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ABSTRACT 

This p a p  develops a probabilistic model and a softwa~ tool for analyzing longitudinal 

collision/safety between two automated vehicles. The input parameters are the length of the gap 

between the two vehicles, the common speed prior to the failure, the reaction delay of the following 

vehicle and a bivariate pint distribution of the deceleration rates of the two vehicles. The output 

includes the probability of a collision and also the probability distribution of the relative speed at colli- 

sion time. 

We will use this model to compare the safety consequences associated with the platooning and 

"free-agent" vehicle-following rules. We will also demonstrate that the free-agent vehiclefollowing 

rule implemented with a potential technology of fast and accurate emergency deceleration, under some 

reasonable conditions, can virtually avoid collisions while offering a high freeway capacity previously 

thought possible only under the platooning rule. 

KEY WORDS: AVCS, Collision Speed Distribution, Platooning, Free-Agent 
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(1) INTRODUCTION 

An Advanced Vehicle Control System (AVCS) consists of two major components: vehicle auto- 

mation technology and freeway operating strategy. A full-automation technology integrates the com- 

munication technology between vehicles and between vehicles and roadside, sensing technology and 

sophisticated automatic vehicle control. An operating strategy is a collection of operating rules that 

govern the movement of automated vehicles based on their capability and reliability. Five major 

categories of operating rules are vehicle following, lane change, lane selection, automated access and 

automated egress. 

Two primary objectives of Advanced Vehicle Control Systems (AVCS) are enhancements of 

highway capacity and safety. Capacity gain is achieved by reducing the average spacing, longitudinal 

and lateral, between vehicles. Safety improvement comes from the removal of human mrs, which 

currently account for more than 90% of the total number of roadway accidents. However, automation 

may introduce new kinds of safety hazards through possible failures of the additional equipment, the 

roadside control system and the communication system. Any of these failures may lead to collisions of 

a vehicle with other vehicles or with objects on the roadway. Although a vehicle may be functioning 

perfectly, its behavior may still be hazardous because it has received incorrect insbuctions from the 

roadside control system. To simplify the discussion in this paper, we will always refer to the vehicle 

with hazardous behavior as the failed vehicle. For the same reason, the deceleration of the failed vehi- 

cle and that of its immediate follower will be referred to as failure deceleration and emergency 

deceleration respectively. 

For a given automation technology, different operating strategies for AVCS will result in different 

degrees of capacity and safety enhancements. Among the five categaries of operating rules, the 

vehicle-following category has been the focal point of recent studies because of its direct impact on 

both the capacity and safety enhancements. Central to any vehicle-following d e  is the longitudinal 

spacing, i.e. the length of the gap between two adjacent vehicles. This paper concentrates on the safety 

consequences of this spacing. A vehicle failure under different vehiclefollowing rules will result in 

collisions of different severity with different probability. We will use collision speed, i.e. relative speed 



between two colliding vehicles at the time of collision, as a surrogate for collision severity. 

A Probabilistic Model 

Shladover [6] pointed out that different investigators made radically different assumptions about 

acceptable safety levels and derived radically different capacity estimates for the automated freeway. 

The differences in safety assumptions generally revolve around different answers to the following ques- 

tions: 

(a) How rapidly does a failed vehicle decelerate? 

(b) How long does it take a vehicle to detect a failure of its predecessor? 

(c) How rapidly can a following vehicle decelerate using its brakes to avoid a collision? 

(d) Are low-impact-velocity collisions tolerable or not? 

(e) Should the spacing between vehicles be determined based on safe accommodation of a sin- 

gle failure or must it accommodate combinations of multiple failures (such as an overspeed or 

brake failure of the following vehicle when the failed leading vehicle is decelerating)? 

Clearly, answering these questions involves a high degree of uncertainty and the crucial issue about 

AVCS safety requires probabilistic analyses. We will, in this paper, develop a probabilistic model and 

a software tool for obtaining the probability of collision and the distribution of collision speed given the 

occurrence of a vehicle failure, in relation to the first three of the factors above. This model and tool 

can be used to help determine safe distances between two vehicles, the target rate of deceleration of the 

vehicle following a failed vehicle, the specification for the accuracy and the response time of the brak- 

ing system, the specification for the response time of the communication system. 

The input parameters consided in our probabilistic model are the spacing between the two vehi- 

cles, the common speed prior to the failure, the deterministic reaction delay of the following vehicle 

and a bivariate joint distribution of the deceleration rates of the two vehicles. The bivariate deceleration 

distribution is needed to allow possible correlation between the two random deceleration rates due to 

the common driving condition, e.g. slippery road condition on a rainy day. The bivariate deceleration 

distribution can be any discrete bivariate probability distribution over any possible finite state space. 
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The output will be the probability of a collision and also the probabiity distribution of the collision 

speed (Av, i.e. the relative speed at the time of collision). The collision speed distribution will be 

expressed as a histogram. Parametric study can be conducted by varying the input parameters and exa- 

mining the resulting collision probability and Av distribution. 

The development of this model and computer tool was motivated by many important questions 

regarding the safety consequences of longitudinal collisions. We give two simple examples: 

Example 1 A Lower Bound for the Minimum Longitudinal Safety Spacing. 

Assume that when a vehicle decelerates due to a failure, all the trailing vehicles within a reasonable 

range receive simultaneously the distress signal and start decelerating at a common and constant target 

rate (after a common delay). A possible minimum safety requirement is that the minimum safety spac- 

ing be long enough so that the probability of an initial collision between any two adjacent trailing vehi- 

cles is no larger than a given number. Assuming that the actual deceleration rate of the trailing vehi- 

cles is constant but random due to mechanical limitation, we need to calculate the collision probability. 

Example 2 Determination of Target Emergency Deceleration Rate for the Trailing Vehicles. 

Given an estimate of the deceleration rate of the failed vehicle, we may wish to determine the target 

emergency deceleration rate for its immediate follower and the rest of the trailing vehicles. Since 

different target deceleration rates may be realized with different errors and larger errors tend to lead to 

collisions among the trailing vehicles, to determine the target deceleration rate, we also need to analyze 

the interaction between the failed vehicle and its immediate follower. 

The most complicated input to the model is the bivariate distribution for the two deceleration 

rates. To justify particular selections for it in the absence of data on the future technology or simply to 

facilitate the complex task of its determination, we will use the Principle of Maa'mum Entropy to derive 

a discrete bivariate distribution that satisfies user-specified marginal expectations, marginal standard 

deviations and coefficient of correlation. This distribution can be determined by solving a convex 

mathematical programming problem with linear equality constraints. The theoretical justification of this 



principle actually translates into the conservativeness appropriately required in the safety study of this 

kind. The associated computer programs are also included as part of the software tool. The adoption 

of this principle together with the discrete representation of the joint distribution of the two deceleration 

rates enable realistic and efficient parametric probabilistic studies of AVCS longitudinal safety. 

Two Basic Vehicle Following Rules 

Two basic vehiclefollowing rules are the platooning rule and thefree-agent rule. The platooning 

rule was first proposed and studied by Shladover in the late 70's [5]  and has received renewed attention 

in the last few years. Under this rule, two adjacent vehicles in the same lane are kept either very close 

to or very far from each other. As a result, vehicles are organized in a clustered formation. Each clus- 

ter of vehicles is called a platoon. All vehicles within a platoon, except the leader, are under continu- 

ous feedback control which maintains a very close spacing with the vehicle in front while adjacent pia- 

toons in the same lane are separated with a large spacing. To predict the freeway capacity increase 

provided by platooning, Shladover [5] made a number of assumptions, including a common vehicle 

length of 3.05 meters and a capacity reservation of 20% for lane changes. Based on the calculations for 

platoon sizes of 1,2,5, 10 and 20, he showed that the capacity increases significantly with platoon size. 

This rule fully utilizes the fact that, when a failure occurs, it is safer if the vehicles are either very close 

to each other or very far apart. The large inter-platoon sepamtion can minimize the probability of any 

collision between platoons in the same lane and the close intra-platoon spacing ensures that any colli- 

sion within a platoon will have a small relative speed. Under the h a g e n t  rule, vehicles move without 

any clustered formation and the minimum longitudinal spacing is significantly longer than typical intra- 

platoon spacings, but significantly shorter than typical inter-platoon spacings. 

The validity of the platooning concept hinges upon the crucial assumption that a failure would 

lead to only low relative speed collisions between vehicles in one lane. If this assumption proves to be 

true, then the platooning rule should be safer than the free-agent rule. However, so far very little is 

known about what other collisions may occur after the initial low-relative-speed collision. Could this 

initial collision lead to vehicles' skidding, spinning or swaying into other lanes? Could the low- 

relative-speed collisions cause some of the sensors or other on-board automation devices to malfunction 
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and the vehicle to become out-of-control? Tongue [A is investigating the consequences of low- 

relative-speed collisions using the technique of computer simulation. The sufficiency of his simulation 

study for determining the validity of the assumption is yet to be determined. Hitchcock [3] proposed 

the idea of a "lane barrier" to prevent the spilling of a traffic accident from one lane to another and the 

idea of "gate$' to allow lane changes. Even with these baniers, a low-relative-speed collision may lead 

to skidding and spinning, which in turn may lead to collisions between vehicles and the baniers and to 

other dangerous situations. Also, spilling over is still possible at the gates. The major weakness of the 

free-agent rule is that in the event of a collision, Av tends to be m m  severe in comparison to the pla- 

tooning rule. Advantages of the free-agent rule include simplified control protocols and more stable 

traffic flow. 

The above uncertainties suggest that we should not rule out the h a g e n t  rule. In addition, the 

possibility of fast emergency deceleration, which has the potential of avoiding collisions with short 

spacing, has not been fully explored in the literature. 

A probabilistic Comparison Between the Platooning and Free-Agent Rules 

We will use the probabilistic model to compare these two basic vehicle-following rules. This 

probabilistic comparison extends the deterministic analysis by Shladover [5] and other authors. We will 

further demonstrate that, with fast and uccurute emergency bruking and under some other assumptions 

about the automation technology of the future, the free-agent rule might guarantee no collision after a 

failure while offering the high capacity thought possible with platooning. 

Organization of the Paper 

This paper is organized as follows: Section 2 explains our probabilistic approach. Section 3 con- 

tains the solution to this general problem. Section 4 briefly discusses the concept of maximum entropy 

and its role in our approach. The computer tool and the major modules are discussed in Section 5. 

Section 6 is devoted to the comparison between the two basic vehiclefollowing rules. Section 7 con- 

tains the concluding remarks. 



- 7 -  

(2) A PROBABILISTIC APPROACH 

The goal is to provide the collision probability and distribution of collision speed for any given 

combination of the four input quantities: 

(11) common speed ptior to deceleration, 

(I2) spacing between the two vehicles, 

03) reaction delay of the rear vehicle, 

04) correlated bivariate distribution of the two deceleration rates. 

The first three are deterministic and hence trivial to represent. The difficult input is the fourth one, the 

bivariate distribution. The ideal would be to allow any possible probability distribution as an input. 

But this is impractical because their representation and manipulation are intractable. Also, the use of 

most standard probability density functions cannot be convincingly justified for our problem. Therefore, 

we choose to discretize the domain of possible deceleration rates (i.e. select a finite number of possible 

deceleration rates as the only possible rates) and use the set of all possible discrete probability distribu- 

tions over this domain to represent the input distributions. Note that discretization is a powerful tool 

because it can be used to approximate all probability distributions to any desired accuracy. 

The assumptions of our model are: 

(Al) Two vehicles are moving on a straight lane at a common speed prior to the failure. 

(A2) The failed vehicle decelerates at a constant but random rate. 

(A3) The following vehicle decelerates at a constant but random rate after a reaction delay (if it has 

not already collided with the failed vehicle). 

(A4) The two rates are possibly correlated. 

We use a two-dimensional coordinate system to represent the position of the two vehicles as a 

function of time. The horizontal axis represents the time and the time of failure is the origin, i.e. the 

deceleration of the front vehicle occurs at time zero. The vertical axis represents vehicle position, with 

the origin set at the position of the rear end of the front vehicle at the time when the front vehicle fails. 

We now introduce some notation, which is depicted in Figure 1: 
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V i  known common speed prior to failure. 

S= spacing between the two vehicles; more precisely, the distance between the rear end of the 

front vehicle and the front end of the rear vehicle. 

TI the reaction time (delay), i.e. the time between start of deceleration of the front vehicle and 

the start of deceleration of the rear vehicle (if it has not already collided with the failed vehi- 

cle). 

Df = the random deceleration rate of the front vehicle. 

Dr= the random deceleration rate of the rear vehicle. 

D = the set of all possible deceleration rates (for both vehicles). 

p (df ,dr)= the probability of Df=df  and Dr=dr; this defines the bivariate distribution of the 

two deceleration rates. 

Av (df ,dr S ,V)= the speed difference at collision given df , dr , S and V .  For ease of notation, 

this will simply be abbreviated as Av. 

t =  the elapsed time after the start of the front vehicle’s deceleration. In particular, the failure 

occurs at t=O. 

xf (t)= the position of the reaf end of the front vehicle at time t ,  in absence of collision. In 

particular, Xf (OH. 

x, (t)= the position of front end of the rear vehicle vehicle at time t , in absence of collision. 

vf (t)= the speed of the front vehicle at time t . 

v, ( f  )= the speed of the rear vehicle at time t . 

To find the probability distribution of Av, we first determine, given a particular pair of deceleration 
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rates Df =df and Dr=dr, if the two vehicles collide at all and, if so, when they do. We can then deter- 

mine their respective speeds and the difference. Finally, adding up the pbabilities associated with the 

pairs (df ,dr) that lead to the same collision speed produces the desired distribution, which will be 

expressed as a histogram. 

To determine if the two deceleration rates df and dr would lead to a collision, we use the follow- 

ing approach. Since a collision can only take place while the rear vehicle is moving, and the rear vehi- 

cle stops at t=T+- in absence of collision, we need only pay attention to the time perid (O,T+-). V V 
dr dr 

We will refer to this period as the relevant interval. It is obvious that the two vehicles would collide if 

and only if the two curves defined by xf (t ) and x&) intersect in the relevant interval. If they intersect 

multiple times, the earliest crossing time is the collision time. 

In absence of collision, the trajectory for the fmnt vehicle is: 

1 xf  ( t )  = Vt--df t2  if t E [O,-1; V 
2 df 

1 v2 
2 df 
-- otherwise. 

In absence of collision, the trajectory for the rear vehicle is: 

x, (t  ) = Vt-S if t E [O,T] 

1 
Vt-ydr(t-T)2-S if t E [T,T+-] V 

dr 

For convenience of discussion, the curve xf ( t )  will also be refd to as the front trajectory while xr ( t )  

the rear trajectory. An example xr ( t )  is shown in Figure 2. Note that the 6rst piece of the curve is a 

stmight line covering the time period (O,T), and this results fmm the fact that the rear vehicle main- 

tained the speed and has not started to decelerate yet. The second piece is a quadratic curve reflecting 
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the fact that the rear vehicle is decelerating at the constant rate of d,. The third piece of the curve for 

the rear vehicle is a constant function and describes the stopping position of the rear vehicle if no colli- 

sion had occurred. As mentioned before, this piece of trajectory will not play any role in the calcula- 

tions because collision cannot occur after the rear vehicle has stopped. The curve xf ( t )  for the front 

vehicle may have two pieces in the relevant interval. 'Ihe front vehicle starts to decelerate at time 0 

and it stops at time - if there is no collision. If -ST+-, then the curve has two pieces in the V V V 
df df dr 

relevant interval. Otherwise, there is only one. Note that these two curves can intersect more than 

once. Figure 3 shows a possible combination of the two curves in which they intersect only once. Fig- 

ure 4 gives an example in which they cross twice. 

In terms of timing, there are only four possible ways for the collision to occur: 

(Cl) During the reaction period but before the front vehicle has stopped; 

(C2) During the reaction period but after the front vehicle has stoppea 

(C3) When both vehicles are decelerating; 

(C4) After the front vehicle has stopped and while the rear vehicle is decelerating. 

(3) PROBLEM SOLUTION 

We now summarize the derivation of the collision probability and collision speed given any 

specific pair of deceleration rates Df =df and Dr =dr . Let t * denote a crossing time. 

For (Cl) to occur, t* must be on the first piece of the front trajectory and also on the first piece 

of the rear trajectory. Therefore, the prerequisites are ?*E [O,-] and ?*E [O,T]. To determine the pos- V 
dr 

sible crossing times, solve: 

Vt*--df t* ' = Vt' -S. 1 
2 

The solutions are: 

I t 2  

t' = [ z]"' and -[ z] . 
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Clearly, the first crossing time is not acceptable because it does not meet the prerequisites. The speed 

difference, if t* indeed falls in the required interval, will be 

AV = t* df . 
V In order for (C2) to occur, a prerequisite is -ST. Also, t* must be on the second piece of the 

df 

front trajectory and the first piece of the rear trajectory, i.e. t.2- and t* E [O,T]. For the possible V 
dr 

crossing times, solve: 

The solution is: 

If t*  satisfies the prerequisites, then the speed difference would simply be 

AV = V 

For (C3) to occur, a prerequisite is T I V .  Also, t* must be on the &st piece of front trajectory 
df  

and the second piece of the rear trajectory, i.e. t * E [ O , - ]  and t*E [T,T+-1. To obtain the crossing V V 
df dr 

times, we solve the following equation: 

Vt * --df t * = Vt * --dr (t * -T)2-,$. 1 1 
2 2 

The solutions are: 
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if d:T2-2(d,-df)(zd, T2+S) 20 and d,+. If d,=df, 1 

The speed Werence, if t* satisfies the prerequisites, is: 

Av = dft*-d,t*+d,T. 

Finally, in order for (C4) to occur, a prerequisite is T+-2-. Also, t* must be on the second v v  
4 df 

piece of the front trajectory and the second piece of the reat trajectory, Le. t* 2- and t* E [T,T+-1. V V 
df dr 

To obtain the crossing times, solve: 

1v2 * 1 
2 df 2 
-- = VI --d,(t*-T)2S. 

The solutions are: 

T+V)2-dr (d, T2+2S 
* 

T+V)2-d, (d, 

t =  
dr dr 

if (d,T+V)2-d,(d,T2+2S+-) 20. The speed difference, if the interval requirements are satisfied, will V 2  
df 

be 

AV = V-d,(t'-T) . 
Adding up the probabilities a s s o c i a t e d  with the pairs (df 4,) that lead to the Same collision speed 

produces the desired results. 
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(4) MAXIMUM ENTROPY MODEL 

Recall that we need a bivariate distribution for the two deceleration rates as part of the model 

input and note that the number of probabilities needed grows quadratically with the size of D ,  the set 

of all possible deceleration rates considered for both vehicles. To justify particular selections for the 

distribution in absence of data on the future technology, we propose to use the maximum entropy 

principle (MAXENT) to generate the bivariate probability distribution. In addition, when the size of D 

is large, the task of determining a bivariate distribution may become unwieldy. Therefore, a probability 

generator would be very desirable. 

The MAXENT technique can determine a unique distribution, univariate or multivariate (with 

correlation), discrete or continuous, that satisfies any "linear constraints" on the probability distribution, 

using only a small number of "parameters" for the distribution (to be determined and supplied by the 

user). Such linear constraints can be used to express almost all common constraints on distributions, 

e.g. expected value, percentage quantile, the variance and correlation when the expected value is given, 

etc. 

n 

Entropy of a pbabillity distribution on a finite domain, p i ,  i=1,2, ...a, is defined by - C p i l n p i .  
i=l 

It can be interpreted as a measure of uncertainty contained in the distribution and the negation of 

entropy can be interpreted as a measure of information. The maximum-entropy distribution has the 

least "other information" out of all the distributions that satisfy the linear constraints. In other words, it 

picks the one that is "maximally non-committal". For example, the maximum-entropy distribution on 

any finite state space without any constraints is the uniform distribution, which can be viewed as the 

distribution containing the maximum amount of uncertainty or the least amount of information. For an 

analysis like ours where information about the exact distribution is limited, the selected distribution 

should be as non-committal as possible. Therefore, adoption of this principle is especially appropriate. 

One final note about the maximum-entropy approach is that there exist very robust and efficient algo- 

rithms for solving these distribution determination problems. For references on the subject of maximum 

entropy and detail of the algorithm, see [l]. 
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(5) A COMPUTER TOOL 

In addition to providing a MAXENT solver (a computer program for solving any general 

linearlyconstrained maximum entropy problem), we have also coded a special MAXENT problem gen- 

erator. This generator takes the users' input on (i) the expected values of two marginal distributions, 

(ii) the standard deviations of the two marginal distributions, and (iii) the correlation coefficient 

between these two random variables, and then generates a special MAXENT problem for the MAXENT 

solver to produce a bivariate distribution. In shott, the computer fool has three major modules: 

(Ml) A MAXENT problem generator 

Given the two expected values, two standard deviations and the correlation, it generates a 

MAXENT problem whose solution is the desired bivariate distribution for the two 

deceleration rates. 

(M2) A MAXENT solver: 

It solves any linearly-constrained maximum entropy problem, including the one generated 

by the above MAXENT problem generator. 

(M3) A collision probability and speed solver: 

It takes the bivariate distribution and other input parameters and calculates the pmbabil- 

ity of a collision and the distribution of the collision speed. 

The model for module (M3) has been described in detail in previous sections. (Ml) and (M2) are 

briefly discussed in the Appendix. 

(6) A COMPARISON BETWEEN PLATOONING AND FREE-AGENT RULES 

In this section, we first itemize the assumptions of comparison. We then use the model and the 

software tool to produce the collision probability and collision speed distribution for a set of 

failurebaction scenarios. Note that we are not attempting a complete comparison, which involves, 

among many other things, the failure probability (i.e. frequency), traffic disruption due to collisions 

(fatal, injury or propertydamage only), complexity of vehicle control algorithm and protocol, complex- 

ity of operating strategy, and stability of traffic flow. 
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To set the stage for the comparison, we itemize the additional assumptions as follows: 

(Al) Both deceleration rates are random. The randomness of the failure deceleration rate is 

due to chance. A target emergency deceleration rate has been preset for responding to 

vehicle &lures; but, due to inaccuracy of the braking system, the actual emergency 

deceleration rate is random. 

(A2) The distributions of these two rates are independent. 

(A3) We set the common speed prior to the failure at 25 rneterdsecond, which is approxi- 

mately 55 mileshour. 

(A4) The reaction delay, including the communication delay and the brake actuation delay, is 

set at 100 milliseconds (0.1 second). This choice of the reaction delay is consistent with 

the current and planned automatic control technology. 

The other input parameters, the spacing and the two deceleration distributions, will be varied to obtain 

collision probabilities and collision speed distributions. The spacings for the two rules are chosen so 

that the two resulting capacities are identical. We consider two different platooning scenarios: (i) 20- 

vehicle platoon with 1-meter intra-platoon spacing and 61-meter inter-platoon spacing, and (ii) 5-vehicle 

platoon with 1-meter intra-platoon spacing and 31-meter inter-platoon spacing. With the vehicle length 

set at 5 meters, their free-agent and identical-flow counteqmrts would have a common inter-vehicle 

spacing of 4 meters and 7 meters respectively (not counting the vehicle length). At the speed of 25 

meters/second and with 20% capacity reserved for lane-change maneuvers, the two capacities are 8,000 

and 6,000 vehicles per lane per hour respectively. 

The possible deceleration rates, for both the failed vehicle and its immediate follower, are 

ix0.5m/s2, i=1,2, ..., 20. We choose to use two parameters, the expected value and the standard devia- 

tion, for determining a deceleration rate distribution. We vary these parameters for both deceleration 

rate distributions. For failure deceleration, we select two distributions: (i) with expected value 5.0 

metdsec2 and standard deviation 1.0 metWsec2, and (ii) with expected value 3.0 meters/sec2 and 

standard deviation 1.0 meters/sec2. For emergency deceleration, we consider many more distributions 

with the expected values ranging from 3.0 meters/sec2 to 8.0 meters/sec2 and the standard deviation 
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ranging from 0.1 meters/sec2 to 1.0 meter/sec2. 

To illustrate the characteristics of Maximum Entropy distributions, five such distributions with 

different expected values and standard deviations are displayed in Figure 5. AU these distributions will 

be used in the probabilistic comparison between the two major vehicle-following rules.. For a clearer 

comparison, we put these five distributions on the same scale but do not show the five histograms them- 

selves. Instead, for each distribution we connect the points (di ,prob(di)), where di is a possible 

deceleration rate and prob (di) is the maximum entropy probability associated with di . 

The collision speed distribution is expressed as a histogram with 15 intervals. These intervals, 

with the unit of meterslsecond, are: ((i-l)xO.5~xO.5], for i=1,2, ..., 14, and (7.0.00). For example, if the 

mean and standard deviation of the front deceleration are 5 meters/sec2 and 1 meter/sec2 respectively, 

those of the rear deceleration are 3 meters/sec2 and 0.5 meter/sec2 respectively, and the platooning rule 

is adopted, the probability of a collision with relative speed between 2.5 and 3.0 metm/second is 

0.1046. 

The result of our probabilistic comparison is tabulated in 6 tables. Table 1 contrasts the 

difference between the two mles for the case of a 20-vehicle platoon where the failure deceleration rate 

obeys a maximum entropy distribution with an expected value of 5 meters/sec2 and a standard deviation 

of 1 meter/sec2. Table 2 contrasts the same difference for the same case except that the expected value 

is 3 meter/sec2. Tables 3 and 4 contain the same contrast as in Tables 1 and 2 respectively except that 

the platoon size is 5. Tables 5 and 6 provide succinct summaries of Tables 1 and 3 respectively. 

Since a collision speed of 8 miles/hour (3.55 metedsec) or below is considered safe while 16 

m/h (7.1 meters/sec) or above is consideted dangerous, in terms of injury and fatality, by some safety 

experts [4], we choose to display the probabilities of collision speed greater than 0 meters/sec, 3.5 

meters/sec and 7.0 meWsec in the two summary tables. Note that under the platooning rule, the 

failed vehicle may be at the very end of a platoon, in which case the collision probability should be 

minute but the collision speed, given the Occurtence of a collision, may be high. This fact has been 

considered in all the probability calculations for the platooning d e .  
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Rear Decel. 
>7.0 6.5-7.0 6.0-6.5 5.5-6.0 5.0-5.5 4.5-5.0 4.0-4.5 3.5-4.0 3.0-3.5 2.5-3.0 2.0-2.5 1.5-2.0 1.0-1.5 0.5-1.0 <0.5 Collision s.d. mean 

Prob. of Collision at speed = Prob. of Mode 

3 

.OOOO .OOOO .0001 .0005 .0063 .0006 .0144 .0364 .0725 .OOOO .OOOO .OOOO .OOOO .1310 Free Agent 
.OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .0001 .0065 .0144 .lo34 .OOOO .1128 .2373 Platooning 0.5 4 
.OOOO .OOOO .0001 .0003 .0014 .0051 .0515 .OOOO .0725 .1188 .1599 .OOOO .OOOO .OOOO .OOOO .4096 Free Agent 
.0008 .0001 .OOOO .0005 .OOOO .OOOO .0003 .OOOO .0001 .0017 .0538 .0689 .2647 .OOOO .1682 .5591 Platooning 0.5 

.OOOO .OOOO 
5 0.5 Platooning 

.OOOO .OOOO .OOOO .OOOO .OOOO .0001 .0003 .0008 .0006 .0051 .0150 .OOOO .OOOO .OOOO .OOOO .0220 Free Agent 

.OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .0004 .0024 .0181 .0022 .0324 .0555 

6 0.5 Platooning .0066 .0017 .0031 .0014 
.OOOO .OOOO .OOOO .0001 .OOOO .0003 .0014 .OOOO .OOOO .OOOO .OOOO .0018 Free Agent 

.OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .0003 
.OOOO .OOOO .OOOO .OOOO 

7 0.5 Platooning .0004 .OOOO 
.OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .0001 .OOOO .OOOO .OOOO .OOOO .0001 Free Agent 
.OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO ,0000 .OOOO .OOOO .0001 .0003 

8 0.5 Platooning .oooo .om0 .oooo .oooo .oooo .oooo .oooo .oooo 

.OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .Om0 .OOOO Free Agent 

.oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .ow0 .ooOO Platooning 1 8 

.OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO Free Agent 

.oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo Platooning 0.1 8 

.OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO .OOOO Free Agent 

.oooo .oooo .oooo .oooo .oooo .oooo .oooo .oooo 

Table 2 20-Vehicle Platooning: 
Front Decel. Mean = 3 meters/sec* 

s.d. = 1 meters/sec2 





Rear Decel. 
>7.0 6.5-7.0 6.0-6.5 5.5-6.0 5.0-5.5 4.5-5.0 4.0-4.5 3.5-4.0 3.0-3.5 2.5-3.0 2.0-2.5 1.5-2.0 1.0-1.5 0.5-1.0 c0.5 Collision s.d. mean 

Prob. of Collision at speed = Prob. of Mode 

3 .0214 .OOOO .0136 .0001 .0004 .OOOO .OOOO .OOOO .0020 .0014 .0453 .OM0 .2229 .OOOO .1416 5068 Platooning 0.5 

Free Agent .0016 
Platooning .0003 
Free Agent .oooa 
Platooning .oooa 
IFree Agent .000(1 
Platooning .000(1 
Free Agent .oooa 
,Platooning .000(1 
,Free Agent .000(1 

.OOOO .OOOO .OOOO .0006 .OOOO .0006 .OOOO 

.OOOO .0003 .OOOO .OOOO .OOOO .OOOO .OOOO 

.oooo .oooo .oooo .oooo .oooo .oooo .oooo 

.oooo .oooo .oooo .oooo .oooo .oooo .oooo 

.oooo .oooo .oooo .oooo .oooo .oooo .oooo 

.oooo .oooo .oooo .oooo .oooo .oooo .oooo 

.oooo .oooo .oooo .oooo .oooo .oooo .oooo 

~ .oooo .oooo .oooo .oooo .oooo .oooo .oooo 

' .oooo .om0 .oooo .oooo .oooo .oooo .oooo 

.0003 

.oooo 

.oooo 

.oooo 

.oooa 

.oooa 

.oooa 

.oooa 

.oooa z .oooo .0001 
.oooo .oooo 
.oooo .oooo 
.oooo .oooo 
.oooo .oooa 
.oooo .oooo 
.oooo .oooa 
.oooo .oOoo 
.oooo .oooo 

.oooo 

.oooa 

.oooa 

.oooo 

.oooa 

.oooa 

.oooa 

.oooa 

.oooa 

.oooo/ .oooo/ .00001 

.oooo .oooo .oooo 
I 

I 

1 .oooo .oooo .oooo 
1 .oooo .oooo .oooo 
I .oooo .oooo .oooo 
I .oooo .oooo .oooo 
1 
1 
1 - - 

.oooo 

.oooo 

.oooo 

.oooo 

.oooo 

.oooo 
.oooo .oooo .oooo .oooo 
.oooo .oooo .oooo .oooo II 
.00001 .ooool .00001 .ooool 

Table 4: 5-Vehicle Platooning: 
Front Decel. Mean = 3 rnetcdsec2 

s.d. = 1 metedsec2 



Rule 
mean I s.d. 

Table 5: 20-Vehicle Platooning: 
Front Decel. Mean = 5 metedsec2 

s.d. = 1 metedsec2 

i 

Free Agent .oooo .oooo .oooo 
8 1 Platooning .0215 .oooo .oooo 

Free Agent .0062 .0043 . 0000 

Tdde 6 5-Vehicle Platooning: 
Front Decel. Mean = 5 metedsec2 

s.d. = 1 meterdsec' 
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In any type of probabilistic analysis like o w ,  one needs to compare probability distributions and 

such comparisons often involve some kind of ordering among different distributions. We will use the 

concept of srochasric larger {smaller). However, we are not interested in any exact ordering of the input 

or output distributions. Therefore, for ease of discussion, we will use the terms larger and smaller as 

abbreviations and only use them in an approximate sense in the rest of this section. Also, since we are 

using the collision speed only as a surrogate of collision severity and the exact relationship between 

them has not been established, we are not ready to rigorously compare the two basic rules. But, for con- 

venience of discussion, we will nevertheless use the term sufer to loosely express our intuition. 

It is apparent from the tables that when the emergency deceleration rate is smaller than the failure 

deceleration rate, platooning is safer because its collision probability is not much different from its 

free-agent counterpart while its collision speed is smaller. Also, when the two rates are comparable, 

platooning seems safer because of the Same reason. However, when the emergency deceleration rate is 

significantly larger than the failure deceleration, the free-agent rule seems safer because its collision 

probability is significantly smaller while its collision speed distribution is not significantly larger. When 

the emergency deceleration rate is much larger than the failure deceleration rate and the accuracy of 

emergency deceleration is also high, the collision probability can be eliminated for very small vehicle- 

following spacing under the freeagent rule. For example, (i) the emergency deceleration rate with an 

expected value of 8 meterdsec' and standard deviation of 0.1 meter/sec', (ii) the failure deceleration 

rate with an expected value of 5 rneterdsec' and standard deviation of 1 meter/sec', (iii) reaction delay 

of 0.1 second, and (iv) longitudinal gap (between the read end of the front vehicle and the front end of 

the rear vehicle) of 7 meters would virtually guarantee no collision after the failure. (See Table 3.) 

Note that the qualifier virtually is used because of potential numerical inaccuracy or possible 

insufficiency of the discrete approximation of a continuous distribution. In this particular example, the 

collision probability after a vehicle failure is O.oooO1864, a very small probability that is less than 1% 

of its platooning counterpart. 

Regarding the validity of these assumptions, Hedrick [Hedrick, 19921 is optimistic that a braking 

system capable of 0.8g (approximately 8 meters/=') or higher deceleration under normal driving con- 
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ditions can be successfully developed in the future. With better tire design, pavement and braking tech- 

nology, fast emergency deceleration Seems feasible. "he distribution of failure deceleration rate 

depends on the possible failure modes of the automated vehicle and also the failure probabilities, both 

of which in turn depend on the future automation technology and, perhaps more importantly, the design 

specifications of the future AVCS systems. An apparent design objective is to lower the failure 

deceleration rate as much as the cost considerations allow. Although theae is no concrete data to sup- 

port the validity of the selected failure deceleration rate in this example, it seems quite conservative. 

(See Figure 5.) 

A point worth noting is that the contrasts tabulated in the six tables do not account for the fact 

that the inter-platoon spacing should be a function of the achievable emergency deceleration rate. For 

example, with the fast and accurate braking system described in the previous pamgraph, there is no 

need to separate two platoons by 60 meters. However, these Tables do show that, with f i t  and accu- 

rate emergency bruking, free-agent vehicle-following rule can indeed provide the high capacity achiev- 

able by the very platooning concept that has stimulated interest in AVCS technology among the IVHS 

r e s m h  community. 

Our parametric probabilistic study suggests that the merit of any vehiclefollowing rule in terms 

of the collision probability and the collision speed depends heavily not only on the three factors (a) 

thugh (c) pointed out by Shladover (and cited earlier in this paper), but also on the accuracy of the 

braking system. As for the relative merits of the two basic vehicle-following rules, the most fundamen- 

tal question is what other collisions may occur after the initial collision. If vehicles would not deviate 

from their longitudinal trajectory after low-relative-@ collisions in the Same lane, e.g. by having a 

powerful automated steering system that remains operational after the longitudinal collisions, then the 

platooning rule seems to be safer than the free-agent rule for a given common flow requirement. How- 

ever, if low-relative-@ collisions prove to be unsafe or their consequences unsure and fast and accu- 

rate emergency deceleration becomes feasible, technologically and economically, then the free-agent 

rule may be the safer way. 



- 19 - 

(7) CONCLUSION 

We have proposed a model for calculating the probability of a two-vehicle collision and the 

resulting collision speed distribution after the front vehicle abruptly decelerates. Robust probabilistic 

modeling is possible only by using the proposed discrete representation of the joint deceleration distri- 

bution. The adoption of the maximum entropy principle made possible the task of determining the input 

distribution conservatively and efficiently. The availability of the software tool enabled efficient 

parametric studies of the safety consequences of a vehicle failure under various vehicle-following rules. 

We have used the model to compare the safety consequences of a vehicle failure under the pla- 

tooning and the free-agent vehicle-following rules in terms of the fundamental tradedf between the 

probability of collision and the magnitude of the collision speed. This extends the deterministic 

analysis of collision speed by Shladover 151 and adds the dimension of collision probability. Our com- 

parison suggests that a vehicle failure would cause far more initial collisions under platooning. If a 

small fraction of these low-relative-speed collisions lead to major collisions, then the platooning rule 

would actually be less safe. We also demonstrated that the freeagent vehicle-following rule imple 

mented with a potential technology of fast and accurate emergency deceleration, under some plausible 

conditions, might avoid any collisions after a vehicle failure while offering the high freeway capacity 

thought possible with platooning. 

Although we have discussed the probabilistic model in the context of vehicle failure, it can be 

used in any context in which a vehicle needs to decelerate abruptly. For example, a vehicle may need 

to decelerate because a foreign object is detected to be lying ahead. Moreover, this model is applicable 

to any analysis of initial collision in which longitudinal vehicle control is employed, e.g. Autonomous 

Intelligent Cruise Control (AICC). 

F u m  research should extend the model and the software tool to accommodate the following: 

multiple vehicle collisions in the same lane and more accurate model for the curve of speed after 

deceleration (perhaps by a differential equation). 
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APPENDIX 

A linearly-constrained maximum entropy problem is defined as the following mathematical pro- 

gramming problem: 

s.t. 
n 

Caij=bi, i=1, ...m, 
j = l  

xj 2 0 j =  1. ..., n. 

Note that the variables of this problem do not have to form a probability distribution. Let xij be the 

probability of df=di and d,=dj, m and m2 be the expected values of the two marginal distributions, v 1  

and v 2  be the variances of the two marginal distributions and COY be the covariance of the bivariate dis- 

tribution. Then, the linearlyconstrained maximum entropy problem far determining the bivariate distri- 

bution of deceleration rates, given the parameters, is: 
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xij 2 03=1, ... Jsj=l, ... J. 

The last two constmints form the probability constraint, or the simplex constraint. For actual computer 

programming, the rest of the constraints can be simplified and the doubleindexed variables can be 

represented by a single-indexed variable array. After reindexing and simplilication, this problem can be 

posed as a linearly-constrained maximum entropy problem defined above. 

This formulation is the basis for the module (Ml). The user is expected to supply the 5 parame- 

ters and this module (Ml) will generate the special MAXENT problem for the IvlAXENT solver (342) 

to compute the bivariate dishibution, which in turn will be used as a part of the input to the main 

module (M3). 




