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Cosmological Stasis from Dynamical Scalars:
Tracking Solutions and the Possibility of a Stasis-Induced Inflation

Keith R. Dienes,1, 2, ∗ Lucien Heurtier,3, † Fei Huang,4, ‡ Tim M.P. Tait,5, § Brooks Thomas6, ¶

1Department of Physics, University of Arizona, Tucson, AZ 85721 USA
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4Department of Particle Physics and Astrophysics,

Weizmann Institute of Science, Rehovot 7610001, Israel
5Department of Physics and Astronomy, University of California, Irvine, CA 92697 USA

6Department of Physics, Lafayette College, Easton, PA 18042 USA

It has recently been realized that many theories of physics beyond the Standard Model give rise
to cosmological histories exhibiting extended epochs of cosmological stasis. During such epochs,
the abundances of different energy components such as matter, radiation, and vacuum energy each
remain fixed despite cosmological expansion. In previous analyses of the stasis phenomenon, these
different energy components were modeled as fluids with fixed, unchanging equations of state. In
this paper, by contrast, we consider more realistic systems involving dynamical scalars which pass
through underdamping transitions as the universe expands. Indeed, such systems might be highly
relevant for BSM scenarios involving higher-dimensional bulk moduli and inflatons. Remarkably, we
find that stasis emerges even in such situations, despite the appearance of time-varying equations of
state. Moreover, this stasis includes several new features which might have important phenomeno-
logical implications and applications. For example, in the presence of an additional “background”
energy component, we find that the scalars evolve into a “tracking” stasis in which the stasis equa-
tion of state automatically tracks that of the background. This phenomenon exists even if the
background has only a small initial abundance. We also discuss the intriguing possibility that our
results might form the basis of a new “Stasis Inflation” scenario in which no ad-hoc inflaton potential
is needed and in which there is no graceful-exit problem. Within such a scenario, the number of e-
folds of cosmological expansion produced is directly related to the hierarchies between physical BSM
mass scales. Moreover, non-zero matter and radiation abundances can be sustained throughout the
inflationary epoch.
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I. INTRODUCTION, MOTIVATION, AND
OVERVIEW OF RESULTS

Cosmological stasis [1, 2] is a surprising phenomenon
wherein the abundances of multiple cosmological energy
components (e.g., matter, radiation, vacuum energy, etc.)
with different equations of state each remain constant
over an extended period, despite the effects of Hubble
expansion. This phenomenon has been shown to arise in
new-physics scenarios involving towers of unstable parti-
cles [1], theories involving populations of scalars undergo-
ing underdamping transitions [2], and even theories with
populations of primordial black holes with extended mass
spectra [3, 4].
In all of these realizations of stasis, the energy densities

of the different energy components involved scale differ-
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ently under cosmological expansion because they have
different equations of state. Thus, a priori , one might
expect their respective abundances to change rapidly as
the universe expands. However, these changes in the
abundances of the different energy components can be
compensated by processes that actually transfer energy
between these different components. In this way, each
of the different abundances can potentially remain con-
stant.

At first glance, it might seem that one must carefully
balance the effects of these energy-transferring processes
against the effects of cosmological expansion in order to
achieve stasis. If true, this would render stasis the result
of a severe fine-tuning. However, as shown in Refs. [1–
4], the required balancing is actually a global attractor
within the coupled system of Boltzmann and Einstein
equations that govern the cosmological evolution of the
abundances. The universe will thus necessarily evolve to-
wards (and eventually enter) stasis irrespective of initial
conditions.

There exist many different examples of such energy-
transferring processes. These in turn depend on the par-
ticular model of stasis under study. For example, in
models exhibiting a stasis between particulate matter
and radiation, as discussed in Refs. [1, 2], the relevant
energy-transferring process was particle decay. Likewise,
in models of matter/radiation stasis in which the matter
takes the form of primordial black holes [3, 4], the rel-
evant energy-transferring process was Hawking evapora-
tion. Indeed, both particle decay and Hawking radiation
convert matter energy to radiation energy and therefore
play an integral role in keeping the abundances of matter
and radiation constant despite cosmological expansion.

In Ref. [2], by contrast, it was shown that stasis can
also arise between vacuum energy and matter. In fact, it
was even shown that one can have a triple stasis between
vacuum energy, matter, and radiation simultaneously [2].
The underlying model that was analyzed for these pur-
poses was built upon the dynamical evolutions of the ho-
mogeneous zero-mode field values associated with a tower
of scalar fields. As is well known, each such field value
evolves according to an equation of motion which resem-
bles that of a massive harmonic oscillator with a Hubble-
induced “friction” term. Within an expanding universe,
the Hubble-friction term is large at early times, and thus
our field is overdamped. In this case, the potential energy
of the field vastly exceeds its kinetic energy, whereupon
the energy density of this field may be viewed as pure po-
tential energy (i.e., vacuum energy), with an equation-
of-state parameter w ≈ −1. However, as the universe
continues to expand, the Hubble parameter drops, even-
tually reaching (and passing through) a critical point at
which our system becomes underdamped and our field
begins to oscillate and eventually virialize. During such
an oscillatory phase, the kinetic and potential energies
associated with our field are then approximately equal,
whereupon we find that w ≈ 0. This transition from an
overdamped phase to an underdamped phase may thus

be regarded as an energy-transferring process in which
the corresponding energy density transitions from vac-
uum energy to matter.

In each of these previous realizations of the stasis phe-
nomenon, the corresponding energy densities were mod-
eled as fluids with time-independent equations of state.
Indeed, in cases involving stases between matter and ra-
diation — such as were discussed in Refs. [1, 2] — the
matter and radiation were modeled as fluids with con-
stant equation-of-state parameters w = 0 and w = 1/3,
respectively. Given that the physics in these cases rested
on either particle decay or Hawking radiation, this can
be viewed as a natural and reasonable assumption.

For calculational simplicity, the same assumption was
also made in Ref. [2] when considering the dynamical evo-
lution of the homogeneous zero-mode field value associ-
ated with a scalar field. In particular, the energy density
associated with such a field was treated in Ref. [2] as
that of a fluid with a constant equation-of-state parame-
ter w = 0 throughout the later, underdamped phase, and
treated as that of a fluid with a constant equation-of-
state parameter w near −1 throughout the earlier, over-
damped phase. Moreover, the transition between these
two phases of the theory was treated as instantaneous,
occurring at the critical time at which the underdamp-
ing transition normally takes place in the fully dynami-
cal theory. Given these assumptions, it was then found
that a stasis also emerged between these two fluids — a
stasis which was interpreted as existing between vacuum
energy and matter. Moreover, as noted above, allowing
these fields to decay after transitioning from vacuum en-
ergy to matter was then shown to result in a triple stasis
between vacuum energy, matter, and radiation.

While such results are exciting and may have many
phenomenological implications, the true dynamical evo-
lution of a scalar field in a cosmological setting is more
complicated than this. As noted above, the true dynam-
ics of such a field is governed by an equation of motion
which is that of a damped harmonic oscillator. Within
such a system, there continues to exist a critical bound-
ary between an overdamped and underdamped phase as
the Hubble-friction term decreases over time. However,
the equation-of-state parameter prior to this transition is
not fixed at a small value near w ≈ −1 within the over-
damped phase, nor is it (or its virial time-average) fixed
at w = 0 within the subsequent underdamped phase. In-
stead, the true behavior of our dynamical scalar field is
an entirely smooth one. The corresponding equation-of-
state parameter will indeed asymptote to a fixed value
near w = −1 at increasingly early times — an epoch
during which the corresponding field ϕℓ remains fixed or
at most slowly rolls — and likewise it will asymptote to
the fixed time-averaged value w = 0 at increasingly late
times, an epoch during which the field experiences rapid
virialized oscillations. However, between these asymp-
totic limits, our scalar field and its equation of state are
both evolving dynamically in a smooth, non-trivial, time-
dependent manner. This evolution does not even exhibit
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a sharp change of behavior of any sort as our system
passes through the critical underdamping transition.

In this paper, we seek to determine what happens
to our stasis phenomenon when we take this full time-
dependence into account. At first glance, it might seem
that including this time dependence for the equation-of-
state parameters for the individual scalar fields would
completely destabilize the stasis that emerges when these
equation-of-state parameters are instead taken to be con-
stant both before and after the underdamping transition.
Indeed, such time-dependent equation-of-state parame-
ters could in principle complicate the manner in which
the Hubble parameter evolves with time, and thus lead
to a more complicated dynamical evolution for our scalar
fields and their corresponding energy densities. However,
since stasis is built on the idea that the abundances of
our different fluids remain constant despite cosmological
expansion, it is a natural expectation that allowing for
time-varying equation-of-state parameters would destroy
the stasis that is observed when these equation-of-state
parameters are constant.

Remarkably, in this paper we find that stasis can
emerge even in such situations. In particular, we find
that there exists a large class of scenarios in which
stasis emerges as an attractor — the time-variation of
the equation-of-state parameters for the individual fields
notwithstanding — and persists across many e-folds of
cosmological expansion. In this regard, then, our results
are similar to those of Refs. [1, 2] and demonstrate that
the stasis phenomenon exists even for dynamical scalars
when their full time dependence is taken into account.

Despite this similarity, we shall find that the stasis that
is realized through fully dynamical scalars has a num-
ber of additional properties that transcend those arising
within the previous realizations of stasis which have been
identified. In particular, we shall find that the fundamen-
tal constraint equation that underlies this stasis does not
uniquely predict the equation of state of our system once
it has entered stasis. This gives our dynamical-scalar sta-
sis a certain intrinsic mathematical flexibility that was
not previously available.

As we shall find, the full implications of this additional
flexibility are particularly significant when this stasis is
realized in the presence of an additional “background
spectator” fluid — i.e., a fluid which is completely in-
ert, neither receiving energy from our stasis system nor
donating energy to it. Indeed, regardless of the initial
abundance and equation-of-state parameter which are as-
sumed for this background fluid, we find not only that
our stasis solution continues to exist, but that it actu-
ally has the flexibility needed in order to track this fluid,
automatically adjusting its properties such that the re-
sulting equation-of-state parameter wuniv for the universe
as a whole during stasis matches that of the background.
This is thus our first example of a “tracking” stasis. In-
deed, we find that this tracking property persists even
if the equation of state for the background fluid changes
with time.

This realization of stasis involving dynamical scalars
also has another important property: as we shall see, it
can easily accommodate an equation-of-state parameter
for the universe within the range −1 < wuniv < −1/3. A
stasis epoch in which wuniv falls within this range con-
stitutes a period of accelerated cosmological expansion
in which ä > 0, where a is the scale factor. Since a
stasis epoch of this sort can span many e-folds of expan-
sion, such a epoch can serve as a means of addressing the
horizon and flatness problems. This observation suggests
that stasis could potentially serve as a novel mechanism
for achieving cosmic inflation. No non-trivial, ad-hoc in-
flaton potential would be required within such a “Stasis
Inflation” scenario; likewise, this scenario has no graceful-
exit problem. Moreover, non-zero matter and radiation
abundances can be sustained throughout an inflationary
epoch of this sort. In this paper, we shall discuss this new
“Stasis Inflation” possibility and outline some of its key
qualitative features. Of course, further analysis will be
required in order to determine whether such an inflation
scenario is truly viable.
This paper is organized as follows. In Sect. II, we re-

view the dynamical evolution of a single scalar field which
undergoes a transition from overdamped rolling to un-
derdamped oscillation. In Sect. III, we then extend this
single-field analysis to the more general case in which
the particle content of the theory includes a tower of
scalar fields ϕℓ with a non-trivial spectrum of masses and
initial abundances. Despite the non-trivial manner in
which the individual equation-of-state parameters wℓ(t)
for these scalars each evolve in time, we nevertheless find
that the tower as a whole can give rise to a stasis epoch
in which the effective equation-of-state parameter for the
universe as a whole is essentially constant. In Sect. IV, we
then consider how the resulting cosmological dynamics
is modified in the presence of an additional background
energy component with an equation-of-state parameter
wBG. We find that the tower of scalars can still reach
a stasis. In fact, for certain values of wBG, we find that
the equation-of-state parameter for the tower evolves to-
ward wBG and tracks it, even in situations in which wBG

exhibits a non-trivial time-dependence. In Sect. V, we
then discuss the possibility of a stasis-induced inflation-
ary epoch during which our stasis itself drives an accel-
erated expansion of the universe. Finally, in Sect. VI,
we conclude with a summary of our main results and a
discussion of possible avenues for future work.

II. A SINGLE SCALAR IN AN EXPANDING
UNIVERSE

Let us start by reviewing the dynamical evolution of
a single real scalar field ϕ in an expanding universe. In
general, the energy density and pressure of such a scalar
field are given by

ρϕ =
1

2
ϕ̇2 + V , Pϕ =

1

2
ϕ̇2 − V , (2.1)
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where the “dot” denotes the derivative with respect to
the time t in the cosmological background frame and
where V (ϕ) is the scalar potential. The equation-of-state
parameter for this field is therefore thus given by

wϕ ≡ Pϕ

ρϕ
=

1
2 ϕ̇

2 − V
1
2 ϕ̇

2 + V
. (2.2)

In general, wϕ is time-dependent and can vary continu-
ously within the range −1 ≤ wϕ ≤ 1.
The dynamics of this scalar field is governed by its

equation of motion

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0 , (2.3)

where the effects of the Friedmann-Robertson-Walker
cosmology (i.e., the effects coming from the expansion
of the universe) are encoded within the time-dependence
of the Hubble parameter H ≡ ȧ/a. As evident from
Eq. (2.3), the Hubble parameter affects the evolution
of the scalar by providing a source of “friction” which
damps the motion of the scalar. The value of H is related
to the total energy density ρtot of the universe through
the Friedmann equation

H2 =
8πG

3
ρtot =

ρtot
3M2

P

, (2.4)

where MP = 1/
√
8πG is the reduced Planck mass. A

larger value of ρtot therefore corresponds to a larger
damping term for ϕ and vice versa. Moreover, in this
paper we shall also make the “minimal” assumption that
the potential is quadratic — i.e., that

V (ϕ) =
1

2
m2ϕ2 , (2.5)

where m is the mass of ϕ.
In general, the solutions to Eq. (2.3) will depend criti-

cally on the size of the Hubble-friction term. When this
term is sufficiently small, the system is underdamped and
the value of ϕ oscillates with a decreasing amplitude. By
contrast, if the Hubble-friction term is sufficiently large,
the system is overdamped and ϕ either remains effec-
tively constant or decreases slowly without oscillating.
However, within a given cosmology, H(t) generally de-
creases as a function of t. Thus, even if ϕ is initially in
the overdamped phase, it will eventually transition to the
underdamped phase when H(t) drops below the critical
value H(t) = 2m/3.
As a result of these features, it is of great interest to

understand how ρtot (and therefore H) varies with time.
In particular, we shall focus on two cases of interest which
represent different possible relationships between ρϕ and
ρtot:

• Case I: In addition to ϕ, the universe contains an-
other cosmological energy component with a con-
stant equation-of-state parameter w. This addi-
tional energy component is assumed to dominate

the energy density of the universe during the time
period of interest. Since ρϕ ≪ ρtot, the evolution of
H is essentially independent of ρϕ throughout this
time period.

• Case II: The field ϕ is the only cosmological en-
ergy component with non-negligible energy den-
sity. Thus, to a good approximation, we may take
ρtot = ρϕ.

Both of these cases have been studied extensively, and we
shall review the cosmological dynamics which emerges in
each case in turn.

A. Case I: Fixed external cosmology

During any epoch wherein the universe is dominated by
a cosmological energy component with a fixed equation-
of-state parameter w, the Hubble parameter is given by
H = κ/(3t) with κ = 2/(1+w). It therefore follows that
in Case I, Eq. (2.3) reduces to

ϕ′′ +
κ

t̃
ϕ′ + ϕ = 0 , (2.6)

where t̃ ≡ mt is a dimensionless time variable and where
a prime denotes a derivative with respect to t̃. The gen-
eral solution to this differential equation takes the form

ϕ(t̃) = t̃(1−κ)/2
[
cJJ(κ−1)/2(t̃) + cY Y(κ−1)/2(t̃)

]
, (2.7)

where Jν(z) and Yν(z) are Bessel functions of the first
and second kind, respectively, and where cJ and cY are
coefficients with dimensions of mass. This solution for
ϕ(t̃) is plotted as a function of t̃ in Fig. 1.
It is also possible to obtain an approximate solution for

t̃ ≪ 1. For z ≪ 1, the Bessel functions Jν(z) and Yν(z)
are well approximated by Jν(z) ∼ zν and Yν(z) ∼ −z−ν .
Thus, if the initial conditions for ϕ at some early dimen-
sionless time t̃(0) ≪ 1 are such that ϕ(0) ≡ ϕ(t̃(0)) ̸= 0
and ϕ′(t̃(0)) ≈ 0, one may take cY ≈ 0 and thereby obtain
the approximate solution

ϕ(t̃) ≈ cJ t̃(1−κ)/2J(κ−1)/2(t̃) . (2.8)

This expression provides an excellent approximation to
the full numerical solution for ϕ(t̃) shown in Fig. 1. In-
deed, a plot of this approximate expression would be in-
distinguishable to the naked eye from the full solution
over the entire range of t̃ shown.
As can be seen from Fig. 1, the expression for ϕ(t̃)

in Eq. (2.7) behaves like a damped oscillator. At early
times, when t̃ ≪ 1, the field is overdamped due to
the sizable Hubble-friction term. As a result, we find
that wϕ ≈ −1 within this regime, and ϕ behaves like a
vacuum-energy component. By contrast, at late times,
when t̃ ≫ 1, both ϕ itself and wϕ oscillate rapidly. The
amplitude of ϕ decreases with t̃ within this regime, and as
a result we find ρϕ ∼ a−3, just as we would expect for the
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FIG. 1. The value of the scalar field ϕ(t̃), normalized to its

asymptotic early-time value ϕ(0) and plotted as a function of
the dimensionless time variable t̃ during an epoch in which
the energy density of the universe is dominated by a radia-
tion component (w = 1/3). Also shown is the corresponding
equation-of-state parameter wϕ(t̃). The curves shown here

correspond to a choice of initial conditions in which ϕ(0) ̸= 0
and ϕ′(t̃(0)) = 0. The vertical dashed line at t̃ = κ/2 indicates
the critical value t̃c of t̃ associated with the transition from
overdamped to underdamped evolution.

energy density of massive matter. Accordingly, while the
amplitude of wϕ is effectively unity within this regime,
the time-averaged value ⟨wϕ⟩t of wϕ over a sufficiently

long interval ∆t̃ ≡ t̃− t̃(0) approaches ⟨wϕ⟩t ≈ 0.

The transition region between these two limiting
regimes physically corresponds to the time window
wherein ϕ is rolling down its potential V (ϕ) with non-
negligible field velocity ϕ′, but has not yet reached the
potential minimum at ϕ = 0. During this window, both
ϕ and wϕ evolve non-trivially with t̃. Since this transi-
tion from overdamped and underdamped evolution oc-
curs when 3H(t) ∼ 2m, as discussed above, it is conven-
tional to define the critical time tc associated with this
phase transition such that t̃c = κ/2 in this case. How-
ever, this phase transition clearly is not instantaneous,
and as we shall see, the manner in which scalar fields
evolve during such transition windows has important im-
plications for the cosmological dynamics which emerges
when a tower of such scalars is present.

B. Case II: Scalar domination

The cosmological dynamics which governs the evolu-
tion of ϕ and H is significantly more complicated in
Case II than in Case I due to the fact thatH now depends
on ϕ itself. Indeed, in this case we find that Eq. (2.3)

takes the form

ϕ′′ +
3H

m
ϕ′ + ϕ = 0 , (2.9)

where from Eq. (2.4) we now have

H =
m√
6

√(
ϕ

MP

)2

+

(
ϕ′

MP

)2

. (2.10)

This dependence of the Hubble parameter on ϕ and ϕ′

not only changes the time-evolution of ϕ, but also in-
troduces an added sensitivity of our system to its initial
conditions. For example, changing the initial value of ϕ
has the effect of changing the initial value of the Hubble
parameter H, and as we shall see, this can in turn affect
the length of time that must elapse before our system
can reach critical milestones such as the transition to an
underdamped phase.
Solutions to the non-linear differential equation in

Eq. (2.9) may be obtained numerically. In examining
the behavior of these solutions, we once again focus for
simplicity on the case in which the initial conditions for
ϕ at t̃(0) ≪ 1 are such that ϕ(0) is non-vanishing, while
ϕ′(t̃(0)) ≈ 0. In Fig. 2, we show how ϕ(t̃) evolves as a
function of t̃ for several different values of 3H(0)/2m —

or, equivalently, since 3H(0)/2m =
√
3/8 |ϕ(0)|/MP for

this choice of initial conditions, for several different val-
ues of ϕ(0). In the left panel, we normalize each ϕ(t̃) curve
to the corresponding initial field value ϕ(0) and adopt a
logarithmic scale for the horizontal axis. In the right
panel, we show the same curves, but normalize each one
to the fixed reference scale MP and adopt a linear scale
for the horizontal axis.
For 3H(0)/2m ≫ 1, the Hubble-friction term in

Eq. (2.9) is sufficiently large that ϕ is initially over-
damped as it begins rolling from rest toward its potential
minimum. Within this “slow-roll” regime, ϕ′′(t̃) is negli-
gible in comparison to the other two terms in Eq. (2.9),
and therefore, to a good approximation, we have

ϕ′ ≈ − m

3H
ϕ . (2.11)

The solutions for ϕ and H within the slow-roll regime are
therefore well approximated by

ϕ(t̃) ≈ ϕ(0) exp

[
−1

2

∫ t̃

t̃(0)

2m

3H(t̂)
dt̂

]

H(t̃) ≈ H(0) exp

[
−1

2

∫ t̃

t̃(0)

2m

3H(t̂ )
dt̂

]
. (2.12)

Since ϕ evolves extremely slowly within this regime,
3H/(2m) ≫ 1 remains large and H(t̃) ≈ H(0) is effec-
tively constant. As a result, the universe experiences an
epoch of accelerated expansion at early times. This epoch
effectively ends at the time tc at which 3H(tc) = 2m and
the coefficient of the Hubble-friction term in Eq. (2.9)
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FIG. 2. Left panel : The values of the scalar field ϕ(t̃), normalized to their asymptotic early-time values ϕ(0) and plotted as

functions of the dimensionless time variable t̃ for a variety of different choices of ϕ(0) during an epoch in which the energy
density of the universe is dominated by ϕ itself. Note that varying ϕ(0) for the same value of m is tantamount to choosing
different values of 3H(0)/(2m). In all cases, we have taken ϕ′(t(0)) = 0. Right panel : Same as in the left panel, but with ϕ
normalized to the value of MP and with a linear rather than a logarithmic scale for the horizontal axis. Note that unlike the
other curves, the blue curve always already begins in the underdamped regime.

drops below the value associated with critical damping.
At subsequent times t > tc, the field experiences under-
damped oscillations. The value of ϕ at tc is approxi-
mately independent of ϕ(0) and given by

ϕ(tc) ≈ H(tc)

H(0)
ϕ(0) =

√
8

3
MP , (2.13)

as is evident from the right panel of Fig. 2. However, as
is evident from the left panel, this implies that the extent
to which the field is suppressed at tc relative to its initial
value at t(0) becomes more severe as ϕ(0) increases. By
contrast, in situations in which 3H(0)/(2m) ≪ 1, such
as that illustrated by the blue curve in each panel of the
figure, the field is already underdamped at t = t(0), and
oscillation commences immediately thereafter.

The difference between the initial time t(0) and the
critical time tc can be quantified in terms of the parame-
ter ∆t̃c ≡ t̃c− t̃(0), which can be estimated by evaluating
Eq. (2.12) at t̃ = t̃c. Doing this, we obtain

∆t̃c ≈
〈 m

3H

〉−1

tc
log

(
3H(0)

2m

)
, (2.14)

where ⟨x⟩tc denotes the time-average of the quantity x
over the time interval ∆tc. Since H decreases less rapidly
than t−1 as a function of time while ϕ is slowly rolling,
this time-average decreases with H(0). It therefore fol-
lows from the form of Eq. (2.14) that ∆t̃c occurs later
for larger H(0). The particular manner in which this de-
layed onset of oscillation manifests itself is illustrated in
the right panel of Fig. 2. Indeed, by comparing the green,
red and black curves shown in this panel, we observe that

10−1 100 101 102

t̃

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

H
2
/m

2

3H(0)/(2m) = 0.1

3H(0)/(2m) = 1

3H(0)/(2m) = 5

3H(0)/(2m) = 10

FIG. 3. The ratio H2/m2, which is proportional to the total
energy density ρtot of the universe, during an epoch wherein
the energy density of the universe is dominated by ϕ itself.
The different curves correspond to the same parameter choices
adopted in Fig. 2. We observe that all of these curves —
despite the different choices of initial conditions they each
represent — asymptotically converge at late times to a power
law which corresponds to a scaling behavior ρtot ∼ a−3 at
late times.

to a good approximation the functional forms of ϕ(t̃) ob-
tained for different ϕ(0) differ only by a horizontal shift.

Eventually, at dimensionless times t̃ ≫ t̃c, when ϕ(t̃) is
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deep within the oscillatory phase, the time-average of the
equation-of-state parameter over a sufficiently long time
window becomes ⟨wϕ⟩t ≈ 0, much as it does in Case I.
Thus, as in Case I, we find H ≈ κ/(3t) with κ = 2 for
t̃ ≫ t̃c. However, since H2 ∝ ρϕ in Case II, one finds
that the total energy density of the universe approaches
a universal functional form ρϕ ∝ a−3 at late times, re-
gardless of the choice of initial conditions. This behav-
ior is illustrated in Fig. 3, which shows the evolution of
the dimensionless ratio H2/m2 for a variety of different
choices of 3H(0)/(2m). Indeed, we observe that all the
curves shown in Fig. 3 exhibit the same asymptotic func-
tional form at large t̃.

Looking forward, one of our primary concerns in this
paper is to understand the manner in which the zero-
modes of dynamically evolving scalar fields might con-
tribute to the development of a stasis epoch within the
cosmological timeline. It is clear from the above analysis
that a single such scalar field — whose zero-mode energy
density transitions from slow-roll behavior to rapid os-
cillation over a relatively narrow time window — cannot
give rise to a stasis epoch alone. However, as we shall see,
many aspects of the dynamics of individual scalars that
we have highlighted in this section will play an important
role in establishing and sustaining stasis when multiple
such fields are considered.

III. STASIS FROM A TOWER OF SCALARS

We shall now generalize the above analysis by replac-
ing our single scalar field with an entire tower of scalar
fields with different masses. Our goal will be to deter-
mine whether an epoch of stasis might arise from such a
tower and what its properties might be.

A. Preliminaries

Let us now assume that there exists a tower of N scalar
fields ϕℓ in the early universe, each of which experiences
a quadratic potential

Vℓ =
1

2
m2

ℓϕ
2
ℓ , (3.1)

where the index ℓ = 0, 1, 2, . . . , N − 1 labels the states
in order of increasing mass. The equation of motion for
each state is then

ϕ̈ℓ + 3Hϕ̇ℓ +m2
ℓϕℓ = 0 , (3.2)

while the energy density, pressure, equation-of-state pa-
rameter, and cosmological abundance of each state are

given by

ρℓ =
1

2
ϕ̇2
ℓ +

1

2
m2

ℓϕ
2
ℓ

Pℓ =
1

2
ϕ̇2
ℓ −

1

2
m2

ℓϕ
2
ℓ

wℓ ≡ Pℓ/ρℓ

Ωℓ ≡ ρℓ
3H2M2

P

. (3.3)

Each of these quantities is generally time-dependent. We
can also define the total abundance associated with our
tower of states

Ωtow(t) ≡
∑
ℓ

Ωℓ(t) , (3.4)

as well as the time-dependent effective equation-of-state
parameter for our tower

⟨w⟩ (t) ≡ 1

Ωtow(t)

∑
ℓ

Ωℓ(t)wℓ(t) . (3.5)

In general, we have 0 ≤ Ωtow ≤ 1, with the value of Ωtow

ultimately depending on what other energy components
might also exist in the universe. Of course, if the total
energy density of the universe is only that associated with
the tower of ϕℓ states, we then have Ωtow = 1 at all times.
However, until stated otherwise, we shall not make this
assumption.
Along these lines, we note that Ωtow is not the only

quantity whose value depends on the full energy content
of the universe. Indeed, even the individual abundances
Ωℓ implicitly depend on the full energy content through
their dependence on H, or simply because abundances
generally indicate the fraction of energy density relative
to the total energy density in the universe. Thus, for
example, we see that the definition of ⟨w⟩ in Eq. (3.5)
makes sense because it is invariant under such rescalings
of the abundances.
At any specific time t, certain states within the tower

may still be overdamped while others may have already
become underdamped. We will respectively identify
these groups of states as

• slow-roll components, which consist of the over-
damped states with mℓ < 3H(t)/2; and

• oscillatory components, which are comprised of the
underdamped states with mℓ ≥ 3H(t)/2.

Note that we shall use the terminology “slow-roll” (SR)
and “oscillatory” (osc) to indicate whether a given state
is overdamped or underdamped regardless of whether its
field VEV is actually rolling or oscillating. Indeed, as we
have seen in Sect. II, a given state near the transition time
may be underdamped and not yet have begun to oscillate;
likewise, a given state may be so severely overdamped
that it is effectively stationary without any significant
rolling behavior.



8

Let us define ℓc(t) to be the critical value of ℓ within
the tower for which 3H(t) = 2mℓ. More specifically, we
shall implicitly assume that our spectrum of states is suf-
ficiently dense that we may regard (or approximate) ℓc(t)
as an integer at any time; this assumption will render our
equations simpler but will not affect our final results. We
shall also consider the “boundary” state with ℓ = ℓc(t)
as just having become underdamped. Thus, at any given
time t, the states with ℓ < ℓc(t) are still overdamped,
while those with ℓ ≥ ℓc(t) are underdamped. We then
find that the total corresponding abundances at any time
t can be written as

ΩSR(t) =

ℓc(t)−1∑
ℓ=0

Ωℓ(t)

Ωosc(t) =

N−1∑
ℓ=ℓc(t)

Ωℓ(t) . (3.6)

Likewise, we can define the total effective equation-of-
state parameter associated with each of these separate
groups of states:

wSR(t) ≡ PSR(t)

ρSR(t)
=

1

ΩSR(t)

ℓc(t)−1∑
ℓ=0

Ωℓ(t)wℓ(t)

wosc(t) ≡ Posc(t)

ρosc(t)
=

1

Ωosc(t)

N−1∑
ℓc(t)

Ωℓ(t)wℓ(t) . (3.7)

Here PSR, Posc, ρSR, and ρosc represent the total pres-
sures and energy densities of each part of the tower, with
the same summation limits as in Eqs. (3.6) and (3.7). It
then follows that the effective equation-of-state parame-
ter for the entire tower at any moment in time is given
by

⟨w⟩(t) =
1

Ωtow(t)

[
ΩSR(t)wSR(t) + Ωosc(t)wosc(t)

]
.

(3.8)
Just as with a single scalar, the resulting dynamics of

our system depends on whether we assume that the en-
ergy density of this entire scalar tower is subdominant to
that of some other fixed energy component with a con-
stant equation-of-state parameter. If so, then the Hub-
ble parameter evolves as 1/t and the results in Sect. II A
can be directly applied here. Each ϕℓ state will then
simply evolve independently according to its own equa-
tion of motion Eq. (3.2), yielding solutions for the time-
dependence of each ϕℓ which simply follow the analytical
expressions in Eqs. (2.7) and (2.8). Indeed, all that is
required is that we promote the coefficient cJ and the
dimensionless time variable t̃ to ℓ-dependent quantities
which essentially depend on the initial conditions and
the mass spectrum of the ϕℓ states.

However, of far more interest is the situation in which
the energy density of our tower of ϕℓ states is non-
negligible, leading to a non-negligible value of Ωtow. In

such circumstances, the effective equation-of-state pa-
rameter ⟨w⟩ of the entire tower will no longer generally
be a time-independent quantity, since every state has
a time-dependent equation-of-state parameter wℓ. To-
gether with the unknown dynamics of the other energy
components within the universe, it then follows that the
Hubble parameter may not follow a simple H ∼ 1/t scal-
ing relation.
The above situation would be greatly simplified if the

universe were to evolve into an epoch of stasis during
which the abundances of different cosmological energy
components remain constant despite cosmological expan-
sion. As a result, the effective equation-of-state parame-
ter wuniv for the universe as a whole would then remain
fixed. This in turn implies that the Hubble parameter
would indeed scale as ∼ 1/t during such an epoch.
However, there are many reasons to suspect that such

a stasis epoch will no longer be possible. In all of the
previous studies of stasis [1, 2, 4], the equation-of-state
parameter associated with each energy component was
treated as a constant. While appropriate for the situ-
ations under study in those works, in the present case
we are dealing with a tower of fully dynamical ϕℓ fields.
Indeed, each of these individual fields has a complicated
dynamics with its own time-dependent abundance Ωℓ(t)
and time-dependent equation-of-state parameter wℓ(t).
It is therefore not a priori clear whether these individual
wℓ-functions can conspire to produce a constant value of
either wSR or wosc.

B. Parametrizing the scalar tower

We shall shortly determine an algebraic condition that
must be satisfied in order for a stasis epoch to arise. How-
ever, as we shall see, this condition will necessarily de-
pend on the properties associated with our ϕℓ tower.
Different models of physics beyond the Standard Model

(BSM) give rise to ϕℓ towers with different characteristic
properties. In order to maintain generality and survey
many models at once, we shall therefore adopt a useful
parametrization [1, 2] which can simultaneously accom-
modate many different BSM scenarios. In particular, the
mass spectrum of the tower of states will be assumed to
take the general form

mℓ = m0 + (∆m) ℓδ , (3.9)

where m0 is the mass of the lightest state and where
∆m and δ parametrize the mass splittings across the
tower. Such a mass spectrum is motivated by theo-
ries of extra spacetime dimensions, string theories, and
strongly-coupled gauge theories. For example, if the
ϕℓ are the Kaluza-Klein (KK) excitations of a five-
dimensional scalar in which one dimension of the space-
time is compactified on a circle of radius R (or a Z2 orb-
ifold thereof), we have either {m0,∆m, δ} = {m, 1/R, 1}
or {m0,∆m, δ} = {m, 1/(2mR2), 2}, where m denotes
the four-dimensional scalar mass [5, 6]. This distinction
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depends on whether mR ≪ 1 or mR ≫ 1, respectively.
Alternatively, if the ϕℓ are the bound states of a strongly-
coupled gauge theory, we find that δ = 1/2, where ∆m
and m0 are respectively determined by the Regge slope
and intercept of the strongly-coupled theory [7]. The
same values also describe the excitations of a fundamen-
tal string. Thus δ = {1/2, 1, 2} can serve as compelling
“benchmark” values.

We shall likewise assume that the initial abundances
of the ϕℓ states follow a power-law distribution

Ω
(0)
ℓ = Ω

(0)
0

(
mℓ

m0

)α

, (3.10)

where a superscript “(0)” once again denotes the value

of a quantity at the initial time t = t(0) and where Ω
(0)
0 is

the initial abundance of the lightest tower state. Scaling
relations of this form arise in a variety of BSM scenarios
which predict towers of states, and the exponent α in any
such scenario is ultimately determined by the mechanism
through which the states in the tower are initially pro-
duced. For example, production from the vacuum mis-
alignment of a bulk scalar in a theory with extra space-
time dimensions predicts that α < 0 [5, 6], while thermal
freeze-out can accommodate either α > 0 or α < 0 [8].
By contrast, if a tower of states is produced through the
universal decay of a heavy particle, we have α = 1.
Finally, since we are assuming that the energy density

of each ϕℓ is dominated by the contribution from its spa-
tially homogeneous zero-mode and that the contribution

from particle-like excitations is negligible, each ρ
(0)
ℓ is in

general specified by the initial field value ϕ
(0)
ℓ and its time

derivative ϕ̇
(0)
ℓ . For simplicity — and because the field

velocities generated by many of the production mecha-
nisms compatible with these assumptions are negligible

— we shall take ϕ̇
(0)
ℓ ≈ 0 for all ℓ in what follows.

C. Condition for stasis

In order to determine the algebraic condition(s) un-
der which stasis can emerge from a tower of dynamical
scalars with these properties, we shall first posit — as in
previous analyses [1, 2, 4] — that the universe has in-
deed entered stasis. We shall then assess the conditions
under which this assumption is self-consistent, and finally
indicate how our system actually evolves into the stasis
state.

By definition, ΩSR and Ωosc must both remain ef-
fectively constant during stasis, as must the effective
equation-of-state parameter for the universe as a whole.
This in turn implies that the Hubble parameter must also
take the form H ≈ κ/(3t), where κ is a constant, during
stasis. In what follows, we shall refer to the effectively
constant stasis values for κ, ΩSR, and Ωosc as κ, ΩSR,
and Ωosc, respectively. We shall not make any assump-
tions concerning the values of these stasis quantities, but

rather determine how the self-consistency conditions for
stasis constrain these values.
We begin by investigating the manner in which the var-

ious scalars within the tower are evolving at an arbitrary
fiducial time t∗ ≫ t(0) by which the universe is already
deeply in stasis and the Hubble parameter is evolving as
H = κ/(3t). We shall first focus on those ϕℓ fields which
are still highly overdamped at t = t∗ and whose field val-

ues ϕℓ(t∗) ≈ ϕ
(0)
ℓ are still approximately unchanged from

their initial values. The equation of motion for each such
field is well approximated by Eq. (2.6), and the solu-
tion to this equation therefore takes the same form as in
Eq. (2.8), but with a coefficient cℓ which depends on ℓ:

ϕℓ(t) ≈ cℓ (mℓt)
(1−κ)/2 J(κ−1)/2(mℓt) . (3.11)

Inserting these solutions into Eq. (3.3) and using the
Bessel-function recurrence relation

d

dz
Jν(z) =

ν

z
Jν(z)− Jν+1(z) , (3.12)

we obtain

ρℓ =
1

2
m2

ℓc
2
ℓ(mℓt)

1−κ
[
J2

κ+1
2

(mℓt) + J2
κ−1
2

(mℓt)
]

Pℓ =
1

2
m2

ℓc
2
ℓ(mℓt)

1−κ
[
J2

κ+1
2

(mℓt)− J2
κ−1
2

(mℓt)
]
.

(3.13)

Our assumption that the initial abundances of the ϕℓ

scale with mℓ according to Eq. (3.10) specifies the corre-
sponding scaling relation for the cℓ. Since any ϕℓ which
is highly overdamped at t = t∗ is even more highly over-
damped at t = t(0), it follows that mℓt

(0) ≪ 1 for such a

field. The initial energy density ρ
(0)
ℓ of any such field is

therefore well approximated by the mℓt → 0 limit of the
expression for ρℓ in Eq. (3.13) with mℓ held fixed. We
thus have

ρ
(0)
ℓ ≈ lim

mℓt→0
ρℓ =

1

2
c2ℓm

2
ℓJ (κ) , (3.14)

where the quantity J (κ) is independent of ℓ and given
by

J (κ) ≡ 21−κ

Γ2
(
κ+1
2

) , (3.15)

where Γ(z) denotes the Euler gamma function. Compar-

ing the form of ρ
(0)
ℓ in Eq. (3.14) with the expression for

Ωℓ in Eq. (3.10), we find that

c2ℓ =
2ρ

(0)
0

m2
ℓJ (κ)

(
mℓ

m0

)α

(3.16)

and therefore that

ρℓ ≈ ρ
(0)
0

J (κ)

(
mℓ

m0

)α

(mℓt)
1−κ

×
[
J2

κ+1
2

(mℓt) + J2
κ−1
2

(mℓt)
]
. (3.17)
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The total energy density associated with the slow-roll
states at a given time t is simply the sum of the con-
tributions from the individual states which still remain
overdamped at that time:

ρSR =

ℓc(t)−1∑
ℓ=0

ρℓ . (3.18)

Within the regime in which the density of states per unit
mass is large — and the difference between the times at
which each pair of adjacent states ϕℓ and ϕℓ−1 undergo
their critical-damping transitions is therefore small —
we may obtain a reliable approximation for ρSR by work-
ing in the continuum limit in which the discrete index
ℓ is promoted to a continuous variable and the sum in
Eq. (3.18) becomes an integral. In particular, as dis-
cussed in more detail in Refs. [1, 2], this limit corresponds
to simultaneously taking

∆m → 0 , N → ∞ (3.19)

and

m0 → 0 , mN−1 → ∞ (3.20)

while holding the ratio ∆m/m0 fixed. In this limit, the
sum in Eq. (3.18) becomes an integral over the continuous
variable ℓ — or, equivalently, over the continuous mass
variable m obtained from this ℓ via Eq. (3.9) — and ρSR
takes the form

ρSR =
ρ
(0)
0 I

(ρ)
SR (κ)

δ∆m1/δmα
0J (κ)

1

tα+1/δ
, (3.21)

where we have defined

I
(ρ)
SR (κ) ≡

∫ mℓc

0

dm t(mt)α+1/δ−κ

×
[
J2

κ+1
2

(mt) + J2
κ−1
2

(mt)
]
. (3.22)

Changing integration variables from m to t̃ ≡ mt and
noting that the upper limit of integration in the resulting
integral can be expressed as as mℓct = 3Ht/2 = κ/2

during stasis, we find that I
(ρ)
SR (κ) is in fact independent

of t and given by

I
(ρ)
SR (κ) =

∫ κ/2

0

dt̃ t̃α+1/δ−κ
[
J2

κ+1
2

(t̃) + J2
κ−1
2

(t̃)
]
.

(3.23)
Since the abundance ΩSR of the slow-roll component

must by definition remain constant while the universe is
in stasis, the expression for ρSR in Eq. (3.21) implies a
consistency condition on the values of the scaling expo-
nents α and δ. Indeed, since H = κ/(3t) during stasis,
this abundance is given by

ΩSR =
ρSR

3M2
PH

2
=

3ρ
(0)
0 I

(ρ)
SR (κ)

κ2δ∆m1/δmα
0M

2
PJ (κ)

1

tα+1/δ−2
.

(3.24)

We thus find that in order for ΩSR to be independent of t
during stasis, our scaling exponents α and δ must satisfy

α+
1

δ
= 2 . (3.25)

Indeed, since ρ
(0)
ℓ ∼ mα

ℓ , this stasis condition implies that
our initial field displacements for ℓ ≫ 1 must exhibit the
universal δ-independent behavior

ϕ
(0)
ℓ ∼ ℓ−1/2 , (3.26)

with increasingly small initial field displacements as one
proceeds up the tower. Thus, we see that even for α > 0,
stasis never requires growing initial field displacements.
An expression for the pressure PSR associated with the

slow-roll component may be obtained through a proce-
dure analogous to that which we used in obtaining our
expression for ρSR in Eq. (3.21). In particular, one finds
that

PSR =
ρ
(0)
0 I

(P )
SR (κ)

δ∆m1/δmα
0J (κ)

1

tα+1/δ
, (3.27)

where we have defined

I
(P )
SR (κ) ≡

∫ κ/2

0

dt̃ t̃α+1/δ−κ
[
J2

κ+1
2

(t̃)− J2
κ−1
2

(t̃)
]
.

(3.28)
It therefore follows that the value wSR of the equation-of-
state parameter for the slow-roll component during stasis
is indeed time-independent and given by

wSR =
I
(P )
SR (κ)

I
(ρ)
SR (κ)

. (3.29)

We now turn to consider the fields which are under-
damped at t = t∗. In general, the heavier such fields
could have been either underdamped or overdamped at
t = t(0), depending on the relationship between mN−1

and H(0). However, since the energy density of an in-
dividual ϕℓ which is underdamped during any particular
time interval decreases over time relative to that of any
state which is overdamped during that interval, the col-
lective contribution to ρosc from those ϕℓ which are al-
ready underdamped at t(0) decreases over time and even-
tually becomes negligible in comparison to the collective
contribution from the ϕℓ which begin oscillating after t(0).
Given this observation, we shall take our fiducial time

t∗ to be sufficiently late that ρosc is dominated at this
time by the collective contribution from those ϕℓ states
which were not only overdamped at t = t(0) but also still
overdamped at the time the stasis epoch began. Since
these ϕℓ began oscillating only after the Hubble param-
eter was effectively given by H ≈ κ/(3t), their individ-
ual energy densities are well approximated by Eq. (3.17).
Moreover, since the collective contribution to ρosc from
fields which began oscillating before the stasis epoch be-
gan is negligible at t = t∗, we may approximate ρosc at
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this time — or indeed at any time t at which the uni-
verse is likewise sufficiently deeply in stasis that these
conditions are satisfied — by the sum

ρosc ≈
N−1∑

ℓ=ℓc(t)

ρℓ . (3.30)

An expression for the pressure Posc may be derived in an
analogous manner. In the continuum limit, these expres-
sions evaluate to

ρosc =
ρ
(0)
0 I

(ρ)
osc(κ)

δ∆m1/δmα
0J (κ)

1

tα+1/δ

Posc =
ρ
(0)
0 I

(P )
osc (κ)

δ∆m1/δmα
0J (κ)

1

tα+1/δ
, (3.31)

where I
(ρ)
osc and I

(P )
osc are expressions of exactly the same

form as the expressions for I
(ρ)
SR and I

(P )
SR in Eqs. (3.23)

and (3.27), respectively, but with the lower limit of inte-
gration replaced by κ/2 and the upper limit of integration
replaced by mN−1t → ∞ in each case. For all κ ≥ 2, the
integrals in these expressions converge.

The form of ρosc in Eq. (3.31) implies that for values of
α and δ which satisfy the condition in Eq. (3.25), the cor-
responding abundance Ωosc is constant during stasis. It
also follows from Eq. (3.31) that the effective equation-of-
state parameter wosc remains effectively constant during
stasis at the value wosc, where

wosc =
I
(P )
osc (κ)

I
(ρ)
osc(κ)

. (3.32)

The effective equation-of-state parameter ⟨w⟩ for the
tower as a whole is also essentially constant during stasis.
Indeed, this constant value, which we denote w, can be
obtained from Eq. (3.8) by taking ΩSR, Ωosc, and the
equation-of-state parameters wSR and wosc equal to their
stasis values. In particular, we find that

w =
I
(P )
osc (κ) + I

(P )
SR (κ)

I
(ρ)
osc(κ) + I

(ρ)
SR (κ)

. (3.33)

In Fig. 4, we show how this effective equation-of-state
parameter w, along with the equation-of-state parame-
ters wSR and wosc for the slow-roll and oscillatory compo-
nents, vary as functions of κ within the range 2 ≤ κ ≤ 30.
Perhaps most notably, these results reveal the extent to
which the effective equation-of-state parameters wSR and
wosc differ from the characteristic values associated with
vacuum energy (w = −1) and for matter (w = 0), re-
spectively, across nearly the entire range of κ shown. The
difference between wSR and the equation-of-state param-
eter for vacuum energy owes primarily to the fact that
wSR includes contributions from fields which, while still
slowly rolling, nevertheless have non-negligible field ve-
locities ϕ̇ℓ and therefore also have wℓ > −1. The dif-
ference between wosc and the equation-of-state parame-
ter for matter owes to the fact that wosc includes con-
tributions not only from heavier ϕℓ which are already

5 10 15 20 25 30

κ̄

−1.0

−0.8

−0.6

−0.4
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0.0

w

wosc

wSR

w

FIG. 4. The stasis equation-of-state parameters wSR and
wosc for our slow-roll and oscillatory energy components,
along with the equation-of-state parameter w for the tower
of scalar fields as a whole, plotted as functions of the param-
eter κ within the range 2 ≤ κ ≤ 30.

oscillating rapidly and whose equation-of-state parame-
ters are therefore also varying rapidly within the range
−1 ≤ wℓ ≤ 1, but also from lighter ϕℓ which have only
recently transitioned from overdamped to underdamped
evolution. While the former contributions sum incoher-
ently to zero, the latter contributions in general do not.
Moreover, since the contribution that each ϕℓ makes to

wosc =
∑N−1

ℓ=ℓc
Ωℓwℓ is weighted by its abundance, the

contributions from the ϕℓ which have only recently tran-
sitioned from overdamped to underdamped evolution and
thus still have negative values of wℓ have a greater im-
pact on this effective equation-of-state parameter. As a
result, wosc < 0 for all κ > 2.
We also observe from Fig. 4 that the effective equation-

of-state parameter for the tower as a whole interpolates
between wSR and wosc, with w approaching wosc as κ → 2
and approaching wSR as κ → ∞. As κ → 2, we see that
w → 0 and the tower behaves effectively like massive
matter. By contrast, as κ → ∞, we find that w → −1
and the tower behaves like vacuum energy.
The abundance ΩSR of the slow-roll component dur-

ing stasis can be obtained by applying the constraint in
Eq. (3.25) to the expression in Eq. (3.24). Noting that

ρ
(0)
0 = m2

0(ϕ
(0)
0 )2/2, we may express this abundance as

ΩSR =
ρSR

3M2
PH

2
=

3

2

I
(ρ)
SR (κ)

δκ2J (κ)

( m0

∆m

)1/δ (ϕ
(0)
0

MP

)2

.

(3.34)
Thus, we find that ΩSR exhibits an explicit dependence
on the initial value of the lightest field in the tower.
Alternatively, ΩSR may also be expressed in terms of

the ratio H(0)/mN−1 of the initial value of the Hubble
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parameter to the mass of the heaviest scalar in the tower
— a ratio which carries information the extent to which
this scalar is damped at t = t(0). Indeed, in the contin-
uum limit, one finds that the total initial abundance of
the tower is given by

Ω
(0)
tow =

m2
N−1

2δm2
0

( m0

∆m

)1/δ
Ω

(0)
0 (3.35)

and that the initial energy density ρ
(0)
0 =

3M2
P (H

(0))2Ω
(0)
0 of the lightest state in the tower

may therefore be expressed as

ρ
(0)
0 = 6δ

(
MPH

(0)m0

mN−1

)2(
∆m

m0

)1/δ

Ω
(0)
tow . (3.36)

Substituting this expression for ρ
(0)
0 into Eq. (3.24) and

applying the constraint in Eq. (3.25), we obtain

ΩSR =
18I

(ρ)
SR (κ)

κ2J (κ)

(
H(0)

mN−1

)2

Ω
(0)
tow . (3.37)

Likewise, we note that the stasis abundance for the os-
cillatory component is given by

Ωosc =
18I

(ρ)
osc(κ)

κ2J (κ)

(
H(0)

mN−1

)2

Ω
(0)
tow . (3.38)

Taken together, Eqs. (3.34) and (3.37) imply that

H(0)

mN−1

√
Ω

(0)
tow =

√
1

12δ

( m0

∆m

)1/(2δ) ϕ(0)
0

MP
, (3.39)

for any value of mN−1. Indeed, straightforward cal-
culation confirms that this relation holds even in the
mN−1 → ∞ limit, and that ΩSR therefore remains fi-
nite in this limit as well. For a given aggregate initial

abundance Ω
(0)

tow for the tower, then, we may treat ΩSR

as a function of two dimensionless parameters: κ and

either H(0)/mN−1 or ϕ
(0)
0 /MP .

Thus, to summarize the results of this section, we have
shown that as long as the condition in Eq. (3.25) is satis-
fied, the system of dynamical equations which govern the
evolution of our ϕℓ in the early universe permits a sta-
sis solution wherein the aggregate abundances ΩSR and
Ωosc both remain effectively constant. Somewhat mirac-
ulously, such a stasis solution emerges despite the fact
that the equation-of-state parameters wℓ for the individ-
ual ϕℓ evolve non-trivially with time as each such field
transitions dynamically from the overdamped to the un-
derdamped phase. Of course, many approximations were
made on the road to the result in Eq. (3.25). These in-
clude, for example, the transition to a continuum limit
in Eq. (3.19) and the subsequent approximations for the
summation endpoints in Eq. (3.20). However, it turns out
that none of these approximations affect the manner in
which our expression for ΩSR in Eq. (3.24) and the anal-
ogous expression for Ωosc depend on t. As a result, the

constraint which cancels this time dependence — namely
that in Eq. (3.25) — is an exact constraint that does not
require any modification. Indeed, these approximations
only affect the prefactors that are associated with these
expressions, and we shall see that these prefactors are
of lesser concern because changes to their precise values
disturb neither the existence of the stasis state nor the
ability of the universe to evolve into it. These issues are
discussed more fully in Ref. [2].
It is interesting to compare the stasis condition for this

system to the stasis condition derived in Ref. [2] for an
analogous system consisting of a tower of ϕℓ states un-
dergoing underdamping transitions in which each of the
ϕℓ was modeled as having a fixed common equation-of-
state parameter wℓ = w prior to the instant at which the
critical-damping transition occurs and as having a fixed
equation-of-state parameter wℓ = 0 thereafter. Taking
the w → −1 limit in this system would then correspond
to treating each ϕℓ as pure vacuum energy prior to its
underdamping transition and to treating each ϕℓ after as
pure matter afterwards. For general values of w lying
within the range −1 < w < 0, it was then found that the
condition for stasis is [2]

α+
1

δ
= 2− (1 + w)κ . (3.40)

Comparing this result with that in Eq. (3.25), we see
that these two stasis conditions coincide precisely when
w = −1. This then lends credence to both approaches to
studying such towers of dynamical scalars and indicates
that they are mutually consistent in the w → −1 limit,
which corresponds to a true vacuum-energy/matter sta-
sis.
That said, there is an important fundamental differ-

ence between the results in Eqs. (3.25) and (3.40): given
an input value for α+1/δ, the former constraint does not
predict a particular stasis value for κ (or equivalently for
w), while the latter does. Or, phrased somewhat differ-
ently, our derivation of the stasis condition in Eq. (3.25)
made absolutely no assumption concerning what other
energy components might also simultaneously exist in
the universe, so long as the entire universe experiences
a net stasis with the Hubble parameter taking the form
H(t) ≈ κ/(3t) for some constant κ. In particular, it
was not necessary to impose any relationship between
the value of κ and the abundances ΩSR and Ωosc — or
equivalently between the total energy density ρtot of the
universe and the contributions to ρtot which come from
the tower states ϕℓ alone. We shall find in Sect. IV that
this fundamental difference has profound consequences.

D. Stasis in a tower-dominated universe

Throughout this section, we have utilized the fact that
the Hubble parameter during stasis takes the general
form H = κ/(3t). However, up to this point, we have



13

made no assumptions concerning the value of κ. In gen-
eral, κ is directly related to the stasis value wuniv of the
equation-of-state parameter wuniv for the universe as a
whole. In order to show this, we begin by noting that we
can implicitly define a time-dependent parameter κ(t) via
the relation

dH

dt
= − 3

κ
H2 . (3.41)

Indeed, during a stasis epoch in which κ(t) is effectively
constant with a value κ, we recover from Eq. (3.41) the
stasis relation H ≈ κ/(3t). However, the Friedmann ac-
celeration equation for a flat universe generally tells us

dH

dt
= − 3

2
H2 (1 + wuniv) . (3.42)

Comparing Eqs. (3.41) and (3.42) then yields the general
relation κ = 2/(1 + wuniv), where κ and wuniv are in
general both time-dependent quantities. During stasis,
both of these quantities are effectively constant and we
therefore have

κ =
2

1 + wuniv
. (3.43)

While Eq. (3.43) provides a general relation between
κ and wuniv, both of which describe the universe as a
whole, we have not yet asserted any relation between
these quantities and quantities such as w or Ωtow which
describe the tower itself. In other words, we have made
no assumption about whether our scalar tower consti-
tutes the entirety of the energy density of the universe,
or whether there exist additional energy components dur-
ing stasis as well. Such an assumption — and additional
details concerning the abundances and equation-of-state
parameters of any such energy components — would be
necessary before any such relation between κ and wuniv

on the one hand, and quantities such as w and Ωtow on
the other hand, could be formulated. Thus, in order to
proceed further, we must specify whether any additional
energy components are present during stasis and what
their properties might be.

For the remainder of this section, we shall focus on
the simplest case — that in which the tower states col-
lectively represent the entirety of the energy density in
the universe. In other words, we shall assume that
Ωtow(t) = 1 for all t and defer our study of the more gen-
eral case in which additional cosmological energy compo-
nents are present to Sect. IV.

In the absence of additional energy components, we
have Ωosc = 1 − ΩSR. Likewise, the equation-of-state
parameter for the universe as a whole during stasis is
simply wuniv = w, where in this case

w = wSRΩSR + woscΩosc . (3.44)

It therefore follows from Eq. (3.43) that

κ =
2

1 + wosc(κ) + [wSR(κ)− wosc(κ)]ΩSR

, (3.45)
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FIG. 5. The value of κ (upper panel) and the values of
ΩSR and Ωosc (lower panel), plotted as functions of the ra-

tio H(0)/mN−1 for the case in which no additional energy
components are present during stasis.

where we have included the explicit dependence of wSR

and wosc on κ in this expression in order to emphasize
that these quantities not only depend on, but are indeed
completely specified by, the value of κ. Substituting the

expression for ΩSR in Eq. (3.37) with Ω
(0)
tow = 1 into this

equation, we arrive at a transcendental equation for κ.
This equation, which takes the form

2κ− [1 + wosc(κ)]κ
2

wSR(κ)− wosc(κ)
=

18I
(ρ)
SR (κ)

J (κ)

(
H(0)

mN−1

)2

, (3.46)

may be solved numerically for any given value of the ra-
tio H(0)/mN−1. From this solution, the corresponding
values of ΩSR, Ωosc, wSR, and wosc may be obtained in a
straightforward manner.
In Fig. 5, we show both the value of κ (upper panel)

and the values of ΩSR and Ωosc (lower panel) as functions
of H(0)/mN−1. We observe from the upper panel that κ
approaches the value κ = 2 associated with a matter-
dominated universe in the H(0)/mN−1 → 0 limit, but
grows without bound as H(0)/mN−1 increases. Accord-
ingly, we observe from the lower panel that ΩSR → 0 in
the H(0)/mN−1 → 0 limit. However, this abundance in-
creases monotonically with H(0)/mN−1 and approaches
unity as H(0)/mN−1 → ∞.

E. Dynamical evolution and attractor behavior

Having established the conditions under which stasis
can emerge in our dynamical-scalar scenario, and having
determined how the stasis abundances ΩSR and Ωosc de-
pend on input parameters, we now examine whether ΩSR

and Ωosc in fact evolve dynamically toward these stasis
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values, given the initial conditions we have specified for
the ϕℓ. We shall perform our analysis of the cosmological
dynamics by numerically solving the coupled system of
equations of motion for H and ϕℓ. For the moment, we
shall focus on the case in which Ωtow(t) = 1 for all t and
defer discussion of the more general case until Sect. IV.

In the upper panel of Fig. 6, we plot the abun-
dances ΩSR(t) of the slow-roll component (solid curves)
as functions of the dimensionless time variable m0t for
H(0)/mN−1 = {0.23, 0.40, 0.55, 0.71, 0.97}. The corre-
sponding stasis abundances — obtained from Eq. (3.37)

with Ω
(0)
tow = 1 and with κ determined implicitly

through Eq. (3.46) — are respectively given by ΩSR =
{0.1, 0.3, 0.5, 0.7, 0.9}. For each ΩSR curve shown, the
dotted horizontal line of the same color indicates the
corresponding value of ΩSR. By contrast, in the lower
panel of Fig. 6, we plot the corresponding equation-of-
state parameters ⟨w⟩(t) for the tower as a whole (solid
curves) as functions of m0t. For each ⟨w⟩ curve shown,
the dotted horizontal line of the same color indicates the
corresponding value of wSR. All of the curves shown in
Fig. 6 correspond to the parameter choices α = 1 and
δ = 1.
We see from Fig. 6 that the universe evolves dy-

namically toward stasis regardless of the initial value
H(0)/mN−1. However, consistent with our result in
Eq. (3.37), we see that the particular stasis value ΩSR

towards which ΩSR evolves does depend on this ratio.
We also see from this figure that the universe can remain
in stasis, with an effectively fixed abundance ΩSR, for
a significant duration, even for a moderate value of N .
Indeed, the curves shown in Fig. 6 were calculated with
N = 5000, and even with this relatively small value the
stases shown in Fig. 6 have not yet reached their end-
points. We shall discuss the relationship between N and
the resulting number of e-folds of stasis below.
We emphasize that while certain quantitative aspects

of the ΩSR curves shown in Fig. 6 reflect the particular
values of α and δ we have chosen, the abundance curves
obtained for other combinations of α and δ which likewise
satisfy the stasis condition in Eq. (3.25) are qualitatively
similar. Indeed, we find that the universe is generically
attracted toward stasis in each case, despite the fact that
ΩSR depends on H(0)/mN−1.

More generally, we find that the universe is always at-
tracted towards a stasis solution within this dynamical-
scalar system regardless of the initial conditions. The
initial conditions affect the values of the abundances and
equation-of-state parameters of our cosmological energy
components during stasis, but the universe is always at-
tracted towards a stasis configuration.

Since we are assuming that ϕ̇
(0)
ℓ = 0 for all fields in

the tower, we initially have ⟨w⟩ = −1, regardless of the
value of H(0)/mN−1. Moreover, as the system evolves
toward stasis, we also observe that ⟨w⟩ approaches the
constant value w obtained from Eq. (3.29) with κ deter-
mined explicitly through Eq. (3.46). In cases in which
the initial value of Ωosc = 1 − ΩSR is relatively large,
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FIG. 6. Upper panel : The abundances ΩSR(t) of the slow-
roll energy component (solid curves), plotted as functions

of the dimensionless time variable m0t for H(0)/mN−1 =

{0.23, 0.40, 0.55, 0.71, 0.97}. These values of H(0)/mN−1

respectively correspond to the stasis abundances ΩSR =
{0.1, 0.3, 0.5, 0.7, 0.9}. For each curve, the dotted horizon-
tal line of the same color indicates the corresponding value of
ΩSR. Lower panel : The effective equation-of-state parameters
⟨w⟩(t) for the scalar tower as a whole (solid curves), plotted
as functions of m0t over the same range as in the upper panel.
Each curve corresponds to the same value of H(0)/mN−1 as
the curve of the same color in the upper panel. For each curve,
the dotted horizontal line indicates the corresponding value
of wSR. All of the results shown in either panel correspond to
the parameter choices α = 1 and δ = 1.

we observe that the value of ⟨w⟩ oscillates around wSR

before it settles into its stasis value. This is due to the
fact that the highly oscillatory ϕℓ have a more significant
impact on the value of ⟨w⟩ when Ωosc is large. Indeed,
this oscillatory behavior is less pronounced when ΩSR is
relatively large and the contribution to ⟨w⟩ from Ωoscwosc

is therefore less significant.
As is the case with ΩSR and w, we find that the dura-

tion of the stasis epoch — and therefore the number Ns

of e-folds of expansion the universe undergoes during this
epoch — depends on the ratio H(0)/mN−1. In the regime
in which 3H(0) > 2mN−1 and all of the ϕℓ are effectively
underdamped at t = t(0), we may obtain a rough esti-
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mate for Ns by approximating the duration of the stasis
epoch to be the interval between the times tN−1 and t0 at
which ϕN−1 and ϕ0 undergo their critical-damping tran-
sitions, respectively. Approximating H ≈ κ/(3t) at each
of these transition times and using the fact that the scale
factor scales like a ∼ tκ/3 during stasis, we find that

Ns ≈ log

[
a(t0)

a(tN−1)

]
≈ κ

3
log

[
t0

tN−1

]
. (3.47)

By contrast, in the opposite regime, in which 3H(0) <
2mN−1, all ϕℓ with masses mℓ > 3H(0)/2 would begin
oscillating immediately at t = t(0). In this regime, then,
Ns is given by a expression similar to that in Eq. (3.47),
but with tN−1 → t(0). As a result, in either regime, we
have

Ns ≈ κ

3
log

(
t0

max{tN−1, t(0)}

)
≈ κ

3

[
δ logN + log

(
∆m

m0

)

+ log

(
3H(0)

max{3H(0), 2mN−1}

)]
. (3.48)

We see from Eq. (3.48) that Ns increases logarithmi-
cally with the number of ϕℓ in the tower. Moreover,
we also see that Ns increases monotonically with the ra-
tio H(0)/mN−1 for a given choice of m0,∆m, δ, and N .
This is due primarily to the fact that κ likewise increases
monotonically with this ratio, but the growth of Ns with
H(0)/mN−1 is also enhanced in the H(0)/mN−1 < 2/3
regime due to the fact that all ϕℓ with mℓ > 3H(0)/2
begin oscillating immediately at t = t(0).

We note, however, that the expression in Eq. (3.48)
overestimates the value of Ns within the regime in which
δ is small and the ratio m0/∆m is non-negligible. Within
this regime, the mass spectrum of the ϕℓ is significantly
compressed and the value of m0 therefore has a non-
negligible impact on themℓ across a significant portion of
the tower. As a result, although our fundamental scaling
relation between mℓ and ℓ in Eq. (3.9) continues to hold,
this relation is no longer well approximated by the sim-
pler power-law relation mℓ/∆m ≈ ℓδ within this portion

of the tower. Thus, the manner in which the ϕ
(0)
ℓ scale

with ℓ deviates significantly from the scaling relation in
Eq. (3.26). Thus, while the universe evolves toward and
subsequently remains in stasis as long as the total en-
ergy density of the tower remains dominated by ϕℓ with
mℓ ≫ m0, the stasis epoch effectively ends as soon as the

lighter ϕℓ whose ϕ
(0)
ℓ do not satisfy this scaling relation

begin to dominate that total energy density. That said,

in the opposite regime, in which m0 ≪ ∆m, the ϕ
(0)
ℓ

satisfy this scaling relation across essentially the entire
tower, and the expression in Eq. (3.48) still furnishes a
reasonable estimate for Ns.

F. Alternative partitions

Before moving forward, we comment on one additional
property of our realization of stasis which bears mention.
The two cosmological energy components which coexist
with constant abundances during stasis — components
which we have called “slow-roll” and “oscillatory” — are
each derived from collections of fields whose individual
equation-of-state parameters evolve continuously from
wℓ = −1 to wℓ = 0. As indicated in Sect. III A, the cri-
terion we have adopted in order to determine with which
energy component a given such field should be associated
at any particular time t is whether or not 3H(t) ≥ 2mℓ.
If this criterion is satisfied for a given ϕℓ, we associate
this field with the slow-roll component; if it is not, we
associate this field with the oscillatory component. This
is certainly a physically motivated choice, given that it
associates all ϕℓ which are overdamped at time t with
the slow-roll component and all of the fields which are
underdamped with the oscillatory component.
While the distinction between overdamped and under-

damped fields is a mathematically important one, there
is nevertheless no sharp distinction that occurs in the be-
havior of a given field as it crosses this boundary. Even
for a single scalar field evolving in a fixed external cos-
mology, as shown in Fig. 1, the transition from the over-
damped to underdamped regimes is a completely smooth
one. For this reason, it is natural to wonder whether our
discovery of a stasis between the slow-roll and oscilla-
tory components critically relies on this being taken as
the definitional boundary between the two components,
or whether an analogous stasis might exist even if this
boundary were shifted in either direction.
As we shall now see, a stasis emerges even if this bound-

ary is shifted. More specifically, if we were to replace our
standard “slow-roll” criterion 3H(t) ≥ 2mℓ with a gen-
eralized criterion

3AH(t) ≥ 2mℓ (3.49)

where A is an arbitrary positive constant, we would find
that a stasis develops regardless of the value of A. Such a
stasis would then take place between the abundances of
the new “slow-roll” component (i.e., now defined as the
component comprising fields which satisfy this modified
criterion at time t) and the new “oscillatory” component
(i.e., the component comprising fields which do not).
It is straightforward to understand why such a stasis

continues to arise. Since the upper limit of integration in
Eq. (3.22) is given by mℓc = 3AH/2 = Aκ/(2t) for such

a criterion, it follows that I
(ρ)
SR (κ) is likewise independent

of t for any choice of A and given by

I
(ρ)
SR (κ) =

∫ Aκ/2

0

dt̃ t̃α+1/δ−κ
[
J2

κ+1
2

(t̃) + J2
κ−1
2

(t̃)
]
.

(3.50)

The corresponding expressions for the quantity I
(P )
SR (κ)

Eq. (3.27) and for the quantities I
(ρ)
osc(κ) and I

(P )
osc (κ) are
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obtained by making the replacement κ/2 → Aκ/2 in the
upper and lower limits of integration, respectively. Since

since I
(ρ)
SR (κ) and I

(ρ)
osc(κ) are both constant during stasis

for any choice of the partition parameter A, the corre-
sponding abundances ΩSR and Ωosc are likewise constant
during stasis whenever Eq. (3.25) is satisfied. Moreover,
while the particular values ΩSR and Ωosc that these abun-
dances take during stasis do depend non-trivially on A,
we find that ΩSR and Ωosc evolve dynamically toward
these stasis values for any choice of this partition param-
eter.

In Fig. 7, we plot the stasis abundances ΩSR and Ωosc

as functions of A for the parameter choice H(0)/mN−1 =
2/3. For reference, we also include a dotted vertical line
indicating our usual value A = 1, which corresponds to
choosing the partition location to coincide with the lo-
cation of the underdamping transition. As we see from
this figure, the effect of increasing A is to increase ΩSR

and to decrease Ωosc, with the opposite results arising
for decreasing A. It is easy to understand this behavior.
Let us imagine increasing the value of A during stasis.
This then effectively increases the critical value ℓc(t) of ℓ
for which the criterion 3AH(t) ≥ 2mℓ is satisfied at any
given time. This in turn has the effect of shifting certain
ϕℓ states from the set of states which contribute to Ωosc

to the set of states contributing to ΩSR. This causes the
former abundance to decrease and the latter abundance
to increase. Moreover, this effect is never washed out at
subsequent times because we are in stasis. Thus the new
re-partitioned abundances are fixed and do not evolve
further.

Although we have seen that a stasis emerges over a
wide range of values for A, there are intrinsic limits to
how large or small A may be taken. Indeed, these limits
can be seen in Fig. 7: when A is taken too large, Ωosc

falls to zero, while if A is taken too small, ΩSR falls to
zero. Thus, in either extreme limit, we no longer ob-
tain a meaningful stasis between two significant energy
components. We can also understand this behavior by
thinking about the ϕℓ tower. Given that we have posited
a tower of N components, it is possible for the value of
A to become so large or so small that we have either too
few states in the oscillatory phase at the top of the tower
at early times or too few states in the slow-roll phase at
the bottom of the tower at late times. In either case, the
prevalence of such significant “edge” effects can then pre-
vent a stasis from developing at early times or surviving
until late times. These destructive effects arise because
the existence of too few states in either scenario would in-
validate some the approximations (such as the continuum
approximation) that were made in Sect. III. This then
seriously curtails (or potentially even completely elimi-
nates) the length of time available for a corresponding
stasis epoch. However, as long as A is not taken to these
extremes, we see that we have a healthy stasis whose
existence persists regardless of changes in A.

Thus far we have focused on the partitioning of our
tower into only two energy components. However, we
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FIG. 7. The stasis abundances ΩSR and Ωosc that emerge for
arbitrary choices of the partition parameter A in Eq. (3.49),

plotted as functions of A for the reference valueH(0)/mN−1 =
2/3. The vertical line indicates the standard choice A = 1
that we have made throughout this paper. We see that a
stasis emerges for all values of A shown, with the resulting
stasis abundances increasingly favoring ΩSR for larger A and
Ωosc for smaller A.

can even consider a more general partitioning of the tower
into an arbitrary numberNC of cosmological energy com-
ponents. These components may be labeled by an index
i = 1, 2, . . . , NC . We define an abundance Ωi and a par-
tition parameter Ai for each of these energy components
such that A1 = 0 and Ai+1 > Ai. For all i < NC , we
associate the abundances Ωℓ of all of the ϕℓ with masses
within the range 3Ai+1H(t) ≥ 2mℓ > 3AiH(t) with Ωi.
We associate the abundances Ωℓ of all the ϕℓ with masses
2mℓ > 3ANC

H(t) with ΩNC
.

For such a general partition, we find that when the
condition in Eq. (3.25) is satisfied, a stasis — one in which
all of the Ωi take effectively constant values — likewise
emerges in the continuum limit. These stasis abundances
Ωi are given by functions of the form in Eq. (3.34) with

I
(ρ)
SR (κ) replaced by a function of the form

I
(ρ)
i (κ) =

∫ Ai+1κ/2

Aiκ/2

dt̃ t̃α+1/δ−κ
[
J2

κ+1
2

(t̃) + J2
κ−1
2

(t̃)
]

(3.51)
for i < NC , and by a similar expression with the re-
placement Ai+1κ/2 → ∞ in upper limit of integration
for i = NC . We also find numerically that the Ωi are dy-
namically attracted toward their corresponding Ωi values
for arbitrary such partitionings of the tower into energy
components.
We see, then, that the emergence of stasis from a tower

of dynamical scalars does not depend on the manner in
which we partition the tower into energy components
based on the relationships between H(t) and the individ-
ualmℓ. That said, the two-component partition which we
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have been employing thus far in this paper, in which one
component comprises the scalars which are overdamped
at any given time and the other comprises the scalars
which are underdamped, is a physically meaningful one,
and we shall continue to adopt this partition in what
follows.

IV. STASIS IN THE PRESENCE OF A
BACKGROUND ENERGY COMPONENT

In this section we investigate what happens if we re-
peat our previous analysis, only now in the presence of
an additional energy component which we may regard as
a “background spectator” — i.e., a fluid which is com-
pletely inert, neither receiving energy from our ϕℓ fields
nor donating energy to them. We shall conduct our anal-
ysis in two stages. First, we will consider the case in
which this background is time-independent, with a fixed
equation-of-state parameter wBG. We shall then con-
sider how our results are modified if our background has
a time-dependent equation-of-state parameter wBG(t).

A. Time-independent background

We begin our analysis by considering the case in which
our background fluid has a fixed equation-of-state param-
eter wBG. We shall make no other assumptions regarding
the nature of this background and we shall allow its ini-

tial abundance Ω
(0)
BG to be completely arbitrary. Thus,

even though we shall refer to this energy component as
a “background”, we shall not assume that it dominates
the cosmology of our system.

In the following analysis, we shall let w represent the
equation-of-state parameter of our dynamical-scalar sys-
tem during the stasis that would have resulted if there
had been no extra background component . Indeed, w
will continue to be given by Eq. (3.44) where ΩSR and
Ωosc are likewise the values of ΩSR and Ωosc that would
have emerged in such a background-free stasis. As
long as our slow-roll and oscillatory components have
reached stasis, all of the quantities in Eq. (3.44) are time-
independent. We shall also continue to let ⟨w⟩ denote
the time-dependent equation-of-state parameter for our
ϕℓ tower alone, as in Eq. (3.5). By contrast, we shall let
wuniv continue to denote the equation-of-state parameter
for the entire universe, bearing in mind that this now in-
cludes not only the contribution from the ϕℓ tower but
also the contribution from the background:

wuniv ≡
∑
i

wiΩi = ⟨w⟩Ωtow + wBG ΩBG . (4.1)

Indeed, with this definition Eq. (3.43) continues to apply.
As we have already remarked at the end of Sect. III C,

we do not expect the existence of a stasis solution to be
disturbed by the introduction of a background. However,
what interests us here are the answers to two questions:

• How is the stasis solution affected by the presence
of the spectator background?

• How is the dynamics of our system affected by the
presence of the spectator background? Does the
(possibly new) stasis solution continue to serve as
an attractor?

In this section, we shall provide answers to these ques-
tions.
We begin by investigating the effect that varying both

the initial abundance Ω
(0)
BG and equation-of-state param-

eter wBG of the background has on the manner in which
the abundances ΩSR and Ωosc evolve with time. In Fig. 8,
we plot ΩBG (left panel), ΩSR (middle panel), and Ωosc

(right panel) as functions ofm0t for several different com-

binations of Ω
(0)
BG and wBG.

For all combinations of Ω
(0)
BG and wBG, we observe

that the universe evolves towards a stasis in which
ΩSR and Ωosc have constant, non-zero values. In this
three-component system, this of course implies that ΩBG

evolves toward a constant value as well. Moreover, we ob-

serve that the value of Ω
(0)
BG has no effect on the constant

values toward which ΩSR and Ωosc ultimately evolve. In-
deed, the stasis that emerges for a given choice of wBG is

also completely independent of Ω
(0)
BG. This is already an

interesting result — one which confirms our expectation
that the presence of a background component should af-
fect neither the existence of a stasis solution within our
dynamical system, nor the fact that this solution is an
attractor within that system.
That said, we also see from Fig. 8 that the stasis which

emerges in the presence of a background component de-
pends non-trivially on the value of wBG. The results
shown for the larger value of wBG (dashed lines) indi-

cate that ΩBG → 0 for all choices of Ω
(0)
BG. Further-

more, the stasis abundances which ultimately emerge for
the slow-roll and oscillatory components after the back-
ground abundance dies away are precisely the same sta-
sis abundances that we would have obtained for a slow-
roll/oscillatory-component stasis with background absent
altogether. By contrast, the results for the smaller value
of wBG (solid lines) indicate that ΩBG asymptotes to-

ward a finite, non-zero value. Thus Ω
′
SR + Ω

′
osc < 1 for

the stasis that emerges, where Ω
′
SR and Ω

′
osc denote the

modified stasis abundances for the slow-roll and oscilla-
tory energy components which emerge in the presence of
the background.

In order to further elucidate the manner in which Ω
′
SR

and Ω
′
osc depend on wBG, in Fig. 9 we plot ⟨w⟩ as a

function of m0t for a variety of different choices of wBG.
All curves shown correspond to the parameter choices

w = −0.5 and Ω
(0)
BG = 0.9. For wBG < w, we find that

the stasis value of ⟨w⟩ is given by wBG. By contrast, for
wBG > w, we find that this stasis value saturates at w.
For wBG > w, this latter result is easy to understand.

As our system evolves, w is less than wBG. Thus our
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FIG. 8. The time-evolution of the abundances ΩBG (left panel), ΩSR (middle panel), and Ωosc (right panel), plotted as functions
of m0t for two different choices of the equation-of-state parameter wBG for the background fluid (solid versus dashed lines).

The differently colored lines represent different choices of the initial abundance Ω
(0)
BG for this background fluid. The parameters

chosen for these plots correspond to a system which would have had w = −0.51 in the absence of the background fluid. In all
cases, we see that the system evolves towards a stasis solution in which ΩSR and Ωosc have constant, non-zero values — values

which are independent of Ω
(0)
BG but nevertheless depend on the value of wBG. Indeed, for wBG = 0 (dashed lines), we observe

that ΩBG → 0 as time increases for all Ω
(0)
BG. By contrast, for wBG = −0.8 (solid lines), we find that ΩBG always asymptotes

to a fixed non-zero value.
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FIG. 9. The effective equation-of-state parameter ⟨w⟩ for a
tower with w = −0.5, evaluated in the presence of a back-
ground fluid with equation-of-state parameter wBG and plot-
ted as a function of time for different fixed values of wBG. As
we sweep through increasing values of wBG, we find that ⟨w⟩
always reaches a stasis value. For wBG > w, we find that this
stasis value saturates at w. By contrast, for wBG < w, we find
that this stasis value is given by wBG. Thus, for wBG < w,
we see that the stasis equation-of-state parameter ⟨w⟩ for our
system tracks that of the background.

background redshifts away, i.e.,

ΩBG → 0 , (4.2)

purely as a consequence of cosmological expansion. In-
deed we have already seen this behavior within the

dashed curves of the left panel of Fig. 8. Thus our sys-
tem is ultimately attracted to the same stasis configura-
tion as we would have had if the background had never
been present, with ΩSR → ΩSR and Ωosc → Ωosc. It is for
this reason that ⟨w⟩ → w. The stasis values for the abun-
dances that emerge in this case are nothing but the values

that are predicted by replacing H(0) with H(0)

√
Ω

(0)
tow in

Eq. (3.46). In other words, we reproduce our original
stasis that emerged in the absence of a background but
with the same total initial energy density of the tower.
This makes sense, since there is no background energy
component remaining in the system. In such cases, the
earlier period during which the background energy com-
ponent still exists can then be viewed as a “pre-history”
to the overall story.
By contrast, the manner in which the abundances be-

have for wBG < w is completely different. Within this
regime, our background does not redshift away, and in-
deed ΩBG asymptotes to a non-zero stasis value. This
means that ΩSR and Ωosc can no longer asymptote to
the same stasis values that they would have had if no
background had been present. In other words, in this
case the presence of the background necessarily deforms
the stasis away from what it would have been if the back-
ground had not been present. Remarkably, however, the
new stasis that is realized is one wherein

w′ = wBG , (4.3)

where w′ denotes the modified value which ⟨w⟩ takes dur-
ing stasis in the presence of the background. In other
words, the new stasis that is realized in this case has
an equation-of-state parameter which tracks that of the
background! This tracking behavior occurs regardless of
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the initial abundance Ω
(0)
BG of the background — indeed,

the background need not even be dominant. Moreover,
this behavior occurs regardless of the value that wBG

takes, so long as wBG < w.
This, then, is our first example of a “tracking” sta-

sis. As long as a background is present, and as long as
wBG < w (so that this background survives into the stasis
epoch without redshifting away), the modified equation-
of-state parameter w′ for the tower will always match
that of the background. If the initial background abun-

dance Ω
(0)
BG is large, this deformation of our stasis solution

to match the background occurs relatively quickly. For

smaller Ω
(0)
BG, by contrast, the deformation occurs more

slowly. However, so long as Ω
(0)
BG ̸= 0, the abundances

of the three cosmological energy components in our sys-
tem will automatically reconfigure themselves such that
w′ matches wBG.

Given these observations, the cosmological evolution
of a tower of scalar fields ϕℓ in the presence of a back-
ground fluid with equation-of-state parameter wBG can
be summarized as in Fig. 10. The top part of this fig-
ure indicates that our system without any background
produces a stasis with a certain equation-of-state param-
eter w. The lower part of the figure then illustrates that
when the background is present, we obtain a stasis whose
equation-of-state parameter is generally given by

⟨w⟩ → min {w, wBG} . (4.4)

Thus, for wBG < w, we obtain Eq. (4.3).
This result makes perfect sense. In Ref. [1] we demon-

strated on general grounds that a pairwise stasis cannot
exist in the presence of a spectator unless the two parts
of the system — i.e., the tower of dynamical scalars
and the background spectator — have the same effec-
tive equation-of-state parameter. It is thus the result in
Eq. (4.3) that enables a stasis between the slow-roll and
oscillatory components within the tower to arise even in
the presence of the background spectator. Indeed, we
see that the only way in which we can evade having
w′ = wBG is to have wBG < w. In that regime, the
background spectator redshifts away, simply leaving us
with w′ = w.

At this stage, several comments are in order. First,
even though ΩBG, ΩSR, and Ωosc all asymptote to fixed,
non-zero values for wBG < w, it is important to note that
this is not a triple stasis of the sort discussed in Ref. [2].
Indeed, in this scenario, there is no transfer of energy
between the background energy component and either
ρSR and/or ρosc. Rather, the behavior which our system
exhibits for wBG < w exemplifies a possibility discussed
in Ref. [1], wherein which a pairwise stasis between two
cosmological components takes place in the presence of a
background component.

Second, we remark that it is only this slow-
roll/oscillatory-component stasis achieved through dy-
namical scalars which has the ability to track a back-
ground. This does not happen for any realization of stasis

previously identified in the literature, including the mat-
ter/radiation stasis outlined in Refs. [1, 4] or any of the
pairwise stases — or even the triple stasis — discussed in
Ref. [2]. The underlying reason for this is actually quite
simple. In all of these other realizations of stasis, the
underlying constraint equations relate α + 1/δ directly
to the value of the equation-of-state parameter w during
stasis. For example, in the case of matter/radiation sta-
sis achieved via towers of decaying matter fields [1], our
underlying constraint equation took the form

1

γ
(α+ 1/δ) = 2− κ =

2w

1 + w
, (4.5)

where γ is a parameter governing the scaling of decay
widths Γℓ across the tower and where κ = 2/(1 + w).
Thus, once one specifies the fixed underlying parameters
(α, γ, δ) of our model, the resulting stasis value w is fixed
and cannot be altered. This implies that if we intro-
duce a spectator with equation-of-state parameter wBG

into such systems, and if wBG differs from the value of
w predicted from the constraint equations, there is no
mechanism via which the value of w can be deformed
such that it matches wBG. In other words, within the
stasis systems discussed in Refs. [1, 2], the components
involved in the stasis do not have the freedom needed in
order to track the spectator.
By contrast, the slow-roll/oscillatory-component sta-

sis that we are discussing in this paper rests upon the
much simpler constraint equation in Eq. (3.25). In-
deed, this constraint equation does not involve w at all,
which means that fixing the underlying model param-
eters (α, γ, δ) does not fix a unique value for w. This
in turn means that the properties of the stasis within
our dynamical-scalar scenario can be adjusted — even
to the extent of changing the value of the equation-of-
state parameter w — while still satisfying our underlying
stasis condition. Thus, we see that it is only the slow-
roll/oscillatory-component stasis achieved through dy-
namical scalars which has the freedom needed to “track”
a spectator field . This feature thereby distinguishes this
stasis from all of the stases that have previously been dis-
cussed in the literature. This tracking phenomenon may
have important implications when this stasis is embedded
in specific cosmological contexts [9].
Thus far, our discussion in this section has been pri-

marily qualitative, based on the numerical results in
Figs. 8 and 9. However, it is not difficult to understand
all of these features at an algebraic level. For example,
given that our universe contains two energy components
(the tower of ϕℓ states and the background), it follows
from Eq. (4.1) that

wuniv ≡ (⟨w⟩ − wBG) Ωtow + wBG . (4.6)

We likewise know that ρtow ∼ a−3(1+w′) and ρBG ∼
a−3(1+wBG) during stasis, whereupon we see that

Ω
′
tow = 0 or 1 unless w′ = wBG . (4.7)
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FIG. 10. The cosmological evolution of a tower of scalar fields ϕℓ in the presence of a background with equation-of-state
parameter wBG. Without the background (top row of figure), we have seen in Sect. III that our system naturally evolves into a
slow-roll/oscillatory-component stasis with an equation-of-state parameter w. Given this, the consequences of introducing the
background (lower row of figure) depend on how wBG relates to w. If wBG > w, the background simply redshifts away while
the tower continues to produce the same slow-roll/oscillatory-component stasis as before. However, if wBG < w, we find that
ΩBG evolves towards a non-zero constant while the tower now evolves into a different stasis configuration wherein the modified
equation-of-state parameter w′ is equal to wBG. In this way, then, the equation-of-state parameter for the tower during stasis
tracks the background.

Bearing in mind that within Eq. (4.6) only ⟨w⟩ and
Ωtow are time-dependent, we can then seek to deter-
mine the general conditions under which wuniv is time-
independent. It turns out that there are only three ways
in which we may obtain a constant equation-of-state pa-
rameter wuniv for the universe as a whole while maintain-
ing consistency with Eq. (4.7):

• the “trivial” solution without the tower, with
Ωtow = 0, whereupon we trivially have wuniv =
wBG;

• the original stasis without the background, with
Ωtow = 1 and ⟨w⟩ = w, leading to wuniv = w; and

• the solution in which the tower has reached stasis
with ⟨w⟩ = wBG, whereupon wuniv = w′ = wBG.

Indeed, of these three solutions, the first is trivial while
the second corresponds to the situation described in
Fig. 10 with wBG > w and the third corresponds to the
“tracking” situation described in Fig. 10 with wBG < w.
We can also obtain explicit expressions for the abun-

dances during such a tracking stasis. Indeed, for wBG <
w, Eq. (4.6) reduces during stasis to

w′
univ ≡ (w′ − wBG)Ω

′
tow + wBG . (4.8)

We can obtain an independent relation between wBG and

Ω
′
tow from our general expressions in Eq. (3.37) and (3.38)

for the stasis abundances of the slow-roll and oscilla-
tory components of the tower, respectively — expres-
sions which hold regardless of whether the background
is present. However, since this relation holds in general,
irrespective of the relationship between wBG and w, we

define Ω
∗
tow to represent the total stasis abundance of

the tower states in the presence of a background with a
completely arbitrary value of wBG — a total abundance

which may be given by either Ωtow or Ω
′
tow, depending

on circumstances. Similarly, we define κ∗ to represent a
completely arbitrary value of κ during stasis, which may
likewise be given by either κ or κ′.

Ω
∗
tow =

18
[
I
(ρ)
SR (κ∗) + I

(ρ)
osc(κ

∗)
]

κ∗2J (κ∗)

(
H(0)

mN−1

)2

Ω
(0)
tow .

(4.9)
The abundance of the tower within the wBG < w and
wBG > w regimes are obtained by taking κ∗ = κ′ ≡
2/(1 + wBG) and κ∗ = κ in the above equation, respec-
tively.

Within the wBG < w regime, we may solve Eqs. (4.8)
and (4.9) together numerically in order to obtain values
for κ∗ = κ′. There exist two solutions to this system of
equations: one which yields {Ωtow = 1, ΩBG = 0, ⟨w⟩ =
w} and one which yields {Ω′

tow < 1, ΩBG > 0, ⟨w⟩ =
wBG}. By contrast, within the wBG > w regime, the
equation-of-state parameter for the universe during stasis
is given by wuniv = w, and the only physically consistent
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solution for κ∗ = κ is the one with {Ωtow = 1, ΩBG =
0, ⟨w⟩ = w}. The reason that a second solution for κ∗

does not arise in this case ultimately owes to the fact
that Eq. (4.9) is a decreasing function of κ∗. As a result,
the would-be solution for κ∗ that would otherwise have
be obtained by taking w → wBG yields a value of Ωtow

which exceeds unity and must therefore be discarded.
We can use these results in order to obtain the indi-

vidual abundances of our slow-roll and oscillatory compo-
nents. In order to do this, we first note that the fraction
of the abundance associated with the slow-roll compo-
nent within the tower during stasis is simply

Ω
∗
SR

Ω
∗
osc +Ω

∗
SR

=
I
(ρ)
SR (κ∗)

I
(ρ)
osc(κ

∗) + I
(ρ)
SR (κ∗)

, (4.10)

which is only a function of κ∗. After obtaining the so-

lution for κ′ and Ω
′
tow, it is easy to see that Ω

′
SR takes

the same form as Eq. (3.37). However, since the value
of κ∗ has changed from κ to κ′ in the presence of the
background, we see that the abundance associated with
the slow-roll component is modified to

Ω
′
SR =

[
κ2J (κ)

κ′2J (κ′)

I
(ρ)
SR (κ′)

I
(ρ)
SR (κ)

]
ΩSR . (4.11)

The corresponding expression for Ω
′
osc is likewise modi-

fied to

Ω
′
osc =

[
κ2J (κ)

κ′2J (κ′)

I
(ρ)
osc(κ

′)

I
(ρ)
osc(κ)

]
Ωosc . (4.12)

Indeed, these expressions accord with the modifications
of the stasis abundances apparent in the numerical results
shown in Fig. 8.

B. Time-dependent backgrounds and tracking
solutions

Let us now consider what happens when the equation-
of-state parameter wBG is time-dependent. We have al-
ready seen that when wBG is a constant, and when this
constant is smaller than w, the dynamics of our ϕℓ tower
adjusts in order to realize a stasis with w′ = wBG. It
is therefore important to understand how our system re-
sponds when wBG itself is changing.

In general, the time variation of wBG(t) can be modeled
as a sequence of discrete jumps:

wBG(t) = w
(0)
BG +

∑
{i}

∆(i) Θ(t− ti) (4.13)

where {i} labels an arbitrary collection of times ti at
which wBG suddenly changes by an amount ∆(i). In the
infinitesimal limit of such jumps, one can obtain a con-
tinuous time dependence.
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FIG. 11. Tracking behavior for the stasis state resulting from
a tower of scalar fields in the presence of a variable back-
ground. Even when a stasis is achieved for the tower of scalar
fields, any subsequent change in wBG destabilizes the existing
stasis and produces a new stasis for which ⟨w⟩ continues to
match wBG. This behavior persists as long as the new value of
wBG continues to be smaller than w. In this figure, two sets
of changes for wBG are shown: in one case (shown in solid
red), the background has a value of wBG which starts at −0.9
and subsequently jumps to −0.8 and then −0.7, while in the
other case (dashed red), the background behaves identically
except that the final jump is back down to wBG = −0.9 rather
than to −0.7. In both cases, the values of ⟨w⟩ for our scalar-
field tower (shown in blue) attempt to track the behavior of
the background, achieving short-lived stases with ⟨w⟩ = wBG

within each interval before becoming destabilized again. The
blue curves in this figure are calculated assuming an initial

background abundance Ω
(0)
BG = 0.98, but the same qualitative

results would emerge for any value of Ω
(0)
BG and any sequence

of wBG-values which are all smaller than w.

We show two examples of such jumps in Fig. 11. In
each of these examples, wBG experiences two instanta-
neous jumps with

∣∣∆(i)
∣∣ = 0.1. In the case represented

by the solid red curve, wBG increases twice. By contrast,
in the case represented by the dashed red curve, wBG

increases once and then drops back to its original value.

In Fig. 11, we also indicate the response of a sys-
tem with w = −0.5 to these sequences of jumps. For
each sequence of jumps, we see that the equation-of-state
parameter ⟨w⟩ for our dynamical-scalar system (repre-
sented by the corresponding blue curve) always attempts
to match these discrete changes in wBG, and even occa-
sionally has enough time to achieve a short-lived stasis
with ⟨w⟩ → w′ = wBG until wBG changes again. We
also observe from Fig. 11 that this tracking is not in-
stantaneous. In particular, although any stasis that has
already been achieved is immediately destabilized when
wBG changes, it takes a non-zero amount of time for the
system to realize the new stasis for which the new value
of ⟨w⟩ matches the new value of wBG. It is nevertheless
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intriguing to see that the tower is capable of adjusting
its internal dynamics spontaneously in order to follow
the change in the external background.

Such tracking behavior is not unexpected. After all,
our stasis solution is a global attractor. As a result, any
change in wBG simply amounts to moving the location
of the attractor within the phase space. Of course, the
trajectory lines that lead towards the original attractor
are different from the trajectory lines that lead towards
the new attractor. However, any point on an original
trajectory line is also a point on a new trajectory line.
Thus, at the moment when wBG changes, our system
simply begins to evolve along the new trajectory line
rather the previous one. For this reason, even if the
background equation-of-state parameter varies continu-
ously, the tower will always evolve in such a manner as
to track wBG. Of course, a perfect slow-roll/oscillatory-
component stasis with ⟨w⟩ = wBG can only be expected
once wBG stabilizes to a constant.
There is also another potentially interesting aspect of

the tracking behavior we have found. Not only does our
stasis solution relentlessly track the background when
wBG < w, but it also ceases to track the background
if wBG grows too large and exceeds w. Thus we have at
our disposal not only a mechanism for tracking, but also
a mechanism for decoupling from tracking! It is therefore
possible to arrange things so that our stasis system not
only tracks the background for a while but also later de-
couples from it. This feature can accommodate a broader
scope of expansion histories than possible in the tradi-
tional scenarios.

V. TOWARDS A STASIS-INDUCED INFLATION

The results derived in Sects. III and IV suggest that
stasis could be the foundation of a deep connection be-
tween cosmology and particle physics. Such a connection
could then open the door to many new ways of think-
ing about the physics of the early universe. Along these
lines, one of the most exciting ideas that emerges from
this work is the possibility that the stasis phenomenon
we have discussed in this paper might serve as the foun-
dation for a new approach to cosmological inflation. In
this section, we shall therefore outline some speculative
thoughts concerning this possibility.

It is not hard to see that the stasis phenomenon could
provide the underpinning of a possible new way of realiz-
ing cosmic inflation. After all, as we have demonstrated,
our system of rolling scalars can give rise to a stasis epoch
during which the abundances of matter and vacuum en-
ergy remain fixed and in which the universe expands with
an equation of state within the range −1 < w < 0. Thus,
if our initial conditions are such that w < −1/3 (so that
the universe experiences an accelerated expansion with
ä > 0 during stasis), and if this stasis is maintained for
a sufficient number of e-folds, we will have produced an
epoch of accelerated expansion which could potentially

explain the extraordinary flatness and homogeneity of
our universe. This could then serve as the basis of a new
model of cosmic inflation.

We shall refer to this intriguing possibility as a stasis-
induced inflation, or simply “Stasis Inflation”. As it
turns out, Stasis Inflation has a number of interesting
features which merit further exploration.

First of all, Stasis Inflation does not require a com-
plicated scalar potential. Moreover, it does not rely on
non-minimal coupling structures between the scalar sec-
tor and gravity, unlike many of the inflationary scenarios
that have been proposed in order to accommodate the
most recent CMB measurements [10, 11]. Indeed, the
dynamics which gives rise to the accelerated expansion in
Stasis Inflation does not follow primarily from the shape
of the potential but rather from the structure of the un-
derlying particle physics. Moreover, in cases wherein the
ϕℓ are the KK modes of a higher-dimensional scalar field,
the mass spectrum of such states is primarily a reflection
of the compactification geometry.

Second, we observe that any equation-of-state param-
eter w < −1/3 for the stasis sector can be realized within
our Stasis Inflation framework. Thus, it is relatively
straightforward to achieve an epoch of accelerated cosmo-
logical expansion within this scenario, and we are not re-
stricted to having w ≈ −1. Indeed, the ability of our sta-
sis to “track” (and potentially later even decouple from)
a time-dependent background may allow the value of w
to vary throughout the inflationary epoch. This in turn
provides us with a handle that might allow us to “dump”
unwanted relics (allowing them to inflate away) while si-
multaneously preserving other relics that might be more
desirable.

As an example of this phenomenon, one could imag-
ine inflating away cosmic strings (which have w = −1/3)
while simultaneously preserving domain or bubble walls
(which have w = −2/3) so long as w′ lies between these
two values. One could then imagine that w′ drops fur-
ther at a later time, inducing the domain walls to inflate
away. In this way we would have not only arranged for
both cosmic strings and domain walls to inflate away but
also separated the times at which these processes occur
within the inflationary epoch. This in turn modifies the
manner in which the domain walls associated with bub-
bles of different sizes exit the horizon, producing results
which differ from what is possible in traditional infla-
tion scenarios. Likewise, this also modifies the manner
in which a population of bubbles evolves once they sub-
sequently re-enter the horizon. Moreover, in cosmologies
of this sort, the changing equation of state of the uni-
verse during the inflationary epoch modifies the manner
in which density perturbations with different wavenum-
bers exit the horizon. This can lead to the presence of
non-trivial features in the spectrum of density perturba-
tions — features which could leave characteristic imprints
in the CMB.

Third, within the most natural realizations of Stasis
Inflation the number of e-folds of inflation is no longer a
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free parameter but is directly related to the hierarchies
between particle-physics scales. For example, for scenar-
ios in which the ϕℓ tower consists of the KK excitations
of a higher-dimensional scalar field, the number of such
states will generically scale as N ∼ (RMUV)

n where R
schematically denotes a compactification radius, where
MUV denotes a UV cutoff such as the string scale or
the Planck scale, and where n is the number of com-
pactified dimensions. We thus see that the number of
states in the tower — and thus the duration of the sta-
sis epoch or equivalently the number of e-folds of cosmic
inflation produced — is directly connected to the hierar-
chy between R−1 and MUV. Taking R−1 ∼ O(TeV) and
MUV ∼ O(MPlanck) — as is typical in theories involv-
ing large extra dimensions — we see that this hierarchy
can be significant. Such models would then lead us to
conclude that the universe is large simply because the
Planck/TeV hierarchy is big! This thereby provides a
novel connection between two large numbers in physics.

Fourth, the Stasis Inflation scenario has a natural
graceful exit. Indeed, the stasis epoch ends when the
transitions from (overdamped) vacuum energy to (un-
derdamped) matter have reached the bottom of the ϕℓ

tower. As we have seen, this sort of exit is a general fea-
ture of all stasis epochs, and as such a graceful exit from
accelerated expansion is already an inherent part of the
Stasis Inflation scenario.

But finally — and perhaps most importantly — Sta-
sis Inflation behaves differently than ordinary inflation
in terms of its effects on the abundances of vacuum en-
ergy, matter, radiation, and potentially even other energy
components in the universe. Normally, during traditional
inflationary epochs, the universe rapidly becomes dom-
inated by vacuum energy, and all other energy compo-
nents that might have existed at the start of inflation
will inflate away, with abundances that fall to zero. This
is ultimately why an epoch of reheating is generally re-
quired after traditional inflation. However, with Stasis
Inflation, the situation is different: a non-zero matter
abundance can be carried along throughout the inflation-
ary epoch without exhibiting any reduction, even though
the universe is undergoing an accelerated expansion with
w < −1/3. This is ultimately because vacuum energy
and matter together play a crucial role in sustaining the
inflationary stasis that drives the cosmological inflation.
Moreover, if we further allow our scalar fields to decay
to radiation, as discussed in Ref. [2], we can even achieve
an inflationary triple stasis involving not only vacuum
energy and matter but also radiation. Thus the abun-
dances of vacuum energy, matter, and radiation can all
be sustained across the inflationary epoch. This has the
potential to significantly change the conditions needed
for any subsequent reheating.

In this section we have provided only a rough qualita-
tive sketch of a possible Stasis Inflation scenario. Much
more work is needed in order to determine whether such a
scenario is phenomenologically viable. For example, Sta-
sis Inflation must be shown to generate the correct power

spectrum for scalar perturbations while satisfying current
bounds on tensor perturbations [10, 11]. Similarly, one
must examine the generation of non-Gaussianities and
isocurvature perturbations within such scenarios and de-
termine whether the results are consistent with current
observational constraints [11, 12]. Stasis Inflation never-
theless remains an interesting possibility worthy of fur-
ther exploration.

VI. DISCUSSION AND CONCLUSIONS

Towers comprising large numbers of scalar fields are a
common feature of many BSM scenarios, including the-
ories with extra spacetime dimensions and string theory.
Moreover, the homogeneous zero-mode field value asso-
ciated with each of these fields transitions dynamically
from an overdamped phase exhibitng slow-roll behavior
to an underdamped phase exhibiting rapid oscillations.
In this paper, we have examined the conditions under
which the full dynamics of such fields across the tower
can give rise to an epoch of cosmic stasis between the
collective slow-roll and oscillatory abundances associated
with these two phases.
In the simplest case one might consider — that in

which no additional cosmological energy components are
present and in which the masses and initial abundances
of these scalars across the tower follow the scaling rela-
tion in Eq. (3.10) — we found that a cosmological stasis
can develop during which these two collective abundances
ΩSR and Ωosc each remain constant despite cosmic ex-
pansion across many e-folds. Indeed, a stasis of this sort
arises generically in any such system, provided that our
mass and abundance scaling exponents δ and α satisfy
α + 1/δ = 2 and provided that the density of states per
unit mass within the tower is sufficiently large that the
mass spectrum may reliably be approximated as a con-
tinuum. Moreover, we also demonstrated that in such
circumstances, the stasis state is actually a cosmologi-
cal attractor. Depending on initial conditions, the ulti-
mate stasis abundances ΩSR and Ωosc can take any value
within the ranges 0 < ΩSR < 1 and 0 < Ωosc < 1, with
ΩSR + Ωosc = 1. As a result, the effective equation-of-
state parameter for the universe as a whole during stasis
can take any value within the range −1 < w < 0.
We also considered how this picture changes in the

presence of an additional background energy component
beyond the scalar tower — a component that we take to
be a perfect fluid with a constant equation-of-state pa-

rameter wBG and arbitrary initial abundance Ω
(0)
BG. We

found that a stasis always emerges in this case as well.
However, we found that the properties of this stasis de-
pend on the relative sizes between wBG and w, where w
is the effective equation-of-state parameter of the stasis
that would have emerged in the absence of this additional
cosmological energy component. When wBG > w, we
found that the background energy density ρBG decreases
more rapidly with cosmic expansion than does the energy
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density of the tower. Thus the properties of the resulting
asymptotic stasis are unaffected by the presence of the
background, and our tower gives rise to the same stasis
as before. By contrast, in cases in which wBG < w, we
found that the tower gives rise to an entirely new stasis
— a tracking stasis — in which the new equation-of-state
parameter w′ evolves toward the value wBG. Indeed, this
is true regardless of the initial background abundance

Ω
(0)
BG.

Finally, we speculated that these ideas might form
the basis of a new approach towards understanding cos-
mic inflation. Indeed, a stasis epoch of this sort with
w < −1/3 exhibits accelerated expansion, and could po-
tentially solve the flatness and hierarchy problems. More-
over, as we discussed, this sort of “Stasis Inflation” has
a number of intriguing and potentially beneficial prop-
erties not shared by traditional models of inflation. Of
course, a more detailed examination of this idea is nec-
essary before any conclusions concerning its viability can
be drawn.

A few comments are in order. First, since the partic-
ular form of stasis that we have examined in this paper
arises from the collective dynamics of a large number of
scalar fields whose masses and abundances exhibit par-
ticular scaling behaviors, it is important to consider how
these scaling behaviors might arise in actual models of
particle physics. Fortunately, the mass spectrum that we
considered in this paper — a spectrum characterized by a
scaling exponent δ, a mass-splitting parameter ∆m, and
a ground-state mass shift m0 — is a fairly generic one in
many extensions of the Standard Model (SM), including
those extensions involving extra compact spacetime di-
mensions. Moreover, the spectrum of initial abundances

that we considered is one in which the Ω
(0)
ℓ scale with mℓ

according to a power law. As we have discussed, this too
is a fairly generic result emerging from many different
types of production mechanisms.

Given the requirements of stasis, we found that the

spectrum of initial field displacements ϕ
(0)
ℓ in our model

must scale as ϕ
(0)
ℓ ∼ ℓ−1/2, assuming all such fields start

from rest. While such a spectrum of initial displacements
is in principle achievable in scenarios in which the ϕℓ are
the KK excitations of a higher-dimensional scalar field,
it would be interesting to explore how such a spectrum
might emerge within the framework of a more fully devel-
oped model of higher-dimensional physics. Of course, ex-
plicit model constructions exist in the literature [5, 6, 13]

wherein the initial abundances Ω
(0)
ℓ and masses mℓ obey

the same scaling relations across a tower of axion-like par-
ticles as we have assumed here, with scaling exponents α
and δ respectively. Those models were developed in or-
der to address the dark-matter problem, and there is even
a partial overlap in the (α, δ) parameter space between
what is required for those models and what we require
for stasis. However, it still remains to construct explicit
particle-physics models within that overlap region.

For simplicity, we have also assumed throughout this

paper that while the initial displacements for our ϕℓ fields

can be sizable, the corresponding initial velocities ϕ̇
(0)
ℓ are

sufficiently small that their impact on the subsequent
evolution of the system can be neglected. There are a
number of ways in which such initial conditions for the

ϕ̇
(0)
ℓ can be achieved. One possibility, which is discussed

in Ref. [14], arises within the context of theories with
extra spacetime dimensions in which the SM is localized
on a four-dimensional brane, while an additional scalar
field neutral under the SM gauge group propagates freely
within the higher-dimensional bulk. The KK modes of
this bulk scalar play the role of the ϕℓ in this context. At
early times, the mass eigenstates of the theory are sim-
ply the KK-number eigenstates. One natural set of initial
conditions for the zero-modes of these scalars, which fol-
lows from positing that by some early time they have all
effectively settled into their potential minima, is ϕℓ ≈ 0
and ϕ̇ℓ ≈ 0 for all of the ϕℓ except ϕ0, which is massless
and can therefore acquire a misaligned background value.
If additional terms in the mass matrix for the ϕℓ are gen-
erated dynamically at some later time — for example,
as the consequence of a second-order phase transition —
the mass eigenstates of the theory are subsequently ad-
mixtures of the KK-number eigenstates. These late-time
eigenstates acquire non-zero field displacements (but neg-
ligible field velocities) via their mixing with the KK zero-
mode.

Another possibility is that the ϕ̇ℓ are initially non-
negligible at very early times. However, the kinetic-

energy density ρ
(KE)
ℓ associated with each of these field

velocities damps away rapidly in comparison with the
corresponding potential energy. As a result, the universe
will ultimately tend toward a state in which all of the ϕℓ

are either slowly rolling or oscillating around their poten-
tial minima. This suppression of kinetic-energy density
occurs generically, regardless of the effective equation-of-
state for the universe prior to the onset of stasis, though

the rate at which the ρ
(KE)
ℓ are suppressed of course de-

pends on this equation-of-state parameter. One possibil-
ity which would result in a particularly efficient suppres-

sion of the ρ
(KE)
ℓ involves positing that a brief auxiliary

period of accelerated cosmic expansion took place be-
fore stasis began. Such a period of accelerated expansion
could potentially even be driven by the ϕℓ themselves,
provided that H(0)/mN−1 is sufficiently large. During

this period, the ρ
(KE)
ℓ would decrease exponentially with

t. We emphasize this period need not last more than a
few e-folds in order to establish an appropriate set of ini-
tial conditions for the ϕℓ, and therefore would not usurp
the role of the subsequent stasis epoch in providing a
solution to the horizon problem.

Second, spatially homogeneous scalar-field configura-
tions are generically unstable due to parametric reso-
nances associated with self-interaction terms in the scalar
potential (if such terms are present) [15–17] or to gravita-
tional instabilities [18–20]. As a result, the homogeneous
zero-mode configurations of our ϕℓ are expected to frag-
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ment over time into a collection of spatially localized,
gravitationally bound structures or “lumps.” However,
the fragmentation of the initially homogeneous field con-
figurations of our ϕℓ should not have a significant impact
on the dynamics which gives rise to stasis. Indeed, this
fragmentation, which for the purely quadratic form of Vℓ

we are considering in this paper is due to gravitational
instabilities, occurs only after the field in question be-
gins oscillating [18]. Moreover, for this form of Vℓ, the
lumps into which each ϕℓ condensate fragments behave
like massive matter. Thus, both before and after frag-
mentation, each ϕℓ which satisfies 3H(t) < 2mℓ at a given
time t and therefore contributes to Ωosc has an equation-
state parameter wℓ ≈ 0. Fragmentation therefore has no
fundamental impact on the cosmological dynamics which
gives rise to stasis in this case, irrespective of the value of
w. This conclusion still holds even if the Vℓ potentials are
not purely quadratic, but include additional terms which
are higher-order in ϕℓ, provided that the anharmonicities
are sufficiently small.

For other forms of Vℓ (e.g., for quartic potentials), the
gravitationally bound structures into which the ϕℓ con-
densates fragment do not necessarily behave like massive
matter. That said, in the inflationary regime in which
w ≤ −1/3, the energy density associated with these
structures rapidly redshifts away during stasis. Since
each individual field only contributes significantly to Ωosc

for a brief period after it has begun oscillating, and since
fragmentation of each ϕℓ condensate in this case likewise
occurs only once the field has begun oscillating, the im-
pact of fragmentation on a stasis with such a value of w
may also be negligible in many cases, depending on the
rate at which ϕℓ particles are produced via parametric
resonance. We leave a detailed study of this dynamics
for future work.

Third, while we have focused in this paper on the case
in which the potentials for the ϕℓ are quadratic, there are
also other forms for the potential which are of interest
from a model-building perspective. One of these is the
form

V (ϕℓ) =
∑
i

Λi exp

(∑
ℓ

αiℓ ϕℓ

)
, (6.1)

where the Λi and αiℓ are model-dependent constants. Po-
tentials of this form arise in the low-energy limits of vari-
ous string compactifications and are of significant interest
because they can give rise to so-called scaling cosmolo-
gies [21, 22] (see also Ref. [23]) in which the scale fac-
tor a(t) evolves with time t according to a power law.
While such potentials lack stable minima, it is neverthe-
less conceivable that they could also give rise to a stasis
epoch. Indeed, even in scenarios involving a single scalar
field with an exponential potential [24], one finds that the
equation-of-state parameter w for the single scalar field
ϕ is approximately w(t) ≈ −1 at early times. However,
since there is no potential minimum, this field gathers
kinetic energy as it rolls, and as a result w(t) increases.
It would be interesting to investigate how this behavior

is modified in a multi-field context and to examine the
extent to which the dynamical evolution from smaller to
larger values of wℓ(t) can compensate for the effect of cos-
mological expansion, thereby potentially giving rise to a
stasis epoch. We leave this possibility for future work.
Fourth and finally, we emphasize again that the ideas

in this paper could serve as the foundation of a deep
connection between cosmology and particle physics and
thereby open the door to many exciting phenomenolog-
ical implications of cosmic stasis. For example, as dis-
cussed in Sect. V, a stasis epoch with w < −1/3 per-
sisting for Ns ≳ 60 e-folds of cosmic expansion can in
principle constitute a solution to the flatness and hori-
zon problems. If indeed viable models of Stasis Infla-
tion could be developed along these lines, such mod-
els would almost certainly give rise to distinctive power
spectra of primordial scalar and tensor perturbations.
This opens the possibility that evidence for Stasis Infla-
tion could potentially be extracted from observations of
the CMB and/or the stochastic gravitational-wave back-
ground. Another possibility is that a stasis involving dy-
namical scalars could occur much later in the cosmologi-
cal timeline. In particular, it would be interesting to con-
sider the possibility that the slowly rolling ϕℓ could col-
lectively constitute the dark energy which drives the ac-
celerated expansion that we observe at the present time,
while the oscillatory ϕℓ could collectively constitute the
dark matter. Of course, the presence of large numbers
of extremely light axion-like scalars presents a number
of model-building challenges, including those imposed by
constraints on supernova energy loss [25, 26], Eötvös-type
experiments [27, 28], searches for frequency variation in
atomic clocks [29], black-hole superradiance considera-
tions [30–35], data from pulsar-timing arrays [36, 37], and
the inverse correlation which exists between the dark-
energy equation of state and the present-day value of H
in combined fits to CMB and supernova data [38–42].
That said, if one were to construct a phenomenologically
viable model of dark energy along these lines, it would
go a long way toward addressing the cosmic coincidence
problem. This topic is therefore worthy of further explo-
ration.
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M. M. Sheikh-Jabbari, and T. Yang, Phys. Rev. D 103,
L081305 (2021), arXiv:2006.00244 [astro-ph.CO].

[42] B.-H. Lee, W. Lee, E. O. Colgáin, M. M. Sheikh-Jabbari,
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