈ A1 ∩ A2, there exists ϵ > 0 such that

φ(x, (0, ϵ)) ∩ A1 = ∅ and φ(x, (−ϵ, 0)) ∩ A2 = ∅. (3.6)

We summarize the basic properties of a strong decomposition in the following

lemma. We omit the proof since it is straightforward.

Lemma 3.2.16. Suppose (A1, A2) is a strong Morse decomposition of an isolating

invariant set A. Then we have the following results.
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(1) A1 (resp. A2) is negatively (resp. positively) invariant in A;

(2) A1 ∩ A2 = ∂A1 ∩ ∂A2 and ∂Ai ⊂ ∂A ∪ (A1 ∩ A2) for i = 1, 2;

(3) Both A1 and A2 are isolating invariant sets;

(4) (inv(A2), inv(A1)) is an attractor-repeller pair in inv(A).

The attractor-repeller pair arising from a strong Morse decomposition has the fol-

lowing special property.

Lemma 3.2.17. Let (A1, A2) be a strong Morse decomposition of A and (Ñ3, Ñ2, Ñ1)

be an index triple for (inv(A2), inv(A1)) (see Proposition 3.2.4). Then (Ñ3, Ñ
′
2, Ñ1) is

again an index triple, where Ñ ′2 = Ñ2∪(Ñ1∩A2). In particular, we can always assume

(Ñ1 ∩ A2) ⊂ Ñ2 by replacing Ñ2 with Ñ ′2.

Proof. First consider the pair (Ñ1, Ñ
′
2). We have the following observations, which

implies that (Ñ1, Ñ
′
2) is an index pair for inv(A1).

• Ñ ′2 is positively invariant in Ñ1: Since A2 is positively invariant in A, the set

A2 ∩ Ñ1 is positively invariant in Ñ1. Because Ñ2 is also positively invariant in

Ñ1 (by the definition of an index pair) and the union of two positively invariant

set is again positively invariant. We see that Ñ ′2 is positively invariant in Ñ1.

• Ñ ′2 is an exit set for Ñ1: This is because Ñ
′
2 contains Ñ2, which is an exit set for

Ñ1.

• inv(A1) = inv(Ñ1 \ Ñ ′2) ⊂ int(Ñ1 \ Ñ ′2): We have inv(Ñ1 \ Ñ ′2) ⊂ inv(Ñ1 \ Ñ2)

because Ñ1 \ Ñ ′2 ⊂ Ñ1 \ Ñ2. To see the converse, we take any x ∈ inv(Ñ1 \

Ñ2) = inv(A1). Then φ(x, (−∞,+∞)) is contained in (Ñ1 \ Ñ2) ∩ int(A1).

Notice that int(A1) does not intersect Ñ1 ∩ A2. We have φ(x, (−∞,+∞)) ⊂

Ñ1 \ (Ñ2 ∪ (Ñ1 ∩ A2)). This implies that x ∈ inv(Ñ1 \ Ñ ′2). We have shown

that inv(Ñ1 \ Ñ ′2) = inv(Ñ1 \ Ñ2) = inv(A). Moreover, we have inv(Ñ1 \ Ñ ′2) ⊂

int(Ñ1 \ Ñ2) ∩ int(A1) ⊂ int(Ñ1 \ Ñ ′2).
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Now consider the pair (Ñ ′2, N3). We have the following observations, which implies

that (Ñ ′1, Ñ3) is an index pair for inv(A2).

• Ñ3 is positively invariant in Ñ ′2: This is because Ñ3 is positively invariant in Ñ1,

which contains Ñ ′2.

• Ñ3 is an exit set for Ñ ′2: This is because Ñ3 is an exit set for Ñ1 and Ñ ′2 is

positively invariant in Ñ1.

• inv(A2) = inv(Ñ ′2 \ Ñ3) ⊂ int(Ñ ′2 \ Ñ3): We have inv(Ñ2 \ Ñ3) ⊂ inv(Ñ ′2 \ Ñ3)

because Ñ2\Ñ3 ⊂ Ñ ′2\Ñ3. To see the converse, take any x ∈ inv(Ñ ′2\Ñ3). Then

we have φ(x, (−∞,∞)) ⊂ Ñ ′2 \ Ñ3. Suppose x /∈ inv(Ñ2 \ Ñ3) = inv(A2). Then

φx,t0 /∈ Ñ2 for some t0. Since φ(x, (−∞,+∞)) does not intersect Ñ3, which

is an exit set for Ñ2, we see that φ(x, (−∞, t0]) does not intersect Ñ2. Since

φ(x, (−∞, t0]) is contained in Ñ ′2, it has to be contained in Ñ1 ∩A2. Notice that

Ñ3 is also an exit set for Ñ1 ∩ A2 while φ(x, (−∞,+∞)) ∩ Ñ3 = ∅. We see that

φ(x, (−∞,+∞)) ⊂ Ñ1 ∩ A2, which implies x ∈ inv(A2). This is a contradiction

and we have shown that inv(Ñ ′2 \ Ñ3) equals inv(A2), which is contained in

int(Ñ2 \ Ñ3) and hence also in int(Ñ ′2 \ Ñ3).

Now we study the relation between the strong Morse decomposition and the pre-

index pair. More precisely, we will show that the canonical map (3.5) is compatible

with the attractor and repeller maps given by strong Morse decomposition. These

results will play a crucial role when we define the relative Bauer-Furuta invariant in

Chapter 7.

Proposition 3.2.18. Let (A1, A2) be a strong Morse decomposition of A and let

(K1, K2) be a pre-index pair in A2. Then we have

(1) (K1, K2) is also a pre-index pair in A;
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(2) Consider the corresponding canonical maps (see (3.5)):

l1 : K1/K2 → I(inv(A)) and l2 : K1/K2 → I(inv(A2)).

Then we have i1 ◦ l2 ∼= l1, where i1 : I(inv(A2))→ I(inv(A)) is the attractor map

(see Proposition 3.2.4).

Proof. (1) We check those two conditions in Definition 3.2.6.

• Suppose x ∈ K1 satisfies φ(x, [0,+∞)) ⊂ A. Since A2 is positively invariant

in A and x ∈ A2, we have φ(x, [0,+∞)) ⊂ A2. This implies φ(x, [0,+∞)) ⊂

int(A2) ⊂ int(A) because (K1, K2) is an index pair for A2.

• Suppose x ∈ K2 satisfies φ(x, [0,+∞)) ⊂ A. Again since A2 is positively invari-

ant in A, we have φ(x, [0,+∞)) ⊂ A2. This is impossible because K2 ∩A+
2 = ∅.

(2) Let Ñ3 ⊂ Ñ2 ⊂ Ñ1 ⊂ A be an index triple for (inv(A2), inv(A1)) and let

L ⊂ N ⊂ A (resp. L2 ⊂ N2 ⊂ A2) be an index pair for inv(A) (resp. inv(A2)) that

contains (K1, K2). The map i1 ◦ l2 is given by the decomposition

K1/K2

l(N2,L2)−−−−→ N2/L2
sT−→ Ñ2/Ñ3

i1−→ Ñ1/Ñ3 (3.7)

while the map l1 is given by the composition

K1/K2

l(N,L)−−−→ N/L
s′T−→ Ñ1/Ñ3. (3.8)

Here l∗ are canonical maps (induced by the corresponding inclusions) and sT , s
′
T are

flow maps. (We choose T ≫ 0 such that they are defined.) The attractor map i1 is

given by the inclusion. By Lemma 3.2.17, we may assume Ñ1 ∩ A2 ⊂ Ñ2. By Lemma

3.2.11 and Theorem 3.2.14, we may also assume that both (N,L) and (N2, L2) are T -

tame. Under these assumptions, by Lemma 3.2.13, one can check that the composition

(3.7) sends [x] to [φ(x, 3T )] if

φ(x, [0, 3T ]) ⊂ A2, φ(x, [T, 3T ]) ⊂ Ñ2 \ Ñ3 (3.9)
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and sends [x] to the base point otherwise. One the other hand, the composition (3.8)

sends [x] to [φ(x, 3T )] is

φ(x, [0, 3T ]) ⊂ A, φ(x, [T, 3T ]) ⊂ Ñ1 \ Ñ3 (3.10)

and sends [x] to the base point otherwise. Therefore, we just need to show that for

x ∈ K1 ⊂ A2, (3.9) is equivalent to (3.10). This is simply because that A2 is positively

invariant in A and Ñ1 ∩ A2 ⊂ Ñ2.

Proposition 3.2.19. Let (A1, A2) be a strong Morse decomposition of A and let

(K3, K4) be a pre-index pair in A. Then we have

(1) The pair (K3∩A1, (K4∩A1)∪ (K3∩A1∩A2)), denoted by (K ′3, K
′
4), is a pre-index

pair in A1;

(2) Consider the corresponding canonical maps

l3 : K3/K4 → I(inv(A)) and l4 : K
′
3/K

′
4 → I(inv(A1)).

Then we have i2 ◦ l3 ∼= l4 ◦ q, where i2 : I(inv(A))→ I(inv(A1)) is the repeller map

(see Proposition 3.2.4) and q : K3/K4 → K ′3/K
′
4 is given by

q([x]) =

 [x] if x ∈ K ′3
[K ′4] otherwise

.

(Note that q is continuous because (K3 \K ′3 ∩K ′3) ⊂ K ′4.)

Proof. (1) We check those two conditions in Definition 3.2.6.

• Suppose x ∈ K ′3 satisfies φ(x, [0,+∞) ⊂ K ′3. Then we have φ(x, [0,+∞))∩∂A =

∅ because (K3, K4) is a pre-index pair. By (3.6), we also have φ(x, [0,+∞)) ∩

A1 ∩ A2 = ∅. Note that ∂A1 is contained in (∂A ∪ (A1 ∩ A2)). We see that

φ(x, [0,+∞)) ∩ ∂A1 = ∅.

• Since K4 ∩A+ = ∅, we have (K4 ∩ A1) ∩A+
1 = ∅. By (3.6), we have (K3 ∩A1 ∩

A2) ∩ A+
1 = ∅. Therefore, K ′4 does not intersect A+

1 .
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(2) As in the proof of Proposition 3.2.18, let Ñ3 ⊂ Ñ2 ⊂ Ñ1 ⊂ A be an index triple for

(inv(A2), inv(A1)) and let L ⊂ N ⊂ A (resp. L1 ⊂ N1 ⊂ A1) be an index pair inv(A)

(resp. for inv(A1)) that contains (K3, K4) (resp. (K ′3, K
′
4)). Then the map q ◦ l4 is

given by the composition

K3/K4
q−→ K ′3/K

′
4

l(N1,L1)−−−−→ N1/L1
sT−→ Ñ1/Ñ2, (3.11)

and the map i2 ◦ l3 is given by the composition

K3/K4

l(N,L)−−−→ N/L
s′T−→ Ñ1/Ñ3

i2−→ Ñ1/Ñ2. (3.12)

Here sT , s
′
T are flow maps, l∗ are canonical maps and i2 is the quotient map. As before,

we can assume that (N,L) and (N1, L1) are both T -tame and Ñ1 ∩ A2 ⊂ Ñ2. Under

these assumptions, one can check that the composition (3.11) sends [x] to [φ(x, 3T )] if

φ(x, [0, 3T ]) ⊂ A1 and φ(x, [T, 3T ]) ⊂ Ñ1 \ Ñ2 (3.13)

and send [x] to the base point otherwise. On the other hand, the composition (3.12)

sends [x] to φ(x, 3T ) if

φ(x, [0, 3T ]) ⊂ A, φ(x, [T, 3T ]) ⊂ Ñ1 \ Ñ3 and φ(x, 3T ) /∈ Ñ2 (3.14)

and send [x] to the base point otherwise. We just need to show that for x ∈ K3,

condition (3.13) is equivalent to (3.14). Clearly, (3.13) implies (3.14). To see the

converse, we take any x ∈ K3 satisfying (3.14). We have φ(x, 3T ) ∈ Ñ1 \ Ñ2 ⊂ A1.

Since A1 is negatively invariant in A, we have φ(x, [0, 3T ]) ⊂ A1. Moreover, because

φ(x, 3T ) /∈ Ñ2 and φ(x, [T, 3T ]) ∩ Ñ3 = ∅, we have φ(x, [T, 3T ]) ∩ Ñ2 = ∅ since Ñ3 is

an exit set for Ñ2. We have proved that x satisfies (3.13).

58



CHAPTER 4

Pin(2)-equivariant Seiberg-Witten Floer KO-theory

Through out this chapter, we will make the following assumptions:

• Y is a connected, 3-manifold with b1 = 0;

• The spin structure s is induced by a spin structure. With a slightly abuse of

notations, we also denote this spin structure by s.

• Except in subsection 4.1.1, G denotes the group Pin(2).

4.1 Equivariant KO-theory

4.1.1 General Theory

In this subsection, we review some general facts about equivariant KO-theory, mostly

from [61] and [4]. See [3], [2] for basic facts about ordinary K-theory and KO-theory.

Let G be a compact topological group and X be a compact G-space. We denote

the Grothendieck group of real G-bundles over X by KOG(X).

Fact 4.1.1. KOG(pt) = RO(G). Here RO(G) denotes the real representation ring of

G. For a general X, KOG(X) is a RO(G)-algebra (with unit).

Remark. In this paper, we will not distinguish a representation of G with its represen-

tation space.

Fact 4.1.2. A continuous G-map f : X → Y induces a map f ∗ : KOG(Y ) →

KOG(X).
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Fact 4.1.3. For each subgroup H ⊆ G, by restricting the G action to H, which makes

a G-bundle into an H-bundle, we get a functorial restriction map r : KOG(X) →

KOH(X).

Fact 4.1.4. If G acts freely on X, then the pull back map KO(X/G) → KOG(X) is

a ring isomorphism.

Fact 4.1.5. For a real irreducible representation space V of G, EndG(V ) is either R, C

or H. Let ZIrR, ZIrC and ZIrH denote the free abelian groups generated by irreducible

representations of respective types and let KSp(X) be the the Grothendieck group of

quaternionic vector bundles over X. Then if G acts trivially on X, we have:

KOG(X) = (KO(X)⊗ ZIrR)⊕ (K(X)⊗ ZIrC)⊕ (KSp(X)⊗ ZIrH). (4.1)

Now supposeX has a distinguished base point p which is fixed byG. Then we define

K̃OG(X) (the reduced KO-group) to be the kernel of the map KOG(X) → KOG(p).

For based space X with trivial action, we also have:

K̃OG(X) = (K̃O(X)⊗ ZIrR)⊕ (K̃(X)⊗ ZIrC)⊕ (K̃Sp(X)⊗ ZIrH). (4.2)

The following fact is proved as Corollary 3.1.6 in [3]. ([3] only proved the complex

K-theory case but the proof works without modification in the real case.)

Fact 4.1.6. Suppose X is a finite, based G-CW complex and the G-action is free away

from the base point. Then any element in K̃OG(X) ∼= K̃O(X/G) is nilpotent.

Recall that the augmentation ideal a ⊂ RO(G) is the kernel of the forgetful map

RO(G) ∼= KOG(pt)→ KO(pt) ∼= Z. Any element in a defines an element in K̃OG(X).

By the above fact, we get:

Fact 4.1.7. Suppose X is a finite, based G-CW complex and the G-action is free away

from the base point. Then any element in the augmentation ideal acts on K̃O
∗
G(X)

nilpotently.

Fact 4.1.8. For pointed spaces X, Y , there is a natural product map K̃OG(X) ⊗

K̃OG(Y )→ K̃OG(X ∧ Y ).
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Fact 4.1.9. For pointed spaces X, Y , we have K̃OG(X ∨ Y ) ∼= K̃OG(X)⊕ K̃OG(Y )

Let V be a real representation space of G. Denote the reduced suspension V + ∧X

by ΣVX. The following equivariant version of real Bott periodicity theorem was proved

in [4].

Fact 4.1.10. Suppose the dimension n of V is divisible by 8 and V is a spin rep-

resentation (which means the group action G → SO(n) ⊂ End(V ) factors through

Spin(n)). Then we have the Bott isomorphism φV : K̃OG(X) ∼= K̃OG(Σ
VX), giv-

en by the multiplication of the Bott Class bV ∈ K̃OG(V
+) under the natural map

K̃OG(V
+)⊗K̃OG(X)→ K̃OG(Σ

VX). Bott isomorphism is funtorial under the point-

ed map X → X ′.

Fact 4.1.11. Bott classes behave well under the restriction map, which means that

i∗bV = bi∗(V ). Here i∗ is the restriction map (see Fact 4.1.3) and i∗(V ) is the the

restriction of the representation to the subgroup.

4.1.2 Pin(2)-equivariant KO-theory

In this section, we will review some important facts about Pin(2)-equivariant KO-

theory. The detailed discussions can be found in [60]. From now on to the end of this

chapter, we assume G ∼= Pin(2) unless otherwise noted. We have:

RO(G) ∼= Z[D,K,H]/(D2 − 1, DK −K,DH −H,H2 − 4(1 +D +K)).

Here D = [R̃] and H = [H̃]. As for K, the representation space is C ∼= R ⊕ iR where

z ∈ S1 ⊂ Pin(2) acts as multiplication by z2 (in C) and j acts as reflection along the

diagonal. We will also write R as the trivial one dimensional representation of G.

Notation. For l,m, n ∈ Z≥0 and a pointed G-space X, we denote (Rl⊕ R̃m⊕Hn)+∧X

by ΣmR+lD+nHX. We also write (Rl ⊕ R̃m ⊕Hn)+ as (lR+mD + nH)+.

Following the notation of [60], we denote K̃OG((kD + lH)+) by KOG(kD + lH)

(we choose ∞ as the base point). Then for k, l,m, n ∈ Z≥0 we have the multiplication
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map:

KOG(kD + lH)⊗KOG(mD + nH)→ KOG((k +m)D + (l + n)H). (4.3)

In order to define this map, we need to fix the identification between (kD⊕ lH)⊕

(mD⊕nH) and (k+m)D⊕(l+n)H by sending (x1⊕y1)⊕(x2⊕y2) to (x1, x2)⊕(y1, y2).

By considering theG-equivariant homotopy, it is not hard to see that the multiplication

map is commutative when K or l is even. (We will prove that the multiplication map

is actually commutative for any k, l, after we give the structure of KOG(kD + lH) in

Theorem 4.1.12.)

It is easy to prove (see [60]) that 8D, H + 4D and 2H are spin representations.

Therefore, we can choose Bott classes b8D ∈ KOG(8D), b2H ∈ KOG(2H) and bH+4D ∈

KOG(H+4D). Multiplication by these classes induces isomorphism KOG(kD+lH) ∼=

KOG((k + 8)D + lH) ∼= KOG((k + 4)D + (l + 1)H) ∼= KOG(kD + (l + 2)H). Since

the Bott classes are in the center, it doesn’t matter whether we multiply on the left

or on the right. Moreover, we can choose the Bott classes to be compatible with each

other, which means that b8Db2H = b2H+4D. We will fix the choice of these Bott classes

throughout this paper.

For k, l ∈ Z, the RO(G)-module KOG(kD+ lH) is defined to be KOG((k+8a)D+

(l + 2b)H) for any a, b ∈ Z which make k + 8a ≥ 0 and l + 2b ≥ 0. Since the Bott

Classes are chosen to be compatible, the groups defined by different choices of a, b are

canonically identified to each other. Again because the Bott classes are in the center,

the multiplication map (4.3) can now be extended to all k, l,m, n ∈ Z.

Consider the inclusion i : 7D+ → 8D+. There is a unique element γ(D) ∈

KOG(−D) which satisfies γ(D)b8D = i∗(b8D). The map KOG((k + 1)D + lH)
·γ(D)−→

KOG(kD+ lH) is just the map induced by the inclusion kD⊕ lH → (k+1)D⊕ lH for

k, l ≥ 0. Similarly, we can define γ(H) ∈ KOG(−H) and γ(H + 4D) = γ(H)γ(D)4.

Since left multiplication and right multiplication by γ(D) or γ(H) just correspond to

different inclusions of subspaces, which are homotopic to each other, we see that γ(D)

and γ(H) are both in the center.

62



By Bott periodicity, we only have to compute KOG(lD) for l = −2,−1, 0, · · · , 5.

This was done in [60] and we list the result here:

Theorem 4.1.12 (Schmidt [60]). As Z-modules we have the following isomorphisms:

• 1) KOG(pt) ∼= RO(Pin(2)) ∼= Z[D,A,B]/(D2− 1, DA−A,DB−B,B2− 4(A−

2B)), where A = K − (1 +D) and B = H − 2(1 +D). 1

• 2) KOG(−lD) ∼= Z⊕⊕n≥1Z/2 for l = 1, 2 generated by γ(D)|l| and γ(D)|l|An.

• 3) KOG(D) ∼= Z, generated by η(D).

• 4) KOG(lD) ∼= Z ⊕ ⊕m≥0Z/2 for l = 2, 3. The generators are η(D)2 and

γ(D)2Amc for l = 2; γ(D)λ(D) and γ(D)Amc for l = 3.

• 5) KOG(4D) is freely generated by λ(D), Dλ(D), Anλ(D) and Amc for m ≥ 0

and n ≥ 1.

• 6) KOG(5D) ∼= Z, generated by η(D)λ(D).

Corollary 4.1.13. The multiplication map (4.3) is commutative.

Proof. We just need to check γ(D), η(D), λ(D), c commute with each other. This is

easy since λ(D) and c are in KOG(kD) for even K, while γ(D) is in the center by our

discussion before.

For our purpose, we don’t need to know the explicit constructions of η(D), λ(D)

and c. We just need to know the following properties of them.

η(D) is the Hurewicz image of an element η̃(D) ∈ π0
G(D) (G-equivariant stable

cohomotopy group of D+). If we forget about the G-action, η̃(D) is just the Hopf map

in πst
1 (pt).

For λ(D) and c ∈ KOG(4D), by Bott periodicity and formula (4.2), we have

isomorphisms:

KOG(4D) ∼= KOG(8D + 4) ∼= KOG(4)

1There is a typo in [60], where the relation between A and B is B2 − 2(A− 2B).
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∼= (K̃O(S4)⊗ ZIrR)⊕ (K̃(S4)⊗ ZIrC)⊕ (K̃Sp(S4)⊗ ZIrH).

(Here 4 ∈ RO(G) denotes the trivial 4-dimensional real representation. )

We can choose suitable Bott classes such that under these isomorphisms, λ(D)

corresponds to ([VH ]−4R)⊗1 ∈ K̃O(S4)⊗ZIrR and c corresponds to ([VH]−H)⊗H ∈

K̃Sp(S4) ⊗ ZIrH. Here VH is the quaternion Hopf bundle over S4 ∼= HP 2. H and R

denote the trivial bundles and 1, H are elements in RO(G).

Let λ(H) and c(H) be the image of λ(D) and c under the Bott isomorphism

KOG(4D) ∼= KOG(8D + H) ∼= KOG(H). Then KOG(H) is generated by λ(H) and

c(H) as RO(G)-algebra.

Remark. Notice that the element [VH ] ⊗ H ∈ KSpS4 ⊗ ZIrH is represented by the

bundle VH ⊗H H. Hence it is a real bundle of dimension 4 (not 16).

For further discussions, we need to know the multiplicative structures of KOG(lD),

which are also given in [60]. We list some of them that are useful for us:

Theorem 4.1.14 (Schmidt [60]). The following relations hold:

• 1) Hλ(D) = 4c, Hc = (A+ 2 + 2D)λ(D), Dc = c.

• 2) (D + 1)γ(D) = 2Aγ(D) = Bγ(D) = 0.

• 3) (D + 1)η(D) = Aη(D) = Bη(D) = 0.

• 4) γ(D)η(D) = 1−D, γ(D)λ(D) = η(D)3.

• 5) γ(D)8b8D = 8(1−D), γ(H)2b2H = K − 2H +D + 5.

• 6) γ(H + 4D)bH+4D = 4(1−D).

• 7) η(D)λ(D) = γ(D)3b8D, η(D)c = 0.

• 8) γ(H)λ(H) = 4−H and γ(H)c(H) = H − 1−D −K.
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4.2 The Adams operations

4.2.1 Basic properties

In this subsection, we give a quick review about the basic properties of the Adams

operations. See [3] and [65] for more detailed discussions. Some of the calculations

can be found in [60] but we give them here for completeness. For simplicity and

concreteness, we only deal with ψk : KOG(X) → KOG(X) for an actual G-space X

and we don’t do localizations (like [60]).

Let KOG(X)[[t]] be the formal power series with coefficients in KOG(X). For a

bundle E over X, we define λt(E) ∈ KOG(X)[[t]] to be
∑
i=0

ti[λi(E)]. Here λi(E) is the

i-th exterior power of E. We let ψ0(E) = rank(E) and define ψt(E) =
∑
i=0

tiψi(E) ∈

KOG(X)[[t]] by

ψt(E) = ψ0(E)− t d
dt
(logλ−t(x)). (4.4)

It turns out that for any k ∈ Z≥0, ψk extends to a well defined operation on KOG(X),

which satisfies the following nice properties:

• (1) ψk is functorial with respect to continuous maps f : X → X ′.

• (2) ψk maps K̃OG(X) to K̃OG(X).

• (3) For all x, y ∈ KOG(X), ψk(x+y) = ψk(x)+ψk(y) and ψk(xy) = ψk(x)ψk(y).

• (4) If x is a line bundle, then ψk(x) = xk.

The effect of the Adams operations on the Bott classes can be described by the Bott

cannibalistic class. Given a spin G-bundle E over X with rank n ≡ 0 mod 8, the Bott

cannibalistic class θork (E) ∈ RO(G) is defined by the equation:

ψk(bE) = θork (E) · bE for k > 1. (4.5)

When K is odd, this can be explicitly written as (see [65]):2

θork (E) = kn/2
∏
u∈J

λ−u(E)(1− u)−n. (4.6)

2There is a typo in 3.10.4 [65].
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Here J is a set of K-th unit roots u ̸= 1 such that J contains exactly one element from

each pair {u, u−1}. Notice that we can define θork (E) for any real bundle E of even

dimension using formula (4.6). It can be shown that:

θork (E + F ) = θork (E)θ
or
k (F ).

Now let’s specialize to the case k = 3. By formula (4.4), it is easy to check that

ψ3(x) = x3−3λ2(x)x+3λ3(x). We want to calculate the action of ψ3 on RO(G). Since

the G-action on H preserves the orientation, we have λ3(H) = λ1(H) = H. Using

complexification, it is easy to show λ2(H) = K + D + 3. Also, we have λ2(K) = D.

Therefore, we get3:

ψ3(D) = D, ψ3(H) = HK −H, ψ3(K) = K3 − 3K,

ψ3(A) = A3 + 6A2 + 9A, ψ3(B) = AB +B + 4A.

Also, applying formula (4.6), we get:

θor3 (2) = 3, θor3 (2D) = 1 + 2D, θor3 (H) = A+B + 4D + 5.

4.2.2 Proof of Theorem 1.3.4

The central part of the proof is the following proposition:

Proposition 4.2.1. For any integers r, a, b ≥ 0 and l > 0, there does not exist G-

equivariant map

f : (rR+ aD + (4l + b)H)+ → (rR+ (a+ 8l + 2)D + bH)+

which induces homotopy equivalence on the G-fixed point set.

Proof. Suppose there exists such a map f . After suspension by copies of R, D and H,

we can assume a = 8l′ + 6, r = 8d and b = 2k. Let V1 = 8dR + 2kH + 8(l + l′ + 1)D

and V2 = 8dR + (4l + 2k)H + (8l′ + 8)D. Let bV1 and bV2 be the Bott classes of V1

3There is a typo in [60], where ψ3(H) = HK −K.
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and V2, respectively. Consider the element x = f ∗(bV1). By the Bott isomorphism and

(2) of Theorem 4.1.12, we can write x as bV2γ(D)2α for some α ∈ RO(G). Moreover,

we can assume α = p + Ah(A) for some integer p and some polynomial h(A) whose

coefficients are either 0 or 1.

Claim: p is even and h = 0.

This is essentially a special case of Proposition 5.21 in [60] for KO(4l, 8l + 2).4

By formula (4.5), we have: ψ3(bV1) = θor3 (V1) · bV1 , which implies:

ψ3(x) = f ∗(ψ3(bV1)) = θor3 (V1) · x. (4.7)

Notice that x = i∗(bV2 · α) where i : (8dR + (4l + 2k)H + (8l′ + 6)D)+ → V +
2 is the

standard inclusion. By formula (4.5), we have:

ψ3(x) = i∗(ψ3(bV2 · α)) = θor3 (V2)bV2ψ
3(α) · γ(D)2. (4.8)

Comparing equation (4.7) and equation (4.8), we get:

(θor3 (V2)ψ
3(α)− θor3 (V1)α)γ(D)2 = 0 (4.9)

We can calculate:

θor3 (V1) = 34d(1 + 2D)4l+4l′+4(A+B + 4D + 5)2k,

θor3 (V2) = 34d(1 + 2D)4l
′+4(A+B + 4D + 5)2k+4l.

Notice that 2Aγ(D) = Bγ(D) = (1 +D)γ(D) = 0, we can simplify equation (4.9)

as:

34d((A+ 1)2kα− (A+ 1)4l+2kψ3(α)) · γ(D)2 = 0. (4.10)

Since α = p+Ah(A), we have ψ3(α) = p+ (A3 + 6A2 + 9A)h(A3 + 6A2 + 9A). Using

the relation 2Aγ(D) = 0, we can further simplify equation (4.10) and get:

34d · g(A) · γ(D)2 = 0 (4.11)

4 There is an error in [60] for KO(c, d) when 4c − d ≡ −3 mod 8, but we will not consider this
case here.
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Here g(A) = (A+ 1)2k(p+ Ah(A))− (A+ 1)2k+4l(p+ (A3 + A)h(A3 + A)).

By (2) of Theorem 4.1.12, we see that if we expand g(A) as a polynomial in A,

the degree-0 coefficient should be 0 and all other coefficients should be even. By our

assumption, the coefficients of h are either 0 or 1. Checking the leading coefficient of

g(A), it is easy to see that h = 0 and g(A) = p((A+1)2k − (A+1)2k+4l). This implies

that p is even. The claim is proved.

Now consider the commutative diagram:

K̃OG(V
+
1 )

·γ(H)2kγ(D)8l+8l′+8

��

f∗
// K̃OG((8dR+ (8l′ + 6)D + (4l + 2k)H)+)

·γ(H)4l+2kγ(D)8l
′+6

��

K̃OG((8dR)+)
∼= // K̃OG((8dR)+).

(4.12)

The vertical maps are given by the inclusions of subspaces. The bottom map is an

isomorphism because f induces a homotopy equivalence on the G-fixed point set. Any

automorphism on K̃OG((8dR)+) is given by the multiplication of a unit ũ ∈ RO(G).

Therefore, we obtain :

ũ ·bV1 ·γ(H)2kγ(D)8l+8l′+8 = x ·γ(H)4l+2kγ(D)8l
′+6 = bV2 ·γ(D)8l

′+8γ(H)4l+2k ·p (4.13)

Applying the relations in Theorem 4.1.14, we simplify this as :

(K−2H+D+5)2l+k(8(1−D))l
′+1 ·p = (K−2H+D+5)k(8(1−D))l+l′+1 · ũ. (4.14)

Now consider the ring homomorphism φ0 : RO(G) → Z defined by φ0(D) =

−1, φ0(A) = φ0(B) = 0. Notice that φ0(ũ) = ±1 since ũ is a unit. We get p = ±1,

which is a contradiction. This finishes the proof of Proposition 4.2.1.

Now suppose W is a closed, oriented, smooth spin 4-manifold with intersection

form p(−E8)⊕ q ( 0 1
1 0 ) for p = 8l > 0 and q < p+ 3. After doing surgery on loops and

connect sum copies of S2 × S2, we can assume b1(W ) = 0 and q = 8l + 2. As shown

in [21], by doing finite dimensional approximation of the Seiberg-Witten equations on

W , we get an G-equivariant map:

f : (aD + (4l + b)H)+ → ((a+ 8l + 2)D + bH)+ for some a, b > 0.
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Moreover, f induces a homotopy equivalence on the G-fixed point set. This is a

contradiction to Proposition 4.2.1. Therefore, Theorem 1.3.4 is proved.

4.3 Seiberg-Witten Floer spectrum for spin 3-manifolds with

b1 = 0

In [40], [42] and [43], Manolescu constructed a Pin(2)-equivariant spectrum class

S(Y, s). Let us briefly review the constructions and collect some useful properties

here. See [40], [42] and [43] for details.

As in Chapter 2, we let Coul(Y ) be the (global) Coulomb slice and V µ
λ be its finite

dimensional subspace spanned by the eigenvectors of l = (∗d, /DA0
). We choose the

base connection A0 to be the spin connection take the perturbation f to be zero. Since

s is torsion, the harmonic form ν0 is also zero.

By our assumption, we have Gh,oY = H1(Y ;Z) = 0. By Theorem 2.2.2, there exists

R0 such that all finite type Seiberg-Witten trajectories are contained in the interior of

the ball

B(R0) = {x ∈ Coul(Y )|∥x∥L2
k
≤ R0}.

As a consequence of consequence of Proposition 2.2.4, we have the following corollary:

Corollary 4.3.1 (Manolescu, [40]). There exists µ0 ≫ 0 and λ0 ≪ 0 such that for

any µ > µ0 and λ < λ0. The set B(2R0) ∩ V µ
λ is an isolating neighborhood under the

approximated Seiberg-Witten flow. We denote the corresponding Conley index by Iµλ .

There is an G-action on Coul(Y ) preserving the subspace V µ
λ and the Seiberg-

Witten flow (see [43] for details). As a result, the Conley index Iµλ is a G-space. We

consider the object

SWF(Y, s;Pin(2)) = Σ−V
0
λ (Iµλ , 0,

n(Y,s,A0,g)
2

) ∈ obCPin(2),

where n(Y, s, A0, g) ∈ Q is the correction term defined in [40] (see Section 5.2 for exact

definition).

69



Theorem 4.3.2 (Manolescu, [42]). The object SWF(Y, s;Pin(2)) is a topological in-

variant of the pair (Y, s). More precisely, under canonical isomorphisms in the category

CPin(2), the object SWF(Y, s;Pin(2)) is independent of the metric g, the numbers λ, µ

and other auxiliary data involved in the construction.

In order to define the numerical invariant from the Seiberg-Witten-Floer KO theory

in later sections, we make a digression into the following definitions.

Definition 4.3.3. Let s ∈ Z≥0. A space of type SWF (at level s) is a pointed, finite

G-CW complex X with the following properties:

• (a) The S1-fixed point set XS1
is G-homotopy equivalent to the sphere (sR̃)+.

We define lev(X) to be s.

• (b) The action of G is free on the complement X −XS1
.

An object (X,m, n) in the category CPin(2) is of type SWF if X is of type SWF.

Definition 4.3.4. A spectrum class is an equivalent class objects of type SWF in

CPin(2) under equivalence relation of the isomorphisms in CPin(2). We denote by B the

set of spectrum classes.

Definition 4.3.5. For a spectrum class S = [(X, a, b)] ∈ B, we let

lev(S) = lev(X)− a.

Remark. By considering the S1-fixed point set, we see that two spaces of type SWF at

different levels are not G-homotopic to each other. Using this fact, it is easy to prove

that lev(S) is a well defined quality.

For r ∈ Z and s ∈ Q, we can define the formal desuspension ΣrD+sH : B → B

by sending [(X, a, b)] to [(ΣrDX, a − 2r, b − s)]. It’s easy to check that this is a well

defined operation on the set B.

Definition 4.3.6. Let X,X ′ be two spaces of type SWF at level K and k′ respectively.

A pointed G-map f : X → X ′ is called admissible if f preserves the base point and

satisfies one of the following two conditions:
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• (1) k < k′ and the induced map on the G-fixed point set fG : XG → X ′G is a

homotopy equivalence.

• (2) k = k′ and the induced map on the S1-fixed point set fS1
: XS1 → X ′S

1
is a

homotopy equivalence.

Definition 4.3.7. Let S, S ′ be two spectrum classes. We say S dominates S ′ if there

exist representatives (X,m, n) and (X ′,m, n), respectively for S, S ′, such that the

following conditions are satisfied:

• X,X ′ are pointed G-spaces of type SWF;

• There exists an admissible map f : X ′ → X ′.

Now we return to the spectrum invariant SWF(Y, s;Pin(2)). It is proved in [42]

that this object is of type SWF. As a result of Theorem 4.3.2, the equivalent class

[SWF(Y, s;Pin(2))] ∈ B is a well defined invariant for the pair (Y, s). We denote it

by S(Y, s). We have the following theorem, which will be important for our further

constructions.

Theorem 4.3.8 (Manolescu [40], [42]). Suppose (Y, s) and (Y ′, s′) are two spin 3-

manifolds with b1 = 0 and (W, ŝ) is a spin cobordism from (Y, s) to (Y ′, s′). Then

for any n ∈ Z, the spectrum class Σ
−σ(W )

16
HΣnDS(Y, s) dominates the spectrum class

Σb+2 (W )DΣnDS(Y ′, s′).

4.4 Numerical Invariants

Let Y be a rational homology sphere and s be a spin structure on Y . In the previous

section, we defined an invariant S(Y, s) ∈ B. In this section, we will extract a set of

numerical invariants κoi(Y, s) from S(Y, s), for i ∈ Z/8.

Definition 4.4.1. For l = −2,−1, 0, · · · , 5, we define the group homomorphisms

φl : KO(lD)→ Z as following (see Theorem 4.1.12):
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• 1) For l = 0, φl(D) = −1 and φl(A) = φl(B) = 0, then extend φl by the

multiplicative structure on RO(G).

• 2) For l = −1,−2, φl(γ(D)|l|) = 1 and φl(γ(D)|l|An) = 0 for n ≥ 1.

• 3) For l = 1, φl(η(D)) = 1.

• 4) For l = 2, φl(η(D)2) = 1 and φl(γ(D)2Amc) = 0.

• 5) For l = 3, φl(γ(D)λ(D)) = 1 and φl(γ(D)Amc) = 0.

• 6) For l = 4, φl(λ(D)) = 1, φl(Dλ(D)) = −1, and φl(A
nλ(D)) = φl(A

mc) = 0.

• 7) For l = 5, φl(η(D)λ(D)) = 1.

For the other l ∈ Z, we use the Bott isomorphism to identify KO(lD) with KO((l −

8k)D) for −2 ≤ l − 8k ≤ 5 and apply the above definition.

Lemma 4.4.2. For any a ∈ KOG(pt) and b ∈ KOG(kD), we have φ0(a)φk(b) =

φk(a · b).

Proof. This is a straightforward calculation using Theorem 4.1.12 and Theorem 4.1.14.

Remark. φ0 is just taking the trace of j ∈ Pin(2). While the other φl are defined such

that the torsion elements are killed and Lemma 4.4.2 holds.

We consider the map τ : D+ → D+ which maps x to −x. By suspension with

copies of D, we get an admissible involution τ : (kD)+ → (kD)+ for k > 0.

The following lemma is a straightforward corollary of the equivariant Hopf theorem.

Lemma 4.4.3. When 0 ≤ k < l, any admissible map f : (kD)+ → (lD)+ is G-

homotopic to the standard inclusion. For 0 ≤ k = l, any admissible map f : (kD)+ →

(kD)+ is either homotopic to τ or to the identity map, depending on deg(f).

τ induces the involution τ ∗ : KOG(kD) → KOG(kD). For k, l > 0 and any

a ∈ KOG(kD), b ∈ KOG(lD), the following equality is easy to check by Lemma 4.4.3:

τ ∗(a) · b = a · τ ∗(b) = τ ∗(a · b) and τ ∗(a) · τ ∗(b) = a · b. (4.15)
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Using this fact, we can define τ ∗ : KOG(kD) → KOG(kD) for any k ∈ Z by

identifyingKOG(kD) withKOG(k
′D) for any 0 < k′ ≡ k mod 8 using Bott periodicity.

Moreover, formula (4.15) now holds for all k, l ∈ Z.

Now consider the element u ∈ RO(G) defined by τ ∗(b8D) = u · b8D. Then for l ∈ Z

and any element α ∈ KOG(lD), we have τ ∗(α) · b8D = α · τ ∗(b8D) = (uα) · b8D, which

implies τ ∗(α) = uα.

Lemma 4.4.4. We have the following properties about τ ∗ and u:

• (1) τ ∗ acts as identity on KOG(lD) for l ̸= 0, 4 mod 8.

• (2) u is a unit with φ0(u) = 1.

• (3) φl ◦ τ ∗ = φl for any l ∈ Z.

Proof. (1) We have γ(D)b8D = i∗(b8D) where i∗ is the inclusion (7D)+ → (8D)+.

Therefore, we get τ ∗(γ(D)b8D) = (τ ◦ i)∗(b8D). By Lemma 4.4.3, τ ◦ i is G-homotopic

to i, thus τ ∗(γ(D)b8D) = i∗(b8D) = γ(D)b8D, which implies that τ ∗(γ(D)) = γ(D).

Since τ ∗ induces an involution on KOG(D) ∼= Z, we have τ ∗(η(D)) = ±η(D). But

since τ ∗(η(D)) · γ(D) = η(D) · τ ∗(γ(D)) = η(D)γ(D) = 1−D ̸= −η(D)γ(D), we get

τ ∗(η(D)) = η(D).

By formula (4.15), τ ∗(a) = a implies τ ∗(ab) = ab for any a, b. Therefore we see

that τ ∗ acts as the identity map on KOG(kD) for k ̸= 0, 4 mod 8.

(2) u2 = 1 because τ 2 = id. Since u · (1 − D) = τ ∗(1 − D) = τ ∗(γ(D) · η(D)) =

γ(D) · η(D) = 1 −D, we see that (u − 1)(1 −D) = 0. We get φ0(u) = 1 by Lemma

4.4.2.

(3) is straightforward from (2) and Lemma 4.4.2.

Now suppose X is a space of type SWF at level l. A choice of G-homotopy e-

quivalence XS1 ∼= (lD)+ gives us an inclusion map i : (lD)+ → X, which we call a

trivialization. A trivialization induces the map i∗ : K̃OG(X) → KOG(lD). Consider

the map φl ◦ i∗ : K̃OG(X)→ Z.
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Proposition 4.4.5. The submodule Im(i∗) and the map φl ◦ i∗ are both independent of

the choice of the trivialization. Moreover, we have Im(φl◦i∗) = (2k) for some k ∈ Z≥0.

Proof. By Lemma 4.4.3, there are two possible trivializations i and i ◦ τ . We have

Im(i ◦ τ)∗ = τ ∗(Imi∗) = u · Im(i∗). Since u is a unit, the multiplication by u does not

change the submodule Im(i∗). Moreover, we have φl ◦ (i ◦ τ)∗ = φl ◦ τ ∗ ◦ i∗ = φl ◦ i∗

by (3) of Lemma 4.4.4.

For the second statement, we consider the exact sequence:

· → K̃OG(X)
i∗−→ KOG(lD)

δ−→ K̃O
1

G(X/X
S1

)→ ·

Since the G action is free away from the basepoint and (1 − D) ∈ RO(G) is in the

augmentation ideal, (1−D) acts on K̃O
1

G(X/X
S1
) nilpotently by Fact 4.1.7. Therefore,

we can find m ≫ 0 such that (1 − D)mKOG(lD) ⊂ ker(δ) = Im(i∗). It follows that

2m ∈ Im(φl ◦ i∗) and Im(φl ◦ i∗) = (2k) for some 0 ≤ k ≤ m.

Proposition 4.4.5 justify the following definition:

Definition 4.4.6. For a G-space X of type SWF at level l, we define J (X) to be

the image of i∗ for any trivialization i and let κo(X) be the integer K such that

φl(J (X)) = (2k).

Let’s study the property of J (X) and κo(X). First recall that we defined the

constants β0
k = 0 and βj

k =
j−1∑
i=0

αk−i for j ≥ 1, where αi = 1 for i ≡ 1, 2, 3, 5 mod 8 and

αi = 0 for i ≡ 0, 4, 6, 7 mod 8. It’s easy to see that βk
j = βk

j′ for j ≡ j′(mod8). The

integers βk
j are important because of the following proposition:

Proposition 4.4.7. For integers 0 ≤ j ≤ k and an admissible map i : ((k− j)D)+ →

(kD)+, we have the following commutative diagram, where the map mj
k : Z→ Z is the

multiplication of 2β
j
k .

KOG(kD)

φk

��

i∗ // KOG((k − j)D)

φk−j

��
Z

mj
k // Z

(4.16)
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Proof. The case j = 0 follows from Lemma 4.4.4. When j > 0, by Lemma 4.4.3, the

map i is G-homotopic to the standard inclusion. Because of the associativity of i∗

and mk
l , we only need to prove the case j = 1. In this case, the map i∗ is just the

multiplication by γ(D) and m1
k is the multiplication by 2αk . Since both φk and i∗ are

compatible with Bott isomorphism, we only need to check the case k = 1, 2, · · · , 8.

This can be proved by straightforward calculations using Definition 4.4.1, Theorem

4.1.14 and Theorem 4.1.12.

The following proposition studies the behavior of J (X) and κo(X) under the Bott

isomorphism:

Proposition 4.4.8. Let X be a space of type SWF at level K. We have the following:

• (1) J (X) · b8D = J (Σ8DX) and κo(Σ8DX) = κo(X).

• (2) J (X) · (K − 2H +D + 5) = J (Σ2HX) and κo(Σ2HX) = κo(X) + 2.

• (3) κo(ΣH+4DX) = κo(X) + 3− β4
k+4.

Proof. (1) Since (Σ8DX)S
1
= Σ8D(XS1

), statement (1) follows from the functoriality

of the Bott isomorphism.

(2) We have the commutative diagram induced by the inclusions of subspaces:

K̃OG(Σ
2HX)

��

// K̃OG(X)

��

K̃OG((Σ
2HX)S

1
)
∼= // K̃OG(X

S1
).

(4.17)

Since (Σ2HX)S
1
= Σ2H(XS1

), the map in the bottom row is the identity. If we iden-

tify K̃OG(Σ
2HX) with K̃OG(X) using the Bott isomorphism, then the top horizontal

map is the multiplication by γ(H)2b2H = K − 2H +D+ 5 (by Theorem 4.1.14). This

implies J (Σ2HX) = (K − 2H +D + 5)J (X). We also have κo(Σ2HX) = κo(X) + 2

since φ0(K − 2H +D + 5) = 4.
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(3) Again, by inclusions of subspaces, we have:

K̃OG(Σ
H+4DX)

��

// K̃OG(X)

��

KOG((Σ
H+4DX)S

1
)
·γ(D)4// KOG(X

S1
).

Since (ΣH+4DX)S
1 ∼= Σ4D(XS1

), the bottom horizontal map is the multiplication

by γ(D)4. If we identify K̃OG(Σ
H+4DX) with K̃OG(X) using the Bott isomorphism,

the top horizontal map is the multiplication by γ(H + 4D)bH+4D = 4(1 − D) (by

Theorem 4.1.14). Therefore, under appropriate trivializations, we see that the maps

i∗1 : K̃OG(X) ∼= K̃OG(Σ
H+4DX) → KOG((k + 4)D) and i∗2 : K̃OG(X) → KOG(kD)

are related by γ(D)4 · i∗1(x) = 4(1−D) · i∗2(x). Since φ0(4(1−D)) = 8, statement (3)

follows from Proposition 4.4.7 (for j = 4) and Lemma 4.4.2.

We have the following proposition, which is the analogue of Lemma 3.8 in [42].

Proposition 4.4.9. Let X1 and X2 be spaces of type SWF. Suppose there is a based

G-equivariant homotopy equivalence f from ΣrRX1 to ΣrRX2, for some r ≥ 0. Then

we have J (X1) = J (X2) and κo(X1) = κo(X2).

Proof. The proof in [42] works with some modifications. Suppose X1, X2 are both at

level K. By (1) of Proposition 4.4.8, we can replace Xi by Σ8DXi and assume k > 1.

Also, we can suspend some more copies of R and assume that 8|r. Choose trivilizations

i1, i2 of X1 and X2, respectively. They give homotopy equivalences (rR + kD)+ ∼=

(ΣrRX1)
S1

and (rR + kD)+ ∼= (ΣrRX2)
S1
. Composing them with fS1

: (ΣrRX1)
S1 →

(ΣrRX2)
S1
, we get the equivariant homotopy equivalence h : (rR+kD)+ → (rR+kD)+.

Since k > 1, by equivariant Hopf theorem, h is based homotopic to τ1∧τ2. The map τ1 :

(rR)+ → (rR)+ is either identity or a map with degree −1. Therefore, τ ∗1 (brR) = a ·brR

where brR is the Bott class and a ∈ RO(G) is a unit. Also, τ2 : (kD)+ → (kD)+ is either

identity or the map τ we defined before. Therefore, τ ∗2 (x) is either x or ux (see Lemma

4.4.4). We have shown that the map h∗ : K̃OG((rR+ kD)+)→ K̃OG((rR+ kD)+) is

just multiplication by some unit in RO(G), which does not change any submodule.

76



Now consider the following commutative diagram:

K̃OG(X2)

i∗2
��

∼= // K̃OG(Σ
rRX2)

(ΣrRi2)∗

��

f∗
// K̃OG(Σ

rRX1)

(ΣrRi1)∗

��

∼= // K̃OG(X1)

i∗1
��

KOG(kD)
∼= // K̃OG((rR+ kD)+) h∗

// K̃OG((rR+ kD)+)
∼= // KOG(kD).

In each row, the first map is a Bott isomorphism and the third map is the inverse to a

Bott isomorphism. We see that brR · Im(i∗2) = h∗(brR · Im(i∗2)) = brR · Im(i∗1). Therefore,

we have Im(i∗1) = Im(i∗2), which implies κo(X1) = κo(X2).

Definition 4.4.10. For a spectrum class S = [(X, a, b)] ∈ B, we let

κo(S) = κo(Σ(8M−a)DΣ(2N−b′)HX)− 2N − s (4.18)

for any M,N, b′ ∈ Z and s ∈ [0, 1) making 8M − a ≥ 0, 2N − b′ ≥ 0 and b = b′ + s.

Proposition 4.4.11. κo(S) is well defined.

Proof. By (1) and (2) of Proposition 4.4.8, it’s easy to prove that the righthand side of

formula (4.4.10) is independent of the choice of M,N . By choosing M,N ≫ 0, we see

that changing the representative of S from (X, a, b) to (Σ2DX, a+2, b) or (ΣHX, a, b+1)

does not change the value of κo(S). By Proposition 4.4.9, we proved that κo(S) does

not change when we change the representative of the spectrum class.

By definition of the suspension of a spectrum class and Proposition 4.4.8, it is easy

to prove:

Proposition 4.4.12. For any spectrum class S ∈ B at level K, we have:

• κo(Σ8DS) = κo(S).

• κo(Σ2HS) = κo(S) + 2.

• κo(ΣH+4DS) = κo(S) + 3− β4
k+4.

With these discussions, we can now define the invariants for three manifolds.

Definition 4.4.13. For an oriented rational homology sphere Y and a spin structure

s on Y , we define κoi(Y, s) = κo(ΣiDS(Y, s)) for any i ∈ Z≥0. Then κoi(Y, s) =

κoi+8(Y, s), which allow us to define κoi(Y, s) for i ∈ Z/8.
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4.5 Proof of Theorem 1.3.6

In this section, we will prove Theorem 1.3.6.

Let X0, X1 be be two spaces of type SWF at level k0 and k1, respectively. Suppose

there is an admissible map f : X0 → X1 (which implies k0 ≤ k1). By Lemma 4.4.7,

we can choose suitable trivializations such that the following diagram commutes.

K̃OG(X1)

i∗1
��

f∗
// K̃OG(X0)

i∗0
��

KOG(k1D)
(fS1

)∗//

φk1

��

KOG(k0D)

φk0

��
Z

m
k1−k0
k1 // Z

Therefore, we getmk1−k0
k1

(Im(φk1◦i∗1)) ⊂ Im(φk0◦i∗0). This implies that (2κo(X1)+β
k1−k0
k1 ) ⊂

(2κo(X0)) ⊂ Z. Therefore, we get the following proposition:

Proposition 4.5.1. Let X0, X1 be two spaces of type SWF at level k0 and k1, respec-

tively. Suppose there is an admissible map f : X0 → X1. Then we have:

κo(X0) ≤ κo(X1) + βk1−k0
k1

. (4.19)

Next we generalize the above inequality to the spectrum classes:

Definition 4.5.2. Let S0, S1 ∈ B be two spectrum classes. We call S0 dominates S1

if we can find representatives Si = [(Xi, a, b)] for i = 1, 2 and an admissible map f

from X0 to X1.

Proposition 4.5.3. Let S0, S1 ∈ B be two spectrum classes at level k0 and k1 respec-

tively. Suppose S0 dominates S1, then we have:

κo(S0) ≤ κo(S1) + βk1−k0
k1

. (4.20)

Proof. Since an admissible map f : X0 → X1 gives an admissible map ΣaH+bDf :

ΣaH+bDX0 → ΣaH+bDX1 for any a, b ∈ Z≥0. This proposition is a straightforward

corollary of Proposition 4.5.1 and Definition 4.4.10.
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By considering the natural inclusion X → ΣDX, it is easy to see that S always

dominates ΣDS. Therefore ,we get the following corollary, which will be useful in

Section 8.

Corollary 4.5.4. For any spectrum class S ∈ B at level K. We have:

κo(S) ≤ κo(ΣDS) + αk+1.

Now let Y0, Y1 be two rational homology 3-spheres and si be spin structures on

them respectively. Suppose (W, s) is a smooth oriented spin cobordism from (Y0, s0) to

(Y1, s1). By Theorem 4.3.8, we see that Σ−
σ(W )
16

H(ΣkDS(Y0, s0)) dominates Σ(b+2 (W )+k)DS(Y1, s1)

for any k ∈ Z. Applying Proposition 4.5.3, we get:

Theorem 4.5.5. Suppose (W, s) is a smooth, oriented spin cobordism from (Y0, s0) to

(Y1, s1). Then for any k ∈ Z, we have the inequality:

κok+b+2 (W )(Y1, s1) + β
b+2 (W )

k+b+2 (W )
≥ κo(Σ−

σ(W )
16

H(ΣkDS(Y0, s0))). (4.21)

In general, κo(Σ−
σ(W )
16

H(ΣkDS(Y0, s0))) can be expressed by κok(Y0, s0) or κok+4(Y0, s0),

but the explicit formula is messy. For simplicity, we now focus on the integral homology

sphere case.

Remark. Suppose Y is an oriented integral homology 3-sphere. There is a unique

spin structure s on Y and we simply write S(Y, s) and κoi(Y, s) as S(Y ) and κoi(Y ),

respectively.

Suppose both Yi are integral homology spheres, then the intersection form of W is

a unimodular, even form. Let’s assume that the intersection from can be decomposed

as:

p(−E8)⊕ q ( 0 1
1 0 ) for p, q ≥ 0.

In this case, we have σ(W )
16

= −p
2
and b+2 (W ) = q. Recall that the spectrum class

invariant S(Y0) is defined as

[Σ−V
0
λ (Iµλ , 0,

n(Y,s,A0,g)
2

)] = [(Σ(dimR̃ V 0
λ )R̃Iµλ ,−2 dimR̃ V

0
λ ,

n(Y,s,A0,g)
2

+ dimH̃ V
0
λ )].
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The third component of this triple may be an integer or a half integer, depending on

the Rokhlin invariant µ(Y0).

Proposition 4.5.6. Let Y0 be an integral homology three sphere and p ∈ Z≥0. Then

we have the following relations.

(1) Suppose µ(Y0) = 0 ∈ Z2.

• For p = 4l, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok(Y0) + 2l.

• For p = 4l + 1, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok+4(Y0) +

5
2
+ 2l − β4

k .

• For p = 4l + 2, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok+4(Y0) + 3 + 2l − β4

k .

• For p = 4l + 3, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok(Y0) + 2l + 3

2
.

(2) Suppose µ(Y0) = 1 ∈ Z2.

• For p = 4l, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok(Y0) + 2l.

• For p = 4l + 1, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok(Y0) + 2l + 1

2
.

• For p = 4l + 2, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok+4(Y0) + 3 + 2l − β4

k .

• For p = 4l + 3, we have κo(Σ
p
2
H(ΣkDS(Y0))) = κok+4(Y0) +

7
2
+ 2l − β4

k .

Proof. We denote (Σ(dimR̃ V 0
λ )R̃Iµλ ,−2 dimR̃ V

0
λ ,

n(Y,s,A0,g)
2

+ dimH̃ V
0
λ ) by (X, a, b).

For µ(Y0) = 0 and p = 4l, we have b ∈ Z. Take M,N ≫ 0 and let N ′ = N + l.

Then by Definition 4.4.10, we have:

κo(Σ
p
2
H(ΣkDS(Y0)) = κo(Σ(8M+k−a)DΣ(2N+2l−b)HX)− 2N

= κo(Σ(8M+k−a)DΣ(2N ′−b)HX)− 2N ′ + 2l = κok(Y ) + 2l.
(4.22)

For p = 4l + 1, take M,N ≫ 0 and let N ′ = N + l. Then we have:

κo(Σ
p
2
H(ΣkDS(Y0)) = κo(Σ(8M+k−a)DΣ(2N+2l+1−b)HX)− 2N − 1

2

= κo(ΣH(ΣkD(X, a, b))) + 2l − 1

2
= κok+4(Y0) +

5

2
+ 2l − β4

k .
(4.23)

The other cases can be proved similarly.
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Now combining the above proposition and Theorem 4.5.5, we proved Theorem

1.3.6.

4.6 KOG-Split condition

Now consider the space X = (8kD + (2l + 1)H)+ for k, l ∈ Z≥0. We have the map

induced by the inclusion:

i∗ : K̃OG(X)→ KOG(8kD).

By Theorem 4.1.12, we see thatKOG(8kD+(2l+1)H) is generated by (b2H)
l(b8D)

kλ(H)

and (b2H)
l(b8D)

kc(H) as RO(G)-module and the map i∗ is multiplication by γ(H)2l+1.

Using Proposition 4.1.14, we get:

i∗((b2H)
l(b8D)

kλ(H)) = (2 + A− 2D − 2B)l(2− 2D −B) · (b8D)k,

i∗((b2H)
l(b8D)

kc(H)) = (A− 2B)l(B − A) · (b8D)k.
(4.24)

The above discussion motivates the following definition:

Definition 4.6.1. Let X be a space of type SWF at level 8k. X is called even KOG-

split if J (X) is the submodule generated by (2 +A− 2D− 2B)l(2− 2D−B) · (b8D)k

and (A− 2B)l(B − A) · (b8D)k for some l ∈ Z≥0.

Next, we consider the space X = ((8k + 4)D + 2lH)+. The map:

i∗ : K̃OG(X)→ KOG((8k + 4)D)

is just multiplication of γ(H)2l. We know K̃OG(X) = KOG((8k+4)D) · (b2H)l by the

Bott isomorphism. Since γ(H)2l(b2H)
l = (K − 2H + D + 5)l = (A + 2D + 6 − 2H)l

(see Theorem 4.1.14), we have Im(i∗) = (A + 2D + 6 − 2H)l · KOG((8k + 4)D) ⊂

KOG((8k + 4)D). This motivates the following definition:

Definition 4.6.2. Let X be a space of type SWF at level 8k + 4. X is called odd

KOG-split if J (X) = (A+ 2D + 6− 2H)l ·KOG((8k + 4)D) for some l ∈ Z≥0.
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KOG-split spaces are special because of the following proposition (compare Propo-

sition 4.5.1).

Proposition 4.6.3. Let X0, X1 be two spaces of type SWF at level k0, k1 respectively

and f be an admissible map from X0 to X1. Suppose k0 < k1 and X0 is odd or even

KOG-split (which implies that k0 ≡ 0 or 4 mod 8). Then we have:

κo(X0) < κo(X1) + βk1−k0
k1

. (4.25)

Before proving this proposition, we need to make a digression into the general

properties of KOG(4D) and RO(G).

Lemma 4.6.4. The following properties holds:

• (1) Any element in RO(G) can be uniquely written as bD + f(A) + Bg(A) for

some polynomials f, g and integer b.

• (2) Any element in RO(G) can be uniquely written as bD + f(A) + Hg(A) for

some polynomials f, g and integer b.

• (3) Any element in KOG(4D) can be uniquely written as bDλ(D)+ f(A)λ(D)+

g(A)c for some polynomials f, g and integer b.

• (4) The map RO(G)→ KOG(4D) defined by multiplication of λ(D) is injective.

• (5) An element ω = bDλ(D) + f(A)λ(D) + g(A)c belongs to RO(G)λ(D) if and

only if 4|g(A). Moreover, if (A + 2D + 6 − 2H)lω ∈ RO(G) · λ(D) for some l,

then ω ∈ RO(G) · λ(D).

• (6) Suppose (A− 2B)lh(A,B) = 0 ∈ RO(G) for some two-variable polynomial h

in A,B. Then we have h(A,B) = 0 in RO(G).

• (7) Suppose f(D) = h(A,B) for some 2-variable polynomial h without degree-0

term and some polynomial f . Then h(A,B) = 0.

Proof. (1),(2),(3),(4) can be proved by straightforward calculation using Theorem

4.1.12. The first statement of (5) is the corollary of (2),(3) and the relation Hλ(D) =
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4c. Let’s prove the second statement of (5). We have Hc = (1 + D + K)λ(D)

and (2D + 6)c = 8c = 2Hλ(D). Therefore, (A + 2D + 6 − 2H)lω ∈ RO(G)λ(D)

implies Alω ∈ RO(G)λ(D). It follows that 4|Alg(A), which implies 4|g(A) and

ω ∈ RO(G)λ(D).

For (6), we can assume that h(A,B) = f(A) + Bg(A) for some polynomials f, g.

Consider the map ψ : RO(G) → Q[x] defined by ψ(D) = 1, ψ(B) = x and ψ(A) =

x2

4
+ 2x. Then 0 = ψ((A − 2B)l(f(A) + Bg(A))) = (x

2

4
)l(f(x

2

4
+ 2x) + xg(x

2

4
+ 2x)),

which implies 0 = f(x
2

4
+2x)+xg(x

2

4
+2x). Considering the leading term in x, we see

that f(x) = g(x) = 0.

For (7), we can simplify h(A,B) as Ag1(A) + Bg2(A) for some polynomials g1, g2

by the relation B2 − 4(A− 2B) = 0. Then the conclusion follows from (1).

Lemma 4.6.5. Suppose a(1−D)λ(D) ∈ (A+2D+6−2H)lKOG(4D) for some a ∈ Z

and l ∈ Z≥0. Then we have 22l+1|φ4(a(1−D)λ(D)).

Proof. Since φ4(a(1−D)λ(D)) = 2a, the conclusion is trivial when l = 0. Now suppose

l > 0. Let a(1 −D)λ(D) = (A + 2D + 6 − 2H)l · ω for some ω ∈ KOG(4D). By (5)

of Lemma 4.6.4, we see that ω ∈ RO(G)λ(D). Write ω as (bD+ f(A) +Bg(A))λ(D).

By (4) of Lemma 4.6.4, we get a(1−D) = (A− 2B − 2D + 2)l(bD + f(A) +Bg(A)).

Using the relation (1 −D)A = (1 −D)B = 0, we can simplify this equality as a(1 −

D) − (f(0) + bD)(2 − 2D)l = (A − 2B)l(b + f(A) + Bg(A)). By (7) of Lemma

4.6.4, we get that (A − 2B)l(b + f(A) + Bg(A)) = 0 ∈ RO(G). By (6) of Lemma

4.6.4, we have b + f(A) + Bg(A) = 0. This implies that ω = b(D − 1)λ(D) and

φ4(a(1−D)λ(D)) = −22l+1b for some b ∈ Z.

Lemma 4.6.6. Suppose a(1 − D) is in the ideal of RO(G) generated by (2 + A −

2D − 2B)l(2 − 2D − B) and (A − 2B)l(B − A) for some l ∈ Z≥0. Then we have

22l+3|φ0(a(1−D)).

Proof. We assume l > 0 first. By (1) of Lemma 4.6.4 and the relation A(1 − D) =
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B(1−D) = 0, we have can express a(1−D) as:

(2− 2D −B)(2− 2D + A− 2B)l(b(1−D) + f1(A) + Bg1(A))

+ (A− 2B)l(B − A)(f2(A) +Bg2(A))
(4.26)

for some integer b and polynomials f1, f2, g1, g2.

As in the proof of Lemma 4.6.5, we can simplify this formula and use (7) of Lemma

4.6.4 to get:

−B(A− 2B)l(f1(A) +Bg1(A)) + (A− 2B)l(B −A)(f2(A) +Bg2(A)) = 0 ∈ RO(G).

(4.27)

We have −B(f1(A)+Bg1(A))+ (B−A)(f2(A)+Bg2(A)) = 0 by (6) of Lemma 4.6.4.

Simplifying this, we obtain:

−4Ag1(A)−Af2(A)+4Ag2(A)+B(−f1(A)+f2(A)+8g1(A)−Ag2(A)−8g2(A)) = 0.

(4.28)

This implies −4Ag1(A) − Af2(A) + 4Ag2(A) = 0 and −f1(A) + 8g1(A) + f2(A) −

Ag2(A) − 8g2(A) = 0. Considering the degree-1 term of the first identity, we get

4|f2(0). Also, we have 8| − f1(0) + f2(0) by checking the degree-0 term of the second

identity. Therefore, we have 4|f1(0), which implies φ0(a(1 − D)) = 22l+2(2b + f1(0))

can be divided by 22l+3.

The case l = 0 is similar. We also get the identity (4.28).

Proof of Proposition 4.6.3: Consider the commutative diagram:

K̃OG(X1)

i∗1
��

f∗
// K̃OG(X0)

i∗0
��

KOG(k1D)
(fS1

)∗//

φk1

��

KOG(k0D)

φk0

��
Z

m
k1−k0
k1 // Z.

(1) Suppose X0 is odd KOG-split. Then k0 = 8k + 4 for some integer K and

KOG(k0D) = KOG(4D) · (b8D)k by the Bott isomorphism. Im(i∗0) = (A + 2D +

6 − 2H)l · KOG(4D) · (b8D)k for some l ∈ Z≥0. A simple calculation shows that
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κo(X0) = 2l. Suppose κo(X1) = r. Then we can find an element z ∈ K̃OG(X1) such

that φk1i
∗
1(z) = 2r. Therefore, φk0(ω) = 2r+β

k1−k0
k1 where ω = (fS1

)∗(i∗1(z)). Since

k1 > k0, the map (fS1
)∗ factors through KOG((k0 + 1)D) → KOG(k0D). Therefore,

we see that ω = γ(D) · (aη(D)λ(D)) · (b8D)k = a(1−D)λ(D) · (b8D)k for some a ∈ Z.

Because of the commutative diagram, we have ω ∈ Im(i∗0). By Lemma 4.6.5, we get

22l+1|φk0(ω). This implies 2l + 1 ≤ r + βk1−k0
k1

.

(2) Suppose X0 is even KOG-split with k0 = 8k. Notice that κo(X) = 2l + 2 if

J (X) is the submodule generated by (2 + A − 2D − 2B)l(2 − 2D − B)(b8D)
k and

(A − 2B)l(B − A)(b8D)k. Using Lemma 4.6.6, the proof is almost the same with the

previous case.

By Proposition 4.4.8, we see that Σ2HX and Σ8DX are even (odd) KOG-split if X

is even (odd) KOG-split. Therefore, Proposition 4.4.9 justifies the following definition:

Definition 4.6.7. A spectrum class S = [(X, a, b + r)] with a, b ∈ Z, r ∈ [0, 1) is

called even (odd) KOG-split if for integers M,N ≫ 0, Σ(8M−a)DΣ(2N−b)HX is even

(odd) KOG-split.

Example 4.6.8. For any a, b ∈ Z and r ∈ [0, 1), [(S0, 8a, 2b+1+r)] is even KOG-split

and [(S0, 8a+ 4, 2b+ r)] is odd KOG-split.

The following proposition is easy to prove using Proposition 4.6.3

Proposition 4.6.9. Let S0, S1 ∈ C be two spectrum classes at level k0, k1 respectively,

with k0 < k1. Suppose S0 is even or odd KOG-split and S0 dominates S1, then we

have:

κo(S0) < κo(S1) + βk1−k0
k1

. (4.29)

Now let Y be a homology sphere. Recall that we have a spectrum class invariant

S(Y ) at level 0.

Definition 4.6.10. Y is called Floer KOG-split if ΣHS(Y ) is even KOG-split and

Σ4DS(Y ) is odd KOG-split.
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Remark. For simple examples like Y = ±Σ(2, 3, 12n+1) or ±Σ(2, 3, 12n+5), the two

conditions in the above definition are either both true or both false. We expect that

this fails in more complicated examples. If we only assume one of these two conditions,

only half of the cases in Theorem 1.3.9 are still true.

Remark. We will see in Section 8 that S3,±Σ(2, 3, 12n+ 1) and −Σ(2, 3, 12n+ 5) are

Floer KOG-split, while +Σ(2, 3, 12n+ 5) is not Floer KOG-split.

Proof of Theorem 1.3.9: (1) When µ(Y0) = 0, S(Y0) = [(X, a, b)] for some space X

and some integers a, b. For large integers M,N , we have the following:

(i) The space Σ(8M−a)DΣ(2N−b+1)HX is even KOG-split.

(ii) The space Σ(8M−a+4)DΣ(2N−b)HX is odd KOG-split.

Now consider p = 4l +m for m = 0, 1, 2, 3:

• For p = 4l, Σ
p
2
HΣ4DS(Y0) = [(Σ4DX, a, b− 2l)] is odd KOG-split by (ii).

• For p = 4l + 1, Σ
p
2
HS(Y0) = [(ΣHX, a, b− 2l + 1

2
)] is even KOG-split by (i).

• For p = 4l + 2, Σ
p
2
HS(Y0) = [(ΣHX, a, b− 2l)] is even KOG-split by (i).

• For p = 4l + 3, Σ
p
2
HΣ4DS(Y0) = [(Σ4DX, a, b− 2l − 2 + 1

2
)] is odd KOG-split by

(ii).

Similarly, we can prove that when µ(Y0) = 1, Σ
p
2
HS(Y0) is evenKOG-split for p = 4l+2

and 4l + 3 while Σ
p
2
HΣ4DS(Y0) is odd KOG-split for p = 4l and 4l + 1.

Now repeat the proof of Theorem 1.3.6 for k = 0 or 4, using Proposition 4.6.9

instead of Proposition 4.5.3. Notice that the two sides of the same inequalities are

either both integers or both half-integers. The inequalities are proved.

4.7 Examples and Explicit bounds

In this section, we will prove Theorem 1.3.8 about the values of κoi(S
3) and κoi(±Σ(2, 3, r))

with gcd(r, 6) = 1. We will also use Corollary 1.3.10 to give some new bounds about
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the intersection forms of spin four manifolds with given boundaries.

4.7.1 Basic Examples

If Y is a rational homology sphere admitting metric g with a positive scaler curvature,

then by the arguments in [40], we obtain:

S(Y, s) = [(S0, 0, n(Y, s)/2)].

In particular, S3 is Floer KOG-split and κoi(S
3) = 0 for any i ∈ Z/8.

In [42], Manolescu gave two examples of spaces of type SWF that are related

to the spectrum class invariants of the Brieskorn spheres ±Σ(2, 3, r). We recall the

construction here.

Suppose that G acts freely on a finite G-CW complex Z, with the quotient space

Q = Z/G. Let

Z̃ = ([0, 1]× Z)/(0, z) ∼ (0, z′) and (1, z) ∼ (1, z′) for all z, z′ ∈ Z

denote the unreduced suspension of Z, where G acts trivially on the [0, 1] factor. We

can take one of the two cone points (say (0, z) ∈ Z̃) as the base point and view Z̃ as

a pointed G-space. It’s easy to see that Z̃ is of type SWF at level 0.

We want to compute κo(ΣkDZ̃) for k = 0, 1, · · · , 7. It turns out that the method

in [42] also works here. Namely, the inclusion i : (ΣkDZ̃)S
1
= ΣkDS0 → ΣkDZ̃ gives

the long exact sequence:

· → K̃OG(Σ
kDZ̃)

i∗−→ KOG(kD)
p∗−→ KO1

G(Σ
kDZ̃, (kD)+)→ ·. (4.30)

By exactness of the sequence, we have Im(i∗) = ker(p∗). By definition, we have:

KO1
G(Σ

kDZ̃, (kD)+) ∼= K̃O
1

G(Σ
kDΣZ+) ∼= K̃OG(Σ

kDZ+).

By abuse of notation, we still use p∗ to represent the map between KOG(kD) and

K̃OG(Σ
kDZ+). Checking the maps in the exact sequence, one can see that the p∗ is

induced by the natural projection p : ΣkDZ+ → (kD)+. Since G acts freely on ΣkDZ+
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away from the base point, we see that K̃OG(Σ
kDZ+) ∼= K̃O((ΣkDZ+)/G). Notice that

(Z × kD)/G is a vector bundle over Q and (ΣkDZ+)/G is the Thom space of this

bundle. We are interested in two cases:

• Z ∼= G, acting on itself via left multiplication.

• Z ∼= T ∼= S1 × jS1 ⊂ C× jC ⊂ H and G acts on T by left multiplication in H.

The first case is easy since the isomorphism K̃OG(Σ
kDZ+) ∼= K̃O(Sk) is given by

i∗1 ◦ r0, where i1 : Sk → ΣkRZ+ is the standard inclusion and r0 : K̃OG(Σ
kDZ+) →

K̃O(ΣkRZ+) is the restriction map (See Fact 4.1.3 in Section 2). It follows that

Im(i∗) = ker(p∗) = ker(i∗1 ◦ r0 ◦ p∗) = ker(r), where r : KOG(kD) → K̃O(Sk) is

the restriction map.

We know the structure of K̃O(Sk):

• K̃O(S0) ∼= KO(pt) ∼= Z.

• K̃O(S1) ∼= Z2, generated by the Hurewicz image of the Hopf map in π3(S
2).

• K̃O(S2) ∼= Z2, generated by the Hurewicz image of the square of the Hopf map.

• K̃O(S4) ∼= Z, generated by VH − 4, where VH is the quaternion Hopf bundle.

• K̃O(Sk) ∼= 0 for k = 3, 5, 6, 7.

Therefore, by the explicit description of η(D), λ(D), c after Theorem 4.1.12. We

get the following results about the kernel of r : KOG(kD)→ K̃O(Sk).

• For k = 0, ker(r) is the submodule generated by 1−D,A,B.

• For k = 1, ker(r) is generated by 2η(D).

• For k = 2, ker(r) is generated by 2η(D)2 and γ(D)2c.

• For k = 4, ker(r) is generated by λ(D)− c, (1−D)λ(D), Aλ(D) and Ac.

• For k = 3, 5, 6, 7, ker(r) ∼= KOG(kD).
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From this, we get:

Proposition 4.7.1. κo(ΣkDG̃) = 0 for k = 3, 4, 5, 6, 7 and κo(ΣkDG̃) = 1 for k =

0, 1, 2.

Now let’s consider the case Z ∼= T . We want to find ker(p∗) for p∗ : KOG(kD) →

KOG(Σ
kDT+). Notice that S1 ⊂ G acts trivially on (kD)+ and freely on T with

T/S1 = S1. We have K̃OG(Σ
kDT+) = K̃O((ΣkDS1

+)/Z2). The space (ΣkDS1
+)/Z2 can

be identified with:

[0, 1]×(kD)+/(0, x) ∼ (1,−x) and (t1,∞) ∼ (t2,∞) for any x ∈ (kD)+ and t1, t2 ∈ [0, 1].

Consider the inclusion i2 : {0}×(kD)+ → (ΣkDS1
+)/Z2. Notice that ((Σ

kDS1
+)/Z2)/(kD)+

∼= Sk+1. We get the long exact sequence:

· → K̃O(Sk+1)
δ−→ K̃O(Sk+1)→ K̃O((ΣkDS1

+)/Z2)
i∗2−→ K̃O(Sk)→ · (4.31)

By checking the iterated mapping cone construction, which gives us this long exact

sequence, it is not hard to prove that δ is induced by the map f : Sk+1 → Sk+1 with

deg(f) = 0 for even K and deg(f) = 2 for odd K.

When k = 2, 4, 5, 6, we have K̃O(Sk+1) = 0. Therefore, i∗2 is injective, which

implies i∗1 ◦ r0 : K̃OG(Σ
kDT+) → K̃O((kD)+) is injective (i∗1 and r0 are defined as in

the case Z ∼= G). We see that when k = 2, 4, 5, 6, just like the case Z ∼= G, the kernel

of p∗ is the kernel of the restriction map r : KOG(kD) → K̃O(Sk). Thus, we get

κo(ΣkDT̃ ) = κo(ΣkDG̃) for k = 2, 4, 5, 6.

For k = 0, consider [0, 1] as the subset {1 + jeiθ|θ ∈ [0, π]} ⊂ T . The left endpoint

is mapped to the right endpoint under the action of −j ∈ G. This embedding of

[0, 1] gives us the following explicit description of the map p∗ : RO(G) ∼= K̃OG(S
0)→

K̃OG(T+) ∼= KOG(T ) ∼= KO(T/G) = KO(S1).

Starting from a representation space V of G, we get an trivial bundle V × [0, 1]

over [0, 1]. Identifying (x, 0) with ((−j) ◦ x, 1) for any x ∈ V , we get a bundle E over

S1. [E] ∈ KO(S1) is the image of [V ] ∈ RO(G) under p∗.

89



We know that KO(S1) is generated by the one dimensional trivial bundle [1] and

the one dimensional nontrivial bundle [m], subject to the relation 2([1]-[m])=0. Using

the explicit description of p∗, we see that p∗(1) = [1], p∗(D) = [m] and p∗(A) =

p∗(B) = 0. Therefore, we get κo(T̃ ) = 2.

Applying Corollary 4.5.4 for S = Σ2DT̃ , we get κo(Σ3DT̃ ) + 1 ≥ κo(Σ2DT̃ ) = 1.

Applying Corollary 4.5.4 for S = Σ3DT̃ , we get 0 = κo(Σ4DT̃ ) + 0 ≥ κo(Σ3DT̃ ).

Therefore, we see that κo(Σ3DT̃ ) = 0.

Applying Corollary 4.5.4 for S = Σ2DT̃ and S = ΣDT̃ , we get κo(ΣDT̃ ) = 1 or 2.

For k = 7, the map δ : K̃O(S8)→ K̃O(S8) is multiplication by 2. Since K̃O(S7) =

0, we get K̃O((ΣkDS1
+)/Z2) = Z2. This implies p∗(2b8D · γ(D)) = 2p∗(b8D · γ(D)) = 0.

Therefore, 2b8D · γ(D) ∈ ker(p∗) and κo(Σ7DT̃ ) = 0 or 1.

Lemma 4.7.2. κo(ΣDT̃ ) = 2 and κo(Σ7DT̃ ) = 1.

Proof. This can be proved directly using Gysin sequence. But here we use a different

approach. In [42] and [41], Manolescu proved that S(−Σ(2, 3, 11)) = [(T̃ , 0, 1)], where

−Σ(2, 3, 11) is a negative oriented Brieskorn sphere. Therefore, by Definition 4.4.10

and Proposition 4.4.12, we get:

κoi(−Σ(2, 3, 11)) = κo(Σ(i+4)DT̃ ) + 1− β4
i .

In particular, κo3(−Σ(2, 3, 11)) = κo(Σ7DT̃ )−2 and κo5(−Σ(2, 3, 11)) = κo(ΣDT̃ )−2.

Since −Σ(2, 3, 11) bounds a smooth spin four manifold with intersection from ( 0 1
1 0 ) (see

[42]). We can apply Corollary 1.3.10 for p = 0, q = 1 and get κo5(−Σ(2, 3, 11)) ≥ 0,

which implies κo(ΣDT̃ ) ≥ 2. We get κo(ΣDT̃ ) = 2 by our discussion before the lemma.

We can also apply Theorem 1.3.6 for Y0 = S3, Y1 = −Σ(2, 3, 11), p = 0, q = 1 and

k = 2. We have κo3(−Σ(2, 3, 11)) ≥ −1 and κo(Σ7DT̃ ) ≥ 1. Therefore, κo(Σ7DT̃ ) = 1

by our discussions before.

We summarise our results in the following proposition.

Proposition 4.7.3. κo(ΣkDT̃ ) = 2 for k = 0, 1; κo(ΣkDT̃ ) = 1 for k = 2, 7 and

κo(ΣkDT̃ ) = 0 for k = 3, 4, 5, 6.

90



Now we calculate κoi(±Σ(2, 3, r)) with gcd(6, r) = 1. Actually, the spectrum class

invariants S(±Σ(2, 3, r)) are given in [42].

Proposition 4.7.4 (Manolescu [42]). We have the following results about S(±Σ(2, 3, r)).

• S(Σ(2, 3, 12n− 1)) = [(G̃ ∨ ΣG+ ∨ · ∨ ΣG+︸ ︷︷ ︸
n−1

, 0, 0)].

• S(−Σ(2, 3, 12n− 1)) = [(T̃ ∨ Σ2G+ ∨ · ∨ Σ2G+︸ ︷︷ ︸
n−1

, 0, 1)].

• S(Σ(2, 3, 12n− 5)) = [(G̃ ∨ ΣG+ ∨ · ∨ ΣG+︸ ︷︷ ︸
n−1

, 0, 1/2)].

• S(−Σ(2, 3, 12n− 5)) = [(T̃ ∨ Σ2G+ ∨ · ∨ Σ2G+︸ ︷︷ ︸
n−1

, 0, 1/2)].

• S(Σ(2, 3, 12n+ 1)) = [(S0 ∨ Σ−1G+ ∨ · ∨ Σ−1G+︸ ︷︷ ︸
n

, 0, 0)].5

• S(−Σ(2, 3, 12n+ 1)) = [(S0 ∨G+ ∨ · ∨G+︸ ︷︷ ︸
n

, 0, 0)].

• S(Σ(2, 3, 12n+ 5)) = [(S0 ∨ Σ−1G+ ∨ · ∨ Σ−1G+︸ ︷︷ ︸
n

, 0,−1/2)].

• S(−Σ(2, 3, 12n+ 5)) = [(S0 ∨G+ ∨ · ∨G+︸ ︷︷ ︸
n

, 0, 1/2)].

As we mentioned in Remark 4.6, ±Σ(2, 3, 12n+1) and −Σ(2, 3, 12n+5) are KOG-

split because of Example 4.6.8. While using the relations in Theorem 4.1.12 and

Theorem 4.1.14, it is not hard to prove that the space (8MD ⊕ (2N + 2)H)+ is not

even KOG-split for integers M,N ≫ 0. This implies that +Σ(2, 3, 12n + 5) is not

KOG-split.

Since it’s easy to see that wedging with a free G-space does not change the κo

invariants, we don’t need to consider those ΣlG+ factors. By Definition 4.4.10 and

Proposition 4.4.12, we can use Proposition 4.7.1 and Proposition 4.7.3 to prove the

results in Theorem 1.3.8 easily.

5Strictly speaking, by this we mean the spectrum class of (H+ ∨ Σ3G+ ∨ · ∨ Σ3G+︸ ︷︷ ︸
n

, 0, 1).
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4.7.2 Explicit Bounds

Now we use Corollary 1.3.10 and Proposition 4.2.1 to get explicit bounds on the

intersection forms of spin 4-manifolds with boundary ±Σ(2, 3, r).

Theorem 4.7.5. LetW be an oriented, smooth spin 4-manifold with ∂W = ±Σ(2, 3, r).

Assume that the intersection form of W is p(−E8) ⊕ q ( 0 1
1 0 ) for p > 1, q > 0.6 If the

mod 8 reduction of p is m, then we have q − p ≥ cm, where cm are constants listed

below. (Recall that the mod 2 reduction of p is the Rohklin invariant of the boundary.)

m = 0 m = 2 m = 4 m = 6

Σ(2, 3, 12n− 1) 2 0 1 2

−Σ(2, 3, 12n− 1) 3 (2) (3) 3

Σ(2, 3, 12n+ 1) (3) 1 (2) (3)

−Σ(2, 3, 12n+ 1) 3 1 2 3

m = 1 m = 3 m = 5 m = 7

Σ(2, 3, 12n− 5) 1 2 3 3

−Σ(2, 3, 12n− 5) 2 (1) (2) 2

Σ(2, 3, 12n+ 5) (2) 0 (1) (2)

−Σ(2, 3, 12n+ 5) 2 3 4 4

Remark. Some of the bounds in Theorem 4.7.5 can also be obtained by other methods.

For example, the case m = 2 for Σ(2, 3, 12n+1) can be obtained using κ-invariant (see

[42]). Also, some bounds can be obtained by filling method for small n. For example,

the case m = 2, 4 for −Σ(2, 3, 11) can be deduced from Theorem 1.3.3, using the

fact that Σ(2, 3, 11) bounds a spin 4-manifold with intersection form 2(−E8)⊕ 2 ( 0 1
1 0 ).

However, the bounds that we put in the brackets in Theorem 4.7.5 appear to be new

for general n.

Proof. Since we can do surgeries on loops without changing intersection forms, we will

always assume b1(W ) = 0.

6It is easy to see that the conclusions are not true for p = 0, 1. For example, ±Σ(2, 3, 12n − 1)
bounds a spin manifold with intersection form ( 0 1

1 0 ).
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(1) Suppose Σ(2, 3, 12n + 1) bounds a spin 4-manifold with intersection form

8l(−E8)⊕(8l+2) ( 0 1
1 0 ) for l > 0. Then we get a spin cobordism from −Σ(2, 3, 12n+1)

to S3 with the same intersection form. By Theorem 4.3.8, Σ4lHS(−Σ(2, 3, 12n + 1))

dominates Σ8l+2S(S3). Since S(−Σ(2, 3, 12n + 1)) = [(S0 ∨ G+ ∨ · ∨ G+, 0, 0)] and

S(S3) = [(S0, 0, 0)], we get a map:

f : ΣrR+(4l+M)H+ND(S0 ∨G+ ∨ · ∨G+)→ ΣrR+MH+(8l+2+N)DS0

for some M,N ∈ Z. Restricting to the first factor of S0 ∨G+ ∨ · ∨G+, we obtain:

g : ΣrR+(4l+M)H+NDS0 → ΣrR+MH+(8l+2+N)DS0,

which induces homotopy equivalence between the G-fixed point sets. This a contra-

diction with Proposition 4.2.1. The case m = 0 for Σ(2, 3, 12n+ 1) is proved.

(2) Suppose Σ(2, 3, 12n+ 5) bounds a smooth spin manifold with intersection for-

m (8l + 1)(−E8) ⊕ (8l + 2) ( 0 1
1 0 ) for l > 0. Then we get a spin cobordism from

−Σ(2, 3, 12n+5) to S3. As the previous case, this implies Σ(4l+1/2)HS(−Σ(2, 3, 12n+5))

dominates Σ(8l+2)DS(S3). Since Σ(4l+1/2)HS(−Σ(2, 3, 12n + 5)) = [(Σ4lHS0, 0, 0)], we

get the contradiction as before. This proves the case m = 1 for Σ(2, 3, 12n+ 5).

(3) Suppose −Σ(2, 3, 12n − 1) bounds a spin 4-manifold with intersection form

(8l + 2)(−E8) ⊕ (8l + 3) ( 0 1
1 0 ) for l ≥ 0. By Corollary 1.3.10, we get 4l + 3 <

κo3+8l(−Σ(2, 3, 12n− 1)) + β8l+7
8l+3 = −1 + 4 + 4l, which is a contradiction. This proves

the case m = 2 for −Σ(2, 3, 12n− 1).

Using similar method as (3), we can prove all the other cases except:

• m = 0 for ±Σ(2, 3, 12n− 1) and −Σ(2, 3, 12n+ 1),

• m = 7 for Σ(2, 3, 12n− 5) and −Σ(2, 3, 12n+ 5),

• m = 1 for −Σ(2, 3, 12n− 5).

(4) We need to introduce another approach in order to prove the rest of the cases.

Consider the orbifold D2-bundle over S2(2, 3, r). This gives us an orbifold W ′ with

boundary +Σ(2, 3, r). We have b+2 (W
′) = 0, b−2 (W ) = 1 and W ′ has a unique spin
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structure t. Now suppose −Σ(2, 3, r) bounds a spin manifold W with intersection

form p(−E8)⊕ q ( 0 1
1 0 ). Then we can glue W and W ′ together to get an oriented closed

spin 4-orbifold. We have:

indC /D(W ∪W ′) = p+ ω(Σ(2, 3, r),W ′, t).

Here ω(Σ(2, 3, r),W ′, t) is the Fukumoto-Furuta invariant defined in [20]. Saveliev

[59] proved that ω(Σ(2, 3, r),W ′, t) = −µ(Σ(2, 3, r)) = µ(−Σ(2, 3, r)), where µ is the

Neumann-Siebenmann invariant [49, 50]. In [20], Fukumoto and Furuta considered

the finite dimensional approximation of the Seiberg-Witten equations on the orbifold

W∪W ′ and constructed a stable Pin(2)-equivariant map: ( indC
/D(W∪W ′)
2

H)+ → (b+2 (W∪

W ′)D)+ which induces homotopy equivalence on the Pin(2)-fixed point set. (Recall

that H and D are Pin(2)-representations defined in Section 2). Since b+2 (W ∪W ′) = q

and indC /D(W ∪W ′) = p+ µ(−Σ(2, 3, r)), we can apply Proposition 4.2.1 to get:

q − p ≥ 3 + µ(−Σ(2, 3, r)) if 0 < p+ µ(−Σ(2, 3, r)) can be divided by 8.

Similarly, suppose Σ(2, 3, r) bounds a spin 4-manifold W ′ with intersection form

p(−E8) ⊕ q ( 0 1
1 0 ). We can consider W ′ ∪ (−W ) and repeat the argument above. We

get:

q − p ≥ 2 + µ(Σ(2, 3, r)) if 0 < p+ µ(Σ(2, 3, r)) can be divided by 8.

The invariants µ(±Σ(2, 3, r)) were computed in [49, 50]:

µ(±Σ(2, 3, 12n− 1)) = µ(±Σ(2, 3, 12n+ 1)) = 0,

µ(Σ(2, 3, 12n− 5)) = µ(−Σ(2, 3, 12n+ 5) = 1,

µ(−Σ(2, 3, 12n− 5)) = µ(Σ(2, 3, 12n+ 5) = −1.

Therefore, simple calculations prove the rest of the cases.
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CHAPTER 5

Construction of the unfolded spectrum invariants

In this chapter, we define different versions of unfolded Seiberg-Witten-Floer spectra

for the spinc manifold (Y, s). First, we will define the spectrum swfA(Y, s, A0, g;S
1)

and swfR(Y, s, A0, g;S
1) for a general spinc structure s. In Section 5.2, we consider

the situation when s is torsion and define normalized spectra SWFA(Y, s;S1) and

SWFR(Y, s;S1) which are independent of the choices of base connection A0 and metric

g. In Section 5.3, we deal with the Pin(2)-equivariant case for a spin structure s and

define SWFA(Y, s;Pin(2)), SWFR(Y, s;Pin(2)).

5.1 The unfolded spectrum invariants for general spinc struc-

tures.

The main idea of the construction follows [42] and [29]. In summary, we want to apply

finite dimensional approximation of Conley indices to the set Str(R) which contains

all critical points and flow lines between them. However, the set Str(R) is unbounded

owing to the action of GhY . We then need to introduce transverse functions and use

their level sets to obtain a collection of bounded subsets of Str(R).

Notice that the space of imaginary-valued harmonic 1-forms, denoted by iΩ1
h(Y ), is

a subspace of Coul(Y ). Let pH : Coul(Y )→ iΩ1
h(Y ) be the L2-orthogonal projection.

Here, we identify iΩ1
h(Y ) with Rb1 by choosing harmonic forms {h1, h2, . . . hb1} ⊂

iΩ1
h(Y ) representing a set of free generators of the group

2πi im(H1(Y ;Z)→ H1(Y ;R)) ∼= Zb1 .
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With this identification, we can write the projection as

pH = (pH,1, . . . , pH,b1).

From now on, we assume that our perturbation f is good (see Definition 2.1.3). To-

gether with the compactness result [33, Theorem 10.7.1], the critical points of L in

Coul(Y ) is finite modulo the action of GhY . Consequently, we can find a small interval

[r, s] ⊂ (0, 1) such that
∪b1

j=1 p
−1
H,j([−s,−r] ∪ [r, s]) contains no critical point of L. Let

us pick a positive number R̃ greater than the universal constant R0 from Theorem

2.2.2.

Lemma 5.1.1. There exists a positive number ϵ̃ > 0 such that we have ∥ g̃radL(x)∥g̃ >

ϵ̃ for any x ∈
(∪b1

j=1 p
−1
H,j([−s,−r] ∪ [r, s])

)
∩ Str(R̃).

Proof. Suppose that the result is not true. We can then find a sequence {xn} contained

in
(∪b1

j=1 p
−1
H,j([−s,−r] ∪ [r, s])

)
∩ Str(R̃) with ∥ g̃radL(xn)∥g̃ → 0. Notice that the

sequence {xn} is contained in p−1H ([−1, 1]b1)∩Str(R̃), which is bounded in L2
k. Hence,

after passing to a subsequence, xn converges to some point x∞ of Coul(Y ) weakly in

L2
k and strongly in L2

k−1 by Rellich lemma. Consequently, we have pH(xn)→ pH(x∞)

and g̃radL(x∞) = 0 by continuity. This is a contradiction since x∞ is a critical point

of g̃radL and lies in
∪b1

j=1 p
−1
H,j([−s,−r] ∪ [r, s]).

Note that ϵ̃ in the above lemma depends on the choice of r, s and R̃. With these

data, we choose a smooth “staircase” function ḡ : R→ [0,∞) satisfying the following

properties:

(i) ḡ is even, i.e. ḡ(x) = ḡ(−x) for all x ∈ R;

(ii) There is a positive constant τ̄ such that ḡ(x+ 1) = ḡ(x) + τ̄ for all x ∈ [0,∞);

(iii) ḡ is increasing on the interval [r, s] and ḡ′ = 0 on [0, r] ∪ [s, 1];

(iv) |ḡ′(x)| < ϵ̃ · ϵ′′ for all x ∈ R, where ϵ′′ is a positive constant with the property

that

ϵ′′ · ∥
b∑

j=1

ajhj∥L2 ≤ (
b∑

j=1

a2j)
1
2 , ∀(a1, a2, · · · , ab) ∈ Rb. (5.1)
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Figure 5.1: the function ḡ

Next we use the function ḡ to define a small perturbation of L which is not invariant

under GhY but transverse to level sets of L. For each j = 1, . . . , b1, we define

gj,+ = ḡ ◦ pH,j + L and gj,− = ḡ ◦ pH,j − L.

With our assumptions on ḡ, we have the following result.

Lemma 5.1.2. For each j = 1, . . . , b1, we have

⟨g̃radL(x), g̃rad gj,+(x)⟩g̃ ≥ 0 and ⟨g̃radL(x), g̃rad gj,−(x)⟩g̃ ≤ 0,

where the equalities hold only when x is a critical point of L.

Proof. By (2.10) and a straightforward computation, we can prove that∥∥∥g̃rad (ḡ ◦ pH,j)(x)
∥∥∥
g̃
= ∥ grad (ḡ ◦ pH,j)(x)∥L2 ≤ 1

ϵ′′
· |ḡ′(pH,j(x))| < ϵ̃.

If |pH,j(x)| ∈ [n, n + r] or
∣∣pHj

(x)
∣∣ ∈ [n + s, n + 1] for some integer n, then

ḡ′(pH,j(x)) = 0 and ⟨g̃radL(x), g̃rad gj,+(x)⟩g̃ = ∥ g̃radL(x)∥2g̃ which is zero if and

only if x is a critical point of L. Otherwise, |pH,j(x)| ∈ [n + r, n + s] for some integer

n and Lemma 5.1.1 implies

⟨g̃radL(x), g̃rad gj,+(x)⟩g̃ = ∥ g̃radL(x)∥2g̃ +
⟨
g̃radL(x), g̃rad (ḡ ◦ pH,j)(x)

⟩
g̃

≥ ∥ g̃radL(x)∥2g̃ −
∥∥∥g̃rad (ḡ ◦ pH,j)(x)

∥∥∥
g̃
·
∥∥∥g̃radL(x)∥∥∥

g̃

> ∥ g̃radL(x)∥g̃
(
∥ g̃radL(x)∥g̃ − ϵ̃

)
> 0.
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The same argument applies to the inner product ⟨g̃radL(x), g̃rad gj,−(x)⟩g̃.

Since the number of critical points of L is finite modulo gauge, we can find a real

number θ ∈ R such that gj,±(x) ̸= θ for any critical point x of L and j ∈ {1, 2, . . . , b1}.

For convenience, we also choose a decreasing sequence of negative real numbers {λn}

and an increasing sequence of positive real numbers {µn} such that −λn, µn →∞. We

are now ready to define a collection of bounded sets in Str(R̃).

Definition 5.1.3. With the choice of R̃, ḡ and θ above, we define the sets

J+
m := Str(R̃) ∩

∩
1≤j≤b1

g−1j,+(−∞, θ +m],

J−m := Str(R̃) ∩
∩

1≤j≤b1

g−1j,−(−∞, θ +m],
(5.2)

for each positive integer m. This collection of J+
m (resp. J−m) will be called a positive

(resp. negative) transverse system. With the choice of {λn} and {µn} , we also define

Jn,±
m := J±m ∩ V

µn

λn
.

Notice that the functional L is bounded on Str(R̃), and the perturbed functional

gj,± is bounded below on Str(R̃). Since a subset S ⊂ Str(R̃) is bounded if and only if

pH(S) is bounded, we can see that the set J±m is bounded in the L2
k-norm.

We will start to derive some properties of the finite-dimensional bounded sets Jn,±
m .

Although some of the following results are slightly stronger than what we need to define

the 3-dimensional invariants, they will be useful when we develop the 4-dimensional

theory and prove the gluing theorem in [26, 27].

Lemma 5.1.4. For any positive integer m, there exist positive real numbers ϵm, θm

and an integer Nm ≫ 0 such that for any n > Nm and 1 ≤ j ≤ b1 we have

(i) ⟨(l + pµn

λn
◦ c)(x), g̃rad gj,+(x)⟩g̃ > ϵm for any x ∈ Jn,+

m ∩ g−1j,+[θ +m− θm, θ +m];

(ii) ⟨(l+ pµn

λn
◦ c)(x), g̃rad gj,−(x)⟩g̃ < −ϵm for any x ∈ Jn,−

m ∩ g−1j,−[θ+m− θm, θ+m].
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Proof. We only prove this lemma for g1,+ and the other cases can be proved similarly.

Suppose that the result is not true, then we can find sequences ni → +∞, ϵm,i, θm,i → 0

and {xi} with xi ∈ Jni,+
m ∩g−11,+[θ+m−θm,i, θ+m] and ⟨(l+pµni

λni
◦c)(xi), g̃rad g1,+(xi)⟩g̃ ≤

ϵm,i. Since {xi} is contained in the L2
k-bounded set J+

m, we can pass to a convergent

subsequence xi → x∞ in L2
k−1 by the Rellich lemma. By continuity, we have x∞ ∈

g−11,+(θ + m) and g̃rad g1,+(xi) → g̃rad g1,+(x∞) in L2
k−2. Since pµn

λn
converges to the

identity map pointwise, we also have (l + p
µni
λni
◦ c)(xi)→ (l + c)(x∞) = g̃radL(x∞) in

L2
k−2. Therefore, we obtain

⟨(l + pµn

λn
◦ c)(xn), g̃rad gj,+(xn)⟩g̃ → ⟨g̃radL(x∞), g̃rad gj,+(x∞)⟩g̃,

which implies that ⟨g̃radL(x∞), g̃rad gj,+(x∞)⟩g̃ ≤ 0 and x∞ is a critical point by

Lemma 5.1.2. This is a contradiction with the choice of θ.

Now we start applying the Conley index theory to the flow on V µn

λn
generated by

the vector field −(l + pµn

λn
◦ c). There is a technical point here. Since V µn

λn
is non-

compact, this flow may go to infinity within a finite time. As in [40], we can fix this by

choosing a bump function ιm : Coul(Y )→ [0, 1] for each m such that ιm is supported

in a bounded subset of Coul(Y ) and J±m+1 is contained in the interior of ι−1m (1). We

denote by φn
m the flow on V µn

λn
generated by −ιm · (l+ pµn

λn
◦ c). Note that the flow φn

m′

on Jn,±
m does not depend on m′ whenever m′ ≥ m− 1 so that its invariant set and its

Conley index remain unchanged.

Lemma 5.1.5. For a positive integer M , there exist large numbers N, T such that,

for any positive integers m ≤M and n ≥ N , we have the following statements.

(a) If γ : [−T, T ] → V µn

λn
is an approximated Seiberg-Witten trajectory contained in

Jn,+
m , then we have

γ(0) ∈ Str(R0) ∩
∩

1≤j≤b1

g−1j,+(−∞, θ +m− θm]. (5.3)

In particular, Jn,+
m is an isolating neighborhood for the flow φn

m.

(b) The set inv(φn
m−1, J

n,+
m−1) is an attractor in inv(φn

m, J
n,+
m ) with respect to the flow

φn
m.
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Proof. Let T̄ , λ̄ and µ̄ be the large constants from Corollary 2.2.8 with S = J+
M . Let

θm, ϵm and Nm be the constants obtained from Lemma 5.1.4 for m = 1, . . . ,M . Put

T = max{T̄ , θ1
ϵ1
, . . . , θM

ϵM
} + 1. We choose a positive integer N > max {N1, . . . , NM}

such that λN < λ̄ and µN > µ̄. Let m ≤M and n > N be arbitrary positive integers.

(a) Let γ : [−T, T ]→ V µn

λn
be an approximated Seiberg-Witten trajectory contained

in Jn,+
m . Corollary 2.2.8 and the choice ofN, T ensure that γ(0) ∈ Str(R0). For the sake

of contradiction, let us suppose that gj,+(γ(0)) > θ +m− θm for some j ∈ {1, . . . , b}.

By Lemma 5.1.4, the value of gj,+(γ(t)) decreases along the trajectory γ on [−T, 0]

with
dgj,+(γ(t))

dt
= ⟨−(l + pµn

λn
◦ c)(γ(t)), g̃rad gj,+(γ(t))⟩g̃ < −ϵm.

Hence, we obtain gj,+(γ(−T )) > gj,+(γ(0)) + Tϵm > θ + m from the fundamental

theorem of calculus. This is a contradiction with our assumption that γ(−T ) ∈ J+
m ⊂

g−1j,+(−∞, θ +m].

(b) From Lemma 5.1.4 and the choice ofN , we have ⟨−(l+pµn

λn
◦c)(x), g̃rad gj,+(x)⟩g̃ <

0 for any x ∈ Jn,+
m−1∩g−1j,+(θ+m−1). Consequently, the flow φn

m goes inside Jn,+
m−1 along

∂Jn,+
m−1 \ ∂Str(R̃) and inv(φn

m−1, J
n,+
m−1) is an attractor in inv(φn

m, J
n,+
m ) with respect to

the flow φn
m.

Consequently, we can acquire the S1-equivariant Conley index IS1(φn
m, inv(J

n,+
m ))

from a compact finite-dimensional subset Jn,+
m when n is large enough relative to m

as in Lemma 5.1.5. Using the orthogonal complement V̄ 0
λ of iΩ1

h(Y ) in V 0
λ , we define

In,+m := Σ−V̄
0
λnIS1(φn

m, inv(J
n,+
m ))

as an object of C. Note that here a choice of index pair for inv(Jn,+
m ) is made to get

the Conley index (see the remark following Definition 3.2.1). Eventually, we will show

that our invariants are independent of this choice up to canonical isomorphisms.

Let in,+m : IS1(φn
m, inv(J

n,+
m ))→ IS1(φn

m, inv(J
n,+
m+1)) be the attractor map and denote

by ĩn,+m the morphism

Σ−V̄
0
λn in,+m : In,+m → In,+m+1. (5.4)

We will show that the object In,+m is stable in the following sense.
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Proposition 5.1.6. For any positive integer M > 0, there exists a positive integer

N such that, for any positive integers m ≤ M and n ≥ N , there is a canonical

isomorphism ρ̃n,+m ∈ morC(I
n,+
m , In+1,+

m ). Moreover, we have the following commutative

diagram

In,+m−1

ρ̃n,+
m−1

��

ĩn,+
m−1 // In,+m

ρ̃n,+
m

��
In+1,+
m−1

ĩn+1,+
m−1 // In+1,+

m .

(5.5)

Proof. Following the remark after Corollary 2.2.8, we can extend the result of Lem-

ma 5.1.5 to interpolated projections. With the integer N depending on M from Lem-

ma 5.1.5, we can deduce that Jn+1,+
m is an isolating neighborhood for the flow generated

by

− ιm · (l + (sp
µn+1

λn+1
+ (1− s)pµn

λn
) ◦ c) (5.6)

for any n > N and s ∈ [0, 1].

The rest of proof follows from the arguments given in [40, p.910] and [29, Proposi-

tion 4.7]. By continuation property of the Conley index, we have a natural homotopy

equivalence

ρn,+m : Σ
V λn
λn+1IS1(φn

m, inv(J
n,+
m ))→ IS1(φn+1

m , inv(Jn+1,+
m )).

The isomorphism ρ̃n,+m is then given by the composition

Σ−V̄
0
λnIS1(φn

m, inv(J
n,+
m ))→ Σ−V̄

0
λnΣ

−V λn
λn+1Σ

V λn
λn+1IS1(φn

m, inv(J
n,+
m ))

→ Σ−V̄
0
λnΣ

−V λn
λn+1IS1(φn+1

m , inv(Jn+1,+
m )) = Σ

−V̄ 0
λn+1IS1(φn+1

m , inv(Jn+1,+
m )),

where the first morphism is given by Σ−V̄
0
λnη−1 and the second morphism equal-

s Σ−V̄
0
λnρn,+m . The diagram (5.5) commutes because of the continuation property of

attractor-repeller pairs [57, Theorem 6.10].

For each positive integerM , we pick a positive integer nM larger than the constant

N from Proposition 5.1.6 and we require that {nM} is an increasing sequence. We are

now ready to define the spectrum invariant.
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Definition 5.1.7. The S1-equivariant ind-spectrum swfA(Y, sY , A0, g;S
1) is defined

to be an object of S given by

In1,+
1 → In2,+

2 → In3,+
3 → · · · , (5.7)

where the morphism from Inm,+
m to I

nm+1,+
m+1 is a composition ĩnm+1,+

m ◦ ρ̃nm+1−1,+
m ◦ · · · ◦

ρ̃nm,+
m of the morphisms in Proposition 5.1.6.

We will prove in the next section that this gives a well-defined object of the category

S independent of the choices made in the construction up to canonical isomorphism.

To define another invariant swfR(Y, sY , A0, g;S
1), we follow almost the same steps

for the construction of swfA except that there are two main differences. First, the

set inv(φn
m, J

n,−
m ) is a repeller in inv(φn

m, J
n,−
m+1), so the arrows in the system will be

reversed. Second, we use V 0
λn

for desuspension instead of V̄ 0
λn
. We define

In,−m := Σ−V
0
λnIS1(φn

m, inv(J
n,−
m )) ∈ obC,

where n is large enough relative to m, and we have a morphism

In,−m ← In,−m+1

induced by the repeller map. The following collection of results can be proved in the

same way as the corresponding results for Jn,+
m .

Proposition 5.1.8. For a positive integer M , there exist large numbers N, T such

that, for any positive integers m ≤M and n ≥ N , we have the following statements.

(a) For any approximated Seiberg-Witten trajectory γ : [−T, T ] → V µn

λn
which is con-

tained in Jn,−
m , we have

γ(0) ∈ Str(R0) ∩
∩

1≤j≤b1

g−1j,−(−∞, θ +m− θm].

In particular, Jn,−
m is an isolating neighborhood for the flow φm

n .

(b) The set inv(φm
n , J

n,−
m−1) is a repeller in inv(φm

n , J
n,−
m ) with respect to the flow φm

n .

Consequently, we have the repeller map

in,−m−1 : IS1(φn
m, inv(J

n,−
m ))→ IS1(φn

m, inv(J
n,−
m−1)).
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(c) There is a canonical isomorphism ρ̃n,−m ∈ morC(I
n,−
m , In+1,−

m ) such that the following

diagram commutes

In,−m−1

ρ̃n,−
m−1

��

In,−m

ρ̃n,−
m

��

ĩn,−
m−1oo

In+1,−
m−1 In+1,−

m ,
ĩn+1,−
m−1oo

(5.8)

where ĩn,−m−1 is given by Σ−V
0
λn in,−m−1.

For each positive integer M , we also choose a positive integer nM larger than the

constant N from Proposition 5.1.8 so that {nM} is an increasing sequence.

Definition 5.1.9. The S1-equivariant pro-spectrum swfR(Y, sY , A0, g;S
1) is defined

to be an object of S∗ given by

In1,−
1 ← In2,−

2 ← In3,−
3 ← · · · , (5.9)

where the connecting morphisms are defined in the same manner as in Definition 5.1.7.

We will also prove well-definedness of swfR(Y, sY , A0, g;S
1) in the next section.

5.2 The torsion case

When the spinc structure s is torsion, we will be able to further normalize the spectrum

invariants swfA and swfR following the idea of [40]. The resulting objects will not

depend on A0 and g.

We will need to define a rational number n(Y, sY , A0, g). Choose a 4-manifold X

with boundary Y with H3(X,Y ;Z) ∼= H1(X;Z) = 0. Such X always exists as we can

construct X by attaching 2-handles on D4 according the surgery diagram of Y . By the

homology long exact sequence for the pair (X,Y ), we see that H2(X,Z) → H2(Y,Z)

is surjective. Therefore, we can extend s to a spinc structure sX over X and extend

A0 to a connection Â0 over X. Recall that we have a nondegenerate pairing

∪ : im(H2(X, Y ;Q)→ H2(X;Q))⊗ im(H2(X,Y ;Q)→ H2(X;Q))→ Q.
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Denote by b+(X) (resp. b−(X)) the dimension of a maximal positive (resp. negative)

subspace with respect to this pairing and denote by σ(X) the signature of this pairing.

Notice that we can define c1(sX)
2 = c1(sX) ∪ c1(sX) ∈ Q because c1(sX)|Y = c1(s) is

torsion. We define

n(Y, s, A0, g) := IndC( /̂D
+

Â0
)− c1(sX)

2 − σ(X)

8
, (5.10)

where /̂D
+

Â0
is the positive Dirac operator on X coupled with Â0 and IndC( /̂D

+

Â0
) is its

index defined by using spectral boundary condition as in [5]. It was proved in [40] that

n(Y, s, A0, g) does not depend on the choices of X, sX and Â0 ([40] only considered a

rational homology sphere Y but the proof works for a general 3-manifold Y without

any changes). In fact, we have

n(Y, s, A0, g) =
1

2

(
η( /D)− dimC(ker /D) +

ηsign
4

)
, (5.11)

where η( /D) and ηsign denote the eta-invariant of the Dirac operator and the odd

signature operator respectively (see [40] and [5]).

The normalized invariant SWFA and SWFR will be obtained by formally desus-

pending swfA and swfR with the rational number n(Y, s, A0, g) as follows.

Definition 5.2.1. We define the S1-equivariant ind-spectrum and pro-spectrum by

SWFA(Y, s;S1) :=
(
swfA(Y, s, A0, g;S

1), 0, n(Y, s, A0, g)
)
,

SWFR(Y, s;S1) :=
(
swfR(Y, s, A0, g;S

1), 0, n(Y, s, A0, g)
)
.

as objects of S and S∗ respectively.

The proof of invariance of SWFA and SWFR will also be in the next section.

5.3 The Pin(2)-spectrum invariants for spin structures

In this subsection, we will define Pin(2)-analogue of the spectrum invariants for a 3-

manifold Y equipped with a spin structure s. Since all the constructions are similar

to the S1-case, some of the discussions will be brief. Recall that we defined the
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categories CPin(2), SPin(2) and S∗Pin(2) in Chapter 3.1, which are the Pin(2)-version of

the categories C,S and S∗. Our spectrum invariants will be objects of SPin(2) and

S∗Pin(2).

The spin structure s induces a torsion spinc structure on Y . With a slight abuse of

notations, we also denote this spinc structure by s. We will have the same setup from

the spinc structure s with the following new features coming from a spin structure.

1. The structure group of SY can be reduced to SU(2) ∼= S(H). Therefore, SY is a

quaternionic bundle. Here we follow the convention of [43] and let the structure

group act by the right multiplication.

2. The bundle det(SY ) has a canonical trivialization. The Levi-Civita connection

on TY then induces a canonical spin connection A0 on SY with FAt
0
= 0. We

will always choose A0 for our base connection.

3. We have an additional action ȷ : CY → CY sending (a, ϕ) to (−a, jϕ). This

action, together with the constant gauge group S1, gives a Pin(2)-action on CY .

All the objects in the setup are Pin(2)-invariant, e.g. the functional CSDν0 , the

Coulomb slice Coul(Y ) and the L2
k-inner product etc.

In order to respect the additional ȷ-symmetry, we have two new requirements in

our construction.

1. The perturbation f should be invariant under ȷ. In other worlds, we should have

f(a, ϕ) = f(−a, jϕ).

2. The sets Jn,±
m should be invariant under ȷ.

A slight adaption of [37, Theorem 2.6] shows that for any real number δ, we can

find a ȷ-invariant extended cylinder function f̄ such that (δ, f̄) is a good perturbation.

Since we required the staircase function ḡ from Section 5.1 is even, it is not hard to

see that Jn,±
m is ȷ-invariant once the perturbation f is ȷ-invariant.
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We can now follow the construction from Section 5.1 . In particular, the sets Jn,±
m

are isolating neighborhoods for the Pin(2)-invariant flow φn
m when n is sufficiently large

relative to m and we define

In,+m (Pin(2)) := Σ−V̄
0
λnIPin(2)(φ

m
n , inv(J

n,+
m )),

In,−m (Pin(2)) := Σ−V
0
λnIPin(2)(φ

m
n , inv(J

n,−
m ))

as objects of CPin(2). As before, we obtain an object swfA(Y, s, A0, g;Pin(2)) of SPin(2)

given by

In1,+
1 (Pin(2))→ In2,+

2 (Pin(2))→ · · ·

and an object swfR(Y, s, A0, g;Pin(2)) of S
∗
Pin(2) given by

In1,−
1 (Pin(2))← In2,−

2 (Pin(2))← · · ·

for an increasing sequence of large positive integers {ni}. We define spectrum invariants

as in the torsion spinc case.

Definition 5.3.1. With the above setup, the Pin(2)-equivariant ind-spectrum and

pro-spectrum are defined by

SWFA(Y, s;Pin(2)) :=

(
swfA(Y, s, A0, g;Pin(2)), 0,

n(Y, s, A0, g)

2

)
,

SWFR(Y, s;Pin(2)) :=

(
swfR(Y, s, A0, g;Pin(2)), 0,

n(Y, s, A0, g)

2

)
.

as objects of SPin(2) and S∗Pin(2) respectively. Here n(Y, s, A0, g) is the rational number

defined in (5.10). As before, these objects are independent of the choices made in the

construction up to canonical isomorphism.
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CHAPTER 6

The invariance for the unfolded spectrum

In this chapter we will prove the invariance of our ind-spectrum (pro-spectrum). In

other words, we will show that the spectra given by different choices of parameters

are canonically isomorphic to each other (as objects of the category in which they are

defined). We focus on the S1-equivariant case and the Pin(2)-case can be proved in

the same way.

First, let us list the parameters in the order that the choices of a parameter can

only depend on the parameters listed before it (for example, R̃ is any number greater

R0, where R0 is the constant of Theorem 2.2.2 depending on g, A0 and f):

(I) The Riemannian metric g and the base connection A0;

(II) The good perturbation f : Coul(Y )→ R;

(III) The sequences of real numbers {λn}, {µn};

(IV) The number R̃ (in the definition of Str(R̃));

(V) The harmonic forms {hj}, the cutting function ḡ and the cutting value θ;

(VI) The positive integers nm in (5.7) and (5.9);

(VII) The Conley indices for the isolated invariant sets.

The invariance for (VII) is a direct consequence of the invariance of the Conley

index (see Subsection 3.2 and [57]). The commutative diagrams (5.5) and (5.8) imply

the invariance for (VI).
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In subsection 6.1, we will make a digression into the discussion of the finite di-

mensional approximation for a family of flows. In subsection 6.2, we will prove the

invariance for (III), (IV), (V). The invariance for (II) (which is the most interest-

ing one) and (I) will be proved in subsection 6.3 and subsection 6.4 respectively. In

subsection 6.5, we will discuss the restriction of our invariant to the S1-fixed point

sets.

6.1 The finite dimensional approximation for a family of flows

In this subsection, we extend finite dimensional approximation results in Section 2.2

for a continuous family of flows. This setup will be useful for proving the invariance

and calculating examples.

Let S be a compact manifold (possibly with boundary) and consider a smooth fam-

ily of Riemannian metrics {gs}s∈S and a smooth family of base connections {A0,s}s∈S.

As before, we require that i
2π
FAt

0,s
equals the harmonic form representing c1(s). We

denote by Coul(Y, s) the (L2
k-completed) Coulomb slice for (g̃s, A0,s). For each s, we

have an elliptic operator ls : Coul(Y, s) → Coul(Y, s) given by (∗d, /DA0,s
). Although

{Coul(Y, s)|s ∈ S} is a Hilbert bundle over S, by the Kuiper’s theorem, this bundle

is trivial and we can identify it with S × Coul(Y ) by fixing a trivialization. We have

the following generalization of Definition 2.2.5:

Definition 6.1.1. Let E be a vector bundle over Y . A family of smooth and bounded

maps {Qs : Coul(Y, s) → L2
k(Γ(E))}s∈S is called a continuous family of quadratic-like

maps if Qs is quadratic-like for each s ∈ S and, for each nonnegative integerm < k, we

have a uniform convergence ( d
dt
)mQsn(γn(t))→ ( d

dt
)mQs∞(γ∞(t)) in L

2
k−2−m whenever

there is a uniform convergent of compact paths ( d
dt
)jγn(t) → ( d

dt
)jγ∞(t) uniformly in

L2
k−1−j for each j = 0, 1, · · · ,m with γn : I → Coul(Y, sn) and sn → s∞.

We now let {Qs : Coul(Y, s) → L2
k(ker d

∗ ⊕ Γ(SY ))}s∈S be a continuous family of

quadratic-like maps. As before, for real numbers λ < 0 ≤ µ, we define V µ
λ (s) ⊂

Coul(Y, s) to be the space spanned by the eigenvectors of ls with eigenvalue in (λ, µ].
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We also consider V̄ 0
λ (s), which is the orthogonal complement of iΩ1

h(Y ) in V 0
λ (s). Note

that these spaces usually do not change continuously with s because the dimension

can jump at eigenvalues of ls.

Throughout this subsection, we say that, for an interval I, a path γ : I → Coul(Y, s)

is an actual trajectory if it satisfies d
dt
γ(t) = −(l + Qs)γ(t) and a path γ : I → V µ

λ (s)

is an approximated trajectory if it satisfies d
dt
γ(t) = −(l + pµλ ◦Qs)γ(t) for some µ, λ.

We denote by φ(λ, µ, s) the flow generated by −ι · (l + pµλ ◦ Qs), where ι is a bump

function which equals 1 on any bounded subset involved in our discussion.

Theorem 6.1.2. Let B be a closed and bounded subset of Coul(Y ) and suppose that

there exists a closed subset A ⊂ int(B) such that, for any s ∈ S and any actual

trajectory γ : R → Coul(Y, s) contained in B, we have γ contained in int(A). Then

there exist constants T,−λ̄, µ̄≫ 0 such that the following statements hold:

(i) For any λ < λ̄, µ > µ̄ and s ∈ S, if an approximated trajectory γ : [−T, T ] →

V µ
λ (s) is contained in B, then we have γ(0) ∈ A. In particular, B ∩ V µ

λ is an

isolating neighborhood for the flow φ(λ, µ, s);

(ii) The spectra Σ−V
0
λ (s)IS1(φ(λ, µ, s), Inv(B∩V µ

λ (s))) and Σ−V̄
0
λ (s)IS1(φ(λ, µ, s), Inv(B∩

V µ
λ (s))) do not depend on the choice of λ < λ̄ and µ > µ̄ up to canonical isomor-

phisms in C. We denote these objects by I(B, s) and Ī(B, s) respectively.

(iii) For any path α : [0, 1]→ S, we have well defined isomorphisms

ρ(B,α) : I(B,α(0))→ Σsf(− /D,α)CI(B,α(1)),

ρ̄(B,α) : Ī(B,α(0))→ Σsf(− /D,α)CĪ(B,α(1)),

where sf(− /D, α) denotes the spectral flow of − /D along the path α. Moreover, the

isomorphisms ρ and ρ̄ only depend on the homotopy class of α relative to its end

points.

Proof. For the first part, the proof is similar to that of Corollary 2.2.8: we suppose

there exists no such λ̄, µ̄, T . Then we can find a sequence of approximated trajectories
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γn : [−Tn, Tn] → Coul(Y, sn) with Tn,−λn, µn → +∞ such that γn is contained in

B but γn(0) /∈ A. Since S is compact, we can assume sn → s∞ after passing to a

subsequence. The properties in Definition 6.1.1 allow us to repeat the argument in the

proof of Proposition 2.2.4 and find an actual trajectory γ∞ : R → Coul(Y, s∞) as the

limit of γn. Consequently, we have γ contained in B and γ∞(0) /∈ int(A). This is a

contradiction with our hypothesis. Thus, the proof of (i) is finished.

The proof of (ii) is a straight forward adaption of arguments from Proposition 5.1.6

and we omit it. For (iii), we will focus on the case ρ(B,α) as the other case can be

proved similarly. For brevity, we will denote byEµ
λ(s) the Conley index IS1(φ(λ, µ, s), Inv(B∩

V µ
λ (s))). The isomorphism ρ(B,α) is constructed as follows: we consider the interval

[0, 1] as the union of subintervals [tj, tj+1] with j = 1, · · · ,m such that, for each j, we

can find µj > µ̄ and λj < λ̄ which are not eigenvalues of lα(t) for any t ∈ [tj, tj+1].

Then V
µj

λj
(α(t)) from t = tj to t = tj+1 is a continuous family of linear subspaces and

φ(λj, µj, α(t)) is a continuous family of flows on them. By the homotopy invariance of

the Conley index [57, Section 6], we get an isomorphism

ρj : E
µj

λj
(α(tj))

≃−→ E
µj

λj
(α(tj+1)). (6.1)

Notice that

[V 0
λj
(α(tj))] + [sf(− /D, α([tj, tj+1]))C] = [V 0

λj
(α(tj+1))]

as elements of the representation ring of S1. We can desuspend both sides of (6.1) and

get an isomorphism

I(B,α(tj))→ Σsf(− /D,α([tj ,tj+1]))CI(B,α(tj+1)).

The isomorphism ρ(B,α) is defined as the composition of the above isomorphisms for

j = 1, . . . ,m.

We will see that ρ(B,α) is independent of the choices of tj, λj and µj. First, fix a

choice of {tj} and choose different choices of {λ′j} and {µ′j}. Without loss of generality,

we may assume that λj < λ′j, µj > µ′j. As before, we have an isomorphism

ρ′j : E
µ′
j

λ′
j
(α(tj))

≃−→ E
µ′
j

λ′
j
(α(tj+1)).
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As in Proposition 5.1.6, we have isomorphisms for stability of conley indices

σj : E
µj

λj
(α(tj))

≃−→ Σ
V

λ′j
λj E

µ′
j

λ′
j
(α(tj)),

σj+1 : E
µj

λj
(α(tj+1))

≃−→ Σ
V

λ′j
λj E

µ′
j

λ′
j
(α(tj+1)).

Using the formula in [57, Theorem 6.7], we can easily see that σj+1◦ρj is S1-equivariantly

homotopic to ρ′j ◦σj. This implies that Σ
−V 0

λj ρj and Σ
−V 0

λ′
j ρ′j are equal to each other as

morphisms in C. Therefore ρ(B,α) does not depended on the choices of {λj} and {µj}.

Next we prove the independence of the choice of {tj}. Let us pick another sequence

{t′j}m
′

j=1. Without loss of generality, we will only work on the case {t′j} ⊂ {tj}, i.e. {tj}

is a finer subdivision. Let us suppose that

tj = t′j′ < tj+1 < tj+2 = t′j′+1

for some j′ ∈ {1, . . . ,m′}. An equivariant version of [57, Corollary 6.8] implies that

ρj+1 ◦ ρj is S1-equivariantly homotopic to ρ′j′ . This discussion implies that ρ(B,α) is

independent of the choice of {tj}.

Now suppose that we have two paths α0, α1 which are homotopic to each other

relative to their end points by a homotopy αu as u ∈ [0, 1]. For any (t0, u0) ∈ [0, 1]2,

one can also find µ > µ̄ and λ < λ̄ and a small neighborhood O of (t0, u0) such that

µ, λ are not eigenvalues of lαu(t) for any (t, u) in O. By the definition of ρ and the

homotopy invariance of the Conley index, we see that ρ(B,αu) does not change as u

varies inside O. By considering a finite cover of [0, 1]2 by such neighborhoods, we see

that ρ(B,α0) = ρ(B,α1). This finishes the proof of the theorem.

The following corollary is directly implied by the homotopy invariance of the

attractor-repeller map.

Corollary 6.1.3. Let B1 ⊂ B2 be two closed and bounded sets both satisfying the

hypothesis of Theorem 6.1.2. Suppose that for any sufficiently large −λ, µ and any s ∈

S, the set Inv(φ(λ, µ, s), B1∩V µ
λ (s)) is an attractor in Inv(φ(λ, µ, s), B2∩V µ

λ (s)). Then

the desuspensions of the corresponding attractor maps give well defined morphisms
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i(s) : I(B1, s) → I(B2, s) and ī(s) : Ī(B1, s) → Ī(B2, s). Moreover, for any path

α : [0, 1]→ S, we have

ρ(B2, α) ◦ i(α(0)) = (Σsf(− /D,α)Ci(α(1))) ◦ ρ(B1, α),

ρ̄(B2, α) ◦ ī(α(0)) = (Σsf(− /D,α)Cī(α(1))) ◦ ρ̄(B1, α).

The repeller version of this result also holds given that Inv(φ(λ, µ, s), B1 ∩ V µ
λ (s))

is a repeller in Inv(φ(λ, µ, s), B2 ∩ V µ
λ (s)) for any s ∈ S.

6.2 The invariance for (III),(IV),(V)

Notice that the three parameters in (V) only affect our results through the definition

of the bounded set J±m. Suppose that we choose two different triples of parameters

({hj}, ḡ, θ) and ({h̃j}, g̃, θ̃) and use them to define the sets J+
m and J̃+

m respectively.

From these subsets, we construct two direct systems, which we denote by (5.7) and

(5.7’) respectively. Notice that J+
m and J̃+

m are bounded subsets of Str(R̃). We can

find 0 < m1 < m2· and 0 < m̃1 < m̃2 < · such that:

J+
m1
⊂ J̃+

m̃1
⊂ J+

m2
⊂ J̃+

m̃2
⊂ · · · , (6.2)

which also implies the following inclusions for any positive integer n

Jn,+
m1
⊂ J̃n,+

m̃1
⊂ Jn,+

m2
⊂ J̃n,+

m̃2
⊂ · · ·

Notice that for any j > 0 and any n,m large enough relative to mj, m̃j. The flow

φn
m goes inside Jn,+

mj
and J̃n,+

m̃j
along ∂Jn,+

mj
\ ∂Str(R̃) and ∂J̃n,+

m̃j
\ ∂Str(R̃) respectively.

Therefore, the attractor maps, together with the isomorphisms ρ̃∗,+∗ (as defined in

Proposition 5.1.6) give a direct system in the category C

In1,+
m1
→ Ĩ ñ1,+

m̃1
→ In2,+

m2
→ Ĩ ñ2,+

m̃2
→ · · · (6.3)

for suitable choices of n1 < ñ1 < n2 < ñ2 < · · · , where the connecting maps are defined

in a similar way as (5.7). Since the attractor maps are transitive as mentioned after

Proposition 3.2.4, the composition of the connecting morphisms I
nmj ,+
mj → Ĩ

ñj ,+
m̃j

→
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I
nj+1,+
mj+1 is the same as the attractor map for Inv(Jn,+

mj
) ⊂ Inv(Jn,+

mj+1
). Therefore, we see

that (6.3) contains both a subsystem of (5.7) and a subsystem of (5.7’). By Lemma

3.1.1, this implies that (5.7) and (5.7’) are canonically isomorphic as objects of S . In

other words, up to canonical isomorphisms, the spectrum invariants swfA and SWFA

do not depend on the choice of {hj}, ḡ and θ. The case of swfR and SWFR can be

shown similarly. We have proved the invariance for (V).

The proof of the invariance for (IV) is easy: Let R̃0 < R̃1 be two numbers which

are both larger than the constant R0 from Theorem 2.2.2. Notice that when we choose

a suitable choice of parameters ({hj}, ḡ, θ) for R̃1, these parameters also work for R̃0

since R̃0 < R̃1. Denote by Jn,±
m (R̃i) the corresponding bounded set corresponding for

i = 0, 1. Then it is straightforward to see that, for any positive integer m and any

sufficiently large integer n (relative to m), the sets Jn,±
m (R̃0) and Jn,±

m (R̃1) are both

isolating neighborhoods of the same isolated invariant set. Therefore, their Conley

indices are related to each other by canonical isomorphims which are compatible with

attractor-repeller maps. This implies the invariance for (IV).

Remark. Actually, from the above argument, we can replace Str(R) in our construction

with any set C ⊂ Coul(Y ) satisfying the following conditions:

1. For any bounded subset A ⊂ iΩ1
h(Y ), the set p−1H (A) ∩ C is also bounded;

2. Any finite type Seiberg-Witten trajectory is contained in the interior of C.

Also, we can define {J±m} to be any sequence of bounded, closed subsets of C such that

J±m ⊂ J±m+1, ∪∞m=1J
±
m = C and for any m > 0 and n large enough relative to m the flow

φn
m goes inside (resp. outside) Jn,+

m (resp. Jn,−
m ) along ∂Jn,+

m \ ∂C (resp. ∂Jn,−
m \ ∂C).

As for (III), we choose different sequences {λn}, {µn} and {λ̃n}, {µ̃n}. By Lem-

ma 3.1.1, we can pass to their subsequences and assume that λn+1 < λ̃n < λn and

µn < µ̃n < µn+1 for any n. Let In,+m and Ĩn,+m be the objects of C obtained by desus-

pending the Conley indices corresponding to {λn}, {µn} and {λ̃n}, {µ̃n} respectively.

We can repeat the proof of Proposition 5.1.6 and establish canonical isomorphisms

In,+m
∼= Ĩn,+m and In+1,+

m
∼= Ĩn+1,+

m for any positive integer m and any sufficiently large
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integer n (relative to m). Moreover, they form commutative diagrams similar to (5.5).

This implies that swfA and SWFA are independent of (III). The repeller case follows

in the same manner.

6.3 The invariance for (II)

In this subsection, we will consider any two choices of good perturbation fj : CY → R

for j = 1, 2. Recall that fj(a, ϕ) =
δj
2
∥ϕ∥2L2 + f̄j(a, ϕ), where δj is a real constant and

f̄j is an extended cylinder function. We first assume that δ1 = δ2 = δ. Since we do not

know whether the space of good perturbation is path connected, the usual homotopy

invariance argument does not work. Therefore, we follow a different approach here.

Because the whole argument is relatively long and technical, we first sketch the the

rough idea as follows.

Denote by Lj the restriction of CSDν0,fj to Coul(Y ). Recall that we identify

iΩ1
h(Y ) with Rb1 by choosing independent harmonic forms {hj}. For any real number

e ≥ 1, we will construct a family of “mixed” functionals Ls
e for s ∈ [0, 1] such that

L1
e = L2 and L0

e equals L1 on p
−1
H ([−e+1, e−1]b1) and equals L2 on p

−1
H (Rb1 \(−e, e)b1).

Suppose that all finite type flow lines of Ls
e are contained in Str(R̃) and consider an

increasing sequence of bounded subsets

J+
m1
⊂ J̃+

m̃1
⊂ J+

m2
⊂ J̃+

m̃2
⊂ · · ·

where J+
mj

and J̃+
mj

are the bounded subsets of Str(R̃) corresponding to L1 and L2

respectively. We will require that, for each positive integer j, there exists a real number

ej ≥ 1 satisfying

J+
mj
⊂ p−1H ([−ej + 1, ej − 1]b) ∩ Str(R̃) ⊂ p−1H ([−ej, ej]b) ∩ Str(R̃) ⊂ J+

m̃j
.

Let φn(L) be the approximated gradient flow of L on the compact set Jn,+
m . Since L1

equals L0
ej

when restricted to J+
mj

and the flow goes inside Jn,+
mj

, we have an attractor

map

IS1(φn(L1), Inv(J
n,+
mj

)) = IS1(φn(L0
ej
), Inv(Jn,+

mj
))→ IS1(φn(L0

ej
), Inv(J̃n,+

m̃j
)).
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On the other hand, we have IS1(φn(L0
ej
), Inv(J̃n,+

m̃j
)) ∼= IS1(φn(L2), Inv(J̃

n,+
m̃j

)) by con-

tinuity of Conley indices. We combine these and obtain a map

IS1(φn(L1), Inv(J
n,+
mj

))→ IS1(φn(L2), Inv(J̃
n,+
m̃j

)).

We also construct another family of functionals L̃s

e to obtain a map IS1(φn(L2), Inv(J̃
n,+
m̃j

))→

IS1(φn(L1), Inv(J
n,+
mj+1

)). We will then prove that the composition

IS1(φn(L1), Inv(J
n,+
mj

))→ IS1(φn(L2), Inv(J̃
n,+
m̃j

))→ IS1(φn(L1), Inv(J
n,+
mj+1

))

is just the attractor map corresponding to L1. A similar result holds for L2. There-

fore, we have constructed a “mixed direct system” in the category C and the spectra

corresponding to f1, f2 are both subsequential colimit of it. Therefore, the invariance

of swfA is implied by Lemma 3.1.1. The swfR case can be proved similarly.

There is one technical difficulty here. We need to find a uniform constant R2

(independent of e, s) such that Str(R2) contains all the finite type trajectories of Ls
e

and L̃s

e. This will be taken care by Lemma 6.3.9 and Lemma 6.3.11, which generalize

Theorem 2.2.2.

Let us prepare some general results regarding the perturbations. Recall that we

have a canonical isomorphism

π0(GY ) ∼= π0(GhY ) ∼= H1(Y ;Z).

For any positive integer m, we denote by mGY (resp. mGhY ) the subgroup of GY (resp.

GhY ) consisting of the connected components corresponding to m ·H1(Y ;Z).

Definition 6.3.1. For a positive integer m, a continuous function f : Coul(Y )→ R is

called m-periodic if f is invariant under the action of mGhY , which implies that f ◦ Π

is invariant under mGY .

We will also need the following definition of tame functions.

Definition 6.3.2. A smooth function f : Coul(Y ) → R is called a tame function if

the formal gradient grad(f ◦ Π) satisfies all the conditions of the tame perturbations

115



[33, Definition 10.5.1] except that it needs not be invariant under the full gauge group

GY . where Π : CY → Coul(Y ) is the non-linear Coulomb projection.

Furthermore, a continuous family of functions {fw} parametrized by a compact

manifold W (possibly with boundary) is called a continuous family of tame functions

if each function is tame and grad (fw ◦ Π) extends to a continuous family of maps on

the cylinder I × Y . In addition, we require that the constant m2 and the function µ1

from [33, Definition 10.5.1] are uniform with respect to w ∈ W .

Now we describe a way to construct a continuous family of tame functions from

any pair of extended cylinder function, given a family of smooth function.

Lemma 6.3.3. Let W be a compact manifold and τ̃w : iΩ
1
h(Y ) ∼= Rb1 → R be a smooth

family of smooth functions parametrized by w ∈ W . Then, we can choose a sequence of

constants {Cj} in the definition of the space of perturbations P (c.f. Definition 2.1.1)

so that, for any δ ∈ R and any f̄1, f̄2 ∈ P, a family of functions f̃w : Coul(Y ) → R

given by

f̃w(a, ϕ) :=
δ

2
∥ϕ∥2L2 + (τ̃w ◦ πH(a)) · f̄1(a, ϕ) + (1− τ̃w ◦ πH(a)) · f̄2(a, ϕ). (6.4)

is a continuous family of tame functions. Moreover, if τ̃w is mZb1-periodic, then f̃w is

m-periodic.

Proof. This is actually a parametrized version of [33, Theorem 11.6.1] and we will

focus only on the term (τ̃w ◦ πH(a)) · f̄1(a, ϕ). To avoid repeating complicated analysis

there, we introduce a trick turning a family of functions into a single function. Let

Y ′ be another spinc 3-manifold with b1(Y
′) > 2 dimW so that we can embed W in

the torus iΩ1
h(Y

′)/Gh,oY ′ . We now consider the family {τ̃w}w∈W as a single function on

iΩ1
h(Y )×W and extend it to τ̃ : iΩ1

h(Y )× iΩ1
h(Y

′)→ R. Recall that f̄1 =
∑∞

j=1 ηj f̂j,

where f̂j is a cylinder function of Y with
∑∞

j=1Cj |ηj| <∞. We define a function

f̂ ′j : CY × CY ′ → R

given by

(a, ϕ)× (a′, ϕ′) 7→ τ̄(π′H(a
′), πH(a)) · f̂j(a, ϕ),
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where π′H : iΩ
1(Y ′) → iΩ1

h(Y
′) denotes the projection onto harmonic forms on Y ′.

These functions f̂ ′j almost fit into the definition of cylinder functions (cf. [33, Sec-

tion 11]), on C(Y ) × C(Y ′). We can still repeat the argument the proof of [33, Theo-

rem 11.6.1] and show that, by setting {Cj} to increase fast enough, the formal gradient

grad(
∑

j ηj f̂
′
j) is a tame perturbation for the manifold Y ∪ Y ′ except that it is not in-

variant under the full gauge group. As a result, it is not hard to see that this actually

implies that (τ̃w ◦ πH(a)) · f̄1(a, ϕ) is a continuous family of tame functions.

For a general functional L : Coul(Y ) → R, we can consider its negative gradient

flow line γ : I → Coul(Y ), described by the equation dγ(t)
dt

= − g̃radL(γ(t)). Such a

trajectory will be called an L-trajectory. As before, we define the topological energy

by

E top(γ,L) := 2(sup
t∈I
L(γ(t))− inf

t∈I
L(γ(t))). (6.5)

Recall that a trajectory is called finite type if it is contained in a bounded subset of

Coul(Y ). We have the following uniform boundedness result for functionals perturbed

by periodic functions.

Proposition 6.3.4. Let {fw} be a continuous family of m-periodic tame functions

parametrized by a compact manifold W and consider a family of functionals Lw =

CSDν0 |Coul(Y ) + fw. Then for any C > 0, there exist constants R,C ′ such that for

any w ∈ W and any Lw-trajectory γ : [−1, 1] → Coul(Y ) with topological energy

E top(γ,Lw) ≤ C, we have γ(0) ∈ Str(R) and |Lw(γ(0))| ≤ C ′.

Proof. The proof is a slight adaption of [33, Theorem 10.7.1]. Suppose that the state-

ment is not true. Then we can find a sequence {γj} of Lwj
-trajectory γj : [−1, 1] →

Coul(Y ) with wj ∈ W such that at least one of the following two situations happens:

• lim supj→∞ ∥uj · γj(0)∥L2
k
=∞ for any sequence {uj} ⊂ mGhY ;

• lim supj→∞ |Lwj
(γj(0))| =∞.
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Since W is compact, after passing to a subsequence, we may assume that wj → w∞.

We lift γj to a path γ̃j : [−1
2
, 1
2
] → CY , which is the negative gradient flow line

of CSDν0 + fwj
◦ Π. Note that we only consider an interior domain here to avoid a

possible regularity issue. With X = [−1
2
, 1
2
]× Y , we treat γ̃j as a section over X and

denote it by (âj, ϕ̂j). We can find a gauge transformation ûj over X whose restrictions

to {0} × Y belong to mGY such that the following conditions hold:

1. d̂∗(âj − û−1j dûj) = 0 on X.

2. (âj − û−1j dûj)(n) = 0 on ∂X, where n is the outward normal vector ;

3. For each for l = 1, . . . , b1, we have
∫
X̃
(âj − û−1j dûj) ∧ (∗4ĥl) ∈ [0,m) where ĥl is

the pull-back of hl on X;

The conditions in Definition 6.3.2 allow us to repeat the bootstrapping argument in

the proof of [33, Theorem 10.7.1] and obtain the following statement. After passing to

a further subsequence, (âj − û−1j dûj, ûj · ϕ̂j) is convergent in L
2
k+ 1

2

when restricted to

any interior cylinder. In particular, this implies that Π(ûj|{0}×Y · γ̃j(0)) is convergent

in L2
k. Notice that Π(ûj|{0}×Y · γ̃j(0)) equals uj · γj(0) for some uj ∈ mGhY . Also

Lwj
(γj(0)) = Lwj

(uj · γj(0)) is a convergent sequence since Lw(a, ϕ) is continuous in w

and (a, ϕ). Therefore, we arrive at a contradiction with the above two situations.

We also have the following lemma, whose proof is essentially the same as Lem-

ma 2.2.7 and we omit it.

Lemma 6.3.5. Let {fw} be a continuous family of tame functions. For each w ∈

W , we define a nonlinear term cw : Coul(Y ) → L2
k(i ker d

∗ ⊕ Γ(SY )) of the gradient

of CSDν0 |Coul(Y ) + fw as in (2.8) and (2.9). Then {cw} is a continuous family of

quadratic-like maps.

Now we construct explicit “the mixed perturbation” as follows. Choose a smooth

function τ : R → [0, 1] satisfying τ |(−∞, 1
4
] ≡ 0 and τ |[ 1

2
,∞) ≡ 1. For any real number
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e ≥ 1, we define a bump function τe : iΩ
1
h(Y )→ [0, 1] from τ by

τe(x1, x2, · · · , xb1) =
∏

1≤j≤b1

τ(e+ xj)τ(e− xj).

Each τe gives an induced tame function f̃ 0
e : Coul(Y )→ R as in (6.4), i.e.

f̃ 0
e (a, ϕ) :=

δ

2
∥ϕ∥2L2 + (τe ◦ pH(a, ϕ))) · f̄1(a, ϕ) + (1− τe ◦ pH(a, ϕ)) · f̄2(a, ϕ),

where f̄1, f̄2 ∈ P . With fj =
δ
2
∥ϕ∥2L2 + f̄j, we note that the function f̃ 0

e equals f1 on

p−1H ([−e+1, e−1]b) and equals f2 on p
−1
H (Rb \ (−e, e)b). For s ∈ [0, 1], we also consider

an interpolation τ se = (1− s)τe and define

f̃ s
e = (1− s)f̃ 0

e + sf2 and Ls
e = CSDν0 |Coul(Y ) + f̃ e

s . (6.6)

Notice that f̃ s
e is essentially a tame function induced from τ se which is not m-periodic

for any positive integer m. To utilize Proposition 6.3.4, we will introduce an explicit

family of smooth periodic functions such that the induced periodic tame functions

agree with f̃ s
e on desirable regions.

For any positive integer M , we consider a family of (6M + 6)-periodic smooth

functions parametrized by compact manifold WM described as follows. The manifold

WM is of the form WM,1⨿WM,2⨿WM,3 where WM,1 := [1,M +1]× [0, 1] and WM,2 :=

{(B, σ) | ∅ ≠ B ⊂ {1, 2, . . . , b1} and σ : B → {±1}} × (R/(6M + 6)Z) × [0, 1] and

WM,3 = {1, 2}. We construct a family of functions {τ̃w} as following:

• For each positive integerM and (e, 0) ∈ WM,1, we assign the unique (6M+6)Zb1-

periodic function τ̃e : Rb1 → R which extends τe|[−3M−3,3M+3]b1 .

• For each positive integerM , we pick a (6M+6)- periodic function τ̄M : R→ [0, 1]

which extends τ |[−2M−2,2M+2]. For each (B, σ, θ, 0) ∈ WM,2, we assign a function

τ̃B,σ,θ : Rb1 → [0, 1] given by

τ̃(B,σ,θ)(x1, · · · , xb1) :=
∏
j∈B

τ̄M(θ + σ(j)xj).

• For general w = (w′, s) ∈ WM,1

⨿
WM,2, we simply define τ̃(w′,s) := (1− s)τ̃w′ .
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• We set τ̃j ≡ 2− j for j ∈ WM,3 so that f̃j = fj.

Lemma 6.3.6. For each positive integerM , any (s, e) ∈ [0, 1]×[1,∞) and (e1, e2, · · · , eb1) ∈

Rb1, there exists an element w ∈ WM such that the induced function f̃w equals f̃ s
e on

p−1H ([e1 −M, e1 +M ]× · × [eb1 −M, eb1 +M ]).

Proof. For convenience, we denote E = [e1 −M, e1 +M ]× · × [eb1 −M, eb1 +M ]. We

will consider two main cases with several subcases:

Case e ∈ [1,M+1]; If E∩[−M−1,M+1]b1 ̸= ∅, then we have E ⊂ [−3M−3, 3M+

3]b1 . This implies τ̃e|A = τe|A. Therefore, we can just choose w = (e, s) ∈ WM,1. If

E ∩ [−M − 1,M + 1]b1 = ∅, then we have p−1H (E) ⊂ p−1H (Rb1 \ (−e, e)b1) and f̃ s
e = f2

on p−1H (E). We just take w = 2 ∈ WM,3 so that f̃w = f2 in this case.

Case e > M + 1; We consider the following subsets of [1, 2, · · · , b]:

B1 = {j | [ej −M, ej +M ] ∩ [e− 1, e] ̸= ∅},

B2 = {j | [ej −M, ej +M ] ∩ [−e,−e+ 1] ̸= ∅},

B3 = {j | [ej −M, ej +M ] ∩ [−e, e] = ∅}.

If B1 ∪B2 = ∅, then E is either contained in [−e+1, e− 1]b1 or Rb1 \ (−e, e)b1 and we

can just take w ∈ WM,3. If B3 ̸= ∅, then we have τe|E ≡ 0 and f̃ s
e |p−1

H (E) = f2|p−1
H (E).

We can take w = 2 ∈ WM,3 again in this subcase. We are now left with the case

B1 ∪B2 ̸= ∅ and B3 = ∅. Notice that for any (x1, · · · , xb1) ∈ E, the following holds:

j ∈ B1 ⇒ e+ xj ≥ 2e− 1− 2M ≥ 1 and e− xj ∈ [−2M, 2M + 1];

j ∈ B2 ⇒ e− xj ≥ 2e− 1− 2M ≥ 1 and e+ xj ∈ [−2M, 2M + 1];

j /∈ B1 ∪B2 ⇒ e− |xj| ≥ 1.

Therefore, for such (x1, · · · , xb1), we have

τe(x1, · · · , xb) =
∏
j∈B1

τ(e− xj) ·
∏
j∈B2

τ(e+ xj) =
∏
j∈B1

τ̄M(e− xj) ·
∏
j∈B2

τ̄M(e+ xj),

where we use the fact that τ̄M |[−2M−2,2M+2] = τ |[−2M−2,2M+2]. As a result, we see that

f̃ s
e = f̃w on p−1H (E) when we set w = (B1∪B2, σ, e, s) ∈ WM,2 with σ : B1∪B2 → {±1}

sending B1 to −1 and B2 to 1. Notice that B1 ∩B2 = ∅ because e > M + 1.
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We also have the following extension of Lemma 6.3.3 to a countable union of

compact sets.

Lemma 6.3.7. We can choose a sequence of constants {Cj} in the definition of P

(see Definition 2.1.1) such that for any positive integer M and any f̄1, f̄2 ∈ P, the

induced family {f̃w}w∈WM
is a continuous family of (6M +6)-periodic tame functions.

Proof. For each WM , there exists a sequence {CM,j}j such that, for any f1, f2 ∈

P({CM,j}j), the family {f̃w}w∈WM
is a continuous family of (6M + 6)-periodic tame

functions. It is straightforward to see that a sequence of positive real numbers {Cj}

such that

Cj ≥ max
1≤M≤j

CM,j

satisfies our requirement.

Next is the boundedness result for functionals with mixed perturbations.

Lemma 6.3.8. For any C > 0, there exist constants R,C ′ such that for any (e, s) ∈

[1,∞) × [0, 1] and any Ls
e-trajectory γ : [−2, 2] → Coul(Y ) with topological energy

E top(γ;Ls
e) ≤ C, we have γ(0) ∈ Str(R) and |Ls

e(γ(0))| < C ′.

Proof. We first write down g̃rad f̃ s
e as

g̃rad f̃ s
e (a, ϕ) = δϕ+ (1− s)(f̄1(a, ϕ)− f̄2(a, ϕ)) g̃rad(τe ◦ pH)(a, ϕ)

+ (1− s)(τe ◦ pH(a, ϕ)) g̃rad f̄1(a, ϕ) + (1− (1− s)(τe ◦ pH(a, ϕ))) g̃rad f̄2(a, ϕ).

By boundedness and tameness conditions of f̄j, we see that

∥ grad(ξse ◦ Π)(a, ϕ)∥L2 = ∥ g̃rad ξse(a, ϕ)∥g̃ ≤ m(1 + ∥ϕ∥L2),

where m is a constant independent of (e, s). This implies

∥ grad(ξse ◦ Π)(a, ϕ)∥2L2 ≤ 2m2 + 2m2∥ϕ∥2L2 (6.7)

We can lift γ|[−1,1] to γ̃ : [−1, 1] → CY , which is a negative gradient flow line

for the functional Ls
e ◦ Π. Now we follow the argument on Page 161 of [33]. Since

Ls
e ◦ Π = CSDν0 + ξse ◦ Π, we have

∥ gradCSDν0∥2L2 − 2∥ grad(ξse ◦ Π)∥2L2 ≤ 2∥ grad(Ls
e ◦ Π)∥2L2 .
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By formula (6.7), this implies∫ 1

−1
(∥ gradCSDν0(γ̃(t))∥2L2 + ∥γ̃′(t)∥2L2)dt− 2m2

∫ 1

−1
∥ϕ(t)∥2L2dt− 4m2

≤ 2

∫ 1

−1
(∥ grad(Ls

e ◦ Π)(γ̃(t))∥2L2 + ∥γ̃′(t)∥2L2)dt < 2E top(γ,Le
s) ≤ 2C.

(6.8)

We can treat γ̃ as a section over the 4-manifold [−1, 1] × Y and denote it by (â, ϕ̂).

By Definition 4.5.4 and formula (4.19) of [33], the above estimate on the analytical

energy actually implies

1

4

∫
[−1,1]×Y

|dâ|2 +
∫
[−1,1]×Y

|∇Âϕ̂|
2 +

1

4

∫
[−1,1]×Y

(|ϕ̂|2 − C2)
2 ≤ C3

where Â is the connection corresponding to â and C2 is a constant independent of

e, s. By Corollary 4.5.3, Lemma 5.1.2 and Lemma 5.1.3 of [33], we can find a gauge

transformation u : [−1, 1] × Y → S1 such that ∥u · γ̃∥L2
1([−1,1]×Y ) is bounded by a

uniform constant C4. Let ut equals u|{t}×Y . Then there exists C5 such that for any

t1, t2 ∈ [−1, 1], we have

∥ΠH(ut1 · γ̃(t1))− ΠH(ut2 · γ̃(t2))∥L2 ≤ ∥ut1 · γ̃(t1)∥L2 + ∥ut2 · γ̃(t2)∥L2 ≤ C5

Recall that ΠH : CY → iΩ1
h(Y ) is just the orthogonal projection. Since ut1 and ut2 are

in the same component of the gauge group GY , we have

∥pH(γ(t1))− pH(γ(t2))∥L2 = ∥ΠH(ut1 · γ̃(t1))− ΠH(ut2 · γ̃(t2))∥L2 ≤ C5.

This implies that γ([−1, 1]) is contained in p−1H ([e1−M0, e1+M0]×·×[eb−M0, eb+M0])

for some (e1, · · · , eb) ∈ Rb and some uniform constant M0 ∈ Z≥1. By Lemma 6.3.6,

we have ξse |p−1
H ([e1−M0,e1+M0]×·×[eb−M0,eb+M0])

= fw for some w ∈ WM0 . This implies that

γ|[−1,1] is also a trajectory for CSDν0 |Coul(Y )+fw. Notice that E top(γ|[−1,1], CSDν0 |Coul(Y )+

fw) < C. Our result is directly implied by Proposition 6.3.4.

The previous results implies uniform boundedness for finite type trajectories for

the family {Ls
e}. For convenience, we will say that functional L : Coul(Y ) → R is

called R-bounded if any finite type L-trajectory is contained in Str(R).
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Corollary 6.3.9. There exists a uniform constant R1 > 0 such that for any e ∈ R≥1

and s ∈ [0, 1], the functionals Ls
e is R1-bounded.

Proof. Let γ : R→ Coul(Y ) be a finite type Ls
e-trajectory. Since E top(γ,Ls

e) <∞, we

have E top(γ|[t−1,t+1],Ls
e) < 1 for any t with |t| sufficiently large. By Lemma 6.3.8 (with

C = 1), we have |Ls
e(γ(t))| ≤ C ′ for such t. Since Ls

e is decreasing along γ, we see

that Ls
e(γ(t − 1)) − Ls

e(γ(t + 1)) < 2C ′ for any t ∈ R. We apply Lemma 6.3.8 again

(now C = 2C ′), so there is a uniform constant R1 such that γ(t) ∈ Str(R1) for any

t ∈ R.

For the reader’s convenience, we summarize the functionals we will be dealing with.

Two extended cylinder functions f̄1, f̄2 are now fixed, along with their corresponding

functional L1,L2. We have the continuous family of functionals {Ls
e} (see (6.6)) such

that, for each (e, s) ∈ [1,∞)× [0, 1], they satisfy

L1
e = L2,

L0
e(x) =

 L1(x) if x ∈ p−1H ([−e+ 1, e− 1]b1),

L2(x) if x ∈ p−1H (Rb1 \ (−e, e)b1),

Ls
e(x) = L2(x) if x ∈ p−1H (Rb1 \ (−e, e)b1).

Since the above construction is asymmetrical in f̄1 and f̄2, we also consider another

family of functionals {L̃s
e} where the role of f̄1 and f̄2 are reversed. In other words,

we have

L̃1

e = L1,

L̃0

e(x) =

 L2(x) if x ∈ p−1H ([−e+ 1, e− 1]b),

L1(x) if x ∈ p−1H (Rb \ (−e, e)b),

L̃s

e(x) = L1(x) if x ∈ p−1H (Rb \ (−e, e)b).

Roughly speaking, the family {Ls
e} will give a morphism from Conley indices given by

L1 to Conley indices given by L2 and vice versa.

To show equivalence, we need to introduce (final) two more families of functionals.
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For two real numbers e, e′ with e− 1 ≥ e′ ≥ 1 and s ∈ [0, 1], we define

Ls
e,e′(x) =

 L̃
s

e′(x) if x ∈ p−1H ([−e′, e′]b1)

L0
e(x) otherwise,

L̃s

e,e′(x) =

 L
s
e′(x) if x ∈ p−1H ([−e′, e′]b1)

L̃0

e(x) otherwise.

These functionals have the following properties:

1. L1
e,e′ = L0

e and L̃1

e,e′ = L̃
0

e.

2. L0
e,e′(x) =

 L2(x) if x ∈ p−1H ([−e′ + 1, e′ − 1]b1 ∪ (Rb1 \ (−e, e)b1)),

L1(x) if x ∈ p−1H ([−e+ 1, e− 1]b1 \ (−e′, e′)b1).

3. L̃0

e,e′(x) =

 L1(x) if x ∈ p−1H ([−e′ + 1, e′ − 1]b1 ∪ (Rb1 \ (−e, e)b1)),

L2(x) if x ∈ p−1H ([−e+ 1, e− 1]b1 \ (−e′, e′)b1)).

We have the following extension of Lemma 6.3.6 and 6.3.7. The proof is essentially

the same and we omit it.

Lemma 6.3.10. (1) For each positive integer M , we can find a smooth family of

(6M + 6)Zb1-periodic functions τ̃w : Rb1 → [0, 1], parametrized by a compact manifold

W ′
M , with the following property: for any functional in the family {Ls

e,e′ | s ∈ [0, 1], e−

1 ≥ e′ ≥ 1} and any (e1, · · · , eb1) ∈ Rb1, we can find w ∈ W ′
M such that

Ls
e,e′ = CSDν |Coul(Y ) + fw

when restricted to p−1H ([e1−M, e1 +M ]× ·[eb1 −M, eb1 +M ]). Here fw is the function

on Coul(Y ) induced by τ̃w (see (6.4)).

(2) We can choose a sequence of constants {Cj} in the definition of P (see Defini-

tion 2.1.1) such that for any positive integer M and any f̄1, f̄2 ∈ P, the induced family

{f̃w}w∈W ′
M

is a continuous family of (6M + 6)-periodic tame functions.

(3) Similar result holds if we consider any one of the following families instead

• {L̃s

e,e′ | s ∈ [0, 1], e− 1 ≥ e′ ≥ 1};
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• {(1− s)L2 + sLs′

e,e′ | s, s′ ∈ [0, 1], e− 1 ≥ e′ + 1, };

• {(1− s)L1 + sL̃s′

e,e′ | s, s′ ∈ [0, 1], e ≥ e′ + 1, }.

With Lemma 6.3.10 at hand, we can repeat the proof of Corollary 6.3.9 and get

the following result.

Lemma 6.3.11. There exists a uniform R2 such that for e − 1 ≥ e′ ≥ 1 and s, s′ ∈

[0, 1], the functionals Ls
e,e′ , L̃

s

e,e′ , (1 − s)L2 + sLs′

e,e′ and (1 − s)L1 + sL̃s′

e,e′ are all R2-

bounded.

Now we start constructing a mixed direct system relating the spectra given by L1

and L2. As usual, we focus on the case of swfA. We first choose a constant R̃ greater

than max(R1, R2), where R1 is the constant in Corollary 6.3.9 and R2 is a constant

that we will specify later in Lemma 6.3.11. Let J+
1 ⊂ J+

2 ⊂ . . . and J̃+
1 ⊂ J̃+

2 ⊂ . . . be

increasing sequences of bounded subsets corresponding to L1 and L2 respectively (see

(5.2)). Although these bounded sets come from Str(R̃), they are different as we use

different cutting functions and different cutting values. Since the sequences of subsets

are increasing, we can find increasing sequences of positive integers {mj}, {m̃j}, {ej}

and {ẽj} such that

J+
mj
⊂ p−1H ([−ej + 1, ej − 1]b) ∩ Str(R̃) ⊂ p−1H ([−ej, ej]b) ∩ Str(R̃) ⊂ J̃+

m̃j

⊂ p−1H ([−ẽj + 1, ẽj − 1]b) ∩ Str(R̃) ⊂ p−1H ([−ẽj, ẽj]b) ∩ Str(R̃) ⊂ J+
mj+1

.
(6.9)

Let {µn} and {λn} be an increasing sequence and a decreasing sequence of real

numbers with −λn, µn → ∞ and denote by V µn

λn
the corresponding eigenspace. For a

functional L on Coul(Y ), we denote by φn(L) the flow generated by ι ◦ pµn

λn
g̃radL on

V µn

λn
where ι is a bump function with value 1 on a specific bounded set. Since we are

only interested in the Conley index which will be independent of ι, we can drop ι from

our notation.

Consider Jn,+
mj

= J+
mj
∩ V µn

λn
and J̃n,+

mj
= J̃+

mj
∩ V µn

λn
. By Theorem 6.1.2, we can fix

a sufficiently large integer n so that Jn,+
mj

, J̃n,+
mj

are isolating neighborhoods for all of
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the above families of approximated flows. For the family {Ls
ej
}, we get a homotopy

equivalence from homotopy invariance of Conley indices

ρ1 : IS1(φn(L0
ej
), Inv(J̃n,+

m̃j
))
∼=−→ IS1(φn(L2), Inv(J̃

n,+
m̃j

)),

where we recall that L1
ej

= L2. Since L0
ej

is equal to L1 on p−1H ([−ej + 1, ej − 1]b1),

which contains J+
mj
, we see that the flow φn(L0

ej
) goes inside Jn,+

mj
along the boundary

∂Jn,+
mj
\ ∂Str(R̃). Consequently, the subset Jn,+

mj
⊂ J̃n,+

m̃1
is an attractor with respect to

φn(L0
ej
) and we obtain an attractor map

ρ2 : IS1(φn(L1), Inv(J
n,+
mj

))→ IS1(φn(L0
ej
), Inv(J̃n,+

m̃j
)).

We combine the above two maps and obtain the following map

īn,+mj
:= ρ1 ◦ ρ2 : IS1(φn(L1), Inv(J

n,+
mj

))→ IS1(φn(L2), Inv(J̃
n,+
m̃j

)). (6.10)

Similarly, we use the family {L̃s

ẽj
} to get a homotopy equivalence

ρ̃1 : IS1(φn(L̃0

ẽj
), Inv(Jn,+

mj+1
))
∼=−→ IS1(φn(L1), Inv(J

n,+
mj+1

)).

Since J̃n,+
m̃j
⊂ Jn,+

mj+1
is an attractor with respect to L̃0

ẽj
, we also get an attractor map

ρ̃2 : IS1(φn(L2), Inv(J̃
n,+
m̃j

))→ IS1(φn(L̃0

ẽj
), Inv(Jn,+

mj+1
)).

We compose the above two maps and get the following map

în,+m̃j
:= ρ̃1 ◦ ρ̃2 : IS1(φn(L2), Inv(J̃

n,+
m̃j

))→ IS1(φn(L1), Inv(J
n,+
mj+1

)). (6.11)

After appropriate desuspension, we obtain a direct system in the category C

In1,+
m1
→ Ĩ ñ1,+

m̃1
→ In2,+

m2
→ Ĩ ñ2,+

m̃2
→ · · · , (6.12)

where In,+m (resp. Ĩn,+m ) be the object of C obtained from desuspending the Conlex

indices of Jn,+
m (resp. J̃n,+

m ) by V̄ 0
−λn

and we can pick a suitable sequence of integers

0 ≪ n1 < ñ1 < n2 < ñ2 < · · · . The main result of this section follows from the

following proposition.
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Proposition 6.3.12. The map în,+m̃j
◦ īn,+mj

is S1-homotopic to attractor map for the

attractor Inv(φn(L1), J
n,+
mj

) ⊂ Inv(φn(L1), J
n,+
mj+1

).

Proof. We consider the following commutative (up to S1-homotopy) diagram.

IS1(φn(L1), Inv(J
n,+
mj

))

IS1(φn(L0
ej
), Inv(Jn,+

mj
)) IS1(φn(L0

ej
), Inv(J̃n,+

m̃j
)) IS1(φn(L1

ej
), Inv(J̃n,+

m̃j
))

IS1(φn(L̃0

ẽj ,ej
), Inv(Jn,+

mj
)) IS1(φn(L̃0

ẽj ,ej
), Inv(J̃n,+

m̃j
)) IS1(φn(L2), Inv(J̃

n,+
m̃j

))

IS1(φn(L̃0

ẽj ,ej
), Inv(Jn,+

mj+1
)) IS1(φn(L̃0

ẽj
), Inv(Jn,+

mj+1
)) IS1(φn(L̃0

ẽj
), Inv(J̃n,+

m̃j
))

IS1(φn(L1), Inv(J
n,+
mj+1

)) IS1(φn(L̃1

ẽj
), Inv(Jn,+

mj+1
))

........................................................................................ ............
ρ2

........................................................................................ ............
ρ1

........................................................................................ ............
ρ6

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
...............................

ρ3

........................................................................................ ............
ρ5

....................................................................................................

ρ̃2........................................................................................................................................ ........
....

ρ̃1

...................................................................................
.....
.......
.....

ρ7

....................................................................................................................................
....
............

ρ4

........................................................................................................................................ ........
....

ρ8

........................................................................................ ............

........................................................................................ ............

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

The maps are defined as follows.

1. Different flows are generated by the same vector field when restricted to some

isolating neighborhood. This defines all the identifications “=” in the diagram.

2. The maps ρ1, ρ2, ρ̃1, ρ̃2 are defined as before.

3. The maps ρ3, ρ5 are the homotopy equivalences given by the deformation L̃s

ẽj ,ej
,

s ∈ [0, 1].

4. The maps ρ4, ρ6, ρ7 are the attractor maps for the flow φn(L̃0

ẽj ,ej
).

5. The map ρ8 is homotopy equivalence given by the deformation

(1− s)L1 + sL̃0

ẽj ,ej
, s ∈ [0, 1]. (6.13)

Now we check that the above diagram commutes:

1. The maps ρ2 and ρ6 are the defined as attractor maps for the flows φn(L0
ej
) and

φn(L̃0

ẽj ,ej
) respectively. Since these two flows are generated by the same vector
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field when restricted to J̃n,+
m̃j

, we see that ρ2 is S1-homotopic to ρ6, written as

ρ2 ∼= ρ6.

2. Because the attractor maps for the same flow are transitive, we have ρ7 ∼= ρ4◦ρ6.

3. We deform L̃0

ẽj
= L̃1

ẽj ,ej
to L̃0

ẽj ,ej
through the family L̃s

ẽj ,ej
. In the process of this

deformation, nothing is changed on the set p−1H (Rb \ (−ej, ej)b), which contains

both ∂Jn,+
mj+1

\ ∂Str(R̃) and ∂J̃n,+
m̃j
\ ∂Str(R̃). Therefore, we obtain a family of

attractor maps: we get ρ4 when s = 0 and get ρ̃2 when s = 1. Notice that ρ3

and ρ5 are the homotopy equivalences induced by this deformation. The identity

ρ̃2 ∼= ρ5 ◦ ρ4 ◦ ρ3 can be proved using the homotopy invariance of the attractor

map.

4. The map ρ3 is induced by the deformation L̃s

ẽj ,ej
with s going from 1 to 0. We

just get Ls
ej

if we restrict this deformation to the set J̃n,+
m̃j

. Therefore, we have

ρ1 ∼= ρ−13 .

5. Notice that ρ̃1 ◦ ρ5 is the homotopy equivalence induced by the following defor-

mation:

L̃0

ẽj ,ej
|J+

mj+1
→ L̃1

ẽj ,ej
|J+

mj+1
= L̃0

ẽj
|J+

mj+1
→ L̃1

ẽj
|J+

mj+1
= L1|J+

mj+1
. (6.14)

In order to prove the identity ρ8 = ρ̃1 ◦ ρ5, we just need to show that the homo-

topy equivalences IS1(φn(L̃0

ẽj ,ej
), Inv(Jn,+

mj+1
))

∼=−→ IS1(φn(L1), Inv(J
n,+
mj+1

)) which

are induced by deformations (6.13) and (6.14) are S1-homotopic to each other.

To see this, for any r ∈ [0, 1], we consider the following 2-step deformation.

(a) First deform L̃0

ẽj ,ej
to rL1 + (1− r)L̃1

ẽj ,ej
= L̃r

ẽj
through the family rsL1 +

(1− rs)L̃s

ẽj ,ej
, with s going from 0 to 1.

(b) Then deform L̃r

ẽj
to L̃1

ẽj
= L1 through the family L̃s

ẽj
, with s going from r

to 1.

Setting r to be 0 and 1 in the above deformation, we will get (6.14) and (6.13)

respectively. As before, the flow near ∂J+
mj+1
\∂Str(R̃) is not changed. By Lemma
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6.3.11, all the functionals involved in the above deformation are R2-bounded.

Since R̃ > R2, J
n,+
mj+1

is an isolating neighborhood for all these functionals when

n is large enough. Therefore, as r goes from 0 to 1, we get a S1-homotopy

between the homotopy equivalences induced by (6.13) and (6.14).

We have proved that the diagram is commutative up to S1-homotopy. As a corollary,

the map în,+m̃j
◦ īn,+mj

= ρ̃1 ◦ ρ̃2 ◦ ρ1 ◦ ρ2 is S1-homotopic to ρ8 ◦ ρ7. Now we consider the

attractor map for the flow L1, which we denote by

i+ : IS1(φn(L1), Inv(J
n,+
mj

))→ IS1(φn(L1), Inv(J
n,+
mj+1

)).

We deform L1 to L̃0

ẽj ,ej
through the family (1− s)L1 + sL̃0

ẽj ,ej
(s ∈ [0, 1]). Notice that

for any s, (1−s)L1+sL̃
0

ẽj ,ej
equals L1 on the set p−1H ([−ej+1, ej−1]b∪(Rb\(−ẽj, ẽj)b)),

which contains both ∂J+
mj
\∂Str(R̃) and ∂J+

mj+1
\∂Str(R̃). Therefore, we get a family

of attractors:

Inv(φn((1− s)L1 + sL̃0

ẽj ,ej
), Jn,+

mj
) ⊂ Inv(φn((1− s)L1 + sL̃0

ẽj ,ej
), Jn,+

mj+1
).

By the homotopy invariance of the attractor maps, we see that i+ also is homotopic

to ρ8 ◦ ρ7. This finish the proof of the proposition.

Proposition 6.3.12 actually implies that the direct system (6.12) contains a sub-

system whose colimit gives the ind-spectrum swfA for the perturbation f1. Similarly,

we can prove that the ind-spectrum for the perturbation f2 is also a subsequential

colimit of (6.12). Therefore, by Lemma 3.1.1, we see that f1 and f2 gives the same

ind-spectrum up to canonical isomorphism.

Finally, we address the situation when f1(a, ϕ) =
δ1
2
∥ϕ∥2L2 + f̄1(a, ϕ) and f2(a, ϕ) =

δ2
2
∥ϕ∥2L2 + f̄2(a, ϕ) with δ1 ̸= δ2. This can now be proved the standard homotopy

invariance argument as follows. We set δt = (2− t)δ1 + (t− 1)δ2. For each t0 ∈ [1, 2],

we can find an extended cylinder function f̄ such that the pair (δt , f̄) gives a perturbed

Chern-Simons-Dirac functional whose critical points are all nondegenerate in the sense

of [33, Definition 12.1.1] for any t near t0. Here we essentially use the compactness

result for critical points, which is a special case of [33, Proposition 11.6.4]. Hence, we
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can find a subdivision 1 = t1 < · · · < tn = 2 and f̄ ′1, . . . , f̄
′
n−1 ∈ P with f̄ ′1 = f̄1 and

f̄ ′n−1 = f̄2 such that the pair (δt, f̄
′
j) gives a good perturbation for any t ∈ [tj, tj+1].

By homotopy invariance of the Conley index, we see that (δtj , f̄
′
j) and (δtj+1

, f̄ ′j) give

the same ind-spectrum swfA. Since we already showed that the ind-spectrum does

not depend on the choice of the extended cylinder function when δ is fixed, we can

conclude that f1 and f2 give the same swfA (up to canonical isomorphisms). This

finishes the proof of the invariance for (II).

6.4 The invariance for (I)

Now we discuss what happens when we vary the metric g and the base connection

A0. Let (A0, g0) and (A1, g1) be two pairs of base connections and metrics. We can

connect them by a smooth path α(s) = (As, gs) with s ∈ [0, 1]. As in the proof of the

invariance for δ, we can divide [0, 1] into small subintervals [sj, sj+1] such that, for each

subinterval [sj, sj+1], we can fix the choice of the auxiliary data (f, ḡ, θ, R̃, {λn}, {µn}).

As s varies between sj and sj+1, we get a continuous family of Coulomb slices

Coul(Y, s) and a family of sequences of bounded sets

J+
1,s ⊂ J+

2,s ⊂ · · · .

For any positive integer n, we have a (usually not continuous) family of finite-dimensional

spaces V µn

λn
(s). As before, we denote by V̄ 0

µn
(s) the orthogonal complement of iΩ1

h(Y )

in V 0
µn
(s). Let Jn,+

m,s = J+
m,s∩V

µn

λn
(s) and φn,s be the approximated Seiberg-Witten flow

on V µn

λn
(s). The following lemma is a direct consequence of Theorem 6.1.2.

Lemma 6.4.1. For any positive integer m and a sufficiently large integer n relative

to m, we have

Σ−V̄
0
µn

(sj)IS1(φn,sj , Inv(J
n,+
m,sj

)) ∼= Σsf(− /D,α[sj ,sj+1])CΣ−V̄
0
µn

(sj+1)IS1(φn,sj+1
, Inv(Jn,+

m,sj+1
))

as objects of C.

Taking colimit of the above isomorphisms, we obtain

swfA(Y, s, Asj , gsj ;S
1) ∼= Σsf(− /D,α([sj ,sj+1]))CswfA(Y, s, Asj+1

, gsj+1
;S1).

130



By additivity of spectral flow, we can conclude that

swfA(Y, sY , A0, g0;S
1) ∼= Σsf(− /D,α)CswfA(Y, sY , A1, g1;S

1). (6.15)

Therefore, swfA can only change by suspension or desuspension of copies of C when

we vary the pair (A0, g0). Now we discuss the following two cases separately.

(1) s is torsion: In this case, we recall that there is a well defined quantity

n(Y, s, A0, g). By excision argument as in [40], we have

n(Y, s, A0, g0) + sf(− /D, α) = n(Y, s, A1, g1).

This implies

(swfA(Y, s, A0, g0;S
1), 0, n(Y, s, A0, g0))

∼= (swfA(Y, s, A1, g1;S
1), 0, n(Y, s, A1, g1))

and the same result holds for swfR. This finishes the proof of invariance of SWFA(Y, s;S1)

and SWFR(Y, s;S1) in the torsion case.

(2) s is non-torsion: In this case, let l = g.c.d{(c1(s) ∪ h)[Y ] | h ∈ H1(Y ;Z)}.

We pick a harmonic gauge transformation u0 ∈ Gh,oY = H1(Y ;Z) such that (c1(s) ∪

[u0])[Y ] = l and denote by Coul(Y,A0) and Coul(Y, u0(A0)) the Coulomb slices with

the base connections A0 and u0(A0) = A0 − u−10 du0 respectively. (Actually, these two

slices correspond the same subspace of CY . However, since the base connections are

different, this subspace is identified with L2
k(i ker d

∗⊕Γ(S)) in different ways. For this

reason, we distinguish them for clarity.) The gauge transformation u0 : Coul(Y,A0)→

Coul(Y, u0(A0)) preserves the functional CSDν0,f , its formal gradient, the subspace

iΩ1
h(Y ) , the finite dimensional subspaces V µn

λn
and both the L2-metric and the non-

linear metric ∥ · ∥g̃. From this fact, we get a natural isomorphism

swfA(Y, s, A0, g;S
1) ∼= swfA(Y, s, u0(A0), g;S

1). (6.16)

Let α be any path going from A0 to u0(A0). As the spectral flow sf(− /DA, α)

can be calculated using excision and the Atiyah-Singer index theorem (see of [33,

Lemma 14.4.6]), it is not hard to check that sf(− /DA, α) =
l
2
. Combining the above

131



two equivalences with (6.15) and (6.16), we get

swfA(Y, s, A0, g;S
1) ∼= Σ

l
2
CswfA(Y, s, A0, g;S

1)

and similar results hold for swfR. This proves the periodicity result in the main

theorem.

132



CHAPTER 7

The relative Bauer-Furuta invariants

7.1 The setup and notations

Let X be a compact, oriented 4-manifold with boundary Y . We give X a Riemannian

metric ĝ so that X is isomorphic to [−3, 0]×Y near the boundary, with ∂X identified

with {0} × Y . (Note that we shall often put a hat over the 4-dimensional objects.)

Assume that X has a spinc structure ŝ which extends s. Denote by S+
X and S−X the

associated positive and negative spinor bundles respectively and let ρ̂ be the Clifford

multiplication. We fix a base spinc connection Â0 on X and require that ∇Â0
=

d
dt
+ ∇A0 when restricted to [−3, 0] × Y . As in the 3-dimensional case, the space of

spinc connections onX can be identified with iΩ1(X) via Â→ Â−Â0. For â ∈ iΩ1(X),

we let /D
+
â = /D

+
+ ρ̂(â) be the corresponding Dirac operator, acting on sections of S+

X .

In particular, /D
+
corresponds to the base connection Â0.

In order to define the relative Bauer-Furuta invariants, we need to make a choice

of the following axillary data:

• A base point ô

• A set of loops {α1, α2, · · · , αb1} in Y representing a basis of H1(Y ;R) such that

{α1, α2, · · · , αe} also represents a basis for im(H1(Y ;R)→ H1(X;R));

• A set of loops {β1, · · · , βl} in X representing a basis of coker(H1(Y ;R) →

H1(X;R));

• A based path data [η⃗], whose definition is given below.
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Definition 7.1.1. A based path data is an equivalent class of paths (η1, η2, · · · , ηb0),

where ηj is a path from ô to some point in Yj. We define (η1, · · · , ηb0) and (η′1, · · · , η′b0)

to be equivalent if for any 1 ≤ j ≤ b0, the composed path η′j · η−1j represents the zero

class in H1(X, Y ;R).

Now we start setting up the gauge theory on X. Similar to the three dimensional

case, it will be convenient to restrict the discussion to a specific subspace of the whole

configuration space called the double Coulomb slice. Let us briefly recall its definition

following [30].

For a differential form â on X, we have a decompose â|Y = tâ + nâ, where tâ

and nâ are the tangential part and the normal part respectively. When Y has several

connected components, we denote by tiâ and niâ the corresponding parts of â|Yi
. We

say that a 1-form â satisfies the double Coulomb condition if:

1. â is coclosed, i.e. d∗â = 0;

2. The restriction of â to the boundary is coclosed, i.e. d∗(tâ) = 0;

3. For each j, we have
∫
Yj
tj(∗â) = 0.

Denote by Ω1
CC(X) the space of all 1-forms satisfying the double Coulomb condition.

The double Coulomb slice CoulCC(X), which is a subspace of L2
k+1/2(iΩ

1(X) ⊕ S+
X),

is defined as:

CoulCC(X) := L2
k+1/2(iΩ

1
CC(X)⊕ Γ(S+

X)).

There is a natural restriction map

r : CoulCC(X)→ Coul(Y ) (7.1)

given by

(â, ϕ̂) 7→ (tâ, ϕ̂|Y ).

Now consider the space of harmonic 1-forms on X with the Dirichlet boundary condi-

tion

Ω1
D(X) := {â ∈ Ω1(X) | dα = d∗α = 0, t(â) = 0}.
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By classical Hodge theory on X, there is a natural isomorphism

Ω1
D(X) ∼= ker(H1(X;R)→ H1(Y ;R)). (7.2)

We can treat iΩ1
D(X) as a subspace of CoulCC(X) via the embedding â → (â, 0).

There is a (nonorthogonal) projection

p̂β : CoulCC(X)→ iΩ1
D(X)

sending (â, ϕ̂) to π̂H(â), where π̂H(â) is the unique element in iΩ1
D(X) satisfying∫

βj

â =

∫
βj

π̂H(â) for j = 1, 2, · · · , l.

For later convenience, we also define the map

p̂α : CoulCC(X)→ Re

given by

(â, ϕ̂) 7→ (−i
∫
α1

â, · · · ,−i
∫
αe

â).

and let

CoulCC
0 (X) := ker p̂α.

Now we consider the group of gauge transformations. Let GX be the L2
k+3/2-completion

of Map(X,S1). The proof of the following lemma is a slight adaption of [30, Proposi-

tioon 1] and we omit it.

Lemma 7.1.2. Inside each connected component of GX , there is a unique element

û : X → S1 satisfying

û(ô) = 1, u−1du ∈ iΩ1
CC(X).

These elements form a subgroup of GX , which we denote by Gh,ôX .

By Lemma 7.1.2, we have a natural isomorphism

Gh,ôX
∼= π0(GX) ∼= H1(X;Z). (7.3)

We denote by Gh,ôX,Y the subgroup of Gh,ôX that corresponds to the subgroup ker(H1(X;Z)→

H1(Y ;Z)). Elements in Gh,ôX,Y restrict to a constant function on each component of Y .
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Now we define the relative Picard torus

Pic0(X, Y ) : = iΩ1
D(X)/Gh,ôX,Y

∼= ker(H1(X;R)→ H1(Y ;R))/ ker(H1(X;Z)→ H1(Y ;Z)).
(7.4)

The double Coulomb slice CoulCC(Y ) is preserved by Gh,ôX,Y and Gh,ôX . Our main

concern will be the quotient space CoulCC(Y )/Gh,ôX,Y . We treat it as a Hilbert bundle

over Pic0(X,Y ), where the bundle structure is induced by the projection p̂β.

Remark. A different Hilbert bundle structure of CoulCC(X)/Gh,ôX,Y can be induced by

the orthogonal projection

p̂⊥ : CoulCC(X)→ iΩ1
D(X).

The main reason we are using p̂β here is that p̂β behaves better than p̂⊥ under the

gluing of 4-manifolds, which simplifies the proof of gluing theorem for the relative

Bauer-Furuta invariant.

Notation. For a pair (â, ϕ̂) ∈ CoulCC(X), we denote by [â, ϕ̂] the corresponding point

in the Hilbert bundle CoulCC(Y )/Gh,ôX,Y . We write ∥ · ∥F for the fiber-direction norm

on CoulCC(Y )/Gh,ôX,Y .

Note that ∥·∥F is not directly given by the restriction of L2
k+1/2-norm on CoulCC(Y ),

because the latter is not invariant under Gh,ôX,Y . However, we have the following lemma,

which is a simple consequence of compactness of Pic0(X, Y ). Let D ⊂ CoulCC(X) be

a fundamental domain for Pic0(X,Y ), fixed through out this chapter.

Lemma 7.1.3. There exists a constant C such that for any (â, ϕ̂) ∈ CoulCC(X) with

p̂β(â, ϕ̂) ∈ D, we have

∥[â, ϕ̂]∥F
C

≤ ∥(â, ϕ̂)∥L2
k+1/2

≤ C · (∥[â, ϕ̂]∥F + 1).

One can check that the map p̂α is invariant under the action of Gh,ôX,Y . As a result,

it induce a well-defined map

p̃α : CoulCC(X)/Gh,ôX,Y → Re.
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The primage p̃−1α (0) is just CoulCC
0 (X)/Gh,ôX,Y . This is subbundle of Coul

CC/Gh,ôX,Y with

codimension e.

The last task of this section is to define the restriction map from CoulCC(X)/Gh,ôX,Y

to the Coul(Y ). This is where the based path data [η⃗] comes into play. First notice

that the restriction map r in formula (7.1) is not invariant under the action of Gh,ôX,Y .

To remedy this, we consider the “twisted version”

r′ : CoulCC(X)→
b0∏
j=1

Coul(Yj) ∼= Coul(Y )

(â, ϕ̂) 7→
b0∏
j=1

(tj â, e
−

∫
ηj

p̂β(â,ϕ̂) · ϕ̂|Yj
).

(7.5)

The following result can be verified by simple calculation.

Lemma 7.1.4. r′ does not depend on the choice of the representative η⃗ in its equivalent

class (see Definition 7.1.1). Moreover, the map r′ is invariant under the action of Gh,ôX,Y .

As a result, we can define the induced map

r̃ : CoulCC(X)/Gh,ôX,Y → Coul(Y ). (7.6)

We denote by r̃0 the restriction of r̃ on the subgundle CoulCC
0 (X)/Gh,ôX,Y .

7.2 The Seiberg-Witten map and its finite dimensional ap-

proximations

In this section, we will define the Seiberg-Witten maps SW, S̃W, S̃W 0 and their finite

dimensional approximations. These maps will be important when we define the relative

Bauer-Furuta invariant in Section 7.4.

7.2.1 Definition of the Seiberg-Witten map

The (perturbed) Seiberg-Witten map

SW : CoulCC(X)→ L2
k−1/2(iΩ

2
+(X)⊕ Γ(S−X))
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is given by

SW (â, ϕ̂) := (d+â, /D
+
ϕ̂) + (

1

2
F+

Ât
0

− ρ̂−1(ϕ̂ϕ̂∗)0 − ω+
0 , ρ̂(â)ϕ̂) + q̂(â, ϕ̂), (7.7)

explained as below:

• (ϕ̂ϕ̂∗)0 denotes the trace-free part of ϕ̂ϕ̂∗ ∈ Γ(End(S+
X));

• ω+
0 is the self-dual part of the closed perturbation 2-from ω0 ∈ Ω2(X). We

require that ω0|[−3,0]×Y = πiν0. (Recall that ν0 is the harmonic form representing

−c1(s).) Such ω0 can be obtained from −1
2
FÂt

0
+ dh for some h ∈ iΩ0(X).

• To define the perturbation term q̂(â, ϕ̂), we take a bump-function ι : [−3, 0] →

[0, 1] satisfying ι([−3,−2]) = 0, ι([−1, 0]) = 1 and 0 ≤ ι′(x) ≤ 2. For t ∈ [−3, 0],

let at be the pull back of â by the inclusion {t} × Y → X and let ϕt = ϕ̂|{t}×Y .

Then we define 1

q̂(â, ϕ̂) := ι(t)((dt ∧ grad1 f(at, ϕt) + ∗ grad1 f(at, ϕt)), grad
2 f(at, ϕt)). (7.8)

(Recall that a good perturbation f (see Definition 2.1.3) is involved in the con-

struction of the spectrum invariants. We write its gradient as (grad1 f, grad2 f).)

We have a decomposition

SW = L+Q (7.9)

where

L(â, ϕ̂) = (d+â, /D
+
p̂β(â)

ϕ̂) and Q = SW − L.

A fundamental computation, making use of the tameness condition on grad f (see [33,

Definition 10.5.1]), gives the following lemma:

Lemma 7.2.1. For any number j ≥ 2 and any subset U ⊂ CoulCC(Y ) which is

bounded in L2
j , the set Q(U) is also bounded in L2

j .

1We write ∗ for the 3-dimensional Hodge star operator and wirte ∗4 for the 4-dimensional Hodge
star operator.
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Now we start defining the map S̃W , which is the folded version of SW . Notice

that the map

(SW, p̂β) : Coul
CC(X)→ L2

k−1/2(iΩ
2
+(X)⊕ Γ(S−X))× (iΩ1

D(X))

is equivariant under the action of Gh,ôX,Y , where the action on the target space is given

by

u · ((ω, ϕ̂), ĥ) := ((ω, uϕ̂), ĥ− u−1du).

As a result, (SW, p̂β) induces a map

SW : CoulCC(X)/Gh,ôX,Y → (L2
k−1/2(iΩ

2
+(X)⊕ Γ(S−X))× (iΩ1

D(X)))/Gh,ôX,Y .

By Kuiper’s theorem, the Hilbert bundle (L2
k−1/2(iΩ

2
+(X)⊕Γ(S−X))× (iΩ1

D(X)))/Gh,ôX,Y

can be trivialized (unique to homotopy). We fix a trivialization and consider the

induced projection from this bundle to its fiber L2
k−1/2(iΩ

2
+(X)⊕ Γ(S−X)). Composing

the map SW with this projection. We get the map

S̃W : CoulCC(X)/Gh,ôX,Y → L2
k−1/2(iΩ

2
+(X)⊕ Γ(S−X)).

The map

S̃W 0 : CoulCC
0 (X)/Gh,ôX,Y → L2

k−1/2(iΩ
2
+(X)⊕ Γ(S−X))

is defined as the restriction of S̃W .

7.2.2 The approximated Seiberg-Witten map

Just like the map (SW, p̂β), the map (L, p̂β) is also equivariant under the action of

Gh,ôX,Y . As a result, the decomposition (7.9) induces a decomposition

S̃W = L̃+ Q̃ : CoulCC(X)/Gh,ôX,Y → L2
k−1/2(iΩ

2
+(X)⊕ Γ(S−X))

where L̃ is a fiberwise linear map. By restricting the subbundle CoulCC
0 (X)/Gh,ôX,Y , we

get a similar decomposition

S̃W 0 = L̃0 + Q̃0. (7.10)
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Now we define the finite dimensional approximations of S̃W and S̃W
0
using these

decompositions. Recall that we chose an increasing sequence {µn} and a decreasing

sequence {λn} when defining the spectrum invariants for Y (see Section 5.1). We have

the following lemma:

Lemma 7.2.2. For any n, the map

(L̃, pµn
−∞ ◦ r̃) : CoulCC(X)/Gh,ôX,Y → L2

k−1/2(iΩ
2
+(X)⊕ Γ(S−X))⊕ V

µn
−∞

and the map

(L̃0, pµn
−∞ ◦ r̃0) : CoulCC

0 (X)/Gh,ôX,Y → L2
k−1/2(iΩ

2
+(X)⊕ Γ(S−X))⊕ V

µn
−∞

are fiberwise Freedholm.

Proof. This is a straightforward application of the Atiyah-Patodi-Singer theory [5].

Now we choose an increasing sequence {Un} of finite dimensional subspaces of

L2
k−1/2(iΩ

2
+(X)⊕ Γ(S−X)) with the following two properties:

(i) As n → ∞, the orthogonal projection PUn : L2
k−1/2(iΩ

2
+(X) ⊕ Γ(S−X)) → Un

converges to the identity map pointwisely.

(ii) For any point p ∈ Pic0(X, Y ) and any n, the restriction of (L̃0, pµn
−∞ ◦ r̃0) to

the fiber over p is transverse to Un. This implies the similar result for the map

(L̃, pµn
−∞ ◦ r̃).

LetWn denotes (L̃, p
µn
−∞◦r̃)−1(Un) andW

0
n be the intersectionWn∩(CoulCC

0 (X)/Gh,ôX,Y ).

By Lemma 7.2.2 and property (ii) above, bothWn andW
0
n are finite dimensional vector

spaces over the Picard torus Pic0(X,Y ). We let

S̃Wn = L̃+ PUn ◦ Q̃ : Wn → Un

and let S̃W 0
n : W 0

n → Un be its restriction. These are called the approximated Seiberg-

Witten maps.
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7.3 The boundedness results

In this section, we will prove some analytical results on the (approximated) Seiberg-

Witten map. To state the result, we introduce the following definition.

Definition 7.3.1. A finite type X-trajectory is a pair (x, γ) with

• x̃ = [â, ϕ̂] ∈ CoulCC(X)/Gh,ôX,Y satisfies S̃W (x̃) = 0;

• γ : [0,+∞)→ Coul(Y ) is a finite type Seiberg-Witten trajectory;

• r̃(x̃) = γ(0).

A finite type X-trajectory can be thought of a finite energy solution of the Seiberg-

Witten equations on the manifold X∗ = X ∪ ([0,+∞) × Y ). We have the following

theorem, which is a refinement of in [30, Corolary 2].

Theorem 7.3.2. For any M > 0, there exists a constant R > 0 such that for any

finite type X-trajectory (x̃, γ) satisfying

p̃α(x̃) ∈ [−M,M ]l (7.11)

we have

∥x̃∥F < R and γ([0,∞)) ⊂ int(Str(R)).

We need a lemma before proving Theorem 7.3.2. First recall that the topological

energy of a perturbed Seiberg-Witten trajectory γ : [a, b]→ Coul(Y ) is defined as

E top(γ, CSDν0,f ) := 2(sup
t∈I

CSDν0,f (γ(t))− inf
t∈I

CSDν0,f (γ(t))).

Lemma 7.3.3. For any C > 0, there exist a constant R such that for any perturbed

Seiberg-Witten trajectory γ : [−1, 1] → Coul(Y ) with E top(γ, CSDν0,f ) < C, we have

γ(0) ∈ int(Str(R)).

Proof of Lemma 7.3.3. Suppose this is not true. Then we can find a sequence of

trajectories {γn} with E top(γn, CSDν0,f ) < C such that

lim
n→+∞

∥un · γn(0)∥L2
k
→ +∞, ∀{un} ⊂ GhY . (7.12)
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To get the contradiction, we lift γn to γ̃n : [−1
2
,−1

2
]→ CY satisfying:

γ̃n(0) = γn(0),
d

dt
γ̃n(t) = − gradCSDν0,f (γ̃n(t)).

Such γ̃n can be treated as solutions of the perturbed Seiberg-Witten equations over

the manifold [−1
2
, 1
2
]×Y . By [33, Theorem 10.7.1] (adapted to the balanced perturbed

case), after passing to a subsequence, there exists a sequence of gauge transformations

ûn : [−1
2
, 1
2
]×Y → S1 such that ûn · γ̃n converges in L2

k+1/2 on any interior domain. In

particular, this implies that Π(ûn|{0}×Y · γ̃n(0)) converges in L2
k. (Here Π denotes the

nonlinear gauge projection defined in (2.3).) Notice that

Π(ûn|{0}×Y · γ̃n(0)) = un · γn(0)

for some un ∈ GhY . We get the contradiction with (7.12).

Proof of Theorem 7.3.2. Suppose the theorem is not true for some constant M . Then

we can find a sequence {([ân, ϕ̂n], γn)}n∈N of finite type X-trajectories satisfying (7.11)

such that at least one of the following conditions is satisfied

(i) ∥[ân, ϕ̂n]∥F → +∞;

(ii) There exists a sequence {tn} ⊂ R≥0 such that

∥un · γn(tn)∥L2
k
→ +∞, ∀{un} ⊂ GhY .

Without loss of generality, we may also assume

p̂β(ân, ϕ̂n) ∈ D (7.13)

where D is the fundamental domain fixed before Lemma 7.1.3.

Notice that for any fixed n, the energy E top(γn|[t−1,t+1], CSDν0,f ) is less than 1 when

t is large enough. By Lemma 7.3.3, we have γn(t) ∈ int(Str(R′)) for any n and any t

large enough compared to n. Here R′ is a constant independent of n, j. Since CSDν0,f

is bounded on int(Str(R′)) and CSDν0,f is decreasing along γn, we get a uniform lower

bound C1 on CSDν0,f (γn(t)) for any n ∈ N, t ≥ 0. This in turn gives a uniform upper
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bound on the perturbed topological energy (see [33, formula (24.25)] for definition) of

sn, where sn is the solution on the manifold

X ′ = X ∪ ([0, 1]× Y )

obtained by gluing together (ân, ϕ̂n) and γn|[0,1]. By [33] (adapted to the balanced per-

turbed situation), after passing to a subsequence and applying suitable gauge trans-

formations, the solution sn on X ′ converges in C∞ on the interior domain X. In

particular, this implies the following two results:

(1) We can find ûn ∈ Gh,ôX such that ûn·(ân, ϕ̂n) converges in L
2
k+1/2 to some (â∞, ϕ̂∞) ∈

CoulCC(X);

(2) CSDν0,f ((ân, ϕ̂n)|{−1}×Y ) is uniformly bounded below for any n.

We denote by [û] ∈ H1(X;Z) the image of û under the isomorphism (7.3). By (1),

we have

(

∫
βj

ân)− 2πi⟨[ûn], [βj]⟩ =
∫
βj

(ân − û−1n dûn)→
∫
βj

â∞, j = 1, 2, · · · , l

and

(

∫
αj

ân)− 2πi⟨[ûn], [αl]⟩ =
∫
αj

(ân − û−1n dûn)→
∫
αj

â∞, j = 1, 2, · · · , e.

By (7.11) and (7.13), we see that the set

{⟨[ûn], [βj]⟩ | 0 ≤ n, 1 ≤ j ≤ l} ∪ {⟨[ûn], [αj]⟩ | 0 ≤ n, 1 ≤ j ≤ e}

is a bounded subset of Z. Since {α1, · · · , αe, β1, · · · , βl} represents a set of basis for

H1(X;R). We see that {ûn} only takes finitely many values in Gh,ôX . After passing

to a subsequence, we can assume that ûn does not depend on n. Then (1) implies

that after passing to a subsequence, (ân, ϕ̂n) converges in L
2
k+1/2, which rules out the

possibility of (i) by Lemma 7.1.3.

As for (ii), since (ân, ϕ̂n) converges in L
2
k+1/2, we have a uniform upper bound C2

for CSDν0,f ((ân, ϕ̂n)|{−1}×Y ). By restricting (ân, ϕ̂n) to the slices {t} × Y (−1 ≤ t ≤
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0), projecting to Coul(Y ) using the nonlinear projection Π and gluing to the half

trajectories γn, we obtain trajectories

γ′n : [−1,∞)→ Coul(Y )

whose topological energy is bounded above by C2 − C1. Applying Lemma 7.3.3 on

γ′n|[t−1,t+1] with t ∈ [0,∞), we see that

γn(t) ∈ int(Str(R′′)), ∀n ∈ N, 0 ≤ t

for some uniform constant R′′. This rules out the possibility of (ii).

Corollary 7.3.4. There exists a uniform constant R1 such that for any finite type

X-trajectory (x̃, γ), we have γ(t) ∈ Str(R1) for any t ∈ [0,+∞).

Proof. We can find a constant C with the following significance:

• For any (y1, · · · , ye) ∈ Re, there exists a class [ξ] ∈ H1(X;Z) such that

(y1, · · · , ye)− 2π(⟨[α1], [ξ]⟩, · · · , ⟨[αl], [ξ]⟩) ∈ [−C,C]e

Let R1 be the constant in Theorem 7.3.2 with M = C. Then by our choice of C, for

any finite type X-trajectory (x̃, γ), we can find a transformation û ∈ Gh,ôX : X → S1

such that (û · x̃, (û|Y ) · γ) is a finite type X-trajectory satisfying condition (7.11) with

M = C. By Theorem 7.3.2, we have (û|Y ) · γ(t) ∈ int(Str(R1)) for any t ∈ [0,+∞).

This implies γ(t) ∈ int(Str(R1)) for any t ∈ [0,+∞).

Now we turn to the boundedness result for approximated X-trajectories.

Definition 7.3.5. For n ∈ N and ϵ ∈ R≥0, a finite type (n, ϵ)-approximated X-

trajectory is a pair (x̃, γ), where

• x̃ ∈ W satisfies ∥S̃Wn(x̃n)∥L2
k−1/2

≤ ϵ;

• γ : [0, T )→ V µn

λn
is a finite type approximated trajectory. Here T ∈ R>0∪{+∞}

is called the length of the approximated X-trajectory.

144



• γ(0) = pµn
−∞◦r̃(x̃n). (Note that pλn

−∞◦r̃(x̃) always belongs to V
µn

λn
by the definition

of Wn.)

Definition 7.3.6. For each j ∈ N, let (x̃j, γj) be a finite type (nj, ϵj)-approximated X-

trajectory of length Tj < +∞. Then the sequence {(xj, γj)}j∈N is called an exhausting

sequence if

nj → +∞, ϵj → 0 and Tj → +∞.

The proof of the following lemma is a slight adaption of [30, Lemma 2] and we

omit it.

Lemma 7.3.7. Let S̃, S be bounded subsets of CoulCC(X)/Gh,ôX,Y and Coul(Y ) re-

spectively. Let {(x̃j, γj)}j∈N be an exhausting sequence of finite type approximated

X-trajectory with x̃j ∈ S̃, γj ⊂ S for any j. Then there exists a X-trajectory (x̃∞, γ∞)

such that, after passing to a subsequence, we have

• x̃j converges to x̃∞ in the topology of CoulCC(X)/Gh,ôX,Y ;

• γj converges to γ∞ uniformly in L2
k on any compact subset of R≥0.

Proposition 7.3.8. There exists a constant R2 with the following significance: for any

bounded subsets S̃ ⊂ CoulCC
0 (X)/Gh,ôX,Y and S ⊂ Coul(Y ), there exists ϵ0, N, T̄ ∈ (0,∞)

such that: for any finite type (n, ϵ)-approximated X-trajectory (x̃, γ) of length T ≥ T̄

satisfying

n ≥ N, ϵ ≤ ϵ0, x̃ ∈ S̃ and γ ⊂ S,

we have ∥x̃∥F < R2.

Proof. Let R2 be the constant R given by Theorem 7.3.2, with M = 0. Suppose the

result is not true for some S̃, S. Then we can find an exhausting sequence {(x̃j, γj)}j∈N

of finite type approximated X-trajectory such that

γj ⊂ S, x̃j ∈ S̃ and ∥x̃j∥F ≥ R2.

By Lemma 7.3.7, after passing to a subsequence, we can find a finite type X-trajectory

(x̃∞, γ∞) such that x̃j → x̃∞ in the topology of CoulCC(X)/Gh,ôX,Y . In particular, this
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implies

∥x̃∞∥F = lim
j→+∞

∥x̃j∥F ≥ R2 and p̃α(x∞) = lim
j→+∞

p̃α(x̃j).

Since x̃j ∈ CoulCC
0 (X)/Gh,ôX,Y , we have p̃α(x̃j) = 0, which implies p̃α(x̃∞) = 0. By

Theorem 7.3.2, we have ∥x̃∞∥F < R2. This is a contradiction.

Proposition 7.3.9. For any bounded subset S ⊂ Coul(Y ), we can find a constan-

t R(S) with the following significance: for any bounded subset S̃ ⊂ CoulCC(X)/Gh,ôX,Y

there exist ϵ,N, T̄ ∈ (0,∞) such that for any finite type (n, ϵ)-approximated X-trajectory

(x̃, γ) of length T ≥ T̄ satisfying

n ≥ N, ϵ ≤ ϵ0, x̃ ∈ S̃ and γ ⊂ S,

we have ∥x̃∥F < R(S).

Proof. Consider the number

C(S) = sup{|i
∫
αj

a| | (a, ϕ) ∈ S, 1 ≤ j ≤ e}.

We let R(S) be the constant R given by Theorem 7.3.2, with M = C(S). The rest of

the proof is identical with the previous one.

Proposition 7.3.10. There exists a constant R3 with the following significance: for

any bounded subsets S̃ ⊂ Coul(X)/Gh,ôX,Y and S ⊂ Coul(Y ), there exist ϵ0, N, T̄ ∈

(0,+∞) such that for any finite type (n, ϵ)-approximated X-trajectory (x̃, γ) of length

T ≥ T̄ satisfying

n ≥ N, ϵ ≤ ϵ0, x̃ ∈ S̃ and γ ⊂ S

We have γ|[0,T−T̄ ] ⊂ Str(R3).

Proof. Let R3 = max{R0, R1} where R0 and R1 are the constants given by Theorem

2.2.2 and Proposition 7.3.4 respectively. Suppose the result is not true for some S̃, S.

Then we can find an exhausting sequence {(x̃j, γj)}j∈N of finite type approximated

X-trajectories with x̃j ∈ S̃, γj ⊂ S, together with a sequence {tj}j∈N ⊂ R≥0 such that

γj(tj) /∈ Str(R3) for any j. By Lemma 7.3.7, there exists an finite type X-trajectory

(x̃∞, γ∞) such that, after passing to a subsequence, γj converges to γ∞ uniformly in
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L2
k on any compact subset of R≥0. Since γ∞ ⊂ int(Str(R3)) by Proposition 7.3.4, we

see that lim
j→+∞

tj = +∞. However, by Corollary 2.2.8, the sequence {tj}j∈N should be

bounded above. This is a contradiction.

7.4 Construction of the relative Bauer-Furuta invariants

7.4.1 Thom spectrum of the virtual index bundle

In this subsection, we will define the Thom spectrum of the virtual index bundle

ind( /D
+
) as an object of C. (When ŝ is spin, we also have the corresponding object in

CPin(2).) The relative Bauer-Furuta invariant will be defined as a morphism from (a

suitable suspension of) this object to the spectrum invariant of Y .

Let H−S be the closure in L2
k(Γ(SY )) of the subspace spanned by the eigenvectors

of /DA0
with nonpositive eigenvalues and let

Π−S : L2
k(Γ(SY ))→ H−S

be the orthogonal projection. We consider the map

DS : iΩ1
D(X)× L2

k+1/2(Γ(S
+
X))→ iΩ1

D(X)× (L2
k−1/2(Γ(S

−
X))⊕H

−
S )

given by

(ĥ, ϕ̂) 7→ (ĥ, /D
+

ĥ ϕ̂,Π
−
S ϕ̂|Y ).

We treat DS as the bundle map over iΩ1
D(X) that is equivariant under the action of

Gh,ôX,Y . Here the actions on source and target bundles are respectively given by

û · (â, ϕ̂) := (â− û−1dû, ûϕ̂)

and

û · (â, ϕ̂, ψ) := (ĥ− û−1dû, ûϕ̂, (u|Y )ψ).

Let D̄S be the bundle map over Pic0(X, Y ), obtained by taking the quotient of DS

under the action Gh,ôX,Y . We fix a trivialization of the target Hilbert bundle

τ : Pic0(X, Y )× (L2
k−1/2(Γ(S

−
X))⊕H

−
S )

∼=−→ (iΩ1
D(X)× (L2

k−1/2(Γ(S
−
X))⊕H

−
S ))/G

h,ô
X,Y .
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Composing D̄S with the projection from the target bundle to its fiber (which is induced

by τ), we obtain a map

D̃S : (iΩ1
D(X)× L2

k+1/2(Γ(S
+
X)))/G

h,ô
X,Y → L2

k−1/2(Γ(S
−
X))⊕H

−
S .

By the Atiyah-Patodi-Singer theory (c.f [5]), the fiberwise restrictions of D̃S are Freed-

holm. As a result, we can find a finite dimensional subspace U ⊂ L2
k−1/2(Γ(S

−
X))⊕H

−
S

such that it is transversal to all these restrictions. In this case, D̃−1S (U) is a finite

dimensional vector space over Pic0(X,Y ). We let T (D̃−1S (U)) be its Thom space and

choose ∞ as the base point. Then Σ−UT (D̃−1S (U)) is an object of the stable catego-

ry C. We write this object as T (X, ŝ, A0, g, ô;S
1). This notation is justified by the

following lemma, whose proof follows from standard homotopy argument.

Lemma 7.4.1. Let Σ−UjT (D̃−1S (Uj)) (j = 1, 2) be two objects arising from differ-

ent choices of auxiliary data (ĝj, Â0,j, ôj). Suppose ĝ1|Y = ĝ2|Y , Â0,1|Y = Â0,2|Y

and ô1 = ô2. Then there is a natural isomorphism between Σ−U1T (D̃−1S (U1)) and

Σ−U2T (D̃−1S (U2)).

Remark. For different choices of base points ô1, ô2, one can construct an isomorphism

between the resulting objects by choosing a path γ from ô1 to ô2. However, isomor-

phisms given by different pathes γ1, γ2 are usually different, unless the composed loop

γ−11 γ2 represents the zero class in H1(X,Y ;R).

Now we relate the object T (X, ŝ, A0, g, ô;S
1) with our earlier constructions. To

state the result, we recall that there is an nondegenerate, symmetric quadratic form

on im(H2(X,Y ;R)→ H2(X;R)), which is given by cup product. We make a choice of

a maximal non-negative subspace for this quadratic form and denote it by I+(X). Note

that for any two choices of I+(X), their orientation set can be naturally identified.

Lemma 7.4.2. Let Un,Wn,W
0
n be defined as in subsection 7.2.2. Then there are

natural isomorphisms (in the category C)

Σ−UnΣ−V̄
0
λnT (W 0

n)
∼= Σ−I+(X)T (X, ŝ, A0, g, ô;S

1) (7.14)
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and

Σ−UnΣ−V
0
λnT (Wn) ∼= Σ−(coker(H

1(X;R)→H1(Y ;R))⊕I+(X))T (X, ŝ, A0, g, ô;S
1). (7.15)

Here T (W 0
n) (resp. T (Wn)) denotes the Thom space of the bundle W 0

n (resp. Wn).

Proof. This is a bundle version of the index computation in [30, Propositionn 2]. The

detailed argument is omitted because it is straightforward but messy. We only mention

that in the proof, the based point data [η⃗] (which is involved in the construction of

Wn and W 0
n) plays the role of specifying a bundle trivialization

(iΩ1
D(X)× Coul(Y ))/Gh,ôX,Y

∼= Pic0(X, Y )× Coul(Y )

by sending [(ĥ,
b0∏
j=1

(aj, ϕj))] to ([ĥ],
b0∏
j=1

(aj, e
−

∫
ηj

ĥ · ϕj)) (c.f. (7.5)).

Next, we turn to the special case that s = ŝ|Y is torsion. In this case, we consider

the normalization (T (X, ŝ, A0, g, ô;S
1), 0, n(Y, s, A0, g)) ∈ obC. By simple excision

argument, one can show that there is an natural isomorphism

(T (X, ŝ, A0, g, ô;S
1), 0, n(Y, s, A0, g)) ∼= (T (X, ŝ, g′, A′0, ô;S

1), 0, n(Y, s, A′0, g
′))

for any (A0, g) and (A′0, g
′). As a result, we are safe to suppress (A0, g) from our

notation and denote this normalized object by T̃ (X, ŝ, ô;S1).

When s is a spin structure, all our construction can be adapted to the Pin(2)-

equivariant setting. As a result, Σ−UT (D̃−1S (U)) can also be treated as an object of

CPin(2), which we denote by T (X, ŝ, A0, g, ô;Pin(2)). Similar result as Lemma 7.4.2

still holds in this case. (Note that in the spin case, both I+(X) and coker(H1(X;R)→

H1(Y ;R) are isomorphic to copies of R̃ (the nontrivial one dimensional representation

of Pin(2)). Also, the element j ∈ Pin(2) acts nontrivially on Pic0(X, Y ).) We denote

the normalized object

(T (X, ŝ, A0, g, ô;Pin(2)), 0,
n(Y, s, A0, g)

2
) ∈ obCPin(2)

by T̃ (X, ŝ, ô;Pin(2)).
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7.4.2 Type-A relative Bauer-Furuta invariant

With all the results in place, we can finally start defining the relative Bauer-Furuta

invariant for a spinc 4-manifolds with boundary. We make the following conventions.

Notation. Let R be a positive number, V be a normed vector space and W be a

normed vector bundle. We denote by B(V,R) (resp. B(W,R)) the closed disk (resp.

disk bundle) with radius R and denote by S(V,R) (resp. S(W,R)) the sphere (resp.

sphere bundle) with radius R.

Recall that the spectrum invariants of Y are obtained by cutting the unbounded set

Str(R̃) into bounded subsets J±m and doing finite dimensional approximations. In order

the define the relative Bauer-Furuta invariants, we impose the following requirements

on R̃:

(i) R̃ > R3, with contant R3 given in Proposition 7.3.10;

(ii) r̃(B(CoulCC
0 (X)/Gh,ôX,Y , R2)) ⊂ Str(R̃), with constant R2 given in Proposition

7.3.8.

For each n ∈ N and ϵ ∈ R>0, we define the following bounded subsets of Str(R̃):

K+
1 (n, ϵ) := pµn

−∞ ◦ r̃(S̃W 0
n

−1
(B(Un, ϵ)) ∩B(W 0

n , R2)),

K+
2 (n, ϵ) := pµn

−∞ ◦ r̃(S̃W 0
n

−1
(B(Un, ϵ)) ∩ S(W 0

n , R2)).

We define the map

υ+(n, ϵ) : B(W 0
n , R2)/S(W

0
n , R2)→ (B(Un, ϵ)/S(Un, ϵ)) ∧ (K+

1 (n, ϵ)/K
+
2 (n, ϵ))

by the formla

υ+(n, ϵ)(x) :=

 (S̃W 0
n(x), p

µn
∞ ◦ r̃(x)) if ∥S̃W 0

n(x)∥L2
k−1/2

≤ ϵ

basepoint otherwise

It is easy to see that υ+(n, ϵ) is well-defined and continuous.
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Since r̃(B(CoulCC
0 (X)/Gh,ôX,Y , R2)) is a bounded subset of Str(R̃), there exists m0 ∈

N such that

r̃(B(CoulCC
0 (X)/Gh,ôX,Y , R2)) ⊂ J+

m0
.

This also implies

K+
2 (n, ϵ) ⊂ K+

1 (n, ϵ) ⊂ Jn,+
m for any n ∈ N, ϵ > 0 and m ≥ m0.

Lemma 7.4.3. For any m ≥ m0, there exist Nm ∈ N and Tm, ϵm ∈ R>0 such that for

any n ≥ Nm and ϵ ≤ ϵm, we have

(1) Jn,+
m is an Tm-tame isolating neighborhood under the flow φn

m;

(2) (K+
1 (n, ϵ), K

+
2 (n, ϵ)) is a Tm-tame pre-index pair in Jn,+

m .

Proof. (1) is a direct consequence of Lemma 5.1.5. Under the assumption (1), we let

A = Jn,+
m and

A′ = A ∩ Str(max(R0, R3)) ∩
∩

1≤j≤b1

g−1j,+(−∞, θ +m− θm]

(c.f. (5.3)). Then by Lemma 5.1.4, Lemma 5.1.5 and Proposition 7.3.10, there exists

a constant Tm independent of n, ϵ such that conditions in Definition 3.2.10 holds for

(K+
1 (n, ϵ), K

+
2 (n, ϵ)) when n is large and ϵ is small.

For each m ≥ m0, n ≥ Nm, we choose any ϵ ≤ ϵm and let

l+n,m,ϵ : K
+
1 (n, ϵ)/K

+
2 (n, ϵ)→ IS1(φn

m, inv(J
n,+
m ))

be the canonical map (see (3.5)). We consider the following morphism in C

ψn,+
m := Σ−V̄

0
λnΣ−Un((id∧l+n,m,ϵ) ◦ υ+(n, ϵ)) : Σ−I+(X)T (X, ŝ, A0, g, ô;S

1)→ In,+m .

(id denotes the identity map on B(Un, ϵ)/S(Un, ϵ).) Here we made use of the natural

isomorphism

Σ−UnΣ−V̄
0
λnB(W 0

n , R2)/S(W
0
n , R2) ∼= Σ−I+(X)T (X, ŝ, A0, g, ô;S

1)

provided by Lemma 7.4.2. Note that for different choices of ϵ ∈ (0, ϵm], the maps

(id∧l+n,m,ϵ) ◦ υ+(n, ϵ) are homotopic to each other. Therefore, as a morphism in C,

ψn,+
m does not depend on the choice of ϵ.
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Lemma 7.4.4. For any m ≥ m0 and any n large enough relative to m, we have

ĩn,+m ◦ ψn,+
m = ψn,+

m+1 (7.16)

where ĩn,+m = Σ−V̄
0
λn in,+m ∈ morC(I

n,+
m , In,+m+1) is given in (5.4).

Proof. Notice that when n is large enough relative to m, (Jn,+
m+1 \ J

n,+
m , Jn,+

m ) is a strong

Morse decomposition for Jn,+
m+1 (see Definition 3.2.15). By Proposition 3.2.18, we have

lm+1,n
∼= in,+m ◦ l+n,m,ϵ, which implies ĩn,+m ◦ ψn,+

m = ψn,+
m+1.

Lemma 7.4.5. For any m ≥ m0 and any n large enough relative to m, we have

ρ̃n,+m ◦ ψn,+
m = ψn+1,+

m . (7.17)

where ρ̃n,+m is given in Proposition 5.1.6.

Proof. The proof is very similar to Proposition 5.1.6. First, by replacing Un+1 with

Un + Un+1, we can assume that Un ⊂ Un+1, which implies W 0
n ⊂ W 0

n+1. Then for

s ∈ [0, 1], we consider the following map from W 0
n+1 to Un+1 ⊕ V µn+1

λn+1

S̃W 0,s
n+1 := L̃0 + (sPUn+1 + (1− s)PUn) ◦ Q̃0 ◦ (sPW 0

n+1
+ (1− s)PW 0

n
).

By repeating our construction in this subsection with S̃W 0,s
n+1 in place of S̃W 0

n+1 and

φn+1,s
m (the interpolated flow generated by the vector field (5.6)) in place of φn+1

m , we

obtain a map

(B(W 0
n+1, R2)× [0, 1])/(S(W 0

n+1, R2)× [0, 1])→

B(Un+1, ϵ)/S(Un+1, ϵ) ∧ IS1(φn+1,s
m , inv(Jn+1,+

m )).
(7.18)

(7.17) is directly implied by the homotopy induced by (7.18).

Recall that the spectrum invariant swfA(Y, s, A0, g;S
1) is defined as the inductive

system

In1,+
1

η+1−→ In2,+
2

η+2−→ In3,+
3

η+3−→ ·

with connecting morphism η+m = ĩnm+1,+
m ◦ ρ̃nm+1−1,+

m ◦ · · · ◦ ρ̃nm,+
m . We can take nm large

enough relative to m, such that (7.16) and (7.17) holds. Then we have

η+m ◦ ψnm,+
m = ψ

nm+1,+
m+1 for any m ≥ m0.
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As a result, the element

[ψnm
m ] ∈ morS(Σ

−I+(X)T (X, ŝ, A0, g, ô;S
1), swfA(Y, s, A0, g;S

1))

= lim
m→∞

morC(Σ
−I+(X)T (X, ŝ, A0, g, ô;S

1), Inm,+
m )

does not dependent on the choice of m ∈ Z≥m0 .

Definition 7.4.6. (1) The S1-equivariant relative Bauer-Furuta invariant

bfA(X, ŝ, A0, g, ô, [η⃗];S
1) ∈ morS(Σ

−I+(X)T (X, ŝ, A0, g, ô;S
1), swfA(Y, s, A0, g;S

1))

is defined as the morphism represented by ψnm,+
m for any m ≥ m0.

(2) When s = ŝ|Y is torsion. We define the normalized relative Bauer-Furuta

invariant

BFA(X, ŝ, ô, [η⃗];S1) ∈ morS(Σ
−I+(X)T̃ (X, ŝ, ô;S1), SWFA(Y, s;S1))

as the morphism represented by the desuspension (ψnm,+
m , 0, n(Y, s, A0, g)).

When ŝ is a spin structure, the desuspension Σ−V̄
0
λnΣ−Un((id∧l+n,m,ϵ)◦ν(n, ϵ)) can al-

so be treated as an element of morCPin(2)
(Σ−I+(X)T (X, ŝ, A0, g, ô;Pin(2)), I

n,+
m (Pin(2))).

We denote it by ψn,+
Pin(2),m

Definition 7.4.7. When ŝ is spin, we define the normalized Pin(2)-equivariant relative

Bauer-Furuta invariant

BFA(X, ŝ, ô, [η⃗];Pin(2)) ∈ morSPin(2)
(Σ−I+(X)T̃ (X, ŝ, ô;Pin(2)), SWFA(Y, s;Pin(2)))

as the morphism represented by the desuspension (ψn,+
Pin(2),m, 0,

n(Y,s,A0,g)
2

) for any m ≥

m0.

7.4.3 Type-R relative Bauer-Furuta invariant

Now we turn to the repeller case. Let R̃ be chosen as last subsection. For m ∈ N,

we let R(J−m) be the constant provided by Proposition 7.3.9 with S = J−m. For any

n,m ∈ N and ϵ ∈ R>0, we consider the following two compact subsets of Jn,−
m

K−1 (n,m, ϵ) := Jn,−
m ∩ pµn

−∞ ◦ r̃(S̃Wn

−1
(B(Un, ϵ)) ∩B(Wn, R(J

−
m))),
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K−2 (n,m, ϵ) := (K−1 (n,m, ϵ)∩∂Jn,−
m )∪(Jn,−

m ∩p
µn
−∞◦r̃(S̃Wn

−1
(B(Un, ϵ))∩S(Wn, R(J

−
m)))).

We define the map

υ−(n,m, ϵ) : B(Wn, R(J
n,−
m ))/S(Wn, R(J

n,−
m ))

→ (B(Un, ϵ)/S(Un, ϵ)) ∧ (K−1 (n,m, ϵ)/K
−
2 (n,m, ϵ))

by the formula

υ−(n,m, ϵ)(x) :=

 (S̃Wn(x), p
µn
−∞ ◦ r̃(x)) if ∥S̃Wn(x)∥L2

k−1/2
≤ ϵ, pµn

−∞ ◦ r̃(x) ∈ Jn,−
m

basepoint otherwise
.

One can check that υ−(n,m, ϵ) is always well-defined and continuous.

Lemma 7.4.8. For any m ∈ N, there exists Nm ∈ N and Tm, ϵm ∈ R>0 such that for

any n ≥ Nm and ϵ ≤ ϵm, we have

(1) Jn,−
m is an Tm-tame isolating neighborhood under the flow φn

m;

(2) (K−1 (n,m, ϵ), K
−
2 (n,m, ϵ)) is a Tm-tame pre-index pair in Jn,−

m .

Proof. The proof is identical with Lemma 7.4.3 except that we use Lemma 7.3.9 instead

of Lemma 7.3.8.

For each m ∈ N and n ≥ Nm, we choose ϵ < ϵm and let

l−n,m,ϵ : K
−
1 (n,m, ϵ)/K

−
2 (n,m, ϵ)→ IS1(φn

m, inv(J
n,−
m ))

be the corresponding canonical map. Then as in the attractor case, we consider the

following morphism in C

ψn,−
m := Σ−V

0
λnΣ−Un((id∧l−n,m,ϵ) ◦ υ−(n,m, ϵ)) :

Σ−(I+(X)⊕coker(H1(X;R)→H1(Y ;R)))T (X, ŝ, A0, g, ô;S
1)→ In,−m .

Here we made use of the isomorphism

Σ−V
0
λnΣ−Un(B(Wn, R(J

−
m))/S(Wn, R(J

−
m)))

∼= Σ−(I+(X)⊕coker(H1(X;R)→H1(Y ;R)))T (X, ŝ, A0, g, ô;S
1)

provided by Lemma 7.4.2.
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Lemma 7.4.9. For any m ∈ N and any n large enough relative to m, we have

ĩn,−m ◦ ψn,−
m+1 = ψn,−

m , (7.19)

where ĩn,−m = Σ−V
0
λn in,−m+1 ∈ morC(I

n,−
m+1, I

n,−
m ) is given in Proposition 5.1.8.

Proof. The proof is identical with Lemma 7.4.4 except that we use Proposition 3.2.19

instead of Proposition 3.2.18.

Lemma 7.4.10. For any m ∈ N and any n large enough relative to m, we have

ρ̃n,−m ◦ ψn,−
m = ψn+1,−

m . (7.20)

where ρ̃n,−m is the isomorphism given in Proposition 5.1.8.

Proof. The proof is identical with Lemma 7.4.5.

Recall that the type-R spectrum invariant swfR(Y, s, A0, g) is defined as the pro-

jective system

In1,−
1

η−1←− In2,−
2

η−2←− In3,−
3

η−3←− ·

with the connecting isomorphism η−m = (ρ̃nm+1−1,−
m ◦· · ·◦ ρ̃nm,−

m )−1◦ ĩnm+1,−
m . Suppose we

choose nm large enough relative to m such that (7.19) and (7.20) holds for all m ∈ N.

Then we have

η−m ◦ ψ
nm+1,−
m+1 = ψnm,−

m .

As a result, {ψnm,−
m }m∈N gives a well-defined element in

morS∗(Σ−(I+(X)⊕coker(H1(X;R)→H1(Y ;R)))T (X, ŝ, A0, g, ô;S
1), swfR(Y, s, A0, g)).

Definition 7.4.11. (1) The S1-equivariant relative Bauer-Furuta invariant

bfR(X, ŝ, A0, g, ô, [η⃗];S
1)

∈ morS∗(Σ−(I+(X)⊕coker(H1(X;R)→H1(Y ;R)))T (X, ŝ, A0, g, ô;S
1), swfR(Y, s, A0, g;S

1))

is defined as the morphism given by {ψnm,−
m }m∈N.
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(2) When s = ŝ|Y is torsion. We define the normalized relative Bauer-Furuta

invariant

BFR(X, ŝ,ô, [η⃗];S1)

∈ morS∗(Σ−(I+(X)⊕coker(H1(X;R)→H1(Y ;R)))T̃ (X, ŝ, ô;S1), SWFR(Y, s;S1))

as the morphism given by {(ψnm,−
m , 0, n(Y, s, A0, g))}m∈N.

In the case that ŝ is a spin structure, we can define the morphism ψnm,−
Pin(2),m from

the object

Σ−(I+(X)⊕coker(H1(X;R)→H1(Y ;R)))T (X, ŝ, A0, g, ô;Pin(2))

to the object Inm,−
m (Pin(2)), in same manner as ψnm,+

Pin(2),m.

Definition 7.4.12. When ŝ is a spin structure, we define the normalized Pin(2)-

equivariant relative Bauer-Furuta invariant

BFR(X, ŝ, ô, [η⃗];Pin(2))

∈ morS∗
Pin(2)

(Σ−(I+(X)⊕coker(H1(X;R)→H1(Y ;R)))T̃ (X, ŝ, ô;Pin(2)), SWFR(Y, s;Pin(2)))

as the morphism given by {(ψnm,−
Pin(2),m, 0,

n(Y,s,A0,g)
2

)}m∈N.
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CHAPTER 8

Further developments

In this chapter, we will discuss some further developments of the theory. Most of

the results in this chapter will be stated without proof. We refer our paper [28], [26]

and [27] for complete proofs. Although some results can be extended to the general

case, for simplicity, we will assume that all spinc structures on 3-manifolds are

torsion throughout this chapter.

8.1 Calculations

As mentioned in the introduction, our spectrum invariants are quite difficult to com-

pute. However, by using Mrowka-Ozváth-Yu’s explicit description of the Seiberg-

Witten moduli space for Seifert manifolds [48] and a refinement of the rescaling tech-

nique developed by Khandhawit [29], we are able to give explicit computation of the

invariants in torsion cases of some Seifert manifolds. We summarize these examples in

this section. See [28] for the derivations.

8.1.1 S2 × S1

Since the manifold S2×S1 admits a metric with positive scalar structure. The spectrum

invariants for the torsion spinc structure are just the sphere spectra.

More precisely, let s be the unique torsion spin structure on S2×S1. Then we have

SWFA(S2 × S1, s;S1) ∼= (S0, 0, 0), SWFR(S2 × S1, s;S1) ∼= (S0, 0, 0).

Note that s can be lifted to two spin structures, denoted by sj (j = 1, 2). We have

SWFA(S2 × S1, sj;Pin(2)) ∼= (S0, 0, 0), SWFR(S2 × S1, sj;Pin(2)) ∼= (S0, 0, 0).
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8.1.2 Large degree circle bundle over surfaces

Let Nd be a complex line bundle of degree d > 0 over a surface Σ of genus g and let

Y = S(Nd) be the corresponding circle bundle. The torsion spinc structures on Y can

be identified with Z/dZ in a canonical way and we denote them by s0, s1, · · · , sd−1.

In the case that 0 < g ≤ q < d, we have the following results:

SWFA(S(Nd), sq;S
1) ∼= (S0, 0, c(g, d, q)),

SWFR(S(Nd), sq;S
1) ∼= (S0, 0, c(g, d, q)),

(8.1)

where

c(g, d, q) =
d− 1

8
+

(g − 1− q)(d+ g − 1− q)
2d

.

A particularly interesting case is when d is an even number greater than 2g − 2.

Setting q to be d
2
+ g − 1, the spinc structure sq has vanishing c1 and therefore can be

lifted to 22g spin structures, denoted by sjq (j = 1, 2, · · · , 22g). We have

SWFA(S(Nd), s
j
q;Pin(2))

∼= (S0, 0,− 1

16
),

SWFR(S(Nd), s
j
q;Pin(2))

∼= (S0, 0,− 1

16
).

(8.2)

8.1.3 Circle bundles over torus

When g = 1 and d ̸= 0, the circle bundle Y = S(Nd) is a nil manifold and the spectrum

invariants Y for torsion spinc structure can be explicitly computed.

We focus on the case d > 0 (the d < 0 case is similar). The spectrum invariants

for s1, · · · , sd−1 can be computed by formula (8.1). Hence we are left with s0, whose

spectrum invariants are actually not suspensions of the sphere spectrum. To state the

result, we give the following notation.

Notation. Let A be a topological space and B be a subset of A. We denote by
n∨
B

A

the topological space obtained from gluing n copies of A together along their subset

B.

We have

SWFA(Y, s0;S
1) ∼=

(
C+ →

2∨
S0

C+ →
3∨
S0

C+ → · · · , 0, d− 17

8

)
,
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SWFR(Y, s0;S
1) ∼=

(
(C2)+ \ (S1)← (C2)+ \ (

2⨿
S1)← (C2)+ \ (

3⨿
S1)← · · · , 0, d− 1

8

)
,

where in the second formula,
n⨿
S1 denotes the union of n disjoint orbits in the S1-space

(C2)+. The connecting morphisms are given by the obvious inclusions.

The spinc structure s0 can be lifted to four spin structures, denoted by sj0 (j =

0, 1, 2, 3). The invariants for s10, s
2
0, s

3
0 are isomorphic so we only consider s10. We have

the following result:

SWFA(Y, s10;Pin(2))
∼=

(
Σ(
∞⨿
Pin(2)), 0,

d− 17

16

)
,

where Σ(
∞⨿
Pin(2))) ∈ ob(S(Pin(2))) denotes the direct system

ΣPin(2)→ Σ(Pin(2)⨿ Pin(2))→ Σ(Pin(2)⨿ Pin(2)⨿ Pin(2))→ · · · ,

with the connecting morphisms given by natural inclusions and Σ∗ denoting the unre-

duced suspensions. We also have

SWFR(Y, s10;Pin(2))
∼=

(
H+ \

∞⨿
Pin(2), 0,

d− 1

16

)
.

where H+ \
∞⨿
Pin(2) denotes the inverse system

H+ \ Pin(2)← H+ \
2⨿
Pin(2)← H+ \

3⨿
Pin(2)← · · · .

(As before,
n⨿
Pin(2) denotes the union of n disjoint orbits in the Pin(2)-space H+.)

As for the spin structure s00, the spectrum invariants are as follows

SWFA(Y, s0;Pin(2)) ∼=

Σ

S(H) ∨
Pin(2)

∞∨
Pin(2)

(Z̃2 × S(H))

 , 0,
d− 9

16

 ,

SWFR(Y, s0;Pin(2)) ∼=
(
(H2)+ \D∞, 0,

d+ 7

16

)
.

Let us explain the notations above: In the first formula, S(H) denotes the unit sphere in

H; Z̃2 denotes the two-point space with nontrivial Pin(2)-action and S(H) ∨
Pin(2)

(
∞∨

Pin(2)

(Z̃2×
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S(H))) denotes the direct system

S(H) ∨
Pin(2)

(Z̃2 × S(H))→ S(H) ∨
Pin(2)

 2∨
Pin(2)

(Z̃2 × S(H))

→
S(H) ∨

Pin(2)

 3∨
Pin(2)

(Z̃2 × S(H))

→ · · · .
In the second formula, Dm is the subset of S(H2) defined as

Dm :=
m∪

n=0

{(z1 + jz2, z3 + jz4) ∈ S(H2)|z3 = −z̄4 = nz1 or z3 = z̄4 = nz̄2}

and (H2)+ \D∞ denotes the inverse system

(H2)+ \D1 ← (H2)+ \D2 ← (H2)+ \D3 ← · · · .

8.1.4 Other nil manifolds

Any manifold Y can be realized as a nonzero-degree S1-bundle over an orbifold Σ with

Euler characteristic χ(Σ) = 0. When b1(Y ) > 0, the orbifold Σ is either a torus or

a Klein bottle. The torus case has been done in last subsection and the Klein bottle

case is very similar.

We are left with the case b1(Y ) = 0. Since Y is a rational homology sphere, type-A

and type-R invariants are both isomorphic the Manolescu’s original definition of the

spectrum invariant. In this case, we actually have

SWF(Y, s;S1) ∼= (S0, 0, c(Y, s)) ∈ obC (8.3)

where c(Y, s) ∈ Q is a constant whose explicit formula can be obtained in the same

fashion as the constant c(g, d, q) in formula (8.1), we refer to [28] for a model calcula-

tion.

8.1.5 Flat manifolds except T 3

There are five manifolds belonging to this class: four of them are T 2-bundles over S1

with monodromy automorphism fixing a point and having orders 2, 3, 4, 6, and the
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last of them is the Hantzsche-Wendt manifold. By the Weitzenböck formula, for any

torsion spinc structure s on Y , the functional CSD has only reducible critical points.

The Hantzsche-Wendt manifold is a rational homology sphere. Therefore, its spec-

trum invariant is also of the form (8.3).

Now we consider the T 2-bundles over S1 whose monodromies are automorphisms

τ : T 2 → T 2 of order 2 (i.e. the hyperelliptic involution on T 2). The situations for the

cases of order 3,4 or 6 are very similar, so we will focus our attention to this case of

order 2.

Y has four spinc structures sj (j = 0, 1, 2, 3). Three of them have simple spectrum

invariants:

SWFA(Y, sj;S
1) ∼= (S0, 0, 0), SWFR(Y, sj;S

1) ∼= (S0, 0, 0) for j = 1, 2, 3.

Similarly, the Pin(2)-spectrum invariants for spin structures lifting sj (j = 1, 2, 3) are

all isomorphic to the sphere spectra (S0, 0, 0).

As for s0, the results are given as follows

SWFA(Y, s0;S
1) ∼=

(
∞∨
S0

C+, 0,
1

2

)
,

SWFR(Y, s0;S
1) ∼=

(
(C2)+ \ (

∞⨿
S1), 0,

3

2

)
,

SWFA(Y, s00;Pin(2))
∼=

Σ

S(H) ∨
Pin(2)

∞∨
Pin(2)

(Z̃2 × S(H))

 , 0,
3

4

 ,

SWFR(Y, s00;Pin(2))
∼=
(
(H2)+ \D∞, 0,

5

4

)
,

SWFA(Y, s10;Pin(2))
∼=

(
Σ(
∞⨿
Pin(2)), 0,

1

4

)
,

SWFR(Y, s10;Pin(2))
∼=

(
H+ \

∞⨿
Pin(2), 0,

3

4

)
,

where sj0 (j = 0, 1) are the two spin structures lifting s0.
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8.2 The homology cobordism invariants

In this section, we will define all kinds of Frøyshov-type numerical invariants for a

general spinc 3-manifold by applying different generalized cohomology functors to

our spectrum invariants. (Recall that we only consider torsion spinc structures on

3-manifolds in this chapter.) These invariants are all invariant under Q-homology

cobordisms. Recall that two spinc (resp. spin) 3-manifolds (Yj, sj) are Q-homology

cobordism to each other if (Y1, s1)∪ (Y2, s2) bounds a spin 4-manifold (X, ŝ) satisfying

H∗(X, Yj;Q) = 0 (j = 1, 2). These homology cobordism invariants give interesting

constrains on the intersection forms of 4-manifolds with boundary.

We start with the following theorem describing the behavior of the spectrum in-

variants under the fixed point functors ΦS1

∗ defined in Section 3.1.2.

Theorem 8.2.1. (1) For any torsion spinc structure s on a 3-manifold Y , we have

natural isomorphisms

τS
1

+ : (S0, 0)
∼=−→ ΦS1

S (SWFA(Y, s;S1)) ∈ ob(S̄)

and

τS
1

− : (S0, 0)
∼=−→ ΦS1

S∗(SWFR(Y, s;S1)) ∈ ob(S̄∗).

(2) For any spin structure s on a 3-manifold Y , we have natural isomorphisms

τ
Pin(2)
+ : (S0, 0)

∼=−→ ΦS1

SPin(2)
(SWFA(Y, s;Pin(2))) ∈ ob(S̄Z2)

and

τ
Pin(2)
− : (S0, 0)

∼=−→ ΦS1

S∗
Pin(2)

(SWFR(Y, s;Pin(2))) ∈ ob(S̄∗Z2
).

Now we start defining the numerical invariants in each case separately. The con-

structions are very similar to each other because they all follow from the same idea:

by composing the isomorphisms provided by Theorem 8.2.1 with the inclusion of the

S1-fixed point spectra, we get morphisms from the sphere spectrum into our spectrum

invariants. Then we consider the maps on generalized cohomology induced by these

morphisms and extract numerical invariants from the images of these maps.
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8.2.1 d invariants for torsion spinc structures

We will define the invariants dA, dR by applying the functor of S1-equivariant coho-

mology to our spectrum invariants.

Consider the type-A case first. We let SWFA(Y, s;S1) be represented by the in-

ductive system

I+1
i+1−→ I+2

i+2−→ I+3 ....

with I+m = (Am,+, am,+, bm,+) for m > 0. The isomorphism τS
1

+ in Theorem 8.2.1 can

be represented by a morphism τS
1

m,+ ∈ morC̄((S
0, 0), (AS1

m,+, am,+)) for all m greater or

equal to some constant m0. These morphisms satisfy the relation

i+m ◦ τS
1

m,+ = τS
1

m+1,+ for any m ≥ m0. (8.4)

We consider the stable map ρm,+ given by the composition

(Ram,+)+ → AS1

m,+ → Am,+

where the first arrow is given by the stable map representing τS
1

m,+ and the second

arrow is the natural inclusion. For each m ≥ m0, we define a number

dm,+ := inf{p ∈ N | ρ∗m,+(H̃
p
S1(Am,+;Z2)) ̸= 0} − am,+ − 2bm,+

where H̃p
S1 denotes the reduced S1-equivariant cohomology of degree p. Using the

relation (8.4), one can prove that dm ≤ dm+1 for any m ≥ m0. We define the type-A

d-invariant for (Y, s) as

dA(Y, s) := sup{dm,+ | m ≥ m0} −
b1(Y )

2
∈ Q ∪ {+∞}.

Now we turn to the type-R case. Suppose SWFA(Y, s;S1) is represented by the

projective system

I−1
i−1←− I−2

i−2←− I−3 · · ·

with I−m = (Am,−, am,−, bm,−). The isomorphism τS
1

− in Theorem 8.2.1 can be repre-

sented by a collection {τS1

m,−}m≥0 of morphisms with τS
1

m,− ∈ morC̄((S
0, 0), I−m). Similar

to the previous case, we consider stable map ρm,− given by the composition

(Ram,−)+ → AS1

m,− → Am,−
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and define the number

dm,− := inf{p ∈ N | ρ∗m,−(H̃
p
S1(Am,−;Z2)) ̸= 0} − am,− − 2bm,−

for each m ≥ 0. It can be proved that dm+1,− ≤ dm,− for any m > 0. We define the

type-R d-invariant for (Y, s) as

dR(Y, s) := inf{dm,− | m > 0}+ b1(Y )

2
∈ Q ∪ {−∞}.

Theorem 8.2.2. Both the numbers dA(Y, s) and dR(Y, s) are topological invariants of

the pair (Y, s). Moreover, they satisfy the following properties:

(i) dA(−Y, s) = −dR(Y, s).

(ii) Suppose (Yj, sj) (j = 1, 2) are Q-homology cobordant to each other. Then we

have

dA(Y1, s1) = dA(Y2, s2) and d
R(Y1, s1) = dR(Y2, s2).

(iii) Suppose (Y, s) bounds a spinc 4-manifold (X, ŝ) with b+2 (X) = 0. Then we have

c1(ŝ)
2 + b−2 (X) ≤ 4dA(Y, s) + 2b1(Y ).

If we further assume that map H1(X;Q)→ H1(Y ;Q) is surjective, then we also

have

c1(ŝ)
2 + b−2 (X) ≤ 4dR(Y, s)− 2b1(Y ).

Remark. From our definition, dA(Y, s) (resp. dR(Y, s)) can be +∞ (resp. −∞). How-

ever, we have good reason to believe that this never happens. Actually, it is possible

to prove this fact by considering periodic structure of the spectrum invariants under

the action of Gh,oY . Similar remarks applies for other invariants we construct in this

section.

Remark. Behrens and Golla [63] defined a correction term d(Y, s) using Heegaard Floer

homology with fully twist coefficients. Their invariant corresponds to the invariant

dA(Y, s) here. In [52], Ozváth and Szabó defined two correction terms d± 1
2
for 3-

manifolds with b1 = 1 (and more generally, 3-manifolds with “standard HF∞”). In
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principle, d+ 1
2
and d− 1

2
correspond to the invariants dR and dA here. However, since

Ozváth and Szabó do not use twisted coefficient in the construction, we do not know

the exact relation between these invariants.

8.2.2 α, β, γ invariants for spin structures

Now we turn to the situation that s is a spin structure and define the homology

cobordism invariants αA, βA, γA, αR, βR, γR. As in [43], they are defined using Pin(2)-

equivariant cohomology.

To begin with, we let SWFA(Y, s;Pin(2)) be represented by

Ĩ+1 → Ĩ+2 → I+3 → · · ·

and SWFR(Y, s;Pin(2)) be represented by

Ĩ−1 ← Ĩ−2 ← I−3 ← · · ·

with Ĩ±m = (Ãm,±, ãm,±, b̃m,±). We can represent isomorphism τ
Pin(2)
+ in Theorem 8.2.1

by a morphism τ
Pin(2)
m,+ for any m greater or equal to a constant m0, while τ

Pin(2)
− is

represented by the whole collection {τPin(2)
m,− }m>0 of morphisms. Here τ

Pin(2)
m,± belongs

to morC̄Z2
((S0, 0), (ÃS1

m,±, ãm,±)). Now consider the Pin(2)-equivariant stable map ρ̃m,±

as the composition

(R̃ãm,±)+ → ÃS1

m,± → Ãm,±, (8.5)

with the first arrow given by the stable map representing τ
Pin(2)
m,± and the second arrow

being the natural inclusion. We define the numbers

αm,± := inf{p | p ≡ ãm,± (mod4), ρ̃∗m,±(H̃
p
P in(2)(Ãm,±;Z2)) ̸= 0} − ãm,± − 4b̃m,±;

βm,± := inf{p | p ≡ ãm,± + 1 (mod4), ρ̃∗m,±(H̃
p
P in(2)(Ãm,±;Z2)) ̸= 0} − ãm,± − 4b̃m,± − 1;

γm,± := inf{p | p ≡ ãm,± + 2 (mod4), ρ̃∗m,±(H̃
p
P in(2)(Ãm,±;Z2)) ̸= 0} − ãm,± − 4b̃m,± − 2.

(Note that αm,+, βm,+, γm,+ are only defined form ≥ m0.) One can prove the following

inequalities:

αm+1,+ ≥ αm,+; βm+1,+ ≥ βm,+; βm+1,+ ≥ βm,+ for any m ≥ m0

αm+1,− ≤ αm,−; βm+1,− ≤ βm,−; βm+1,− ≤ βm,− for any m > 0.
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As before, we define our invariants by passing to the limit as m → +∞ and doing

suitable normalization as follows

αA(Y, s) :=
1

2
sup{αm,+ | m ≥ m0} −

b1(Y )

4
∈ Q ∪ {+∞};

βA(Y, s) :=
1

2
sup{βm,+ | m ≥ m0} −

b1(Y )

4
∈ Q ∪ {+∞};

γA(Y, s) :=
1

2
sup{γm,+ | m ≥ m0} −

b1(Y )

4
∈ Q ∪ {+∞};

αR(Y, s) :=
1

2
inf{αm,− | m > 0}+ b1(Y )

4
∈ Q ∪ {−∞};

βR(Y, s) :=
1

2
inf{βm,− | m > 0}+ b1(Y )

4
∈ Q ∪ {−∞};

γR(Y, s) :=
1

2
inf{γm,− | m > 0}+ b1(Y )

4
∈ Q ∪ {−∞}.

We summarize the important properties of these numbers in the following theorem:

Theorem 8.2.3. The numbers αA, βA, γA, αR, βR, γR are all topological invariants

for the pair (Y, s). Moreover, they satisfies the following properties:

(i) All these invariants are invariant under Q-homology spin cobordisms;

(ii) Under the change of orientation, these invariants behave as follows

• −αA(Y, s) = γR(−Y, s),

• −βA(Y, s) = βR(−Y, s),

• −γA(Y, s) = αR(−Y, s);

(iii) Suppose (Y, s) bounds a spin 4-manifold (X, ŝ) with b+2 (X) = 0. Then we have

b−2 (X)− 2b1(Y )

8
≤ min(αA(Y, s), βA(Y, s), γA(Y, s)).

If we further assume that the map H1(X;Q) → H1(Y ;Q) induced by the inclu-

sion of boundary is surjective, then we also have

b−2 (X) + 2b1(Y )

8
≤ min(αR(Y, s), βR(Y, s), γR(Y, s)).

(iv) In the case b1(Y ) = 0, we have βA(Y, s) = βR(Y, s) = β(Y, s), where β(Y, s) is

the invariant defined by Manolescu [43]. Similar results hold for the α and γ

invariants.
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8.2.3 κ invariants for spin structures

Now we define the invariants κA and κR. They are obtained by applying Pin(2)-

equivariant K-theory on the spectrum invariants. As before, let ρ̃m,± : (R̃ãm,±)+ →

Ãm,± be the stable maps given by the composition 8.5.

Recall that the numbers ãm,± are always even by our definition of the category

CPin(2). By the Bott periodicity theorem, there exists an isomorphism

K̃Pin(2)((R̃ãm,±)+) ∼= R(Pin(2)),

where R(Pin(2)) denotes the representation ring of Pin(2). Under this isomorphism,

the image of the map

ρ̃∗m,± : K̃Pin(2)(Ãm,±)→ K̃Pin(2)((R̃ãm,±)+)

is an ideal of R(Pin(2)). By taking the character of the element j ∈ Pin(2), we get

an surjective ring homomorphism τ : R(Pin(2)) → Z. Then τ(im ρ̃∗m,±) is an ideal of

Z.

The following lemma is proved using the fact that the augmentation ideal of

R(Pin(2)) acts nilpotently on K̃∗Pin(2)(Ãm,±/Ã
S1

m,±) (see [41, Fact 2.11]).

Lemma 8.2.4. For any m ≥ m0, the ideal τ(im ρ̃∗m,+) is generated by 2cm,+ for some

cm,+ ∈ N. Similarly, for any m > 0, the ideal τ(im ρ̃∗m,−) is generated by 2cm,− for

some cm,− ∈ N.

We define κm,± as cm,± − b̃m,±, where b̃m,± is the second desuspension index of the

object Ĩ±m. It can be proved that κm+1,+ ≥ κm,+ for any m ≥ m0, while κm+1,− ≤ κm,−

for any m > 0. We define our invariants by taking the limit of κm,±:

κA(Y, s) := 2 sup{κm,+ | m ≥ m0} ∈ Q ∪ {+∞};

κR(Y, s) := 2 inf{κm,− | m > 0} ∈ Q ∪ {−∞}.

We summarize the important properties of κA(Y, s) and κR(Y, s) in the following the-

orem.
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Theorem 8.2.5. The numbers κA(Y, s) and κR(Y, s) are topological invariants of the

pair (Y, s). They satisfy the following properties:

(i) Both invariants are invariant under Q-homology spin cobordisms;

(ii) Let (X, ŝ) be a spin 4-manifold bounded by (Y, s). Then we have the following

inequalities

−σ(X)

8
≤ b+2 (X) + ξ(b+2 (X)) + κA(Y, s);

−σ(X)

8
≤ b+2 (X) + b+ ξ(b+2 (X) + b) + κR(Y, s).

Here b = dimR coker(H
1(X;R) → H1(Y ;R)) and the function ξ : Z≥0 → Z is

given by the formula

ξ(a) :=


0 a = 0

−1 a odd

−2 a > 0, even

.

(iii) In the special case that b1(Y ) = 0, we have κA(Y, s) = κR(Y, s) = κ(Y, s). Here

κ(Y, s) denotes the original κ invariant defined by Manolescu [41].

8.3 The gluing theorem and its corollaries

In this section, we will give the statement of the gluing theorem and discuss its various

applications. To keep our discussion comprehensible, we focus on the simplest case of

gluing theorem instead of giving its most general form. Also, we only talk about the

S1 version and the argument can be easily adapted to the Pin(2) version when s is a

spin structure.

We begin with the following theorem on the behavior of the spectrum invariants

under orientation reversal.

Theorem 8.3.1. Let s be a torsion spinc structure on Y . Then the spectrum invariants

SWFA(Y, s;S1) and SWFR(−Y, s;S1) are S1-equivariant Spanier-Whitehead dual to
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each other in the sense of Definition 3.1.5. Similar result holds for Pin(2)-spectrum

invariants for spin manifolds.

Now let (X, ŝ) be a closed spinc 4-manifold. We assume that X can be decomposed

asX1∪YX2 with Y being a connected 3-manifold. Denote by ŝ1, ŝ2 and s the restriction

of ŝ on X1, X2 and Y respectively.

We choose the base point ô ∈ X to be on Y . The based path data forXj (j = 1, 2) is

set to be represented by the constant path. With these topological inputs, the (relative)

Bauer-Furuta invariants for X1, X2 and X are defined. Recall that the Bauer-Furuta

invariant for X, denoted by BF(X, ŝ;S1), is an equivariant stable homotopy class of

maps defined on the Thom space of a virtual index bundle over the Picard torus

Pic0(X). Therefore, we can restrict BF(X, ŝ;S1) to the subtorus

Pic0(X, Y ) := ker(H1(X,R)→ H1(Y ;R))/ ker(H1(X,Z)→ H1(Y ;Z)).

We denote this restriction by BF(X, ŝ;S1)|Pic0(X,Y ).

Theorem 8.3.2. Suppose the following two conditionns are satisfied

• s is torsion;

• im(H1(X1;R)→ H1(Y ;R)) ⊂ im(H1(X2;R)→ H1(Y ;R)).

Then under the natural identification Pic0(X,Y ) ∼= Pic0(X1, Y ) × Pic0(X2, Y ) pro-

vided by the Mayer-Vietoris sequence, we have

BF(X, ŝ;S1)|Pic0(X,Y ) = ϵ̃(BFA(X1, ŝ1;S
1),BFR(X2, ŝ2;S

1)),

where ϵ̃(·, ·) denotes the smashing operation given in Definition 3.1.6.

Remark. When im(H1(X1;R) → H1(Y ;R)) = 0, the second condition in Theorem

8.3.2 is automatically satisfied. Moreover, in this case we have Pic0(X,Y ) = Pic0(X)

and the full Bauer-Furuta invariant can be recovered from this Theorem.

Note that in the current situation, the explicit description of the smashing operation

ϵ̃ is given with the help of the manifold Conley index pairs. (Roughly speaking, a
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manifold Conley index pair is an index pair (N,L) such that N is a manifold with

boundary and L is a submanifold (also with boundary) of ∂N . See [41] for the precise

definition.) Recall that in the definition of the relative Bauer-Furuta invariants, we

choose index pairs containing some specific pre-index pairs. In general, these index

pairs can not be assumed to be manifold index pairs. To prove the gluing theorem, we

have to use the flow maps to relate our index pairs with the manifold index pairs. This

actually corresponds to the “neck-stretching argument” in the proof of gluing theorem

for Floer homologies. We mention that a major difficulty in the proof of Theorem 8.3.2

is to control the time of the flow map (which corresponds to the length of the “neck”)

so that it does not goes to infinity as we do finite dimension approximations. Theorem

3.2.14 plays an important role here. We refer to our paper [27] for a complete proof.

We end this section by a few corollaries of the gluing theorem. The proof of

these corollaries are straightforward applications of Theorem 8.3.2, together with the

knowledge about the spectrum invariants of simple examples (such as S2 × S1).

Corollary 8.3.3. Let γ be an embedded loop in a closed spinc 4-manifold (X, ŝ).

We assume that γ represent a nonzero class in H1(X;R). By removing a regular

neighborhood D3 × S1 of γ and attaching a copy of D2 × S2, we obtain a new spinc

4-manifold (X ′, ŝ′). Under the canonical embedding Pic0(X ′) ↪→ Pic0(X), we have the

following equality

BF(X, ŝ;S1)|Pic0(X′) = BF(X ′, ŝ′;S1).

In particular, this implies that the fiberwise Bauer-Furuta invariant does not change

under surgeries along loops.

Corollary 8.3.4. Suppose (X, ŝ) is a closed spinc 4-manifold with non-zero Bauer-

Furuta invariant. Then (X, ŝ) can not be obtained as the fiber sum of two closed spinc

4-manifold (Xj, ŝj) (j = 1, 2) along embedded Klein bottles Kj with self-intersection

number 0. (Fiber sum here means removing a regular neighborhood of Kj and glu-

ing the resulting manifolds by an orientation reversing diffeomorphism between their

boundaries.)
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The following result is a special case of [18, Theorem 1.1] and our gluing theorem

provides an alternative proof.

Corollary 8.3.5. Suppose X is a closed, smooth 4-manifold with non-zero Bauer-

Furuta invariant. Then we have the following results:

• X can not be obtained as the union of X1, X2 along their common boundaries

S2 × S1 such that the homology class of S2 is non-zero in H2(X;R);

• X does not contain any smoothly embedded S2 that has self-intersection number

0 and represents a non-zero class in H2(X;R).

8.4 The connected sum formula for Manolescu’s spectrum

A natural question in Seiberg-Witten Floer theory is: how does the Seiberg-Witten

Floer homology behave under the connected-sum operation. In the contexts of Hee-

gaard Floer homology and monopole Floer homology, a Künneth formula for connected

sums is proved respectively by Ozsváth-Szabó [53] and Baldwin-Bloom [6]. A spectral

sequence for Pin(2)-equivariant Seiberg-Witten Floer homology of connected sums is

proved by Lin [38]. In this section, we sketch the proof of the following connected sum

formula for Manolescu’s spectrum invariant. See [27] for the detailed proof.

Theorem 8.4.1. Suppose Y1, Y2 are two rational homology 3-spheres. Then we have

the following results:

• Let sj be a spinc structure on Yj. Then we have

SWF(Y1#Y2, s1#s2;S
1) ∼= SWF(Y1, s1;S

1) ∧ SWF(Y2, s2;S
1).

• Let s̃j be a spin structure on Yj. Then we have

SWF(Y1#Y2, s̃1#s̃2;Pin(2)) ∼= SWF(Y1, s̃1;Pin(2)) ∧ SWF(Y2, s̃2;Pin(2)).

We need the following proposition in order to prove Theorem 8.4.1. Although the

result of this proposition seems natural, the proof is actually highly nontrivial. Again,

we refer to [27] for the proof.
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Proposition 8.4.2. Let (Y, s) be a spinc 3-manifold whose components are all rational

homology spheres. Then the trivial cobordism X = [0, 1] × Y induces the identity

morphism on SWF(Y, s;S1). Similar result holds for the Pin(2)-spectrum invariant.

Proof of Theorem 8.4.1 (Sketch). We focus on the S1 case and the Pin(2) case is sim-

ilar. By adding an 1-handle on the manifold [0, 1] × (Y1 ∪ Y2), we get a cobordism

(X1, ŝ1) from the disjoint union (Y1∪Y2, s1∪s2) to the connected sum (Y1#Y2, s1#s2).

By reversing the orientation, we get a cobordism (X2, ŝ2) from (Y1#Y2, s1#s2) to

(Y1∪Y2, s1∪s2). It is not hard to prove that the spectrum invariant of the disjoint union

(Y1∪Y2, s1∪s2) is isomorphic to the smash product SWF(Y1, s1;S
1)∧SWF(Y2, s2;S

1).

Therefore, the cobordism (X1, ŝ1) induces a morphism

ρ1 : SWF(Y1, s1;S
1) ∧ SWF(Y2, s2;S

1)→ SWF(Y1#Y2, s1#s2;S
1)

and the cobordism (X2, ŝ2) induces the morphism

ρ2 : SWF(Y1#Y2, s1#s2;S
1)→ SWF(Y1, s1;S

1) ∧ SWF(Y2, s2;S
1).

We need to show that ρ1, ρ2 are inverse to each other, i.e., ρ1 ◦ ρ2 and ρ2 ◦ ρ1 are

respective identity morphisms.

Consider ρ2 ◦ ρ1 first. By the Manolescu’s original version of gluing theorem for

relative Bauer-Furuta invariant (see [41]), the composition ρ2 ◦ρ1 equals the morphism

ρ1,2 induced by the 4-manifold

X1,2 = X1 ∪Y1#Y2 X2.

Since X1,2 can be obtained from taking connected sum of the two components of the

trivial cobordism X ′1,2 = [0, 1] × (Y1 ∪ Y2), by the gluing theorem again, ρ1,2 equals

the morphism ρ′1,2 induced by X ′1,2. By Proposition 8.4.2, we see that ρ′1,2 equals the

identity morphism on SWF(Y1, s1;S
1) ∧ SWF(Y2, s2;S

1).

Now consider ρ2 ◦ρ1. Note that because Y1∪Y2 is not connected, we can not apply

the Manolescu’s gluing theorem to the composed cobordism X2,1 = X2 ∪Y1∪Y2 X1 to

show that ρ2 ◦ ρ1 equals the morphism ρ2,1 induced by X2,1. However, a variation of
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this theorem can be proved similarly. It asserts that the composition ρ2 ◦ ρ1 equals

ρ̃2,1, the restriction of ρ2,1 on a single fiber of Ind /D(X2,1) (the virtual index bundle

over Pic0(X2,1) ∼= S1 of the Dirac operator). Notice that we can obtain the trivial

cobordism X ′2,1 = [0, 1]×(Y1#Y2) from X2,1 by doing a surgery along a loop generating

H1(X2,1;Z). A slight generalization of Corollary 8.3.3 (to the case of 4-manifolds

with boundary) can be used to show that ρ̃2,1 equals ρ′2,1, the morphism induced by

X ′2,1. By Proposition 8.4.2 again, we see that ρ′2,1 equals the identity morphism on

SWF(Y1#Y2, s1#s2;S
1). This finishes the proof of the theorem.
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