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ABSTRACT OF THE DISSERTATION

The unfolded Seiberg-Witten Floer spectrum:
Definition, properties and applications

by

Jianfeng Lin
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2016

Professor Ciprian Manolescu, Chair

In this thesis, we define different versions of unfolded Seiberg-Witten Floer spectra
for general 3-manifolds. They generalize Manolescu’s and Kronheimer-Manolescu’s
construction of Floer stable homotopy type. We prove some properties of these new
invariants and give some topological applications (Joint works with collaborators.)
Along the way, as an application of the Seiberg-Witten Floer spectrum, we study
the Pin(2)-equivariant Seiberg-Witten Floer KO-theory and prove new Furuta-type

inequalities on the intersection forms of spin cobordisms between homology 3-spheres.

1



The dissertation of Jianfeng Lin is approved.
Eliezer M. Gafni
Robert F. Brown

Ciprian Manolescu, Committee Chair

University of California, Los Angeles

2016

111



To my parents, Dongxiang Tan and Min Lin

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . ... ..
1.1 The Seiberg-Witten equations and the monopole Floer homology . . . .
1.2 The Seiberg-Witten Floer spectrum for rational homology 3-spheres . .
1.3 Pin(2)-equivariant Seiberg-Witten Floer KO-theory . . . . . . ... ..
1.4  The unfolded Seiberg-Witten Floer spectrum for general 3-manifolds . .
1.5 Invariance of the spectrum . . . . . . . ... .. ... .. ... ... ..
1.6 The relative Bauer-Furuta invariants for 4-manifolds with boundary . .
1.7 Further developments . . . . . . . . .. ... ... .. ... ...

1.8 Outline. . . . . . o

2 The approximated Seiberg-Witten flow . . . . . . . ... ... ... ..
2.1 The Chern-Simons-Dirac functional and Seiberg-Witten trajectories . .

2.2 Analysis of approximated Seiberg-Witten trajectories . . . . . . . . ..

3 Categorical and topological preliminaries . . .. ... ... ... ...
3.1 The stable categories. . . . . . . . . ... Lo
3.1.1 Definition of the stable categories . . . . . . . . ... ... ...

3.1.2  The S'-fixed point functor . . . . . . ... ... ... ... ...

3.1.3  Smash product and suspension/desuspension functors . . . . . .

3.1.4 Equivariant Spanier-Whitehead duality . . . . . . . . .. .. ..

3.2 The Conley index . . . . . . . . ...
3.2.1 Definition and basic properties. . . . . . . .. ... ... ...

3.2.2  Further properties of Conley index . . . .. .. ... ... ...

4 Pin(2)-equivariant Seiberg-Witten Floer KO-theory . . . . . . . . ..

12

14

18

20



4.1 Equivariant KO-theory . . . . . . . . .. ... ... .. 59

4.1.1 General Theory . . . . . . . . ... 59

4.1.2  Pin(2)-equivariant KO-theory . . . ... ... ... ... ... .. 61
4.2 The Adams operations . . . . . . . . . . ... 65

4.2.1 Basic properties . . . . . ... Lo 65

4.2.2  Proof of Theorem 1.3.4 . . . . . . . . . ... ... .. ... ... 66
4.3 Seiberg-Witten Floer spectrum for spin 3-manifolds with by =0 . . .. 69
4.4 Numerical Invariants . . . . . . . . . ... oo 71
4.5 Proof of Theorem 1.3.6 . . . . . . . . .. .. ... ... ... 78
4.6 KOg-Split condition . . . . . . . ... o 81
4.7 Examples and Explicit bounds . . . . .. ... o000 oL 86

4.7.1 Basic Examples . . . . . . ... oo 87

4.7.2 Explicit Bounds . . . .. ... o 92
Construction of the unfolded spectrum invariants . . . . .. ... .. 95
5.1 The unfolded spectrum invariants for general spin® structures. . . . . . 95
5.2 The torsion case . . . . . . . . ... 103
5.3 The Pin(2)-spectrum invariants for spin structures . . . . . . . . .. .. 104
The invariance for the unfolded spectrum . . . . ... .. ... ... .. 107
6.1 The finite dimensional approximation for a family of flows . . . . . .. 108
6.2 The invariance for (IIT),(IV),(V) . . . . . .. .. oo oL 112
6.3 The invariance for (IT) . . . . .. . ... . . 114
6.4 The invariance for (I) . . . . . ... ..o Lo 130
The relative Bauer-Furuta invariants . . . . . . .. .. ... ... ... 133
7.1 The setup and notations . . . . . . . ... ... ... ... ... .. .. 133

vi



7.2  The Seiberg-Witten map and its finite dimensional approximations
7.2.1 Definition of the Seiberg-Witten map . . . . . . . . . .. .. ..
7.2.2 The approximated Seiberg-Wittenmap . . . . . . . . .. .. ..

7.3 The boundedness results . . . . . . ... ..o Lo

7.4 Construction of the relative Bauer-Furuta invariants . . . . . . . . . ..
7.4.1 Thom spectrum of the virtual index bundle . . . ... ... ..
7.4.2 Type-A relative Bauer-Furuta invariant . . . . . . . . . ... ..

7.4.3 Type-R relative Bauer-Furuta invariant . . . . . . . .. ... ..

Further developments . . . . . . . . .. ... ... ... ... .......
8.1 Calculations . . . . . . . ..
1.1 S2x SV
8.1.2 Large degree circle bundle over surfaces . . . . . . ... ... ..
8.1.3 Circle bundles over torus . . . . . . . ... ... ...
8.1.4 Other nil manifolds . . . . . . . .. ... ... L.
8.1.5 Flat manifolds except T2 . . . . . . .. .. ... ... ......
8.2  The homology cobordism invariants . . . . . . . .. .. .. ... .. ..
8.2.1 d invariants for torsion spin® structures . . . . . . . . .. .. ..
8.2.2 a, [, invariants for spin structures . . . . . .. ... ... ..
8.2.3 k invariants for spin structures. . . . . ... ..o
8.3 The gluing theorem and its corollaries . . . . . . . . .. ... ... ...

8.4 The connected sum formula for Manolescu’s spectrum . . . . . . . . ..

References . . . . . . .

vil

. 137



5.1 the function g

L1sT OoF FIGURES

viil



ACKNOWLEDGMENTS

I could never express enough thanks to my Ph.D. advisor, Professor Ciprian Manolescu,
for suggesting the problem that leads to the results in this thesis. Throughout my years
at UCLA, he has been constantly supporting me in all aspects, both mathematical
and nonmathematical. He set up an excellent model to me of a hard-working, brilliant

mathematician. Without him, I could not have finished my Ph.D. study.

I am grateful to my M.S. advisor at Peking University, Professor Shicheng Wang for
introducing me to the fascinating world of low dimensional topology. His enthusiasm

for topology catalyzed my development as a mathematician in a foundational way.

I want to thank Professor Kefeng Liu for very helpful advices on my research. I
want to thank Professor Robert Brown for his support and for invaluable suggestions

on how to become an inspiring teacher.

I would like to thank my collaborators Tirasan Khandhawit and Hirofumi Sasahira

for many inspiring discussions and sharing great mathematical ideas.

I feel very fortunate to become a part of UCLA topology group. I wish to thank all
other members of this warm academic family, including Professor Ko Honda and Pro-
fessor Mike Hill, Kristen Hendricks, Andrew Manion, Erkao Bao, Yajing Liu, Chirsto-
pher Scaduto, Mattew Stoffregen, lan Zemke, Michael Menke, Haofei Fan, Siqi He and
Mike Miller (together with former members Tova Brown, Allison Gilmore, Eamonn

Tweedy, Liam Watson and Tye Lidman).

Finally, I would like to thank my parents Dongxiang Tan and Min Lin. I can not

be here without your limitless support.

Part of this manuscript (Chapter 2, 3, 5, 6, 7, 8) is a reorganized version of a series
of articles [26], [27] and [28] joint with Tirasan Khandhawit and Hirofumi Sasahira.
Chapter 4 is a slightly expanded version of the paper [39] first published in Algebraic &
Geometric Topology in [15(2), 2015], published by Mathematical Sciences Publishers.

1X



ViTa

2009 B.S. in Mathematics, Peking University.
2012 M.A. in Mathematics, Peking University.
2012-2016 Research Assistant, Mathematics Department,

University of California, Los Angeles.

2016-2019 C.L.E. Moore instructor in Pure Mathematics,

Massachusetts Institute of Technology.



CHAPTER 1

Introduction

1.1 The Seiberg-Witten equations and the monopole Floer
homology

In 1994, following up the work of Seiberg and Witten [62], Witten [07] introduced a
set of nonlinear partial differential equations over spin® 4-manifolds. These equations
(later called the Seiberg-Witten equations) turn out to be extremely powerful in the
study of four dimensional topology. In particular, by counting the number of solutions
(called the Seiberg-Witten invariant), topologists are able to distinguish many smooth
4-manifolds that are homeomorphic to each other. For example, Fitushel and Stern

proved the following theorem:

Theorem 1.1.1 (Fintushel-Stern [11]). Let X be a closed, oriented, simply connected
smooth 4-manifold with by (X) > 1. Suppose that X has nonzero Seiberg-Witten in-
variant (e.g. X admits a symplectic structure) and contains a homologically essential
torus T of self-intersection 0 and m (X \ T) = 1. Then there exist infinitely many

smooth structures on X.

In dimension three, following the idea of Floer [10] in the setting of the anti-self-dual
Yang-Mills equation, Kronheimer and Mrowka [33] developed the corresponding theory
for 3-manifolds, i.e., the theory of monopole Floer homology. Roughly speaking, the
monopole Floer homology of a 3-manifold Y is defined as the homology of a certain
chain complex, whose generators are the critical points of the Chern-Simons-Dirac
functional (corresponding to the solutions of the Seiberg-Witten equations on Y') and

differential given by counting the number of negative gradient flow lines connecting



these critical points (corresponding to the finite-energy solutions of the Seiberg-Witten
equations on R x Y'). The monopole Floer homology, together with its counter parts
(instanton Floer homology and Heegaard Floer homology), is now an important tool

in 3-dimensional topology and has many remarkable applications.

1.2 The Seiberg-Witten Floer spectrum for rational homolo-

gy 3-spheres

In the contexts of symplectic Floer theory and instanton Floer theory, Cohen, Jones
and Segal [9] posed a question of constructing a “Floer spectrum,” an object whose
homology recovers the Floer homology. (Recall that a spectrum is a generalization of
a topological space in the setting of stable homotopy theory.) In 2003, Manolescu [10]
first constructed the Seiberg-Witten Floer spectrum for rational homology 3-spheres
by incorporating Furuta’s technique of finite dimensional approximation in Seiberg-
Witten theory [21] and Conley index theory [10]. It has been just recently shown by
Lidman and Manolescu [30] that the homology of this spectrum is isomorphic to the

monopole Floer homology.

Working with the Seiberg-Witten Floer spectrum has several advantages. First,
suppose that the Seiberg-Witten equations have a certain “additional symmetry” (e.g.
the underlying 3-manifold has a spin structure or has a finite group action). Then
defining the “equivariant Seiberg-Witten Floer theory” is usually easier in the context
of a spectrum invariant. A major reason is that the construction of a spectrum invari-
ant requires very weak (or no) transversality conditions, while obtaining equivariant
transversality in the setting of Morse homology is usually more difficult. A remarkable
application in this direction is the following theorem (we stick to the case of integer

homology spheres):

Theorem 1.2.1 (Manolescu [13]). To each integer homology sphere Y, by studying the
Pin(2)-equivariant Seiberg-Witten Floer spectrum of Y, we can associate an invariant

B(Y') € Z with the following properties:



e [f =Y denotes the orientation reversal of Y, then f(=Y) = —p(Y);
e The mod-2 reduction of (Y equals the Rohlin invariant p(Y');

o Suppose Yy, Y1 are homology cobordent to each other. Then 5(Yy) = B(Y1).

Combining the earlier work of Galewski-Stern [25] and Matumoto [15], Theorem

1.2.1 disproves the Triangulation Conjecture in high dimensions:

Corollary 1.2.2 (Manolescu [13]). For everyn > 5, there exists a closed n-dimensional

topological manifold that does not admits a simplicial triangulation.

Remark. A different construction of Pin(2)-equivariant Seiberg-Witten Floer homolo-
gy was given by Lin in [37]. Instead of doing finite dimensional approximations, Lin
extends Kronheimer-Mrowka’s construction to the Morse-Bott setting. This construc-

tion gives an alternative disproof of the triangulation conjecture.

The second advantage of the Seiberg-Witten Floer spectrum is that: in principle,
this invariant contains more information than the monopole Floer homology. For
example, by applying the K-theory or KO-theory functor to the spectrum invariant,
one can define “Seiberg-Witten Floer K-theory” or “Seiberg-Witten Floer KO-theory”
and obtain interesting topological applications. This leads us to the topic of the next

section.

1.3 Pin(2)-equivariant Seiberg-Witten Floer KO-theory

In this section, we discuss the following natural question in 4-dimensional topology:

Question 1.3.1. Which nontrivial symmetric bilinear form can be realized as the

intersection form of a smooth, spin 4-manifold X (closed or with boundary)?

We first assume that X is closed. In this case, the intersection form should be even
and unimodular. Therefore, it is indefinite by Donaldson’s diagonalizability theorem
[12, 13]. After changing the orientation of X if necessary, we can assume that the

signature ¢(X) is non-positive. Then the intersection form can be decomposed as



p(—Es) @ ¢(V¢) with p > 0,¢ > 0. Matsumoto’s 11/8 conjecture [11] states that
b2(X) > Y|o(X)|, which can be rephrased as ¢ > 2. An important result is the

following 10/8 theorem of Furuta.

Theorem 1.3.2 (Furuta [21]). Suppose X is an oriented closed spin 4-manifold with
intersection form p(—Eg) ® q(94) for p>0,q > 0. Then we have ¢ > p+ 1.

Furuta’s proof made use of the finite dimensional approximation of the Seiberg-
Witten equations on closed 4-manifolds and Pin(2)-equivariant K-theory. By doing
destabilization and appealing to a result by Stolz [64], Minami [17] and Schmidt [60]

independently proved the following improvement:

Theorem 1.3.3 (Minami [17], Schmidt [00]). Let X be a smooth, oriented, closed spin

4-manifold with intersection form p(—FEg) @ q($3) forp > 0,q > 0. Then we have:

p+1, p=0,2 mod 8
g2 p+2, p=4mod8 (1.1)
p+3, p=06 modS8.

Remark. p is always an even integer by Rokhlin’s theorem [55].

An interesting observation is that Schmidt’s calculation in [60] about the Adams
operations actually implies an alternative proof of the following further improvement,
which was first proved by Furuta-Kametani [22]. As a natural by-product of defining
the Seiberg-Witten Floer KO-theoretic invariants, we will give this alternative proof

in Section 4.2.

Theorem 1.3.4 (Furuta-Kametani [22]). Let X be a smooth, oriented, closed spin
4-manifold with intersection form p(—Es) ® q(9¢) for p,q > 0. Then q¢ > p+ 3 when

p=0 mod 8.

Now we turn to the case that X is not closed but has boundary components, which
are homology 3-spheres. The intersection form of X is still even and unimodular but

can be definite now. For the definite case, various constrains are found in [17, 18, 19,

, 31, 40].



For the indefinite case, Furuta-Li [21] and Manolescu [12] proved the following

theorem independently!.

Theorem 1.3.5 (Furuta-Li [21], Manolescu [10]). To each oriented homology 3-sphere

Y, we can associate an invariant K(Y') € Z with the following properties:

(i) Suppose W is a smooth, spin cobordism from Yy to Y1, with intersection form
p(—Es) ®q (7). Then:
k(Y1) +q > k(Yo) +p— 1.

(ii) Suppose W is a smooth, oriented spin manifold with connected boundary Y,

with intersection form p(—FEs) @ q($3) and ¢ > 0. Then:

k(Y)+q>p+1

Both Furuta-Li and Manolescu proved this theorem by considering the Pin(2)-
equivariant K-theory on the Seiberg-Witten Floer spectrum. Some new bounds can
be obtained from this theorem. For example, the Brieskorn sphere +3(2,3,12n + 1)

does not bound a spin 4-manifold with intersection form p(—Es) @ p(9}) for p > 0.

The main purpose of Chapter 4 will be extending Theorem 1.3.3 to the case of spin
cobordisms tor get more constraints on the intersection form of a spin 4-manifold with

boundary. The results in this chapter have also appeared in the paper [39].

Here is the first result:

Theorem 1.3.6. For any k € 7Z/8, we can associate an invariant kog(Y') to each

oriented homology sphere Y , with the following properties:

o (1) 2ror(Y) is an integer whose mod 2 reduction is the Rokhlin invariant pu(Y).

e (2) Suppose W is an oriented smooth spin cobordism from Yy to Yy, with in-
tersection form p(—Eg) @ q(V8) for p,qg > 0. Let p = 4l +m for |l € Z and

m=0,1,2,3. Then for any k € Z/8, we have the following inequalities:

'We give Manolescu’s statement here. Furuta-Li’s statement is slightly different.



(1) If (u(Yo), m) = (0,0),(0,3), (1,0), (1,1), then:

Ron(Yo) + 20 + h(p(Yo),m) < Koprq(Y) + BL, . (1.2)

(i) If (n(Yo), m) = (0,1),(0,2), (1,2), (1,3), then:

Korea(Yo) + 21+ h(p(Yo), m) < Kopaq(Y1) + Bill. (1.3)

' -1
Here ZockZwhereozz—lfm“z:1235m0d8ando¢z—0forz:

0,4,6,7 mod 8 (B is defined to be 0). The constants h(u(Yy), m) are listed

below:

p(Yo)=1| 0 1/2 3 7/2

Remark. When m is even, p(Yy) = (Y1) and h(u(Yp), m) is an integer. When m is
odd, u(Yp) # (Y1) and h(u(Yp), m) is a half-integer.

Setting p = ¢ = 0 in (2) of Theorem 1.3.6, we get:

Corollary 1.3.7. If two homology spheres Yy, Y1 are homology cobordant to each other,
then rox(Yy) = ko(Y1) for any k € Z/8.

The definition of ko is similar to that of x [24, 12]. Roughly, xox(Y") is defined
as follows. Pick a metric g on Y. By doing finite dimensional approximation to the
Seiberg-Witten equations on (Y, g), we get a topological space I, with an action by
G = Pin(2). After changing I, by suitable suspension or desuspension, we consider
the following construction: The inclusion of the S!-fixed point set [;,91 induces a map
between the equivariant KO-groups i* : KOg(I,) — KOg(IS"). We choose a specific
reduction ¢ : KOg(IS') — Z. It can be proved that the image of ¢ o i* is an ideal
generated by 2* € Z. We define a as kog(Y"). Different k € Z/8 correspond to different

suspensions.

In Section 8, we calculate some examples using the results in [12] about the Seiberg-

Witten Floer spectrum of £%(2,3,7).



Theorem 1.3.8. (a) We have k0;(S®) =0 for any i € Z/8.

(b) For a positive integer r with gcd(r,6) = 1, let (2, 3,r) be the Brieskorn spheres

oriented as boundaries of negative plumbings and let —%(2,3,r) be the same Brieskorn

spheres with the orientations reversed. Then ko;(£3(2,3,1)) are listed below:

KOg K01 KOo KO3 KOy KOs KOg KO7
2(2,3,12n—1) | 1 1 1 0 0 0 0 0
~-%(2,3,12n—1) | 0 0 | =1 | =1 1] o 0 0 0
2(2,3,12n—5) | 1/2 | 1/2 | 1/2 | =1/2| =1/2 | =1/2 | =1/2 | —1/2
~-%(2,3,12n—5) | 3/2 | 3/2 | 1/2 | —1/2| —=1/2 | =1/2 | =1/2| 1/2
2(2,3,12n+1) | 0 0 0 0 0 0 0 0
—%(2,3,12n+1) | 0 0 0 0 0 0 0 0
$(2,3,12n45) | 3/2 | 3/2 | 1/2 | =1/2 | =1/2 | =1/2| 1/2 | 3/2
—%(2,3,12n+5) | —=1/2 | —1/2| =1/2 | =1/2 | =1/2 | =1/2 | =1/2 | —1/2

Remark. We see that kog(—Y) # —rog(Y) in general, while ko, (Y#(—Y)) is always

0 by Corollary 1.3.7. Therefore, ko is not additive under connected

suin.

If we apply (2) of Theorem 1.3.6 to the case Yy = Y} = 53, the result is weaker than

Theorem 1.3.3. As is the case in K-theory (See [12]), we can remedy this by considering

the special property of Y, & 53, which is called the Floer KOg-split condition.

Theorem 1.3.9. Let W be an oriented, smooth spin cobordism from Yy to Yy, with

intersection form p(—Fg) @ q(93%) and p > 0,q > 0. Suppose Yy is Floer KOg-split.

Letp=4l+m forl € Z and m = 0,1,2,3. Then we have the following inequalities:

(])]f (:U'(Yb)a m) = (07 0)? (07 3)7 (17 O)? (17 1)7 then:
k04(Yo) + 20 + h(p(Yo), m) + 1 < Koayq(Y1) + By
(Q)If (M(Yb)v m) = (07 1)7 (07 2)7 (1’ 2)7 (17 3)7 then:

k04(Yo) 4 20 + h(u(Yo), m) + 1 < koY1) + B8,

Here B} and h(u(Yy), m) are the constants defined in Theorem 1.3.6.

(1.4)



In particular, S3 is Floer KOg-split. Applying Yy = S® to the previous theorem,

we get the following useful corollary:

Corollary 1.3.10. Let W be an oriented smooth spin 4-manifold whose boundary is
a homology sphere Y. Suppose the intersection form of W is p(—Es) ® q(9}) with

p > 0,9 >0. Then we have the following inequalities:
o Ifp =4, then 2l < koyyo(Y) + B4,
o Ifp=4l+1, then 20 + 3 < ko (Y) + 3577
o Ifp=4l+2, then 21 + 3 < roy(Y) + 8,10

o Ifp=4l+3, then 2l + 3 < kouo(Y) + Bl

Remark. If we set Y = S3 in Corollary 1.3.10, we will recover Theorem 1.3.3. However,
Corollary 1.3.10 is not enough to prove Theorem 1.3.4. In order to get the relative
version of Theorem 1.3.4, we have to apply similar constructions on the fixed point set

of the Adams operation. This will not be done in the present paper.

Combining the results in Theorem 1.3.8 with Corollary 1.3.10, we get some new
explicit bounds on the intersection forms of spin 4-manifolds bounded by £%(2, 3,r).

We give two of them here and refer to Section 4.7 for a complete list.

Example 1.3.11. We have the following conclusions:

o —X(2,3,12n—1) does not bound a spin 4-manifold with intersection form p(—Eg)®
(p+1)(9}) for p> 0.

e —>(2,3,12n—5) does not bound a spin 4-manifold with intersection form p(—Eg)@®
p(9¢) for p> 1.

1.4 The unfolded Seiberg-Witten Floer spectrum for general
3-manifolds

From the discussion in previous sections, we see that it is natural and desirable to

extend Manolescu’s construction to any 3-manifold Y with b;(Y) > 0, as monopole



Floer homology is defined for general 3-manifolds. In [29], Khandhawit gave an ap-
proach to constructing Seiberg-Witten Floer spectrum for a general case. The main
goal of Chapter 5 and Chapter 6 is to rigorously construct the “unfolded” version of
Seiberg-Witten Floer spectrum for general 3-manifolds. These results are joint with

Khandhawit and Sasahira, and have also appeared [28].

Our invariants come with two variations: type-A invariant and type-R invariant.
The letters “A” and “R” stand for attractor and repeller, which are notions in dynam-

ical system and play a role in our construction.

Theorem 1.4.1. Let Y be a closed, oriented 3-manifold and let s be a spin® structure
onY. Given a Riemannian metric g on'Y and a spin® connection Ag which induces a
connection on the determinant bundle of the spinor bundle with harmonic curvature,
we can define

swi' (Y, 5, A0, 9; S1) and swi™(Y, s, Ao, g; S")
as a direct system and an inverse system in the S*-equivariant stable category. These
objects are well-defined up to canonical isomorphisms in the corresponding categories.

In the case that c1(s) is nontorsion and | = ged{(h U [c1(s)])[Y] | h € H(Y;Z)},
the objects swf* (Y, s, Ao, g; S*) and swt™(Y, s, Ay, g; SY) are l-periodic in the sense that

EéCS_VVfA(Y757 A07 g; Sl) = S_VVfA(KEa AOa g; 51)7

EéCS_VVfR(Y757 A07 9g; Sl) = S_VVfR(Y757 A07 9g; Sl)

When the metric g or the connection Ay changes, the objects slfA(Y, s, Ao, g; SY) and
swf(Y, s, Ag, g; S*) can change only by suspending or desuspending by copies of the
complex representation C of S*.

In the case that ci(s) is torsion, we can normalize the above objects to obtain

moariants

SWEF4(Y,s; S') and SWF®(Y,s; S")

of the spin-c manifold (Y,s).



For further reference, we denote the S'-equivariant stable category by € and denote
the category of inductive systems (resp. projective systems) in € by & and (resp. &*).
(See Section 3.1 for the precise definition.)

Note that, for rational homology 3-spheres, the invariants SWF# and SWFF are
the same and they agree with Manolescu’s spectrum. In the case b1(Y) = 1 and s
is nontorsion, swf*(Y,s, Ay, ¢;S') is equivalent to SWF(Y,s,g, Ag) constructed by

Kronheimer and Manolescu.

Remark. According to Furuta [23], one could set up a periodically graded category so
that it is possible to define SWF#(Y,s;S') and SWE?(Y,s; S"') as invariants of the

manifold in the nontorsion case.

When s is a spin structure, there is an additional Pin(2)-symmetry on the Seiberg-
Witten equations. The Pin(2)-equivariant Seiberg-Witten Floer spectrum for a ratio-
nal homology sphere is instrumental in Manolescu’s solution [13] of the Triangulation

Conjecture. For a general spin 3-manifold, we have the following generalization:

Theorem 1.4.2. Let Y be a closed, oriented 3-manifold and let s be a spin structure

onY. We can obtain
SWEA(Y, s; Pin(2)) and SWE(Y, s; Pin(2))
as Pin(2)-equivariant analogs of SWF4(Y, s; S') and SWFF(Y,s; S1).

Let us try to explain the motivation of our “unfolded” construction. Intuitively,
the monopole Floer homology is a Morse-Floer homology of a quotient configuration
space Coul(Y)/H*(Y;Z), where Coul(Y) is a Hilbert space of configurations with
gauge fixing. We see that this is a Hilbert bundle when b;(Y) > 0 but we cannot
simply use vector spaces for finite dimensional approximation. Actually, there is a
topological obstruction to finding a good sequence of subbundles for finite dimensional
approximation (cf. [32, Proposition 6]). Thus, we instead do finite dimensional ap-
proximation on Coul(Y’). Since the Seiberg-Witten solutions and trajectories are no

longer compact on Coul(Y'), we will be required to consider spectra obtained from an
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increasing sequence of bounded sets with nice properties on Coul(Y'). Our unfolded

spectrum is then obtained as a direct (or inverse) system from these spectra.

From the construction, we expect the homology of our unfolded invariants to a-
gree with monopole Floer homology with fully twisted coefficients, i.e. homology with
a local system on the blown up configuration space whose fiber is the group ring
Z|H'(Y;Z)]. By equivalence of monopole Floer homology and Heegaard Floer homol-
ogy, the corresponding Heegaard Floer group with totally twisted coefficient HF'(Y,s)
is constructed by Ozsvath and Szabé [53, Section 8]. This inspires us to use underline
notation SWF for the unfolded spectrum. Moreover, it should be possible to give a
rigorous proof of this speculation with techniques developed by Lidman and Manolescu

[36]. However, this is not the aim of this thesis.

In another direction, Sasahira [58] defined a folded version of Seiberg-Witten Floer
spectra in the case that the topological obstruction, as mentioned above, vanishes.
Khandhawit [30, Chapter 6] also gave an approach to defining a folded invariant,
called the twisted Floer spectrum, for general 3-manifolds as a twisted parametrized

spectrum. These theories will not be discussed here either.

In general, our invariants are quite difficult to compute. However, by using Mrowka-
Ozvath-Yu’s explicit description of the Seiberg-Witten moduli space for Seifert mani-
folds [18] and a refinement of the rescaling technique developed by Khandhawit [29], we
are able to give explicit computation of the invariants in torsion cases of the following

manifolds:

1. The manifold S? x S1;

2. Large degree circle bundles over surfaces;
3. All nil manifolds;

4. All flat manifolds except T°.

Example 1.4.3. Let Y be the circle bundle over T? with degree d > 0. Then Y has
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a canonical spin® structure sy. The spectrum invariants for s, are given by

2 3
d—17
A - Gly o + + +
SWF (Y,so,s>_(<c %é{c %é{c =0, )

and

SWE"(Y, 55; 5") = ((@2# V(81 e @)\ ([ @\ ([ 8Y) -0, %) |

Here the connecting morphisms are given by natural inclusions. The notation (x, 0, x)

indicates that we formally desuspend the inductive/projective system by x-copies of

C.

We refer to Section 8.1 for other examples and refer to [25] for the detailed proofs.

1.5 Invariance of the spectrum

Chapter 6 is devoted to proving that our construction is well-defined, i.e. it does not
depend on choices involved in the construction up to canonical isomorphisms. Let us
explain this more carefully. We focus on SWEF#(Y,s; S') and the other versions are

similar.

Choices of auxiliary parameters are involved in our construction of the spectrum
invariant. For example, we need to fix a Riemannian metric on Y and we need to
choose an specific index pair for each isolated invariant set. See the beginning of
Chapter 6 for a complete list of parameters involved. For now, let us just denote by
Ay the set of all possible combinations of parameters. Instead of a single object in
S, we obtain a family {SWF(Y,s;S"),} of objects in &, parameterized by a € A;.

Moreover, for any a,b € Ay, there exists an isomorphism
dap : SWEH(Y, 5 5"), — SWEA(Y, 575",
with the following properties

® ¢, , is the identity morphism for any a;

12



® Dy 0 oy = Pg. for any a,b,c € A;.

The spectrum invariant SWE#(Y,s; S?) actually consists of the set A, the family of
objects {SWE#(Y,s;S'),} and a collection of isomorphisms ¢ = {¢a}-

An alternative view (following [33]) is that SWE#(Y,s; S') is an object of a new
category &/CAN. An object z in &/CAN consists of a set A, a family {x,} of objects
in & parameterized by a € A and a collection ¢ of isomorphisms ¢,; for all a,b
satisfying the above two properties. A morphism m from {A, {z,}, ¢} to {B,{y}, ¥}

is a collection of morphisms mgp : x, — y, for all (a,b) € A x B, satisfying the relation

wb’,b O Myt b © (ba,a’ = Mq,p-

Note however that to specify m, it suffices to give a single morphism m,; for some

a,b.

To make the current thesis more readable, we will not use the language of CAT /CAN.
Instead, we will just talk about objects that are well-defined up to canonical isomor-
phisms. Note that the main applications of our theory will be to apply different kinds
of generalized cohomology functors on the spectrum invariant to obtain a well-defined
object in the category GROUP/CAN, while there exists a functor from GROUP/CON
to GROUP (the category of groups). This functor assigns an object (A, {G,}, @) to the
group of “cross sections”: the subgroup of IIG, consisting of collections {g,} satisfying
#(ga) = gp for any a,b € A. By composing with this functor, we can obtain an actual

group instead of “a group well-defined up to canonical isomorphisms”.

We end this section by mentioning that one of the main complication in proving
the well-definedness of our invariants is that we need to perturb the Chern-Simons-
Dirac functional in the construction. First, we perturb the functional by a nonexact
2-form so that the functional is balanced (see Section 2.1). Second, we require that the
set of critical points is discrete modulo gauge otherwise we cannot construct a good
sequence of bounded subsets to apply finite dimensional approximation. As a result,
the space of such perturbations may not be path connected and we cannot use standard

homotopy argument here. (Note that this difficulty was avoided in Manolescu’s original
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construction because perturbations are not necessary in the case of homology spheres.)

We sketch the idea as follows and refer to Chapter 6 for more detailed discussion.

As before, we focus on the case of SWE4(Y,s; S!). This invariant is an inductive
system in the S'-equivariant stable category. Let f and f be two perturbations on the

Chern-Simons Dirac functional and let
Sy I =L - — -

and

Sy: I = I =1 — -

be the corresponding inductive systems. In order to obtain an isomorphism between

S1 and Ss, we just need to construct a “mixed system”
N N T
Sig:dy, — 1, — 1, — I - (mg <mg<mz<---)

that contains both a subsystem of S; and a subsystem of S;. The connecting morphism
i, is obtained by considering a “mixed perturbation” fy: a perturbation that equals f
on some subset of Coul(Y) and equals f’ on another subset of Coul(Y). We note that
a technical difficulty in this argument is to prove a uniform boundedness result for the
noncompact family {fx}rez of perturbations. This will be done in Lemma 6.3.9 and

Lemma 6.3.11.

1.6 The relative Bauer-Furuta invariants for 4-manifolds with

boundary

In [¢], Bauer and Furuta used the finite dimensional approximation technique to define
an invariant ¥ of closed 4-manifolds. This invariant takes values in the equivariant
stable cohomotopy groups of spheres. As shown by Bauer [7], the Bauer-Furuta in-
variant is strictly stronger than the Seiberg-Witten invariant. For example, by doing
Fintushel-Stern knot surgeries on the manifold X = K3# K3, one can obtain an infi-

nite family of smooth manifolds { X, },cz such that each X, is homeomorphic to X and
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has vanishing Seiberg-Witten invariant (just like X'). However, these manifolds are

not diffeomorphic to each other because they have different Bauer-Furuta invariants.

In [10], Manolescu extended the Bauer-Furuta invariant to 4-manifolds whose
boundary components are all rational homology 3-spheres. This invariant is called
the relative Bauer-Furuta invariant. In Chapter 7, we will extend the definition of the
relative Bauer-Furuta invariants to all compact, oriented 4-manifolds with boundary.
Just like our spectrum invariants, the relative Bauer-Furuta invariants also have differ-
ent versions: namely the type-A invariant and the type-R invariant. To define them,

we need the following topological inputs:
e A spin® 4-manifold (X, §) with boundary (Y,s);
e A base point 0 € X;

o A based path data [7]: that is an equivalent class of pathes (1,72, - - - Yo(v)) from

6 to each component of Y (see Definition 7.1.1).

Theorem 1.6.1. Let (X,5,0,[v]) be defined as above. Given a Riemannian metric
g on the boundary Y and a spin® connection Ag with Fy: harmonic, we have an o0b-
ject T(X,5, Ao, g,0;S') of the equivariant stable homotopy category, well-defined up
to canonical isomorphisms. (We call this object the S'-equivariant Thom spectrum

associated to the virtual index bundle of the Dirac operator.)
By doing finite dimensional approximation on the Seiberg- Witten equations over
X, we can define two versions of relative Bauer-Furuta invariants

MA(Xv*%)A(hg)év [ﬁ‘]) Sl) € IHOIG(E_Lr(X)T(X,,%,Ao,g,é; Sl)as_VVfA(Y757A07g; Sl))

and
bf* (X, 8, Ao, 9,6, [7]; S")

c mOI,G*(Z—(I+(X)@coker(H1(X;]R)—>H1(Y;R)))T(X7é) Ao, g,6: S1), swi®(Y, 5, Ao, g; SV))
(I.(X) denotes a mazimal non-negative subspace of im(H*(X,Y;R) — H*(X;R)) un-
der the cup product pairing.) When (Ag, g) changes, these invariants can only change

by suspension or desuspension by copies of the complex S'-representation C.
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In the special case that s = 5|y is torsion, we can normalize these invariants to

define
BFA(X,5,06,[17]; S") € morg(S™ T (X, 5,6, 51), SWEA(Y, 5, 51))

and
BE"(X, 5,0, [1]; S)
€ morg- (E—(I+(X)EBcoker(Hl(X;R)%Hl(Y;R)))T(X’ﬁ’ 5’ Sl), SWFR(Y,E, Sl)),
where T (X,6,0;SY) is the normalized Thom spectrum. These normalized invariants

are topological invariants of (X, 5,0, [7]).

There are several remarks that we want to make here. First, both the source and the
target of the relative Bauer-Furuta invariants depend on the choice of some parameters
(e.g. the Riemannian metric § on X). Therefore, instead of a single morphism (in the
category & or G*), we get a collection of morphisms that are compatible to each other
under the natural isomorphisms on both the source and the target. In other words,
our type-A (resp. type-R) relative Bauer-Furuta invariant is actually a morphism in

the category &/CAN (resp. &*/CAN).

Second, we do not remove the base point 6 and the based path data [y] from our
notations of the invariants (even when s is torsion). The reason is that our invariants
actually depend on the choice of (6,[7]). (In fact, the author is even unaware of a
canonical way to identify the Thom spectra for different base points.) To relate the
relative Bauer-Furuta invariants associated to different (0, [7]), we have to define the
spectrum invariant of Y as inductive/projective system in the (S')%()-equivariant
stable category and to introduce the notion of twisting a morphism by a map from
the Picard torus to (S')*(). Since this is beyond the scope of the current thesis, we

simply include (0, [7]) as the topological input.

Note that in either one of the following two cases, the dependence on (0, [7]) can

be avoided and we remove (0, [y]) from our notations.

e If Y is connected, then we can choose any 0 € Y and set v to be the constant

path. It can be proved that any choice of such (0, [y]) gives the same result;
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o If the map H'(X;R) — H'(Y;R) is injective, then the relative Picard torus
Pic®(X,Y) (see (7.4)) is a single point and we can construct a natural isomor-

phism between the relative Bauer-Furuta invariants given by two different choices

of (6, [7]).

Third, suppose the type-A spectrum invariant of Y is defined as an inductive system
+ 8, 4 B, ot
[1 —_> [2 __> 13 ﬁ st

To define the type-A relative Bauer-Furuta invariant, we will define a morphism ¢
from a suspension of the Thom spectrum to I}, for all m greater or equal to a certain
constant mg. In order to show that ¢ represents the same morphism in the cate-
gory G, we have to show that these morphisms are compatible with the connecting

morphisms in the following sense:

it ot = 1h,4 for any m > mo. (1.6)

Similarly, suppose the type-R spectrum invariant of Y is defined as a projective
system
Ry SRy I
Then the type-R Bauer-Furuta invariant will be given by a collection of morphisms
U, satisfying
Gy © Uy g = U, for any m > 1. (1.7)

Proving (1.6) and (1.7) is one of the main difficulties in the definition of relative
Bauer-Furuta invariants. This turns out to be a problem in Conley index theory.
The corresponding results are Proposition 3.2.18 and Proposition 3.2.19. In order to
prove these results, we prove Theorem 3.2.14, an quantitative refinement of Theorem
3.2.7 by Manolescu [10], which states the existence of index pairs containing a pre-
pair. We note that Theorem 3.2.14 also plays an important role in the proof of the
gluing theorem [27] because we need to use it to get a uniform control on the length
of the neck as we do finite dimensional approximations. We also note that results in

subsection 3.2.2 may be of independent interest for some readers.
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Last, we mention that the relative Bauer-Furuta invariants fit into the general
framework of the TQFT-property of Floer theories: these invariants assign morphisms
(from the Thom spectra to the spectrum invariants of Y') to the cobordism X (from
the empty set to the boundary Y). However, we are still not able to define unfolded
Seiberg-Witten Floer spectra as functors from a cobordism category to the category
of spectra. A major difficulty is the loss of compactness because of our unfolding
operation. It would be an interesting question to set up a suitable cobordism category

and define the functors corresponding to our invariants.
We end this section by the following theorem about the Pin(2)-equivariant relative

Bauer-Furuta invariants for spin 4-manifolds with boundary.

Theorem 1.6.2. When s is a spin structure, we can define the normalized Thom spec-
trum as an object T(X,ﬁ, 0; Pin(2)) of the Pin(2)-equivariant stable category. In this

case, we have two versions of the Pin(2)-equivariant relative Bauer-Furuta invariant
BF4(X, 5,0, [i7]; Pin(2)) € morg,,, , (5~ +M7T(X,§,0; Pin(2)), SWE*(Y, s; Pin(2)))

and
BF*(X,s,6,[7]; Pin(2))

= more}‘vm(z

(Z B eekatl YT (X, 8, 6; Pin(2)), SWE(Y, 5; Pin(2))).

Both of them are topological invariants of (X, 5,06, [7]).

1.7 Further developments

Finally, we close this introductory chapter by listing the further developments on the
theory of the unfolded Seiberg-Witten Floer spectrum. We refer to later chapters
(mostly Chapter 8) for the precise statements of the results and refer to our papers

23], [26] and [27] for detailed proofs.

e By applying different equivariant generalized cohomology functors to the spec-
trum invariants, we will define all kinds of Frgyshov-type numerical invariants

for a general 3-manifold
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— Sl-equivariant homology: d* and d*;
— Pin(2)-equivariant homology: o, 54,74 and of, B%, +%;

— Pin(2)-equivariant K-theory: x*, k.

All of them are invariant under homology cobordisms. Using these invariants, we

will give new constraints on the intersection form of 4-manifolds with boundary.

We will define the smash product as a bifunctor € x € — €. This makes &€
a symmetric monoidal category. Similar result holds for the Pin(2)-equivariant

stable category Cpi(2);

We will define the Spanier-Whitehead duality between the categories & and
&* (and also between & pjn2) and G}in(g)). Under this definition, the type-A
invariants of Y and the corresponding type-R invariants of —Y are Spanier-

Whitehead dual to each other;

The statement of a gluing theorem for the relative Bauer-Furuta invariants will
be given. Under certain technical assumptions, this will allow us to compute the
Bauer-Furuta invariant of a closed 4-manifold X = X;Uy X5 in terms of the type-
A relative Bauer-Furuta invariant of X; and the type-R relative Bauer-Furuta
invariant of X,. This is a generalization of a gluing theorem by Manolescu [11],

which corresponds to the case that Y is a rational homology sphere;

We will give various applications of the generalized gluing theorem: behavior of
the fiberwise Bauer-Furuta invariant under surgery along loops, generalization of
Bauer’s connected sum theorem [7]; nonexistence of essential spheres with trivial

normal bundle in a 4-manifold with nontrivial Bauer-Furuta invariant.

Using a variation of the above mentioned gluing theorem, we will prove a con-

nected sum formula for Manolescu’s spectrum, i.e.
SWE(Y1#Y3, 51#59; S1) =2 SWF (Y1, 51; S1) A SWF(Ya, 59; S1)

when Y7, Ys are rational homology spheres. Similar result holds for the Pin(2)-

spectrum invariants.

19



1.8 Outline

The outline of this thesis is as follows. In Chapter 2, we first cover some of the basics of
the Seiberg-Witten equations and then prove some analytical results which are needed
in our later constructions. In the first half of Chapter 3, after defining the stable
categories and the S'-fixed point functor(s), we set up the Spanier-Whitehead duality
between these categories. In the second half of Chapter 3, we review some elementary
facts about the Conley index theory. Some further results on Conley index theory are
also given here. These results are needed in Chapter 6. In Chapter 4, we construct the
unfolded Seiberg-Witten Floer spectrua, as objects of the stable categories we defined
in Chapter 3. The invariance of these spectra is proved in Chapter 5. In Chapter 6,
we define different versions of relative Bauer-Furuta invariant for a general 4-manifold
with boundary. In Chapter 7, we discuss some further developments in this theory.
In particular, the statements of the results mentioned in Section 1.7 will be given and

some of the proofs will be sketched.
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CHAPTER 2

The approximated Seiberg-Witten flow

2.1 The Chern-Simons-Dirac functional and Seiberg-Witten

trajectories

Let Y be a closed, oriented (but not necessarily connected) 3-manifold endowed with a
spin® structure s and a Riemannian metric g. We denote its connected components by
Yi,..., Y, and denote by by = by (Y) its first Betti number. Let Sy be the associated
spinor bundle and p: TY — End(Sy) be the Clifford multiplication. After fixing a
base spin® connection Ay, the space of spin® connections on Sy can be identified with

iQ(Y) via the correspondence A — A — A,.

Let A} be the connection on det(Sy) induced by Ag. We choose Ay such that the
curvature Fu equals 2mivg, where 1 is the harmonic 2-form representing —c,(s). For
a 1-form a € iQ*(Y), we let ID 5, be the Dirac operator associated to the connection
Ao + a. We also denote by Ip := Ip 4, the Dirac operator corresponding to the base

connection, so we have IDA0+a =D+ pla).

The gauge group Map(Y, S') acts on the space iQ'(Y) @ I'(Sy) by
u-(a,0) = (a —u""du,ug),

where u € Map(Y, S!) and (a,¢) € iQY(Y) @ I'(Sy). In practice, we will work with
the Sobolev completion of the spaces iQ'(Y) & I'(Sy) and Map(Y, S') by the L% and
L3, norms respectively. We fix an integer k > 4 throughout the paper and denote
the completed spaces by Cy and Gy respectively. We will also consider the following

subgroups of Gy:

o G :={u€eGy|u=ct for some £: Y — iR};
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o G¥ = {uc Gy |u=c with Jy, €dvol =0 for j=1,... by};
o G :={u € Gy | A(logu) = 0} the harmonic gauge group, where A = d*d;

° g@v" = {u € G | u(oj) = 1for j =1,...,by} the based harmonic gauge group,

where o; is a chosen base point on Y.

Note that G& =2 G2° x (S1)% and Gl = G0 x (S1).

The balanced Chern-Simons-Dirac functional C'SD,,: Cy — R is defined as

C5Duf0.0)i= 5 ( [[anda~ [ (0.0, 0wt ).

Note that this is a perturbation of the standard Chern-Simons-Dirac functional by the
closed but nonexact 2-form vy so that C'SD,,, becomes invariant under the full gauge

group (cf.[33, Definition 29.1.1]). The formal L?-gradient is given by

grad CSDy,(a,¢) = (xda + p~ (66 )o, Dud), (2.1)

where (¢¢*)g is the traceless part the endomorphism ¢¢* on Sy.

If we slightly perturb C'SD,,, the critical points of C'SD,, are discrete modu-
lo gauge transformations. To ensure this property, we will need to pick a function
f: Cy — R which is invariant under Gy and consider a twice perturbed functional
CSD,y s := CSD,, + f. We will make use of a large Banach space of perturbations

constructed by Kronheimer and Mrowka [33, Section 11].

Definition 2.1.1. Let { fj }321 be a countable collection of cylinder functions as in [33,
Page 193]. Given a sequence {C;}32, of positive real numbers, we consider a separable

Banach space
P-{Sus
j=1

)Z]Oil 77jfj

called an extended cylinder function.

n €R, Y Cylnil < OO}, (2.2)
j=1

where the norm is defined by = Y21 In;|Cj. An element of P will be

The Banach space P will be fixed throughout the paper. In particular, we will

choose a real sequence {C;}; satisfying our requirements as in the following result.
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Proposition 2.1.2. The sequence {C;}; can be chosen so that any extended cylinder

function f in P has the following properties:

(i) f is a bounded function;
(i) The formal L?-gradient grad f is a tame perturbation (see [75, Definition 10.5.1]);

(iii) For any positive integer m, the gradient grad f defines a smooth vector field on
the Hilbert space L2 (iQ'(Y) @ T'(Sy)). Moreover, for each nonnegative integer
n, we have

IDfagy grad fII < C pmanll(a. d)l22,),

where P, 15 a polynomial depending only on m,n and C is a constant depending
on m,n and f. The norm of D?a,d)) grad f is taken considering D?{W) grad f as

an element of

Mult™ (L2, (104 (Y) © T(Sy)), L2, (9 (V) @ T(Sy).
() {C;}; is taken so that the statement of Lemma 6.3.7 and 6.5.10 holds.

Proof. By the definition of cylinder functions, each fj is bounded. Therefore, prop-
erty (i) can be ensured by taking {C;}; increasing fast enough. Property (ii) is a
consequence of [33, Theorem 11.6.1]. For property (iii), let j‘? be a cylinder function
from the collection. By [33, Proposition 11.3.3], the gradient grad fj defines a smooth
vector field over L2 (iQ'(Y) @ I'(Sy)) with the property that

1Dl grad fill < Cjpnpn(L 4+ M191122)" (1 + llallzz,_ )" A+ l1ll2z,, L)
where C},, is a constant and || - [[z2 .. denotes the L? -norm defined using the
,m, m,Ap+a

connection A+ a. Therefore, we only need to estimate |[¢||2 .. by a polynomial of
m,Ag+a

1(a; &)1z,

Notice that the expansion of Vgﬁlaqﬁ consists of terms of the form V") q.V (™) ... V().
Viﬁ“)qﬁ where V denotes the Levi-Civita connection and ¢, ny,...,n;y; are nonnega-
tive integers satisfying ny +mng +- - - +n,1 +7 = m. As we want to control the L?-norm

of this term using ||(a, ¢)|/z2 , there are three cases:
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e i = 0: This is trivial since ||¢||r2. < [[(a, @)z ;

e i =1andn; = m — 1: We apply Sobolev multiplication L? x L? — L? and
obtain ||V Va- ¢l , < C ||V Va| . 6]l < Cll(a,¢)|2. . The case i =1
1 m m

and no = m — 1 can be done in the same manner;

e Otherwise, we will have ¢ > 1 and ny,...,n;; < m — 1. Similarly, we consider
Nmax = Max {nq,...,n;1} and apply Sobolev multiplication
2 2 2 2 2
Ly, o, X X Ly X mem_ﬂ — Ly, ., = L.

Putting these together, we can find a polynomial p,, ,, (independent of j) such that

||,D?a,¢) grad f]H < Cj/',m,npm,n(H(av ¢)||L72n)
For each j, take a constant C; with
Cy >max{ Cj ;,,, | 0< 11,103 <5 }.

We will prove that condition (iii) is satisfied. Take any element f = > M fj of P.

Then we have

IDf, ¢y grad fIl < Y nll|Df, ) grad fill

J
< 101G Pl (@ 0)l23,)
j

< ( > \m!C},m,nJrZ\??lej) Pmn(ll(a; @)|lL2,).

1<<N Jj=N
Here N = max{m,n}. Putting C' := (Z1§j§N 05|C i + 2o n |'r]j\Cj>, we obtain
IDfa.s) grad fll < Crmau(ll(a; d)llzz,)-

Thus P satisfies (iii).

By further shrinking C, we may suppose that C; satisfies Lemma 6.3.7 and Lemma
6.3.10 (2). That is, condition (iv) is satisfied.
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The perturbation we consider in the current paper will be of the form

- )
f(aa (b) = f(a7¢) + §H¢H%27

where f is an extended cylinder function and 4 is a real number. We sometimes write

the above perturbation as a pair (f,9).

Definition 2.1.3. A perturbation f = (f,d) is called good if the critical points of

CSD,, s are discrete modulo gauge transformations.

When § = 0, we know that good perturbations are generic in P by virtue of [33,
Theorem 12.1.2]. It is immediate to extend the result to a general case and we only

give a statement here.

Lemma 2.1.4. For any real §, a subset of extended cylinder functions f in P such

that (9, f) is a good perturbation is residual.

Remark. To define our invariants, it is sufficient to take § = 0. We include the term

2|¢||? as it will facilitate computations of many examples.

Our main object of interest is the negative gradient flow of the functional CSD,, ;
on the space Cy modulo the gauge group. Let I C R be an interval. A trajectory

~v: I — Cy of the negative gradient flow is described by the equation

0
~0#) = grad €D, s (4(1).
As in [10] and [29], it is more convenient to study the flow on the subspace called

the Coulomb slice

Coul(Y) ={(a,¢) | d'a =0} C Cy.

Since any configuration (a,¢) € Cy can be gauge transformed into Coul(Y') by a
unique element of g;“, the Coulomb slice is isomorphic to the quotient Cy /Gy with

residual action by the harmonic gauge group G&.

Let IT : Cy — Cy/Gy° = Coul(Y) be the nonlinear Coulomb projection. The

formula for II is given by

(a,6) = (a - dé(a),e0) | (2.3)
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where £(a): Y — iR is a unique function which solves

Aé(a) = d*a and / £(a) =0 for each j = 1,...,bo. (2.4)
Y

To describe the Seiberg-Witten vector field on Coul(Y'), we first consider a trivial
bundle T;_; over Cy with fiber L? (iQ'(Y) @ I'(Sy)). Note that the vector field
grad CSD,, 5 is a section of Tj_;. Similarly, we have a trivial bundle Coul;_; over
Coul(Y') whose fiber is the L? ;-completion of kerd* & T'(Sy). At a point (a,¢) €
Coul(Y), the pushforward IL,: T,_y — Couli_; of the Coulomb projection II is given
by

i(a) (b, %) = (b— d&(b), ¥ +£(b)9) - (2.5)

We now project the negative gradient flow lines from Cy to Coul(Y") using II. Such

projected trajectories v: I — Coul(Y') are described by an equation

— 5,7(t) = I grad CS Dy, ; (4(1). (2.6)

From (2.1) and (2.5), we can write down an explicit formula for the induced vector

field on Coul(Y') as a section of Coulj_4

II, grad CSD,, f(a, ¢) = l(a, ) + c(a, ¢), (2.7)

where [ = (xd, ID) is a first order elliptic operator and ¢ = (c!, ¢?) is given by

cMa, @) = p~H(¢0*)o + grad' f(a,d) — d&(p™" (0" )o + grad' f(a, ¢)), (2.8)
?(a, ) = p(a)g + grad® f(a, ¢) + &£(p~ (¢ )o + grad’ f(a, ¢))o. (2.9)

Note that [ is linear and the nonlinear term ¢ has nice compactness properties which
will be explored in Section 2.2. We will call those trajectories v satisfying (2.6) the
Seiberg- Witten trajectories. By the standard elliptic bootstrapping argument, v is

actually a smooth path in Coul(Y’) when restricted to interior of I.

We would also like to interpret the vector field II, grad C'SD,, s from (2.6) as a

gradient vector field on Coul(Y'). However, 11, grad C'SD,, s is not the gradient of
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the restriction C'SD,, f|cou(y) With respect to the standard L?-metric and we need to
introduce another metric on Coul(Y'). Roughly speaking, we have to measure only the
component of a vector on Coul(Y’) which is orthogonal to the linearized gauge group

action. More specifically, consider a bundle decomposition over Cy
Te1 = Tr1 ® Ky—1,

where the fiber of J;_1 at (a, ¢) consists of a vector of the form (—d§,p) where £ €
Li(Y;4R) with ij ¢ = 0 and the fiber of Kj_; is the L?*-orthogonal complement. Note
that this decomposition is slightly different from the decomposition which appeared
in [33, Section 9.3] as we use the derivative of the action of G{° rather than G§.. Let
II be the L?-orthogonal projection onto Kj_;. Explicitly, the projection 11 at (a, ) is
given by

a.s)(b,) = (b= dE(b, v, 0), v +E(b,1,9)9) |

where £(b,1),¢) : Y — 4R is a unique function such that —d*(b — d€(b, v, ¢)) +
iRe(ig, ) + E(b,1), ¢)p) is a locally constant function and ij E(b,,¢) = 0. Tt is

not hard to see that we have a bundle isomorphism

C’oulk_l I_III ICk_l
Coul(Y)

since both are complementary to the derivative of the action of Qf/o.

We now define a metric g for the bundle Couly_; by setting

(b1, 901), (b2, 12))g := (T1(by, 1), T1(ba, ) 1.

Since II and II, are inverse of each other and II is an orthogonal projection, we have

the following identity
(ILw,w); = (v,w);2  whenever v € Kj_.

Since CSD,, s is gauge invariant, grad CSD,, s lies in K,_;. From this point on, we

will denote by gl_"\aﬁ the gradient on Coul(Y') with respect to the metric g and put

L= CSDVO,f|Coul(Y)-
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We then have
grad £ =TI, grad CSD,, ; = | + ¢ and | grad £||; = || grad CSDy, ¢llz2.  (2.10)

Note that analogous results hold for any functional on Cy which is Q;O-invariant.

2.2  Analysis of approximated Seiberg-Witten trajectories

In this section, we review some boundedness and convergence results relevant to finite

dimensional approximation which will be used in the main construction.

Definition 2.2.1. A smooth path in Coul(Y) is called finite type if it is contained in

a fixed bounded set (in the Li-norm).

It can be proved that a Seiberg-Witten trajectory v(t) = (a(t), ¢(t)) is of finite type
if and only if both CSD,, ;(v(t)) and ||¢(t)|/co are bounded (cf. [10, Definition 1]).

Recall that the set of the Seiberg-Witten solutions is compact modulo the full gauge
group. However, there is a residual action by the group Gi° = HY(Y; Z) on Coul(Y).

This motivates us to consider a strip of balls
Str(R) = {z € Coul(Y) | 3h € Gy° s.t. ||h- x|, < R},

where R is a positive real number.

Since C'SD,, s is invariant under the full gauge group Gy, we have a uniform bound
for the topological energy of all finite type trajectories (see [29, Proposition 10]). As

a result, we have the following boundedness result.

Theorem 2.2.2 ([29]). There exists a constant Ry such that all finite type Seiberg-
Witten trajectories are contained in the interior of Str(Ry). In particular, the set

Str(Ro) contains all the critical points of L and trajectories between them.

We now discuss finite dimensional approximation of Seiberg-Witten trajectories
following [10] and [30]. To describe various projections, we first specify the LZ -inner

product (m > 1) on i QY (Y)®T'(Sy). From the Hodge decomposition Q'(Y') = ker d* &
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im d, we will just define an inner product on each summand. On ikerd* @ I'(Sy), we

use the elliptic operator | = (xd, ID)

(a1, ¢1), (ag, @2)) 12, := ((a1, ¢1), (a2, $2)) 12 + (" (ar, ¢1), 1" (az, #2)) L2-

For (8, B2 € iimd, we define

(B1,B2) 2, := (B, Ba)r2 + (A™B1, Ba) 2.

Definition 2.2.3. With the Sobolev inner product defined above, a projection 7 will

be called a nice projection if it satisfies the following properties:
(i) 7 is an L2 -orthogonal projection for any m > 0;
(ii) 7 extends to a map on a cylinder I x Y with |72 ;.4 < 1 for any m > 0.

Consider the spectral decomposition of Coul(Y) with respect to the eigenspaces of
[ = (*d, Ip). For any real numbers A < 0 < p, let V' be the span of the eigenspaces
of [ with eigenvalues in the interval (), u] and let p§ be the L*-orthogonal projection

onto V. It is not hard to see that pY is a nice projection.

Recall that a Seiberg-Witten trajectory is an integral curve of the vector field [ + ¢
on Coul(Y). This leads us to consider a trajectory on a finite-dimensional subspace
v: I — V{ satistying an equation

L T T I0))

Such a trajectory will be loosely called an approximated Seiberg-Witten trajectory. We
will also call a sequence of approximated Seiberg-Witten trajectories {*yn I — Vxli " }neN
an exhausting sequence when —\,, 1, — co. The next proposition is the main con-

vergence result of this section.

Proposition 2.2.4. Let {~,: [a,b] — V)\’i"} be an exhausting sequence of approrimated
Seiberg- Witten trajectories whose Li-norms are uniformly bounded. Then there exists
a Seiberg- Witten trajectory voo: (a,b) — Coul(Y), such that, after passing to a sub-

sequence, Y, (t) — Yoo(t) wniformly in any Sobolev norm on any compact subset of

(a,b).
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The proof of this proposition will be at end of this section. We basically follow
the same strategy as in the proof of [10, Proposition 3] and [29, Proposition 11].
Since our vector field [ + ¢ has an extra term coming from grad f, we need to assure
that the nonlinear part c still has nice compactness properties similar to those of the
quadratic term in the Seiberg-Witten equation. For this purpose, we recall the notion
of “quadratic-like” map and related results in [29, Section 4.2]. Since our setting here

is slightly different, we give out some details for completeness.

Definition 2.2.5. Let E be a vector bundle over Y. A smooth map @Q: Coul(Y) —

Li(T(R)) is called quadratic-like if it has the following properties:

(i) The map @ sends a bounded subset in L? to a bounded subset in L?;

(ii) Let m be a nonnegative integer not greater than k — 1. If there is a convergence
of paths over a compact interval (£)%y,(t) = (4)*yso(t) uniformly in L?_,_ for
each s = 0,1, ,m, then we have (£)™Q(7,(t)) = (£)"Q(Vs(t)) uniformly in

2 .
Lk—2—m7

(iii) The map @ extends to a continuous map from L2 (I x V') to L2,(I x Y) (with
suitable bundles understood) for each integer m > k — 1. Here [ is a compact

interval.

The sum of two quadratic-like maps is obviously quadratic-like. Furthermore, it
can be shown that the pointwise tensor product of two quadratic-like maps is also

quadratic-like (cf. [29, Lemma 10]).

Lemma 2.2.6 (cf. Lemma 9 of [29]). Let f be a perturbation given by a pair (6, f)
with 6 € R and f € P. Then the map grad f: Coul(Y) — L2(iQ*(Y) @ I'(Sy)) is

quadratic-like.

Proof. We see that grad f(a, ¢) = (0,6¢) + grad f(a, ¢) and the first term is obviously
quadratic-like. We just need to show that grad f is quadratic-like. First, we will check

properties (i) and (ii) when m = 0 of Definition 2.2.5 .
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For two configurations (ag, ¢o) and (a1, ¢1), we consider a straight segment (a;, ¢;) =

(1 —1t)(ag, o) + t(ai, ¢1) joining them and apply the fundamental theorem of calculus

||grad f(a1, ¢1) — grad f(a(),ﬁbo)”L? = H/[ ]D(at,@) grad f(a; — ag, ¢1 — do)dt
0,1

2
SC/{ ]pj,l(llat,sbtllm)H(al,ebl)—(ao,%)lle dt,
0,1 J J

where the last inequality follows from Proposition 2.1.2 (iii). When j = k and
(ap, o) = (0,0), this implies property (i) of Definition 2.2.5. Property (ii) when
m = ( also follows from the above inequality when j =k — 1.

We now check property (ii) when 1 < m < k — 2. Suppose that (£)*y,(t) —
(4900 (t) uniformly in L7, for each s = 0,1,...,m. We observe that an expansion

of (£)™ grad f(v(t)) consists of terms of the form

D3y grad f <(%) v(@),- -, <%) 7(75)) with o; > 1 and a; + -+ + a, = m.

From Proposition 2.1.2 (iii), || D}, grad fll < Cpkflfm:s(‘h(t)HLi,l,m) as an element
of Mult®(x L2 , L% , ). We see that v, is uniformly bounded in L7 , = and
that the convergence (4)%,(t) — (&£)*7x(t) is uniform in L}, as o; < m.
These imply property (ii).

Properties (iii) easily follows from the fact that grad f is a tame perturbation.

]

As a result, we can deduce compactness property of the induced vector field on

Coul(Y).

Corollary 2.2.7. The nonlinear part ¢ of the induced Seiberg- Witten vector field in
(2.7) is quadratic-like.

Proof. 1t is clear that the composition of a quadratic-like map with a linear opera-
tor of nonpositive order is quadratic-like. Since the operator ¢ in (2.3) is of order
-1, Lemma 2.2.6 and closure under pointwise multiplication imply that the map c is

quadratic-like.
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We are now ready to prove Proposition 2.2.4. Although, we will only give outline

of the proof as the reader can find more details in [10] and [29].

Proof of Proposition 2.2.4. Let {~,} be an exhausting sequence of approximated tra-
jectories which are all contained in a ball B(R) in L. The norm [|%£~,(t)]| L2, s
uniformly bounded by boundedness of the map [ + c¢. By the Rellich lemma and the
Arzela-Ascoli theorem, we can pass to a subsequence of {v,} which converges to a
path 74, uniformly in L7 ;. Moreover, it can be shown that 7., is a Seiberg-Witten
trajectory. By property (ii) of Definition 2.2.5 of ¢, we can inductively prove uniform
convergence ()™ (7, (t)) = (L)™(yoo(t)) in L7_,_,, for m =1,..., k—1. This implies
that 4, — 9o in Li_,([a, b] X Y'). (Here we treat v, (t) and v, (t) as sections over I X Y’
and denote them respectively by 4, and J..) Property (iii) of Definition 2.2.5 allows
us to do the bootstrapping argument over any shorter cylinder I x Y. This finishes

the proof of the proposition. O

Proposition 2.2.4 has the following consequence.

Corollary 2.2.8. For a closed and bounded subset S of Coul(Y) in L2, there exist
large numbers —\, i, =T > 0 such that if \ < X\, u > i and T > T then for any
approzimated Seiberg-Witten trajectory ~v: [-T,T] — V' contained in S, we have
7v(0) € Str(Ry). Here Ry is the universal constant from Theorem 2.2.2.

Proof. Suppose the contrary: we can find an exhausting sequence of approximated
trajectories v, : [=Tp, Tn] — V" N S, with T,, — oo, with 4,(0) ¢ Str(Ry). Since S
is bounded, we can apply Proposition 2.2.4 and the diagonalization argument to find
a Seiberg-Witten trajectory 7..: R — S of finite type such that, after passing to a
subsequence, 7,(0) = 7.(0) in L2. However, 7,,(0) is in the interior of Str(Ry) by

Theorem 2.2.2. This is a contradiction. O

Remark. In Corollary 2.2.8, we can also consider more generalized approximated tra-

jectories. For example, we can use interpolation between two projections for approxi-
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mation, i.e. a trajectory satisfying

_dzi_it) — (l + (1 — s)py + sp&‘:) o C) (v (1)),

where 0 < s <land N <A< Xand ¢/ > p > fi.
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CHAPTER 3

Categorical and topological preliminaries

3.1 The stable categories.

3.1.1 Definition of the stable categories

In this subsection, we briefly review algebraic-topological constructions which will be
needed later. In particular, we will define three S'-equivariant stable categories ¢, &
and G* in which our invariants live as objects. The categories & and G* are defined
as direct systems and inverse systems of € respectively. In the end, we will also define
Cpin2), S pin(2) and G;m(z)' These are Pin(2)-analogue of €, & and G* respectively.

Our treatment follows closely with [10] and [12]. See [1] and [10] for more systematic

and detailed discussions regarding equivariant stable homotopy theory.

The category €, which was defined in [10], is the S'-equivariant analog of the
classical Spanier-Whitehead category with R* & C*° as the universe. In other words,

we will only consider suspensions involving the following two representations:

1. R the one-dimensional trivial representation;

2. C the two-dimensional representation where St = {e?|6 € [0,27)} acts by com-

plex multiplication.

For a representation V', we will denote by VT its one-point compactification and
by V5" its S'-fixed point set. Note that the transposition (R%)* A (R*)+ — (R“2)* A

(R*1)* is homotopic to identity only when u; or us is even.

The objects of € are triples (A, m,n) consisting of a pointed topological space A

with an S'-action, an even integer m and a rational number n. We require that A is
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Sl-homotopy equivalent to a finite S'-CW complex. The set of morphisms between

two objects is given by

more((A, m,n), (A", m',n')) := colim[(R* & C*)* A A, (R¥™ ™ g C+H ") A A g1,

u,v—500
if n—n' € Z, where [+, |51 denotes the set of pointed S'-equivariant homotopy classes.
We define more((A, m,n), (A’;m’,n')) to be the empty set if n —n’ & Z. As in [10],
there is a full subcategory €, inside of € consisting of objects of the form (A,0,0),
which we also denote by A. For an object Z = (A,m,n) € ob€, an even integer m/

and a rational number n/, we also write (Z, m’,n’) for (A,m +m/,n+n').

We now turn to the description of the category &. An object of & consists of a
collection Z = ({Z,}, {ip})pen) of objects {Z,},en of € and a collection of morphisms

{i, € more(Z,, Zp11) }pen. In other word, an object Z of & is a direct system
0% 7, 2

For two objects Z = ({Z,}p, {ip}p) and Z' = ({Z,},, {i,}) of &, we define the set of
morphisms as

morg(Z, Z') := lim lim more(Z,, Z,). (3.1)

O04—p q— 0

The identity morphism and the composition law are defined in the obvious way. Notice
that here we first take the direct limit and then take the inverse limit. This order should

not be changed.

As for the category G*, its objects are the inverse systems
Iy &7,

where Z, € ob€ and j, € more(Z,,1,7,). For two objects Z = ({Z,},, {jp},) and
Z'=({Z}p.{j,}p) of &*, we define the set of morphisms as

morg+(Z, Z') := lim lim more(Z,, Z,). (3.2)

004—q p— 00

Again, we first take the direct limit and then take the inverse limit.

Remark. The full subcategory of € consisting of objects {(A,m,n) | m € 2Z,n € Z}

can be naturally embedded into the homotopy category of the S'-equivariant spectra
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modeled on the standard universe R®@&C>. Therefore, an object ({(Ap, myp, ny) }ps {ip}p)
of & (resp. &%) with m, € 2Z and n,, € Z corresponds to an inductive system (resp.
projective system) of S!-equivariant spectra. For this reason, we call an object of &
an ind-spectum and an object of &* a pro-spectrum. However, this is not so accurate
because, in the usual sense, an ind-spectrum (resp. pro-spectrum) refers to an induc-
tive system (resp. projective system) in the category of spectra, not the homotopy
category of spectra. Also, with a slightly abuse of language, we call all our invariants

spectrum invariants.

Now we turn to the Pin(2) case. Recall that the group Pin(2) is defined as the the
subgroup S' U jS! C H of the algebra of quaternions, containing S! as the set of unit

complex numbers. We are interested in the following real representations of Pin(2):

1. R the trivial one-dimensional representation;

2. R the nontrivial one-dimensional representation where S! acts trivially and j

acts as multiplication by —1;

3. H the 4-dimensional representation where Pin(2) acts by left quaternionic mul-

tiplication.

We introduce the category €pin2), Spin(2) and G}m(Q) which are the Pin(2)-
version of the categories €,& and &*. The objects of €p;,(9) are triples (A, m,n)
consisting of an even integer m, a rational number n and a pointed Pin(2)-space
A which is Pin(2)-homotopy equivalent to a finite Pin(2)-CW complex. The set
more,,, ., (A, m,n), (A, m',n")) is given by

colim [(Ru ® Rv @ Hw)+ A A, (Ru ® Rv—i—m—m/ o Hw+n—n/)+ A Al)]Pin(Q)

U,V,W—+00

when n —n' € Z and is empty otherwise. The objects of & pjy(2) (resp. 6}1.”(2)) are
the sequential direct systems (resp. sequential inverse systems) in €p;,2). We call

an object of &pjn(2) a Pin(2)-equivariant ind-spectrum and call an object of & Pin(2)

a Pin(2)-equivariant pro-spectrum. The sets of morphisms are defined in the same
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way as (3.1) and (3.2). For an object W of €pin(2), Spin(2) and &y, (y), the natation

W.m,n) will be used as in the S'-case.
(W, m,n)

We end this subsection with the following useful lemma, which is directly implied

by our definition.

Lemma 3.1.1. Let Z = ({Z, }pen, {ip}pen) be an object of &. For any infinite sequence

of positive integers 0 < py < py < ---, the subsystem
ipy—10++-0lp, ipg—10°++Olp,
Zp1 ZP2 ’ Zp3 —

of Z is canonically isomorphic to Z as an object of &. Similarly, let Z = ({Z,}pen, {Jp }pen)
be an object &*, then the subsystem

jpl O“'ij2—1

_ _ Jpg O
Zpl ZP2

of Z is canonically isomorphic to Z as an object of &*. Similar result holds for Spin(2)

and G*Pm(z)'

3.1.2 The S!'-fixed point functor

The S'-fixed point functor will play an important rule when we define the Froyshgv
type numerical invariants in Chapter 8. Before discussing these functors, we briefly

introduce some more categories

Q:, 6, 6*, @ZQ, 622 and 622

They correspond to the S'-fixed point sets of €, &, &*, €py(a), Spin(z) and Shine2)

respectively.

An object of € consists of an integer m and a pointed topological space H, which is
homotopy equivalent to a finite CW complex. An object of €, consists of an integer
m and a pointed Zs-space H, which is Zy-homotopic equivalent to a finite Zo-CW

complex. We define

mor@((H,m), (I:I/,m/)) — C(k)hzm[(Rk)+ A H’ (Rk+m—m/)+ A Hl]?
€

more, ((,m), (', m')) = colim|(R* & R A H, (R* & R ) A g,
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where we treat R as a nontrivial Zs-representation.

Having defined @ and €z,, we can define the other four categories as follows:

e S: the category of sequential direct systems in €;

G&*: the category of sequential projective systems in €;

Syz,: the category of sequential direct systems in €z,;

622: the category of sequential projective systems in €z, .

Now we discuss the fixed point functors. First, we can define the functor @gl :
¢ — ¢ by
g (A,m,n) = (A%, m) and & ([f]) = [/7].

The functor

Sl

Cpimzy - CPin@) — €z,

can be defined by the same formula. By extending these two functors in an obvious

way, we can define the other four functors:
L _
P 6 = G

3. 6" = &%

St . =
Gping) - Spm(g) — 622,
St L= %

Pin(2)

We call all these functors the S'-fixed point functors.

Remark. The functors <I>f1 correspond to the “geometric fixed-point functor” (see [16,
Page 166]), which should be distinguished with the usual fixed-point functor in the
equivariant stable homotopy theory (see, for example, [35, Page 21]). A further dis-

cussion about this difference can be found in [1, Section 7].
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3.1.3 Smash product and suspension/desuspension functors

In this subsection, we establish the symmetric monoidal structure on the category €.
To do this, we will define the smash product as a bifunctor A : € x € — €. First, we

define the smash product of two objects as
(A1, mi,n) A (Ag,ma,ng) = (A1 A Ay, my + ma,ny + no)

where A; A Ay denotes the classical smash product on pointed topological spaces.

Next, we define the smash product of morphisms. Suppose for ¢ = 1,2, the map
fi . (R]z D Cli)-i- A Az N (R(ji-i—mi—mg) @ C(li-l—ni—n;))-i- A A{L
represents a morphism [f;] € more((A;, mi, n;), (A, m;,n})). We define the map
fihfo: (RPOR2@CH @ C2)Y A XA Xy —
(R(j1+m1*m'1) @ RU2tm2—my) o ¢ litni—ny) g C(IZHL?*M?))+ ANX{NAX)

by putting the suspension indices for f; on the left and the indices for f5 on the right.
We let [fi] A[fs] be the morphism represented by fi A fo. To prove that this operation

is well defined, we need to check that for a,b € N, we have

id(gegeryr A(fi A f2) & (Idmegeryr A1) A fo = fi A ([dgegeny+ Af2),

where = means S'-equivariant stably homotopic. This a consequence of equivariant
Hopf theorem (cf. [66, Section 2.4]). Note that to prove the second isomorphism, we

make use of the assumption that m,; and m] are even. There is an isomorphism
T(A1,m1,n1),(A2,m2,n2) (Ahmh nl) A (AQ, m2,n2) — (A27m2, TLQ) A (A1, m1,n1)

represented by the obvious homeomorphism A; A Ay — As A Aq. It is not difficult to
prove that 7 is actually an natural isomorphism (again here we need the assumption
that mq, my are even). Once the well definedness of A and the naturality of 7 are
established, we can prove the following lemma easily by checking the axioms at the

level of topological spaces.
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Lemma 3.1.2. Under the operations N\ and T, the category € is a symmetric monoidal

category, with the unit given by S = (S°,0,0).

An S'-representation E is called admissible if it is isomorphic to R* @ C? for some
nonnegative integers a,b. For such representation E, we define S¥ as (ET,0,0) and
define S=F as (E°",2a,0), where ES' denotes the S'-fixed point set of E. Now we
choose an identification

I:E-R'aC
and consider the composition maps
EeB" L ReCaR 2R GR @ C
and
EoE o R g CoR 25 RO R @ C".

Here 15" denotes the restriction of I to the S'-fixed point set and T3 denotes the map

interchanging the second and the third factor. These maps induce isomorphisms
b SPASTE S Sand e STEASE S S (3.3)

By equivariant Hopf theorem, one can check that (1 do not depend on the choice of I.

For an admissible representation E, we define the suspension functor £¥¥: ¢ — ¢
as the left smash product by S¥. We also define desuspension functor ¥~ %: ¢ — ¢
as the left smash product by S~®. We have the following lemma, whose proof is

straightforward.

Lemma 3.1.3. For any admissible S*-representations E, we have canonical isomor-
phisms

LiiEEOE_E—)id and 1 X FPoxP sid

induced by 14 in (3.83). Here id denotes the identity morphism on €.

Note that the suspension and desuspension functors can be extended to the cate-

gory G and &* in an obvious way and Lemma 3.1.3 still holds.
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Now we briefly discuss the Pin(2)-case. The smash product A and the commuting
operation 7 can be defined on the category €p;,(9) in exactly the same way as before.
As a result, the category €p;,(2) is also an symmetric monoidal category. An Pin(2)-
representation F is called admissible if it is isomorphic to R*@HP for some nonnegative
a,b. For such representation E, we define the objects S¥ := (ET,0,0) and S7F :=
(ESI, 2a,b). As before, the functors ¥ and X=F are defined as the left smash product
with S¥ and S—F respectively. These two functors can be extended to the categories

S pin(2) and G}kﬂm(z)- A similar result as Lemma 3.1.3 holds in the current case.

3.1.4 Equivariant Spanier-Whitehead duality

In this subsection, we will set up the equivariant Spanier-Whitehead duality between
the categories & and &*. Although we will mostly focus on the S'-case for simplicity,
all definitions and proofs can be easily adapted to the Pin(2)-case. As a result, a

duality between & pjy,(2) and G*Pm(z) can also be set up in a similar way.
The following definition is motivated by [16, Chapterr XVI Theorem 7.6].
Definition 3.1.4. Let U, W be objects of €. Suppose there exists morphisms
e:WANU—Sandn:S—-UAW
such that the compositions
id Ae

U SAU NS UAWAU S UAS > S

and

eNid

WEWAS LN WwAUAW LY gaw~w

are the respective identity morphisms. Then we say U, W are Spanier-Whitehead dual

to each other and call €, n the duality maps.

Now we generalize Definition 3.1.4 to define the duality between & and G*. Let

ZIZl—>ZQ—>Z3—>"‘
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be an object of G and

ZIZl<—ZQ(—Z3<—"'

be an object of &*. We consider an element

e € lim lim More(Z, A Zp,, S)

oc0—MmM N—o0

represented by a collection of morphisms {¢,, ,, : ZoNZy — S }ms0msm and an element

n € lim lim More(S, Z,, A Zn)

o0—Nn M—r00
represented by the collection of morphisms {9, , : S = Z,, A Zn}n>0,m>>n.
Definition 3.1.5. For Z € ob& and Z € ob &*, we say that Z and Z are Spanier-

Whitehead dual to each other if there exist € and n as above satisfying the following

conditions:

e For any m > 0, there exists n large enough relative to m and m’ large enough

relative to n such that the composition
Nt Nid = id A€m,n
I ZESNZy ——— Zyy NZy N Ly ——— Zyy NS = Z
equals the connecting morphism Z,, — Z,, in the inductive system Z.

e For any n > 0, there exists m large enough relative to n and n’ large enough

relative to m such that the composition

s Aid

Zn//\Zm/\Znilyn———}

id AMm,n

Zyw =220 NS SANZ,~= 2,
equals the connecting morphism Z,, — Z,, in the projective system Z.

In this case, we call €,n the duality morphisms.

We end this subsection by introducing the smashing operation (-, -), which will be

used to give the statement of gluing theorem for the Bauer-Furuta invariant.
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Definition 3.1.6. Let Z € 0b& and Z € ob &* be objects that are S'-equivariant
Spanier-Whitehead dual to each other, with duality morphisms given by ¢,n. Given

two morphisms
p = [pm] € morg(W, Z) and p = {pn }n>0 € more«(W, Z),

where W, W belong to the subcategory €, we define the morphism &(p, p) € more(S, WA

W) as the composition
€m,n > Pm/\Pn T
S—=>Z,NZ, — > WAW

for any n large enough relative to m. It can be proved that €(p, p) does not depend

on the choice of m,n and p,,. (Note that p,, is determined by n and p.)

3.2 The Conley index

3.2.1 Definition and basic properties

In this section, we recall basic facts regarding the Conley index theory. See [10] ,[10]

and [57] for more details.

Let V be a finite dimensional manifold and ¢ be a smooth flow on V i.e. a C°-
map ¢: V xR — V such that ¢(x,0) = z and ¢(x, s+t) = p(p(z,s),t) for any x € V
and s,t € R. We denote by inv(p, A) .= {z € A | p(z,R) C A} the maximal invariant

set of A. We sometimes write inv(A) when the flow ¢ is obvious from the context.

A compact set A C V is called an isolating neighborhood if inv(A) lies in the
interior of A. A compact set S C V is called an isolated invariant set if there exists
an isolating neighborhood A such that inv(A) = S. In this situation, we also say that
A is an isolating neighborhood of S. For an isolated invariant set S, a pair (N, L) of

compact sets L C N is called an index pair of S if the following conditions hold:
(i) inv(N \ L) =S Cint(N \ L), where int(N \ L) denotes the interior of N \ L;

(ii) L is an exit set for N, i.e. for any € N and ¢t > 0 such that ¢(x,t) ¢ N, there

exists 7 € [0,t) with ¢(z,7) € L;
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(iii) L is positively invariant in NV, i.e. for x € L and ¢t > 0, if we know ¢(z, [0,t]) C N,
then we have p(z,[0,t]) C L.

We list two fundamental facts regarding index pairs:

e For an isolated invariant set S with an isolating neighborhood A, we can always

find an index pair (V, L) of S such that L C N C A.

e The pointed homotopy type of N/L with [L] as a base point only depends on S
and . More precisely, for any two index pairs (N, L) and (N’, L’) of S, there is
a natural pointed homotopy equivalence N/L — N’/L’ induced by the flow.

These lead to us the definition of the Conley index.

Definition 3.2.1. Given an isolated invariant set S of a flow ¢, we denote by I(¢, S, N, L)
the pointed space of (N/L,[L]), where (N, L) is an index pair of S. This is called the
Conley indez of S. We will always suppress (N, L) from our notation and write I (g, S)

instead. We may also write I(S) when the flow is clear from the context.

Remark. In [57], the Conley was defined as a connected simple system of pointed
spaces. l.e., a collection of pointed spaces (given by different index pairs) together with
natural homotopy equivalences between them (given by the flow map). In Definition
3.2.1, we actually pick a representative of this connected simple system by making
a choice of the index pair (N, L). As we will see in next section, we need to make
choices of all kinds of index pairs in our construction of spectrum invariants. Just
like the Riemannian metric g and the perturbation on f, these choices will be treated
as auxiliary data involved in the construction and we will prove that our spectrum

invariant is independent of this data upto canonical isomorphism.

We further provide relevant properties of the Conley index.

1. (Product flow) If ¢, is a flow on V; for j = 1,2 and S, is an isolated invariant
set for ¢;, then we have a canonical homotopy equivalence I(p X @2, 51 X Sg) =

I(p1,S1) N I(ps,Ss), where “A” is the smash product.
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2. (Continuation) Let ¢, is a continuous family of flows parametrized by ¢ € [0, 1].
Suppose that A is an isolating neighborhood of ¢; for any ¢ € [0, 1], and let

S; be inv(g, A). Then we have a canonical homotopy equivalence I (g, So) =

1(901751)'

The following concept will be useful for explicitly computing the Conley index.

Definition 3.2.2 ([70]). For a compact subset A, we consider the following subsets

of its boundary

nt(A) = {z € dA | Je > 0 s.t p(x,(—¢,0)) N A =0},

n (A):={z€dA|Ie>0st ¢(z,(0,6) NA=0}
A compact subset N is called an isolating block if ON =n"(N)Un~(N).

It is easy to verify that an isolating block is an isolating neighborhood. When N

is an isolating block, its index pair can be given by (N,n™(N)).
Next, we consider a situation when an isolated invariant set can be decomposed to

smaller isolated invariant sets.

Definition 3.2.3.

(i) For a subset A C V, we define its a-limit and w-limit set as

alA) = N p(A4, (—oc0,t]) and w(A)= iy ©(A,[t, +00)).

t<0

(ii) Let S be an isolated invariant set. A subset 7' C S is called an attractor (resp.
repeller) if there exists a neighborhood U of T in S such that w(U) = T (resp.
a(U)=T).

(iii) When T is an attractor in S, we define the set T* := {z € S | w(x) N T = 0},

which is a repeller in S. We call (T, T*) an attractor-repeller pair in S.

Note that an attractor and a repeller are always an isolated invariant sets. We give

an important result relating Conley indices of an attractor-repeller pair.
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Proposition 3.2.4 (Salamon [57]). Let S be an isolated invariant set with an isolating
neighborhood A and (T,T*) be an attractor-repeller pair in S. Then there exist compact
sets N3 C Ny € Ny C A such that the pairs (Ny, N3), (N1, N3), (N1, Ny) are index pairs
for T, S and T™ respectively. The maps induced by inclusions give a natural coexact

sequence of Conley indices
I(,T) % I(p,S) 5 I(p, T%) = £1(p,T) = TI(i2,5) = - --

We call the triple (N3, No, Ny) an index triple for the pair (T, T*) and call the maps

11 and 1o the attractor map and the repeller map respectively.

By Corollary 4.4 of [57], the attractor maps are transitive in the following sense.
Suppose that S; is an attractor in Sy and S, is an attractor in S3. Then S is also an

attractor in S3. Moreover, the corresponding attractor maps
Z‘1 : I(QO, Sl) — [<90752)7 le : I(§0> SQ) - [(907 53) and lel . [(907 Sl) — [<<10753)

satisfy the relation ¢ = i} o4;. Similar statements hold for the repeller maps.

Lastly, we briefly discuss the equivariant Conley index theory, which has been
developed in [15] and [51]. Let G be a compact Lie group acting on V' while preserving
the flow ¢. For a G-invariant isolated invariant set S, we can find a G-invariant
isolating neighborhood as well as a G-invariant index pair (N, L). As in the non-
equivariant case, with the choice of (N, L), we denote by Ig(p,S) the pointed G-
space (N/L,[L]), whose G-equivariant homotopy type only depends on S and ¢. In
particular, Ig(p, S) is the G-equivariant Conley index of S. All the non-equivariant
results stated above can be adapted to the G-equivariant setting. From now on, we

will work on this equivariant setting with G = S* or Pin(2).

3.2.2 Further properties of Conley index

In this subsection, we collect some further properties and prove some results regard-
ing Conley index theory that will be needed in Chapter 7. These results may be of

independent interest for some readers. Although we focus on the non-equivariant case
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for simplicity, all the results can be adapted to the equivariant setting. Throughout
this subsection, we fix a smooth flow ¢ : V x R — V| an isolated invariant set S and
an isolating neighborhood A for S. We use the notation f = ¢ to indicate that two

maps f, g are pointed homotopic to each other.

Notation. For B C A and I C R, we define
B :={x € A|p(xI) C B}.

We also write BI%t>) and B(->% as BT and B~ respectively.

3.2.2.1 The flow map

As mentioned in the remark after Definition 3.2.1, different Conley indices for S form
a simple connected system. In particular, they are connected to each other by natural

homotopy equivalences, whose precise formula is given in the following theorem.

Theorem 3.2.5 (Kurland [31], Salamon [57], Conley-Zender [!1]). If (N,L) and
(N', L") are two index pairs for the same isolated invariant set S, then there exists

T > 0 such that
o o(z,[-T,T])) C N'\ L' implies v € N \ L;
o o(z,[-T,T]) C N\ L impliesxz € N'\ L.

Moreover, for any T > T, the map sy : N/L — N'/L’ given by

() [psr(x)]  if o(x,[0,2T]) € N\ L and o(,[T,3T]) C N'\ L'
st([x]) =

[L] otherwise
is well defined and continuous. For different T > T, the maps sp are all homotopic to

each other and they give natural homotopy equivalences between N/L and N'/L'. We

call sy the flow map at time T (also called the Salamon map at time T).

3.2.2.2 T-tame pre-index pair and 7T-tame index pair

Definition 3.2.6. A pair (K, K5) of compact subsets of A is called a pre-index pair
if
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e For any x € K; N A", we have p(z, [0, +00)) C int(A);
[ ] K2 N A+ - @

Theorem 3.2.7 (Manolescu [10]). For any pre-index pair (K1, K3), there exists an
index pair (N, L) satisfying

KiCNCA, KyCL. (3.4)
We call such (N, L) an index pair containing (K, K3).

Theorem 3.2.8 (Khandhawit [30]). Let (Ki, Ks) be a pre-index pair and (Nj, L;)
(7 =1,2) be two index pairs containing (K, K3). Denote by l; : K1/Ky — N;/L; the

map induced by the natural inclusion. Then we have
sgoly =y fort >0,
where s; : Ny /Ly — No/ Ly is the flow map at time t.

For an pre-index pair (K7, K3), by Theorem 3.2.7, we can find index pair (NN, L)
containing it and define Ik, x, N1y : K1/K2 = I(¢, S, N, L). Moreover, by Theorem
3.2.8, for different choices of (N, L), the maps Ik, k, ) are compatible with each
other. This allows us to suppress N, L (and also ¢) from our notations and simply
write the map as

l: K,/ — I(S). (3.5)
We call this map the canonical map for (K, K3).

Next, we discuss the quantitative refinement of Theorem 3.2.7, which will be espe-
cially useful when defining the relative Bauer-Furuta invariant and proving the gluing

theorem. We first introduce some definitions.

Definition 3.2.9. For 7' € R>° an isolating neighborhood A is called a T-tame

1solating neighborhood if it satisfies the following condition:

AFTTL C int(A).

48



Definition 3.2.10. Let (K7, K3) be a pre-index pair in a T-tame isolating neighbor-
hood A. We call (K;, Ks) a T-tame pre-index pair if it satisfies the following condi-

tions:

(1) There exists a compact set A" satisfying
o AFTTI C A’ C int(A);

o If x € Ky N APT for some T' > T, then ¢(x, [0,7" —T]) C A".
(2) KQ N A[O’T} = (Z)

Lemma 3.2.11. Let (K1, Ks) be a pre-indez pair in an isolating neighborhood A. Then
there exists T > 0 such that A and (Ki, Ks) are both T-tame. This also implies that
A and (K1, Ky) are T-tame for any T > T.

Proof. We know that A=>**) N 9A = () and K, N A%+ = ). Since both A and
K, are compact, we have AT N OA = () and K, N ATl = () for T > 0. Therefore,
we are left with checking condition (1) of Definition 3.2.10. Suppose it does not for
any T. Then we can find sequences {z;} C Ky, {T}} and {77} such that T — +oo,
T; > Tj, p(x;,[0,T7]) C A and @(x;, Tj — T;) — y € 0A. If Tj — T} does not goes
to infinity, then after passing a subsequence, we can assume that (xj,TJ{ - T;) —
(0o, T") € K1 x R20. We have (s, [0, +00)) C A and ¢(2,T") = y € OA. This
is a contraction with Definition 3.2.6. Now suppose T — T} goes to infinity. For any
t € R, we have T; — T +t € [0,7}] for j > 0, which implies o(z;,Tj —T; +t) € A.
Notice that ¢(y,t) = jli_)rglo @(x;,T; — Ty +t). Therefore, we have y € Al=00+20) - This

is a contradiction because A=) N 9A = (). O]

Definition 3.2.12. For T € R>?, an index pair (N, L) in an isolating neighborhood

A is called a T-tame index pair if it satisfies the following conditions:

(i) Both N, L are positively invariant in A;
(ii) ACTT C N;

(iii) AT N L = 0.
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One important reason that we are interested tame index pair is the following lemma.

Lemma 3.2.13. Let (N, L) and (N', L") be two index pairs in A. For T > 0, suppose
(N, L) is T-tame and the flow map sy : N/L — N/L' is defined. Then we have the

following equivalent definition of st

sp([z]) = lpsr(@)] 4 ¢(x,[0,3T]) € A and (2, [T, 3T]) € N'\ L'

[L] otherwise

Proof. We need to show that for any x € N the following two conditions are equivalent.
(1) (2,[0,3T]) C A and (z, [T,37]) © N'\ I';
(2) ¢(x,[0,2T]) € N\ L and ¢(z,[T,3T]) € N"\ L.

It is easy to see that (2) implies (1). To see the converse, we pick any x satisfying (1).
Then since N is positively invariant in A, we have ¢(z,[0,37]) C N. By condition
(iii) of 3.2.12, we have ¢(x,[0,2T]) N L = (). Therefore, x satisfies (2). O

Theorem 3.2.14. For any T > 1, let A be a (T — 1)-tame insolating neighborhood
and (K1, K3) be a (T — 1)-tame pre-index pair contained in A. Then there exists a
T-tame indez pair (N, L) that contains (K7, K3).

To simplify the proof, we introduce the following notation:

Notation. For subsets B, B’ C V', we define the set
Pp/(B) :={¢(z,t) | x € B, t >0 and ¢(z,[0,t]) C B'}.

Proof of Theorem 3.2.1/. The proof is an adaption of the argument in [10, Appendix
A]. Let Ky = K; U AFTHLT-1 0 We claim that (K7, K») is also an pre-index pair. To
see this, we need to show that ¢(y, [0,400)) C int(A) for any y € K; N A*. This is
clear when y € K; N AT because (K7, K3) is a pre-index pair. For those y belonging

to AFTHLT-1 N A+ = AFT+1400) e have

o(y, [0, 4+00)) C AFTFT C ing(A),
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where the second inclusion make use of the condition that A is (T'—1)-tame. Therefore,

the claim is verified.

Now since (f(l, K,) is a pre-index pair, by Theorem 3.2.7, there exists an index
pair (N, L) containing (K, K3). We have

AFTTN ¢ AETHLT) - | N

Condition (ii) in Definition 3.2.12 is verified.

Recall that in the proof of Theorem 3.2.7 [10], the index pair (N, L) is constructed

as

(Pa(B)U PA(A\ V), PA(A\ V)

where A,V are certain specific subsets of A. (The notation V is used in [10] as V
here.) Since P4(x) is always positively invariant in A and the union of two positively
invariant sets in A is again positively invariant in A. We see that both N, L are

positively invariant.

We are left with checking condition (iii). To do this, let us recall the construction

of the set V in [10]. Let C' be a compact subset of A, with the following properties:
1. C'is a neighborhood of AT NJA in A;
2. CN PA(f(l) = 0
3. CNA- =0.

Then V is any open neighborhood of A* satisfying the following conditions:

Now we construct specific C, V that meet all these requirements: Let A” be a compact
set such that
A" Cint(A), AU AFTHET < in(A”),

where the set A’ C int(A) has the following property:
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e Forany 7" > T — 1 and z € AT N K, we have ¢(x,[0,T' — T +1]) C A".

Such A’ exists because (K7, K») is a (T'—1)-tame pre-index pair (see Definition 3.2.10).

Now we fix two numbers T'— 1 < Ty < T} < T and set
Co = (A\ int(A")) N AT and vy = 40D,
We have the following observations:
e CyN A~ = (: This is because
Con A~ = (A\ int(A")) N ARl (AN int(A”)) N AFTHLT=1 — ¢,
We their distance by d;. This is positive since both sets are compact.

e The distance between Cy and P4(K;), denoted by dy, is positive: Assume the
contrary. Notice that Cy is compact. We can find sequences {z;} C K; and
{t;} € R=° that satisfy ¢(x;,[0,¢;]) C A and p(x;,t;) = y € Co. There are two

cases:

— Suppose t; does not goes to infinity. Then after passing to a subsequence,
we can assume (2, 1;) — (Zoo, too) € K1 x RZ0. We have (a0, [0,100]) C A
and ¢(Too, o) = y. If o € Kj, then since ¢(y, T — 1) C A, we have
y € A’ by our choice of A’. This is impossible because A’ N Cy = (. If
Too € AFTT then y € AlFT—teo T2l ¢ AETHLT-1 | This is also impossible

because A-THLT-1 0 ¢y = 0.

— Suppose t; = +00. Then for any ¢t > 0, we have ¢(y, —t) = lim ¢(x;,t; —

J—00

t) € A. This is a contradiction because Cyp N A~ = ().

oV, \ Cop C A”: This is because Ty > Ts.

e K, NV, =0: This is because (K1, K3) is (T — 1)-tame and T > T — 1. Denote
the distance between K5 and ‘70 by dy. We have dy > 0 because Ky and ‘70 are

both compact.
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Let d3 > 0 be the distance between 0A and A”. We choose any positive number dy

strictly smaller than min(dy, d, da, ds) and set our specific C, V' to be
C={zecA|dx,Cy) <ds}; V={xecAl|ldx V) <ds}.

Now we show that C, V satisfy the requirements: Conditions 1, 2, 3, 5 are directly

implied by our choice of dy. As for condition 4, for any y € 8Aﬂf/, there exists 3/ € Vo

such that d(y,y') < dy < ds. This implies that ¢/ ¢ A”. Since V; \ Cy C A”, we have

y' € Cy, which implies y € C. Therefore, condition 4 is verbified.

Now we have L = P4(A\ V) and we want to verify condition (iii) in Definition
3.2.12 (i.e., LNALT = (). Suppose z € P4(A\V)NAPT]. Then we can have 2 = ¢,(y)

where y ¢ V and ¢jor14(y) C A. This is a contradiction because AT+ C V. O
3.2.2.3 The attractor-repeller pair arising from a strong Morse decompo-
sition

In our later construction of spectrum invariants, our isolating neighborhood will have
a nice decomposition, which gives an attractor-repeller pair with good properties. To

clarify the situation, we give the following definition.

Definition 3.2.15. Let (A1, Ay) be pair of compact sets. We call (A, A2) a strong

Morse decomposition of A if
[ A = Al U AQ,
e For any x € Ay N Ay, there exists € > 0 such that

o(x,(0,e)) N A; =0 and p(x, (—€,0)) N Ay = 0. (3.6)

We summarize the basic properties of a strong decomposition in the following

lemma. We omit the proof since it is straightforward.

Lemma 3.2.16. Suppose (A1, Ay) is a strong Morse decomposition of an isolating

wmwvariant set A. Then we have the following results.
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(1) Ay (resp. As) is negatively (resp. positively) invariant in A;
(2) Al N A2 = 0A1 N 8A2 and 8AZ C 8A U (A1 N AQ) fO’I"i = 172;
(3) Both Ay and Ay are isolating invariant sets;

(4) (inv(Az),inv(Ay)) is an attractor-repeller pair in inv(A).

The attractor-repeller pair arising from a strong Morse decomposition has the fol-

lowing special property.

Lemma 3.2.17. Let (Ay, Ay) be a strong Morse decomposition of A and (N3, Ny, Ny)
be an index triple for (inv(Ay),inv(A;)) (see Proposition 3.2.4). Then (Ns, Ny, Ny) is
again an index triple, where Né = N,U (Nl NAy). In particular, we can always assume

(Nl NAy) C N, by replacing Ny with Nﬁ

Proof. First consider the pair (Ny, N3). We have the following observations, which

implies that (Ny, N}) is an index pair for inv(A;).

° ]\Nfé is positively invariant in Ny: Since A, is positively invariant in A, the set
Ay N N, is positively invariant in N;. Because Ny is also positively invariant in
N; (by the definition of an index pair) and the union of two positively invariant
set is again positively invariant. We see that Né is positively invariant in N;.

e N is an exit set for N;: This is because Nj contains Ny, which is an exit set for

Ny.

o inv(A4;) = inv(N; \ N}) C int(N; \ Nj): We have inv(N, \ N}) € inv(N; \ Ny)
because Ny \ N} € Ny \ N,. To see the converse, we take any z € inv(N; \
N,) = inv(A;). Then ¢(z, (—o0,+00)) is contained in (Ny \ Ny) M int(A;).
Notice that int(A;) does not intersect Ny N Ay. We have ¢(x, (—o0, +00)) C
Ny \ (Mo U (Ny N Ay)). This implies that = € inv(N;, \ N}). We have shown
that inv(Ny \ N}) = inv(N; \ N,) = inv(A). Moreover, we have inv(N; \ N}) C
int(N; \ No) Nint(A;) C int(Ny \ Nj).
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Now consider the pair (N}, N3). We have the following observations, which implies

that (N}, N3) is an index pair for inv(A,).

e Nj is positively invariant in NJ: This is because N3 is positively invariant in Ny,

which contains V.

e N; is an exit set for Né: This is because N3 is an exit set for N; and Né is

positively invariant in N;.

e inv(Ay) = inv(N} \ N3) C int(Ny \ N3): We have inv(Ny \ N3) C inv(N} \ Ns)
because Ny \ N3 € N} \ N3. To see the converse, take any z € inv(N}\ N3). Then
we have ¢(x, (—00,00)) C N} \ N3. Suppose z ¢ inv(N, \ N3) = inv(A,). Then
Qeto & Ny for some ty. Since ¢(x, (—00,+00)) does not intersect N3, which
is an exit set for Ny, we see that o(z, (—00, o)) does not intersect N,. Since
o(z, (—o0, ty]) is contained in N}, it has to be contained in Ny N A,. Notice that
Ns is also an exit set for Ny N Ay while ¢(, (—00, +00)) N Ny = (. We see that
o(x, (=00, 4+00)) C Ny N Ay, which implies = € inv(A,). This is a contradiction
and we have shown that inv(Nj \ Ns) equals inv(A,), which is contained in

int(N, \ N3) and hence also in int(N} \ Ns).
[l

Now we study the relation between the strong Morse decomposition and the pre-
index pair. More precisely, we will show that the canonical map (3.5) is compatible
with the attractor and repeller maps given by strong Morse decomposition. These
results will play a crucial role when we define the relative Bauer-Furuta invariant in

Chapter 7.

Proposition 3.2.18. Let (Ay, Ay) be a strong Morse decomposition of A and let
(K1, K3) be a pre-index pair in Ay. Then we have

(1) (K1, K3) is also a pre-index pair in A;
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(2) Consider the corresponding canonical maps (see (3.5)):
ll : Kl/KQ — [(an(A)) and 12 : Kl/KQ — [(IHV(AQ))

Then we have i1 o ly = 1y, where iy : 1(inv(Ag)) — I(inv(A)) is the attractor map

(see Proposition 3.2.4).

Proof. (1) We check those two conditions in Definition 3.2.6.

e Suppose z € K satisfies ¢(z,[0,+00)) C A. Since A, is positively invariant
in A and x € Ay, we have p(z,[0,+00)) C Ay. This implies p(z, [0, +00)) C
int(As) C int(A) because (K7, K3) is an index pair for As.

e Suppose = € K, satisfies p(z, [0, +00)) C A. Again since A, is positively invari-

ant in A, we have ¢(z, [0, +00)) C Ay. This is impossible because Ko N A =

(2) Let N3 € Ny € N; C A be an index triple for (inv(A,),inv(A4;)) and let
L C N C A (resp. Ly C Ny C Ay) be an index pair for inv(A) (resp. inv(Ay)) that

contains (K7, K3). The map i; o ly is given by the decomposition
Ky /Ky 02 Ny Ly 2T Ny Ny % Ny /N (3.7)
while the map [; is given by the composition
Ky /Ky 200 N2 NN, (3.8)

Here [, are canonical maps (induced by the corresponding inclusions) and sy, s/ are
flow maps. (We choose T' > 0 such that they are defined.) The attractor map i; is
given by the inclusion. By Lemma 3.2.17, we may assume N; N Ay C N,. By Lemma
3.2.11 and Theorem 3.2.14, we may also assume that both (N, L) and (Ny, Ls) are T-
tame. Under these assumptions, by Lemma 3.2.13, one can check that the composition

(3.7) sends [z] to [p(x,3T)] if

o(x,]0,3T]) C Ay, @(z, [T,3T]) € Ny \ Nj (3.9)
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and sends [z] to the base point otherwise. One the other hand, the composition (3.8)
sends [z] to [¢(x,3T)] is

o(x,]0,3T]) C A, o(x,[T,3T]) € Ny \ Ny (3.10)

and sends [z] to the base point otherwise. Therefore, we just need to show that for
x € Ky C Ay, (3.9) is equivalent to (3.10). This is simply because that A, is positively
invariant in A and N; N Ay C N. O

Proposition 3.2.19. Let (Ay, Ay) be a strong Morse decomposition of A and let
(K3, Ky) be a pre-index pair in A. Then we have

(1) The pair (K3NAy, (KsNA)U(K3NA1NAy)), denoted by (K3, K}), is a pre-index

pair in Aq;
(2) Consider the corresponding canonical maps
ly: K3/ Ky — I(inv(A)) and ly : K5/ K — I(inv(Ay)).

Then we have ig0l3 = ly0q, where iy : I(inv(A)) — I(inv(Ay)) is the repeller map

see Proposition 3.2./) and q : K3/ Ky — K5/ K is given by
3/ 1%y

J(le]) = [x] if v € Kj

[K}] otherwise

(Note that q is continuous because (K3 \ K{N Kj) C K}.)

Proof. (1) We check those two conditions in Definition 3.2.6.

e Suppose z € K} satisfies ¢(x, [0, 400) C K}. Then we have p(z, [0, +00))NOA =
) because (K3, K,) is a pre-index pair. By (3.6), we also have o(x, [0, +00)) N
A; N Ay = (. Note that 9A; is contained in (0A U (A; N Ag)). We see that
¢(z,[0,400)) NOA; = 0.

e Since K; N AT = (), we have (K, N A;) N A7 = 0. By (3.6), we have (K3 N A; N
Ay) N AT = 0. Therefore, K} does not intersect A7 .
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(2) As in the proof of Proposition 3.2.18, let N3 C Ny € Ny C A be an index triple for
(inv(As),inv(A;)) and let L € N C A (resp. L1 C Ny C A;p) be an index pair inv(A)
(resp. for inv(A;)) that contains (K3, Ky) (resp. (K%, K})). Then the map qoly is

given by the composition
Ka/ Ky S KLJK 2080 N5ty R, (3.11)
and the map i, o [3 is given by the composition
Ka/ Ky 5% NJL 2 NN, 2 NN (3.12)

Here sr, s/ are flow maps, [, are canonical maps and i, is the quotient map. As before,
we can assume that (N, L) and (Ny, Ly) are both T-tame and Ny N A, € Ny. Under

these assumptions, one can check that the composition (3.11) sends [z] to [p(z, 3T)] if
o(z,]0,3T)) C Ay and ¢(z, [T, 3T]) € Ny \ Ns (3.13)

and send [z] to the base point otherwise. On the other hand, the composition (3.12)
sends [z] to p(z,3T) if

o(x,]0,3T)) C A, o(x,[T,3T])) € Ny \ Ns and ¢(x,3T) ¢ N, (3.14)

and send [z]| to the base point otherwise. We just need to show that for x € Kj,
condition (3.13) is equivalent to (3.14). Clearly, (3.13) implies (3.14). To see the
converse, we take any z € Kj satisfying (3.14). We have ¢(z,3T) € N, \ Ny C Aj.
Since A; is negatively invariant in A, we have ¢(z, [0,37]) C A;. Moreover, because
o(z,3T) ¢ Ny and ¢(z, [T,3T]) N N3 = 0, we have p(z, [T, 3T]) N Ny = () since Ns is
an exit set for Ny. We have proved that z satisfies (3.13). O
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CHAPTER 4

Pin(2)-equivariant Seiberg-Witten Floer KO-theory

Through out this chapter, we will make the following assumptions:

e Y is a connected, 3-manifold with b; = 0;

e The spin structure s is induced by a spin structure. With a slightly abuse of

notations, we also denote this spin structure by s.

e Except in subsection 4.1.1, G denotes the group Pin(2).

4.1 Equivariant KO-theory

4.1.1 General Theory

In this subsection, we review some general facts about equivariant KO-theory, mostly

from [01] and [1]. See [3], [2] for basic facts about ordinary K-theory and KO-theory.

Let G be a compact topological group and X be a compact G-space. We denote
the Grothendieck group of real G-bundles over X by KOg(X).

Fact 4.1.1. KO¢(pt) = RO(G). Here RO(G) denotes the real representation ring of
G. For a general X, KOg(X) is a RO(G)-algebra (with unit).

Remark. In this paper, we will not distinguish a representation of G with its represen-

tation space.

Fact 4.1.2. A continuous G-map f : X — Y induces a map f* : KOg(Y) —
KOg(X).
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Fact 4.1.3. For each subgroup H C G, by restricting the G action to H, which makes
a G-bundle into an H-bundle, we get a functorial restriction map r : KOg(X) —

KOu(X).

Fact 4.1.4. If G acts freely on X, then the pull back map KO(X/G) — KOg(X) is

a ring isomorphism.

Fact 4.1.5. For a real irreducible representation space V of G, Endg(V') is either R, C
or H. Let Zrg, ZlIrc and Z.Iry denote the free abelian groups generated by irreducible
representations of respective types and let KSp(X) be the the Grothendieck group of

quaternionic vector bundles over X. Then if G acts trivially on X, we have:

KOg(X) = (KO(X) ® ZIrg) & (K(X) ® ZIre) & (KSp(X) ® ZIrg).  (4.1)

Now suppose X has a distinguished base point p which is fixed by G. Then we define
KOg(X) (the reduced KO-group) to be the kernel of the map KOg(X) — KOg(p).

For based space X with trivial action, we also have:

KOg(X) = (KO(X) ® ZIrg) ® (K(X) ® Zlre) ® (KSp(X) ® Zlry).  (4.2)

The following fact is proved as Corollary 3.1.6 in [3]. ([3] only proved the complex

K-theory case but the proof works without modification in the real case.)

Fact 4.1.6. Suppose X is a finite, based G-CW complex and the G-action is free away
from the base point. Then any element in lf(\ag(X) = l?a(X/G) is nilpotent.

Recall that the augmentation ideal a C RO(G) is the kernel of the forgetful map
RO(G) = KOg(pt) — KO(pt) = Z. Any element in a defines an element in KOg(X).

By the above fact, we get:

Fact 4.1.7. Suppose X is a finite, based G-CW complex and the G-action is free away
from the base point. Then any element in the augmentation ideal acts on [/(\6*6()()

nilpotently.

Fact 4.1.8. For pointed spaces X,Y, there is a natural product map [f(\ég(X) ®
KOg(Y) = KOg(X AY).
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Fact 4.1.9. For pointed spaces X,Y, we have [f(\ég(X VYY) lff\ég(X) @ If(\ég(Y)

Let V be a real representation space of GG. Denote the reduced suspension V1t A X
by £V X. The following equivariant version of real Bott periodicity theorem was proved

in [4].

Fact 4.1.10. Suppose the dimension n of V is divisible by 8 and V is a spin rep-
resentation (which means the group action G — SO(n) C End(V') factors through
Spin(n)). Then we have the Bott isomorphism @y : If(\ég(X) =~ If(\ég(EVX), giv-
en by the multiplication of the Bott Class by € If(\ég(VJr) under the natural map
[f(\ég(VJr) ®[f(\6g(X) — [f(\ég(EVX). Bott isomorphism is funtorial under the point-
ed map X — X'.

Fact 4.1.11. Bott classes behave well under the restriction map, which means that
i*by = byvy. Here i* is the restriction map (see Fact 4.1.3) and i*(V') is the the

restriction of the representation to the subgroup.

4.1.2 Pin(2)-equivariant KO-theory

In this section, we will review some important facts about Pin(2)-equivariant KO-
theory. The detailed discussions can be found in [60]. From now on to the end of this

chapter, we assume G = Pin(2) unless otherwise noted. We have:

RO(G) = Z|D,K,H]/(D*—1,DK — K,DH — H, H*> — 4(1 + D + K)).

Here D = [R] and H = [H]. As for K, the representation space is C = R @ iR where
z € S' C Pin(2) acts as multiplication by 2? (in C) and j acts as reflection along the

diagonal. We will also write R as the trivial one dimensional representation of G.

Notation. For I,m,n € Zsq and a pointed G-space X, we denote (R! GR"GH") T AX
by LrBRHDH X We also write (R! @ R™ @ H™)*t as (IR +mD + nH)*".

Following the notation of [60], we denote [%G((kD +1H)") by KOg(kD + [H)

(we choose oo as the base point). Then for k,l,m,n € Z>o we have the multiplication
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map:

KOg(kD + 1H) ® KOg(mD +nH) — KOg((k +m)D + (1 +n)H). (4.3)

In order to define this map, we need to fix the identification between (kD @& [H) &
(mD@®nH) and (k+m)D & (I+n)H by sending (z1PDy1)® (x2PBya) to (1, 22) B (Y1, Y2)-
By considering the G-equivariant homotopy, it is not hard to see that the multiplication
map is commutative when K or [ is even. (We will prove that the multiplication map
is actually commutative for any k,, after we give the structure of KOg(kD + [H) in

Theorem 4.1.12.)

It is easy to prove (see [00]) that 8D, H + 4D and 2H are spin representations.
Therefore, we can choose Bott classes bsp € KOg(8D), boy € KOg(2H) and by 14p €
KOg(H+4D). Multiplication by these classes induces isomorphism KOg(kD+1H) =
KOq((k+8)D +1H) = KOg((k +4)D + (1 + 1)H) 2 KOg(kD + (I + 2)H). Since
the Bott classes are in the center, it doesn’t matter whether we multiply on the left
or on the right. Moreover, we can choose the Bott classes to be compatible with each
other, which means that bspboy = b3, ,p. We will fix the choice of these Bott classes

throughout this paper.

For k,l € Z, the RO(G)-module KO¢(kD+1H) is defined to be KOg((k+8a)D +
(I +2b)H) for any a,b € Z which make k + 8a > 0 and [ 4+ 2b > 0. Since the Bott
Classes are chosen to be compatible, the groups defined by different choices of a, b are
canonically identified to each other. Again because the Bott classes are in the center,

the multiplication map (4.3) can now be extended to all k,l,m,n € Z.

Consider the inclusion i : 7Dt — 8D*. There is a unique element (D) €
KOg(—D) which satisfies v(D)bsp = i*(bsp). The map KOg((k + 1)D + [H) 2B)
KO¢g(kD+1H) is just the map induced by the inclusion kD ®IH — (k+1)D & H for
k,1 > 0. Similarly, we can define v(H) € KOg(—H) and v(H + 4D) = v(H)~(D)*.
Since left multiplication and right multiplication by (D) or v(H) just correspond to
different inclusions of subspaces, which are homotopic to each other, we see that v(D)

and y(H) are both in the center.
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By Bott periodicity, we only have to compute KOg(ID) for | = —2,—-1,0,--- 5.

This was done in [60] and we list the result here:

Theorem 4.1.12 (Schmidt [60]). As Z-modules we have the following isomorphisms:

o 1) KOc(pt) = RO(Pin(2)) 2 Z[D, A, B|/(D* —1,DA— A, DB — B, B? — 4(A —
2B)), where A=K — (1+ D) and B=H —2(1+ D). !

2) KOg(—ID) 2 Z & ©p17/2 for | = 1,2 generated by v(D)! and (D)1 A",

3) KOg(D) = Z, generated by n(D).

4) KOg(ID) ¥ Z & ®,>0Z/2 for | = 2,3. The generators are n(D)? and
v(D)?*A™c for | = 2; v(D)X(D) and v(D)A™c for 1 = 3.

5) KOg(4D) 1is freely generated by N(D), DA\(D), A"X(D) and A™c for m > 0

andn > 1.
e 6) KOg(5D) = 7Z, generated by n(D)N(D).

Corollary 4.1.13. The multiplication map (4.3) is commutative.

Proof. We just need to check y(D), n(D), A(D), ¢ commute with each other. This is
easy since A(D) and ¢ are in KOg (kD) for even K, while (D) is in the center by our

discussion before. O

For our purpose, we don’t need to know the explicit constructions of n(D), A\(D)

and c¢. We just need to know the following properties of them.

n(D) is the Hurewicz image of an element 7(D) € 7&(D) (G-equivariant stable
cohomotopy group of D). If we forget about the G-action, (D) is just the Hopf map
in 75 (pt).

For A(D) and ¢ € KOg(4D), by Bott periodicity and formula (4.2), we have

isomorphisms:

KOg(4D) = KOg(8D + 4) = KOg(4)

Y There is a typo in [60], where the relation between A and B is B> — 2(A — 2B).
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~ (KO(SY) ® ZIrg) @ (K(S*) ® ZIre) & (K Sp(S*) @ ZIrg).
(Here 4 € RO(G) denotes the trivial 4-dimensional real representation. )

We can choose suitable Bott classes such that under these isomorphisms, (D)
corresponds to ([Vy] —4R)®1 € @(54) ® ZIrg and ¢ corresponds to ([Vg| —H)® H €
KSp(S%) ® ZIrg. Here Vi is the quaternion Hopf bundle over S* = HP?. H and R
denote the trivial bundles and 1, H are elements in RO(G).

Let A(H) and ¢(H) be the image of A(D) and ¢ under the Bott isomorphism
KOg(4D) =2 KOg(8D + H) =2 KOg(H). Then KOg(H) is generated by A(H) and
c(H) as RO(G)-algebra.

Remark. Notice that the element [Vy] ® H € KSpS* ® ZIry is represented by the
bundle Vi ®y H. Hence it is a real bundle of dimension 4 (not 16).

For further discussions, we need to know the multiplicative structures of KOg(ID),

which are also given in [60]. We list some of them that are useful for us:

Theorem 4.1.14 (Schmidt [60]). The following relations hold:

o 1) HX(D) = 4c, He = (A+ 2+ 2D)A(D), Dc = c.

e 2) (D+1)y(D) =24v(D) = By(D) = 0.

e 3) (D +1)n(D) = An(D) = Bn(D) = 0.

e 4)v(D)n(D) =1 D, v(D)A(D) = n(D)°.

o 5) y(D)%bsp = 8(1 — D), v(H)%boyy = K —2H + D + 5.
o 6) y(H +4D)byaap = 4(1 — D).

e 7) n(D)A(D) = 1(D)*bsp, n(D)e = 0.

o 8)y(H)NH)=4—H andv(H)c(H)=H—-1-D - K.
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4.2 The Adams operations

4.2.1 Basic properties

In this subsection, we give a quick review about the basic properties of the Adams
operations. See [3] and [65] for more detailed discussions. Some of the calculations
can be found in [60] but we give them here for completeness. For simplicity and
concreteness, we only deal with ¢* : KOg(X) — KOg(X) for an actual G-space X

and we don’t do localizations (like [60]).

Let KOg(X)I[[t]] be the formal power series with coefficients in KOg(X). For a
bundle E over X, we define A,(E) € KOg(X)][t]] to be 3 #'[\'(E)]. Here \'(E) is the
i-th exterior power of E. We let ¥°(F) = rank(F) andl:doeﬁne W(E) = 3 t(E) €
KOG(X)[f] by

V() = 0(B) — 1 (log () (1.4
It turns out that for any k € Zsq, 1" extends to a well defined operation on KOg(X),

which satisfies the following nice properties:
e (1) ¥* is functorial with respect to continuous maps f: X — X'
e (2) " maps KOg(X) to KOg(X).
o (3) Forallz,y € KOg(X), ¢*(z+y) = ¢*(x) +¢"(y) and 9" (zy) = " (2)¢"(y).
e (4) If x is a line bundle, then ¥*(x) = z*.

The effect of the Adams operations on the Bott classes can be described by the Bott
cannibalistic class. Given a spin G-bundle E over X with rank n = 0 mod 8, the Bott

cannibalistic class 0" (E) € RO(G) is defined by the equation:
Y*(bg) = 09 (E) - by for k > 1. (4.5)
When K is odd, this can be explicitly written as (see [65]):?

0 (BE) = k" [ A= B)(1 = u) ™. (4.6)

ueJ

2There is a typo in 3.10.4 [67].
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Here J is a set of K-th unit roots u # 1 such that J contains exactly one element from
each pair {u,u™'}. Notice that we can define 6y"(E) for any real bundle F of even

dimension using formula (4.6). It can be shown that:
O (B + F) = 07 (E)0y (F).

Now let’s specialize to the case k = 3. By formula (4.4), it is easy to check that
3 (x) = 2 —3\2(x)x+3X3(x). We want to calculate the action of ¥* on RO(G). Since
the G-action on H preserves the orientation, we have A*(H) = M(H) = H. Using
complexification, it is easy to show A?(H) = K + D + 3. Also, we have \*(K) = D.

Therefore, we get?:
Y3(D) = D, y¥(H) = HEK — H, ¢}(K) = K° 3K,
P3(A) = A* +6A% + 94, ¢ (B) = AB + B +4A.
Also, applying formula (4.6), we get:

03 (2) =3, 65°(2D) =1+ 2D, 07 (H) = A+ B +4D +5.

4.2.2 Proof of Theorem 1.3.4

The central part of the proof is the following proposition:

Proposition 4.2.1. For any integers r,a,b > 0 and | > 0, there does not exist G-

equivariant map
f:(R+aD+ (4 +bH)" — (rR+ (a+81+2)D +bH)™"
which induces homotopy equivalence on the G-fixed point set.

Proof. Suppose there exists such a map f. After suspension by copies of R, D and H,
we can assume a = 8/’ + 6, r = 8d and b = 2k. Let V} = 8dR +2kH +8(l+ 1"+ 1)D
and Vo = 8dR + (41 + 2k)H + (8I' + 8)D. Let by, and by, be the Bott classes of V;

3There is a typo in [60], where ¢*(H) = HK — K.
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and V3, respectively. Consider the element © = f*(by,). By the Bott isomorphism and
(2) of Theorem 4.1.12, we can write = as by, (D)%« for some o € RO(G). Moreover,
we can assume « = p + Ah(A) for some integer p and some polynomial h(A) whose

coeflicients are either 0 or 1.

Claim: p is even and h = 0.
This is essentially a special case of Proposition 5.21 in [60] for KO(4l, 8] + 2).*

By formula (4.5), we have: 3(by;) = 65 (V3) - by, which implies:
Vi) = £ (W7 (b)) = 05"(V1) - @ (4.7)

Notice that = = i*(by, - a) where i : (8dR + (41 + 2k)H + (8I' + 6)D)" — V5! is the

standard inclusion. By formula (4.5), we have:
Vi) =i (P by, - @) = 057 (Va)bup ¥ (@) - (D)*. (4.8)
Comparing equation (4.7) and equation (4.8), we get:
(65" (V2)u*(a) — 05" (Vi)a)y(D)* = 0 (4.9)
We can calculate:
05" (V1) = 3%(1 + 2D) "+ (A + B + 4D + 5)%,
05" (Vo) = 3%(1 + 2D)" 4 (A + B + 4D + 5)F+4.

Notice that 24v(D) = By(D) = (1 + D)vy(D) = 0, we can simplify equation (4.9)
as:

3Y((A+ D) a — (A+ 1) (a)) - 4(D)* = 0. (4.10)

Since a = p + Ah(A), we have ¥*(a) = p+ (A3 + 6A2 + 9A)h(A3 + 6A% + 9A). Using
the relation 2Ay(D) = 0, we can further simplify equation (4.10) and get:

34 g(4)-1(D)* =0 (4.11)

4 There is an error in [60] for KO(c,d) when 4c —d = —3 mod 8, but we will not consider this
case here.
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Here g(A) = (A+ 1)*(p + Ah(A)) — (A + 1) (p + (A3 + A)h(A3 + A)).

By (2) of Theorem 4.1.12, we see that if we expand g(A) as a polynomial in A,
the degree-0 coefficient should be 0 and all other coefficients should be even. By our
assumption, the coefficients of h are either 0 or 1. Checking the leading coefficient of
g(A), it is easy to see that h = 0 and g(A) = p((A+ 1)** — (A + 1)?™). This implies

that p is even. The claim is proved.

Now consider the commutative diagram:

KOg(Vi") —~ KOG((8dR + (81 + 6)D + (41 + 2k)H)*) (4.12)
l,,y(H)2k,y(D)81+Sl’+8 l.,y(H)4l+2k,y(D)81/+6
KOg((8dR)") = KOg((8dR)™).

The vertical maps are given by the inclusions of subspaces. The bottom map is an
isomorphism because f induces a homotopy equivalence on the G-fixed point set. Any
automorphism on KOg((8dR)*) is given by the multiplication of a unit @ € RO(G).

Therefore, we obtain :

i bV1 '7(H>2k7(D)81+81’+8 _ x',y(H>4l+2k,y(D)81’+6 _ bVQ ',V(D)Sl’+8,y(H)4l+2k p (4.13)

Applying the relations in Theorem 4.1.14, we simplify this as :

(K —2H + D +5)%**8(1— D))"+ p = (K —2H + D+5)*(8(1 — D))"+ 4. (4.14)

Now consider the ring homomorphism ¢ : RO(G) — Z defined by ¢o(D) =
—1,p0(A) = po(B) = 0. Notice that po(@t) = %1 since @ is a unit. We get p = +1,

which is a contradiction. This finishes the proof of Proposition 4.2.1. O

Now suppose W is a closed, oriented, smooth spin 4-manifold with intersection
form p(—Eg) @ q({3) for p =8> 0 and ¢ < p+ 3. After doing surgery on loops and
connect sum copies of 5% x S?, we can assume b1 (W) = 0 and ¢ = 8] + 2. As shown
in [21], by doing finite dimensional approximation of the Seiberg-Witten equations on

W, we get an G-equivariant map:

f:(aD+ (4l +b)H)" — ((a+ 81 +2)D + bH)™ for some a,b > 0.
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Moreover, f induces a homotopy equivalence on the G-fixed point set. This is a

contradiction to Proposition 4.2.1. Therefore, Theorem 1.3.4 is proved.

4.3 Seiberg-Witten Floer spectrum for spin 3-manifolds with
by =0

In [10], [42] and [13], Manolescu constructed a Pin(2)-equivariant spectrum class
S(Y,s). Let us briefly review the constructions and collect some useful properties

here. See [10], [12] and [13] for details.

As in Chapter 2, we let Coul(Y) be the (global) Coulomb slice and V' be its finite
dimensional subspace spanned by the eigenvectors of [ = (xd, I 4,). We choose the
base connection Ay to be the spin connection take the perturbation f to be zero. Since

§ is torsion, the harmonic form 1y is also zero.

By our assumption, we have gQ"’ = HY(Y;Z) = 0. By Theorem 2.2.2, there exists
Ry such that all finite type Seiberg-Witten trajectories are contained in the interior of
the ball
B(Ro) = {z € Coul(Y)]|[z]|rz < Ro}-

As a consequence of consequence of Proposition 2.2.4, we have the following corollary:
Corollary 4.3.1 (Manolescu, [10]). There exists j1o > 0 and N\g < 0 such that for

any > po and X < No. The set B(2Ry) NV} is an isolating neighborhood under the

approzimated Seiberg- Witten flow. We denote the corresponding Conley index by IY.

There is an G-action on Coul(Y) preserving the subspace V{' and the Seiberg-
Witten flow (see [13] for details). As a result, the Conley index I{ is a G-space. We

consider the object

SWE(Y, s; Pin(2)) = S~ (11,0, 224090y ¢ ob € pyp ),

where n(Y, s, Ao, g) € Q is the correction term defined in [10] (see Section 5.2 for exact

definition).
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Theorem 4.3.2 (Manolescu, [12]). The object SWE (Y, s; Pin(2)) is a topological in-
variant of the pair (Y, s). More precisely, under canonical isomorphisms in the category
Cpin(2), the object SWF(Y, s; Pin(2)) is independent of the metric g, the numbers X,

and other auxiliary data involved in the construction.

In order to define the numerical invariant from the Seiberg-Witten-Floer KO theory

in later sections, we make a digression into the following definitions.

Definition 4.3.3. Let s € Z>. A space of type SWF (at level s) is a pointed, finite

G-CW complex X with the following properties:

e (a) The S'-fixed point set X5 is G-homotopy equivalent to the sphere (sR)*.
We define lev(X) to be s.

e (b) The action of G is free on the complement X — X5'.

An object (X, m,n) in the category Cp;,(2) is of type SWF if X is of type SWF.

Definition 4.3.4. A spectrum class is an equivalent class objects of type SWF in
Cpin(2) under equivalence relation of the isomorphisms in €p;,2). We denote by 95 the

set of spectrum classes.

Definition 4.3.5. For a spectrum class S = [(X, a,b)] € B, we let
lev(S) =lev(X) —a.

Remark. By considering the S'-fixed point set, we see that two spaces of type SWF at
different levels are not G-homotopic to each other. Using this fact, it is easy to prove

that lev(S) is a well defined quality.

For r € Z and s € Q, we can define the formal desuspension X"P+s# . 98 — B
by sending [(X,a,b)] to [(X"PX,a — 2r,b — s)]. It’s easy to check that this is a well

defined operation on the set 8.

Definition 4.3.6. Let X, X’ be two spaces of type SWF at level K and £’ respectively.
A pointed G-map f : X — X' is called admissible if f preserves the base point and

satisfies one of the following two conditions:
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e (1) k < kK and the induced map on the G-fixed point set f¢: X¢ — X'C is a

homotopy equivalence.

e (2) k= k" and the induced map on the S'-fixed point set f5 : X5' — X" is a

homotopy equivalence.

Definition 4.3.7. Let S, S’ be two spectrum classes. We say S dominates S’ if there
exist representatives (X, m,n) and (X’,m,n), respectively for S,S’, such that the

following conditions are satisfied:

e X, X' are pointed G-spaces of type SWF;

e There exists an admissible map f: X’ — X'.

Now we return to the spectrum invariant SWF (Y, s; Pin(2)). It is proved in [12]
that this object is of type SWF. As a result of Theorem 4.3.2, the equivalent class
[SWE(Y,s; Pin(2))] € B is a well defined invariant for the pair (Y,s). We denote it
by S(Y,s). We have the following theorem, which will be important for our further

constructions.

Theorem 4.3.8 (Manolescu [10], [12]). Suppose (Y,s) and (Y',s') are two spin 3-
manifolds with by = 0 and (W,§) is a spin cobordism from (Y,s) to (Y',s'). Then
for any n € 7Z, the spectrum class Z%HE”DS(Y, s) dominates the spectrum class

Eb;(W)DEnDS(Y/, 5/) )

4.4 Numerical Invariants

Let Y be a rational homology sphere and s be a spin structure on Y. In the previous
section, we defined an invariant S(Y,s) € B. In this section, we will extract a set of

numerical invariants ko;(Y,s) from S(Y,s), for i € Z/8.

Definition 4.4.1. For [ = —2,—1,0,---,5, we define the group homomorphisms
¢ KO(ID) — Z as following (see Theorem 4.1.12):
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o 1) Forl = 0, p(D) = —1 and ¢;(A) = ¢(B) = 0, then extend ¢; by the

multiplicative structure on RO(G).

e 2) For I = —1,-2, o (v(D)!) =1 and ¢;(y(D)"A") = 0 for n > 1.

e 3) Forl =1, p(n(D)) =1.

e 4) For I =2, p;(n(D)?) =1 and ¢;(v(D)*A™c) = 0.

e 5) For Il =3, ¢;(v(D)A(D)) =1 and ¢;(y(D)A™c) = 0.

e 6) For | = 4, i(A(D)) = 1, a(DA(D)) = —1, and @i A"A(D)) = @i(A™c) = 0.

e 7) For I =5, pi(n(D)A(D)) = 1.
For the other [ € Z, we use the Bott isomorphism to identify KO(ID) with KO((l —
8k)D) for —2 <[ — 8k < 5 and apply the above definition.
Lemma 4.4.2. For any a € KOg(pt) and b € KOg(kD), we have @y(a)pr(b) =
er(a-b).

Proof. This is a straightforward calculation using Theorem 4.1.12 and Theorem 4.1.14.
O

Remark. g is just taking the trace of j € Pin(2). While the other ¢; are defined such

that the torsion elements are killed and Lemma 4.4.2 holds.

We consider the map 7 : DT — D% which maps = to —z. By suspension with

copies of D, we get an admissible involution 7 : (kD)™ — (kD)™ for k > 0.
The following lemma is a straightforward corollary of the equivariant Hopf theorem.

Lemma 4.4.3. When 0 < k < I, any admissible map f : (kD)™ — (ID)* is G-
homotopic to the standard inclusion. For 0 < k =1, any admissible map f : (kD)* —

(kD)™ is either homotopic to T or to the identity map, depending on deg(f).

7 induces the involution 7 : KOg(kD) — KOg(kD). For k,l > 0 and any
a € KOg(kD),b € KOg(ID), the following equality is easy to check by Lemma 4.4.3:

™(@a)-b=a-7"(b) =7"(a-b) and 7*(a) - 77(b) = a - b. (4.15)
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Using this fact, we can define 7* : KOg(kD) — KOg(kD) for any k € Z by
identifying KOg (kD) with KOg(k'D) for any 0 < k' = k mod 8 using Bott periodicity.
Moreover, formula (4.15) now holds for all k,[ € Z.

Now consider the element u € RO(G) defined by 7*(bsp) = w - bsp. Then for | € Z
and any element o € KOg(ID), we have 7*(«) - bsp = a - 7*(bsp) = (u«) - bsp, which

implies 7" (a) = ua.
Lemma 4.4.4. We have the following properties about 7 and w:

e (1) 7 acts as identity on KOg(ID) forl# 0,4 mod 8.
o (2) u is a unit with po(u) = 1.
o (3) o = for anyl € Z.

Proof. (1) We have v(D)bsp = i*(bsp) where ¢* is the inclusion (7D)* — (8D)*.
Therefore, we get 7*(v(D)bgp) = (7 0i)*(bsp). By Lemma 4.4.3, 7 o i is G-homotopic
to i, thus 7*(y(D)bsp) = i*(bsp) = v(D)bgp, which implies that 7*(v(D)) = (D).

Since 7% induces an involution on KOg(D) = 7Z, we have 7*(n(D)) = £n(D). But
since 7% (n(D)) - ¥(D) = n(D) - 7*(v(D)) = n(D)¥(D) =1 — D # —n(D)y(D), we get
T (n(D)) = (D).

By formula (4.15), 7*(a) = a implies 7*(ab) = ab for any a,b. Therefore we see
that 7* acts as the identity map on KOg(kD) for k # 0,4 mod 8.

(2) u* = 1 because 72 = id. Since u- (1 — D) = 7*(1 — D) = 7*(y(D) - n(D)) =
v(D) -n(D) =1— D, we see that (u —1)(1 — D) = 0. We get po(u) = 1 by Lemma
4.4.2.

(3) is straightforward from (2) and Lemma 4.4.2. O

Now suppose X is a space of type SWF at level [. A choice of G-homotopy e-
quivalence X' 2 (ID)* gives us an inclusion map i : (ID)* — X, which we call a
trivialization. A trivialization induces the map * : [/(\6@()( ) = KOg(ID). Consider
the map ¢; 0 i* : I?OG(X) — Z.
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Proposition 4.4.5. The submodule Im(i*) and the map p;0i* are both independent of

the choice of the trivialization. Moreover, we have Im(p;0i*) = (2%) for some k € Zso.

Proof. By Lemma 4.4.3, there are two possible trivializations ¢ and ¢ o 7. We have
Im(io7)* = 7*(Imi*) = w- Im(¢*). Since u is a unit, the multiplication by u does not
change the submodule Im(i*). Moreover, we have ¢, 0 (ioT)* = @ 07" 0i* = ¢, 04"

by (3) of Lemma 4.4.4.

For the second statement, we consider the exact sequence:
5 KOa(X) 55 KOa(ID) =5 KOg(X/X5") — -

Since the G action is free away from the basepoint and (1 — D) € RO(G) is in the
—1 N

augmentation ideal, (1—D) acts on KO (X/X*") nilpotently by Fact 4.1.7. Therefore,

we can find m > 0 such that (1 — D)"KOg(ID) C ker(§) = Im(:*). It follows that

2™ ¢ Im(ip; 0 %) and Im(ip; 0 i*) = (2*) for some 0 < k < m. O

Proposition 4.4.5 justify the following definition:

Definition 4.4.6. For a G-space X of type SWF at level [, we define J(X) to be

the image of ¢* for any trivialization i and let xko(X) be the integer K such that

pu(T (X)) = (2).

Let’s study the property of J(X) and ro(X). First recall that we defined the
A

constants 8 = 0 and 3i = Y ay_; for j > 1, where o; = 1 for i = 1,2,3,5 mod 8 and
i=0

a; = 0 for i = 0,4,6,7 mod 8. It’s easy to see that BJ’? = B]’?, for j = j'(mod8). The

integers ﬁf are important because of the following proposition:

Proposition 4.4.7. For integers 0 < j < k and an admissible map i : ((k—7)D)* —
(kD)*, we have the following commutative diagram, where the map mf; 27— 7 1is the

multiplication of 25 .

KOg(kD) —“~ KOg((k — j)D) (4.16)
P
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Proof. The case j = 0 follows from Lemma 4.4.4. When j > 0, by Lemma 4.4.3, the
map ¢ is G-homotopic to the standard inclusion. Because of the associativity of *
and my, we only need to prove the case j = 1. In this case, the map i* is just the
multiplication by (D) and m;} is the multiplication by 2°¢. Since both ¢ and * are
compatible with Bott isomorphism, we only need to check the case £k = 1,2,--- 8.
This can be proved by straightforward calculations using Definition 4.4.1, Theorem

4.1.14 and Theorem 4.1.12. O

The following proposition studies the behavior of 7(X) and xo(X) under the Bott

isomorphism:

Proposition 4.4.8. Let X be a space of type SWF at level K. We have the following:
o (1) J(X) -bgp =T (XPX) and ko(X3PX) = rko(X).
o (2)J(X) (K—-2H+ D+5)=JX*X) and ko(Z*! X) = ko(X) + 2.
o (3) ko(SHTPX) = ko(X) + 3 — B,

Proof. (1) Since (X3P X)5" = ¥8P(X5"), statement (1) follows from the functoriality

of the Bott isomorphism.

(2) We have the commutative diagram induced by the inclusions of subspaces:

—_—

KOg(S2H X) KOg(X) (4.17)

! |

KOg((221X)5") =~ KOg(X5).

Since (27 X)5" = %27 (X5") the map in the bottom row is the identity. If we iden-
tify [%G(EQH X)) with [%G(X ) using the Bott isomorphism, then the top horizontal
map is the multiplication by v(H)*byy = K —2H + D + 5 (by Theorem 4.1.14). This
implies J (X*X) = (K —2H + D + 5) 7 (X). We also have xo(3?# X) = ko(X) + 2
since po(K —2H + D +5) =4.
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(3) Again, by inclusions of subspaces, we have:

—_— —_—

KOg(SHHD X) KOg(X)

| |

KOG ((SH+0 )5 2L 10 (X1,

Since (LHHP XS = $4P(XSY) | the bottom horizontal map is the multiplication
by (D). If we identify mg(ZH“DX) with [%G(X) using the Bott isomorphism,
the top horizontal map is the multiplication by v(H + 4D)bysp = 4(1 — D) (by
Theorem 4.1.14). Therefore, under appropriate trivializations, we see that the maps
it KOg(X) = KOg(SHHMPX) — KOg((k + 4)D) and i : KOg(X) — KOg(kD)
are related by y(D)* - #f(x) = 4(1 — D) - i3(z). Since ¢o(4(1 — D)) = 8, statement (3)

follows from Proposition 4.4.7 (for j = 4) and Lemma 4.4.2. O

We have the following proposition, which is the analogue of Lemma 3.8 in [12].

Proposition 4.4.9. Let X; and X5 be spaces of type SWF. Suppose there is a based
G-equivariant homotopy equivalence f from Y™®X, to "R X,, for some r > 0. Then

we have J(X1) = J(X2) and ro(X;) = ko(Xa).

Proof. The proof in [12] works with some modifications. Suppose X;, X, are both at
level K. By (1) of Proposition 4.4.8, we can replace X; by ¥8°X; and assume k > 1.
Also, we can suspend some more copies of R and assume that 8|r. Choose trivilizations
i1,i9 of X7 and Xy, respectively. They give homotopy equivalences (rR + kD) =
(Z®X,)5" and (rR + kD)t = (2" X,)S". Composing them with f5' : (78 X;)5" —
(2R X,)5", we get the equivariant homotopy equivalence h : (rR+kD)™ — (rR+kD)™.
Since k > 1, by equivariant Hopf theorem, h is based homotopic to 7y A7,. The map 7 :
(rR)* — (rR)™" is either identity or a map with degree —1. Therefore, 7/ (b,g) = a-b,g
where b, is the Bott class and a € RO(G) is a unit. Also, 75 : (kD) — (kD)™ is either
identity or the map 7 we defined before. Therefore, 75 () is either = or uz (see Lemma
4.4.4). We have shown that the map h* : KOg((rR + kD)*) = KOg((rR + kD)*) is

just multiplication by some unit in RO(G), which does not change any submodule.
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Now consider the following commutative diagram:

(a2

f*

[~23

KOq(X,) KOg(S™X5) KOq(S®X,) KOq(X))
i3 l(zr%)* i(E’”Rh)* i
KOg(kD) —=> KOg((rR + kD)*) "~ KOG((rR + kD)*) —== KOg(kD).
In each row, the first map is a Bott isomorphism and the third map is the inverse to a
Bott isomorphism. We see that b, - Im(i5) = h*(bg - Im(i3)) = byr - Im(:}). Therefore,

we have Im(¢7) = Im(é5), which implies ko(X;) = rko(X3). O
Definition 4.4.10. For a spectrum class S = [(X, a,b)] € B, we let

k0(S) = ko(REM-APHEN=H ¥y _ 9N _ 5 (4.18)
for any M, N,i/ € Z and s € [0,1) making 8M —a > 0,2N —V >0 and b =V + s.
Proposition 4.4.11. ro(S) is well defined.
Proof. By (1) and (2) of Proposition 4.4.8, it’s easy to prove that the righthand side of
formula (4.4.10) is independent of the choice of M, N. By choosing M, N > 0, we see
that changing the representative of S from (X, a,b) to (X*? X, a+2,b) or (X# X, a,b+1)

does not change the value of ko(S). By Proposition 4.4.9, we proved that xo(S) does

not change when we change the representative of the spectrum class. O

By definition of the suspension of a spectrum class and Proposition 4.4.8, it is easy

to prove:

Proposition 4.4.12. For any spectrum class S € B at level K, we have:
o ko(X8PS) = ko(9).
o ro(X*S) = ko(S) + 2.
o ko(BHTPS) = ko(S) +3 — B4
With these discussions, we can now define the invariants for three manifolds.

Definition 4.4.13. For an oriented rational homology sphere Y and a spin structure
s on Y, we define xo;(Y,s) = ko(XPS(Y,s)) for any i € Zsg. Then ko;(Y,s) =

k0;45(Y,8), which allow us to define ko;(Y,s) for i € Z/8.
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4.5 Proof of Theorem 1.3.6

In this section, we will prove Theorem 1.3.6.

Let Xy, X; be be two spaces of type SWF at level ky and kq, respectively. Suppose
there is an admissible map f : Xy — X; (which implies ky < k;). By Lemma 4.4.7,

we can choose suitable trivializations such that the following diagram commutes.

KOa(X,) —L1~ KOa(X,)

- %
\L’Ll \Llo

Sl *
KOo(kD) YL K04 (kD)
l@kl Pk
k1—kg

k1—k
Therefore, we get mii_ko(lm(gpkloi}‘)) C Im(¢pg,0if). This implies that (2”O(X1)+Bki 0) -

(27°(X0))  Z. Therefore, we get the following proposition:

Proposition 4.5.1. Let Xy, X; be two spaces of type SWFE at level ky and k1, respec-

tively. Suppose there is an admissible map f : Xog — X1. Then we have:

ko(Xo) < ko(X7) + B,’;ﬁko. (4.19)

Next we generalize the above inequality to the spectrum classes:

Definition 4.5.2. Let Sy, S; € B be two spectrum classes. We call Sy dominates S,
if we can find representatives S; = [(X;,a,b)] for ¢ = 1,2 and an admissible map f

from X, to X;.

Proposition 4.5.3. Let Sy, S1 € B be two spectrum classes at level kg and ki respec-

tively. Suppose Sy dominates Si, then we have:
ko(Sp) < ko(Sy) + 5,’;1_’“0. (4.20)

Proof. Since an admissible map f : Xy — X; gives an admissible map X700 f .
YD Xy — $eHTD X for any a,b € Zso. This proposition is a straightforward

corollary of Proposition 4.5.1 and Definition 4.4.10. O]
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By considering the natural inclusion X — YPX, it is easy to see that S always
dominates ¥PS. Therefore ,we get the following corollary, which will be useful in

Section 8.

Corollary 4.5.4. For any spectrum class S € B at level K. We have:

ko(S) < ko(XPS) 4 gy

Now let Yy, Y; be two rational homology 3-spheres and s; be spin structures on

them respectively. Suppose (W, s) is a smooth oriented spin cobordism from (Yy, s9) to

(Y1, 51). VH(SEDS(Yy, 50)) dominates S¢F (M0 S(Y; )

for any k € Z. Applying Proposition 4.5.3, we get:

Theorem 4.5.5. Suppose (W, s) is a smooth, oriented spin cobordism from (Yy,so) to

(Y1,81). Then for any k € Z, we have the inequality:

_oWw)
K“Ok—&-b;r( )<Ylvﬁl) —'—Bk—&-bJr w) — = HO(Z 1 H(EkDSO/E)sz)))' (4-21)

In general, ko(X~ . H (¥ S(Yy, 50))) can be expressed by koy (Yo, 50) or kop14(Yo, 50),
but the explicit formula is messy. For simplicity, we now focus on the integral homology

sphere case.

Remark. Suppose Y is an oriented integral homology 3-sphere. There is a unique
spin structure s on Y and we simply write S(Y,s) and ko;(Y,s) as S(Y) and ko;(Y),

respectively.

Suppose both Y; are integral homology spheres, then the intersection form of W' is
a unimodular, even form. Let’s assume that the intersection from can be decomposed

as:

p(—Es) @ q(Yg) forp,g>0.

In this case, we have U(l‘g/) = —% and by (W) = ¢. Recall that the spectrum class

invariant S(Yp) is defined as

[E-W (1) 0, 2ado) )] — [(n@ime VORI 9 qim 10, 2Yedod) 4 qim V)],
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The third component of this triple may be an integer or a half integer, depending on

the Rokhlin invariant u(Yg).

Proposition 4.5.6. Let Yy be an integral homology three sphere and p € Zsy. Then

we have the following relations.
(1) Suppose u(Yy) = 0 € Zs.
o Forp = 4l, we have ro(X27 (ZFPS(Yy))) = ror(Y5) + 21.
o Forp=4l+ 1, we have ko(X27 (P S(Y)))) = kopra(Yo) + 2420 B
o Forp =41+ 2, we have ko(X27 (SFPS(Yy))) = kopya(Yo) + 3 + 21 — 3L
e Forp=4l+3, we have ko(X2H (SFPS(Yy))) = kop(Yo) + 20 + 3.
(2) Suppose u(Yy) = 1 € Zs.
o Forp = 4l, we have ko(X2H (SFPS(Yy))) = row(Yo) + 2L.
o Forp=4l+1, we have ko(S2H(S*PS(Yy))) = Koy (Vo) + 21 + &
o Forp =41+ 2, we have ko(X27(SFPS(Yy))) = kopya(Yo) + 3 + 21 — 3L
e Forp=4l+ 3, we have ko(L2H (SFPS(Yy))) = kopra(Yo) + & + 20 — B
Proof. We denote (S(@me VOETE 9 dimg V0, w + dimg V) by (X, a,b).

For 1(Yy) = 0 and p = 41, we have b € Z. Take M, N > 0 and let N' = N + [.
Then by Definition 4.4.10, we have:

K,O(Z%H(EkDS(%)) _ RO(Z(8M+/€7(1)DE(2N+2lfb)HX) —_ 9N

(4.22)
= ko(REMAR=a)DHCN'=DH Xy _ 9N’ 4 9] = ko, (V) + 2L.
For p =41+ 1, take M, N > 0 and let N’ = N + [. Then we have:
K/O(ZgH(ZkDS<Yb)) — HO(E(8M+k_a)DZ(2N+2l+1_b)HX) —9N — l
. - 2 (4.23)
= rko(ZH (2P (X, a,b))) + 21 — 5= rkoga(Yo) + 52— B
The other cases can be proved similarly. O
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Now combining the above proposition and Theorem 4.5.5, we proved Theorem

1.3.6.

4.6 KOg-Split condition

Now consider the space X = (8kD + (2l + 1)H)" for k,l € Z>o. We have the map

induced by the inclusion:
i+ KOg(X) = KOg(8kD).

By Theorem 4.1.12, we see that KOg(8kD+(21+1)H) is generated by (barr)'(bsp)* N (H)
and (bag)!(bsp)¥c(H) as RO(G)-module and the map ¢* is multiplication by ~(H)**!.

Using Proposition 4.1.14, we get:

() (o) M) = (2 42D 2B 2 =20 B)- (o)
7 ((ban) (bsp)*c(H)) = (A — 2B)'(B — A) - (bsp)*. |

The above discussion motivates the following definition:

Definition 4.6.1. Let X be a space of type SWF at level 8k. X is called even KO¢-
split if J(X) is the submodule generated by (2+ A — 2D —2B)Y(2 — 2D — B) - (bgp)*
and (A —2B){(B — A) - (bgp)* for some | € Z>y.

Next, we consider the space X = ((8k +4)D + 21H)". The map:
i+ KOg(X) = KOg((8k + 4)D)

is just multiplication of v(H)%. We know KOq(X) = KOg((8k +4)D) - (byy)' by the
Bott isomorphism. Since v(H)?(byy)! = (K —2H + D +5)! = (A+2D + 6 — 2H)!
(see Theorem 4.1.14), we have Im(i*) = (A + 2D + 6 — 2H)" - KOg((8k + 4)D) C
KOg((8k +4)D). This motivates the following definition:

Definition 4.6.2. Let X be a space of type SWF at level 8k + 4. X is called odd
KOg-split if J(X) = (A+2D+6—2H)" - KOg((8k + 4)D) for some [ € Zx,.
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K Og-split spaces are special because of the following proposition (compare Propo-

sition 4.5.1).

Proposition 4.6.3. Let Xy, X| be two spaces of type SWF at level kg, ki respectively

and f be an admissible map from Xy to Xi. Suppose ko < ki and Xq is odd or even

KOg-split (which implies that ko =0 or 4 mod 8). Then we have:

ko(Xo) < ko(X1) + B . (4.25)

Before proving this proposition, we need to make a digression into the general

properties of KOg(4D) and RO(G).

Lemma 4.6.4. The following properties holds:

(1) Any element in RO(G) can be uniquely written as bD + f(A) + Bg(A) for

some polynomials f, g and integer b.

(2) Any element in RO(G) can be uniquely written as bD + f(A) + Hg(A) for

some polynomials f, g and integer b.

(3) Any element in KOg(4D) can be uniquely written as bDA(D) + f(A)A(D) +

g(A)c for some polynomials f,g and integer b.
(4) The map RO(G) — KOg(4D) defined by multiplication of A(D) is injective.

(5) An element w = bDA(D) + f(A)N(D) + g(A)c belongs to RO(G)X(D) if and
only if 4|g(A). Moreover, if (A+ 2D + 6 — 2H)'w € RO(G) - A\(D) for some ,
then w € RO(G) - A\(D).

(6) Suppose (A—2B)'h(A, B) = 0 € RO(G) for some two-variable polynomial h
in A, B. Then we have h(A, B) =0 in RO(G).

(7) Suppose f(D) = h(A, B) for some 2-variable polynomial h without degree-0

term and some polynomial f. Then h(A, B) = 0.

Proof. (1),(2),(3),(4) can be proved by straightforward calculation using Theorem

4.1.12. The first statement of (5) is the corollary of (2),(3) and the relation HA(D) =
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4c. Let’s prove the second statement of (5). We have He = (1 + D + K)A(D)
and (2D + 6)c = 8¢ = 2HA(D). Therefore, (A + 2D + 6 — 2H)'w € RO(G)\(D)
implies A'w € RO(G)X\(D). Tt follows that 4|A'g(A), which implies 4|g(A) and
w € RO(G)A(D).

For (6), we can assume that h(A, B) = f(A) + Bg(A) for some polynomials f, g.
Consider the map ¢ : RO(G) — Q[z] defined by (D) = 1,9(B) = = and ¢¥(A) =
£ 195, Then 0 = b((A — 2B)/(F(4) + Bg(A) = ()(F( +20) + 2g(22 +20)),
which implies 0 = f(% +2x) + xg(% +2z). Considering the leading term in x, we see
that f(z) = g(x) = 0.

For (7), we can simplify h(A, B) as Agi1(A) + Bga(A) for some polynomials gi, go
by the relation B> — 4(A — 2B) = 0. Then the conclusion follows from (1). O

Lemma 4.6.5. Suppose a(1—D)N(D) € (A+2D+6—2H)' KOg(4D) for some a € Z
and | € Zso. Then we have 227 py(a(l — D)A(D)).

Proof. Since @4(a(1—D)A(D)) = 2a, the conclusion is trivial when [ = 0. Now suppose
[ >0. Let a(l = D)A(D) = (A+2D +6 —2H)" - w for some w € KOg(4D). By (5)
of Lemma 4.6.4, we see that w € RO(G)A(D). Write w as (bD + f(A) + Bg(A))A\(D).
By (4) of Lemma 4.6.4, we get a(1 — D) = (A —2B — 2D + 2)}(bD + f(A) + Bg(A)).
Using the relation (1 — D)A = (1 — D)B = 0, we can simplify this equality as a(1 —
D) — (f(0) + bD)(2 — 2D)! = (A —2B)Y(b + f(A) + Bg(A)). By (7) of Lemma
4.6.4, we get that (A — 2B)Y(b+ f(A) + Bg(A)) = 0 € RO(G). By (6) of Lemma
4.6.4, we have b+ f(A) + Bg(A) = 0. This implies that w = b(D — 1)A\(D) and
04(a(l — D)X(D)) = =22+ for some b € Z. O

Lemma 4.6.6. Suppose a(1 — D) is in the ideal of RO(G) generated by (2 + A —
2D — 2B)(2 — 2D — B) and (A — 2B)(B — A) for some | € Zso. Then we have
22 po(a(1 — D)).

Proof. We assume [ > 0 first. By (1) of Lemma 4.6.4 and the relation A(1 — D) =
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B(1 — D) =0, we have can express a(1 — D) as:

(2—2D - B)(2—2D+ A —2B)"(b(1 — D) + fi(A) + Bg1(A)) (4.26)
+ (A =2B)"(B — A)(f2(A) + Bga(A)) |

for some integer b and polynomials f1, fo, g1, go.

As in the proof of Lemma 4.6.5, we can simplify this formula and use (7) of Lemma

4.6.4 to get:

— B(A—=2B)(fi(4) + Bi(4)) + (A — 2B)(B — A)(fz(A) + Bgx(4)) = 0 € RO(G).

(4.27)
We have —B(f1(A)+ Bgi1(A)) + (B — A)(f2(A) + Bga(A)) = 0 by (6) of Lemma 4.6.4.
Simplifying this, we obtain:

—4A491(A) = Af2(A) +4Aga(A) + B(—f1(A) + f2(A) +891(A) — Aga(A) —8g2(A)) = 0.

(4.28)
This implies —4Ag;(A) — Afa(A) + 4Ag2(A) = 0 and —f1(A) + 8g1(A4) + f2(A) —
Aga(A) — 8g2(A) = 0. Considering the degree-1 term of the first identity, we get
4| f2(0). Also, we have 8| — f1(0) + f2(0) by checking the degree-0 term of the second
identity. Therefore, we have 4| f;(0), which implies ¢o(a(1 — D)) = 22+2(2b + f,(0))
can be divided by 223,

The case [ = 0 is similar. We also get the identity (4.28). O

Proof of Proposition 4.6.3: Consider the commutative diagram:

KOg(X,) —1~ KOa(Xy)

E s
(f5')*

KOgq (kD) L KOg(koD)

iwkl - \L@ko
1—70
mkl Z

(1) Suppose Xy is odd KOg-split. Then ky = 8k + 4 for some integer K and
KOg(koD) = KOg(4D) - (bgp)* by the Bott isomorphism. Im(ij) = (A + 2D +
6 — 2H)! - KOg(4D) - (bgp)* for some | € Zso. A simple calculation shows that
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ko(Xo) = 2. Suppose ko(X;) = r. Then we can find an element z € I/(\é(;(Xl) such
that ¢k, i7(2) = 2. Therefore, @i, (w) = ot where w = (f5")*(i*(2)). Since
ki > ko, the map (f5")* factors through KOg((ko + 1)D) — KOg(koD). Therefore,
we see that w = v(D) - (an(D)X(D)) - (bsp)*¥ = a(1 — D)X(D) - (bgp)* for some a € Z.
Because of the commutative diagram, we have w € Im(i;). By Lemma 4.6.5, we get
2241 oy (w). This implies 21 +1 < 7 + g%,

(2) Suppose X is even KOg-split with ky = 8k. Notice that xko(X) = 2] + 2 if
J(X) is the submodule generated by (2 + A — 2D — 2B)Y(2 — 2D — B)(bsp)* and
(A —2B)Y(B — A)(bsp)*. Using Lemma 4.6.6, the proof is almost the same with the

previous case. 0

By Proposition 4.4.8, we see that 27X and ¥3° X are even (odd) KOg-split if X

is even (odd) KOg-split. Therefore, Proposition 4.4.9 justifies the following definition:

Definition 4.6.7. A spectrum class S = [(X,a,b + 7)] with a,b € Z,r € [0,1) is
called even (odd) KOg-split if for integers M, N > 0, SEM-a)DRCN-bH X is even
(odd) KOg-split.

Example 4.6.8. For any a,b € Z and r € [0,1), [(S°, 8a,2b+1+7)] is even KOg-split
and [(S°, 8a + 4,2b + )] is odd KOg-split.

The following proposition is easy to prove using Proposition 4.6.3

Proposition 4.6.9. Let Sy, 51 € € be two spectrum classes at level kg, ky respectively,
with kg < ky. Suppose Sy is even or odd KOg-split and Sy dominates Sy, then we
have:

ko(Sp) < Kko(S1) + Blljll_ko. (4.29)

Now let Y be a homology sphere. Recall that we have a spectrum class invariant

S(Y) at level 0.

Definition 4.6.10. Y is called Floer KOg-split if S7S(Y) is even KOg-split and
YAPS(Y) is odd KOg-split.
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Remark. For simple examples like Y = £%(2,3,12n+1) or £3%(2,3,12n+5), the two
conditions in the above definition are either both true or both false. We expect that
this fails in more complicated examples. If we only assume one of these two conditions,

only half of the cases in Theorem 1.3.9 are still true.

Remark. We will see in Section 8 that S3, +%(2,3,12n + 1) and —X(2,3,12n + 5) are
Floer KOg-split, while +3(2,3,12n + 5) is not Floer KOg-split.

Proof of Theorem 1.3.9: (1) When pu(Yy) = 0, S(Yy) = [(X,a,b)] for some space X

and some integers a, b. For large integers M, N, we have the following:
(i) The space LEM-a)DRCN=b+DH X i5 even K Og-split.
(ii) The space NEM—a+DRCN=bH X is odd K Og-split.

Now consider p = 4l +m for m =0, 1,2, 3:

e For p=4l, 2210 S(Yy) = [(B* X, a,b — 21)] is odd KOg-split by (ii).
o For p=4l+1, ¥2173(Y;) = (S X, a,b — 21 + 3)] is even KOg-split by (i).
e For p=4l+2, 2375(Yy) = [(X¥ X, a,b— 21)] is even KOg-split by (i).
e Forp=41+3, S2HSPS(Y,) = [(£*P X, a,b— 20 — 2+ 1)] is odd KOg-split by
(ii).
Similarly, we can prove that when p(Yy) = 1, 227 S(Y}) is even KOg-split for p = 4142
and 41 4 3 while 227%4PS(Y;) is odd KOg-split for p = 41 and 41 + 1.

Now repeat the proof of Theorem 1.3.6 for £ = 0 or 4, using Proposition 4.6.9
instead of Proposition 4.5.3. Notice that the two sides of the same inequalities are

either both integers or both half-integers. The inequalities are proved. O

4.7 Examples and Explicit bounds

In this section, we will prove Theorem 1.3.8 about the values of k0;(S?) and ro;(£3(2,3,7))

with ged(r,6) = 1. We will also use Corollary 1.3.10 to give some new bounds about
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the intersection forms of spin four manifolds with given boundaries.

4.7.1 Basic Examples

If Y is a rational homology sphere admitting metric g with a positive scaler curvature,

then by the arguments in [10], we obtain:
S(Y,s) = [(5”,0.n(Y.5)/2)].

In particular, S® is Floer KOg-split and x0;(S?) = 0 for any i € Z/8.

In [12], Manolescu gave two examples of spaces of type SWF that are related
to the spectrum class invariants of the Brieskorn spheres +3(2,3,r). We recall the

construction here.
Suppose that G acts freely on a finite G-CW complex Z, with the quotient space
Q =Z/G. Let

Z =([0,1] % 2)/(0,2) ~ (0,2') and (1,2) ~ (1,2) for all 2,2’ € Z

denote the unreduced suspension of Z, where G acts trivially on the [0, 1] factor. We
can take one of the two cone points (say (0,z) € Z) as the base point and view Z as

a pointed G-space. It’s easy to see that 7 is of type SWEF at level 0.

We want to compute HO(ZkDZ) for Kk =0,1,---,7. It turns out that the method
in [12] also works here. Namely, the inclusion i : (X*PZ)5" = $¥PS0 — S*P 7 gives

the long exact sequence:
.= KOG("°Z) 5 KOu(kD) 25 KOL(Z*Z, (kD)*) — - (4.30)
By exactness of the sequence, we have Im(i*) = ker(p*). By definition, we have:
KOL(S*PZ, (kD)*) = KOg(SPP52,) = KOo (S Z,).

By abuse of notation, we still use p* to represent the map between KOg (kD) and
I?ég(EkD Zy). Checking the maps in the exact sequence, one can see that the p* is

induced by the natural projection p : ¥¥PZ, — (kD)*. Since G acts freely on X*P 7,
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away from the base point, we see that [f(\ég(ZkDZJr) = If(\é((ZkDZJF)/G). Notice that
(Z x kD)/G is a vector bundle over ) and (X*°Z,)/G is the Thom space of this

bundle. We are interested in two cases:

e / = (5, acting on itself via left multiplication.

o 72T =S8 x ;8 CCxjCCHand G acts on T by left multiplication in H.

The first case is easy since the isomorphism ﬁg(Z’“D Z,) = I/(\é(Sk) is given by
i* o1y, where i; : S¥ — Y7, is the standard inclusion and ry : I/(\ég(ZkDZJF) —
KO(S*Z.,) is the restriction map (See Fact 4.1.3 in Section 2). It follows that
Im(i*) = ker(p*) = ker(i} o 19 o p*) = ker(r), where r : KOg(kD) — [?6(5’“) is

the restriction map.

We know the structure of KO(S¥):

o KO(S°) =~ KO(pt) = Z.

—

o KO(S') = Z,, generated by the Hurewicz image of the Hopf map in 73(S?).

KO(S?) = Z,, generated by the Hurewicz image of the square of the Hopf map.

o KO(S*) = Z, generated by Vig — 4, where Vi is the quaternion Hopf bundle.

—

o KO(S*) 20 for k = 3,5,6,7.

Therefore, by the explicit description of (D), A(D), ¢ after Theorem 4.1.12. We
get the following results about the kernel of r : KOg(kD) — KO(SH).

e For k =0, ker(r) is the submodule generated by 1 — D, A, B.

For k = 1, ker(r) is generated by 2n(D).

For k = 2, ker(r) is generated by 2n(D)? and ~v(D)?c.

For k = 4, ker(r) is generated by A(D) — ¢, (1 — D)A(D), AN(D) and Ac.

For k = 3,5,6,7, ker(r) = KOg(kD).
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From this, we get:

Proposition 4.7.1. ko(X*°G) = 0 for k = 3,4,5,6,7 and ko(X*°G) = 1 for k =
0,1,2.

Now let’s consider the case Z = T. We want to find ker(p*) for p* : KOg(kD) —
KOg(X*PT,). Notice that S C G acts trivially on (kD)* and freely on T' with
T/S' = S'. We have }?ég(EkDT+) = lf(\é((EkDSi)/ZQ). The space (S¥PS1)/Zy can
be identified with:

[0, 1]x (kD)*/(0,2) ~ (1, —x) and (t1,00) ~ (t3,00) for any x € (kD)™ and t;,t, € [0, 1].

Consider the inclusion iy : {0} x (kD)* — (X*°S1)/Z,. Notice that ((X*PS%)/Z,)/(kD)*

=~ GF+1 We get the long exact sequence:
. KO(S*1) -5 KO(SH1) — KO((S'PS1)/Z,) 2 KO(S¥) — - (4.31)

By checking the iterated mapping cone construction, which gives us this long exact
sequence, it is not hard to prove that § is induced by the map f : S¥*! — S¥+1 with

deg(f) = 0 for even K and deg(f) = 2 for odd K.

When & = 2,4,5,6, we have [/(\6(5’““) = 0. Therefore, i is injective, which
implies i} o rg : KOg(SFPT,) — KO((kD)*) is injective (it and 7o are defined as in
the case Z = G). We see that when k = 2,4,5,6, just like the case Z = G, the kernel
of p* is the kernel of the restriction map r : KOg(kD) — [?6(5’“) Thus, we get
k0(SFPT) = ko(SFP Q) for k = 2,4,5,6.

For k = 0, consider [0, 1] as the subset {1 + je??|0 € [0, 7]} C T. The left endpoint
is mapped to the right endpoint under the action of —j € G. This embedding of
[0, 1] gives us the following explicit description of the map p* : RO(G) = I?ég(SO) o
KOg(T,) = KOa(T) = KO(T/G) = KO(SY.

Starting from a representation space V' of G, we get an trivial bundle V' x [0, 1]
over [0, 1]. Identifying (x,0) with ((—j) o x,1) for any x € V', we get a bundle E over
St [E] € KO(S') is the image of [V] € RO(G) under p*.
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We know that KO(S') is generated by the one dimensional trivial bundle [1] and
the one dimensional nontrivial bundle [m], subject to the relation 2([1]-[m])=0. Using
the explicit description of p*, we see that p*(1) = [1], p*(D) = [m] and p*(A) =

p*(B) = 0. Therefore, we get ko(T') = 2.

Applying Corollary 4.5.4 for S = Y2PT, we get ko(X3PT) + 1 > rko(X2PT) = 1.
Applying Corollary 4.5.4 for S = YT, we get 0 = ko(S*PT) 4+ 0 > ro(X3PT).
Therefore, we see that ko(X3PT) = 0.

Applying Corollary 4.5.4 for S = ¥2PT and S = XPT, we get ko(XPT) =1 or 2.

For k =7, the map ¢ : }’(6(58) — [?6(5’8) is multiplication by 2. Since %(57) =
0, we get KO((S*PSY)/Zy) = Zy. This implies p*(2bsp - (D)) = 2p* (bsp - 7(D)) = 0.
Therefore, 2bsp - ¥(D) € ker(p*) and ko(X°T) =0 or 1.

Lemma 4.7.2. ko(XPT) = 2 and ko(X™°T) = 1.

Proof. This can be proved directly using Gysin sequence. But here we use a different
approach. In [12] and [41], Manolescu proved that S(—%(2,3,11)) = [(T,0,1)], where
—%(2,3,11) is a negative oriented Brieskorn sphere. Therefore, by Definition 4.4.10

and Proposition 4.4.12, we get:

k0i(—=%(2,3,11)) = ko(ZHYPT) 41 — g

In particular, kos(—(2,3,11)) = ko(X™PT) — 2 and kos(—%(2,3,11)) = ko(ZPT) —2.

Since —%(2, 3, 11) bounds a smooth spin four manifold with intersection from (9 }) (see

[12]). We can apply Corollary 1.3.10 for p = 0,q = 1 and get ros5(—%(2,3,11)) > 0,
which implies ko(3PT) > 2. We get ko(2PT) = 2 by our discussion before the lemma.

We can also apply Theorem 1.3.6 for Yy = S3,Y; = —%(2,3,11),p = 0,¢ = 1 and
k = 2. We have kog(—%(2,3,11)) > —1 and xo(X7PT) > 1. Therefore, ko(X7PT) = 1
by our discussions before. O]

We summarise our results in the following proposition.

Proposition 4.7.3. ko(XPT) = 2 for k = 0,1; ko(S*°T) = 1 for k = 2,7 and
ﬁo(ZkDT) =0 for k=3,4,5,6.
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Now we calculate ko;(£X(2,3,7)) with ged(6,7) = 1. Actually, the spectrum class
invariants S(£%(2,3,r)) are given in [12].

Proposition 4.7.4 (Manolescu [12]). We have the following results about S(£%(2,3,7)).

e S(X(2,3,12n - 1)) = (G V ZG, V-V EG,,0,0)].

n—1

e S(=%(2,3,12n — 1)) = (T VZ’G, V-V X°G,,0,1)].
n‘:l
e S(X(2,3,12n - 5)) = [(GVIG, V-V EG,,0,1/2)].
ntl

S(=%(2,3,12n—5)) = (T v £*G, V- VY’G,,0,1/2)].

n—1

o S(%(2,3,12n+1)) = [(S°VET!Gy V- VETIGL,0,0)].°

n

S(=%(2,3,12n+1)) = [(S°V G, V-V Gy, 0,0)].
N————

n

e 5(2(2,3,12n45)) = [(S°VET'GL V- VETIG,0,-1/2)].

n

S(=%(2,3,12n+5)) = [(S°VG,L V-V Gy,0,1/2)].
N————

n

As we mentioned in Remark 4.6, £3(2,3,12n+1) and —X(2,3,12n+5) are KO-
split because of Example 4.6.8. While using the relations in Theorem 4.1.12 and
Theorem 4.1.14, it is not hard to prove that the space (8MD @ (2N + 2)H)™ is not
even KOg-split for integers M, N > 0. This implies that +3(2,3,12n + 5) is not
KOg-split.

Since it’s easy to see that wedging with a free G-space does not change the ko
invariants, we don’t need to consider those X!G factors. By Definition 4.4.10 and
Proposition 4.4.12, we can use Proposition 4.7.1 and Proposition 4.7.3 to prove the

results in Theorem 1.3.8 easily.

5 Strictly speaking, by this we mean the spectrum class of (Ht v 3G, V-V X3G,0,1).

n
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4.7.2 Explicit Bounds

Now we use Corollary 1.3.10 and Proposition 4.2.1 to get explicit bounds on the

intersection forms of spin 4-manifolds with boundary +3(2, 3, r).

Theorem 4.7.5. Let W be an oriented, smooth spin 4-manifold with OW = £%(2,3, 7).
Assume that the intersection form of W is p(—Eg) @& q(94) forp > 1,9 > 0.5 If the
mod 8 reduction of p is m, then we have ¢ — p > c¢,,, where ¢, are constants listed

below. (Recall that the mod 2 reduction of p is the Rohklin invariant of the boundary.)

$(2,3,12n — 1) 2 0 1

~-%(2,3,12n—1) | 3 (2) (3) 3
(2,3, 12n+1) | (3) 1 (2) (3)
—%(2,3,12n+1) | 3 1 2 3

$(2,3,12n — 5) 1 2 3

—%(2,3,12n=5) | 2 (1) (2) 2
2(2,3,12n+5) | (2) 0 (1) (2)
—%(2,3,12n+5) | 2 3 4 4

Remark. Some of the bounds in Theorem 4.7.5 can also be obtained by other methods.
For example, the case m = 2 for 3(2, 3, 12n+ 1) can be obtained using s-invariant (see
[12]). Also, some bounds can be obtained by filling method for small n. For example,
the case m = 2,4 for —¥(2,3,11) can be deduced from Theorem 1.3.3, using the
fact that 3(2,3,11) bounds a spin 4-manifold with intersection form 2(—FEg) @2 (9}).
However, the bounds that we put in the brackets in Theorem 4.7.5 appear to be new

for general n.

Proof. Since we can do surgeries on loops without changing intersection forms, we will

always assume by (W) = 0.

81t is easy to see that the conclusions are not true for p = 0,1. For example, £%(2,3,12n — 1)
bounds a spin manifold with intersection form (9}).
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(1) Suppose %(2,3,12n + 1) bounds a spin 4-manifold with intersection form
8I(—Es)®(81+2) (94) for I > 0. Then we get a spin cobordism from —%(2,3,12n+1)
to S% with the same intersection form. By Theorem 4.3.8, ¥*S(—%(2,3,12n + 1))
dominates ¥8*25(S53). Since S(—%(2,3,12n + 1)) = [(S° VG, V-V G,0,0)] and
S(S83) = [(S5°,0,0)], we get a map:

f : ErR+(4l+M)H+ND(80 v G+ VARY; G+) N ZTR+MH+(SI+2+N)D80

for some M, N € Z. Restricting to the first factor of S°V G, V-V G, we obtain:

g SR+ M)HAND O ZTIR+MH+(81+2+N)D807

which induces homotopy equivalence between the G-fixed point sets. This a contra-

diction with Proposition 4.2.1. The case m = 0 for (2,3, 12n + 1) is proved.

(2) Suppose (2, 3,12n + 5) bounds a smooth spin manifold with intersection for-
m (8 + 1)(—FEg) ® (81 +2)(9}) for I > 0. Then we get a spin cobordism from
—%(2,3,12n+5) to S3. As the previous case, this implies X425 §(—%(2, 3, 12n+5))
dominates L®*2PG(S93). Since XWH/AHG(-%(2,3,12n + 5)) = [(X*S°,0,0)], we

get the contradiction as before. This proves the case m = 1 for %(2,3,12n + 5).

(3) Suppose —X(2,3,12n — 1) bounds a spin 4-manifold with intersection form
(81 + 2)(—FEs) @ (81 + 3)({3) for I > 0. By Corollary 1.3.10, we get 4l + 3 <

Kossi(—X(2,3,12n — 1)) + 517 = —1 + 4+ 41, which is a contradiction. This proves

the case m = 2 for —3(2,3,12n — 1).

Using similar method as (3), we can prove all the other cases except:
e m =0 for £3(2,3,12n — 1) and —3(2,3,12n + 1),

e m =7 for 3(2,3,12n — 5) and —X(2,3,12n + 5),

e m =1 for —3(2,3,12n — 5).

(4) We need to introduce another approach in order to prove the rest of the cases.
Consider the orbifold D*bundle over S%(2,3,r). This gives us an orbifold W’ with
boundary +3(2,3,7). We have by (W’') = 0,b, (W) = 1 and W’ has a unique spin
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structure t. Now suppose —X(2,3,7) bounds a spin manifold W with intersection
form p(—Es) @ ¢ (9 4). Then we can glue W and W together to get an oriented closed
spin 4-orbifold. We have:

inde D(WUW') =p+w(X(2,3,7), W, t).

Here w(X(2,3,7), W’ t) is the Fukumoto-Furuta invariant defined in [20]. Saveliev
[59] proved that w(X(2,3,7), W' t) = —u(X(2,3,7)) = u(—%(2,3,r)), where 1 is the
Neumann-Siebenmann invariant [19, 50]. In [20], Fukumoto and Furuta considered
the finite dimensional approximation of the Seiberg-Witten equations on the orbifold
WUW’ and constructed a stable Pin(2)-equivariant map: (MH)JF — (by (WU
W) D)* which induces homotopy equivalence on the Pin(2)-fixed point set. (Recall
that H and D are Pin(2)-representations defined in Section 2). Since by (W UW') = ¢
and indc P(W UW') = p+ 1(—%(2,3,7)), we can apply Proposition 4.2.1 to get:

q—p>3+na(—2(2,3,7))if 0 < p+7(—2(2,3,7)) can be divided by 8.

Similarly, suppose (2,3, r) bounds a spin 4-manifold W’ with intersection form
p(—Es) ® q(9¢). We can consider W' U (=) and repeat the argument above. We
get:

g—p>2+na(X(2,3,7)if 0 < p+1m(X(2,3,7)) can be divided by 8.

The invariants f(+£%(2,3,r)) were computed in [19, 50]:
A(£%(2,3,12n — 1)) = (£%(2, 3,120 + 1)) = 0,

T(3(2,3,12n — 5)) = i(—=%(2,3,12n 4+ 5) = 1,
n(—X(2,3,12n — 5)) = [@(%(2,3,12n + 5) = —1.

Therefore, simple calculations prove the rest of the cases. [
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CHAPTER 5

Construction of the unfolded spectrum invariants

In this chapter, we define different versions of unfolded Seiberg-Witten-Floer spectra
for the spin® manifold (Y,s). First, we will define the spectrum swf*(Y,s, Ay, g; S!)
and swf”(Y, s, Ay, g; S') for a general spin® structure 5. In Section 5.2, we consider
the situation when s is torsion and define normalized spectra SWE4(Y,s;S') and
SWEF#(Y, s; S') which are independent of the choices of base connection Ay and metric

g. In Section 5.3, we deal with the Pin(2)-equivariant case for a spin structure s and

define SWE*(Y, s; Pin(2)), SWE" (Y, 5; Pin(2)).

5.1 The unfolded spectrum invariants for general spin‘ struc-

tures.

The main idea of the construction follows [12] and [29]. In summary, we want to apply
finite dimensional approximation of Conley indices to the set Str(R) which contains
all critical points and flow lines between them. However, the set Str(R) is unbounded
owing to the action of G&. We then need to introduce transverse functions and use

their level sets to obtain a collection of bounded subsets of Str(R).

Notice that the space of imaginary-valued harmonic 1-forms, denoted by iQ} (), is
a subspace of Coul(Y). Let py: Coul(Y) — iQ} (Y) be the L?-orthogonal projection.
Here, we identify iQ}(Y) with R” by choosing harmonic forms {hi,ho,...hy} C

iQ; (V) representing a set of free generators of the group

omiim(H' (Y;Z) — H'Y(Y;R)) = Z".
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With this identification, we can write the projection as

bn = (pH,h cee 7p7-L,b1)-

From now on, we assume that our perturbation f is good (see Definition 2.1.3). To-
gether with the compactness result [33, Theorem 10.7.1], the critical points of £ in
Coul(Y) is finite modulo the action of G&t. Consequently, we can find a small interval
[r,s] € (0,1) such that UJ 1]9%3([ s, —r] U [r, s]) contains no critical point of £. Let
us pick a positive number R greater than the universal constant R, from Theorem

2.2.2.

Lemma 5.1.1. There exists a positive number € > 0 such that we have || gr/?a/dﬁ(x)ﬂg >

€ for any x € (Ug;l p;hlj([—s, —r|U|r, s])) N Str(R).

Proof. Suppose that the result is not true. We can then find a sequence {z,} contained
in (Ug.; (=, =] U, s]>) N Str(R) with || grad £(z,)|l; — 0. Notice that the
sequence {x,} is contained in py'([—1,1]*) N Str(R), which is bounded in L}. Hence,
after passing to a subsequence, x,, converges to some point ., of Coul(Y’) weakly in
L? and strongly in L? | by Rellich lemma. Consequently, we have py (x,) — pu(Tso)
and ér\afiﬁ(xoo) = 0 by continuity. This is a contradiction since x., is a critical point

of gr\a—aﬁ and lies in U?lzlp;:j([—s, —r|Ulr,s]). O

Note that € in the above lemma depends on the choice of 7, s and R. With these
data, we choose a smooth “staircase” function g: R — [0, 00) satisfying the following

properties:

(i) g is even, ie. g(x) = g(—x) for all z € R;

(ii) There is a positive constant 7 such that g(z + 1) = g(z) + 7 for all z € [0, c0);
(iii) g is increasing on the interval [r,s] and g’ = 0 on [0,7] U [s, 1];

(iv) |g'(z)] < €-€" for all x € R, where €’ is a positive constant with the property
that

b
" Za]h e < Za )% Y(ay,a, - ,ay) € R’ (5.1)
j=1
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Figure 5.1: the function g

Next we use the function g to define a small perturbation of £ which is not invariant

under G& but transverse to level sets of £. For each j = 1,...,b;, we define
gi+ =Ggopu;+Land g;_ =gopy; — L.

With our assumptions on g, we have the following result.

Lemma 5.1.2. For each j =1,...,by, we have

(grad L(x), grad g; 4 (z)); > 0 and (grad L(), grad g; _(x)); < 0,

where the equalities hold only when x is a critical point of L.

Proof. By (2.10) and a straightforward computation, we can prove that

|

If |py;(z)| € [n,n+ 7] or |pw,(z)| € [n+ s,n+ 1] for some integer n, then
7 (pw;(x)) = 0 and (grad £(z),grad g; , (x)); = | grad £(z)|2 which is zero if and

1 ~
7" ]g’(pHJ(xm < €.

arad (7.0 pre)(2) | = Il gwad (70 o) @)l2 < -

only if z is a critical point of £. Otherwise, |py ;j(x)| € [n + r,n + s] for some integer

n and Lemma 5.1.1 implies

(grad L(x), grad g; +())5 = || grad ﬁ(:v)HZ + <grad L(x), grad Gopuj) >§

> || grad L)1} — |[axad (7 © pw) ()| - faxad L)

> || grad £(x)]; (1| grad £(2) | - €) > 0.
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The same argument applies to the inner product @%SH E(x),gfga gj— ()3

]

Since the number of critical points of £ is finite modulo gauge, we can find a real
number 6 € R such that g; . (x) # 0 for any critical point z of £ and j € {1,2,...,b:}.
For convenience, we also choose a decreasing sequence of negative real numbers {\,}
and an increasing sequence of positive real numbers {yu,, } such that —\,,, u,, — 0o0. We

are now ready to define a collection of bounded sets in Str(R).

Definition 5.1.3. With the choice of R, g and 6 above, we define the sets

Jt = Str(R) N ﬂ gj_’}r(—oo, 0+ m],

1<j<by

(5.2)

J- = Str(R) N m gj_i(—oo, 0+ m)|,
1<j<b1
for each positive integer m. This collection of J} (resp. J ) will be called a positive

(resp. nmegative) transverse system. With the choice of {\,} and {u,} , we also define

I = v,

Notice that the functional £ is bounded on Str(R), and the perturbed functional

gj.+ is bounded below on Str(R). Since a subset S C Str(R) is bounded if and only if

p3(S) is bounded, we can see that the set J= is bounded in the L2-norm.

We will start to derive some properties of the finite-dimensional bounded sets J*.
Although some of the following results are slightly stronger than what we need to define
the 3-dimensional invariants, they will be useful when we develop the 4-dimensional

theory and prove the gluing theorem in [26, 27].

Lemma 5.1.4. For any positive integer m, there exist positive real numbers €,,, 0y,

and an integer N, > 0 such that for any n > N,, and 1 < j < b; we have

(i) ((1+ iz 0 )(), grad g; o (x))g > €m for any x € J5t 0 g 110+ m — 6,0 +m];

(ii) ((I+p\" oc)(m),g/r\a/clgﬁ_(x»g < —€y for any x € J)~ ﬂg;i[@%—m—@mﬂ—{—m].
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Proof. We only prove this lemma for ¢g; + and the other cases can be proved similarly.
Suppose that the result is not true, then we can find sequences n; — +00, €, 0 — 0
and {z;} with x; € Jﬁj*ﬁgii[@—l—m—@m,i, 0+m| and ((l—i—p‘;:?oc)(xi),@gl,+(xi)>g <

€m.,i- Since {r;} is contained in the L?-bounded set .J,"

m, We can pass to a convergent

subsequence z; — T, in Li | by the Rellich lemma. By continuity, we have x,, €
gii(@ + m) and gl_%agl#(xi) — éiaﬁgl,+(xoo) in Lj_,. Since p}" converges to the
n,

identity map pointwise, we also have (I +p\" o c)(z;) — (I + ¢)(2s0) = gr\aaﬁ(xoo) in

L% . Therefore, we obtain

((L+px; 0 ¢)(wn), grad gj o (wn))5 — (grad L(2o0), grad g; 1 (2o0)) g,

which implies that (&E&z(xw),gﬁégﬁ(xm»g < 0 and z is a critical point by

Lemma 5.1.2. This is a contradiction with the choice of 6. O

Now we start applying the Conley index theory to the flow on V/\‘i " generated by
the vector field —(I + p)" o ¢). There is a technical point here. Since V{" is non-
compact, this flow may go to infinity within a finite time. As in [10], we can fix this by
choosing a bump function ¢,,: Coul(Y") — [0, 1] for each m such that ¢, is supported
in a bounded subset of Coul(Y) and J., is contained in the interior of ¢;!(1). We
denote by ¢, the flow on V{" generated by —i,, - (I +p)" oc). Note that the flow ¢},
on J;};i does not depend on m’ whenever m’ > m — 1 so that its invariant set and its

Conley index remain unchanged.

Lemma 5.1.5. For a positive integer M, there exist large numbers N, T such that,

for any positive integers m < M and n > N, we have the following statements.

(a) If v: [T, T] — V" is an approzimated Seiberg-Witten trajectory contained in
JmT, then we have
¥(0) € Str(Ro) N (] g54(—00,0 +m — 0,). (5.3)
1<j<by

In particular, J% is an isolating neighborhood for the flow 7.

(b) The set inv(¢? |, ")) is an attractor in inv(¢?, J%T) with respect to the flow

m m

O
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Proof. Let T, X and ji be the large constants from Corollary 2.2.8 with S = J;,. Let
O, € and N, be the constants obtained from Lemma 5.1.4 for m = 1,..., M. Put
T = max{T, %, ce %} + 1. We choose a positive integer N > max{Ny,..., Ny}
such that Ay < X and py > fi. Let m < M and n > N be arbitrary positive integers.

(a) Let v: [=T,T] — V{" be an approximated Seiberg-Witten trajectory contained
in J™*. Corollary 2.2.8 and the choice of N, T ensure that v(0) € Str(Ry). For the sake
of contradiction, let us suppose that g; , (v(0)) > 0 +m — 0, for some j € {1,...,b}.
By Lemma 5.1.4, the value of g; (y(t)) decreases along the trajectory v on [T, 0]
with

ot OO) _ (14 0 )(3(0). mmad g4 (1))} <~

Hence, we obtain g, , (y(=7)) > g;,(7(0)) + T€, > 0 + m from the fundamental
theorem of calculus. This is a contradiction with our assumption that v(=7") € J! C
gj_’}r(—oo, 6+ m].

(b) From Lemma 5.1.4 and the choice of N, we have (—(I+p}"oc)(z), g/rzagj#(x»g <
0 forany z € J N gj_,}r(Q%—m —1). Consequently, the flow ¢”, goes inside J;"", along
AJ Y\ 9Str(R) and inv(p?,_,,JT) is an attractor in inv(¢?, J%) with respect to

the flow ¢7!. O

Consequently, we can acquire the S'-equivariant Conley index Ig1(¢",inv(J™%T))
from a compact finite-dimensional subset J™* when n is large enough relative to m

as in Lemma 5.1.5. Using the orthogonal complement V) of iQ} (Y) in V), we define
It = 2 I (g, inv(J5H))

as an object of €. Note that here a choice of index pair for inv(J/%1) is made to get
the Conley index (see the remark following Definition 3.2.1). Eventually, we will show

that our invariants are independent of this choice up to canonical isomorphisms.

Let it Igu(@h, inv(Jnt)) — Isi(@h, inv(J)) be the attractor map and denote

m
by %% the morphism

DRI L K (5.4)

We will show that the object I/%* is stable in the following sense.
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Proposition 5.1.6. For any positive integer M > 0, there exists a positive integer
N such that, for any positive integers m < M and n > N, there is a canonical
isomorphism pit € morg(I™T, I™1T). Moreover, we have the following commutative
diagram

) ’+1
IR (5.5)

m—1

n,+ -
P 1i \Lp%ﬁ
L+

["+1+ m—1 [n+1+

Proof. Following the remark after Corollary 2.2.8, we can extend the result of Lem-
ma 5.1.5 to interpolated projections. With the integer N depending on M from Lem-
ma 5.1.5, we can deduce that J"™T is an isolating neighborhood for the flow generated
by
=t (L (spAry 4+ (L= s)phr) o ) (5.6)
for any n > N and s € [0, 1].
The rest of proof follows from the arguments given in [10, p.910] and [29, Proposi-

tion 4.7]. By continuation property of the Conley index, we have a natural homotopy

equivalence
prt Y *n+1151(g0m,1nv(J”+)) — Tgi (L inv(J7TLTY),

The isomorphism p’* is then given by the composition

% = An An
S L (g, v () = BT 2T e 55 I (] v (7))
N E—anz_ n+1[ ( an(JTT:L+1’+)) _ Z* n+1] ( an(JrT;T—L—F))?

where the first morphism is given by Z‘ann_l and the second morphism equal-

s X~ pt. The diagram (5.5) commutes because of the continuation property of

attractor-repeller pairs [57, Theorem 6.10].

O

For each positive integer M, we pick a positive integer n,; larger than the constant
N from Proposition 5.1.6 and we require that {ny;} is an increasing sequence. We are

now ready to define the spectrum invariant.
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Definition 5.1.7. The S'-equivariant ind-spectrum swf?(Y, sy, Ag, g; S1) is defined

to be an object of & given by

[Ill,'i‘ - ]’2"27+ - [g37+ — e (57)

where the morphism from % to I, is a composition i"m+1:+ o grm+1=bt 0. 0

Pt of the morphisms in Proposition 5.1.6.

We will prove in the next section that this gives a well-defined object of the category

G independent of the choices made in the construction up to canonical isomorphism.

To define another invariant swf”(Y, sy, Ay, g; S'), we follow almost the same steps
for the construction of swf? except that there are two main differences. First, the
set inv(glk, Jiv7) is a repeller in inv(e?,, J)\ ), so the arrows in the system will be

m

reversed. Second, we use V/\On for desuspension instead of V/\On. We define
I =2 Y I (@7, inv(J™%7)) € ob €,
where n is large enough relative to m, and we have a morphism

n,— n,—
I A Im+1

m

induced by the repeller map. The following collection of results can be proved in the

same way as the corresponding results for J™7.

Proposition 5.1.8. For a positive integer M, there exist large numbers N, T such

that, for any positive integers m < M and n > N, we have the following statements.

a) For any approzimated Seiberg-Witten trajectory v : [T, T] — V'™ which is con-
Y An

tained in J¥, we have

m 2

¥(0) € Str(Ro) N (1] ;.- (—00,60 +m — 0,,).

1<j<b1

In particular, J~ is an isolating neighborhood for the flow "

(b) The set inv(p™, J"")) is a repeller in inv(e, J%7) with respect to the flow o

m— m

Consequently, we have the repeller map

i1t st (o, V(7)) = I (@, inv(J 7).
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(¢c) There is a canonical isomorphism pl%~ € more (I, I™17) such that the following

m ' m

diagram commutes

n,—

i (5.8)

~n,— n,—
pm—li lp%
ntl,—

ntl—tmol g
Imfl Im ’

n,— . . VO .n,—
where i,,_, is given by X~ ng .

For each positive integer M, we also choose a positive integer n,,; larger than the

constant N from Proposition 5.1.8 so that {n,/} is an increasing sequence.

Definition 5.1.9. The S'-equivariant pro-spectrum MCR(Y, sy, Ao, g; S?) is defined
to be an object of &* given by

F e e (5.9)
where the connecting morphisms are defined in the same manner as in Definition 5.1.7.

We will also prove well-definedness of swf’® (Y, sy, Ag, g; S1) in the next section.

5.2 The torsion case

When the spin® structure s is torsion, we will be able to further normalize the spectrum
invariants swf? and swf” following the idea of [10]. The resulting objects will not

depend on Ay and g.

We will need to define a rational number n(Y,sy, Ay, g). Choose a 4-manifold X
with boundary Y with H3(X,Y;Z) =~ H,(X;Z) = 0. Such X always exists as we can
construct X by attaching 2-handles on D* according the surgery diagram of Y. By the
homology long exact sequence for the pair (X,Y), we see that H*(X,Z) — H*(Y,Z)
is surjective. Therefore, we can extend s to a spin® structure sx over X and extend

A to a connection Ay over X. Recall that we have a nondegenerate pairing

U:im(H*(X,Y;Q) — H*(X;Q)) ®im(H*(X,Y;Q) — H*(X;Q)) — Q.
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Denote by b*(X) (resp. b~ (X)) the dimension of a maximal positive (resp. negative)
subspace with respect to this pairing and denote by o(X) the signature of this pairing,.
Notice that we can define ¢;(sx)* = ¢1(sx) Uci(sx) € Q because ¢ (sx)|y = ci(s) is

torsion. We define

n(Y,s, Ag,g) == Ind(c(lbzo) - Cl(sX)Qg_ U(X)a

(5.10)

where ]Aﬁjgo is the positive Dirac operator on X coupled with Ay and Ind@(lbzo) is its
index defined by using spectral boundary condition as in [5]. It was proved in [10] that
n(Y,s, Ay, g) does not depend on the choices of X,sx and Ay ([10] only considered a
rational homology sphere Y but the proof works for a general 3-manifold Y without

any changes). In fact, we have

n(Y,s, Ao, g) = % (n(lD) — dime (ker 1) + %) , (5.11)

where n(lD) and 7ngen denote the eta-invariant of the Dirac operator and the odd

signature operator respectively (see [10] and [7]).

The normalized invariant SWEF4 and SWF? will be obtained by formally desus-

pending swf? and swf? with the rational number n(Y,s, Ag, g) as follows.

Definition 5.2.1. We define the S'-equivariant ind-spectrum and pro-spectrum by

SWEA(Y,5;S") := (swf*(Y,s, Ao, g; 5"),0,n(Y, 5, A, 9)) ,

SVV_FR<Y75; Sl) = (S_\VfR(KE, A(]?g; Sl)v 07 Tl(Y,ﬁ, AO; g)) :
as objects of & and &* respectively.

The proof of invariance of SWF# and SWF¥ will also be in the next section.

5.3 The Pin(2)-spectrum invariants for spin structures

In this subsection, we will define Pin(2)-analogue of the spectrum invariants for a 3-
manifold Y equipped with a spin structure s. Since all the constructions are similar

to the S'-case, some of the discussions will be brief. Recall that we defined the
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categories Cpjn(2), G pin(2) and G*Pm@) in Chapter 3.1, which are the Pin(2)-version of
the categories €, & and &*. Our spectrum invariants will be objects of &p,2) and
Pin(2)"
The spin structure s induces a torsion spin® structure on Y. With a slight abuse of
notations, we also denote this spin® structure by s. We will have the same setup from

the spin® structure s with the following new features coming from a spin structure.

1. The structure group of Sy can be reduced to SU(2) = S(H). Therefore, Sy is a
quaternionic bundle. Here we follow the convention of [13] and let the structure

group act by the right multiplication.

2. The bundle det(Sy) has a canonical trivialization. The Levi-Civita connection
on TY then induces a canonical spin connection Ag on Sy with Fjie = 0. We

will always choose Aj for our base connection.

3. We have an additional action j : Cy — Cy sending (a,¢) to (—a,j¢). This
action, together with the constant gauge group S', gives a Pin(2)-action on Cy.
All the objects in the setup are Pin(2)-invariant, e.g. the functional C'SD,,, the

Coulomb slice Coul(Y') and the Li-inner product etc.

In order to respect the additional j-symmetry, we have two new requirements in

our construction.

1. The perturbation f should be invariant under j. In other worlds, we should have

f(a7¢) - f(_(l,qu)'

2. The sets J™* should be invariant under .
A slight adaption of [37, Theorem 2.6] shows that for any real number ¢, we can
find a j-invariant extended cylinder function f such that (6, f) is a good perturbation.

Since we required the staircase function g from Section 5.1 is even, it is not hard to

see that J™* is j-invariant once the perturbation f is j-invariant.
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We can now follow the construction from Section 5.1 . In particular, the sets J%*
are isolating neighborhoods for the Pin(2)-invariant flow ¢!, when n is sufficiently large

relative to m and we define

[ (Pin(2)) = S0 Lpingay (9, iy (J2)),

Ly (Pin(2) = =% Ipinga) (9}, inv (7))

as objects of €pjy,(2). As before, we obtain an object swit (Y, s, Ag, g; Pin(2)) of Spin(2)
given by
IV (Pin(2)) — L7 (Pin(2)) — - -

and an object swf’(Y, s, Ay, g; Pin(2)) of S pin(z) 8lven by
'™ (Pin(2)) « 13*7 (Pin(2)) « - - -

for an increasing sequence of large positive integers {n; }. We define spectrum invariants

as in the torsion spin® case.

Definition 5.3.1. With the above setup, the Pin(2)-equivariant ind-spectrum and

pro-spectrum are defined by

SWE(V.s; Pin(2) = (st (1,5, Ao gs Pin(2), 0, "0 )

2

n(Ya5,A079>>

SWET(Y. s: Pin(2)) = (s_vva<xs,Ao,g; Pin(2)),0, "%

as objects of & pjy,(2) and Sin(o) Tespectively. Here n(Y,s, Ap, g) is the rational number
defined in (5.10). As before, these objects are independent of the choices made in the

construction up to canonical isomorphism.
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CHAPTER 6

The invariance for the unfolded spectrum

In this chapter we will prove the invariance of our ind-spectrum (pro-spectrum). In
other words, we will show that the spectra given by different choices of parameters
are canonically isomorphic to each other (as objects of the category in which they are
defined). We focus on the S'-equivariant case and the Pin(2)-case can be proved in

the same way.

First, let us list the parameters in the order that the choices of a parameter can
only depend on the parameters listed before it (for example, R is any number greater

Ry, where Ry is the constant of Theorem 2.2.2 depending on g, Ay and f):

(I) The Riemannian metric g and the base connection Ag;
(IT) The good perturbation f: Coul(Y) — R;
(III) The sequences of real numbers {\, }, {i,};
(IV) The number R (in the definition of Str(R));
(V) The harmonic forms {h;}, the cutting function g and the cutting value 6;
(VI) The positive integers n,, in (5.7) and (5.9);

(VII) The Conley indices for the isolated invariant sets.

The invariance for (VII) is a direct consequence of the invariance of the Conley
index (see Subsection 3.2 and [57]). The commutative diagrams (5.5) and (5.8) imply

the invariance for (VI).
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In subsection 6.1, we will make a digression into the discussion of the finite di-
mensional approximation for a family of flows. In subsection 6.2, we will prove the
invariance for (III), (IV), (V). The invariance for (II) (which is the most interest-
ing one) and (I) will be proved in subsection 6.3 and subsection 6.4 respectively. In
subsection 6.5, we will discuss the restriction of our invariant to the S!-fixed point

sets.

6.1 The finite dimensional approximation for a family of flows

In this subsection, we extend finite dimensional approximation results in Section 2.2
for a continuous family of flows. This setup will be useful for proving the invariance

and calculating examples.

Let S be a compact manifold (possibly with boundary) and consider a smooth fam-
ily of Riemannian metrics {gs}ses and a smooth family of base connections {Ag s} ses-
As before, we require that ﬁF AL equals the harmonic form representing ¢ (s). We
denote by Coul(Y,s) the (L?-completed) Coulomb slice for (gs, Ags). For each s, we
have an elliptic operator I;: Coul(Y,s) — Coul(Y, s) given by (xd, ]pAo,s)- Although
{Coul(Y,s)|s € S} is a Hilbert bundle over S, by the Kuiper’s theorem, this bundle
is trivial and we can identify it with S x Coul(Y’) by fixing a trivialization. We have

the following generalization of Definition 2.2.5:

Definition 6.1.1. Let E be a vector bundle over Y. A family of smooth and bounded
maps {Qs: Coul(Y,s) — L2(T(E))}ses is called a continuous family of quadratic-like
maps if Q4 is quadratic-like for each s € S and, for each nonnegative integer m < k, we
have a uniform convergence (£)"Qs, (Va(t)) = (£)™ Qs (Yo (t)) in Li_,_,, whenever
there is a uniform convergent of compact paths (£)77,(t) — (4)v.(t) uniformly in

Ly, foreach j =0,1,--- ,m with y,: I = Coul(Y,s,) and s, — $x.

We now let {Qs: Coul(Y,s) — Li(kerd* & I'(Sy))}ses be a continuous family of
quadratic-like maps. As before, for real numbers A < 0 < p, we define V{(s) C

Coul(Y, s) to be the space spanned by the eigenvectors of I with eigenvalue in (\, p].
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We also consider V{(s), which is the orthogonal complement of iQ2} (V) in V})(s). Note
that these spaces usually do not change continuously with s because the dimension

can jump at eigenvalues of [,.

Throughout this subsection, we say that, for an interval I, a path v: I — Coul(Y, s)
is an actual trajectory if it satisfies £~(t) = —(I 4+ Q,)7(t) and a path v: I — V{'(s)
is an approximated trajectory if it satisfies £~(t) = —(I + p o Q;)7(t) for some p, A.
We denote by ¢(A, p, s) the flow generated by —¢ - (I + p4 o Qs), where ¢ is a bump

function which equals 1 on any bounded subset involved in our discussion.

Theorem 6.1.2. Let B be a closed and bounded subset of Coul(Y) and suppose that
there exists a closed subset A C int(B) such that, for any s € S and any actual
trajectory v: R — Coul(Y,s) contained in B, we have vy contained in int(A). Then

there exist constants T, —\, i > 0 such that the following statements hold:

(i) For any A < X\, p > i and s € S, if an approvimated trajectory : [T, T] —
Vi (s) is contained in B, then we have ¥(0) € A. In particular, B NV} is an

isolating neighborhood for the flow (A, i, s);

(ii) The spectra X [g1(@(\, 1, 8), Inv(BOV(5))) and X T (9(N, 1, s), Inv (BN
V{(s))) do not depend on the choice of A\ < X\ and ju > [i up to canonical isomor-

phisms in €. We denote these objects by I(B,s) and I(B,s) respectively.

(111) For any path «: [0,1] — S, we have well defined isomorphisms
p(B,a): I(B,a(0)) = SCPCI(B, (1)),

p(B,a): I(B,a(0)) — SFCPOCI(B (1)),

where sf(— 1D, o) denotes the spectral flow of —IP along the path .. Moreover, the
isomorphisms p and p only depend on the homotopy class of « relative to its end

points.

Proof. For the first part, the proof is similar to that of Corollary 2.2.8: we suppose

there exists no such A, fi, 7. Then we can find a sequence of approximated trajectories
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Yoo [=Tn, Tn] — Coul(Y,s,) with T,,, —A,, t, — +oo such that =, is contained in
B but v,(0) ¢ A. Since S is compact, we can assume s, — S, after passing to a
subsequence. The properties in Definition 6.1.1 allow us to repeat the argument in the
proof of Proposition 2.2.4 and find an actual trajectory 7.: R — Coul(Y, s) as the
limit of ~,. Consequently, we have v contained in B and v,,(0) ¢ int(A). This is a

contradiction with our hypothesis. Thus, the proof of (i) is finished.

The proof of (ii) is a straight forward adaption of arguments from Proposition 5.1.6
and we omit it. For (iii), we will focus on the case p(B,«) as the other case can be
proved similarly. For brevity, we will denote by EX(s) the Conley index Igi(p(X, p, s), Inv(BN
V¥(s))). The isomorphism p(B, «) is constructed as follows: we consider the interval
0,1] as the union of subintervals [t;,t;41] with j = 1,--- ,m such that, for each j, we
can find p; > 1 and \; < X which are not eigenvalues of log) for any t € [t;,t;14].
Then V/\’j_ "(a(t)) from t = t; to t = t;11 is a continuous family of linear subspaces and
©(Aj, i, (t)) is a continuous family of flows on them. By the homotopy invariance of

the Conley index [57, Section 6], we get an isomorphism
by B (alt) 5 B (altyon). (6.1)

Notice that
Vi ()] + [sf (=1, al[t;,541]))C] = [V (atj1))]
as elements of the representation ring of S*. We can desuspend both sides of (6.1) and

get an isomorphism
I(B,a(t;)) — S CPiaDC1(B ot 1)),

The isomorphism p(B, «) is defined as the composition of the above isomorphisms for

7=1....,m.

We will see that p(B, «) is independent of the choices of ¢;, A; and p;. First, fix a
choice of {t;} and choose different choices of {\}} and {y}. Without loss of generality,

we may assume that \; < X, p; > . As before, we have an isomorphism

o By (alty) 5 By (alty10))
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As in Proposition 5.1.6, we have isomorphisms for stability of conley indices
] ~ W Hg
oj: EY; (a(t;)) = X B\ (aft))),
i1t By (alten)) = B E\ (a(tj)).

Using the formula in [57, Theorem 6.7], we can easily see that o, 10p; is S'-equivariantly
-V9
& p; are equal to each other as

10
homotopic to p}oo;. This implies that 3 Y p; and X
morphisms in €. Therefore p(B, ) does not depended on the choices of {\;} and {1, }.
Next we prove the independence of the choice of {¢;}. Let us pick another sequence

{t’}™,. Without loss of generality, we will only work on the case {t;} C {t;}, i.e. {t;}

is a finer subdivision. Let us suppose that
tj = t;/ < tj+1 < tj+2 = t;/+1

for some j' € {1,...,m'}. An equivariant version of [57, Corollary 6.8] implies that
pj+1 0 p; is St-equivariantly homotopic to py. This discussion implies that p(B, ) is
independent of the choice of {¢;}.

Now suppose that we have two paths «g, @; which are homotopic to each other
relative to their end points by a homotopy «, as u € [0,1]. For any (o, u) € [0,1]?,
one can also find u > fi and A < X and a small neighborhood O of (g, ug) such that
1, A are not eigenvalues of l,,«) for any (¢,u) in O. By the definition of p and the
homotopy invariance of the Conley index, we see that p(B, «,) does not change as u
varies inside O. By considering a finite cover of [0, 1]? by such neighborhoods, we see

that p(B, ag) = p(B, ay). This finishes the proof of the theorem. O

The following corollary is directly implied by the homotopy invariance of the

attractor-repeller map.

Corollary 6.1.3. Let By C By be two closed and bounded sets both satisfying the
hypothesis of Theorem 6.1.2. Suppose that for any sufficiently large — X\, p and any s €
S, the set Inv(p(\, p1, s), BiNVY(s)) is an attractor in Inv(p(X, i, s), BoNVY(s)). Then

the desuspensions of the corresponding attractor maps give well defined morphisms
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i(s) : I(By,8) — I(Ba,s) and i(s) : I(By,s) — I(Bay,s). Moreover, for any path

a:[0,1] = S, we have
p(Ba, a) 0 i(a(0)) = (EP%%(a(1))) 0 p(By, a),
P(Bs, a) 0i(a(0)) = (P95 (a(1))) 0 p(By, a).

The repeller version of this result also holds given that Inv(p(A, p, s), By N VY (s))
is a repeller in Inv(p(X, p, s), Bo NV (s)) for any s € S.

6.2 The invariance for (III),(IV),(V)

Notice that the three parameters in (V) only affect our results through the definition
of the bounded set J=. Suppose that we choose two different triples of parameters
({h,},5,0) and ({h;},§,0) and use them to define the sets J and J respectively.
From these subsets, we construct two direct systems, which we denote by (5.7) and
(5.7) respectively. Notice that J and JF are bounded subsets of Str(R). We can

find 0 < m; < mg- and 0 < m; < My < - such that:

JEocJdi cJal cJi o, (6.2)
which also implies the following inclusions for any positive integer n

Jurc Jgrt ot c gt cs

Notice that for any j > 0 and any n,m large enough relative to m;,m;. The flow
¢, goes inside Ji+ and jf%;r along 97\ dStr(R) and 6%;’ \ 0Str(R) respectively.
Therefore, the attractor maps, together with the isomorphisms p&" (as defined in

Proposition 5.1.6) give a direct system in the category €

A+ FALt N
YT — 10T — L2 — I — - (6.3)
for suitable choices of n; < ny; < ng < ng < ---, where the connecting maps are defined

in a similar way as (5.7). Since the attractor maps are transitive as mentioned after

o . . . . m;,t N
Proposition 3.2.4, the composition of the connecting morphisms I:ljj — I;%_’Jr —
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174" is the same as the attractor map for Inv(J;+) C Inv(JiF ). Therefore, we see
that (6.3) contains both a subsystem of (5.7) and a subsystem of (5.7’). By Lemma
3.1.1, this implies that (5.7) and (5.7’) are canonically isomorphic as objects of & . In
other words, up to canonical isomorphisms, the spectrum invariants swf?* and SWF4

do not depend on the choice of {h;},g and 0. The case of swf" and SWF® can be

shown similarly. We have proved the invariance for (V).

The proof of the invariance for (IV) is easy: Let Ry < R; be two numbers which
are both larger than the constant Ry from Theorem 2.2.2. Notice that when we choose
a suitable choice of parameters ({h;},g,6) for R, these parameters also work for Ry
since Ry < Ry. Denote by J,’}I’i(]:?i) the corresponding bounded set corresponding for
1 = 0,1. Then it is straightforward to see that, for any positive integer m and any
sufficiently large integer n (relative to m), the sets J™%%(R,) and J*(R;) are both
isolating neighborhoods of the same isolated invariant set. Therefore, their Conley
indices are related to each other by canonical isomorphims which are compatible with

attractor-repeller maps. This implies the invariance for (IV).

Remark. Actually, from the above argument, we can replace Str(R) in our construction

with any set C' C Coul(Y") satisfying the following conditions:

1. For any bounded subset A C i} (Y), the set py,'(4) N C is also bounded;

2. Any finite type Seiberg-Witten trajectory is contained in the interior of C.

Also, we can define {J=} to be any sequence of bounded, closed subsets of C' such that
JEC Jr ., U JE = C and for any m > 0 and n large enough relative to m the flow

" goes inside (resp. outside) J»t (resp. J/»7) along 0J51 \ OC (resp. 9J%~ \ 9C).

As for (IIT), we choose different sequences {\,}, {itn} and {\,},{jin}. By Lem-
ma 3.1.1, we can pass to their subsequences and assume that A\, ; < :\n < A, and
fin < fin < fins1 for any n. Let I">" and I™>* be the objects of € obtained by desus-
pending the Conley indices corresponding to {A,}, {stn} and {\.}, {jin} respectively.
We can repeat the proof of Proposition 5.1.6 and establish canonical isomorphisms

It 22 [t and [7Hh+ 22 [nHL+ for any positive integer m and any sufficiently large
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integer n (relative to m). Moreover, they form commutative diagrams similar to (5.5).
This implies that swf* and SWE# are independent of (IIT). The repeller case follows

in the same manner.

6.3 The invariance for (II)

In this subsection, we will consider any two choices of good perturbation f;: Cy — R
for j = 1,2. Recall that f;(a,¢) = %||¢||%2 + f;(a, ¢), where §; is a real constant and
fj is an extended cylinder function. We first assume that 0; = d9 = §. Since we do not
know whether the space of good perturbation is path connected, the usual homotopy
invariance argument does not work. Therefore, we follow a different approach here.

Because the whole argument is relatively long and technical, we first sketch the the

rough idea as follows.

Denote by L; the restriction of C'SD,, s, to Coul(Y). Recall that we identify
iQ} (Y') with R” by choosing independent harmonic forms {h;}. For any real number
e > 1, we will construct a family of “mixed” functionals £; for s € [0,1] such that
£} = L5 and £) equals £1 on p;/' ([—e+1,e—1]") and equals £, on p3,' (RY\ (—e, e)™).

Suppose that all finite type flow lines of £ are contained in Str(R) and consider an

increasing sequence of bounded subsets
JhocJdi cal o cJi -

where J,Jgj and Jj,;j are the bounded subsets of Str(R) corresponding to £1 and L,
respectively. We will require that, for each positive integer j, there exists a real number

ej > 1 satisfying
T, C oyt ([=ej + Le; = 1) N Str(R) C py! ([=ej. ¢5]°) N Str(R) € T

Let ¢"(L) be the approximated gradient flow of £ on the compact set J»*. Since £,
equals £27_ when restricted to J;, and the flow goes inside J;", we have an attractor
map

o1 (9" (£2), Iv(J5:5)) = Lon (0" (£2)), v (J35) — L (" (£2), Tv (J55)).

J J
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On the other hand, we have Igi (" (£2), Inv(j%’f)) >~ Js1 (" (L), Inv( Yfl;r)) by con-

J

tinuity of Conley indices. We combine these and obtain a map

Isi(0™(L1), Inv(J™F)) — Is1 (0" (Ls), Inv( N:@Jr))

J J

We also construct another family of functionals £, to obtain a map Ig1 (¢™(Ls), Inv(j%j)) —

Isi(o™(Ly), Inv(J ). We will then prove that the composition

mjt1

Isi (@™ (L), Inv(J7H)) = Isa (0"(L2), Inv(J5 7)) = Tan (@™ (L1), Inv (3T )

J mj+1

is just the attractor map corresponding to £;. A similar result holds for £5. There-
fore, we have constructed a “mixed direct system” in the category € and the spectra
corresponding to fi, fo are both subsequential colimit of it. Therefore, the invariance

of swf is implied by Lemma 3.1.1. The swf® case can be proved similarly.

There is one technical difficulty here. We need to find a uniform constant Rs
(independent of e, s) such that Str(Rs) contains all the finite type trajectories of £]
and ;éz This will be taken care by Lemma 6.3.9 and Lemma 6.3.11, which generalize
Theorem 2.2.2.

Let us prepare some general results regarding the perturbations. Recall that we

have a canonical isomorphism
mo(Gy) = mo(Gy) = H'(Y; Z).

For any positive integer m, we denote by mGy (resp. mG2) the subgroup of Gy (resp.

Gh) consisting of the connected components corresponding to m - HY(Y; Z).

Definition 6.3.1. For a positive integer m, a continuous function f: Coul(Y) — R is
called m-periodic if f is invariant under the action of mGf, which implies that f o II

is invariant under mGy .

We will also need the following definition of tame functions.

Definition 6.3.2. A smooth function f: Coul(Y) — R is called a tame function if

the formal gradient grad(f o II) satisfies all the conditions of the tame perturbations
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[33, Definition 10.5.1] except that it needs not be invariant under the full gauge group

Gy. where IT : Cy — Coul(Y') is the non-linear Coulomb projection.

Furthermore, a continuous family of functions {f,} parametrized by a compact
manifold W (possibly with boundary) is called a continuous family of tame functions
if each function is tame and grad (f,, o II) extends to a continuous family of maps on
the cylinder I x Y. In addition, we require that the constant ms and the function p,

from [33, Definition 10.5.1] are uniform with respect to w € W.

Now we describe a way to construct a continuous family of tame functions from

any pair of extended cylinder function, given a family of smooth function.

Lemma 6.3.3. Let W be a compact manifold and 7,,: iQ}(Y) = Rb — R be a smooth
family of smooth functions parametrized by w € W. Then, we can choose a sequence of
constants {C;} in the definition of the space of perturbations P (c.f. Definition 2.1.1)
so that, for any 6 € R and any f1, fo € P, a family of functions f: Coul(Y) - R
given by

Fula,6) = 2160 + (7o Ta(@) - e 6) + (1~ 7 omua) - ol 6). (6.4)

is a continuous family of tame functions. Moreover, if T, is mZ’ -periodic, then f,, is
J )

m-periodic.

Proof. This is actually a parametrized version of [33, Theorem 11.6.1] and we will
focus only on the term (7, o7y (a)) - fi(a, ¢). To avoid repeating complicated analysis
there, we introduce a trick turning a family of functions into a single function. Let
Y’ be another spin® 3-manifold with b;(Y”’) > 2dim W so that we can embed W in
the torus i} (Y")/Gl’. We now consider the family {7, }wew as a single function on
i (Y) x W and extend it to 7: iQ} (V) x i} (Y’) — R. Recall that fi = -7, 0, f;,

where f; is a cylinder function of Y with > 721 CjInj| < oo. We define a function
-fj/': CY X CY’ — R

given by
(a,0) x (', ¢') = 7(myy(a'), m(a)) - f5(a, §),
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where 7}, iQY(Y') — iQ;(Y’) denotes the projection onto harmonic forms on Y.
These functions fj’ almost fit into the definition of cylinder functions (cf. [33, Sec-
tion 11]), on C(Y') x C(Y”). We can still repeat the argument the proof of [33, Theo-
rem 11.6.1] and show that, by setting {C}} to increase fast enough, the formal gradient
grad(d_; n; f]’) is a tame perturbation for the manifold Y UY” except that it is not in-
variant under the full gauge group. As a result, it is not hard to see that this actually

implies that (7, o m(a)) - fi(a, @) is a continuous family of tame functions. O

For a general functional £: Coul(Y) — R, we can consider its negative gradient

—_~—

flow line v: I — Coul(Y'), described by the equation dzl—(tt) = —grad L(v(t)). Such a

trajectory will be called an L-trajectory. As before, we define the topological energy
by

E'P(y, L) = 2(sup L(7(t)) — inf L(7(1))). (6.5)

tel tel
Recall that a trajectory is called finite type if it is contained in a bounded subset of
Coul(Y'). We have the following uniform boundedness result for functionals perturbed

by periodic functions.

Proposition 6.3.4. Let {f,} be a continuous family of m-periodic tame functions
parametrized by a compact manifold W and consider a family of functionals L, =
CSDyy|couy)y + fuw- Then for any C > 0, there exist constants R,C" such that for
any w € W and any Ly -trajectory ~v: [—1,1] — Coul(Y) with topological energy
EP(vy, L,) < C, we have v(0) € Str(R) and |L,(v(0))| < C".

Proof. The proof is a slight adaption of [33, Theorem 10.7.1]. Suppose that the state-
ment is not true. Then we can find a sequence {v;} of L, -trajectory v;: [~1,1] —

Coul(Y) with w; € W such that at least one of the following two situations happens:
e limsup; . [[u; - 7;(0)||z2 = oo for any sequence {u;} C mGy;

o limsup; . |Lw,(7;(0))] = oo.
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Since W is compact, after passing to a subsequence, we may assume that w; — we.

We lift ~; to a path 7;: [—3, %] — Cy, which is the negative gradient flow line
of CSD,, + fu, o Il. Note that we only consider an interior domain here to avoid a
possible regularity issue. With X = [—%, %} x Y, we treat J; as a section over X and
denote it by (a;, ggj) We can find a gauge transformation @; over X whose restrictions

to {0} x Y belong to mGy such that the following conditions hold:
1. d*(a; — a5 'dii;) = 0 on X.
2. (a; — 4 'di;)(n) = 0 on X, where n is the outward normal vector ;

3. For each for I = 1,...,by, we have [;(a; — ﬂ;ldﬂj) A (x4hy) € [0,mm) where by is

the pull-back of h; on X;

The conditions in Definition 6.3.2 allow us to repeat the bootstrapping argument in
the proof of [33, Theorem 10.7.1] and obtain the following statement. After passing to

2 when restricted to

~ P n . .
a further subsequence, (a; — @} ddy, @i - ¢;) is convergent in L !

any interior cylinder. In particular, this implies that II(%;{(01xy - 7;(0)) is convergent
in L. Notice that II(a;|{1xy - 7;(0)) equals u; - v;(0) for some u; € mGf. Also
L;(75(0)) = Ly, (uj-7;(0)) is a convergent sequence since L, (a, @) is continuous in w

and (a, ¢). Therefore, we arrive at a contradiction with the above two situations.

]

We also have the following lemma, whose proof is essentially the same as Lem-

ma 2.2.7 and we omit it.

Lemma 6.3.5. Let {f,} be a continuous family of tame functions. For each w €
W, we define a nonlinear term c,,: Coul(Y) — Li(ikerd* & I'(Sy)) of the gradient
of CSDy|couy) + fu as in (2.8) and (2.9). Then {c,} is a continuous family of

quadratic-like maps.

Now we construct explicit “the mixed perturbation” as follows. Choose a smooth

function 7: R — [0, 1] satisfying T|(7007ﬂ = 0 and T|[%’Oo) = 1. For any real number
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e > 1, we define a bump function 7. : i}, (Y) — [0, 1] from 7 by

7'@<ZL'1,ZE2,"' axbl): H T<e+xj)7—(e_wj)‘

1<j<bhr

Each 7. gives an induced tame function f0: Coul(Y) — R as in (6.4), i.e.

fla,0) = gWH%z + (1e 0 pula, ) - fi(a, &) + (1 = 7 0 pula, @) - fa(a, d),

where fi, fo € P. With f; = g||qzﬁ||%2 + f;, we note that the function fg equals f; on
py' ([—e+1,e—1]") and equals f on p;,' (R \ (—e, e)?). For s € [0, 1], we also consider

an interpolation 77 = (1 — s)7. and define
fj =(1- s)fg + sfo and £ = CSD,y|couy) + ff (6.6)

Notice that f?* is essentially a tame function induced from 75 which is not m-periodic
for any positive integer m. To utilize Proposition 6.3.4, we will introduce an explicit
family of smooth periodic functions such that the induced periodic tame functions
agree with fj on desirable regions.

For any positive integer M, we consider a family of (6M + 6)-periodic smooth
functions parametrized by compact manifold W), described as follows. The manifold
W is of the form Wy LWy o LWy, 5 where Wiy g := [1, M +1] x [0, 1] and W)y 5 :=
{(B,o) | 0 # B C {1,2,...,by} and 0: B — {£1}} x (R/(6M + 6)Z) x [0, 1] and

Wars = {1,2}. We construct a family of functions {7, } as following:

e For each positive integer M and (e, 0) € W)y.1, we assign the unique (6 M +6)Z-

periodic function 7.: R" — R which extends Te|[,3M,373M+3]b1.

e For each positive integer M, we pick a (6 M +6)- periodic function 7p,: R — [0, 1]
which extends T|_aar—2,20+42). For each (B, 0,0,0) € Wy, we assign a function

Tpop: R — [0,1] given by

T(Boo) (1, xp,) = H (0 + o(j)z;).
jeB

e For general w = (w',s) € W1 [ W2, we simply define 7 5y := (1 — §) 7.
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o We set 7; =2 — j for j € W3 so that f; = f;.

Lemma 6.3.6. For each positive integer M, any (s, e) € [0,1]x[1,00) and (e1,€eq,- -+ ,ep,) €
R | there exists an element w € Wy, such that the induced function fw equals fj on

p;il([el — M,61 —|—M] X X [ebl — ]\/[,ebl —|—M])

Proof. For convenience, we denote £ = [e; — M, e; + M| x - X [ep, — M, ey, + M]. We

will consider two main cases with several subcases:

Casee € [I, M+1]; If EN[—M —1, M +1]** # (), then we have E C [-3M —3,3M +
3], This implies 7|4 = T.|a. Therefore, we can just choose w = (e,s) € Wy, If
EN[=M —1,M +1]"* = §, then we have p;/'(E) C py!(R" \ (—e,e)) and f2 = f,
on py;' (E). We just take w = 2 € Wy, 3 so that fuw = fo in this case.

Case e > M + 1; We consider the following subsets of [1,2,--- ,b]:

By ={jlle—Mej+MNe—1e|#0},

By ={jllej— M, ej+M]n[-e —e+1] #0},

Bs={j|le;— M,e; + M]N[—e,e] =0}
If B;UBy =0, then E is either contained in [—e + 1,e¢ — 1] or R" \ (—e, e)? and we
can just take w € Wys. If By # 0, then we have 7.|p = 0 and fj|p;{1(E) = f2|p;{1(E).

We can take w = 2 € Wy 3 again in this subcase. We are now left with the case

By U By # () and Bs = (). Notice that for any (z1,--- ,xp,) € E, the following holds:
jeEB =e+x;>2e—1—-2M >1ande—x; € [-2M,2M +1];
jEB =e—1;>2e—1—-2M >1and e+ x; € [-2M,2M + 1];

j¢B1UB2$€—|I]|Zl

Therefore, for such (xy,--- ,x,), we have
To(wr, - m) = [[ rle—z)- [ rle+) = [] rule— =) [ 7ule+2y),
j€EB JEB2 JEB Jj€B2

where we use the fact that Tas|—onr—2.20m42] = T|[—2m—22012)- As a result, we see that
f2 = fu on py(E) when we set w = (B1U By, 0,¢,5) € Waro with o2 BUBy — {£1}
sending B; to —1 and B, to 1. Notice that By N By = () because e > M + 1.
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We also have the following extension of Lemma 6.3.3 to a countable union of

compact sets.

Lemma 6.3.7. We can choose a sequence of constants {C;} in the definition of P
(see Definition 2.1.1) such that for any positive integer M and any fi, fo € P, the

induced family { fo}wew,, is a continuous family of (6M + 6)-periodic tame functions.

Proof. For each W)y, there exists a sequence {C)y;}; such that, for any fi, fa €
P({Chr;};), the family {f,}wew,, is a continuous family of (6M + 6)-periodic tame
functions. It is straightforward to see that a sequence of positive real numbers {C;}
such that

Cj 2 max CMJ'
1<M<j

satisfies our requirement. O

Next is the boundedness result for functionals with mixed perturbations.

Lemma 6.3.8. For any C > 0, there exist constants R,C" such that for any (e, s) €
[1,00) x [0,1] and any £:-trajectory ~v: [—2,2] — Coul(Y) with topological energy
EP(v;£3) < C, we have v(0) € Str(R) and |£3(v(0))| < C".

Proof. We first write down g/rga fj as

—~—

grad fes(a’a ¢) = 6¢ + (1 - S)(fl(a’v (b) - J?2(a’7 (b)) grad<7—e OpH)((Z, ¢)
+ (1 - S)(Te OpH(aa ¢)) grad fl(aa ¢) + (1 - (1 - S)(Te Opr(a, ¢))> grad fQ(aa qb)

By boundedness and tameness conditions of fj, we see that

|l grad (& o TT)(a, ¢)|.= = || grad & (a, @)l < m(1 + 6] 22),

where m is a constant independent of (e, s). This implies

lgrad(&l o I)(a, )72 < 2m* + 2m?||¢]|7 (6.7)
We can lift 7|1y to ¥ : [-1,1] — Cy, which is a negative gradient flow line
for the functional £2 o II. Now we follow the argument on Page 161 of [33]. Since

Lioll =CSD,, + & oll, we have

I grad CSD,, |72 — 2|l grad (& o M)|[7> < 2| grad(L; o T)]|7..
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By formula (6.7), this implies

1 1

/ (Il grad CSDy, (372 + 15 @)II72)dt — 2m* [ ||G(t)[[72dt — 4m
-1 -1

1 (6.8)

< 2/ (Il grad(£2 o I)(F()IIZ2 + 17 (D1Z2)dt < 28P(y, L5) < 2C.

1
We can treat 4 as a section over the 4-manifold [—1,1] x Y and denote it by (a, (;S)
By Definition 4.5.4 and formula (4.19) of [33], the above estimate on the analytical

energy actually implies

411 /[1,1]><Y daf” + /[1,1]><Y |VA§£|2 * i /[1,1]><Y(’q§|2 Gy <Gy

where A is the connection corresponding to a and C5 is a constant independent of
e,s. By Corollary 4.5.3, Lemma 5.1.2 and Lemma 5.1.3 of [33], we can find a gauge
transformation u : [—1,1] x Y — S! such that [ju - Yl z2(=1,1)xy) is bounded by a
uniform constant Cy. Let u; equals u|yyxy. Then there exists Cs such that for any

t1,ts € [—1,1], we have

M0ty - 3 (81)) = T (ur, - A(E2)) |22 < My - Y (@) 2 + Nlur, - F(E) |22 < Cs

Recall that IT; : Cy — iQ} (V) is just the orthogonal projection. Since u;, and u,, are

in the same component of the gauge group Gy, we have

P2 (v(t1)) = pr(y(t2)) || 22 = Mg (g, - A(t1)) — g (g, - Y(t2)) || 22 < Cs.

This implies that v([—1, 1]) is contained in py,' ([e1 — My, €1+ Mo] X - X [ey, — My, e+ Mo])
for some (eq,--+ ,€) € R? and some uniform constant M, € Z>;. By Lemma 6.3.6,
we have fj\pq_{l([el_MO’eﬁMO]X,x[eb_MWHMO]) = fyu for some w € Wyy,. This implies that
Y111 is also a trajectory for C'S Dy, |cou(y)+fuw- Notice that £ (y|i_1.17, C'S Dy, |couv)+
fw) < C. Our result is directly implied by Proposition 6.3.4.

]

The previous results implies uniform boundedness for finite type trajectories for
the family {£}. For convenience, we will say that functional £: Coul(Y) — R is

called R-bounded if any finite type L-trajectory is contained in Str(R).

122



Corollary 6.3.9. There exists a uniform constant Ry > 0 such that for any e € Ry
and s € [0, 1], the functionals L5 is Ry-bounded.

Proof. Let v: R — Coul(Y') be a finite type £3-trajectory. Since E*P(~,£5) < oo, we
have E'P (y|p_1,44+1),£;) < 1 for any ¢t with || sufficiently large. By Lemma 6.3.8 (with
C = 1), we have [£5(v(t))] < C" for such t. Since £ is decreasing along 7, we see
that £5(y(t — 1)) —£(v(t + 1)) < 2C" for any t € R. We apply Lemma 6.3.8 again
(now C' = 2C"), so there is a uniform constant R; such that v(t) € Str(R;) for any
te R [

For the reader’s convenience, we summarize the functionals we will be dealing with.
Two extended cylinder functions fi, f» are now fixed, along with their corresponding
functional £1, £o. We have the continuous family of functionals {£:} (see (6.6)) such
that, for each (e, s) € [1,00) x [0, 1], they satisfy

£i - £2,

£90) = Li(x) ?fx6107}1([—6—1-1,6—1]b1)7
Lo(z) if x € py (R (—e,e)),

£5(x) = Lo() if z € p3/ (R™\ (—e,e)™).

Since the above construction is asymmetrical in f; and f,, we also consider another
family of functionals {£2} where the role of f; and f, are reversed. In other words,

we have

L. =Ly,
20 Ly(x) ifx € pyl([—e+1,e — 1)),
’ Li(z) if 2 € p(RV\ (—e,e)?),
£ (z) = L1(z) if z € p AR\ (—e,€)?).
Roughly speaking, the family {£:} will give a morphism from Conley indices given by
L1 to Conley indices given by L5 and vice versa.

To show equivalence, we need to introduce (final) two more families of functionals.
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For two real numbers e, e’ with e —1 > ¢’ > 1 and s € [0, 1], we define

S

£o(x) ifaepy (¢ ")

£Z,e’ (l’) = ‘

£(7) otherwise,
s £ (x if x € py'([—¢, e
oo [ B0 e

£,(x) otherwise.
These functionals have the following properties:

~0

1 £L, = £ and £, , = £,.

Lo(x) ifxep([—€+1e =1 UR™\ (—ee))),
Li(x) ifzep([—e+1e—1]"\ (=€, e)).

~0 _ L(x) if x € p;_ll([—e' +1,¢ — 1] U (R \ (—e,e)’)),
Lo(x) ifxepy([—e+1le—1]"\ (=€, e)M)).

We have the following extension of Lemma 6.3.6 and 6.3.7. The proof is essentially

the same and we omit it.

Lemma 6.3.10. (1) For each positive integer M, we can find a smooth family of
(6M + 6)Z" -periodic functions 7, : R — [0, 1], parametrized by a compact manifold
Wy, with the following property: for any functional in the family {£; ., | s € [0,1],e—

1>¢e > 1} and any (e1,- - ,ep,) € R, we can find w € W}, such that
£z,e’ = CSDZ/’CO’LLl(Y) + fw

when restricted to py;' (Jey — M, ey + M) x -[ey, — M, ey, + M]). Here f, is the function
on Coul(Y') induced by 7, (see (6.4)).

(2) We can choose a sequence of constants {C;} in the definition of P (see Defini-
tion 2.1.1) such that for any positive integer M and any fi, fa € P, the induced family
{fw}ng{w is a continuous family of (6M + 6)-periodic tame functions.

(8) Similar result holds if we consider any one of the following families instead

o {£..|s€0l],e—1>¢>1};
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o {(1—s)Ly+ suéZ:e/ | s, €[0,1],e—1>¢€+1,};

/

o {(1—5)Ly + 5L,

e,e’

| s, €[0,1],e > ¢ +1,}.

With Lemma 6.3.10 at hand, we can repeat the proof of Corollary 6.3.9 and get

the following result.

Lemma 6.3.11. There exists a uniform Ry such that fore —1 > ¢ > 1 and s,s €

(1 —s)Ly + séﬁje, and (1 — )Ly + s;éie, are all Ry-

S

0,1], the functionals £, £

e,e’r ~eel
bounded.

Now we start constructing a mixed direct system relating the spectra given by £,
and L. As usual, we focus on the case of swf. We first choose a constant R greater
than max(R;, Ry), where R; is the constant in Corollary 6.3.9 and R, is a constant
that we will specify later in Lemma 6.3.11. Let J;* € J; € ...and J;* € Jf C ... be
increasing sequences of bounded subsets corresponding to £; and Lo respectively (see
(5.2)). Although these bounded sets come from Str(R), they are different as we use
different cutting functions and different cutting values. Since the sequences of subsets
are increasing, we can find increasing sequences of positive integers {m;}, {m;}, {e;}
and {&;} such that

T C oyt ([—ej + 1 e; — 1) N Str(R) C py ([—e;,¢,]") N Str(R) € J

(6.9)
C pit([—&; +1,¢; — 11°) N Str(R) C py'([—¢;, ;%) N Str(R) C J},

mj+1”

Let {u,} and {\,} be an increasing sequence and a decreasing sequence of real
numbers with —\,, i, — oo and denote by V/\‘Z " the corresponding eigenspace. For a
functional £ on Coul(Y"), we denote by ¢"(£) the flow generated by ¢ o p}” ngéL on
V)f: " where ¢ is a bump function with value 1 on a specific bounded set. Since we are
only interested in the Conley index which will be independent of ¢, we can drop ¢ from

our notation.

Consider Ji+ = Jo N V™ and jﬁij = jjn’] N V", By Theorem 6.1.2, we can fix

a sufficiently large integer n so that J,:;’J_Jr, j,’;;r are isolating neighborhoods for all of
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the above families of approximated flows. For the family {£§j}, we get a homotopy

equivalence from homotopy invariance of Conley indices
pri Lo (" (£2,), Inv (1)) = s (9"(L2) Inv (1)),

where we recall that £§j = L. Since ;égj is equal to £, on py'([—e; + 1,¢e; — 1]%1),
which contains J , we see that the flow ©" (;égj) goes inside J;F along the boundary
OJp dStr(R). Consequently, the subset It C j,?: is an attractor with respect to

o (;égj) and we obtain an attractor map
pa: Lsi (0" (L£1), Iv(Jph)) = Lo (9" (£, Tnv (1)),
We combine the above two maps and obtain the following map
it = pr o pot Lon(@" (L), Inv(J0)) = Tss (@ (L) Iov(T)). (6.10)
Similarly, we use the family {:é;} to get a homotopy equivalence

pre Isi (" (B2, ), Inv(T3t ) = I (" (L), Tnv(Ji, ).

mj m j+1

- ~0
Since J;fl’j ngt—l is an attractor with respect to ;ééj, we also get an attractor map

fo It (9"(L2), Tnv (1)) = Ia (" (£2, ), Inv (st ).

mj41

We compose the above two maps and get the following map

= o ot T (9"(L), Inv(J2)) = Ta(@"(L0), Tav(J ). (6.11)

m j+1
After appropriate desuspension, we obtain a direct system in the category €
kl ik ’+ 9 7N 7+
Lt = I = L — I = (6.12)

where It (resp. I»*) be the object of € obtained from desuspending the Conlex
indices of J%* (resp. J™T) by ‘7_0)\" and we can pick a suitable sequence of integers
0K n <np <ng < ng < +--. The main result of this section follows from the

following proposition.
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Proposition 6.3.12. The map inmj o E”mj is S1-homotopic to attractor map for the

attractor Inv("™(L1), Jit) C Inv(e™(L1), It ).

LRS!
Proof. We consider the following commutative (up to S'-homotopy) diagram.

Isi(@"(L1), Inv(J5: 7))

Y

Lo (0" (£2), Inv (7)) L2 Tn (07 (£2), Tnv (T ) 22 T (0" (£L ), Tnv ()

€j

Toi(p"(£e, o ) Inv (e Pt (o (2e, ) Iv(JT)) Tsa(9(L), Tov ()

lm % k 1
n 70 n P n 70 n n 70 m,
s (" (B, ) Inv (3t T (07 (B2, ) Inv (g ) pes— L (9 (&2, ), v (7))
Ps P1

Is (gp"(ﬁl), IDV(J:,LL’J_—L)):QSI (Spn( fa éj)’ IHV(Jn’jt ))
The maps are defined as follows.

1. Different flows are generated by the same vector field when restricted to some

“__»

isolating neighborhood. This defines all the identifications in the diagram.
2. The maps p1, ps2, p1, p2 are defined as before.

3. The maps ps, p5 are the homotopy equivalences given by the deformation ;é;-,eja
s €10,1].

4. The maps p4, ps, pr are the attractor maps for the flow <p"(£2j7€j).

5. The map pg is homotopy equivalence given by the deformation
~0
(L —8)Li+ kg, .., s €[0,1]. (6.13)
Now we check that the above diagram commutes:

1. The maps po and pg are the defined as attractor maps for the flows ¢" (£2j) and

-0 . .
gp”(zééjvej) respectively. Since these two flows are generated by the same vector
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field when restricted to j;;;r, we see that p, is S'-homotopic to pg, written as

p2 = pe.
. Because the attractor maps for the same flow are transitive, we have p; = p4 0 pg.

. We deform ggj = fééjyej to fe‘;j,ej through the family ;szjej. In the process of this
deformation, nothing is changed on the set p;;'(R”\ (—e;,¢;)?), which contains
both 0.J5F 1\ dStr(R) and 8j:l]+ \ 8Str(R). Therefore, we obtain a family of
attractor maps: we get p, when s = 0 and get p, when s = 1. Notice that ps
and ps are the homotopy equivalences induced by this deformation. The identity
P2 = ps o py o p3 can be proved using the homotopy invariance of the attractor

map.

. The map p3 is induced by the deformation 72; with s going from 1 to 0. We

€j

just get £Zj if we restrict this deformation to the set j;f; Therefore, we have
P pyt
. Notice that p; o ps5 is the homotopy equivalence induced by the following defor-

mation:

-0 -1 -0 <1
£i,oil st _>£éj,ej|mj+l :£5j|J,ﬁjH _>£éj|J;lj+l = £1|Jﬁ,§j+l' (6.14)

i+
In order to prove the identity pgs = p; o p5, we just need to show that the homo-

topy equivalences Isl(gpn(;é? ) Inv(Jnt ) S T (9™(Ly), Inv(J7F ) which

€5:¢5 mj+1 mMjt1

are induced by deformations (6.13) and (6.14) are S*-homotopic to each other.

To see this, for any r € [0, 1], we consider the following 2-step deformation.

(a) First deform ;GZJM torLy + (1 — r);ééj76j = fe;ij through the family rs£; +

(1— rs)fézj,ej, with s going from 0 to 1.

(b) Then deform ;é;j to ;é; = L, through the family ézj, with s going from r
to 1.

Setting r to be 0 and 1 in the above deformation, we will get (6.14) and (6.13)

respectively. As before, the flow near 9.J;,  \9S tr(R) is not changed. By Lemma
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6.3.11, all the functionals involved in the above deformation are Rs-bounded.
Since R > Ry, J[,ﬁ;ﬁl is an isolating neighborhood for all these functionals when
n is large enough. Therefore, as r goes from 0 to 1, we get a S'-homotopy

between the homotopy equivalences induced by (6.13) and (6.14).

We have proved that the diagram is commutative up to S'-homotopy. As a corollary,
the map %"mj o Z};Jﬁ“ = p1 0 pg 0 p1 o py is S'-homotopic to pg o p;. Now we consider the

attractor map for the flow £, which we denote by

it ]Sl(gon(ﬁl),InV(JZ’;')) — I (™(Ly), Inv(JMF ).

mj41

We deform £; to ;égj, , through the family (1 — )Ly + s;égjﬁe]_ (s € [0,1]). Notice that

e

e

which contains both 9.J;; \ 8Str(R) and Oy \ 8Str(R). Therefore, we get a family

for any s, (1 —s)£1+5£12j7 , equals £ on the set i ([—e;+1, e, —1PU(RY\ (—¢;, €;)")),

of attractors:

Inv(p" (1 — )Ly + s£e. ), Ji) € Inv("((1 — 8)L1 + sy, ), Jot ).

€563 /7 T Mj+1

By the homotopy invariance of the attractor maps, we see that ¢* also is homotopic

to pg o py. This finish the proof of the proposition. O]

Proposition 6.3.12 actually implies that the direct system (6.12) contains a sub-
system whose colimit gives the ind-spectrum swf” for the perturbation fi. Similarly,
we can prove that the ind-spectrum for the perturbation f, is also a subsequential
colimit of (6.12). Therefore, by Lemma 3.1.1, we see that f; and fy gives the same

ind-spectrum up to canonical isomorphism.

Finally, we address the situation when fi(a, ¢) = 2|¢[2. + fi(a, ¢) and fa(a, ¢) =
211¢)12, + fola, ) with &; # J,. This can now be proved the standard homotopy
invariance argument as follows. We set §; = (2 — t)d; + (t — 1)d2. For each ¢y € [1, 2],
we can find an extended cylinder function f such that the pair (d;, f) gives a perturbed
Chern-Simons-Dirac functional whose critical points are all nondegenerate in the sense
of [33, Definition 12.1.1] for any ¢ near to. Here we essentially use the compactness

result for critical points, which is a special case of [33, Proposition 11.6.4]. Hence, we
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can find a subdivision 1 =t < --- <t, =2 and f|,...,f _, € P with f{ = f; and

£/

! | = fy such that the pair (&, fj’) gives a good perturbation for any ¢t € [t;,¢;41].
By homotopy invariance of the Conley index, we see that (0;,, f;) and (,,,, f]) give
the same ind-spectrum swf?. Since we already showed that the ind-spectrum does
not depend on the choice of the extended cylinder function when ¢ is fixed, we can

conclude that f; and f, give the same swf” (up to canonical isomorphisms). This

finishes the proof of the invariance for (II).

6.4 The invariance for (I)

Now we discuss what happens when we vary the metric g and the base connection
Ap. Let (Ay, go) and (A;, g1) be two pairs of base connections and metrics. We can
connect them by a smooth path a(s) = (A,, gs) with s € [0,1]. As in the proof of the
invariance for ¢, we can divide [0, 1] into small subintervals [s;, s;41] such that, for each

subinterval [s;, s;+1], we can fix the choice of the auxiliary data (f, g, 6, R, ANY, {itn}).

As s varies between s; and s;;1, we get a continuous family of Coulomb slices

Coul(Y, s) and a family of sequences of bounded sets
Ji,Cy,Cen

For any positive integer n, we have a (usually not continuous) family of finite-dimensional
spaces V" (s). As before, we denote by V! (s) the orthogonal complement of 2} (Y)
in Vi (s). Let Jt = JF NV (s) and ¢, , be the approximated Seiberg-Witten flow

on V{"(s). The following lemma is a direct consequence of Theorem 6.1.2.

Lemma 6.4.1. For any positive integer m and a sufficiently large integer n relative

to m, we have

—VO (s n ~ vsf(—D,als;,s; —VO (s n
) V;m( J)[S1 (@msj’ IIlV(Jm’;;)) ~ f(—,af J» J+1D(CE V,un( J+1)Isl (@n,SjJrNInV('] ,+ ))

m,sj4+1

as objects of €.

Taking colimit of the above isomorphisms, we obtain

swi (Y. 5, A, g;3 S1) 2 2 PellsaDCowtd (v, 5, Ay, g5, S1).
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By additivity of spectral flow, we can conclude that
swi (Y, sy, Ay, go; S*) = BP0 swrA (Y, sy, Ay, 15 51). (6.15)

Therefore, swf! can only change by suspension or desuspension of copies of C when
we vary the pair (Ag, go). Now we discuss the following two cases separately.

(1) s is torsion: In this case, we recall that there is a well defined quantity

n(Y,s, Ao, g). By excision argument as in [10], we have
n(Y757 A0> gO) + Sf(_lpa 05) = n(Y757 A1> gl)‘

This implies

(SlfA(Kﬁa AOa 9o; Sl)? 07 n(Y757 A07 gD)) = (S_VVfA<Y757 A17 g1; Sl)a 07 n(}/,ﬁ, A17gl))

and the same result holds for swf’. This finishes the proof of invariance of SWE4 (Y, s; S*)
and SWF®(Y,s; S') in the torsion case.

(2) s is non-torsion: In this case, let | = g.c.d{(ci(s) UR)[Y] | h € H'(Y;Z)}.
We pick a harmonic gauge transformation uy, € Gi° = HY(Y;Z) such that (c;(s) U
[up])[Y] = [ and denote by Coul(Y, Ag) and Coul(Y,u(Ap)) the Coulomb slices with
the base connections Ay and ug(Ag) = Ay — ug 'dug respectively. (Actually, these two
slices correspond the same subspace of Cy. However, since the base connections are
different, this subspace is identified with L2 (iker d* & T'(S)) in different ways. For this
reason, we distinguish them for clarity.) The gauge transformation ug : Coul(Y, Ag) —
Coul(Y,ug(Ap)) preserves the functional C'SD,, f, its formal gradient, the subspace
i, (Y) , the finite dimensional subspaces V{"" and both the L*-metric and the non-

linear metric || - ||3. From this fact, we get a natural isomorphism
S_VVfA(Y757A07g; Sl) gS_V\]fA(KE,U()(Ao)7g; Sl) (616)

Let o be any path going from Ay to ug(Ag). As the spectral flow sf(—ID 4, a)
can be calculated using excision and the Atiyah-Singer index theorem (see of [33,

Lemma 14.4.6]), it is not hard to check that sf(—IP,, @) = L. Combining the above
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two equivalences with (6.15) and (6.16), we get

swi (Y, s, Ao, g; S*) = $2Cswi (Y, 5, Ag, g: SV)

and similar results hold for swf®. This proves the periodicity result in the main

theorem.
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CHAPTER 7

The relative Bauer-Furuta invariants

7.1 The setup and notations

Let X be a compact, oriented 4-manifold with boundary Y. We give X a Riemannian
metric ¢ so that X is isomorphic to [—3,0] x Y near the boundary, with 0X identified
with {0} x Y. (Note that we shall often put a hat over the 4-dimensional objects.)
Assume that X has a spin® structure § which extends s. Denote by S¥ and Sy the
associated positive and negative spinor bundles respectively and let p be the Clifford
multiplication. We fix a base spin® connection Ag on X and require that V, =
4 4+ V4, when restricted to [—3,0] x Y. As in the 3-dimensional case, the space of
spin® connections on X can be identified with iQ'(X) via A — A—A,. For a € iQ'(X),
we let ]D: =P+ p(a) be the corresponding Dirac operator, acting on sections of S¥.

In particular, IDJr corresponds to the base connection Ay.

In order to define the relative Bauer-Furuta invariants, we need to make a choice

of the following axillary data:

e A base point 0

e A set of loops {ay, s, -+ ,ap, } in Y representing a basis of Hi(Y;R) such that
{a1,ag, -+, a.} also represents a basis for im(H;(Y;R) — H,(X;R));

o A set of loops {f1, -+ ,0} in X representing a basis of coker(H;(Y;R) —
H,(X;R));

e A based path data 1], whose definition is given below.
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Definition 7.1.1. A based path data is an equivalent class of paths (91,72, ,7,),
where 7); is a path from 6 to some point in Y;. We define (11, -+ ,m,) and (3, -+, n;,)
to be equivalent if for any 1 < j < by, the composed path 7 - 7]]71 represents the zero

class in Hy(X,Y;R).

Now we start setting up the gauge theory on X. Similar to the three dimensional
case, it will be convenient to restrict the discussion to a specific subspace of the whole
configuration space called the double Coulomb slice. Let us briefly recall its definition

following [30].

For a differential form a on X, we have a decompose aly = ta + na, where ta
and na are the tangential part and the normal part respectively. When Y has several
connected components, we denote by t;a and n;a the corresponding parts of aly,. We

say that a 1-form a satisfies the double Coulomb condition if:
1. a is coclosed, i.e. d*a = 0;
2. The restriction of a to the boundary is coclosed, i.e. d*(ta) = 0;
3. For each j, we have ij ti(xa) = 0.

Denote by Qf(X) the space of all 1-forms satisfying the double Coulomb condition.
The double Coulomb slice Coul®“(X), which is a subspace of L, ,(iQ"(X) @ Sy),

is defined as:

Coul®(X) = L3, (iQ(X) ® T(55)).

There is a natural restriction map
r: CoulC(X) — Coul(Y) (7.1)

given by

(@, ¢) = (ta, ¢ly).
Now consider the space of harmonic 1-forms on X with the Dirichlet boundary condi-
tion

OH(X) :={a € QYX) | da = d*a = 0,t(a) = 0}.
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By classical Hodge theory on X, there is a natural isomorphism
O5H(X) 2 ker(H'(X;R) — HY(Y;R)). (7.2)
We can treat iQ5(X) as a subspace of Coul®“(X) via the embedding a@ — (a,0).
There is a (nonorthogonal) projection
50 Coul”“(X) — i} (X)

sending (@, ¢) to 7y (@), where 7ty (@) is the unique element in i (X) satisfying

/a—/m[ forj=1,2,--- 1.

For later convenience, we also define the map
Pa : Coul®“(X) — R®

given by

and let
Coul§°(X) := ker pq.

Now we consider the group of gauge transformations. Let Gy be the L? 43 /2—completion
of Map(X, S'). The proof of the following lemma is a slight adaption of [30, Proposi-

tioon 1] and we omit it.

Lemma 7.1.2. Inside each connected component of Gx, there is a unique element
@: X — St satisfying
a(0) = 1, u 'du € i (X).

These elements form a subgroup of Gx, which we denote by Q_};(’é.
By Lemma 7.1.2, we have a natural isomorphism
G2 = m0(Gx) = HY(X; 7). (7.3

We denote by gﬁ;f;/ the subgroup of gﬁ;ﬁ that corresponds to the subgroup ker(H*(X; Z) —

HY(Y;Z)). Elements in g?;; restrict to a constant function on each component of Y.
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Now we define the relative Picard torus

Pic’(X,Y) : = i (X) /G5
P Y (7.4)
>~ ker(H'(X;R) — HY(Y;R))/ker(H (X;Z) — H'(Y:Z)).
The double Coulomb slice CoulCC(Y) is preserved by gﬁ(oy and g?(’é. Our main

concern will be the quotient space Coul®“(Y)/ gﬁ(‘; We treat it as a Hilbert bundle

over Pic’(X,Y), where the bundle structure is induced by the projection Dg-

Remark. A different Hilbert bundle structure of Coul““(X)/ Q?((; can be induced by

the orthogonal projection
P Coul“(X) — iQhL(X).

The main reason we are using pg here is that ps behaves better than p; under the
gluing of 4-manifolds, which simplifies the proof of gluing theorem for the relative

Bauer-Furuta invariant.

Notation. For a pair (a, ¢) € Coul®C(X), we denote by [a, ¢] the corresponding point
in the Hilbert bundle Coul®“(Y)/ Q;‘; We write || - || for the fiber-direction norm
on C’oulCC(Y)/Q?(’fy.

Note that |-||r is not directly given by the restriction of L7, ,-norm on Coul““(Y),
because the latter is not invariant under Q;L((; However, we have the following lemma,
which is a simple consequence of compactness of Pic’(X,Y). Let D C Coul®“(X) be

a fundamental domain for Pic’(X,Y), fixed through out this chapter.

Lemma 7.1.3. There exists a constant C' such that for any (a, ¢) € Coul®C(X) with

~

ppla, ) € D, we have

I[a, 4]l <
C

<@z, < C- (s dllle +1)-

k+1/2

One can check that the map p, is invariant under the action of G%%. As a result,

it induce a well-defined map

Da CoulCC(X)/g?ng — R°.
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The primage 5, (0) is just Coul§®(X)/G%S . This is subbundle of Coul®® /Gy, with

codimension e.

The last task of this section is to define the restriction map from Coul®“(X)/ Qé‘{;,
to the Coul(Y). This is where the based path data [17] comes into play. First notice
that the restriction map r in formula (7.1) is not invariant under the action of g}‘;

To remedy this, we consider the “twisted version”

bo
' Coul®C(X) — HCOUZ(Y}) =~ Coul(Y)
= (7.5)

The following result can be verified by simple calculation.

Lemma 7.1.4. v’ does not depend on the choice of the representative 1j in its equivalent
class (see Definition 7.1.1). Moreover, the map r' is invariant under the action ofgé?g/.

As a result, we can define the induced map
71 Coul®®(X) /GRS — Coul(Y). (7.6)

We denote by 7 the restriction of T on the subgundle C’oulgc(X)/g?(’fy.

7.2 The Seiberg-Witten map and its finite dimensional ap-

proximations

In this section, we will define the Seiberg-Witten maps SW, SW , SO and their finite
dimensional approximations. These maps will be important when we define the relative

Bauer-Furuta invariant in Section 7.4.

7.2.1 Definition of the Seiberg-Witten map
The (perturbed) Seiberg-Witten map

SW : Coul®“(X) — Li_, (i3 (X) & T(Sy))
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is given by

. . 1 = . .
SW(d7 ¢) = (dJr&a lD+¢) + <§F}\% - ﬁ71<¢¢*)0 - W6r7/3(d)¢) + d(&a ¢)7 (77)

explained as below:

e (¢¢*)o denotes the trace-free part of ¢¢* € I'(End(ST));

e wy is the self-dual part of the closed perturbation 2-from w, € Q?*(X). We
require that wol(—s0xy = miry. (Recall that vy is the harmonic form representing

—c1(s).) Such wy can be obtained from —%FAB + dh for some h € iQ°(X).

~

e To define the perturbation term ¢(a, ¢), we take a bump-function ¢ : [—3,0] —
0, 1] satisfying ¢([—3,—2]) =0, ¢([-1,0]) = 1 and 0 < //(x) < 2. For t € [-3,0],
let a; be the pull back of @ by the inclusion {t} x Y — X and let ¢, = $|{t}xy.

Then we define !

q(a, @ = 1(t)((dt A grad® f(as, ¢) + *grad® f(ar, @), grad” f(ar, 1)) (7.8)

(Recall that a good perturbation f (see Definition 2.1.3) is involved in the con-

struction of the spectrum invariants. We write its gradient as (grad' f, grad® f).)

We have a decomposition

SW=L+Q (7.9)

where
L(a,¢) = (d*a, lD;ﬁ(&)QAﬁ) and Q = SW — L.

A fundamental computation, making use of the tameness condition on grad f (see |

Definition 10.5.1]), gives the following lemma:

Lemma 7.2.1. For any number j > 2 and any subset U C Coul®“(Y) which is
bounded in L3, the set Q(U) is also bounded in L7.

'We write * for the 3-dimensional Hodge star operator and wirte %, for the 4-dimensional Hodge
star operator.
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Now we start defining the map SW , which is the folded version of SW. Notice
that the map

(SW,pp) : Coul“(X) = Li_y (i€ (X) & T(Sx)) x (iQ2p (X))

is equivariant under the action of g;’(’f;, where the action on the target space is given

by

u- ((w,4),h) == ((w,ud), h — u"du).
As a result, (SW, pg) induces a map
SW: Coul®(X) /GRS — (Lo (i23(X) @ T(Sx)) x (i9Q5(X)))/Gx5

By Kuiper’s theorem, the Hilbert bundle (L} _, ,(iQ%(X) @ '(Sx)) x (IQ5(X))) /G5
can be trivialized (unique to homotopy). We fix a trivialization and consider the
induced projection from this bundle to its fiber L 1/2(293()() ®I'(Sy)). Composing

the map SW with this projection. We get the map
SW : Coul®®(X) /G — L3y 5 (i92(X) @ T(Sy)).

The map
SWO : Coul§(X) /G5 = Li_1/a(i%(X) @ T(S5))

is defined as the restriction of 517/ .

7.2.2 The approximated Seiberg-Witten map

Just like the map (SW,pg), the map (L, pg) is also equivariant under the action of

gﬁ;‘; As a result, the decomposition (7.9) induces a decomposition
SW=L+Q: Coul““(X )/gXY — Li_ 1/2<iQi(X) @ I'(Sx))

where L is a fiberwise linear map. By restricting the subbundle Coul§°(X)/GY’ Xy, we
get a similar decomposition

SWO =L+ Q" (7.10)
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Now we define the finite dimensional approximations of SW and SW using these
decompositions. Recall that we chose an increasing sequence {u,} and a decreasing
sequence {\,} when defining the spectrum invariants for ¥ (see Section 5.1). We have

the following lemma:
Lemma 7.2.2. For any n, the map
(L, plig o 7) : Coul®(X)/Gx5 — Li_y (25 (X) @ T(Sx)) @ V2,
and the map
(L0, ptg 0 7) : Coul§(X) /GRS — Li_y (i3 (X) @ T'(S)) @ Vi
are fiberwise Freedholm.
Proof. This is a straightforward application of the Atiyah-Patodi-Singer theory [5]. [

Now we choose an increasing sequence {U,} of finite dimensional subspaces of

Li_l/z(iQi(X) @ I'(Sy)) with the following two properties:

(i) As n — oo, the orthogonal projection Py, : Li_, ,(iQ%(X) @ T'(Sy)) — U,

converges to the identity map pointwisely.

(ii) For any point p € Pic’(X,Y) and any n, the restriction of (L°,p"", o ) to
the fiber over p is transverse to U,,. This implies the similar result for the map

(L,pl", o 7).

Let W, denotes (L, p/"" o) ~L(U,) and W be the intersection W,N(Coul§° (X)/G%5).
By Lemma 7.2.2 and property (ii) above, both W,, and W? are finite dimensional vector
spaces over the Picard torus Pic’(X,Y). We let

%:E+PUnoQ:Wn—>Un

and let gﬂ\//g : WY — U, be its restriction. These are called the approzimated Seiberg-

Witten maps.
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7.3 The boundedness results

In this section, we will prove some analytical results on the (approximated) Seiberg-

Witten map. To state the result, we introduce the following definition.

Definition 7.3.1. A finite type X-trajectory is a pair (z,7) with
o« i=[a,¢| € CoulCC(X)/Q?(’ﬁ/ satisfies m(f) =0;

e 7:[0,+00) = Coul(Y) is a finite type Seiberg-Witten trajectory;

A finite type X-trajectory can be thought of a finite energy solution of the Seiberg-
Witten equations on the manifold X* = X U ([0, +00) x Y'). We have the following

theorem, which is a refinement of in [30, Corolary 2].
Theorem 7.3.2. For any M > 0, there exists a constant R > 0 such that for any
finite type X -trajectory (z,~) satisfying

Pa(Z) € [-M, M (7.11)
we have

|Z]| < R and ~([0, 00)) C int(Str(R)).

We need a lemma before proving Theorem 7.3.2. First recall that the topological

energy of a perturbed Seiberg-Witten trajectory v : [a,b] — Coul(Y") is defined as

(7, CS Dy g) = 2(sup CS Dy (v(1)) — inf CS Dy ¢(4(1)))-
S

tel
Lemma 7.3.3. For any C' > 0, there exist a constant R such that for any perturbed
Seiberg- Witten trajectory v : [—1,1] — Coul(Y') with EP(y,CSD,, ) < C, we have
7(0) € int(Str(R)).

Proof of Lemma 7.3.53. Suppose this is not true. Then we can find a sequence of

trajectories {~,} with £*P(v,,CSD,, s) < C such that

lirf [tn - W (O)[| 22 = +o0, V{u,} C Gr. (7.12)
n—-+0o g
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To get the contradiction, we lift , to 7, : [—3, —3] = Cy satisfying:

d

¥n(0) = 1(0), 2 9n(t) = — grad CS Dy, 4 (Tu(t)).

Such 7, can be treated as solutions of the perturbed Seiberg-Witten equations over
the manifold [—%, %] x Y. By [33, Theorem 10.7.1] (adapted to the balanced perturbed
case), after passing to a subsequence, there exists a sequence of gauge transformations

A.[ll

1 A~ ~ . 2 . . .
Uy @ [—5,5] xY — S such that 4, - ¥, converges in Lk+1/2 on any interior domain. In

particular, this implies that II(t,|f0yxy - n(0)) converges in L7. (Here II denotes the

nonlinear gauge projection defined in (2.3).) Notice that

(| {03y - 7 (0)) = tn - 72 (0)
for some u,, € Git. We get the contradiction with (7.12). [
Proof of Theorem 7.3.2. Suppose the theorem is not true for some constant M. Then

we can find a sequence {([an, Gn), Tn) Inen of finite type X-trajectories satisfying (7.11)

such that at least one of the following conditions is satisfied

(i) [l[@ns @ullle = +o0;

(ii) There exists a sequence {t,} C R=? such that
[ - Vn(tn)HLi — +o0, V{u,} C g}fi

Without loss of generality, we may also assume

~

D (an, on) € D (7.13)

where D is the fundamental domain fixed before Lemma 7.1.3.

Notice that for any fixed n, the energy £ (7, |j—1,141], CSDyyf) is less than 1 when
t is large enough. By Lemma 7.3.3, we have v,(t) € int(Str(R')) for any n and any ¢
large enough compared to n. Here R’ is a constant independent of n, j. Since C'SD,, ¢
is bounded on int(Str(R')) and C'SD,, s is decreasing along +,,, we get a uniform lower

bound C; on CSD,, r(v,(t)) for any n € N, ¢ > 0. This in turn gives a uniform upper
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bound on the perturbed topological energy (see [33, formula (24.25)] for definition) of

Sn, where s, is the solution on the manifold
X' =XU([0,1] xY)

obtained by gluing together (a,,, an) and 7y |j0,1]- By [33] (adapted to the balanced per-
turbed situation), after passing to a subsequence and applying suitable gauge trans-
formations, the solution s, on X’ converges in C*° on the interior domain X. In

particular, this implies the following two results:

(1) We can find u,, € Q?(’é such that i, (ay,, ¢En) converges in Lz+1/z to some (G, qgoo) €

Coul®®(X);
(2) CSD,, ¢((ay, ggn)|{_1}><y) is uniformly bounded below for any n.

We denote by [4] € H'(X;Z) the image of 4 under the isomorphism (7.3). By (1),
we have
([ )= 2rilfanl. (3 = [ (@ 1di) > [ =120
Bj B; Bj
and

([ )= 2mifin). o = |

J J

(dn—agldﬁn)%/ looy J =1,2,++ €.
By (7.11) and (7.13), we see that the set
(@], 18] 10 <n, 1 <5 < U (], [og]) |0 <0, 1 <5 < e}

is a bounded subset of Z. Since {a, - ,ae, 1, -, 5} represents a set of basis for
H{(X;R). We see that {u,} only takes finitely many values in Qé‘gé. After passing
to a subsequence, we can assume that @, does not depend on n. Then (1) implies
that after passing to a subsequence, (a,, ngSn) converges in L? 12 which rules out the

possibility of (i) by Lemma 7.1.3.

.. . A~ n . 2 .
As for (ii), since (an, ¢n) converges in L, Jos We have a uniform upper bound Cs

for C’SDVOJ((&”,&”)|{,1}XY). By restricting (dn,ngn) to the slices {t} x Y (-1 <t <
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0), projecting to Coul(Y) using the nonlinear projection II and gluing to the half

trajectories 7,, we obtain trajectories
v [=1,00) = Coul(Y)

whose topological energy is bounded above by Cy — Cy. Applying Lemma 7.3.3 on

Yo li—1,¢41) With ¢ € [0, 00), we see that
Yu(t) € int(Str(R")), Vn e N,0 <t
for some uniform constant R”. This rules out the possibility of (ii). O

Corollary 7.3.4. There exists a uniform constant Ry such that for any finite type
X -tragectory (z,7), we have y(t) € Str(Ry) for any t € [0, +00).

Proof. We can find a constant C' with the following significance:

e For any (yi, - ,y.) € R, there exists a class [¢] € H'(X;Z) such that
(yla T 7ye) - 271‘(([(1/1], [€]>> T <[al]7 [5])) S [_07 C]e

Let Ry be the constant in Theorem 7.3.2 with M = C'. Then by our choice of C, for
any finite type X-trajectory (Z,7), we can find a transformation @ € Q?gé X — St
such that (@ - Z, (a]y) - 7y) is a finite type X-trajectory satisfying condition (7.11) with
M = C. By Theorem 7.3.2, we have (a|y) - v(t) € int(Str(R;)) for any t € [0, +00).
This implies () € int(Str(Ry)) for any t € [0, 400). O

Now we turn to the boundedness result for approximated X-trajectories.

Definition 7.3.5. For n € N and ¢ € R=% a finite type (n,¢)-approximated X-

trajectory is a pair (Z,7), where

o T € IV satisfies Hgﬁ/;(j:n)HLz

<e€
k—1/2 —

e 7:[0,T) = V{ is a finite type approximated trajectory. Here T' € R*°U {400}

is called the length of the approximated X-trajectory.
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— 0o

e v(0) = p" o7 (Z,). (Note that p* o7 (i) always belongs to Vi" by the definition

of W,.)
Definition 7.3.6. For each j € N, let (Z;, ;) be a finite type (n;, ¢;)-approximated X-
trajectory of length T; < 4+00. Then the sequence {(z;, ;) } en is called an exhausting

sequence if

n; — 400, €; — 0 and T; — +oo0.

The proof of the following lemma is a slight adaption of [30, Lemma 2] and we

omit it.

Lemma 7.3.7. Let S,S be bounded subsets of CoulCC(X)/Q;?g, and Coul(Y') re-
spectively. Let {(Z;,7;)}jen be an ezhausting sequence of finite type approzimated
X -tragectory with T; € S, v; C S for any j. Then there exists a X -trajectory (Too, Yoo)

such that, after passing to a subsequence, we have

e i; converges to I in the topology of Coul®®(X)/ ?((;/;

e 7; converges to Yo uniformly in L} on any compact subset of R=0.

Proposition 7.3.8. There exists a constant Ry with the following significance: for any
bounded subsets S C C’OUZOCC(X)/Q?(’?Y and S C Coul(Y), there ezists ey, N, T € (0, 00)
such that: for any finite type (n,€)-approvimated X -trajectory (%,v) of length T > T
satisfying

n>N, e<ey, £€S and~ C S,

we have ||Z||p < Ra.

Proof. Let Ry be the constant R given by Theorem 7.3.2, with M = 0. Suppose the
result is not true for some S, S. Then we can find an exhausting sequence {(;,7;) }jen

of finite type approximated X-trajectory such that
v C S, i’j S S’ and ||Z1~3‘]||F > Rs.

By Lemma 7.3.7, after passing to a subsequence, we can find a finite type X-trajectory

(oo, Voo) such that Z; — Z in the topology of CoulCC(X)/Q?(’ﬁ,. In particular, this
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implies

el = Tim[7]lp = Ro and pa(es) = lmn faly)

Since z; € CoulgC(X)/Q;‘(g,, we have po(Z;) = 0, which implies p,(Z~) = 0. By

Theorem 7.3.2, we have ||Z||r < Rs. This is a contradiction. O

Proposition 7.3.9. For any bounded subset S C Coul(Y), we can find a constan-
t R(S) with the following significance: for any bounded subset S C CoulCC(X)/g?(’g/
there exist e, N, T € (0,00) such that for any finite type (n, €)-approzimated X -trajectory
(Z,7) of length T > T satisfying

n>N, e<ey, £€S and~ C S,
we have ||Z||p < R(S).
Proof. Consider the number

c(9) :sup{|z'/.a| | (a,0) €S, 1 <j<e}

We let R(S) be the constant R given by Theorem 7.3.2, with M = C(S). The rest of

the proof is identical with the previous one. O

Proposition 7.3.10. There ezists a constant Rs with the following significance: for
any bounded subsets S C Coul(X)/g?(’z, and S C Coul(Y), there exist ¢y, N,T €
(0, +00) such that for any finite type (n, €)-approximated X -trajectory (Z,v) of length
T > T satisfying

n>N, e<e, i€SandyC S

We have v|or_7) C Str(R3).

Proof. Let R3 = max{Ry, R} where Ry and R; are the constants given by Theorem
2.2.2 and Proposition 7.3.4 respectively. Suppose the result is not true for some S, S.
Then we can find an exhausting sequence {(Z;,7;)}jen of finite type approximated
X-trajectories with #; € S,v; C S, together with a sequence {t;};cny C RZ? such that
v;(t;) & Str(Rs) for any j. By Lemma 7.3.7, there exists an finite type X-trajectory

(Toos Yoo) such that, after passing to a subsequence, 7; converges to 7., uniformly in
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L% on any compact subset of R=2°. Since v,, C int(Str(R3)) by Proposition 7.3.4, we

see that lim t; = +o0o. However, by Corollary 2.2.8, the sequence {¢;} ey should be

J—+oo

bounded above. This is a contradiction. OJ

7.4 Construction of the relative Bauer-Furuta invariants

7.4.1 Thom spectrum of the virtual index bundle

In this subsection, we will define the Thom spectrum of the virtual index bundle
ind(lD+) as an object of €. (When § is spin, we also have the corresponding object in
@pm(g).) The relative Bauer-Furuta invariant will be defined as a morphism from (a

suitable suspension of) this object to the spectrum invariant of Y.

Let Hg be the closure in L{(I'(Sy)) of the subspace spanned by the eigenvectors

of Ip 4, With nonpositive eigenvalues and let
Iy : Li(T(Sy)) — Hg
be the orthogonal projection. We consider the map
Ds +iQp(X) x Lip1p(T(S%)) = iQp(X) x (Li_y2(T(Sx)) & Hg)
given by
(h, @) = (h, B}, 6, TT5 Gy ).

We treat Dg as the bundle map over iQL(X) that is equivariant under the action of

?(‘;/ Here the actions on source and target bundles are respectively given by
i-(a,0) == (a—a"'di,ad)

and
i (@, 6,9) = (h—a7'da, a9, (uly)¥).
Let Dg be the bundle map over Pic’(X,Y), obtained by taking the quotient of Dg

under the action gﬁ;‘; We fix a trivialization of the target Hilbert bundle

7 Pid(X,Y) x (Li_yp(T(Sk)) © Hg) = (i9(X) x (Li_1 (T (Sx)) @ Hy)) /G-
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Composing Dg with the projection from the target bundle to its fiber (which is induced

by 7), we obtain a map
Ds : (iQp(X) x LIZ+1/2(F(S;)))/Q?£/ — L%—1/2(F(S)_()) ©Hg.

By the Atiyah-Patodi-Singer theory (c.f[7]), the fiberwise restrictions of Dg are Freed-
holm. As a result, we can find a finite dimensional subspace U C L7 /Q(F(S)_()) O Hg
such that it is transversal to all these restrictions. In this case, ﬁgl(U ) is a finite
dimensional vector space over Pic®(X,Y). We let T(Dg'(U)) be its Thom space and
choose oo as the base point. Then ©-YT(Dg'(U)) is an object of the stable catego-
ry € We write this object as T'(X,§, Ay, g,0; S'). This notation is justified by the

following lemma, whose proof follows from standard homotopy argument.

Lemma 7.4.1. Let S-UT(D3 (U;)) (j = 1,2) be two objects arising from differ-
ent choices of auxiliary data (Qj,AOJ,éj). Suppose gily = Goly, A071|y = A072|y
and 61 = 6y. Then there is a natural isomorphism between L-U"T(Dg'(Uy)) and

20T (DGH(Uy)).

Remark. For different choices of base points 61, 02, one can construct an isomorphism
between the resulting objects by choosing a path v from 0, to 6;. However, isomor-
phisms given by different pathes ~;, v, are usually different, unless the composed loop

71 ‘2 represents the zero class in Hy(X,Y;R).

Now we relate the object T'(X, 5, Ay, g,0; S') with our earlier constructions. To
state the result, we recall that there is an nondegenerate, symmetric quadratic form
on im(H?*(X,Y;R) — H?(X;R)), which is given by cup product. We make a choice of
a maximal non-negative subspace for this quadratic form and denote it by I, (X). Note

that for any two choices of I, (X)), their orientation set can be naturally identified.

Lemma 7.4.2. Let U,,W,,W? be defined as in subsection 7.2.2. Then there are

natural isomorphisms (in the category €)

N T(WO) 2 0 OT(X 8, Ay, g,0: SY) (7.14)
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and
EfUnE—anT(Wn) ~ Zf(coker(Hl(X;R)%Hl(Y;]R))GBM_(X))T(X’é’ Ao’g’ 6, Sl) (715)
Here T(W?) (resp. T(W,)) denotes the Thom space of the bundle W? (resp. W,,).

Proof. This is a bundle version of the index computation in [30, Propositionn 2]. The
detailed argument is omitted because it is straightforward but messy. We only mention
that in the proof, the based point data [7j] (which is involved in the construction of

W,, and W?) plays the role of specifying a bundle trivialization

(iQ5(X) x Coul(Y))/G%S = Pic®(X,Y) x Coul(Y)

bo . bo

[ (aj. 0,)) to (1B, Tl (a.e ™" - 6) (e, (7.5). 0

j=1 7j=1

by sending [(h,
Next, we turn to the special case that s = §|y is torsion. In this case, we consider
the normalization (T(X,§, Ay, g,0;S5'),0,n(Y,s, Ag,g)) € ob€. By simple excision

argument, one can show that there is an natural isomorphism
(T(X7§7 A07 g7 67 81)7 07 n(Y757 A07 g)) = (T<X7§7 gl7 A67 67 Sl)? 07 Tl(Y,ﬁ, A67 g/>)

for any (Ao, g) and (Af,q). As a result, we are safe to suppress (Ag,g) from our

notation and denote this normalized object by T(X, §, 6; S1).

When s is a spin structure, all our construction can be adapted to the Pin(2)-
equivariant setting. As a result, 3"UT(Dg'(U)) can also be treated as an object of
Cpin(2), Which we denote by T'(X, s, Ay, g,0; Pin(2)). Similar result as Lemma 7.4.2
still holds in this case. (Note that in the spin case, both I, (X) and coker(H'(X;R) —
H'(Y; R) are isomorphic to copies of R (the nontrivial one dimensional representation
of Pin(2)). Also, the element j € Pin(2) acts nontrivially on Pic’(X,Y’).) We denote
the normalized object

n(Y757 A07 g)

(T(X.5 Ag,9.0; Pin(2)), 0, "2

) € ob Cpin(2)

by T(X, 5, 6; Pin(2)).
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7.4.2 Type-A relative Bauer-Furuta invariant

With all the results in place, we can finally start defining the relative Bauer-Furuta

invariant for a spin® 4-manifolds with boundary. We make the following conventions.

Notation. Let R be a positive number, V' be a normed vector space and W be a
normed vector bundle. We denote by B(V, R) (resp. B(W, R)) the closed disk (resp.
disk bundle) with radius R and denote by S(V, R) (resp. S(W, R)) the sphere (resp.
sphere bundle) with radius R.

Recall that the spectrum invariants of Y are obtained by cutting the unbounded set
S tr(f%) into bounded subsets J= and doing finite dimensional approximations. In order

the define the relative Bauer-Furuta invariants, we impose the following requirements

on R:

(i) R > R;, with contant Rj given in Proposition 7.3.10;

(ii) f(B(CoulgC(X)/Q?(’g/,Rg)) C Str(R), with constant Ry given in Proposition
7.3.8.

For each n € N and € € R>?, we define the following bounded subsets of Str(R):

1

K (n,€) = p/% o 7(SWQ (B(Uy,€)) N B(WY, Ry)),
K3 (n,€) = g o #(SWY (B(U,e) N S(WY, Ry)).
We define the map
vH(n,€) : BOWY, Ry)/S(WP, Ry) = (B(Us, €)/S(Un, €)) A (K (n, €) /K (n,€))
by the formla

gﬁ//ox,ggofx ifg\/M)m > <€
o o | TR P o) IS, <

basepoint otherwise

It is easy to see that v™(n,€) is well-defined and continuous.
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Since f(B(C’oulgC(X)/g?(’g,, R»)) is a bounded subset of Str(R), there exists mg €
N such that
F(B(Coul§“(X)/G%% . Ra)) C T,

This also implies
Ky (n,e) C K| (n,e) C J»" for any n € N,e > 0 and m > my.

Lemma 7.4.3. For any m > my, there exist N,, € N and T,,, €,, € R>? such that for

any n > N, and € < €,,, we have
(1) Jt is an T,,-tame isolating neighborhood under the flow o7, ;
(2) (K{(n,e), K (n,¢)) is a Tp,-tame pre-index pair in J.

Proof. (1) is a direct consequence of Lemma 5.1.5. Under the assumption (1), we let

A= J»t and

A''= AN Str(max(Ry, R3)) N ) gj4(—00,0+m — 6]

1<j<bs
(c.f. (5.3)). Then by Lemma 5.1.4, Lemma 5.1.5 and Proposition 7.3.10, there exists

a constant T, independent of n, e such that conditions in Definition 3.2.10 holds for

(K (n,e), K (n,e)) when n is large and € is small. O

For each m > mg,n > N,,, we choose any € < ¢, and let

lyme P K (n,€) /K3 (n,€) = Isi(gp,, inv ()

n,m,€

be the canonical map (see (3.5)). We consider the following morphism in €

Pt = ST (A ALY, JovT(n,€) : STHIT(X, 8, Ay, g,6; SY) — I,

(id denotes the identity map on B(U,,€)/S(U,,¢€).) Here we made use of the natural
isomorphism

SUns VL B(WD, Ry)/S(WO, Ry) = £ +T(X, 5, Ag, g, 6; 5")

provided by Lemma 7.4.2. Note that for different choices of ¢ € (0, ¢,,], the maps
(id ALY, ) o vT(n,€) are homotopic to each other. Therefore, as a morphism in €,

n,Mm,€

™m* does not depend on the choice of e.
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Lemma 7.4.4. For any m > mg and any n large enough relative to m, we have
ot =P (7.16)

where it = St € more (1™, 1) is given in (5.4).

Proof. Notice that when n is large enough relative to m, (Jp; \ T Jm) is a strong
Morse decomposition for Jiv; (see Definition 3.2.15). By Proposition 3.2.18, we have

~ n + + . . . ’Tn7+ ’VL,+ o n,+
lm1m S im0l o, which implies i, o " = 7. [

Lemma 7.4.5. For any m > mg and any n large enough relative to m, we have
oyt =y, (7.17)

where pit is given in Proposition 5.1.6.

Proof. The proof is very similar to Proposition 5.1.6. First, by replacing U, with
U, + Upy1, we can assume that U, C U,y1, which implies W? C W79+1' Then for

s € [0,1], we consider the following map from Wy, ; to Un41 @ V"'

SW =L+ (sPy, ., + (1 —5)Py,) 0 Q%0 (sPwo  + (1 —s)Pwp).

By repeating our construction in this subsection with S W£f1 in place of SW? ; and

n+1,s

@15 (the interpolated flow generated by the vector field (5.6)) in place of @™ we

obtain a map
(B(Wyiy, B) x [0,1])/(S(W,, R2) x [0,1]) —

B( n+1; € )/S< n+l, € )/\[51(30%—"_15 lnv(‘]:;_l’—i_))-

(7.17) is directly implied by the homotopy induced by (7.18). O

(7.18)

Recall that the spectrum invariant s_WfA(Y, s, Ao, g; S') is defined as the inductive
system
C g
In1+ _> ]n2, 2 I§13,+ i>
with connecting morphism 7 = i"m+1:F o prm+1=L+ 0. ..o gt We can take n,, large

enough relative to m, such that (7.16) and (7.17) holds. Then we have

o Wt = for any m > mo.
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As a result, the element
[w?nm] € Hlor@(zilﬁ_(X)T(ng? AO) g, 67 Sl)as_VVfA(Y757 A07 g; Sl))
= lim morg(X~HXT(X, 5, Ay, g,0; SY), I
m—0o0

does not dependent on the choice of m € Z="0.

Definition 7.4.6. (1) The S'-equivariant relative Bauer-Furuta invariant
bf* (X, 5, Ao, 9,0, [7]l; S*) € more (B~ IT(X, 5, Ao, 9,6, 51, swi (Y, 5, A9, g: 51))

is defined as the morphism represented by ¢ for any m > my.

(2) When s = 5|y is torsion. We define the normalized relative Bauer-Furuta

invariant
BFA(X, 3,6, [7]; SY) € morg (2T (X, 5,6, S1), SWFA(Y, 5, SY))
as the morphism represented by the desuspension (™" 0,n(Y,s, Ag, g)).

When § is a spin structure, the desuspension 3~ £V ((id AL Jov(n, €)) can al-

so be treated as an element of more ., , (5™ T(X, 8, A, g,0; Pin(2)), I55*(Pin(2))).
. n,A4
We denote it by wPin(Q),m

Definition 7.4.7. When 5 is spin, we define the normalized Pin(2)-equivariant relative

Bauer-Furuta invariant

BF4(X, 5,6, [7]; Pin(2)) € mors, . (S XT(X 5 6; Pin(2)), SWEA(Y, 5; Pin(2)))

n(2)

n(Y757A07g)
0, 2 )

as the morphism represented by the desuspension (w;’;@) . for any m >

my.

7.4.3 Type-R relative Bauer-Furuta invariant

Now we turn to the repeller case. Let R be chosen as last subsection. For m € N ,
we let R(J,,) be the constant provided by Proposition 7.3.9 with S = J_. For any

n,m € N and € € R, we consider the following two compact subsets of J™~

Ko (nym,e) i= J%" O pt o 7 (SWy  (B(Un,€)) N B(W, R(J2))),
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Ky (n,m, €) = (K7 (n,m, )naT> )OI npt of (S, (B(Un, €))NS(Wa, R(JZ))).
We define the map
v (n,m,e): B(W,, R(J»7))/S(W,, R(J¥7))
— (B(U,,€)/S(U,,€)) N (K (n,m,€e)/Ky (n,m,e€))
by the formula

(SWa(@), 0 7(@)) i |SWa(@)|lgz | <€ plof(x) € J5

v (n,m,e)(z) = 1/2

basepoint otherwise

One can check that v™(n,m, €) is always well-defined and continuous.

Lemma 7.4.8. For any m € N, there exists N,, € N and T,,, €,, € R>? such that for

any n > N,, and € < €,,, we have
(1) Jn~ is an T,,-tame isolating neighborhood under the flow ¢, ;
(2) (Ky (n,m,e€), Ky (n,m,e)) is a Tp,-tame pre-index pair in J);~.

Proof. The proof is identical with Lemma 7.4.3 except that we use Lemma 7.3.9 instead

of Lemma 7.3.8. O

For each m € N and n > N,,, we choose € < ¢, and let

b, K1 (n,m, €) /Ky (n,m, €) — Isi(oy,, inv(J57))

n,m,€e

be the corresponding canonical map. Then as in the attractor case, we consider the

following morphism in €
YT = E*anE_U"((id Nlyme) ov™ (n,mye))
Zf(I+(X)®coker(H1(X;R)%Hl(Y;R)))T(X’ﬁ’Aojg’6; Sl) N [77;,7'

Here we made use of the isomorphism

SV SV (B(W, R(J,,))/S(Wa, R(J;,)))

~ Zf(IJr(X)éBcoker(Hl(X;R)HHl(Y;]R)))jv(‘X—,g7 140797 6, Sl)

provided by Lemma 7.4.2.
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Lemma 7.4.9. For any m € N and any n large enough relative to m, we have

'Tn’f n,— n,—
Zm © wm-kl - ¥Ym > (719)
T — —vO n— — N\ - . . "
where 1%~ = X"l € more(I) 1y, [%7) is given in Proposition 5.1.8.

Proof. The proof is identical with Lemma 7.4.4 except that we use Proposition 3.2.19
instead of Proposition 3.2.18. [

Lemma 7.4.10. For any m € N and any n large enough relative to m, we have

P o = U (7.20)
where pl~ is the isomorphism given in Proposition 5.1.8.
Proof. The proof is identical with Lemma 7.4.5. [

Recall that the type-R spectrum invariant swf®(Y,s, Ay, g) is defined as the pro-

jective system

- n _ 7Ny — N3
[1117 . 132, . [:7;37 . .

with the connecting isomorphism 7, = (pm+1 =5~ 0.0 plm =)~ og"m+1.~ Suppose we
choose n,, large enough relative to m such that (7.19) and (7.20) holds for all m € N.

Then we have
- o ¢n7n+177 _ wnm,—
M m—+1 - ¥m .

As a result, {0 },en gives a well-defined element in
More- (E_(Lr(X)EBCOker(Hl(X;R)_)Hl(Y;R)))T(X,é,Ao,g,é; Sl),S_\NfR(}/,ﬁ,Ao,g)).

Definition 7.4.11. (1) The S'-equivariant relative Bauer-Furuta invariant

b_fR(Xa'%vAOagaé7 [ﬁ]vsl)

€ morg- (Zf(I_F(X)@coker(Hl(X;R)HHl(Y;R)))T(X’§7 AO;g; 6, Sl),S_VVfR<Y,5, A07g; Sl))

is defined as the morphism given by {7~ },en.
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(2) When s = 5|y is torsion. We define the normalized relative Bauer-Furuta
invariant
BE"(X, 5,0, [1]; S')
€ morg- (E—(I+(X)EBcoker(H1(X;R)%Hl(Y;R)))T(X"%7 6; Sl)7 SWFR(Y,E; Sl))

as the morphism given by {(¢¥~,0,n(Y,s, Ao, 9)) }men.

In the case that § is a spin structure, we can define the morphism @D?J%(_Q) ., from
the object
E_(Lr(X)@COker(Hl(X;R)_)HI(Y;R)))T(X,,‘%,Ao,g, (A), PZTZ(Q))

N, +

to the object I~ (Pin(2)), in same manner as i o, .

Definition 7.4.12. When § is a spin structure, we define the normalized Pin(2)-

equivariant relative Bauer-Furuta invariant

BE"(X,s,0,[1]; Pin(2))

€ morg;, (ST (SkaUERZTYEIT (X, 5, 6; Pin(2)), SWE(Y, 5; Pin(2)))
as the morphism given by {(¢p;: )+ 0, LU R .

156



CHAPTER 8

Further developments

In this chapter, we will discuss some further developments of the theory. Most of
the results in this chapter will be stated without proof. We refer our paper [28], [20]
and [27] for complete proofs. Although some results can be extended to the general
case, for simplicity, we will assume that all spin® structures on 3-manifolds are

torsion throughout this chapter.

8.1 Calculations

As mentioned in the introduction, our spectrum invariants are quite difficult to com-
pute. However, by using Mrowka-Ozvath-Yu’s explicit description of the Seiberg-
Witten moduli space for Seifert manifolds [18] and a refinement of the rescaling tech-
nique developed by Khandhawit [29], we are able to give explicit computation of the
invariants in torsion cases of some Seifert manifolds. We summarize these examples in

this section. See [28] for the derivations.

8.1.1 S?x St

Since the manifold S?x S! admits a metric with positive scalar structure. The spectrum

invariants for the torsion spin® structure are just the sphere spectra.

More precisely, let s be the unique torsion spin structure on S? x S*. Then we have
SWE4(S? x S',s; ") = (S°,0,0), SWF#(S? x S s;5) = (5°,0,0).
Note that s can be lifted to two spin structures, denoted by s/ (j = 1,2). We have

SWE4(S% x S, s7; Pin(2)) = (S°,0,0), SWE?(S? x S',s7; Pin(2)) = (5°,0,0).
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8.1.2 Large degree circle bundle over surfaces

Let Ng be a complex line bundle of degree d > 0 over a surface ¥ of genus g and let
Y = S(IVg) be the corresponding circle bundle. The torsion spin® structures on Y can

be identified with Z/dZ in a canonical way and we denote them by sq, 61, -+ ,64_1.

In the case that 0 < g < g < d, we have the following results:

SWE4(S(Ny),54;51) 2 (5°,0,¢(g,d, q)),

(8.1)
SWE(S(Ng),sq;5") = (5°,0,¢(g.d. q)),
where
d-1 (9g-1-¢g)d+g—-1-9)
c(g,d,q) = g T ¥ :

A particularly interesting case is when d is an even number greater than 2g — 2.
Setting ¢ to be %l + g — 1, the spin® structure s, has vanishing ¢; and therefore can be

lifted to 2% spin structures, denoted by s/ (j = 1,2,---,2%). We have

SWE(S(N) s} Pin(2)) 2 (5°.0,~ 1) o
SWET(S(Ny),s}; Pin(2) = (5°,0, ~). |

8.1.3 Circle bundles over torus

When g = 1 and d # 0, the circle bundle Y = S(Ny) is a nil manifold and the spectrum

invariants Y for torsion spin® structure can be explicitly computed.

We focus on the case d > 0 (the d < 0 case is similar). The spectrum invariants
for s1,--- ,54 1 can be computed by formula (8.1). Hence we are left with s, whose
spectrum invariants are actually not suspensions of the sphere spectrum. To state the
result, we give the following notation.

Notation. Let A be a topological space and B be a subset of A. We denote by \n/A
B

the topological space obtained from gluing n copies of A together along their subset

B.
We have

2 3
SWEFA(Y, 50; S*) = <@+ N \/@+ - \/(C* . ’0,ﬂ> :
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SWFR(Y, 50; S1) = <(@)+ \ (S + (CHT\ (H SY) « (CH)*\ (H SY o0, %) |

n
where in the second formula, [ ] S denotes the union of n disjoint orbits in the S!-space

(C*)*. The connecting morphisms are given by the obvious inclusions.

The spin® structure sy can be lifted to four spin structures, denoted by 5% (j =
0,1,2,3). The invariants for s}, s3, s5 are isomorphic so we only consider s;. We have

the following result:

— 17
SWFA(Yso,Pm ( HPm 0, 16 ),

where Z(]O_O[ Pin(2))) € ob(&(Pin(2))) denotes the direct system
Y Pin(2) — X(Pin(2) II Pin(2)) — S(Pin(2) II Pin(2) IT Pin(2)) — - -,

with the connecting morphisms given by natural inclusions and Y denoting the unre-

duced suspensions. We also have
SWER(Y, si: Pin(2)) = [ Ht \ ]_[ Pin(2 d !
[OA A S »~0 16 .
where H™ \ [ Pin(2) denotes the inverse system
2 3
H*\ Pin(2) + H"\ [[ Pin(2) « H"\ ]| Pin(2) «

(As before, [[ Pin(2) denotes the union of n disjoint orbits in the Pin(2)-space H™.)

As for the spin structure s3, the spectrum invariants are as follows

< d—9
SWEA(Y,s% Pin(2)) = | = | S(H) Vv Zyx S(H)) | ,0,—— | .
SWE( (2)) ( )PmmP;/@)( > X S(H)) 16

sw_FR(ng;Pm(Q))g(( )7\ D, 0 dfg?).

Let us explain the notations above: In the first formula, S(H) denotes the unit sphere in

H; Z, denotes the two-point space with nontrivial Pin(2)-action and S (H) P'>Z/(2)( \ (Zyx
¢ Pin(2)
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S(H))) denotes the direct system
~ 2 ~
S(H) PZX(Q)(Z2 x S(H)) — S(H) s Pl/@)(z2 x S(H)) | —
3
SH) v | \/ (ZexSH))| — -

Pin@)\ pinca)

In the second formula, D,, is the subset of S(H?) defined as

D,, = U{(Zl + 20, 23+ j24) € S(H?)|23 = —2Z4 = nzy or 23 = 24 = nZ}

n=0

and (H?)™ \ D, denotes the inverse system

(H2)* \ Dy  (H2)*\ Dy < (H2)*\ Dy ¢ - - .

8.1.4 Other nil manifolds

Any manifold Y can be realized as a nonzero-degree S'-bundle over an orbifold ¥ with
Euler characteristic x(X) = 0. When b,(Y") > 0, the orbifold ¥ is either a torus or
a Klein bottle. The torus case has been done in last subsection and the Klein bottle
case is very similar.

We are left with the case b;(Y) = 0. Since Y is a rational homology sphere, type-A
and type-R invariants are both isomorphic the Manolescu’s original definition of the

spectrum invariant. In this case, we actually have
SWF(Y,s;S") = (S8%,0,¢(Y,s)) €ob€ (8.3)

where ¢(Y,s) € Q is a constant whose explicit formula can be obtained in the same
fashion as the constant ¢(g,d, ¢) in formula (8.1), we refer to [28] for a model calcula-

tion.

8.1.5 Flat manifolds except 73

There are five manifolds belonging to this class: four of them are T2-bundles over S*

with monodromy automorphism fixing a point and having orders 2,3,4,6, and the
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last of them is the Hantzsche-Wendt manifold. By the Weitzenbock formula, for any

torsion spin® structure s on Y, the functional C'SD has only reducible critical points.

The Hantzsche-Wendt manifold is a rational homology sphere. Therefore, its spec-

trum invariant is also of the form (8.3).

Now we consider the T2-bundles over S! whose monodromies are automorphisms
7:T? — T? of order 2 (i.e. the hyperelliptic involution on 7%?). The situations for the
cases of order 3,4 or 6 are very similar, so we will focus our attention to this case of

order 2.

Y has four spin® structures s; (j =0, 1,2,3). Three of them have simple spectrum

invariants:
SWF4(Y,5;;S%) 2 (5°,0,0), SWE#(Y,s5;; S%) = (S5°,0,0) for j = 1,2,3.

Similarly, the Pin(2)-spectrum invariants for spin structures lifting s; (j = 1,2, 3) are

all isomorphic to the sphere spectra (S°,0,0).

As for s¢, the results are given as follows

A . Qly ~ v 1
SWE(Y, 0; 5") = ¥c+,o,§ ,
SWE™(Y,50:5%) = ( ()" \ (][ 5").0. g) ,
s 3
A 0. : ~ _
SWEA(Y, s0; Pin(2)) = | & S(H)PXQ)PXQ)<ZQ><S<H>> 0.5

(@) Da. ),

2

SWEX(Y, s8; Pin(2))
SWEA(Y, sb; Pin(2)) = <z<f[ Pin(2)),0, i) ,
SWEX(Y, sb; Pin(2)) = (H VI Pin.0, Z) ,

where s, (j = 0,1) are the two spin structures lifting s.
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8.2 The homology cobordism invariants

In this section, we will define all kinds of Frgyshov-type numerical invariants for a
general spin® 3-manifold by applying different generalized cohomology functors to
our spectrum invariants. (Recall that we only consider torsion spin® structures on
3-manifolds in this chapter.) These invariants are all invariant under Q-homology
cobordisms. Recall that two spin® (resp. spin) 3-manifolds (Y}, s;) are Q-homology
cobordism to each other if (Y7,81) U (Y3, s5) bounds a spin 4-manifold (X, §) satisfying
H*(X,Y;;Q) =0 (j = 1,2). These homology cobordism invariants give interesting

constrains on the intersection forms of 4-manifolds with boundary.

We start with the following theorem describing the behavior of the spectrum in-

variants under the fixed point functors ®5' defined in Section 3.1.2.

Theorem 8.2.1. (1) For any torsion spin® structure s on a 3-manifold Y, we have

natural isomorphisms
750 (S°,0) S 3 (SWFA(Y, 5, 51)) € ob(&)

and

51 (8°,0) S 03 (SWER(Y, 5: S1)) € ob(6%).

(2) For any spin structure § on a 3-manifold Y, we have natural isomorphisms

Tfin(?) 1 (5°,0) — (I)gpm@) (SWEA(Y, 5; Pin(2))) € ob(6z,)

and

7P (80,0) S CIDéI; "

(SWE(Y.5: Pin(2)) € ob(&%,).

Now we start defining the numerical invariants in each case separately. The con-
structions are very similar to each other because they all follow from the same idea:
by composing the isomorphisms provided by Theorem 8.2.1 with the inclusion of the
Sl-fixed point spectra, we get morphisms from the sphere spectrum into our spectrum
invariants. Then we consider the maps on generalized cohomology induced by these

morphisms and extract numerical invariants from the images of these maps.
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8.2.1 d invariants for torsion spin® structures

We will define the invariants d*, d® by applying the functor of S'-equivariant coho-

mology to our spectrum invariants.

Consider the type-A case first. We let SWF#(Y,s; S') be represented by the in-
ductive system
i+ it
Ir =L =1 ..
with It = (A +, Gm+, b+ ) for m > 0. The isomorphism Tfl in Theorem 8.2.1 can

be represented by a morphism 7. + € morg((S°,0), (A;?l1 4+ am,+)) for all m greater or

equal to some constant mg. These morphisms satisfy the relation

+ oSt St
Iy © ot = Topi1,4 fOT ANy m > my. (8.4)

We consider the stable map p,, + given by the composition
(Rom ) — AS . — Ay

where the first arrow is given by the stable map representing 7, + and the second

arrow is the natural inclusion. For each m > mg, we define a number

dm,—i— = inf{p S | pjn,-&-(f{g ( m,+3 ZQ)) 7& 0} — Qm+ — 2bm,+

where ﬁgl denotes the reduced S'-equivariant cohomology of degree p. Using the
relation (8.4), one can prove that d,, < d,,+1 for any m > mgy. We define the type-A
d-invariant for (Y, s) as

bh(Y)

dY,s) := sup{dm . | m > mg} — 5

€ QU {+o0}.

Now we turn to the type-R case. Suppose SWF#(Y,s; S') is represented by the
projective system
R SRy
with I, = (Am.—,am—, by ). The isomorphism 75" in Theorem 8.2.1 can be repre-
sented by a collection {Tn*?:f}mzo of morphisms with 77;9:7 € morg((S°,0), I,,). Similar

to the previous case, we consider stable map p,, - given by the composition

(ROt — Af;’_ — Ay
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and define the number
dpm,— = inf{p e N | p;ﬁ(]:[gl(Am’_; Zs)) # 0} — Gy — 2byy, —

for each m > 0. It can be proved that d,,,+1- < d,, — for any m > 0. We define the

type-R d-invariant for (Y,s) as

d?(Y,s) := inf{d,,_ | m >0} + # € QU {—o0}.

Theorem 8.2.2. Both the numbers d*(Y,s) and d®(Y,s) are topological invariants of

the pair (Y,s). Moreover, they satisfy the following properties:

(i) d4(=Y,5) = —d"(Y.s).

(it) Suppose (Y;,s;) (7 = 1,2) are Q-homology cobordant to each other. Then we
have

d (Y1, 81) = d*(Ya, 89) and d¥(Y1,51) = d(Yz, 59).
(iii) Suppose (Y,s) bounds a spin® 4-manifold (X,§) with by (X) = 0. Then we have
c1(8)? + by (X) < 4dA(Y, ) + 2b1(Y).

If we further assume that map H'(X; Q) — HY(Y; Q) is surjective, then we also
have

c1(8)? + by (X) < 4d™(Y,s) — 2b,(Y).

Remark. From our definition, d*(Y,s) (resp. d®(Y,s)) can be +oo (resp. —oc). How-
ever, we have good reason to believe that this never happens. Actually, it is possible
to prove this fact by considering periodic structure of the spectrum invariants under
the action of Qg’o. Similar remarks applies for other invariants we construct in this

section.

Remark. Behrens and Golla [63] defined a correction term d(Y, s) using Heegaard Floer
homology with fully twist coefficients. Their invariant corresponds to the invariant
dA(Y,s) here. In [52], Ozvéath and Szabd defined two correction terms d_ 1 for 3-

manifolds with b = 1 (and more generally, 3-manifolds with “standard HF>"). In
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principle, d 1 and d_1 correspond to the invariants d” and d4 here. However, since

1
2
Ozvath and Szabd do not use twisted coefficient in the construction, we do not know

the exact relation between these invariants.

8.2.2 «,f,v invariants for spin structures

Now we turn to the situation that s is a spin structure and define the homology
cobordism invariants a?, 84, y4, o, B 4%, As in [13], they are defined using Pin(2)-

equivariant cohomology.
To begin with, we let SWF*(Y, s; Pin(2)) be represented by
If I - 1f — -
and SWEF® (Y, s; Pin(2)) be represented by
I I I -
with fﬁfb = (flm,i, TR l;mi) We can represent isomorphism Tfm@) in Theorem 8.2.1

by a morphism Tiﬁ(z) for any m greater or equal to a constant mg, while Tfm@) is

represented by the whole collection {TPT(Q)}mN) of morphisms. Here T,ifi(z) belongs

to morg, ((S8°,0), (flg;i, m,+)). Now consider the Pin(2)-equivariant stable map p,, +
as the composition
(Rt — AS | — A, (8.5)

with the first arrow given by the stable map representing Tn]zfi(z) and the second arrow

being the natural inclusion. We define the numbers
Ut 1= {p | p = Gz (m0dd), Fh, L (HP ) (A i Z2)) # 0} = lim - — by 15
Bm+ =1nf{p | p = Gpns + 1 (mod4), ﬁ;,ﬂ:(ﬁlgm(z)<ﬁm¢5 Zs)) # 0} — Qs — 41~)m,i —1;
’Ym,:l: = 1nf{p | b= a’m,:l: + 2 (m0d4)7 ﬁ:n,:l:(gjlz’in(Q)(Am,:t; Z2)) 7& 0} - dm,:l: - 4Z)m;l: — 2.
(Note that a1, Bm.+, Ym.+ are only defined for m > my.) One can prove the following
inequalities:

U1+ 2 Ot Bttt = Bimgts Bmi1,4 = B+ for any m > mg

Umt1,— < 0= Bgt,— < Bm—; Byt~ < B, for any m > 0.
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As before, we define our invariants by passing to the limit as m — 400 and doing

suitable normalization as follows

a(Y,s) = %sup{ozm,Jr | m>mg} — b1(4Y) € QU {+o0};
BAY, ) := %sup{ﬁm,Jr | m > mg} — % € QU {+o0};
AWi9) = s | m 2 mo = 20 € QU oo,
R L. bi(Y)
a(Y,s) = §1nf{am,, |m >0} + — € QU {—o0};
R 1. b (Y)
BH(Y,s) = §1nf{6m7, | m >0} + — € QU {—o0};
R 1, b1 (Y)
(Y, s) := §1nf{'ym7_ | m >0} + 1 € QU {—o0}.

We summarize the important properties of these numbers in the following theorem:
Theorem 8.2.3. The numbers o, 4, 44, af, B, ~% are all topological invariants

for the pair (Y,s). Moreover, they satisfies the following properties:

(i) All these invariants are invariant under Q-homology spin cobordisms;

(i) Under the change of orientation, these invariants behave as follows
o —a(Y,s) = vE(-Y,s),
o —BA(Y,5) = pR(-Y.s),
o« —A(YV;5) = af(=V;5);

(iii) Suppose (Y,s) bounds a spin 4-manifold (X, §) with by (X) = 0. Then we have

by (X) —201(Y)
8

< min(aA(Y,s), ﬁA(Y,ﬁ), 'yA(Y,s)).

If we further assume that the map H*(X;Q) — HY(Y;Q) induced by the inclu-
siton of boundary is surjective, then we also have

by (X) +2b,(Y)
8

< min(a™(Y,s), B%(Y,s), /(Y. 5)).

(iv) In the case by(Y) = 0, we have BA(Y,s) = pR(Y,s) = B(Y,s), where B(Y,s) is
the invariant defined by Manolescu [/5]. Similar results hold for the o and ~

muariants.
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8.2.3 &k invariants for spin structures

Now we define the invariants x* and xf. They are obtained by applying Pin(2)-

equivariant K-theory on the spectrum invariants. As before, let p,, 1 : (]INQ&’"JE)Jr —

A, + be the stable maps given by the composition 8.5.

Recall that the numbers a,,+ are always even by our definition of the category

Cpin(2). By the Bott periodicity theorem, there exists an isomorphism
Kpin(a) (R™*)*) = R(Pin(2)),

where R(Pin(2)) denotes the representation ring of Pin(2). Under this isomorphism,

the image of the map
P,z KPin@)(Am,i) - Kpm(z)((]@am’i)*)

is an ideal of R(Pin(2)). By taking the character of the element j € Pin(2), we get
an surjective ring homomorphism 7 : R(Pin(2)) — Z. Then 7(im p;, . ) is an ideal of

Z.
The following lemma is proved using the fact that the augmentation ideal of

R(Pin(2)) acts nilpotently on IN(;M(Q)(Ami/Af;i) (see [11, Fact 2.11]).

Lemma 8.2.4. For any m > mo, the ideal 7(im p;,, ) is generated by 2™+ for some
cmy € N Similarly, for any m > 0, the ideal T(im py, ) is generated by 2~ for

some Cp, — € N.

We define K, + as ¢+ — Em,i, where l;mi is the second desuspension index of the
object I}l It can be proved that Kp,114 > K, 4+ for any m > myg, while K11 = < Ky

for any m > 0. We define our invariants by taking the limit of &, +:

KA(Y,8) := 2sup{p 4 | m > mo} € QU {+o0};

k(Y. s) := 2inf{k,, _ | m >0} € QU {—o0}.

We summarize the important properties of (Y, s) and x%(Y,s) in the following the-

orer.
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Theorem 8.2.5. The numbers k(Y,s) and (Y, s) are topological invariants of the
pair (Y,s). They satisfy the following properties:
(i) Both invariants are invariant under Q-homology spin cobordisms;

(ii) Let (X,s) be a spin 4-manifold bounded by (Y,s). Then we have the following

inequalities

Q

(X)

=< B0 + €05 (X)) + 51(Y;5);
(X)
8

Q

< by (X) + b+ &by (X) +b) + (Y, 5).

Here b = dimg coker(H'(X;R) — HY(Y;R)) and the function & : Z=2° — 7 is

given by the formula

0 a=20
{la):==4 -1  aodd
—2 a >0, even

(i4i) In the special case that by(Y) = 0, we have k*(Y,s) = k®(Y,s) = k(Y,s). Here

k(Y,s) denotes the original k invariant defined by Manolescu [/ 1].

8.3 The gluing theorem and its corollaries

In this section, we will give the statement of the gluing theorem and discuss its various
applications. To keep our discussion comprehensible, we focus on the simplest case of
gluing theorem instead of giving its most general form. Also, we only talk about the
St version and the argument can be easily adapted to the Pin(2) version when s is a

spin structure.

We begin with the following theorem on the behavior of the spectrum invariants

under orientation reversal.

Theorem 8.3.1. Let s be a torsion spin® structure on Y . Then the spectrum invariants

SWE4(Y,s;S') and SWE®(—Y,s;S") are S'-equivariant Spanier-Whitehead dual to
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each other in the sense of Definition 3.1.5. Similar result holds for Pin(2)-spectrum

invariants for spin manifolds.

Now let (X, §) be a closed spin® 4-manifold. We assume that X can be decomposed
as X1Uy Xo with Y being a connected 3-manifold. Denote by 51, 55 and s the restriction

of 6 on X7, X5 and Y respectively.

We choose the base point 6 € X to be on Y. The based path data for X, (j = 1,2) is
set to be represented by the constant path. With these topological inputs, the (relative)
Bauer-Furuta invariants for X;, Xs and X are defined. Recall that the Bauer-Furuta
invariant for X, denoted by BF(X,5;S'), is an equivariant stable homotopy class of
maps defined on the Thom space of a virtual index bundle over the Picard torus

Pic®(X). Therefore, we can restrict BF(X, §; S') to the subtorus
Pic®(X,Y) := ker(H'(X,R) — H'(Y:R))/ker(H'(X,Z) — H'(Y:Z)).
We denote this restriction by BF(X,8; S")|pico(x,v)-

Theorem 8.3.2. Suppose the following two conditionns are satisfied

® 5 is torsion;
o im(H'(X;R) = HY(Y;R)) Cim(H'(X9;R) — HY(Y;R)).

Then under the natural identification Pic®(X,Y) = Pic®(X1,Y) x Pic®(X,,Y) pro-

vided by the Mayer-Vietoris sequence, we have
BF(X>§; Sl)|Pic0(X,Y) = E(EA(Xlaﬁl; 51),ER(X2,§2§ Sl)),
where €(+,-) denotes the smashing operation given in Definition 3.1.6.

Remark. When im(H'(X1;R) — H'Y(Y;R)) = 0, the second condition in Theorem
8.3.2 is automatically satisfied. Moreover, in this case we have Pic’(X,Y) = Pic(X)

and the full Bauer-Furuta invariant can be recovered from this Theorem.

Note that in the current situation, the explicit description of the smashing operation

€ is given with the help of the manifold Conley index pairs. (Roughly speaking, a
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manifold Conley index pair is an index pair (N, L) such that N is a manifold with
boundary and L is a submanifold (also with boundary) of ON. See [11] for the precise
definition.) Recall that in the definition of the relative Bauer-Furuta invariants, we
choose index pairs containing some specific pre-index pairs. In general, these index
pairs can not be assumed to be manifold index pairs. To prove the gluing theorem, we
have to use the flow maps to relate our index pairs with the manifold index pairs. This

7

actually corresponds to the “neck-stretching argument” in the proof of gluing theorem
for Floer homologies. We mention that a major difficulty in the proof of Theorem 8.3.2
is to control the time of the flow map (which corresponds to the length of the “neck”)

so that it does not goes to infinity as we do finite dimension approximations. Theorem

3.2.14 plays an important role here. We refer to our paper [27] for a complete proof.

We end this section by a few corollaries of the gluing theorem. The proof of
these corollaries are straightforward applications of Theorem 8.3.2, together with the

knowledge about the spectrum invariants of simple examples (such as S? x S*).

Corollary 8.3.3. Let v be an embedded loop in a closed spin® 4-manifold (X,8§).
We assume that v represent a nonzero class in H'(X;R). By removing a reqular
neighborhood D3 x S' of v and attaching a copy of D? x S?, we obtain a new spin®
4-manifold (X',§'). Under the canonical embedding Pic®(X') < Pic®(X), we have the
following equality

BF(X,§;5")|pio(xn = BF(X',§; 5%).

In particular, this implies that the fiberwise Bauer-Furuta invariant does not change

under surgeries along loops.

Corollary 8.3.4. Suppose (X,8) is a closed spin® J-manifold with non-zero Bauer-
Furuta invariant. Then (X,§) can not be obtained as the fiber sum of two closed spin®
4-manifold (X;,5;) (j = 1,2) along embedded Klein bottles K; with self-intersection
number 0. (Fiber sum here means removing a regular neighborhood of K; and glu-
ing the resulting manifolds by an orientation reversing diffeomorphism between their

boundaries.)
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The following result is a special case of [18, Theorem 1.1] and our gluing theorem

provides an alternative proof.

Corollary 8.3.5. Suppose X is a closed, smooth 4-manifold with non-zero Bauer-

Furuta invariant. Then we have the following results:

e X can not be obtained as the union of X1, Xs along their common boundaries

S? x St such that the homology class of S* is non-zero in H*(X;R);

e X does not contain any smoothly embedded S? that has self-intersection number

0 and represents a non-zero class in H*(X;R).

8.4 The connected sum formula for Manolescu’s spectrum

A natural question in Seiberg-Witten Floer theory is: how does the Seiberg-Witten
Floer homology behave under the connected-sum operation. In the contexts of Hee-
gaard Floer homology and monopole Floer homology, a Kiinneth formula for connected
sums is proved respectively by Ozsvath-Szabd [53] and Baldwin-Bloom [6]. A spectral
sequence for Pin(2)-equivariant Seiberg-Witten Floer homology of connected sums is
proved by Lin [38]. In this section, we sketch the proof of the following connected sum

formula for Manolescu’s spectrum invariant. See [27] for the detailed proof.

Theorem 8.4.1. Suppose Y1,Ys are two rational homology 3-spheres. Then we have

the following results:
o Lets; be a spin® structure on Y;. Then we have
SWEF(Y1#Y3, s1#852; S1) = SWF(Y1, 51; S') A SWF(Yg, 59; S1).
o Lets; be a spin structure on Y. Then we have
SWE(Y1#Y5, §1#5869; Pin(2)) = SWF(Y1, 61; Pin(2)) A SWF (Y3, §9; Pin(2)).

We need the following proposition in order to prove Theorem 8.4.1. Although the
result of this proposition seems natural, the proof is actually highly nontrivial. Again,

we refer to [27] for the proof.
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Proposition 8.4.2. Let (Y, s) be a spin® 3-manifold whose components are all rational
homology spheres. Then the trivial cobordism X = [0,1] X Y induces the identity
morphism on SWF(Y,s; SY). Similar result holds for the Pin(2)-spectrum invariant.

Proof of Theorem 8.4.1 (Sketch). We focus on the St case and the Pin(2) case is sim-
ilar. By adding an 1-handle on the manifold [0, 1] x (Y] UY3), we get a cobordism
(X1, 61) from the disjoint union (Y3 UY3, 51 Usy) to the connected sum (Y #Ys, 81#82).
By reversing the orientation, we get a cobordism (Xs,89) from (Y;#Ys,51#85) to
(Y1UY5, 51Uss). It is not hard to prove that the spectrum invariant of the disjoint union
(Y1UY3, 6, Usy) is isomorphic to the smash product SWF (Y7, 51;.S1) ASWF (Y3, 59; S1).

Therefore, the cobordism (X1, §;) induces a morphism

p1: SWE(Y1,51; 1) A SWE(Ya, 59; S1) — SWEF(Y1#Y3, 51#5,; S1)
and the cobordism (X5, 62) induces the morphism

P2t SWE(Y1#Ys, 51452, S1) — SWF(Y1,51; S*) A SWF(Ya, 59; SY).

We need to show that pi, po are inverse to each other, i.e., p; o po and py o p; are

respective identity morphisms.

Consider py o py first. By the Manolescu’s original version of gluing theorem for
relative Bauer-Furuta invariant (see [11]), the composition p; 0 p; equals the morphism

p12 induced by the 4-manifold
X122 = X1 Uy v, Xo.

Since X9 can be obtained from taking connected sum of the two components of the
trivial cobordism X7, = [0,1] x (Y1 UY3), by the gluing theorem again, p;» equals
the morphism pf , induced by Xj,. By Proposition 8.4.2, we see that pj , equals the
identity morphism on SWF(Y7,s1;.S1) A SWEF(Y5, 59; S1).

Now consider p; 0 p;. Note that because Y; UYj; is not connected, we can not apply
the Manolescu’s gluing theorem to the composed cobordism X;; = X3 Uy,uy, X1 to

show that p, o p; equals the morphism p,; induced by X, ;. However, a variation of

172



this theorem can be proved similarly. It asserts that the composition ps o p; equals
pa.1, the restriction of py; on a single fiber of Ind ID(X5;) (the virtual index bundle
over Pic®(X,1) = S' of the Dirac operator). Notice that we can obtain the trivial
cobordism X ; = [0, 1] X (Y1#Y3) from X5, by doing a surgery along a loop generating
Hi(X51;Z). A slight generalization of Corollary 8.3.3 (to the case of 4-manifolds
with boundary) can be used to show that pa; equals p ;, the morphism induced by

X35, By Proposition 8.4.2 again, we see that pj; equals the identity morphism on

SWEF(Y1#Y5, 51#69; S1). This finishes the proof of the theorem. O
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