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others have previously shown that TYROBP expression is 
increased in AD patients and in mouse models. Moreover, 
missense mutations in the coding region of TYROBP have 
recently been identified in some AD patients. These lines 
of evidence, along with computational analysis of LOAD 
brain gene expression, point to DAP12/TYROBP as a 
potential hub or driver protein in the pathogenesis of AD. 
Using a comprehensive panel of biochemical, physiologi-
cal, behavioral, and transcriptomic assays, we evaluated 
in a mouse model the role of TYROBP in early stage AD. 
We crossed an Alzheimer’s model mutant APPKM670/671NL/
PSEN1Δexon9 (APP/PSEN1) mouse model with Tyrobp−/− 
mice to generate AD model mice deficient or null for 
TYROBP (APP/PSEN1;  Tyrobp+/− or APP/PSEN1;  
Tyrobp−/−). While we observed relatively minor effects of 
TYROBP deficiency on steady-state levels of amyloid-β 
peptides, there was an effect of Tyrobp deficiency on the 
morphology of amyloid deposits resembling that reported 
by others for Trem2−/− mice. We identified modulatory 
effects of TYROBP deficiency on the level of phosphoryl-
ation of TAU that was accompanied by a reduction in the 
severity of neuritic dystrophy. TYROBP deficiency also 
altered the expression of several AD related genes, includ-
ing Cd33. Electrophysiological abnormalities and learning 
behavior deficits associated with APP/PSEN1 transgenes 
were greatly attenuated on a Tyrobp-null background. 
Some modulatory effects of TYROBP on Alzheimer’s-
related genes were only apparent on a background of mice 
with cerebral amyloidosis due to overexpression of mutant 
APP/PSEN1. These results suggest that reduction of 
TYROBP gene expression and/or protein levels could rep-
resent an immune-inflammatory therapeutic opportunity 
for modulating early stage LOAD, potentially leading to 
slowing or arresting the progression to full-blown clinical 
and pathological LOAD.

Abstract Conventional genetic approaches and computa-
tional strategies have converged on immune-inflammatory 
pathways as key events in the pathogenesis of late onset 
sporadic Alzheimer’s disease (LOAD). Mutations and/
or differential expression of microglial specific recep-
tors such as TREM2, CD33, and CR3 have been associ-
ated with strong increased risk for developing Alzheimer’s 
disease (AD). DAP12 (DNAX-activating protein 12)/
TYROBP, a molecule localized to microglia, is a direct 
partner/adapter for TREM2, CD33, and CR3. We and 
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Introduction

Conventional wisdom has held that the chronic neuroin-
flammation associated with LOAD may be a secondary or 
even protective event that occurs in response to Aβ depo-
sition and may occur only in late stages of AD. However, 
recent genetic and genomic approaches, as well as com-
putational strategies, have converged on immune-inflam-
matory pathways as risk factors and as key events in the 
pathogenesis of late-onset sporadic Alzheimer’s disease 
(LOAD) [19]. Moreover, correlation between inflamma-
tory genes and clinical presentation of previously asymp-
tomatic cerebral amyloidosis (ACA) indicates a role for 
inflammation and microglia in the progression from ACA 
to the earliest stages of mild cognitive impairment (MCI) 
and/or mild clinical AD. Among the genes implicated by 
the largest available genome-wide association studies 
[43], one-third is either unique to, or enriched in, micro-
glia. Recently identified mutations and variants in genes 
encoding important immune receptors including CD33, 
CR3 (Complement Receptor 3), and TREM2 (Trigger-
ing Receptor Expressed On Myeloid Cells 2), have been 
genetically linked to LOAD risk, highlighting the poten-
tial role of a dysregulated immune response in an early, 
and perhaps causative role in AD pathogenesis. Unlike 
autosomal dominant familial Alzheimer’s mutations 
that promote elevation of the Aβ42:40 ratio or of other 
variant hyperaggregatable Aβ species, these AD risk fac-
tors specify some of the cell surface signal transduction 
pathways that modulate the phagocytic machinery of 
microglia.

TYROBP (TYROsine kinase Binding Protein) (also 
known as DAP12), is a microglial transmembrane sign-
aling polypeptide that contains an immunoreceptor 
phosphotyrosine-based activation motif (ITAM) in its 
cytoplasmic domain and is a direct partner/adaptor for 
immune receptors, including TREM2, CR3, and SIRPβ1 
(Signal Regulatory Protein β1) all of which are indepen-
dently linked to, or associated with, LOAD [5, 7, 23, 
55, 86]. Interaction of TYROBP with its partners forms 
phagocytosis “active zones” (known as phagocytic syn-
apses) on the surface of microglia. In preparation for 
phagocytosis, there is a respiratory burst that generates 
reactive oxygen species (ROS) and appears to involve 
an interaction between TYROBP and CR3, which in turn 
interacts with complement component C3 associated with 
nearby neurites. Mice lacking the complement recep-
tor CR3 or expressing defective TYROBP show reduced 

ROS production and apoptosis [77]. A recent report dem-
onstrates that the complement pathway can mediate the 
toxic effects of soluble Aβ on synapses, and that over-
activation of this pathway in AD leads to excessive syn-
apse pruning and early synapse loss [25]. Since the dis-
covery of a link between mutations of TREM2 and AD, 
several studies have emerged regarding the role of a loss 
of function of TREM2 in AD. While these studies have 
some conflicting results, the most consistent observation 
is that either Trem2 deficiency or Tyrobp deficiency can 
cause reduced recruitment of microglial cells around Aβ 
plaques. The impact of this reduction in microglia per 
plaque was interpreted as deleterious in Trem2 haploin-
sufficient and Trem2 deficient mice.

Through a multi-scale integrated computational 
approach, we and two other independent groups [12, 48, 
86] have previously reported TYROBP as a network hub 
or driver gene in LOAD. Additionally, missense muta-
tions in TYROBP have been recently reported as risk 
factors for AD [61]. Evidence associating TYROBP to 
LOAD notwithstanding, it is important to recognize that 
most TYROBP mutations (as well as TREM2 mutations) 
represent loss-of-function mutations that result not in AD 
but in an osteopathy/encephalopathy known as Nasu–
Hakola disease (NHD) [59]. One formulation of these 
data is that the pathogenic mechanism(s) of loss-of-func-
tion (nonsense) mutations in TYROBP associated with 
NHD may cause molecular events that differ from those 
associated with missense polymorphisms that increase 
the risk for AD.

Herein, we report the effects of a constitutively null 
mutation in Tyrobp on the phenotype of an APP/PSEN1 
mouse model of AD. In the Tyrobp-null mouse, there is a 
deletion of exons 3 and 4 resulting in loss of function of 
the TYROBP protein by deletion of the transmembrane 
region and part of the cytoplasmic region including the 
first tyrosine of the ITAM motif [2]. The APP/PSEN1 
mouse model [29] expresses APPKM670/671NL/PSEN1Δexon9 
in neurons and accumulates in the interstitial spaces of 
the brain fibrillar amyloid that goes on to form typical 
amyloid plaques accompanied by neuritic dystrophy, 
age-dependent synaptic loss without neuronal loss, and 
abnormalities in spatial memory [25, 29, 40, 41]. Since 
TYROBP expression is increased in the LOAD brain [86], 
we hypothesized that the APP/PSEN1 phenotype may be 
improved in the presence of reduced TYROBP levels. 
Since Tyrobp is not expressed in neurons, our observa-
tions in this report describe non-cell autonomous effects 
wherein signals arising from microglia perturb the home-
ostasis of nearby neurons or nerve terminals or the patho-
physiology of evolving structural intraneuronal or extra-
cellular Alzheimer’s pathology.



771Acta Neuropathol (2017) 134:769–788 

1 3

Methods

Mouse husbandry

The experimental procedures were conducted in accord-
ance with NIH guidelines for animal research and were 
approved by the Institutional Animal Care and Use Com-
mittee (IACUC) at Icahn School of Medicine at Mount 
Sinai. APPKM670/671NL/PSEN1Δexon9 (APP/PSEN1) and 
Tyrobp knockout (KO) mice were obtained from Jackson 
Laboratories and Taconic/Merck Laboratory, respectively. 
APP/PSEN1 mice were crossed with Tyrobp KO mice to 
obtain APP/PSEN1 mice heterozygous or KO for Tyrobp. 
Four-month-old male and female mice were killed by 
decapitation. One hemisphere was collected for immuno-
histochemical analysis. The second hemisphere was col-
lected for transcriptomic and biochemical analyses.

Immunohistochemical and biochemical analyses

Immunohistochemical and biochemical characteriza-
tion were performed as previously described [40, 41, 
44, 76]. For biochemical analysis, hemibrains were pro-
cessed via differential detergent solubilization to produce 
TBS-soluble, Triton-X-soluble, and formic-acid soluble 
Aβ fractions. For analysis of native oligomeric Aβ pep-
tides, 2 μl protein samples from the TBS-soluble frac-
tion were spotted onto activated/pre-wetted PVDF mem-
brane (0.22 μm; Millipore, Billerica, MA). Membranes 
were incubated with rabbit pAb A11 (anti-prefibrillar 
oligomers, 0.5 μg/ml), rabbit pAb OC (anti-fibrillar oli-
gomers and fibrils; 0.25 μg/ml), and mouse mAb Nu-4 
(anti-oligomers; 1 μg/ml) [44, 76]. Normalization to total 
APP/Aβ signal was achieved by detection of human APP 
transgene metabolites with the mouse pAb 6E10 antibody 
(1:1000; Covance, Princeton, NJ). To quantify total Aβ 
levels, human/rat Aβ 1–40/1–42 ELISA kits (Wako) were 
used according to the manufacturer’s instructions.

For immunohistochemistry, 30 µm thick sagittal sec-
tions were incubated with the following antibodies: 
rabbit anti-Iba1 (1:500; Wako, Richmond, VA), mouse 
anti-6E10 (1:1000; Covance, Princeton, NJ), and rat 
anti-CD68 (1:200, mca1957, AbD Serotec BioRad). Sec-
tions were then incubated with the appropriate second-
ary antibody: anti-rabbit Alexa Fluor 488 or Alexa Fluor 
568 (1:400; Invitrogen, Carlsbad, CA), anti-mouse Alexa 
Fluor 568 (1:400; Invitrogen, Carlsbad, CA), and anti-
rat Alexa Fluor 488 (1:400; Invitrogen, Carlsbad, CA) 
antibodies. ThioflavinS (Sigma-Aldrich, T1892, 1% w/v 
stock solution) was used for labeling amyloid deposits.

For measuring microglia number, Iba1-immunolabeled 
sections were thresholded and particles analyzed with 
Fiji (v2.0.0). Sizes of 6E10 immunoreactive plaques and 
fluorescent intensities were analyzed with Fiji (v2.0.0). 
The regions of interest were determined by manual trac-
ing. Thioflavin S fluorescence intensity and circularity 
were analyzed as described [85].

For immunoblotting, membranes were incubated with 
either anti-CD68 (1:1000, mca1957, AbD Serotec Bio-
Rad), anti-phospho-Tau pSer202/Thr205 (1:1000; MN1020, 
Thermo Fisher Scientific, Waltham, MA), anti-Tau (1:1000; 
MN1000, Thermo Fisher Scientific, Waltham, MA), anti-
Synaptophysin (1:200; ab16659, Abcam, Cambridge, MA), 
anti-Lamp1 (1:200; ab24170, Abcam, Cambridge, MA), 
anti-C3 (1:50; ab11862, Abcam, Cambridge, MA), and 
anti-GAPDH (1:5000; sc32233, Santa Cruz, Dallas, TX) 
antibodies. Integrated density of immunoreactive bands was 
measured using MultiGauge Software (FujiFilm). At least 
two independent western blot analyses were performed and 
normalized using APP/PSEN1 female mice as controls.

Behavior analysis

The Barnes Maze test was performed using a standard appa-
ratus [3, 74]. Four-month-old mice were transported from 
their cage to the center of the platform via a closed starting 
chamber where they remained for 10 s prior to exploring the 
maze for 3 min. Mice failing to enter the escape box within 
3 min were guided to the escape box by the experimenter, 
and the latency was recorded as 180 s. Mice were allowed to 
remain in the escape box for 1 min before the next trial. Two 
trials per day during 4 consecutive days were performed. 
The platform and the escape box were wiped with 70% eth-
anol after each trial to eliminate the use of olfactory cues to 
locate the target hole. All trials were recorded by video cam-
era and analyzed with ANY-maze video tracking software 
(Stoelting Co, Wood Dale, USA).

Field electrophysiology

Coronal brain slices containing the hippocampal forma-
tion were prepared as previously described [17]. Fol-
lowing anesthesia with isoflurane, brains were rapidly 
removed and cut into 400 µm thick coronal sections using 
a vibratome VT1000S (Leica Microsystems, Germany). 
Brain slices were incubated at room temperature for ≥3 h 
in a physiologic ACSF containing 120 mM NaCl, 3.3 mM 
KCl, 1.2 mM  Na2HPO4, 26 mM  NaHCO3, 1.3 mM 
 MgSO4, 1.8 mM  CaCl2, 11 mM Glucose (pH 7.4) and 
then transferred to a recording chamber perfused with 
ACSF at a flow rate of ~2 mL/min; experiments were per-
formed at 28.0 ± 0.1 °C. Recordings were acquired with 
a GeneClamp 500B amplifier (Axon Instruments, Union 
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City, CA) and Digidata 1440A (Molecular Devices, Sun-
nyvale, CA). All signals were low-pass filtered at 2 kHz 
and digitized at 10 kHz. For extracellular field recordings, 
a patch-type pipette was filled with ACSF and placed in 
the middle third of stratum radiatum in area CA1. Field 
excitatory postsynaptic potentials (fEPSPs) were evoked 
by activating Shaffer Collaterals with a Concentric Bipo-
lar Electrode stimulator (FHC, St Bowdoin, ME) placed 
in the middle third of stratum radiatum 150–200 µm away 
from the recording pipette. Square-wave current pulses 
(60 ms pulse width) were delivered through a stimulus 
isolator (Isoflex, AMPI). Input–output curves were gener-
ated by a series of stimuli in 0.1 mA steps. Paired-pulse 
facilitation was measured by delivering two stimuli at 
20, 50, and 100 ms inter-stimulus intervals. Each inter-
stimulus interval was repeated three times and the result-
ing potentials were averaged. The paired-pulse ratio was 
calculated by dividing the slope of the second EPSP by 
the slope of the first EPSP. All results were analyzed by 
ANOVAs followed by Tukey post hoc tests. Baseline 
recordings (stable for 20 min) were made every 30 s 
using stimuli that yielded a response equal to 50% of 

spike threshold. LTD was induced using a 1-Hz train of 
900 bursts, each burst containing three stimuli delivered 
at 20 Hz, using stimulus strength just superthreshold for 
evoking a population spike during baseline.

Molecular biological analyses

RNA isolation, library preparation, differential expres-
sion analysis and gene set enrichment analyses were per-
formed as described [6, 26, 27, 64, 66, 67].

Computational screen of TYROBP regulating 
compounds

Drug-induced gene expression fold change was obtained 
from the Connectivity Map database [42], which con-
sists of 6100 individual experiments, representing 1309 
unique compounds. The 6100 individual expression 
profiles were merged into a single representative signa-
ture for the 1309 unique compounds, according to the 
prototype-ranked list method [28]. Each compound was 
scored according to the rank of Tyrobp expression fold 
change within its signature. Compounds were ranked in 
descending order of Tyrobp expression fold change and 
used for a secondary enrichment analysis of drug-target 
associations. For each compound in the drug signature 
library, referenced drug–target associations [45, 83] and 
predicted off-targeting [36, 37] were collected. For each 
of these features, we calculated a running sum enrich-
ment score, reflecting whether that feature was over-
represented among the compounds at the top (associated 
with Tyrobp upregulation) or at the bottom (associated 
with Tyrobp down-regulation). Two-tailed p values were 
based on comparison with 10,000 permuted null scores, 
generated from randomized drug target sets that contain 
an equivalent number of compounds to the true set under 
evaluation, and adjusted using the Benjamini–Hochberg 
method [6]. Computational screening and chemogenomic 
enrichment analysis were performed using the R project 
for statistical computing version 3.2.5 [62].

Data and software availability

Gene expression data generated contributing to the 
described study will be deposited electronically to the 
Synapse Web Portal (https://www.synapse.org) in accord-
ance with data sharing policies established by the NIH 
Accelerating Medicine Partnership (AMP) AD consor-
tium. Specific software will also be made available upon 
request.

Fig. 1  A decrease in TYROBP protein impairs Aβ deposits com-
paction, microglial activation, and recruitment around Aβ deposits 
in 4-month-old APP/PSEN1 mice. a Images of Iba1-immunostained 
microglia (green) and 6E10-immunoreactive plaques (red) in frontal 
cortices and hippocampi of APP/PSEN1, APP/PSEN1; Tyrobp+/− 
and APP/PSEN1; Tyrobp−/− mice. Arrows indicate location of 
the plaques. Scale bar 500 µm. b Quantification of the number of 
6E10-immunoreactive Aβ deposits in cortices and hippocampi (Hip) 
of APP/PSEN1, APP/PSEN1; Tyrobp+/− and APP/PSEN1; Tyrobp−/− 
mice. c Measurements of the size of 6E10-immunoreactive Aβ depos-
its in cortices of APP/PSEN1 mice WT, deficient or null for Tyrobp. 
d Quantification of the number of Iba1-immunostained microglia 
in frontal cortices and hippocampi of APP/PSEN1, APP/PSEN1; 
Tyrobp+/− and APP/PSEN1; Tyrobp−/− mice. e, f Images of Iba1-
immunostained microglia (green) and 6E10-immunoreactive plaques 
(red) and quantification of numbers of cortices plaque-associated 
microglia located on or within 30 µm radius of 6E10 immunoreac-
tive Aβ plaques in APP/PSEN1, APP/PSEN1; Tyrobp+/− and APP/
PSEN1; Tyrobp−/− mice. n = 3–4 mice per group. Scale bar 10 µm. 
g–i Images of thioflavin S-labeled amyloid plaques (g), circularity (h) 
and quantification of fluorescence intensity (i) of thioflavin S-labeled 
amyloid plaques from APP/PSEN1, APP/PSEN1; Tyrobp+/− and 
APP/PSEN1; Tyrobp−/− mice. n = 3–4 mice per group. Scale bar 
5 µm. j, k Images of phagocytic microglial marker CD68 (green) and 
Iba1 (red) co-immunostaining (j) and quantification of fluorescence 
intensity of CD68 (k) in APP/PSEN1, APP/PSEN1; Tyrobp+/− and 
APP/PSEN1; Tyrobp−/− mice. n = 3–4 mice per group. Scale bar 
30 µm. i Western blot analysis of CD68 in brain protein homogen-
ates from APP/PSEN1, APP/PSEN1; Tyrobp+/− and APP/PSEN1; 
Tyrobp−/− mice. n = 3–6 mice per group. At least two independent 
western blot analyses were performed. Representative immunoreac-
tive bands from the same western blot are shown on the right. One-
way ANOVA corrected for multiple comparisons (Tukey) was used 
for (c, h, i, k) and Two-way ANOVA corrected for multiple com-
parisons (Tukey) was used for (b, d, f, l), *p < 0.05; ***p < 0.001; 
****p < 0.0001. Data presented as mean ± SEM

◂

https://www.synapse.org
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Results

TYROBP deficiency or absence does not modify 
the number and size of Aβ plaque depositions nor 
the number of microglial cells in prefrontal cortex 
and hippocampus of APP/PSEN1 mice

We assessed whether TYROBP deficiency or absence 
modulates Aβ deposition in APP/PSEN1 mice. We did not 
observe differences in number or size of 6E10 immunore-
active plaques in cortices or in the hippocampi of APP/
PSEN1 mice heterozygous or KO for Tyrobp as compared 
to APP/PSEN1 mice with normal levels of TYROBP 
(Fig. 1a–c). It is important to note that 4-month-old APP/
PSEN1 mice represent an early time point of AD pathol-
ogy, and all genotypes presented very little Aβ deposition 
in the hippocampus as compared to the cortex.

Reduction in total number of microglia has been 
observed in older TREM2 KO mice with Aβ pathology 
[30, 81], most likely due to a reduction of microglia pro-
liferation. No differences were observed in younger mice. 
In our hands, Iba1 immunostaining in 4-month-old APP/
PSEN1 mice deficient or null for Tyrobp did not show dif-
ferences in the total number of microglia in (pre)frontal 
cortices (PC) nor in hippocampi as compared to APP/
PSEN1 mice with normal levels of TYROBP (Fig. 1a, d). 
Similar results were observed in WT mice with normal or 
absent TYROBP (see Suppl. Figure 1).

Loss of TYROBP reduces plaque compaction, microglia 
clustering, and phagocytosis

When 5XFAD mice, which develop rapid and aggres-
sive amyloid pathology and neuronal loss [56], were 
rendered deficient or null for TYROBP or TREM2, 
microglial clustering around plaques and plaque compac-
tion were reduced at 4 months of age [85]. We observed 
decreased microglial recruitment on and around antibody 
6E10-immunoreactive Aβ deposits in the PC of 4-month-
old APP/PSEN1;Tyrobp−/− mice as compared to APP/
PSEN1 mice with a normal level of TYROBP (Fig. 1e, f). 
We also observed reduced compaction and fluorescence 
intensity of thioflavin S reactive plaques (Fig. 1g–i).

We next assessed by immunostaining the level of 
a phagocytic marker CD68 [88] in the PC of APP/
PSEN1 mice WT, deficient or KO for TYROBP. In APP/
PSEN1;Tyrobp−/− mice, we observed a decreased expres-
sion of CD68 in microglial Iba1-positive cells as com-
pared to APP/PSEN1 mice (Fig. 1j–k). APP/PSEN1 mice 
heterozygous for Tyrobp did not present a statistically 
significant reduction of CD68 expression. Accordingly, 

the level of CD68 in hemibrain protein homogenates was 
lower in APP/PSEN1;Tyrobp−/− as compared with that 
observed in APP/PSEN1 mice (Figure i, j). These data 
support an interpretation that microglial phagocytic activ-
ity was reduced in AD mice in the absence of TYROBP 
(Table 1 for a summary of results).

Aβ levels and oligomeric Aβ in APP/PSEN1 mice 
deficient or null for TYROBP

We assessed whether TYROBP deficiency or absence mod-
ulates levels of Aβ species in APP/PSEN1 mice. We meas-
ured levels of Aβ40 and Aβ42 in TBS, Triton-X, and formic 
acid-soluble Aβ fractions from brains of 4-month-old male 
and female APP/PSEN1 mice on a Tyrobp heterozygous 
or null background (Suppl. Figure 2). In males, deletion 
of one or both Tyrobp alleles did not alter levels of Aβ40, 
Aβ42 or Aβ42/40 ratio in any of the three fractions as 
compared to male APP/PSEN1 mice (Suppl. Figure 2a–i). 
Female APP/PSEN1;Tyrobp−/− mice exhibited lower levels 
of Aβ40 in Triton-X and formic acid fractions relative to 
APP/PSEN1 mice, resulting in an increase in the Aβ42/40 
ratio in the Triton-X fraction. This was not observed in 
the formic acid fraction (see Suppl. Figure 2a–i). Notably, 
female APP/PSEN1 mice WT, heterozygous or knockout 
(KO) for Tyrobp had higher levels of Aβ40 and 42 in the 
Triton-X and formic acid fractions when compared to gen-
otype-matched males.

We next assayed oligomeric Aβ peptides using antibod-
ies NU-4, A11, and OC antibodies to distinguish among 
various Aβ conformers (Fig. 2a–c). Higher levels of oligo-
meric Aβ reactive with these antibodies have been corre-
lated with impaired cognitive performances in humans and 
mice [49]. We and others [40, 73] have reported an associa-
tion of excess levels of NU4-epitope-containing oligomeric 
Aβ with deficits in learning behavior in AD mouse models. 
NU-4 reactive oligomer levels were reduced in both male 
and female APP/PSEN1 mice with deficiencies in TYROBP 
as compared to levels observed in APP/PSEN1 mice with 
normal TYROBP (Fig. 2a). A11 reactive oligomer levels 
were also reduced in female mice with reduced TYROBP 
as compared to APP/PSEN1 mice WT for Tyrobp (Fig. 2b). 
TYROBP level played no obvious role in determining lev-
els of OC epitope-containing oligomeric Aβ in this system 
(Fig. 2c). (See Table 1 for a summary of results).

Phospho‑TAU, synaptophysin, LAMP1, and C3 levels 
are altered in APP/PSEN1 and WT mice with reduced 
or absent TYROBP

In addition to amyloid deposition, APP/PSEN1 mice 
develop hyperphosphorylated microtubule-associated 
protein TAU (MAPT). We assayed the phosphorylation 
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status of MAPT in WT (nontransgenic) and APP/PSEN1 
mice with normal, reduced, or absent TYROBP (Fig. 2d, 
e). We observed an apparent increased stoichiometry of 
TAU phosphorylation in male mice deficient for TYROBP 
as compared to WT mice (Fig. 2d). Females deficient for 
TYROBP demonstrated a trend toward increased phospho-
rylation of TAU as compared to WT mice (p = 0.07). In 
the presence of mutant APP/PSEN1 transgenes, there was 
a reduction in the stoichiometry of TAU phosphorylation in 
female mice with reduced or absent TYROBP, but no dif-
ference in male mice (Fig. 2e).

To examine synaptic integrity, we measured the levels 
of the presynaptic neuronal marker, synaptophysin (Fig. 2f, 
g). Synaptophysin was increased in male and female 
Tyrobp−/− mice as compared to WT mice (Fig. 2f), but no 
difference was observed between groups in APP/PSEN1 
mice heterozygous-null or homozygous-null for Tyrobp 
(Fig. 2g). Notably, however, LAMP1, a lysosomal protein 
enriched in dystrophic neurites [15, 21], was decreased in 
both male and female APP/PSEN1; Tyrobp−/− mice rela-
tive to APP/PSEN1 alone (Fig. 2h). Excessive activation of 
the complement system is an early event in AD leading to 
synapse loss. The level of complement C3 was decreased in 
female APP/PSEN1 homozygous-null for Tyrobp relative 

to those expressing APP/PSEN1 alone (Fig. 2i). No differ-
ence was observed in corresponding male mice (see Table 1 
for a summary of results). Despite the relatively minor 
effect size, likely due to the early stage of AD pathology 
in 4-month-old APP/PSEN1 mice, when taken together, 
these results are consistent with a conclusion that decreased 
expression of Tyrobp may have beneficial effects in the pro-
teinopathy of AD.

Electrophysiological changes in APP/PSEN1 mice 
deficient for TYROBP

TYROBP, amyloid, and presenilin proteins play impor-
tant roles in excitatory synaptic transmission at Shaffer 
collateral-CA1 pyramidal cell synapses [52, 68]. All of the 
recombinant mouse models tested in this report showed 
either altered basal synaptic function, reduced plastic-
ity, or both. Basal synaptic efficiency, as measured by the 
slope of the input–output relationship, was normal in APP/
PSEN1 and APP/PSEN1; Tyrobp−/− as compared to WT 
mice (Fig. 3a). Interestingly, the slope of the input–output 
relationship was increased in Tyrobp−/− mice compared to 
WT, APP/PSEN1, and APP/PSEN1; Tyrobp−/− suggesting 

Table 1  Summary of the assays 
performed and results in APP/
PSEN1; Tyrobp−/− vs. APP/
PSEN1, APP/PSEN1; Tyrobp+/− 
vs. APP/PSEN1 and APP/
PSEN1; Tyrobp−/− vs. APP/
PSEN1; Tyrobp+/−

↓ Decreased level, ↑ increased level, ns not significant

Assays APP/PSEN1; Tyrobp (−/−) 
vs. APP/PSEN1

APP/PSEN1;   Tyrobp 
(+/−) vs. APP/PSEN1

APP/
PSEN1;Tyrobp 
(−/−) vs. APP/
PSEN1; Tyrobp  
(+/−)

Females Males Females Males Females Males

Aβ40

 TBS fraction ns ns ns

 Triton-X fraction ns ns ↓ ns

 Formic acid fraction ns ↓ ns ns

Aβ42

 TBS fraction ns ns ns

 Triton-X fraction ns ns ns

 Formic acid fraction ns ns ns

Aβ42/40

 TBS fraction ns ns ns

 Triton-X fraction ns ns ↑ ns

 Formic acid fraction ns ns ns

NU-4 ↓ ↓ p = 0.08 ns ↓ ns

A11 ↓ ns ↓ ns ns

OC ↓ p = 0.06 ns ns ns

CD68 (protein) ↓ ↓ p = 0.06 ns ns

Phospho-TAU ↓ ns ns ns

Synaptophysin (protein) ns ns ns

LAMP1 (protein) ↓ ↓ ↑ ns ↓ ↓
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Fig. 2  A decrease in TYROBP protein decreases oligomeric Aβ 
levels and alters phospho-TAU, synaptophysin, LAMP1, and com-
plement C3 levels in 4-month-old APP/PSEN1 mice. a–c Hemi-
brains of male and female APP/PSEN1 (n = 4–6), APP/PSEN1; 
Tyrobp+/− (n = 3–8) and APP/PSEN1; Tyrobp−/− (n = 3–4) mice 
were processed via differential detergent solubilization to produce 
fractions of TBS soluble, Triton-X soluble, and formic acid soluble 
Aβ. Oligomeric Aβ was assessed from the TBS-soluble fraction via 
dot blot analyses using NU-4 (a), A11 (b) and OC (c) antibodies. d–i 
Western blot analysis in brain protein homogenates from 4-month-
old male and female mice WT, Tyrobp+/−, Tyrobp−/− and APP/
PSEN1, APP/PSEN1; Tyrobp+/− and APP/PSEN1;  Tyrobp−/− mice. 
d, e Phospho-tau (AT8 epitope)/total tau ratio for d WT, Tyrobp+/−, 

Tyrobp−/− mice and e APP/PSEN1, APP/PSEN1;  Tyrobp+/− and 
APP/PSEN1;  Tyrobp−/− mice. f, g Synaptophysin level for f WT, 
Tyrobp+/−, Tyrobp−/− mice and g APP/PSEN1,  APP/PSEN1; 
Tyrobp+/− and APP/PSEN1; Tyrobp−/− mice. h Marker of dystrophic 
neurites (Lamp1) in APP/PSEN1, APP/PSEN1; Tyrobp+/− and APP/
PSEN1;  Tyrobp−/− mice. i Complement C3 in APP/PSEN1, APP/
PSEN1;  Tyrobp+/− and APP/PSEN1; Tyrobp−/− mice. At least two 
independent western blot analyses were performed. Representative 
immunoreactive bands from the same western blot are shown on 
the right. n = 3–6 mice per group. Two-way ANOVA corrected for 
multiple comparisons (Tukey) was used for all statistical compari-
sons in male and female mice, *p < 0.05; **p < 0.01; ***p < 0.001, 
****p < 0.0001. Data presented as mean ± SEM
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an increased basal synaptic activity in absence of TYROBP 
(Fig. 3a).

We tested the possibly that this effect of Tyrobp dele-
tion was presynaptically mediated using paired-pulse 

facilitation (PPF), a short-term form of synaptic plasticity 
that is sensitive to the probability of transmitter release 
[9]. PPF was normal in Tyrobp−/− mice (Fig. 3b) sug-
gesting that the increase in basal efficiency observed in 

Fig. 3  A decrease in TYROBP protein alters excitatory synaptic 
transmission in the hippocampus in 4-month-old APP/PSEN1 mice 
and interacts with the APP/PSEN1 genotype. In all panels, sum-
mary graphs are shown on the left and representative traces on the 
right. a Basal synaptic function is increased in Tyrobp−/− mice, but 
is unaffected by other transgenic genotypes. The slope of the input/
output relationship was steeper for the Tyrobp−/− mice than for 
all other genotypes (p < 0.05), which did not differ among them-
selves. b APP/PSEN1 mice showed reduced paired-pulse facilita-
tion (PPF) relative to other genotypes, which did not differ among 

themselves. c Synaptically induced long-term depression (LTD) 
was impaired in all recombinant mice. Analysis over the final 5 min 
of the recordings showed the most profound deficits for Tyrobp−/− 
and APP/PSEN1;Tyrobp−/− mice, both of which were significantly 
less depressed than in APP/PSEN1 mice. Wild-type (WT) controls 
showed significantly greater depression than the other genotypes. 
One-way ANOVA corrected for multiple comparisons (Tukey) was 
used for statistical comparisons, *p < 0.05, **p < 0.01; ***p < 0.001. 
Data presented as mean as mean ± SEM
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Tyrobp−/− mice most likely reflects postsynaptic regu-
lation such as increased expression and/or function of 
synaptic AMPA-type glutamate receptors (AMPARs). 
These data also raise the possibility of impaired endocy-
tosis of AMPARs [87]. In contrast, PPF was depressed in 
APP/PSEN1 mice relative to WT controls, indicating an 
increase in transmitter release probability. Importantly, 
Tyrobp deletion reversed the deleterious effect of APP/
PSEN1 on presynaptic function, since PPF was normal in 
slices from APP/PSEN1; Tyrobp−/− mice.

We also examined the effects of the different APP/
PSEN1 and Tyrobp genotypes on long-term depression 
(LTD), a persistent form of plasticity whose expression 
depends on endocytosis of postsynaptic AMPARs [38]. 
For these experiments, we used a synaptic induction pro-
tocol that induces a prominent protein synthesis-depend-
ent “late” phase of LTD [69]. Slices from the APP/PSEN1 
mice showed impaired LTD (Fig. 3c), similar to that 
reported in older APP/PSEN1 mice. Similar results were 
observed following a weaker induction protocol [13] or 
when late LTD was induced by metabotropic glutamate 
receptor activation (mGluR-LTD) [84]. LTD was even 
more impaired in Tyrobp−/− and APP/PSEN1; Tyrobp−/− 
mice. Thus, unlike the phenotypes for basal efficiency 

and PPF, superimposition of TYROBP deficiency on the 
APP/PSEN1 mutations failed to restore normal LTD.

Barnes maze

We next probed the effect of Tyrobp deletion on the modula-
tion of spatial learning and memory using the Barnes Maze 
Test (Fig. 4a–d). The escape latency and distance traveled of 
Tyrobp heterozygous- and homozygous-null mice were iden-
tical to WT littermates (Fig. 4a, b). In the presence of APP/
PSEN1 mutations, deficiency of TYROBP improved learning 
and memory relative to APP/PSEN1 with normal TYROBP 
levels (Fig. 4c, d). This improvement was associated with a 
reduction in the time spent finding the hidden location (target 
hole) and a smaller distance traveled in all quadrants. These 
behavioral data are consistent with a beneficial effect of the 
Tyrobp deletion on the APP/PSEN1 phenotype.

Differential gene expression analysis of Tyrobp−/− 
and Tyrobp+/− mice relative to WT mice

Given our extensive database on the regional and disease-
stage-specific transcriptomic changes in human LOAD 
[64, 79, 86], we began by investigating how Tyrobp dele-
tion perturbed brain regional transcriptomes. We generated 

Fig. 4  A decrease in TYROBP protein improves spatial learn-
ing and memory in the Barnes Maze Test in 4-month-old APP/
PSEN1 mice. a–d 6 groups of 4-month-old mice were used: wild-
type (WT) (n = 14), Tyrobp+/− (n = 9), Tyrobp−/− (n = 10), APP/
PSEN1 (n = 5), APP/PSEN1; Tyrobp+/− (n = 9) or APP/PSEN1; 
Tyrobp−/− (n = 11). a, b Mean latencies to enter the target hole for 

a APP/PSEN1 negative mice and b APP/PSEN1 positive mice. c, d 
Mean distances traveled for c APP/PSEN1 negative mice and d APP/
PSEN1 positive mice. Two-way ANOVA corrected for multiple com-
parisons (Tukey) was used for all statistical comparisons, *p < 0.05; 
**p < 0.01; ***p < 0.001. Data presented as mean ± SEM
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transcriptomic profiles from (pre)frontal cortices (PC) and 
dentate gyri (DG) (n = 24) for 4-month-old female and 
male Tyrobp−/− and Tyrobp+/− mice and compared with 
WT mice, including sex as a variable. In comparison with 
non-recombinant (WT) mice, we identified 10 differen-
tially expressed genes (DEG) in the PC, and 28 DEG in the 
DG of Tyrobp−/− mice [false discovery rate (FDR) <0.1] 
(Fig. 5a). We also identified 2 DEG in the PC and DG of 

Tyrobp+/− mice vs. WT mice. Tyrobp was the top DEG 
among the different models and brain areas (logFC = −1.1 
and −4.8 in Tyrobp+/− and Tyrobp−/−, respectively) 
(Fig. 5b, c). Overall, we observed strong overlap of the 
DEG between the different brain areas in mice KO for 
Tyrobp (Fig. 5b, c for top 10 DEG in PC and DG, see 
Suppl. 3 for full DEG results). Thus, eight out of ten DEG 
in the PC of Tyrobp−/− were also differentially expressed 

Fig. 5  Differential gene expression analysis suggests potential 
molecular mechanisms associated with TYROBP deficiency. a–c 
Differential gene expression analysis in dentate gyrus and prefron-
tal cortex of Tyrobp−/−, Tyrobp+/− and WT mice. a Number of up- 
and down-regulated genes in Tyrobp−/− and Tyrobp+/− vs. WT and 
Tyrobp−/− vs. Tyrobp+/−. b Top 10 differentially expressed genes 
in b dentate gyrus of Tyrobp−/− vs. WT and c prefrontal cortex of 
Tyrobp−/− vs. WT. Bolding highlights differentially expressed genes 
shared across dentate gyrus and prefontal cortex. RNA sequencing 
was performed on a total of 47 samples (Tyrobp−/− n = 8 males and 
8 females, Tyrobp+/− n = 8 males and 8 females, and WT n = 7–8 
samples, eight males and eight females, for each brain regions). All 
analyses were corrected for sex effect. Differential gene expression 
threshold was set at fold change ≥1.2 and adjusted p value <0.1. DG 

dentate gyrus, PC prefrontal cortex. d–g Differential gene expres-
sion analysis in prefrontal cortex of APP/PSEN1;Tyrobp−/−, APP/
PSEN1; Tyrobp+/− and APP/PSEN1 mice at 4-months-old. d Number 
of up- and down-regulated genes in APP/PSEN1;Tyrobp−/− and APP/
PSEN1;Tyrobp+/− vs. APP/PSEN1 and APP/PSEN1; Tyrobp−/− vs. 
APP/PSEN1; Tyrobp+/−. e Top 10 differentially expressed genes in 
APP/PSEN1; Tyrobp+/−vs. APP/PSEN1;  f APP/PSEN1; Tyrobp−/− 
vs. APP/PSEN1 and g APP/PSEN1; Tyrobp−/− vs. APP/PSEN1; 
Tyrobp+/−. RNA sequencing was performed on a total of 23 samples 
comprising of both male and female mice (n = 7–8 samples per gen-
otype). All analyses were corrected for sex effect. Differential gene 
expression threshold was set at fold change ≥1.2 and false discov-
ery rate (FDR) <0.1. (See Suppl. 3 and 4 for full list of differentially 
expressed genes)



780 Acta Neuropathol (2017) 134:769–788

1 3

in the DG of Tyrobp−/−. Among them are two genes that 
have been proposed as early biomarkers of AD: biliverdin 
reductase B (Blvrb) (logFC = 0.9) [54] and Nudix motif 
19 (Nudt19) (logFC −1.2) [1]. We also noted a strong trend 
toward down-regulation of Cd33 in the DG of Tyrobp−/− 
mice (log FC = −0.9, FDR = 0.077). Recent genome-wide 
studies identified CD33 as a late-onset AD susceptibility 
variant [24, 55]. Moreover, CD33 protein is elevated in 
AD brain and has been associated with amyloid pathol-
ogy and disease progression [10, 22, 78]. As expected 
with such small DEG signatures, we did not observe sig-
nificantly dysregulated Gene Ontology (GO) term enrich-
ments in Tyrobp heterozygous- or homozygous-null mice 
using DAVID, Ingenuity Pathway Analysis (IPA) or gene 
set enrichment analysis (GSEA).

Differential gene expression and enrichment analysis 
of APP/PSEN1;Tyrobp−/−, APP/PSEN1;Tyrobp+/− 
and APP/PSEN1 mice

We generated transcriptomic profiles from 23 PC samples 
from 4-month-old male and female APP/PSEN1 mice that 
were either heterozygous- or homozygous-null, or WT for 
Tyrobp. Sex effect was taken into account for all analyses. 
In comparison to APP/PSEN1 mice, we identified 84 DEG 
in APP/PSEN1;Tyrobp−/− and 51 DEG in APP/PSEN1; 
Tyrobp+/− (FDR <0.1) (Fig. 5d–g. See Suppl.4 for full 
DEG results). All of the ten DEG detected in the PC of 
Tyrobp−/− vs. WT mice were also differentially expressed 
in the PC of APP/PSEN1; Tyrobp−/− vs. APP/PSEN1 com-
parison. The increased signature size in Tyrobp−/− in the 
APP/PSEN1 background provides strong independent sup-
port for the conclusion that TYROBP is relevant not only in 
human AD [86] but also in the amyloid-depositing mouse 
brain AD model.

As above, Tyrobp was the top DEG in both APP/PSEN1 
deficient and KO for Tyrobp (logFC = −1.2 and −4.8, 
respectively). Comparison of APP/PSEN1; Tyrobp−/− vs. 
APP/PSEN1; Tyrobp+/− highlighted 32 DEG. Interest-
ingly, we found evidence in APP/PSEN1 mice that were 
heterozygous- or homozygous-null for Tyrobp for several 
DEG associated with AD and/or memory loss. TYROBP 
deficiency produced changes in Cd33 expression pro-
viding independent confirmation of similar phenomena 
observed by others using different approaches [12]. Also, 
Sirt2 expression was increased in APP/PSEN1; Tyrobp−/− 
(logFC = 0.4). A SIRT2 polymorphism has been associ-
ated with increased LOAD susceptibility [82] and its level 
of expression is linked with neurodegenerative disease, 
likely due to its role in lysosome-mediated authophagic 
turnover [18, 51, 58]. Igfbp2 expression was decreased in 
APP/PSEN1; Tyrobp+/− (logFC = −0.6). Several prot-
eomic studies aiming to identify AD markers in human sera 

have reported an increased level of IGFBP2 in AD patients 
[39, 57]. Moreover, Pedrós et al. have shown an increased 
expression level of IGFBP2 in hippocampi of an APP/
PSEN1 mouse model similar to that which we used [60]. 
These data suggest that Tyrobp-related modulation of the 
expression of several AD-related genes only appears in 
the presence of cerebral amyloidosis and/or APP/PSEN1 
mutations.

To identify biological pathways that may be dysregu-
lated, we performed GSEA using DAVID and IPA (Fig. 6a). 
Comparisons between APP/PSEN1 KO for Tyrobp and WT 
for Tyrobp highlighted common themes between DAVID 
and IPA analyses for perturbation of neurotransmission and 
ion transport (Fig. 6b and Suppl.5). These included potas-
sium transport, general regulation of transmembrane ion 
transport, and depolarization and action potential of neu-
rons. Other overlapping themes included neuronal, axonal 
fasciculation, and synapse assembly. Enrichment analysis 
with IPA comparing APP/PSEN1; Tyrobp+/− against APP/
PSEN1 detected dysregulation of immune function, includ-
ing migration, movement, and activation of immune and 
phagocyte cells (Fig. 6c). Perturbation of metabolic func-
tions was also detected. Using DAVID analysis, we noted 
a pervasive perturbation of protein phosphorylation signal 
transduction in APP/PSEN1 mice either heterozygous- or 
homozygous-null for Tyrobp in comparison to APP/PSEN1 
mice on a Tyrobp wild-type background. This is potentially 
relevant to the role of TYROBP as a phosphotyrosine-
signal-based sensor of extracellular debris and instigator 
and/or organizer of phagocytosis. This is also interesting 
in light of the evidence that Aβ cerebral amyloidosis in 
humans and mice is accompanied by hyperphosphoryla-
tion of cytoskeletal proteins. Comparisons between APP/
PSEN1;  Tyrobp−/− and APP/PSEN1;  Tyrobp+/− showed 
a unique GO term involving stress-activated protein kinase 
signaling cascade (Fig. 6d). Pathways identified by IPA 
included production of superoxide, apoptosis, and differen-
tiation/polarization of macrophages. Excessive production 
of superoxide can induce an uncontrolled oxidative stress 
leading to increased microglia activation and neuronal 
apoptosis [80]. Oxidative stress may also promote produc-
tion and deposition of Aβ and formation of neurofibrillary 
tangles [8, 14, 20, 46, 53].

Gene regulatory network analysis

Gene regulatory network analysis is a powerful tool in 
identifying gene modules pathologically related to com-
plex human diseases including AD [86]. To test if the DE 
signatures detected in the present study were enriched 
for any AD networks, we collected the co-expression 
network modules from our two AD cohorts and overlaid 
the DEG onto the co-expression network modules. We 
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had previously constructed transcriptome-wide gene co-
expression networks in different brain regions of post-
mortem samples from two AD cohorts, the Mount Sinai 
Brain Bank (MSBB) AD cohort [79] and the Harvard 
Brain Bank (HBB) AD cohort [86]. Importantly, the age 
of the mice in this study corresponds to an early stage 
of AD while our human postmortem co-expression net-
works from HBB correspond to later disease stages. 
Although we did not observe enrichments in APP/
PSEN1;Tyrobp−/−, we found that the DEG down-regu-
lated in PC of APP/PSEN1;Tyrobp+/− (FDR <0.2) were 
enriched for several sub-networks from both the MSBB 
and the HBB AD cohorts, including insulin-like growth 
factor binding, skeletal development, immune system 
process, anion transport, and particularly the extracellu-
lar matrix (see Suppl.6). The up-regulated genes in APP/
PSEN1;Tyrobp+/− mice showed enrichment for nucle-
obase nucleoside and nucleotide metabolic process sub-
network (see Suppl. 6).

Drug repurposing

Through the experiments described above, we identified 
benefits of TYROBP deficiency on multiple aspects of the 
phenotype in APP/PSEN1 mice. When those AD model 
mice were also deficient in TYROBP, beneficial effects in 
gene expression, phosphorylation of tau, nerve terminal 
integrity, behavior, and electrophysiology were observed. 
The data indicate that reduction of Tyrobp gene expression 
could represent a novel computation- and mutation-based, 
immune-inflammatory therapeutic opportunity for treat-
ing or preventing LOAD. Therefore, we probed a compre-
hensive pharmacopeia database to determine whether safe 
existing medications would be predicted to reduce levels of 
Tyrobp mRNA or protein.

To identify small molecule compounds capable of per-
turbing Tyrobp expression (Fig. 7), we performed a com-
putational screen against a library of drug-induced tran-
scriptional profiles from Connectivity Map [42]. We scored 
1309 unique compounds according to the rank of Tyrobp 

Fig. 6  Gene enrichment analysis summary for prefrontal cortex of 
4-month-old APP/PSEN1;Tyrobp−/−, APP/PSEN1; Tyrobp+/− and 
APP/PSEN1 mice at suggests potential molecular mechanisms asso-
ciated with TYROBP deficiency. a Schematic overview of compari-
sons between mouse groups. b Enrichment analysis and selected GO 
terms (DAVID) and diseases and functions (Ingenuity Pathway Anal-

ysis) in APP/PSEN1; Tyrobp−/− vs. APP/PSEN1, c in APP/PSEN1; 
Tyrobp+/− vs. APP/PSEN1, d in APP/PSEN1; Tyrobp−/− vs. in APP/
PSEN1;  Tyrobp+/−. Enrichments shown were selected for known 
or suspected relevance to AD pathophysiology. Gene set enrich-
ment threshold was set at p value <0.05. (See Suppl. 5 for full list of 
enrichments)
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Fig. 7  Computational analysis 
of a current pharmacopeia data-
base identified compounds that 
would be predicted to cause up- 
or down-regulation of TYROBP 
expression. a Compounds were 
scored and ranked according 
to their associated TYROBP 
expression fold change, and 
then used as the basis for a sec-
ondary enrichment analysis to 
identify drug targets that associ-
ate with up- or down-regulation 
of TYROBP. Top 10 compounds 
that b up-regulate and c down-
regulate TYROBP are shown. 
Drug targets enriched among 
compounds that d up-regulate, 
and e down-regulate TYROBP 
are shown
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expression fold change (based on comparison to within-
batch vehicle control assays). Top compounds associated 
with Tyrobp up and down regulation are summarized in 
Fig. 7b.

To explore the pharmacological context of these com-
pounds, we performed a secondary enrichment analysis 
to identify drug targets that are associated with Tyrobp 
regulation (Fig. 7a, c). We found that compounds that 
regulate Tyrobp expression are enriched for multiple drug 
targets, including many with known links to Alzheimer’s 
pathology. These include LOAD risk-associated gene 
Cathepsin D (FDR = 4.9E−02) [16, 70, 72], and Akt1 
(FDR = 6.8E−04), a molecule that is activated in LOAD 
[65] and is associated with LOAD risk in Chinese Han AD 
patients with type 2 diabetes [50].

Of the targets enriched among compounds predicted to 
suppress Tyrobp expression (and so potentially represent-
ing therapeutic candidates), RIPK1 (FDR = 1.1E−02) 
was most strongly implicated. Interestingly, RIPK1, a 
key constituent of the necrosome, was recently shown 
in an independent study by other investigators to regu-
late context-dependent regulation of programmed necro-
sis via formation of an amyloid signaling complex [47]. 
Experimental validation of these predicted repurposable 
drugs is underway and will be reported in detail in a future 
publication.

Discussion

Association of TYROBP with LOAD arose via a multi-
scale computational network approach [86]. The physi-
cal interaction between TREM2 and TYROBP as well as 
with other LOAD risk factors such as CR3, and SIRPβ1 [5, 
7, 23, 55, 86] provided an important lead for our experi-
mental strategy aiming to validate the important role of 
TYROBP in the pathogenesis of LOAD. We have previ-
ously defined via a multiscale computational network 
approach TYROBP as a strong candidate for playing the 
role of a key “hub” or “driver” gene in LOAD [86]. It is 
worth noting that two independent groups have also iden-
tified TYROBP as a driver of LOAD despite having fol-
lowed different and highly idiosyncratic computational 
strategies [12, 48]. CD33 is a known AD risk gene and a 
component of the TYROBP network. The regulation of 
Cd33 by TYROBP reported herein as well as the regulation 
of TREM2 by CD33 reported by de Jager and colleagues 
[12] provide compelling evidence in support of the role 
of TYROBP as a “driver” gene in LOAD. Capping off the 
evidence associating TYROBP with LOAD is the recent 
discovery that missense mutations in the coding region of 
the TYROBP gene are associated with AD risk [61]. Inter-
estingly, in the same study, in vitro overexpression of the 

candidate pathogenic p.D50_L51ins14 TYROBP variant led 
to a strong reduction of TREM2 expression [61]. We have 
previously shown that TYROBP expression is elevated in 
AD brain and mouse models [64, 86], but it was not imme-
diately apparent whether that elevation represented a pre-
existing, predisposing factor or was a secondary reaction 
to LOAD pathology. Based on the data presented above, a 
Tyrobp null mutation appears to exert effects that would be 
characterized as beneficial with respect to both the normal 
physiology of neurons and the proteinopathy of LOAD.

The effects of Tyrobp knockdown or knockout on Aβ 
levels and Aβ oligomer conformers as defined by epitope 
content were limited to the reduction of the level of NU-4 
and A11 type oligomers in TYROBP deficient APP/PSEN1 
mice. There were no consistent statistically significant 
differences on levels of total Aβ, Aβ40, Aβ42, or on lev-
els of OC type Aβ oligomers. The relatively minor effect 
size notwithstanding, it is worth noting that the converging 
evidence from several laboratories (including our own) is 
that the NU-4 epitope is the signature of the Aβ oligomer 
strain that is most consistently neurotoxic [40, 73]. A11 and 
OC oligomer strains are not consistently neurotoxic. As 
reported above and in one of our previous studies [41], we 
noted sex differences in Aβ and oligomer levels suggesting 
an earlier progression of the disease in female than male 
APP/PSEN1 mice.

The difference in Aβ levels observed between the male 
and female mice is of importance considering the sexual 
dimorphism observed in the phosphorylation status of TAU 
in APP/PSEN1 background but not in WT background. 
Thus, the effect of a decreased Tyrobp expression on the 
stoichiometry of TAU phosphorylation appeared to be dif-
ferent in the presence or absence of APP/PSEN1 mutations 
leading to amyloid deposition. Indeed, TYROBP defi-
ciency tends to increase the phosphorylation of TAU on a 
WT background, but, on a APP/PSEN1 background, loss of 
TYROBP decreased the phosphorylation status of TAU in 
female mice in the setting of higher Aβ loads as compared 
with males. Although the mechanism(s) by which micro-
glia exert their effects on neuronal tau pathology remains 
unclear, several reports have linked TREM2 expression 
and hyperphosphorylated TAU [31, 33, 35]. These reports 
suggest that TREM2 deficiency could increase tauopathy 
in human tau-expressing models but could decrease tau 
pathology in AD mouse models displaying cerebral amy-
loidosis. Herein we report that a decreased expression of 
Tyrobp can have beneficial effects on tau pathology and 
neuronal injury in APP/PSEN1 mouse model of AD. In 
accordance with our data, Strittmatter and colleagues [75] 
recently reported that mouse deficient for Progranulin pre-
sented an overexpression of Tyrobp network genes correlat-
ing with an increased neuronal injury and tau pathology in 
the absence of amyloid pathology [75].
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As mentioned above, no differences were noted in num-
ber and size of Aβ plaque depositions and the general histo-
logical impact of TYROBP deficiency on plaque morphol-
ogy and microglia recruitment was identical in appearance 
to that reported by Colonna and colleagues in their stud-
ies of TREM2-deficient mice [85]. Indeed, Tyrobp KO 
mice presented fewer microglia decorating each amyloid 
plaque without modification in the total number of micro-
glia, and plaques exhibited less compact morphology. 
However, unlike the Colonna report wherein the reduced 
numbers of microglia per plaque were predicted to be 
associated with increased severity of the phenotype [85], 
we observed that this histological appearance was instead 
associated with beneficial effects on neuritic dystrophy, 
TAU metabolism, learning behavior, and neuronal electro-
physiology. Although beyond the scope of this study, it will 
be interesting to determine whether overexpression leads 
to opposite results. In addition, recent papers from Lamb 
and colleagues [30], Yu and colleagues [32, 34], and Raha-
Chowdhury and colleagues [63] raise the possibility that 
there could be aging-related and/or disease-stage-related 
changes in the effect of TYROBP. These papers focused on 
TREM2 and suggest that reduced TREM2 may be benefi-
cial early in life (~4 months) while reduced TREM2 late 
in life (~8 months) could be detrimental. We are in the pro-
cess of assessing whether a similar phenomenon occurs 
with TYROBP.

Electrophysiological assays revealed that the loss of 
TYROBP normalized some of the synaptic dysfunctions 
caused by the APP/PSEN1 mutations. The strong increase 
in basal synaptic efficiency seen in the Tyrobp−/− mice is 
of particular interest. If observed in isolation, this phenom-
enon might lead to overactivation of pyramidal neurons and 
damage, but the same effect could prove protective in the 
context of LOAD-associated factors that reduce neuronal 
function. The protective effect of TYROBP deficiency in 
an early AD context is confirmed by the improvement in 
the behavioral performance of APP/PSEN1 mice deficient 
in TYROBP. The effect of the Tyrobp-null background on 
the electrophysiological findings and gene set enrichment 
(synapse assembly, ion transport, and neurotransmission) 
of APP/PSEN1; Tyrobp−/− vs. APP/PSEN1 are in keep-
ing with the growing appreciation for the role of microglia 
in maintaining normal synaptic physiology [4]. Indeed, in 
addition to their pro-inflammatory and phagocytic func-
tions, microglia release cytokines including TGFβ and 
interleukin-1β that acutely modulate synaptic plasticity at 
hippocampal synapses [11, 71].

Thus, in a comprehensive panel of transcriptomic, bio-
chemical, electrophysiological, and behavioral paradigms, 
reduction or ablation of TYROBP prevented the expres-
sion of many of the corresponding APP/PSEN1 phenotypes 
at 4 months of age. These results would appear to argue 

against the possibility that early TYROBP deficiency is 
likely to be a predisposing factor for LOAD. Indeed, these 
results would indicate that a decrease in TYROBP activity 
could represent an important therapeutic opportunity either 
for treating or preventing LOAD or else for slowing or 
arresting the progression of MCI or early AD to full-blown 
clinical and pathological LOAD.
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