
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Constrained Codes and Signal Processing for Non-Volatile Memories

Permalink
https://escholarship.org/uc/item/8d05z05m

Author
Qin, Minghai

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8d05z05m
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Constrained Codes and Signal Processing for Non-Volatile Memories

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering

(Communication Theory and Systems)

by

Minghai Qin

Committee in charge:

Professor Paul H. Siegel, Chair

Professor Alon Orlitsky

Professor Bhaska Rao

Professor Steven Swanson

Professor Alexander Vardy

2014

Copyright

Minghai Qin, 2014

All rights reserved.

The dissertation of Minghai Qin is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2014

iii

DEDICATION

Dedicated to my parents.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1

1.1 Background . 1

1.2 Constrained codes for non-volatile memories 2

1.3 Signal processing for non-volatile memories 3

1.4 Dissertation Overview . 3

Chapter 2 Time-space constrained codes for phase-change memories 5

2.1 Introduction . 5

2.2 Preliminaries . 7

2.3 Upper Bound on the Capacity . 9

2.4 Lower Bound on the Capacity . 14

2.4.1 Space Constraint Improvement 16

2.4.2 Time Constraint Improvement 18

2.4.3 Time-Space Constraint Improvement 24

2.5 Conclusion . 24

2.6 Appendix A . 25

2.7 Appendix B . 31

Chapter 3 Codes for multi-level write-once memories 36

3.1 Introduction . 36

3.2 Lattice-based WOM Codes . 39

3.2.1 Lattices and Lattice Codes 39

3.2.2 WOM Codebooks . 39

3.2.3 Continuous Approximation 41

3.3 Fixed-Rate Optimal t-Writes . 42

3.3.1 Computing the optimal hyperbola parameters, v
∗

t
. 45

v

Chapter 4 Write-once memories with retained messages 47

4.1 Introduction and Main Results . 47

4.2 Consecutive Two-Step WOM . 50

4.3 Arbitrary Two-Step WOM . 52

4.4 Incremental WOM . 54

4.5 Conclusion . 59

4.6 Appendix A . 59

Chapter 5 Inter-cell interference free codes for !ash memories 67

5.1 Introduction . 67

5.1.1 ICI-free Balanced Codes for Dynamic Threshold Detection 68

5.1.2 Coding for an ICI-Free Write-Once-Memory (WOM) . . . 69

5.1.3 Outline of the Chapter . 70

5.2 ICI-free Balanced Codes . 70

5.2.1 Derivation of the Asymptotic Information Rate 72

5.2.2 Heuristic Probabilistic Derivation 78

5.3 ICI-free WOM Codes . 79

5.3.1 De"nitions . 80

5.3.2 Sum-Capacity . 82

5.3.3 Code Constructions . 86

5.4 Conclusion . 89

Chapter 6 Parallel programming of !ash memories with quantizers 91

6.1 Introduction . 91

6.2 Preliminaries . 94

6.3 Noiseless Parallel Programming 97

6.4 Noiseless Parallel Programming with Inter-cell Interference 102

6.5 Single Cell Noisy Programming without Feedback 109

6.6 Single Cell Noisy Programming with Feedback 114

6.7 Conclusion . 118

6.8 Appendix A . 118

6.9 Appendix B . 124

6.10 Appendix C . 127

Chapter 7 Parallel programming of rank modulation for !ash memories 132

7.1 Introduction . 132

7.2 Preliminaries . 133

7.3 Rank modulation minimizing programming rounds 134

7.4 Rank modulation maximizing the number of updates 139

7.5 Conclusion . 142

Bibliography . 144

vi

LIST OF FIGURES

Figure 2.1: Upper bound on C(1,β, p) . 13

Figure 2.2: Labeled graph that generates the (7, 2)-WWL constraint 14

Figure 2.3: A sequence of writes of a (3, 3, 2)-constrained code 15

Figure 2.4: Lower bound on C(α, 1, p) . 23

Figure 3.1: A t-write WOM model . 37

Figure 3.2: A 2-dimensional rectangular hyperbola H(u) in region A = [0, ℓ]× [0, ℓ].
The region under the hyperbola and the region accessible from a given point

x on the hyperbola are shaded in blue and red, respectively, and their vol-

umes are equal to ∆(u) · ℓn and u · ℓn, respectively. 43

Figure 4.1: Bounds on C2
sum(t) . 54

Figure 4.2: Lower and upper bounds on C3
ssum(t) . 59

Figure 5.1: Bijection between U3 and D3 . 75

Figure 5.2: Generalized WOM with state transition diagram 84

Figure 6.1: The information-theoretic framework of the cell programming model. . . . 95

Figure 6.2: Illustration of a terminal state label function of a trellis 105

Figure 6.3: Path with maximum metric in a trellis with t = 1 107

Figure 6.4: Another path with maximum metric in a trellis with t = 1 107

Figure 6.5: Probability of correct quantization as a function of the number of program-

ming rounds. 112

Figure 6.6: Minimum number of rounds required to ensure 90% probability of correct

programming. 113

Figure 6.7: Minimum number of rounds to ensure 80% probability of correct program-

ming. 113

Figure 7.1: Lower and upper bounds on t∗1(τ , ℓ0) . 138

Figure 7.2: Number of programming rounds needed to achieve ℓt 143

vii

LIST OF TABLES

Table 2.1: A 3-cell 2-write WOM code . 19

Table 2.2: Highest rates of (α, 1, 1)-constrained codes 21

Table 4.1: Writing arrangement of the consecutive 2-step WOM code 48

Table 4.2: Writing arrangement of the arbitrary 2-step WOM code 52

Table 4.3: Writing arrangement of the 3-write incremental WOM code 55

Table 4.4: Writing arrangement of the t-write incremental WOM code 57

Table 5.1: Sum-capacity of ICI-free WOM . 86

Table 5.2: Rates found by Algorithm 5.3.7 . 89

Table 7.1: t∗1(τ , ℓ0) as a function of τ . 139

viii

ACKNOWLEDGEMENTS

Many thanks to many people who contribute to my work in the past five years.

First, I would like to express my deepest gratitude for my advisor Prof. Paul H. Siegel.

His rigorousness in research, sharpness in thought, and kindness in life have profoundly affected

my attitude towards work and life. His guidance have simplified the world of coding and signal

processing, which enables me to change from unaware to educated. It is a great pleasure to

discuss with him and I would like to thank Prof. Siegel for his patience and belief in me that

gives me the freedom to search for and explore my interests.

It is fortunate for me to study in UCSD where there are a plenty of outstanding re-

searchers in the field of communication and signal processing. I would like to thank Prof. Alon

Orlitsky for the introduction of information theory when I joined UCSD five year ago. His

brain-storming teaching methods guided me to the world of entropy. I would like to thank Prof.

Bhaskar Rao for his introductory course to time series analysis. I would like to thank Prof.

Steven Swanson and Prof. Alexander Vardy, together with Prof. Alon Orlitsky, Prof. Bhaskar

Rao, and Prof. Siegel, for their time and effort to serve in my committee. I would like to thank

Prof. Young-Han Kim for the opportunity to collaborate with his group to look at problems from

a different information theoretic angle. I would like to thank Prof. Eitan Yaakobi in Technion -

Israel Institute of Technology for many collaborations on coding and signal processing on flash

memories. I would like to thank Prof. Anxiao (Andrew) Jiang in Texas A&M University for the

collaboration during his visit to UCSD and thank Prof. Albert Guillén i Fàbregas in Universitat

Pompeu Fabra (UPF) for the collaboration with his group and inviting me to visit UPF. Finally,

I would like to thank Prof. Jack K. Wolf and I cherish my memories of sitting in his classroom

for my first graduate course. He was a wise man. He led me to this field.

I would like to thank all my collaborators, Rajiv Agarwal, Aman Bhatia, John Cioffi,

Albert Guillén i Fàbregas, Jing Guo, Aravind Iyengar, Anxiao Jiang, Young-Han Kim, Brian

Kurkoski, Borja Peleato, Lele Wang , and Eitan Yaakobi, for their great contributions to my

dissertation.

I would like to thank CMRR staff, Ray Descoteaux, Betty Manoulian, Julie Matsuda,

and Iris Villanueva for their kind help in making my life in CMRR more enjoyable and easier.

I would like to thank the current members and alumni of STAR group: Aman Bhatia,

Brian Butler, Bing Fan, Pengfei Huang, Aravind Iyengar, Seyhan Karakulak, Scott Kayser, Ido

Tal, Veeresh Taranalli, Han Wang, Eitan Yaakobi, and Xiaojie Zhang. I have benefited a lot

during the discussion and conversation with them.

ix

A special thanks to my parents, Ms. Yongchen Zhu and Mr. Rong Qin. You gave me

birth and wisdom. I appreciate their considerate love and unconditional support.

I would like to thank my friends in San Diego. Zheng Li, Sibo Tao, Lele Wang, Shaohe

Wang, Lelin Zhang, Jun Zhou, etc. Their friendship enriches my ex-curriculum life and for the

past five years they have always been there, ready for help.

This thesis was supported in part by the ISEF Foundation, the Lester Deutsch Fellow-

ship, the University of California Lab Fees Research Program, Award No. 09-LR-06-118620-

SIEP, the Qualcomm Innovation Fellowship, the NSF under Grant CCF-1116739, and the Center

for Magnetic Recording Research at the University of California, San Diego.

Chapter 2 is in part a reprint of the material in the paper: Minghai Qin, Eitan Yaakobi,

and Paul H. Siegel, “Time-space constrained codes for phase-change memories”, IEEE Trans-
action on Information Theory, vol. 59, no. 8, pp. 5102-5114, August 2013.

Chapter 3 is in part a reprint of the material in the paper: Aman Bhatia, Minghai Qin,

Aravind Iyengar, Brian Kurkoski, and Paul H. Siegel, “Lattice-based WOM codes for multilevel

flash memories”, IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 933-
945, May 2014.

Chapter 4 is in part a reprint of the material in the paper: Lele Wang, Minghai Qin, Eitan

Yaakobi, Young-Han Kim, and Paul H. Siegel, “WOM with retained messages”, in Proc. IEEE
International Symposium of Information Theory (ISIT) 2012, Cambridge, MA, USA, July 2012,

pp. 1396-1400.

Chapter 5 is in part a reprint of the material in the paper: Minghai Qin, Eitan Yaakobi,

and Paul H. Siegel, “Constrained codes that mitigate intercell interference in read/write cycles

for flash memories”, IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp.
836-846, May 2014.

Chapter 6 is in part a reprint of the material in the paper: Minghai Qin, Eitan Yaakobi,

and Paul H. Siegel, “Optimized cell programming for flash memories with quantizers”, IEEE
Transaction on Information Theory, vol. 60, no. 5, pp. 1-16, May 2014.

Chapter 7 is in part a reprint of the material in the paper: Minghai Qin, Anxiao Jiang,

and Paul H. Siegel, “Parallel programming of rank modulation”, in Proc. IEEE International
Symposium of Information Theory (ISIT) 2013, Istanbul, Turkey, July 2013, pp. 719-723.

x

VITA

2009 Bachelor of Engineering in Electronic Engineering, Tsinghua Univer-

sity

2011 Master of Science in Electrical and Computer Engineering, University

of California, San Diego

2014 Doctor of Philosophy in Electrical Engineering, University of Califor-

nia, San Diego

PUBLICATIONS

Minghai Qin, Eitan Yaakobi, and Paul H. Siegel, “Optimized cell programming for flash mem-

ories with quantizers”, IEEE Transaction on Information Theory, vol. 60, no. 5, pp. 1-16, May

2014

Minghai Qin, Eitan Yaakobi, and Paul H. Siegel, “Constrained codes that mitigate intercell in-

terference in read/write cycles for flash memories”, IEEE Journal on Selected Areas in Commu-
nications, vol. 32, no. 5, pp. 836-846, May 2014

Aman Bhatia, Minghai Qin, Aravind Iyengar, Brian Kurkoski, and Paul H. Siegel, “Lattice-based

WOM codes for multilevel flash memories”, IEEE Journal on Selected Areas in Communica-
tions, vol. 32, no. 5, pp. 933-945, May 2014

Minghai Qin, Eitan Yaakobi, and Paul H. Siegel, “Time-space constrained codes for phase-

change memories”, IEEE Transaction on Information Theory, vol. 59, no. 8, pp. 5102-5114,
August 2013

Jing Guo, Minghai Qin, Albert Guillén i Fàbregas, and Paul H. Siegel, “Enhanced belief propa-

gation decoding of polar codes through concatenation”, in Proc. IEEE International Symposium
of Information Theory (ISIT) 2014, Honolulu, HI, USA, July 2014
Minghai Qin, Anxiao Jiang, and Paul H. Siegel, “Parallel programming of rank modulation”, in

Proc. IEEE International Symposium of Information Theory (ISIT) 2013, Istanbul, Turkey, July
2013, pp. 719-723

Borja Peleato, Rajiv Agarwal, John Cioffi, Minghai Qin and Paul H. Siegel, “Towards minimiz-

ing read time for NAND Flash”, in Proc. IEEE Globecom 2012, Anaheim, CA, USA, December
2012, pp. 3219-3224

Minghai Qin, Eitan Yaakobi, and Paul H. Siegel, “Optimized cell programming for flash mem-

ories with quantizers”, in Proc. IEEE International Symposium of Information Theory (ISIT)
2012, Cambridge, MA, USA, July 2012, pp. 995-999

Lele Wang, Minghai Qin, Eitan Yaakobi, Young-Han Kim, and Paul H. Siegel, “WOM with

retained messages”, in Proc. IEEE International Symposium of Information Theory (ISIT) 2012,
Cambridge, MA, USA, July 2012, pp. 1396-1400

Minghai Qin, Eitan Yaakobi, and Paul H. Siegel, “Time-space constrained codes for phase-

change memories”, in Proc. IEEE Globecom 2011, Houston, Texas, USA, December 2011, pp.
1-6

xi

ABSTRACT OF THE DISSERTATION

Constrained Codes and Signal Processing for Non-Volatile Memories

by

Minghai Qin

Doctor of Philosophy in Electrical Engineering

(Communication Theory and Systems)

University of California, San Diego, 2014

Professor Paul H. Siegel, Chair

Non-volatile memories (NVMs) have attracted considerable attention as data storage

media because of their fast read/write speed, high data throughput, large capacity, and low power

consumption. They are widely used in mobile, embedded, and mass-storage applications. The

research goal of this dissertation is to model NVM systems in a mathematical manner and to de-

sign constrained codes and signal processing techniques that improve the performance of NVM

systems.

Our main contribution of this research dissertation is the invention of constrained codes

for different NVM systems. For the most widely-used flash memory systems, we manage to use

inter-cell interference (ICI) free codes to mitigate the coupling effect of adjacent cells during

write operations, to use balanced codes to tolerate charge leakage effects during read operations,

and to use write-once memory (WOM) codes to enlarge the lifetime capacity of devices for sev-

xii

eral practical scenarios. On the other hand, we also manage to use time-space constrained codes

to eliminate cross-talk and to reduce heat accumulation for phase-change memories (PCMs),

which is one of the emerging technologies that could potentially replace flash memories as the

building block for the next generation of NVM systems. We derive the capacity (or bounds on

the capacity) for each constraint and provide explicit code constructions with low encoding and

decoding complexities.

Furthermore, the optimization of programming flash memory systems is studied by sig-

nal processing tools. Flash memories use the amount of charge trapped in cells to represent the

data and the cells can have multiple levels . One of the most prominent features of programming

flash memory cells is the asymmetry in programming and erasing, namely, the cell levels can

only be increased during programming and cell erasure must be done at the block level. In order

to achieve high programming speed and precision, we solve optimization problems that either

minimize the programming time or the number of programming errors, subject to the constraint

of unidirectional incrementing of cell levels.

xiii

Chapter 1

Introduction

1.1 Background

Non-volatile memory (NVM) is computer memory that can preserve stored informa-

tion even when not powered. It includes read-only memories (ROMs), (e.g., PROM, EPROM,

EEPROM), non-volatile random-access memories (RAMs), (e.g., flash memories, phase-change

memories), etc. The non-volatile property enables NVMs to be used in a wide range of data

storage applications, such as cellphones, cameras, computers, and so on. Due to their low power

consumption, large read/write throughput, and high density, there is a growing interest in re-

search on advanced NVMs, especially in the most widely-used flash memories and new tech-

nologies including the phase-change memory (PCM). In particular, this dissertation focuses on

the research problems that arise from signal processing and coding algorithms that enhance the

capacities of flash memories and PCMs.

The challenges of implementing NVMs come from the need for improved data reli-

ability. Typically, NVM systems consist of arrays of cells and each cell has multiple states to

represent data. During the writing or programming process, the data intended to be written to the

memories might be distorted due to programming noise, write disturbance, and cell heterogene-

ity; during the reading process, the data read from the NVM systems might also be corrupted

due to read noise, read disturbance, and aging of the NVM cells. All of the mechanisms above

would cause asymmetric, time-variant, and unpredictable errors in NVM systems. Furthermore,

as the NVM cells are arranged in a denser array to allow higher capacity per square inch, the

interference between NVM cells is no longer negligible and more attention needs to be paid to

cross-talk of adjacent cells.

1

2

Coding and signal processing tools play an important role in detecting and eliminating

the errors in NVM systems. The data storage system can be viewed as a communication sys-

tem through the dimension of time, where one wishes to communicate from the present to the

future. Shannon established the theory of information and coding in his celebrated paper [75]

and determined the maximum achievable transmission rate of a communication system. Since

then, a variety of codes have been discovered and implemented in data storage systems. These

codes include error correction codes (ECCs) and constrained codes. ECCs use extra redundancy

to correct the corrupted data in storage devices. Examples of ECCs include Hamming codes,

Reed-Solomon (RS) codes, BCH codes, Turbo codes, low-density parity-check (LDPC) codes,

and recently discovered polar codes and spatially coupled codes. On the other hand, constrained

codes forbid some error-prone patterns from being recorded in the storage system. For example,

run-length limited (RLL) constraints [96] and maximum transition run (MTR) constraints [64]

are used in magnetic recording to avoid inter-symbol interference and to avoid synchronization

errors. Additionally, signal processing techniques provide a powerful tool for data detection and

estimation.

1.2 Constrained codes for non-volatile memories

Constrained codes are capable of mitigating the side effects of write asymmetry and ICI

by not allowing the cell state to change arbitrarily and removing the most error-prone patterns.

Applications of constrained codes date back to tape drives and hard-disk drives (HDDs). For

example, for binary sequences, the (d, k) run-length limited (RLL) constraint [96] requires the

runs of 0’s between successive 1’s to be greater than or equal to d (the d-constraint) and less than

or equal to k (the k-constraint). The d-constraint reduces the effect of inter-symbol interference

and the k-constraint aids in timing control. The capacity, which describes the asymptotic growth

rate of the number of sequences satisfying a constraint, is one of the most important parameters

related to the constraint. The study of the capacity of various constraints originated in 1948

from [75]. Since then, methods for the construction of constrained codes based on enumerative

coding techniques and finite-state graphs have been developed.

NVM cells are arranged as 1-dimensional or 2-dimensional arrays. Typically, the de-

tection/change of cell states (i.e. read/write process) is driven electronically. The increasing

demands for larger capacities require the cells to be grouped into denser arrays, resulting in the

interference between neighboring cells during the writing process. The parasitic capacitance be-

tween adjacent cells in flash memory, as an example, causes inter-cell interference (ICI) such that

3

the level of one cell could increase unexpectedly when high voltage is applied to its neighboring

cells. On the other hand, the intrinsic properties of NVM cells can also lead to read errors, such

as charge leakage of flash memory cells, crystallization for PCM cells, and all types of degrada-

tion of NVM cells. The mechanisms can unpredictably change the cell states with the passing

of time. In this dissertation, we study several constraints and the construction of representative

constrained codes that can reduce read/write errors and extend the lifetime of NVMs.

1.3 Signal processing for non-volatile memories

The read/write process of NVM systems is restricted by intrinsic properties of NVM

cells. In order to achieve a better precision, a higher speed, and a longer lifetime of NVM

systems, the read/write process is carefully controlled. Signal processing techniques provide

both criteria and guidelines in the optimization of the read/write process.

In this dissertation, we consider the write process of flash memories. Flash memory

cells use floating-gate transistors to store data and the data is represented by a cell-state vector.

The q-ary cell-state is usually determined by discretizing the amount of trapped charge (e.g.

electrons) in a cell. The read and write process corresponds to the evaluation of the amount of

electrons in flash memory cells and the injection of electrons to the flash memory cells. The

unit of read/write operations in flash memory systems is a page, which consists of ∼ 103 flash

cells. One of the most prominent features in the writing process of flash memory systems is the

asymmetry in programming and erasing. Programming (i.e., changing cell-states from low to

high) can be accomplished by a single-page operation; however, erasing (i.e., changing cell-state

from high to low) forces the whole block of cells (∼ 106 cells) to be erased. This operation,

called block erasure, not only is time consuming but degrades the flash memory cells as well.

Therefore, electrons are carefully injected when programming to avoid overshooting problems.

In this dissertation, programming strategies that incur the fewest errors and lead to highest write

speed are obtained by solving constrained optimization problems where the constraint function

reflects the limitation of unidirectional incrementing of cell states during programming.

1.4 Dissertation Overview

In this dissertation, we first propose and study some constrained codes that fit into the

models of different NVM systems. Then we study programming strategies for the flash memory

system that acknowledge its unique asymmetry in programming and erasing.

4

In Chapter 2, we study time-space constrained codes for PCMs. In particular, this set

of constrained codes can reduce the cross-talk induced by programming PCM cells and prolong

the lifetime of PCM cells by limiting the heat generated during programming. Capacity analysis

of the set of constraints is presented, followed by specific code constructions.

In Chapter 3, the write-once memory (WOM) code is introduced as an efficient rewriting

code to increase the life-time capacity of flash memories. We study the construction of multi-

level WOM codes based on integer lattices where we require that the data rates on all rewriting

generations are equal. Asymptotically optimal code constructions are given for the case of n = 2

cells. For n > 2 cells, the asymptotically optimal partition for maximizing lifetime capacity of

the n-dimensional integer lattice is presented. It remains open whether there exists a WOM code

that is compatible with this partition.

In Chapter 4, we extend the WOM model such that during each rewriting process, not

only new data is stored, but a subset of old data is required to be recoverable as well. Three

canonical and concrete problems are proposed and the corresponding capacity analysis and code

constructions are presented.

In Chapter 5, we study both the inter-cell interference (ICI) phenomenon in the write

process and the charge leakage effect in the read process of flash memory systems. In the first

part, constrained codes that mitigate the ICI and tolerate the charge leakage are proposed. Based

on different techniques, asymptotic rate analysis for the constrained codes is presented. In the

second part, a WOM model with mitigated ICI is explored. Both capacity analysis and code

constructions are given.

In Chapter 6, we propose a more realistic criterion to evaluate the performance of pro-

gramming techniques for flash memory cells and look for algorithms to optimize the parallel

programming of an array of cells. In the first part, we present a polynomial time-complexity

algorithm to achieve optimal programming in the absence of noise, either with or without ICI

mitigation. In the second part, we study different models for programming noise and derive

optimal programming strategies, with or without feedback information on cell levels after each

round of programming.

In Chapter 7, we consider rank modulation, a data representation scheme that can toler-

ate overshooting in cell programming as well as charge leakage. We study parallel programming

for rank modulation and minimization of programming time during data update. We present

lower bounds on programming time based on both analytical equations and specific parallel

programming algorithms and compare to the single-cell programming strategies.

Chapter 2

Time-space constrained codes for

phase-change memories

2.1 Introduction

In Chapter 1, we briefly discussed that constrained codes can be used to improve the

performance and lifetime of non-volatile memories. In this chapter, we focus on the application

of constrained codes to phase-change memories.

Phase-change memory (PCM) devices are a promising technology for non-volatile mem-

ories. Like a flash memory, a PCM consists of cells that can be in distinct physical states. In the

simplest case, the PCM cell has two possible states, an amorphous state and a crystalline state.

Multiple-bit per cell PCMs can be implemented by using partially crystalline states [10].

While in a flash memory one can decrease a cell level only by erasing the entire block

of about 106 cells that contains it, in a PCM one can independently decrease an individual cell

level – but only to level zero. This operation is called a RESET operation. A SET operation can

then be used to change the cell state to any valid level. Therefore, in order to decrease a cell level

from one non-zero value to a smaller non-zero value, one needs to first RESET the cell to level

zero, and then SET it to the new desired level [10]. Thus, as with flash memory programming,

there is a significant asymmetry between the two operations of increasing and decreasing a cell

level.

As in a flash memory, a PCM cell has a limited lifetime; the cells can tolerate only about

107 − 108 RESET operations before beginning to degrade [26]. Therefore, it is still important

when programming cells to minimize the number of RESET operations. Furthermore, a RESET

5

6

operation can negatively affect the performance of a PCM in other ways. One of them is due to

the phenomenon of thermal crosstalk. When a cell is RESET, the levels of its adjacent cells may

inadvertently be increased due to heat diffusion associated with the operation [10, 68]. Another

problem, called thermal accumulation, arises when a small area is subjected to a large number

of program operations over a short period of time [10, 68]. The resulting accumulation of heat

can significantly limit the minimum write latency of a PCM, since the programming accuracy

is sensitive to temperature. It is therefore desirable to balance the thermal accumulation over

a local area of PCM cells in a fixed period of time. Coding schemes can help overcome the

performance degradation resulting from these physical phenomena. Lastras et al. [56] studied

the capacity of a Write-Efficient Memory (WEM) [2] for a cost function that is associated with

the write model of phase-change memories described above.

Jiang et al. [44] have proposed codes to mitigate thermal cross-talk and heat accumula-

tion effects in PCM. Under their thermal cross-talk model, when a cell is RESET, the levels of

its immediately adjacent cells may also be increased. Hence, if these neighboring cells exceed

their target level, they also will have to be RESET, and this effect can then propagate to many

more cells. In [44], they considered a special case of this and proposed the use of constrained

codes to limit the propagation effect. Capacity calculations for these codes were also presented.

The other problem addressed in [44] is that of heat accumulation. In this model, the

rewrite cost is defined to be the number of programmed cells, i.e., the Hamming distance between
the current and next cell-state vectors. A code is said to be (α,β, p)-constrained if for any α

consecutive rewrites and for any segment of β contiguous cells, the total rewrite cost of the β

cells over those α rewrites is at most p. A specific code construction was given for the (α >

1,β = 1, p = 1)-constraint as well as an upper bound on the achievable rate of codes for this

constraint. An upper bound on the achievable rate was also given for (α = 1,β > 1, p = 1)-

constrained codes.

The work in [44] dealt with only a few instances of the parameters α,β, and p. In this

chapter, we extend the code constructions and achievable-rate bounds to a larger portion of the

parameter space. In Section 2.2, we formally define the constrained-coding problem for PCM.

In Section 2.3, using connections to two-dimensional constrained coding, we present a scheme

to calculate an upper bound on the achievable rate for all values of α,β, and p. If the value of

α or β is 1 then the two-dimensional constraint becomes a one-dimensional constraint and we

calculate the upper bound on the achievable rate for all values of p. This result coincides with

the result in [44] for (α > 1,β = 1, p = 1) and (α = 1,β > 1, p = 1). We also derive upper

bounds for some cases with parameters satisfying (α > 1,β > 1, p = 1) using known results

7

on the upper bound of the rate of two-dimensional constrained codes. In Section 2.4, several

code constructions are given. First, we describe an elementary construction for arbitrary values

ofα,β, and p. We then show an improved construction for (α = 1,β > 1, p > 1)-constrained

codes and extend the construction in [44] of (α > 1,β = 1, p = 1)-constrained codes to

arbitrary p. Finally, we show how to extend the improved constructions to arbitrary values of

α,β, and p.

2.2 Preliminaries

In this section, we give a formal definition of the constrained-coding problem. The number of

cells is denoted by n and the memory cells are binary. The cell-state vectors are the binary

vectors from {0, 1}n . If a cell-state vector u = (u1, . . . , un) ∈ {0, 1}n is rewritten to another

cell-state vector v = (v1, . . . , vn) ∈ {0, 1}n , then the rewrite cost is defined to be the Hamming

distance between u and v, that is

dH(u, v) = |{i : ui 6= vi, 1 6 i 6 n}|.

The Hamming weight of a vector u is wt(u) = dH(u, 0). The complement of a vector u is u =

(u1, . . . , un). For a vector x = (x1, . . . , xn), we denote by x
q
p the subvector (xp, xp+1, . . . , xq)

and for a sequence of vectors xi = (xi,1, . . . , xi,n), i ∈ N, we denote by x
q
i,p the subvector

(xi,p, xi,p+1, . . . , xi,q), for 1 6 p 6 q 6 n. The set {i, i + 1, . . . , j} is denoted by [i : j] for

i 6 j, and in particular, {1, 2, . . . , ⌊2nR⌋} is denoted by [1 : 2nR] for an integer n and real R.

We will specify a code by an explicit construction of its encoding and decoding maps.

On the i-th write, for i > 1, the encoder

Ei : [1 : 2nRi]× {0, 1}n 7→ {0, 1}n

maps the new information symbol and the current cell-state vector to the next cell-state vector.

The decoder

Di : {0, 1}n 7→ [1 : 2nRi]

maps the cell-state vector to the represented information symbol. We denote the individual rate
on the i-th write of a code by Ri. Note that the alphabet size of the messages on each write does

not have to be the same. The rate R of the a code is defined as

R = lim inf
m→∞

∑
m
i=1 Ri

m
. (2.1)

8

Remark 2.2.1. The limit R exists: since the individual rates Ri, i ∈ N, are bounded from above

by 1, so are the average rates
∑

m
i=1 Ri

m , for all m > 1.

Definition 2.2.1. Let α,β, p be positive integers. A code C satisfies the (α,β, p) time-space

constraint (or simply (α,β, p)-constraint) if for anyα consecutive rewrites and for any segment

of β contiguous positions, the total rewrite cost of those β positions over those α rewrites is at

most p. That is, if vi = (vi,1, . . . , vi,n), for i > 1, is the cell-state vector on the i-th write, then,

for all i > 1 and 1 6 j 6 n −β+ 1,
∣∣∣{(k, ℓ) : vi+k, j+ℓ 6= vi+k+1, j+ℓ, 0 6 k < α, 0 6 ℓ < β}

∣∣∣ 6 p,

or equivalently,
α−1

∑
k=0

dH(v
j+β−1
i+k, j , v

j+β−1
i+k+1, j) 6 p.

We call such a code C an (α,β, p)-constrained code.

We assume that the number of writes is large and in the constructions we present there

will be a periodic sequence of writes. Thus, it will be possible to change any (α,β, p)-constrained

code C with varying individual rates to an (α,β, p)-constrained code C ′ with fixed individual

rates such that the rates of the two constrained codes are the same. This can be achieved by using

multiple copies of the code C and in each copy of C to start writing from a different write within

the period of writes. Therefore, we assume that there is no distinction between the two cases and

the rate is as defined in Equation (2.1), which is the average number of bits written per cell per

write.

The encoding and decoding maps can be either the same on all writes or can vary among

the writes. In the latter case, we will need more cells in order to record the index of the write

number. However, arguing as in [95], it is possible to show that these extra cells do not reduce

the asymptotic rate and therefore we assume here that the encoder and decoder know the write

number.

A rate R is called an (α,β, p)-achievable rate if there exists a sequence of (α,β, p)-

constrained codes of increasing length n such that the rate of each code is R. The (α,β, p)-
capacity of the (α,β, p)-constraint is denoted by C(α,β, p) and is defined to be

C(α,β, p) = sup R,

where R is an (α,β, p)-achievable rate.

Our goal in this chapter is to give lower and upper bounds on the (α,β, p)-capacity,

C(α,β, p), for all values ofα,β, and p. Clearly, if p > αβ then C(α,β, p) = 1. So we assume

9

throughout the chapter that p < αβ. Lower bounds will be inferred from specific constrained

code constructions while the upper bounds will be derived analytically using tools drawn from

the theory of one- and two-dimensional constrained codes.

2.3 Upper Bound on the Capacity

In this section, we will present upper bounds on the (α,β, p)-capacity obtained using tech-

niques from the analysis of two-dimensional constrained codes. There are a number of two-

dimensional constraints that have been extensively studied, e.g., 2-dimensional (d, k)-runlength-

limited (RLL) constraints [50,82], the no isolated bits (n.i.b) constraint [23,34], and the family of

checkerboard constraints [65, 90]. Given a two-dimensional constraint S, its capacity is defined

to be

C2D(S) = lim
m,n→∞

log2 cS(m, n)

mn
,

where cS(m, n) is the number of m × n arrays that satisfy the constraint S. The constraint of

interest for us in this work is the one where in each rectangle of size a × b, the number of ones

is at most p.

Definition 2.3.1. Let a, b, p be positive integers. An (m × n)-array A = (ai, j)16i6m,16 j6n ∈
{0, 1}m×n is called an (a, b, p)-array if in each sub-array of A of size a × b, the number of 1’s

is at most p. That is, for all 1 6 i 6 m − a + 1, 1 6 j 6 n − b + 1,

∣∣{(k, ℓ) : 0 6 k 6 a − 1, 0 6 ℓ 6 b − 1, ai+k, j+ℓ = 1}
∣∣ 6 p.

The capacity of the constraint is denoted by C2D(a, b, p).

Note that when p = 1, the (a, a, 1)-constraint coincides with the square checkerboard

constraint of order a − 1 [90].

The connection between the capacity of the two-dimensional constraint C2D(a, b, p) and

the (α,β, p)-capacity is the following.

Theorem 2.3.2. For allα,β, p, C(α,β, p) 6 C2D(α,β, p).

Proof. Let C be an (α,β, p)-constrained code of length n. For any sequence of m

writes, let us denote by vi, for i > 0, the cell-state vector on the i-th write, where v0 is the

all-zero vector. The (m × n)-array A = (ai, j) is defined to be

ai, j = vi, j + vi−1, j,

10

where the addition is a modulo-2 sum. That is, ai, j = 1 if and only if the j-th cell is changed

on the i-th write. Since C is an (α,β, p)-constrained code, for all 1 6 i 6 m −α and 1 6 j 6

n −β+ 1,

∣∣{(k, ℓ) : vi+k, j+ℓ 6= vi+k+1, j+ℓ, 0 6 k < α, 0 6 ℓ < β}
∣∣ 6 p,

and therefore

∣∣{(k, ℓ) : 0 6 k 6 α − 1, 0 6 ℓ 6 β− 1, ai+k, j+ℓ = 1}
∣∣ 6 p.

Thus, A is an (α,β, p)-array of size m × n.

Every write sequence of the code C corresponds to an (α,β, p)-array and thus the num-

ber of write sequences of length m is at most the number of (α,β, p)-arrays, which is upper

bounded by 2mnC2D(α,β,p), for m, n large enough. Hence, the number of distinct write sequences

is at most 2mnC2D(α,β,p). However, if the individual rate on the i-th write is Ri, then the total

number of distinct write sequences is ∏
m
i=1 2nRi . We conclude that

m

∏
i=1

2nRi 6 2mnC2D(α,β,p)

and, therefore,
∑

m
i=1 Ri

m
6 C2D(α,β, p).

If m goes to infinity, the rate of any (α,β, p)-constrained code R satisfies

R 6 C2D(α,β, p),

i.e., C(α,β, p) 6 C2D(α,β, p).

Theorem 2.3.2 provides a scheme to calculate an upper bound on the (α,β, p)-capacity

from an upper bound on the capacity of a two-dimensional constraint. Unfortunately, good upper

bounds are known only for some special cases of the values of α,β, p, and in particular, when

p = 1. More generally, finding the capacity of a two-dimensional constrained system, such

as those mentioned above, is a difficult open problem that has attracted considerable attention

over the past 20 years. However, accurate lower and upper bounds on the capacity have been

determined for some constraints, as discussed in [65,84,90]. For instance, upper bounds for some

square checkerboard constraints are given in [90], from which we can conclude that C(2, 2, 1) 6

0.43431 and C(3, 3, 1) 6 0.25681.

11

In the rest of this section we discuss the cases where α = 1 or β = 1. In these

cases, the two-dimensional (a, b, p) = (α,β, p)-constraint of Definition 2.3.1 reduces to a one-

dimensional constraint on each row or column, respectively. We consider first the case where

a = 1, where the corresponding 1-dimensional constraint is described as follows.

Definition 2.3.3. Let b, p be two positive integers. A binary vector u satisfies the (b, p)-

window-weight-limited (WWL) constraint if for any b consecutive positions there are at most

p 1’s. We denote the capacity of the constraint by CWWL(b, p).

According to Theorem 2.3.2, CWWL(β, p) is an upper bound on C(1,β, p), the capacity

of the (1,β, p) time-space constraint. Therefore, we are interested in determining the capacity of

the general (b, p)-WWL constraint. Before addressing this question, we consider some special

cases.

We recall the definition of the (d, k)-runlength-limited (RLL) constraint, which requires

that the number of 0’s between adjacent 1’s is at least d and at most k, and we denote the

corresponding capacity by CRLL(d, k). (See, for example, [96], [41].) It is easy to see that the

(b, 1)-WWL constraint is simply the (b − 1, ∞)-RLL constraint. Therefore, CRLL(β− 1, ∞)

is an upper bound on C(1,β, 1), a result that was already shown by Jiang et al. [44].

One can also see that the (b, b − 1)-WWL constraint is the maximum-transition-run

MTR(b − 1) constraint, which limits the maximum length of a run of 1’s to no more than

b − 1 [64]. Interchanging the symbols 0 and 1 establishes a one-to-one correspondence be-

tween the MTR(b − 1) constraint and the (0, b − 1)-RLL constraint. Thus, by Theorem 2.3.2,

CRLL(0,β− 1) is an upper bound on C(1,β,β− 1).

The capacity of (d, k)-RLL constraints is well known and can be elegantly described as

the logarithm of the largest real root of a polynomial that depends explicitly on the parameters d

and k. (We again refer the reader to [96], [41].) However, we have not yet found a comparable

formulation of the capacity of the general (b, p)-WWL constraint. Therefore, to compute these

capacities, we use the general approach that is described in [61].

Definition 2.3.4. A merge of two vectors u and v of the same length n is a function:

fn : {0, 1}n × {0, 1}n 7→ {0, 1}n+1 ∪ {F}.

If the last n− 1 bits of u are the same as the first n− 1 bits of v, the vector fn(u, v) is the vector

u concatenated with the last bit of v, otherwise fn(u, v) = F.

12

Definition 2.3.5. Let b, p be two positive integers. Let Sb,p denote the set of all vectors of length

b − 1 having at most p 1’s. That is, Sb,p = {s ∈ {0, 1}b−1 : wt(s) 6 p}. The size of the set
Sb,p is M = ∑

p
i=0 (

b−1
i). Let s1, s2, . . . , sM be an ordering of the vectors in Sb,p. The transition

matrix for the (b, p)-WWL constraint, Ab,p = (ai, j) ∈ {0, 1}M×M, is defined as follows:

ai, j =

1 if fb−1(si, s j) 6= F and wt(fb−1(si, s j)) 6 p,

0 otherwise.

Example 2.3.1. The following illustrates the construction of the transition matrix A3,2 associ-

ated with the (3, 2)-WWL constraint. Note that

S3,2 = {s1, s2, s3, s4} = {(0, 0), (0, 1), (1, 0), (1, 1)},

The merge of si and s j for i, j = 1, 2, 3, 4 determines the matrix A3,2. For example, f2(s1, s1) =

(0, 0, 0), a1,1 = 1; f2(s2, s1) = F, a2,1 = 0; f2(s1, s2) = (0, 0, 1), a1,2 = 1 6= a2,1. This

shows that the matrix is not necessarily symmetric. Finally, f2(s3, s3) = (1, 1, 1), and a3,3 = 0

since (1, 1, 1) does not satisfy the (3,2)-WWL constraint.

A3,2 =

1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 0

.

Definition 2.3.6. A matrix A ∈ {0, 1}M×M is irreducible if for all 1 6 i, j 6 M there exists

some n > 0 such that (An)i, j > 0. Note that n can be a function of i and j.

Lemma 2.3.7. For positive integers b, p, the transition matrix Ab,p is irreducible.

Proof. From the construction of Ab,p, it is clear that (An
b,p)i, j is the number of vectors of length

n + b − 1 starting with si, ending in s j and satisfying the (b, p)-WWL constraint, where si and

s j are as described in Definition 2.3.5. Therefore, Ab,p is irreducible if for every pair (i, j),

there exists a vector of length n > 1 that starts with si and ends in s j. Such a vector is obtained

by inserting a sufficient number of 0’s between si and s j. This proves the irreducibility of Ab,p.

Referring to Theorem 3.9 in [61], we have the following characterization of CWWL(b, p).

Theorem 2.3.8. The capacity of the (b, p)-WWL constraint is given by

CWWL(b, p) = log2(λmax),

13

where λmax is the largest real eigenvalue of Ab,p.

Proof. See Theorem 3.9 in [61].

Figure 2.1 shows CWWL(β, p), the upper bound on C(1,β, p), for β 6 25 and p = 1, 2, 3, 4.

As noted above, the lowest curve corresponds to the capacity of the (β− 1, ∞)-RLL constraint.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

 β (or α)

C
W

W
L
(β

,
p
)

(b
it
s
/c

e
ll)

p=1
p=2
p=3
p=4

Figure 2.1: Upper bound on C(1,β, p)

Remark 2.3.1. The construction of the transition matrix Ab,p translates into a graph presentation

of the (b, p)-WWL constraint in the form of a labeled, directed graph. The states in the graph

correspond to the vectors in the set Sb,p, and the directed edges correspond to the non-zero

entries in the matrix Ab,p. Specifically, if the entry ai, j is non-zero, then there is a directed edge

from state si to state s j, with label s j,b−1, the last bit in s j. Sequences satisfying the (b, p)-WWL

constraint are generated by reading off the labels along directed paths in the graph. The graph

produced by this construction can be identified with a subgraph of the de Bruijn graph on 2b−1

states. Figure 2.2 illustrates the graph that generates the (7, 2)-WWL constraint.

Remark 2.3.2. According to Theorem 2.3.2, the capacity of the (α, p)-WWL constraint,

CWWL(α, p), is an upper bound on the the capacity of the (α, 1, p) time-space constraint,

14

#

$###$#

#

#

$

#####$ ####$# ###$## ##$### $#####

$####$#$###$

#

#
#

#
#$####

$

$ $

####$$ ###$#$ ##$##$

#

$ $ $

###$$#

##$$##

##$#$#

#$#$##

#$##$#

$##$##

#

#

#

#

#

#

#

#

##$$##

#$$###

#$#$##

$#$###

$##$##

#

#

##

$$####

#

Figure 2.2: Labeled graph that generates the (7, 2)-WWL constraint

C(α, 1, p). Jiang et al. [44] proposed an upper bound on the rate of an (α, 1, 1)-constrained

code with fixed block length n and multiple cell levels. In our numerical experiments, their

upper bound for binary cells appears to converge to our upper bound as n → ∞.

2.4 Lower Bound on the Capacity

In this section, we give lower bounds on the capacity of the (α,β, p)-constraint based upon

specific code constructions. We first present an elementary construction that achieves rate
p
αβ
.

We then show how to improve the bound for the (1,β, p)- and (α, 1, p)-constraints. In this

section we assume that for all positive integers x and y, the value of x (mod y) belongs to the

group {1, . . . , y} via the correspondence {0, 1, . . . , y − 1} → {y, 1, . . . , y − 1}.
The idea of Construction 2.4.1 is to partition the set of n cells into subblocks of size β.

Suppose p = β(q − 1) + r, where 1 6 q 6 α and 1 6 r 6 β. The encoding process has a

period ofα writes. On the first q − 1 writes, all cells in each subblock are programmed with no

constraint imposed. On the q-th write, the first r cells in each subblock are programmed with no

constraint and the rest of the cells are not programmed (staying at level 0). From the (q + 1)-st

15

write to theα-th write, no cells are programmed. The details of the construction are as follows.

Construction 2.4.1 Letα,β, p be positive integers. We construct an (α,β, p)-constrained code

C of length n as follows. To simplify the construction, we assume that β|n. Let q =
⌈

p
β

⌉
, r = p

(mod β), where 1 6 r 6 β. For all i > 1, on the i-th write, the encoder uses the following

rules:

• If 1 6 i (mod α) < q, n bits are written to the n cells.

• If i (mod α) = q, rn/β bits are written in all cells c j such that 1 6 j (mod β) 6 r.

• If i (mod α) > q, no information is written to the cells.

The decoder is implemented in a very similar way.

Example 2.4.1. Figure 2.3 shows a typical writing sequence of an (α = 3,β = 3, p = 2)-

constrained code of length 15 based on Construction 2.4.1. The i-th row corresponds to the

cell-state vector before the i-th write. The cells in the box in the i-th row are the only cells that

can be programmed on the i-th write. It can be seen that the rate of the code is the ratio between

the number of boxed cells and the total number of cells, which is 2
9 .

0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 01: 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0

2: 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0

3: 1 1 0 0 1 0 1 0 0 0 0 0 0 1 03: 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0

4: 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0

5: 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0

6 1 0 0 1 0 0 1 1 0 0 1 0 1 1 06: 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0

7: 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0

8: 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0

Figure 2.3: A sequence of writes of a (3, 3, 2)-constrained code

Theorem 2.4.1. The code C constructed in Construction 2.4.1 is an (α,β, p)-constrained code

and its rate is R = p
αβ
.

16

Proof. We show that for all i > 1 and 1 6 j 6 n − β + 1, the rewrite cost of the cells

c j, c j+1, . . . , c j+β−1 over the writes i, i + 1, . . . , i +α − 1, is at most p. For all 0 6 k 6 α − 1

such that 1 6 (i + k) (mod α) < q, all of the β cells can be written and since there are

q − 1 such values the rewrite cost on these writes is at most (q − 1)β. For k, such that (i + k)

(mod α) = q, at most r out of these β cells are programmed and therefore the rewrite cost is at

most r. For all other values of k no other cells are programmed. Therefore, the total rewrite cost

is at most

(q − 1) ·β+ r =

(⌈
p

β

⌉
− 1

)
β+ p (mod β) = p.

The total number of bits written on theseα writes is pn/β and hence the rate of the code

is

R =
pn/β

αn
=

p

αβ
.

2.4.1 Space Constraint Improvement

In this subsection, we improve upon the lower bound on C(1,β, p) obtained from the

elementary construction. Let Sn(b, p) be the set of all (b, p)-WWL vectors of length n. We refer

to a subset of Sn(b, p) as a (b, p)-WWL code CWWL of length n . If the size of the code CWWL

is M, then it is specified by an encoding map EWWL : {1, . . . , M} 7→ CWWL and a decoding map

DWWL : CWWL 7→ {1, . . . , M}, such that for all m ∈ {1, . . . , M}, DWWL(EWWL(m)) = m.

The problem of finding (b, p)-WWL codes that approach or achieve the capacity

CWWL(b, p) is of independent interest and we address it next. Cover [18] provided an enu-

merative scheme that can be used to calculate the lexicographic order of any sequence in the

constrained system. For the special case of p = 1, corresponding to RLL block codes, Datta and

McLaughlin [19, 20] proposed enumerative methods for binary (d, k)-RLL codes based on per-

mutation codes. For (b, p)-WWL codes, we find enumerative encoding and decoding strategies

with linear complexity enumerating all (b, p)-WWL vectors. We present the coding schemes

and the complexity analysis in Appendix 6.8. In the sequel, we will simply assume that there

exist such codes with rate arbitrarily close to the capacity as the block length goes to infinity

for all positive integers b and p. The next construction uses (β, p)-WWL codes to construct

(1,β, p)-constrained codes.

17

Construction 2.4.2 Let β, p be positive integers such that p 6 β. Let CWWL be a (β, p)-

WWL code of length n′ and size M. Let EWWL and DWWL be its encoding and decoding maps.

A (1,β, p)-constrained code C1,β,p of length n = 2n′ + β − 1 and its encoding map E and
decoding map D are constructed as follows.

1. The encoding map E : {1, . . . , M} × {0, 1}n → {0, 1}n is defined for all (m, u) ∈
{1, . . . , M} × {0, 1}n to be E((m, u)) = v, where

(a) vn′
1 = un′

1 + EWWL(m),

(b) vn′+β−1
n′+1 = 0,

(c) vn
n′+β = un′

1 ,

2. The decoding map D : {0, 1}n → {1, . . . , M} is defined for all u ∈ {0, 1}n to be

D(u) = DWWL(v
n′
1 + vn

n′+β).

Example 2.4.2. Here is an example of an (α = 1,β = 3, p = 2) code with n′ = 4 for the first

4 writes. The message set has size Mn′ = 13 (See the definition of Mn′ in Definition 2.6.1).

The length of the memory is 2n′ + β − 1 = 10. Suppose on the second write, the message

is m = 7. Since lexicographically the seventh element in S4(3, 2) is (0110), the encoder will

copy the previous left block (1011) to the right block and flip the second and the third bits in the

left block (1011) → (1101).

0 0 0 0 0 0 0 0 0 0

1st write, m = 11 : 1 0 1 1 0 0 0 0 0 0

2nd write, m = 7 : 1 1 0 1 0 0 1 0 1 1

3rd write, m = 13 : 0 0 0 0 0 0 1 1 0 1

4th write, m = 4 : 0 0 1 1 0 0 0 0 0 0

Theorem 2.4.2. The code C1,β,p is a (1,β, p)-constrained code. If the rate of the code CWWL

is RWWL, then the rate of the code C1,β,p is
n′

2n′+β−1 · RWWL. Both the encoder and decoder of

C1,β,p have complexity O(n).

Proof. Let u be the cell-state vector in Construction 2.4.2.

1. For un′
1 , encoder step a) guarantees that the positions of rewritten cells satisfy (β, p)-

WWL constraint. So there are at most p reprogrammed cells in any β consecutive cells in

un′
1 .

18

2. For un
n′+β, three consecutive writes should be examined. Let w, v, u be the cell-state

vectors before the i-th, (i + 1)-st, (i + 2)-nd writes, i > 1. Encoder step a) means that

vn′
1 = wn′

1 + EWWL(mi), where mi ∈ {1, . . . , M} is the message to encode on the i-th

write. Since encoder step c) guarantees that vn
n′+β = wn′

1 and un
n′+β = vn′

1 , we have

un
n′+β = vn

n′+β + EWWL(mi). This proves that un
n′+β satisfies the (1,β, p) constraint.

3. For un′+β−1
n′+1 , the cell levels are always set to be 0, which ensures that no violation of the

constraint happens between un′
1 and un

n′+β
.

On each write, one of Mmessages is encoded as a vector of length n. Hence, the rate is
log2 M

n =(
log2 M

n′
n′

2n′+β−1

)
= n′

2n′+β−1 · RWWL.

The encoder E and decoder D come directly from EWWL and DWWL, which have com-

plexity O(n) both in time and in space. Therefore, E and D both have linear complexity in time
and in space.

Corollary 2.4.3. Let β, p be two positive integers such that p 6 β, then

C(1,β, p) > max

{
CWWL(β, p)

2
,

p

β

}
.

Corollary 2.4.3 provides a lower bound that is achieved by practical coding schemes. In

fact, following similar proofs in [4,15,16], we can prove the following theorem using probabilis-

tic combinatorial tools [3].

Theorem 2.4.4. Let β, p be positive integers such that β > p. Then

C(1,β, p) = CWWL(β, p).

Proof. See Appendix 6.9.

2.4.2 Time Constraint Improvement

Jiang et al. constructed in [44] an (α, 1, 1)-constrained code. Let us explain their con-

struction as it serves as the basis for our construction. Their construction uses Write-Once Mem-

ory (WOM) codes [71]. A WOM is a storage device consisting of cells that can be used to store

any of q values. In the binary case, each cell can be irreversibly changed from state 0 to state 1.

We denote by [n, t; 2nR1 , . . . , 2nRt] a t-write WOM code CW such that the number of messages

19

that can be written to the memory on its i-th write is 2nRi , and the sum-rate of the WOM code is

defined to be Rsum = ∑
t
i=1 Ri. The sum-capacity Csum is defined as the supremum of achievable

sum-rates. The code is specified by t pairs of encoding and decoding maps, (Ei,Di), where

i ∈ {1, 2, . . . , t}. Assuming that the cell-state vector before the i-th write is ci, the encoder is a

map

Ei : [1 : 2nRi]× {0, 1}n → {0, 1}n ,

such that for all (m, ci−1) ∈ [1 : 2nRi]× {0, 1}n ,

ci−1 % ci = Ei(m, ci−1),

where the relation “%” is defined in Definition 2.6.1. The decoder

Di : {0, 1}n → [1 : 2nRi],

satisfies

Di(Ei(m, ci−1)) = m.

for all m ∈ [1 : 2nRi],

It has been shown in [36] that the sum-capacity of a t-write WOM is Csum = log2(t +

1).

Example 2.4.3. Table 2.1 [71] shows the encoding and decoding maps of a 2-write WOM code

using 3 cells, where on each write, 2 bits are written. Suppose all cells are initiated as 0. If the

written messages are 1 and 3 on the first and the second write, respectively, then the cell-state

vector is changed as (000) → (001) → (011); if on both write, message 2 is written, then the

cell-state vector is changed as (000) → (010) → (010).

Table 2.1: A 3-cell 2-write WOM code

message 1st write 2nd write

0 000 111

1 001 110

2 010 101

3 100 011

The constructed (α, 1, 1)-constrained code has a period of 2(t +α) writes. On the first

t writes of each period, the encoder simply writes the information using the encoding maps of

the t-write WOM code. Then, on the (t + 1)-st write, no information is written but all the cells

are increased to level one. On the following α − 1 writes no information is written and the cells

20

do not change their levels; that completes half of the period. On the next t writes the same WOM

code is again used; however since now all the cells are in level one, the complement of the cell-

state vector is written to the memory on each write. On the next write no information is written

and the cells are reduced to level zero. In the lastα − 1 writes no information is written and the

cells do not change their values. We present this construction now in detail.

Construction 2.4.3 Let α be a positive integer and let CW be an [n, t; 2nR1 , . . . , 2nRt] t-write

WOM code. Let Ei(m, vi−1) be the i-th encoder of CW , for m ∈ [1 : 2nRi], i ∈ [1 : t]. An

(α, 1, 1)-constrained code Cα,1,1 is constructed as follows. For all i > 1, let i′ = i (mod 2(t +

α)), where 1 6 i′ 6 2(t +α). The cell-state vector after the i-th write is denoted by ci. On the

i-th write, the encoder uses the following rules:

• If i′ ∈ [1 : t], write Mi′ ∈ [1 : 2nRi′] such that

ci = Ei′(Mi′ , ci−1).

• If i′ = t + 1, no information is written and the cell-state vector is changed to the all-one

vector 1, i.e., ci = 1.

• If i′ ∈ [t + 2 : t +α], no information is written and the cell-state vector is not changed.

• If i′ ∈ [t +α + 1 : 2t +α], write Mi′−t−α ∈ [1 : 2nRi′−t−α] such that

ci = Ei′−t−α(Mi′−t−α, ci−1).

• If i′ = 2t +α + 1, no information is written and the cell-state vector is changed to the

all-zero vector 0, i.e., ci = 0.

• If i′ ∈ [2t +α + 1 : 2(t +α)], no information is written and the cell-state vector is not

changed.

Remark 2.4.1. This construction is presented differently in [44]. This results from the constraint

of having the same rate on each write which we can bypass in this work. Consequently, in our

case we can have varying rates and thus the code Cα,1,p can achieve a higher rate.

Theorem 2.4.5. The code Cα,1,1 is an (α, 1, 1)-constrained code. If the t-write WOM code CW

is sum-rate optimal, then the rate of Cα,1,1 is
log2(t+1)

t+α
.

21

Proof. In every period of 2(t +α) writes, every cell is programmed at most twice; once in the

first t + 1 writes and once in the first t + 1 writes of the second part of the write-period. After

every sequence t + 1 writes, the cell is not programmed for α − 1 writes. Therefore the rewrite

cost of every cell amongα consecutive rewrites is at most 1.

If the rate of the WOM code CW is RW then 2nRW bits are written in every period of

2(t +α) writes. Hence, the rate of Cα,1,1 is
2nRW

2(t+α)n
= RW

t+α
. If CW is sum-rate optimal, the rate

of Cα,1,1 is therefore
log2(t+1)

t+α
.

Table 2.2 shows the highest rates of (α, 1, 1)-constrained codes based on Construction

2.4.3 forα = 4, . . . , 8.

Table 2.2: Highest rates of (α, 1, 1)-constrained codes

α 4 5 6 7 8

1/α 0.25 0.2 0.167 0.143 0.125

rate of Cα,1,1 0.290 0.256 0.235 0.216 0.201

Next, we would like to extend Construction 2.4.3 in order to construct (α, 1, p)-constrained

codes for all p > 2. For simplicity of the construction, we will assume that p is an even integer;

and the required modification for odd values of p will be immediately clear. We choose t > 1

such that α > (p − 1)t and the period of the code is α + t. On the first t writes of each pe-

riod, the encoder uses the encoding map of the t-write WOM code. In the following t writes,

it uses the bit-wise complement of a WOM code as in Construction 2.4.3. This procedure is

repeated for
p
2 times; this completes the first tp writes in the period. On the (tp + 1)-st write,

no new information is written and the cell-state vector is changed to the all-zero vector. During

the (tp + 2)-nd to (α + t)-th writes, no information is written and the cell-state vector is not

changed. That completes one period ofα + t writes.

Remark 2.4.2. If p is odd, then on the (tp + 1)-st write, no new information is written and the

cell-state vector is changed to the all-one vector. It is not changed until the (α + t)-th write to

complete a period. Now the cell-state vector is an all-one vector. For the next period of (α + t)

writes, the encoder uses the bit-wise complement of the first period and the cell-state vector

returns to all-zero state afterwards.

Construction 2.4.4 Let α, p, t be positive integers such that α > (p − 1)t and p is even. Let

CW be an [n, t; 2nR1 , . . . , 2nRt] t-write WOM code. For i ∈ [1 : t], let Ei(m, vi−1) be its

22

encoding map on the i-th write, where m ∈ [1 : 2nRi]. An (α, 1, p)-constrained code Cα,1,p

is constructed as follows. For all i > 1, let i′ = i (mod α + t), i′′ = i′ (mod 2t) where

1 6 i′ 6 (α + t), 1 6 i′′ 6 2t. The cell-state vector after the i-th write is denoted by ci. On the

i-th write, the encoder uses the following rules:

• If i′ ∈ [1 : pt] and i′′ ∈ [1 : t], write Mi′′ ∈ [1 : 2nRi′′] such that

ci = Ei′′(Mi′′ , ci−1).

• If i′ ∈ [1 : pt] and i′′ ∈ [t + 1 : 2t], write Mi′′−t ∈ [1 : 2nRi′′−t] such that

ci = Ei′′−t(Mi′′−t, ci−1).

• If i′ = pt + 1, no information is written and the cell-state vector is changed to 0, i.e.,

ci = 0.

• If i′ ∈ [pt + 2 : α + t], no information is written and the cell-state vector is not changed.

Example 2.4.4. Suppose α = 3, p = 2 and t = 2 in Construction 2.4.4 and CW is the WOM

code in Example 2.4.3. The period of Construction 2.4.4 is α + t = 5. Suppose all cells are

initiated as 0 and the messages to write is (1, 3, 2, 1) on the first 4 writes, and no information is

written on the fifth write, then the cell-state vector is changed as (000)
1→ (001)

2→ (011)
3→

(101)
4→ (001)

5→ (000).

Theorem 2.4.6. The code Cα,1,p is an (α, 1, p)-constrained code. If the t-write WOM code CW

is sum-rate optimal, then the rate of Cα,1,p is
p log2(t+1)

α+t .

Proof. This is similar to the proof of Theorem 2.4.5, so we present here only a sketch of the

proof. In every period of (α + t) writes, each cell is rewritten at most p times. In particular,

the first rewrite happens before the (t + 1)-st write. After that, the cell is rewritten at most

p − 1 times until the (tp + 1)-st write and then not programmed for α + t − (tp + 1) writes.

Therefore, each cell is rewritten at most p times onα+ t − (tp + 1) + (tp + 1)− t = α writes.

This proves the validity of the code.

If the rate of the WOM code CW is RW then pnRW bits are written during each period

ofα+ t writes since the WOM code is used p times. Hence, the rate of Cα,1,p is
2pnRW

2(α+t)n = pRW

α+t .

If that CW is sum-rate optimal, the rate of Cα,1,p is
p log2(t+1)

α+t .

23

Remark 2.4.3. In Construction 2.4.4 we required that α > (p − 1)t and, in particular, t 6⌊
α

p−1

⌋
. If t >

⌊
α

p−1

⌋
, we can simply use Construction 2.4.4 while taking α = (p − 1)t, i.e.,

the period of writes is now pt and and we construct a ((p − 1)t, 1, p)-constrained code, which

is also an (α, 1, p)-constrained code. The rate of the code is RW/t, where RW is the rate of the

WOM code CW .

The next corollary provides lower bounds on C(α, 1, p).

Corollary 2.4.7. Letα, p be positive integer such that p 6 α. Then,

C(α, 1, p) > max
t,t∗∈Z+ ,

{
p log2(t + 1)

α + t
,

log2(t
∗ + 1)

t∗
,

p

α

}
,

where

1 6 t 6

⌊
α

p − 1

⌋
, t∗ =

⌈
α

p − 1

⌉
.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

α

R
 (

b
it
s
/c

e
ll)

p=1

p=2

p=3

p=4

p=1, [16]

p/α

Figure 2.4: Lower bound on C(α, 1, p)

Figure 2.4 shows the rates of (α,β = 1, p) constrained codes obtained by selecting the

best t for each pair of (α, p). Note that the curve for p = 1 is obtained by implementing the

ideas in [44] and there is a slight improvement over the 5 points which is the rates listed in [44]

for α = 4, . . . , 8, the reason to which is discussed in Remark 2.4.1. In comparison to the codes

24

in Construction 2.4.1 whose rates are shown by the dashed lines, our construction approximately

doubles the rates. Our lower bounds achieve approximately 78% of the corresponding upper

bounds on C(α, 1, p).

2.4.3 Time-Space Constraint Improvement

In this section, we are interested in combining the improvements in time and in space to

provide lower bounds on the capacity of (α,β, p)-constraints.

Theorem 2.4.8. For allα,β, p positive integers,

C(α,β, p) > max

{
C(α, 1, p)

β
,

C(1,β, p)

α

}
.

Proof. An (α,β, p)-constrained code can be constructed in two ways.

1. Let C be a (1,β, p)-constrained code of rate R and length n. We construct a new code

C ′ with the same number of cells. New information is written to the memory on all i-th

writes, where i ≡ 1 (mod α), simply by using the
⌈

i
α

⌉
-th write of the code C. Then, the

code C ′ is an (α,β, p)-constrained code and its rate is R/α. Therefore, we conclude that

C(α,β, p) > C(1,β,p)
α

.

2. Let C be an (α, 1, p)-constrained code of rate R and length n. We construct a new code

C ′ for nβ cells: (c1, c2, . . . , cnβ). The code C ′ uses the same encoding and decoding

maps of the code C, while using only the n cells ci such that i ≡ 1 (mod β). Then, the

code C ′ is an (α,β, p)-constrained code and its rate is R/β. Therefore, we conclude that

C(α,β, p) > C(α,1,p)
β

.

The capacity must be greater than or equal to the maximum of the two lower bounds.

2.5 Conclusion

In this chapter, we study the time-space constraint for PCM, which was originally pro-

posed in [44]. A code is called an (α,β, p)-constrained code if for any α consecutive rewrites
and for any segment of β contiguous cells, the total rewrite cost of the β cells over those α

rewrites is at most p. Here, the cells are binary and the rewrite cost is defined to be the Ham-

ming distance between the current and next memory states. First, we show a general upper

bound on the achievable rate of these codes which extends the results of Jiang et al. Then, we

25

generalize their construction for (α > 1,β = 1, p = 1)-constrained codes and show another

construction for (α = 1,β > 1, p > 1)-constrained codes. Finally, we show that these two

constructions can be used to construct codes for all values ofα, β, and p.

2.6 Appendix A

In this section, we show an enumerative encoding and decoding strategy with linear

complexity for the set of (β, p)-WWL vectors.

Definition 2.6.1. Let X = {x1, . . . , xN} be a set of distinct binary vectors, xi ∈ {0, 1}n , i =

1, . . . , N. Let ψ(x) denote the decimal representation of a vector x ∈ {0, 1}n . For x, y ∈
{0, 1}n , we say x % y (or x ≺ y) if and only ifψ(x) 6 ψ(y) (or ψ(x) < ψ(y)). The order of

the element xi in X is defined as:

ord(xi) =
∣∣{ j : x j % xi, 1 6 j 6 N}

∣∣.

Let {c1, . . . , cMn} be an ordering of the elements in Sn(β, p), where Mn = |Sn(β, p)|.
The encoder and decoder of a (β, p)-WWL code give a one-to-one mapping between Sn(β, p)

and {1, . . . , Mn}, namely EWWL(m) = cm where ord(cm) = m and DWWL(cm) = ord(cm) =

m, for allm = {1, . . . , Mn}. Now the problem is to calculate ord(cm) given cm. Let s1, . . . , sMβ−1

be the ordering of the vectors in Sβ,p introduced in Definition 2.3.5, where Mβ−1 = |Sβ,p| =
|Sβ−1(β, p)| = ∑

p
i=0 (

β−1
i). Let

xβ,p,n = (x1(n), x2(n), . . . , xMβ−1
(n))T ,

where xi(n) is the number of (β, p)-WWL vectors of length n that have the vector si as a prefix,

where xT denotes the transpose of x.

Lemma 2.6.2. The vectors xβ,p,n+1, n > β, satisfy the first-order recursion:

xβ,p,n+1 = Aβ,p · xβ,p,n.

Proof. See [90].

The encoder and decoder have access to a matrix Xβ,p,n ∈ Z
(n+β)×Mβ−1

+ , where the

i-th row of Xβ,p,n is xT
β,p,i, i = 1, . . . , n + β. For simplicity, Xβ,p,n is written as X if no

confusion can occur. We denote by X(i, j) the entry in the i-th row and j-th column of X

and we define X(i, :), X(:, j) to be the i-th row vector, j-th column vector of X, respectively,

26

i.e., X(i, :) = (X(i, 1), . . . , X(i, Mβ−1)) and X(:, j) = (X(1, j), . . . , X(n + β, j))T . From

Lemma 2.6.2, Xβ,p,n can be calculated efficiently with time complexity O(n).

Decoder

Based on Xβ,p,n, we present an enumerative method to calculate the order of each ele-

ment in Sn(β, p). Note that the order of a vector is the decoded message corresponding to that

vector. In this algorithm, the decoder scans the vector from left to right. Whenever the decoder

finds a 1 in the vector, the order of the vector will increase. The details of the algorithm are

presented below. Here c = (c1, . . . , cn) ∈ Sn(β, p) is the binary vector to be decoded; the

algorithm calculates ord(c) ∈ {1, . . . , Mn}.

Algorithm 2.6.3 DECODING: CALCULATE ord(c), c ∈ Sn(β, p)

1: let cnt = 0, j = 1, i = 0;

2: while (i 6 n){

3: while (j 6 n and c(j) 6= 1)

4: j = j + 1;

5: if (j = n + 1)

6: ord(c) = cnt + 1;

7: algorithm ends;

8: }
9: /*A 1 is detected in c.*/

10: let d = (0, . . . , 0) with length β− 1;

11: /*d is a vector storing β− 2 bits to the left of the detected 1, with a 0 appended.*/

12: if (j > β− 1)

13: let dβ−2
1 = c

j−1
j−β+2;

14: else /* j < β− 1*/

15: let dβ−2
β− j = c

j−1
1 ;

16: find k ∈ [1 : Mβ−1] such that sk = d;

17: cnt = cnt + X(n − j +β− 1, k);

18: i = j; j = i + 1;

19: }

27

20: ord(c) = cnt + 1;

21: algorithm ends.

Example 2.6.1. Suppose we would like to decode a (6, 3)-WWL vector c = (1011001001) of

length 10.

• A 1 is detected (1011001001), where i = 0, j = 1. The decoder aims to find the number

of vectors ĉ such that (0000000000) % ĉ ≺ (1000000000). Now d = (00000) = s1,

so k = 1, and n − j +β− 1 = 14. Therefore, cnt = 0 + X6,3,16(14, 1) = 236.

• A 1 is detected (1011001001), where i = 1, j = 3. The decoder aims to find the number

of vectors ĉ such that (1000000000) % ĉ ≺ (1010000000). Here d = (00100) = s5,

so k = 5, and n − j +β− 1 = 12. Therefore, cnt = 236 + X6,3,16(12, 5) = 308.

• A 1 is detected (1011001001), where i = 3, j = 4. The decoder aims to find the number

of vectors ĉ such that (1001000000) % ĉ ≺ (1011000000). Here d = (01010) = s11,

so k = 11, and n − j +β− 1 = 11. Therefore, cnt = 308 + X6,3,16(11, 11) = 343.

• A 1 is detected (1011001001), where i = 4, j = 7. The decoder aims to find the number

of vectors ĉ such that (1011000000) % ĉ ≺ (1011001000). Here d = (11000) = s23,

so k = 23, and n − j +β− 1 = 8. Therefore, cnt = 343 + X6,3,16(8, 23) = 351.

• Finally, a 1 is detected (1011001001), where i = 7, j = 10. The decoder aims to

find the number of vectors ĉ such that (1011001000) % ĉ ≺ (1011001001). Here

d = (01000) = s9, so k = 9, and n − j + β − 1 = 5. Therefore, cnt = 351 +

X6,3,16(5, 9) = 352.

We calculate that ord(c) = cnt + 1 = 353 and c is decoded as 353.

Theorem 2.6.4. Algorithm 2.6.3 calculates the order of a (β, p)-WWL vector of length n in

Sn(β, p). Its time complexity and space complexity are both O(n).

Proof. We first show the correctness of the algorithm and then analyze its time and space com-

plexity.

Correctness: Let c be the vector to decode; that is, we seek to find ord(c). For c1 % c2,

we denote by N(c1, c2) the number of vectors ĉ such that c1 % ĉ ≺ c2. Let c1, . . . , cL be a

sequence of vectors such that 0 = c0 % c1 % c2 % · · · % cL = c; then it is easy to see

ord(c) =
L

∑
i=1

N(ci−1, ci) + 1.

28

Let L be the number of 1’s in c; let all the indices of 1’s be j1, j2, . . . , jL in ascending order, that

is 1 6 j1 < · · · < jL 6 n and c j1
= c j2

= · · · = c jL
= 1. For i ∈ {1, . . . , L}, ci is chosen

such that ci = ci−1 + δ ji
, where c0 = 0, and δ j, j ∈ {1, . . . , n}, denotes the vector where all

entries are 0 except for the j-th entry, which is a 1. Here addition is component-wise modulo-2

summation.

Lines 3 and 4 together with Line 18 in Algorithm 2.6.3 scan c and find ci according

to ci−1. Therefore, we are left to prove that Algorithm 2.6.3 calculates N(ci−1, ci) for i ∈
{1, . . . , L}.

By definition, the first ji − 1 digits of ci and ci−1 are the same, and ci, ji
= 1 while

ci−1, ji
= 0. Then a vector ĉ ∈ {0, 1}n satisfies ci−1 % ĉ ≺ ci if and only if the first ji digits of

ĉ are the same as those of ci−1, i.e. ĉ
ji

1 = c
ji

i−1,1. Given the length and the first ji digits of ĉ, the

number of possible ĉ can be calculated based on the matrix X in the following way. Since the

(β, p)-WWL constraint is local, if ji > β− 1, the task is equivalent to calculating the number

of c̃ with length n − ji + β− 1 such that the first β− 1 digits are a prefix of ĉ, in particular,

c̃β−1
1 = ĉ

ji

ji−β+2; otherwise, for ji 6 β− 1, it is equivalent to calculating the number of c̃ with

length n − ji + β− 1 such that the first β− 1 digits are zeros followed by length- ji prefix of

ĉ, that is, c̃β−1
1 = (0β−1− ji

, ĉ
ji

1). Lines 10 – 15 in Algorithm 2.6.3 find the first β− 1 digits of

c̃ and Lines 16 and 17 calculate the number of c̃, which is the number of vectors ĉ satisfying

ci−1 % ĉ ≺ ci. Therefore, Algorithm 2.6.3 calculates N(ci−1, ci) for i ∈ {1, . . . , L} and sums
them up to derive the order of c.

Time complexity analysis: It can be seen from the algorithm that the decoder scans

the vector that is to be decoded only once. Whenever the decoder detects a 1, it uses binary

searches to find the corresponding prefix vector d in X , while the number of 1’s is no more

than
np
β
. Therefore, the time complexity of the decoder is no more that O(np

β
log Mβ−1) =

O(np
β

log ∑
p
i=0 (

β−1
i)) = O(n), where β and p are fixed integers and not related to n.

Space complexity analysis: The space complexity comes from the matrix X with n +

β− 1 rows and Mβ−1 columns. Therefore, the space complexity is alsoO(n) since β and Mβ−1

are both fixed integers.

Encoder

The encoder follows a similar approach to map an integer m ∈ {1, . . . , Mn} to a vector
c ∈ Sn(β, p), such that ord(c) = m. We call c the encoded vector for the message m. Note that

29

∀mi, m j ∈ {1, . . . , Mn}, mi 6 m j if and only if ci % c j, where ord(ci) = mi and ord(c j) =

m j. The following encoding algorithm uses the matrix X to efficiently calculate the vector c ∈
Sn(β, p) such that ord(c) = m, for m ∈ {1, . . . , Mn}. The algorithm has linear complexity.

Algorithm 2.6.5 ENCODING: FIND c SUCH THAT ord(c) = m

let cnt = 0, c = (0, . . . , 0) with length n;

for i = 1, 2, . . . , n {

let t = c;

let t(i) = 1;

if t satisfies (β, p)-WWL constraint {

let q = (0, . . . , 0) with length β− 1;

/*q is a vector storing β− 2 bits to the left of t(i) in t, with a 0 appended.*/

if (i > β− 1)

let qβ−2
1 = ti−1

i−β+2;

else /*i < β− 1*/

let qβ−2
β−i = ti−1

1 ;

find k ∈ [1 : Mβ−1] such that sk = q.

let CntTry = cnt + X(n − i +β− 1, k);

if (CntTry + 1 = m) {
c = t;

return c; algorithm ends;

}
if (CntTry + 1 < m) {

let c(i) = 1;

let cnt = CntTry;

}
}

}

Example 2.6.2. Suppose we would like to encode one of Mn = 421 (β = 6, p = 3)-WWL

vectors of length n = 10. The message to be encoded is m = 353.

• c = (0000000000), i = 1, t = (1000000000), q = (00000) = s1, so k = 1. Since

cnt = 0, CntTry = cnt + X(n − i +β− 1, k) = 236 < m − 1, so set cnt = 236.

30

• c = (1000000000), i = 2, t = (1100000000), q = (00010) = s3, so k = 3. Compute

CntTry = cnt + X(n − i +β− 1, k) = 236 + X(13, 3) = 355 > m − 1.

• c = (1000000000), i = 3, t = (1010000000), q = (00100) = s5, so k = 5. Compute

CntTry = cnt + X(n − i + β − 1, k) = 236 + X(12, 5) = 308 < m − 1, so set

cnt = 308.

• c = (1010000000), i = 4, t = (1011000000), q = (01010) = s11, so k = 11.

Compute CntTry = cnt + X(n − i + β− 1, k) = 308 + X(11, 11) = 343 < m − 1,

so set cnt = 343.

• c = (1011000000), i = 5, t = (1011100000) does not satisfy (6, 3)-WWL constraint.

• c = (1011000000), i = 6, t = (1011010000) does not satisfy (6, 3)-WWL constraint.

• c = (1011000000), i = 7, t = (1011001000), q = (11000) = s23, so k = 23.

Compute CntTry = cnt + X(n − i +β− 1, k) = 343 + X(8, 23) = 351 < m − 1, so

set cnt = 351.

• c = (1011001000), i = 8, t = (1011001100) does not satisfy (6, 3)-WWL constraint.

• c = (1011001000), i = 9, t = (1011001010), q = (00100) = s5, so k = 5. Compute

CntTry = cnt + X(n − i +β− 1, k) = 351 + X(6, 5) = 353 > m − 1.

• c = (1011001000), i = 10, t = (1011001001), q = (01000) = s9, so k = 9. Compute

CntTry = cnt + X(n − i + β− 1, k) = 351 + X(5, 9) = 352 = m − 1. Therefore,

c = t = (1011001001) and ord(c) = 353.

Theorem 2.6.6. Algorithm 2.6.5 encodes a messagem ∈ {1, . . . , Mn} to a (β, p)-WWL vector

c ∈ Sn(β, p) such that ord(c) = m, and its time complexity and space complexity are both

O(n).

Proof. We first show the correctness of the algorithm and then analyze its time and space com-

plexity.

Correctness: The proof of the correctness of the encoder is similar to the proof of the
correctness of the decoder. Therefore, we omit the details.

Time complexity analysis: It can be seen from the algorithm that the encoder scans the
vector from left to right once and tries to set each entry to 1. Whenever the encoder sets an

entry to 1, it first determines whether the constraint is satisfied. This takes O(1) steps since we

31

do not have to check the entire vector but only the β bits to the left of the set entry. Then it

uses binary search to find the corresponding prefix vector in X, while the number of 1’s is no

more than
np
β
. Therefore, the complexity of the encoder is no more that O(np

β
log Mβ−1) =

O(np
β

log ∑
p
i=0 (

β−1
i)) = O(n), where p and β are fixed numbers.

Space complexity analysis: The matrix X is the primary contributor to the space com-

plexity. As is shown in the proof of Theorem 2.6.4, the space complexity is also O(n).

Note that Algorithm 2.6.5 and Algorithm 2.6.3 establish a one-to-one mapping between

{1, . . . , Mn} and Sn(β, p). Therefore the rate of the encoder is maximized. If the blocklength

goes to infinity, the rate of the encoder approaches CWWL(β, p).

2.7 Appendix B

In this section, we present the proof of Theorem 2.4.4. The reason for which the proof

of Theorem 2.4.4 is non-trivial is the following. Suppose the cell-state vector is updated from

ci−1 to ci on the i-th write. The encoder has full knowledge of ci−1 and ci since we assume

there is no noise in the updating procedure. The decoder is required to recover ci + ci−1 with

full knowledge of ci but zero knowledge of ci−1. This is similar to the situation encountered

in memories with defects, considered in [37], where the most interesting scenario is when the

defect locations are available to the encoder but not to the decoder. In general, this scenario can

be modeled as a channel with states [22] where the side information on states is available only

to the encoder.

Proof. First we introduce some definitions. Recall that Sn(β, p) is defined as the set all

(β, p)-WWL vectors of length n. Sn(β, p) will be written as S for short if no confusion about
the parameters can occur. Let Vn = {0, 1}n be the n-dimensional binary vector space.

Definition 2.7.1. For a vector x ∈ Vn and a set S ⊂ Vn, we define S + x = {s + x|s ∈ S}
and denote it by S(x). We call vectors in S(x) reachable by x and we say S(x) is centered at

x.

For two subsets B1, B2 ⊂ Vn, we define B1 + B2 = {b1 + b2|b1 ∈ B1, b2 ∈ B2}. We
call a subset B ⊂ Vn S-good if

S + B =
⋃

b∈B

S(b) = Vn,

i.e., Vn is covered by the union of translates of S centered at vectors in B.

32

Lemma 2.7.2. If B ⊂ Vn is S-good, then t + B is S-good, for all t ∈ Vn.

Lemma 2.7.3. If B ⊂ Vn is S-good, then for all x ∈ Vn, there exists b ∈ B and s ∈ S , such
that x + s = b.

Lemma 2.7.3 guarantees that if B ⊂ Vn is an S-good subset, then from any cell-state
vector x, there exists a (β, p)-WWL vector s, such that x + s ∈ B. We skip the proofs of

Lemma 2.7.2 and 2.7.3, referring the reader to similar results and their proofs in [15].

Lemma 2.7.4. If G1, . . . , GM are pairwise disjoint S-good subsets of Vn, then there exists a

(1,β, p)-constrained code of size M. In particular, if G is an S-good (n, k) linear code, then

there exists a (1,β, p)-constrained code with rate n−k
n .

Proof. If Gi is S-good for all i ∈ [1 : M], then from Lemma 2.7.3, for any x ∈ Vn and

i ∈ [1 : M], there exist gi ∈ Gi and si ∈ S , such that x + si = gi. Suppose the current cell-state

vector is x, then we can encode the message i ∈ [1 : M] as a vector E(i, x) = x + si ∈ Gi,

for some si ∈ S . The decoder uses the mapping D(x) = i, if x ∈ Gi, to give an estimate of

i ∈ [1 : M]. This yields a (1,β, p)-constrained code of size M.

If G1, . . . , G2n−k represent the cosets of an S-good (n, k) linear code G, then each coset

is S-good according to Lemma 2.7.2. The rate of the resulting (1,β, p)-constrained code is
log2(2

n−k)
n = n−k

n .

Now we are ready to prove Theorem 2.4.4.

Let B j be a randomly chosen (n, j) linear code with 2 j codewords (B0 = {0}), and
let mB j

= |Vn \ (B j + S)| be the number of vectors not reachable from any vector in B j. Let

x ∈ Vn be a randomly chosen vector and let QB j
be the probability that x /∈ B j + S . Then we

have

mB j
= 2nQB j

.

The proof of the following lemma is based upon ideas discussed in [4, pp. 201-202].

Lemma 2.7.5. There exists a linear code B j such that

QB j
6 Q2 j

B0
.

Proof. Let B j = {y1, . . . , y2 j} denote an (n, j) linear code. If

SB j
= B j + S ,

33

then

QB j
= 1 − 2−nNB j

,

where NB j
= |SB j

|.
Let z /∈ B j and let B j+1,z be the (n, j + 1) linear code formed by (z + B j) ∪ B j. It can

be seen B j+1,z comprises the 2 j vectors in B j plus 2 j new vectors of the form z + y, y ∈ B j. Let

S∗
B j,z

= z + SB j

It can be seen that S∗
B j ,z

has the same cardinality as SB j
. Therefore, it contains NB j

vectors, too,

some of which may already belong to SB j
. Since SB j+1,z

= SB j
∪ S∗

B j,z
, we have

NB j+1,z
= 2NB j

−
∣∣SB j

∩ S∗
B j ,z

∣∣.

Thus NB j+1,z
is maximized by choosing z that minimizes |SB j

∩ S∗
B j ,z

|.
Let us now calculate the average of |SB j

∩ S∗
B j ,z

| over all z ∈ Vn. Here all z ∈ B j are

also considered since they will result in an overestimate of the average of |SB j
∩ S∗

B j ,z
|. Then

∑
z∈Vn

|SB j
∩ S∗

B j ,z
| = ∑

z∈Vn

∑
x∈SBj

1{x∈S∗
Bj ,z

}

= ∑
x∈SBj

∑
z∈Vn

1{x∈S∗
Bj ,z

}

1©
= ∑

x∈SBj

∑
z∈x+SBj

1

2©
= ∑

x∈SBj

NB j

= N2
B j

,

where 1A is the indicator function of the event A, i.e., 1A = 1 if A is true and 1A = 0 otherwise.

Equality 1© holds since, for a fixed x, if z ∈ x + SB j
, then x ∈ S∗

B j,z
and vice versa.

Equality 2© holds since |x + SB j
| = |SB j

| = NB j
. Thus, the average value of |SB j

∩ S∗
B j ,z

| is
2−nN2

B j
. Since the minimum of |SB j

∩ S∗
B j ,z

| cannot exceed this average, we conclude that there
exists z ∈ Vn, such that |SB j

∩ S∗
B j ,z

| 6 2−nN2
B j
. Then there exists B j+1, such that

NB j+1
> 2NB j

− 2−nN2
B j

.

34

Thus,

QB j+1
= 1 − 2−nNB j+1

6 1 − 2−n(2NB j
− 2−nN2

B j
)

= (1 − 2−nNB j
)2

= Q2
B j

.

It follows that there exists B j, such that QB j
6 Q2 j

B0
.

Lemma 2.7.6. If j > n − log |S|+ log n, then there exists B j such that mB j
< 1.

Proof. Note that QB0
= 1 − 2−n · NB0

= 1 − 2−n · |S|. Then there exists B j, such that

QB j
6 Q2 j

B0

6 (1 − 2−n|S|)2 j

6 (1 − 2−n|S|)2n−log |S |+log n

= (1 − 2−n|S|)2n |S|−1·n

< e−n < 2−n.

Then mB j
= 2nQB j

< 1.

Since mB j
is an integer and mB j

< 1, there exists an (n, j) linear code B j such that

mB j
= 0, i.e., an S-good B j exists. According to Lemma 2.7.4, there exists a sequence of

(1,β, p)-constrained codes of length n and rate Rn(1,β, p) such that

sup
n

Rn(1,β, p) > lim
n→∞

n − (n − log |S|+ log n)

n

= lim
n→∞

log |S| − log n

n

= lim
n→∞

log |S|
n

= CWWL(β, p).

We have seen in Theorem 2.3.2 that C(1,β, p) 6 CWWL(β, p). This concludes the proof that

C(1,β, p) = CWWL(β, p)

35

Acknowledgements

This chapter is in part a reprint of the material in the paper: Minghai Qin, Eitan Yaakobi,

and Paul H. Siegel, “Time-space constrained codes for phase-change memories”, IEEE Trans-
action on Information Theory, vol. 59, no. 8, pp. 5102-5114, August 2013.

Chapter 3

Codes for multi-level write-once

memories

3.1 Introduction

Chapter 2 studied time-space constraints and provides code constructions, one of which

is based on binary write-once memory (WOM) codes. In this chapter, we further discuss the

constructions of WOM codes with a larger alphabet size.

As part of the tremendous increase in coding research for the ubiquitous flash memories,

considerable attention has been given to rewriting codes. The motivation comes from the special

physical properties of the flash memory floating-gate cells, the most conspicuous of which is the

asymmetric programming behavior of the cells [12]. The memory cells can only increase their

level by the injection of electrons into each cell. However, in order to decrease the level of even

a single cell, its entire containing block (∼ 106 cells) has to be erased. This undesired property

not only reduces the writing speed but also significantly affects the lifetime of flash memories,

which is often specified in terms of a maximum number of block erasures [12]. As this number

can be as low as a few hundreds or thousands, reducing the number of block erasures becomes

critical in improving the lifetime of flash memories.

The idea of rewriting codes dates back to the pioneering work [71] by Rivest and Shamir

on write-once memory (WOM) in 1982. The motivation came from storage media such as

punch cards and ablative optical disks. These media are modeled as a collection of write-once

binary cells, where each cell is initially in state 0 and can be irreversibly programmed to state 1.

Figure 3.1 shows a typical model for rewriting t times on a binary WOM.

36

37

1st

write
M1

2nd

write
M2

t-th

write
Mt

X1

X2

Xt

Y1

Y2

Yt

Yt−1

M̂1

M̂2

M̂t

Encoder 1 Decoder 1

Encoder 2 Decoder 2

Encoder t Decoder t

n-cell WOM

n-cell WOM

n-cell WOM

...

Figure 3.1: A t-write WOM model

An [n, t; 2nR1,t , . . . , 2nRt,t]WOM code consists of

• t message sets [1 : 2nR1,t], . . . , [1 : 2nRt,t],

• t encoders, where encoder i ∈ [1 : t] for the i-th write assigns a codeword xi = Ei(mi, yi−1)

∈ {0, 1}n (y0 = ∅) to each message mi ∈ [1 : 2nRi] and the cell levels yi−1 from the

previous write, and

• t decoders, where decoder i ∈ [1 : t] assigns an estimate m̂i = Di(yi) or an error e to the

cell levels yi from the i-th write.

The notation [i : j] denotes the set {k ∈ Z : i 6 k 6 j}. The average probability of er-
ror of the WOM code is defined as P

(n)
e = P{(M̂1, . . . , M̂t) 6= (M1, . . . , Mt)}. A rate tuple

(R1,t, . . . , Rt,t) is said to be achievable for theWOM if there exists a sequence of [n, t; 2nR1,t , . . . ,

2nRt,t] WOM codes such that limn→∞ P
(n)
e = 0. The capacity region CWOM(t) is the closure

of the set of all achievable rate tuples (R1,t, . . . , Rt,t). The sum-capacity Csum(t) of WOM is

the maximum achievable sum-rate ∑
t
j=1 R j,t. A sequence of WOM codes is said to be sum-rate

optimal if its sum-rate approaches the sum-capacity in the limit.
The capacity region as well as the sum-capacity for the WOM model is well studied in

the literature [28,36]; for example, it is known that the t-write sum-capacity for binary WOM is

38

Csum(t) = log2(t + 1) and the capacity region is

CWOM(t) =
{
(R1,t, . . . , Rt,t)|R1,t 6 H(p1),

Ri,t 6

(
i−1

∏
k=1

pk

)
H(pi), i ∈ [2 : t − 1],

Rt,t 6
t−1

∏
k=1

pk for some p1, . . . , pt−1 ∈ [1
2 , 1]

}
.

Considerable progress has been made in the last few years in the study of binary WOM

code constructions for single-level cell (SLC) flash memory devices where each cell supports

q = 2 levels [43,93,95]. However, to increase storage densities, future flash memory devices are

expected to support a large number of cell levels, continuing the trend seen with the use of MLC

and TLC devices that support 4 and 8 levels, respectively. This has motivated a body of work on

the construction of WOM codes for multilevel cells that support q > 3 levels [13,31,53,69,76].

The sum-capacity of rewrite codes for t writes on q-ary cells is known to be log2 (
q+t−1

q−1) [28],

although explicit characterization of the capacity region remains an open problem.

In this chapter, we consider the construction of lattice-based WOM codes for t writes

on q-level cells. Lattice-based 2-write WOM codes over n cells in the asymptotic setting of

continuous cell levels were derived in [53] for the fixed-rate scenario, where the cardinality of

the message set is the same on each write. Allowing the cardinality of the message set on each

write to be different can increase the sum-rate. Using a continuous approximation approach,

it was hypothesized in [53] that the hyperbolic shaping regions were optimal for maximizing

sum-rates of two writes over lattices in arbitrary dimensions. Optimality of hyperbolic shaping

regions was proven in [6] for lattices in n = 2 dimensions when the number of writes, t, is

arbitrary. A proof of optimality was provided in [54] for the case of an arbitrary number of cells,

n, and t = 2 writes.

Here, we consider the most general case of an arbitrary number of writes on an arbitrary

number of cells where each cell supports a large number of levels. Using the continuous ap-

proximation approach we prove that hyperbolic shaping regions are optimal for maximizing the

sum-rate. The results are then extended to the fixed-rate case, a scenario of practical importance.

The rest of the chapter is organized as follows. Section 3.2 formulates the code design

problem. In Section 3.2.3, we extend ideas presented in [54] and invoke the continuous approx-

imation to obtain an upper bound on the worst-case sum-rate optimal t-write regions for n cells

and consider its asymptotic behavior as the number of cells grows large. In Section 3.3, we

derive the worst-case fixed-rate optimal t-write regions for n cells.

39

3.2 Lattice-based WOM Codes

3.2.1 Lattices and Lattice Codes

Definition 3.2.1.

An n-dimensional lattice Λ is defined by a generator matrix G ∈ Rn×n and we denote

the lattice by Λ(G) or simply Λ is no confusion can occur. Let x = (x1, x2, . . . , xn) ∈ Rn

and b = (b1, b2, . . . , bn) ∈ Zn be n-dimensional real-valued vector and integer-valued vector,

respectively, then the lattice Λ(G) is defined as

Λ = {x ∈ R
n|∃b ∈ Z

n, x = b · G, } .

The Voronoi region of a point x ∈ Λ is the set of points of Rn which are closer to x than

to any other point x′ ∈ Λ, i.e.,

Voronoi(x) = {y ∈ R
n|d(y, x) 6 d(y, z), ∀z ∈ Λ} ,

where d(·, ·) is the Euclidean distance between two points.
The volume of a Voronoi region Vol (Λ) is

Vol (Λ) ! |det G| . (3.1)

A lattice code L is a finite subset of a lattice Λ, described by a shaping region A ⊂ Rn,

L = Λ ∩A. (3.2)

For a thorough treatment of lattices, refer to [17].

The coordinate values of an n-dimensional lattice code may be stored in n cells of a

flash memory. In the most general case, cell j stores a continuous value between 0 and ℓ j, so

that the stored values in n cells are represented by x ∈ [0, ℓ1]× [0, ℓ2]× . . . [0, ℓn] ! A where

x j ∈ R, ∀ j = 1, 2, . . . , n. The volume of region A is ‖A‖ = ∏
n
j=1 ℓ j. Allowing arbitrary ℓ j

proves to be helpful in the sequel. However, in the typical case of a q-ary flash memory, we have

ℓ j = q − 1 for all j, so A = [0, q − 1]n and the codebook is L = Zn
q .

3.2.2 WOM Codebooks

Suppose the number of flash memory cells is n and they are represented by the vector

(x1, x2, . . . , xn) ∈ L such that the level of a cell can only be increased during a write operation.
We consider updating information in these n cells t times before a block erasure is required.

40

Definition 3.2.2. A t-write WOM code stores Mi messages in n cells in the worst case at write

i, i = 1, . . . , t. The instantaneous rate for write i and the worst-case sum-rate for the t-write

code are

Ri,t =
1

n
log2 Mi bits per cell per write, and (3.3)

Rt =
t

∑
i=1

Ri,t bits per cell per erase, respectively. (3.4)

A lattice-based t-write WOM codebook is defined by a partition of a lattice code L into t disjoint

subsets, denoted as L1,L2, . . . ,Lt. The subset Li is the codebook for the i-th write and has

cardinality |Li|.

Note that since these codes have disjoint codebooks for each write, they are a special

case of WOM codes referred to as synchronized WOM codes in [71].
A point x ∈ L is said to be accessible from another point s, denoted as x ≻ s, if

x j > s j, ∀ jin[1 : n] and s 6= x. Suppose the point stored at the (i − 1)-st write is s, then the set

of points that may be stored at the i-th write is

Li(s) ! {x ∈ Li : x ≻ s} . (3.5)

Here, Li(s), the subset ofLi accessible from s, may be a proper subset of the codebook Li. Since

the worst-case rate is of interest, define codebook cardinality, denoted by Ci, as the minimum

number of points in Li that are accessible from any point in Li−1,

Ci ! min
s∈Li−1

|Li(s)|. (3.6)

Also define the total codebook cardinality, Πt, as

Πt !
t

∏
i=1

Ci. (3.7)

The state of the memory before the first write is s = 0 and all points in the codebook

L1 are accessible. Thus, M1 = C1. However, the set of points that may be stored at any i-th

write, i > 1, depends on the point stored on the previous write. As a result, there may not exist

a scheme which can consistently map Ci messages to points in the codebook Li. In some cases,

then, Mi may be smaller than Ci,

Mi 6 Ci, (3.8)

and accordingly each rate Ri,t is upper bounded as,

Ri,t 6
1

n
log2 Ci, (3.9)

41

and the worst-case sum-rate is upper bounded as

Rt 6
1

n
log2 Πt. (3.10)

In this chapter, we concentrate on maximizing Ci and Πt because they provide upper bounds on

Ri,t and Rt, respectively. The matter of consistent encoding-decoding is discussed in [7].

3.2.3 Continuous Approximation

According to the continuous approximation principle for dense lattices [24,25], the num-
ber of points in a codebook L formed using (3.2) can be approximated as

|L| ≈ ‖A‖
Vol (Λ)

, (3.11)

where |L| denotes the cardinality of the discrete set L and ‖A‖ denotes the volume of the

shaping region A. This approximation becomes increasingly accurate as the density of the lattice

increases. The use of the continuous approximation principle for WOM codes was introduced

in [54].

WOM codebooks L1, . . . ,Lt may be constructed by partitioning A into t write regions,

A1,A2, . . . ,At. To construct codebooks for cells that support discrete levels, let

Li = L ∩Ai. (3.12)

Applying the continuous approximation to the individual write regions, the codebook cardinality

for the first write is approximated by

C1 = |L1| ≈
‖A1‖

Vol (Λ)
! V1. (3.13)

If the state of the memory after the (i − 1)-st write is s ∈ Ai−1, then the set of possible

levels that can be written on the i-th write is

Ai(s) ! {x ∈ Ai : x ≻ s}. (3.14)

Applying the continuous approximation for writes 2, 3, . . . , t, the codebook cardinality is ap-

proximated by

Ci ≈
1

Vol(Λ)
inf

s∈Ai−1

‖Ai(s)‖ ! Vi, (3.15)

and the total codebook cardinality in t writes is approximated by

Πt ≈
t

∏
i=1

Vi ! St. (3.16)

42

In the following sections, the quantities Vi and St are also referred to as the codebook cardinality

and the total codebook cardinality, respectively. Since both the lattice and the maximum cell

values ℓi may be scaled arbitrarily, in Section 3.3 we assume that Vol (Λ) = 1.

3.3 Fixed-Rate Optimal t-Writes

In this section, we do not design WOM codebooks directly. Rather, we select shaping

regions A1,A2, . . . ,At and maximize the total codebook cardinality St. Under the continuous

approximation principle, this corresponds to maximizing the upper bound on the worst-case sum

rate (3.10).

In practice, it might be preferable to constrain successive writes to have the same rate.

Therefore, we consider shaping regions A1, . . . ,At such that the codebook cardinality is con-

stant, i.e., V1 = V2 = · · · = Vt. The problem of maximizing the sum-rate without the constraint

of equal rates is studied in [7].

We start with the following definition.

Definition 3.3.1. Let H(u) denote the region in A enclosed by an n-dimensional rectangular

hyperbola with parameter u, i.e.,

H(u) !

{
x ∈ A :

n

∏
j=1

(
ℓ j − x j

)
> u · ‖A‖

}
, (3.17)

with 0 6 u 6 1. The normalized volume of the region H(u) is denoted as

∆(u) ! ‖A‖−1 · ‖H(u)‖ . (3.18)

Figure 3.2 shows a 2-dimensional rectangular hyperbola H(u).

Note that the parameter u, given in Definition 3.3.1, characterizes the point where the

hyperbola touches the axes, and is also equal to the normalized volume of the region accessible

from any point on the boundary of the hyperbola. ∆(u) is equal to the normalized volume of the

region under the hyperbola. and it can be expressed in closed form as follows.

Lemma 3.3.2. For n > 2,

∆(u) = 1 − u
n−1

∑
i=0

1

i!

[
ln

(
1

u

)]i

(3.19)

Proof. See [7] for details.

43

x

‖H(u)‖ = ∆(u) · ℓn

‖{x′ : x′ ≻ x}‖ = u · ℓn

ℓ(1− u)

ℓ(1− u)

0

ℓ

ℓ

Figure 3.2: A 2-dimensional rectangular hyperbola H(u) in region A = [0, ℓ] × [0, ℓ]. The

region under the hyperbola and the region accessible from a given point x on the hyperbola

are shaded in blue and red, respectively, and their volumes are equal to ∆(u) · ℓn and u · ℓn,

respectively.

The following theorem gives the optimal write-regions under the constraint that each

write has equal rate.

Theorem 3.3.3 (Fixed-rate optimal t-writes) The unique optimal boundary for write i when

storing information t times on n cells such that the total codebook cardinality is maximized and

the codebook cardinality on each write is the same is given by

B
∗
i =

{
x ∈ A :

n

∏
j=1

(
ℓ j − x j

)
=

t

∏
m=t−i+1

v∗m · ‖A‖
}

(3.20)

for all i = 1, . . . , t − 1 where v∗1 = 0, and for k > 2, v∗k satisfies

∆ (v∗k) = v∗k · ∆
(
v∗k−1

)
. (3.21)

The codebook cardinality on write i, i = 1, . . . , t, is

V∗
fix = ∆ (v∗t) · ‖A‖ , (3.22)

and the total codebook cardinality in t writes is

S∗
fix(ℓ1, . . . , ℓn) = (∆ (v∗t) · ‖A‖)t . (3.23)

44

Proof. We prove the theorem by induction. First, suppose t = 2. Let the boundary be

B
′ =

{
x ∈ A :

n

∏
j=1

(
ℓ j − x j

)
= v∗2 · ‖A‖

}
(3.24)

so that the first write region A1(B
′) is H(v∗2). The second write region A2 is A \ A1(B

′) and

A2(x1) = {x ∈ A2 : x ≻ x1} for all x1 ∈ A1(B
′). Then, the codebook cardinality in each of

the two writes, under the constraint that the rates are equal, is

Vfix(B
′) = min

{∥∥A1(B
′)
∥∥ , min

x1∈A1

‖A2(x1)‖
}

(3.25)

= min

{∥∥A1(B
′)
∥∥ , min

x∈B′
‖A2(x)‖

}
(3.26)

= min {∆(v∗2) · ‖A‖ , v∗2 · ‖A‖} (3.27)

= ∆(v∗2) · ‖A‖ = v∗2 · ‖A‖ (3.28)

where (3.26) follows from the fact that the minimum is achieved when x1 lies on the boundary

B′ and (3.28) follows from (3.21). Now, suppose the optimal write regions are A∗
1 and A

∗
2 with

maximum codebook cardinality V∗
fix. Then Vfix(B′) 6 V∗

fix. We will prove that A∗
1 ⊆ A1(B

′).

Suppose the opposite is true; that is, suppose there exists x′ ∈ A∗
1 such that ∏ j(ℓ j − x′j) <

v∗2 · ‖A‖. Since the codebook cardinality V∗
fix is upper bounded by the volume of the second

region,

V∗
fix 6

∥∥A∗
2(x′)

∥∥ = ∏
j

(ℓ j − x′j) < v∗2 · ‖A‖ = Vfix(B
′), (3.29)

which contradicts the optimality ofA∗
1. Thus, the optimal first-write regionA

∗
1 must be contained

in A1(B
′). On the other hand, by the optimality of A∗

1 and A
∗
2,

Vfix(B
′) 6 V∗

fix 6 ‖A∗
1‖ (3.30)

6
∥∥A1(B

′)
∥∥ = Vfix(B

′), (3.31)

which implies that

V∗
fix = ‖A∗

1‖ =Vfix(B
′) = ∆(v∗2) ·A. (3.32)

To sum up, A∗
1 ⊆ A1(B

′) and ‖A∗
1‖ = ‖A1(B

′)‖. It now follows from [7, Lemma A.1] that

A∗
1 = A1(B

′). It can similarly be shown that A∗
2 = A \A1(B

′). This proves that the theorem

holds for t = 2.

45

Now suppose the theorem holds when the number of writes is k. Consider the case for

k + 1 writes. Suppose v∗k+1 satisfies ∆(v∗k+1) = v∗k+1 · ∆(v∗k). Define the boundary for the

first-write region as

B
′
1,k+1 =

{
x ∈ A :

n

∏
j=1

(ℓ j − x j) = v∗k+1 · ‖A‖
}

(3.33)

so that the first write region is A1,k+1 = H
(
v∗k+1

)
. Let V∗

fix,k (ℓ1 − x1, . . . , ℓn − xn) denote the

optimal codebook cardinality for the last k writes in the region [x1, ℓ1]× . . . × [xn, ℓn]. Then

the codebook cardinality on each subsequent write is given by

Vfix,k+1 6 min

{
‖A1,k+1‖ , min

x∈A1,k+1

V∗
fix,k (ℓ1 − x1, . . . , ℓn − xn)

}
(3.34)

= min

{
∥∥H(v∗k+1)

∥∥ , min
x∈A1,k+1

∆(v∗k) ·
n

∏
j=1

(ℓ j − x j)

}
(3.35)

= min

{
∥∥H(v∗k+1)

∥∥ , min
x∈B′

1,k+1

∆(v∗k) ·
n

∏
j=1

(ℓ j − x j)

}
(3.36)

= min
{
∆(v∗k+1) · ‖A‖ , ∆(v∗k) · v∗k+1 · ‖A‖

}
(3.37)

= ∆(v∗k+1) · ‖A‖ = ∆(v∗k) · v∗k+1 · ‖A‖ . (3.38)

Equality (3.35) follows from the induction hypothesis, (3.36) follows from the fact that the min-

imum occurs when x lies on B′
1,k+1, and (3.38) follows from (3.21). In a manner similar to the

proof of [7, Theorem III.4], it can be shown that the optimal boundary for the ith subsequent

write after storing a point x′ ∈ B′
1,k+1 on the first write is given by

B
∗
i+1,k+1 = x′ +B

∗
i,k

(
ℓ1 − x′1, . . . , ℓn − x′n

)
(3.39)

=

{
x ∈ A :

n

∏
j=1

(ℓ j − x j) =
k

∏
m=k−i+1

v∗m · v∗k+1 · ‖A‖
}

(3.40)

=

{
x ∈ A :

n

∏
j=1

(ℓ j − x j) =
k+1

∏
m=k−i+1

v∗m · ‖A‖
}

. (3.41)

From (3.41), B∗
i+1,k+1 is independent of x′, the point stored on the first write, and the inequality

in (3.34) is in fact an equality. Thus, the claim in the theorem is true for k + 1 writes. This

proves the theorem by induction.

3.3.1 Computing the optimal hyperbola parameters, v∗t

The hyperbola parameters for optimal fixed-rate write-regions can be computed easily

for the case of n = 2 cells.

46

Proposition 3.3.4 For n = 2 cells, the optimal hyperbola parameters, v∗k , are given by the

recurrence relation

v∗k =
−1

W−1

(
− exp

(
−1 −

k−1

∏
m=1

v∗m

)) (3.42)

Proof. For convenience of notation, we drop the asterisk from v∗k . For k > 2, the optimal

hyperbola parameter, vk, satisfies

∆(vk) = vk · ∆(vk−1) = vk ·Θk

where Θk ! ∏
k−1
m=1 vm. Using Lemma 3.3.2 for n = 2, we get

−1

vk
· exp

(−1

vk

)
= −e−(1+Θk) ! ξk .

By the definition of Lambert W function, −v−1
k = W(ξk). However, W0 (ξk) 6= −vk

−1

since W0(x) > −1 for all x. By induction on k, ξk lies in the domain of W−1. Therefore

vk = − (W−1 (ξk))
−1 ∈ (0, 1].

Acknowledgments

This chapter is in part a reprint of the material in the paper: Aman Bhatia, Minghai Qin,

Aravind Iyengar, Brian Kurkoski, and Paul H. Siegel, “Lattice-based WOM codes for multilevel

flash memories”, IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 933-
945, May 2014.

Chapter 4

Write-once memories with retained

messages

4.1 Introduction and Main Results

In Chapter 3, we gave explicit WOM code constructions for the canonical WOMmodel.

In this chapter, we continue the discussion of WOM model and extend it to some practical

scenarios.

Following the work by Rivest and Shamir on the binary WOM, many papers on WOM

codes appeared during the 1980s and 1990s, (e.g., [27,28,36,91]) as well as in the past few years

(e.g., [30,43,51,88,93]). Among all of the existing models for rewriting on flash memories, one

assumes that a new message is stored in the memory on each write, effectively overwriting

previously written messages. This can be a drawback in some applications, however, if the

user wishes to retain access to one or more previously written messages. For example, suppose

that a police station keeps traffic surveillance videos for up to a certain amount of time, say 30

days. This requires that the most current video as well as the videos from the previous 29 days

be retrievable at any time. If the entire set of 30 daily videos are treated as a completely new

message to be written on top of the existing content of the memory cells, the writing efficiency

will be low, because the same message is being written multiple times via different codewords.

This motivates the model of rewriting flash memories with retained messages. This

model is related to the work on buffer codes and trajectory codes [43, 45], which are capable of

remembering the most recent values stored in the memories. To make the problem simple, in

this chapter we consider rewriting on a binary WOM, where after each write the current message

47

48

and some of the previously written messages need to be retrievable. We aim to characterize the

optimal rate trade-off and find code constructions focusing on three concrete problems motivated

by different scenarios in real storage systems.

In Section 4.2, we formulate the problem of retaining two days of video surveillance as

follows.

Problem1. Consecutive two-step WOM

On the i-th write, i ∈ [1 : t], encoder i stores (Mi−1, Mi) (M0 = ∅) and decoder i has to recover

both messages.

Remark 4.1.1. In this chapter, the notations are inherited from Chapter 3. Since we assume that

the number of writes is fixed to be t, for simplicity we will denote Ri,t, the rate on the i-th write

for i ∈ [1 : t], by Ri if no confusion could occur.

By ignoring the correlation between message pairs over multiple writes and treating

(Mi−1, Mi) as a new message, one can achieve roughly 1
2 log2(t + 1) in sum-rate using a tra-

ditional WOM code, since every Mi, i ∈ [1 : t − 1], is written twice. Is this optimal? We

establish in Theorem 4.2.3 that the sum-capacity of the consecutive two-step WOM model is

log2

(⌈
t
2

⌉
+ 1

)
, which can be twice as large as 1

2 log2(t + 1) for large t. How can we fully

exploit the correlation among messages? We propose in Construction 4.2.1 a very simple code,

which turns out to be sum-rate optimal. The idea is to partition the set of n cells into two blocks

and to update the new message alternately on the two blocks, as shown in Table 4.1. An outer

bound on the capacity region for general t is also derived.

Table 4.1: Writing arrangement of the consecutive 2-step WOM code

block 1 block 2

1st write M1

2nd write M1 M2

3rd write M3 M2

4th write M3 M4

5th write M5 M4

Now suppose the police station wishes to keep track of the video from the most recent

day on which there was a traffic accident, as well as the traffic video for the current day. Since

the traffic accident is unpredictable, we cannot tell which part of the video will be kept for the

next day until the end of the current day. This is the situation in which the retrievable message for

the next write can be an arbitrary one from the two messages currently written in the memory.

To be more concrete, we formulate the problem as follows.

49

Problem2. Arbitrary two-step WOM

On the first write, encoder 1 stores message M1 and decoder 1 has to recover M1. On the i-th

write, i ∈ [2 : t], encoder i stores (Ms(i), Mi), where Ms(i) ∈ {Ms(i−1), Mi−1} is arbitrarily

chosen from the two messages stored on the (i − 1)-st write, and decoder i has to recover both

messages.

For this problem, an idea arises naturally from the construction for the consecutive two-

step WOM.With Table 4.1 in mind, we store M1 and M2 the same way as before for the first two

writes. If (M1, M3) is stored on the third write, we update M3 on block 2. If instead (M2, M3)

is stored on the third write, we update M3 on block 1. It can be shown that the sum-rate is

roughly 1
2 log2(t) in the worst case scenario. Can we do better than this? In Section 4.3, we

construct a code by enlarging the number of blocks, and we show that it can strictly outperform

the above code. Moreover, it is shown to be asymptotically optimal in t. A simple outer bound

on the capacity region and an upper bound on the sum-capacity are also presented.

Now we introduce the last problem. Suppose the surveillance videos are layered as high-

fidelity and low-fidelity ones, e.g., encoded by the H.264 standard. On each day, all low-fidelity

videos from previous days and the high-fidelity video from the current day should be stored.

This motivates the following.

Problem3. Incremental WOM

We rewrite each message Mi, i ∈ [1 : t], as two independent parts: the common message

Mc
i ∈ [1 : 2nRc

i] and the private message M
p
i ∈ [1 : 2nR

p
i], i.e., Mi = (Mc

i , M
p
i). On the

i-th write, encoder i stores all the previous common messages and its own full message, i.e.,

(Mc
1, Mc

2, . . . , Mc
i , M

p
i), and decoder i has to recover all of them.

One extreme special case of this problem is Mc
i = ∅, i ∈ [1 : t], i.e., there is no common

message. Then we go back to the traditional t-write WOM. The other extreme special case is

M
p
i = ∅, i ∈ [1 : t], i.e., there is no private message. Since all the previously written messages

have to be recoverable by the current decoder, the performance is fundamentally limited by the

last write. It can be shown that the capacity region for this extreme problem is ∑
t
i=1 Ri 6 1.

Thus, an obvious choice to maximize the sum-rate is to set all the common-message rates to be

zero and the sum-capacity is readily established as log2(t + 1). In Section 4.4, we establish

the optimal trade-off between the common-message sum-rate Rc
sum := ∑

n
i=1 Rc

i and the private-

message sum-rate R
p
sum := ∑

n
i=1 R

p
i .

Moreover, we investigate the symmetric sum-capacity C3
ssum(t), defined as the maximum

50

achievable sum-rate when Rc
1 = R

p
1 = Rc

2 = R
p
2 = · · · = Rc

t = R
p
t = R. Since the prob-

lem formulation is apparently a combination of two completely solved extreme problems, one

might think that a time-sharing strategy between the two optimal coding schemes would be opti-

mal. Surprisingly, in Section 4.4, we construct a code that strictly outperforms the time-sharing

code and is asymptotically optimal in t. The performance of this construction is illustrated in

Figure 4.2.

4.2 Consecutive Two-Step WOM

In this section we establish the sum-capacity as well as an outer bound and an inner

bound on the capacity region for the consecutive two-step WOM defined in Problem 1.

Proposition 4.2.1.(Outer bound on the capacity region) If a rate tuple (R1, R2, . . . , Rt) is achiev-

able for the t-write consecutive two-step WOM, it must satisfy R1 6 H(Y1), R1 + R2 6

H(Y2), R2 + R3 6 H(Y3|Y1), R3 + R4 6 H(Y4|Y2), . . . , Rt−1 + Rt 6 H(Yt|Yt−2) for some

pmf p(x1)p(x2|y1) · · · p(xt|yt−1).

Proof. See Appendix.

Proposition 4.2.2.(Inner bound on the capacity region) For even t, let s = t/2. If two rate tuples

(R′
1, . . . , R′

s) and (R′′
1 , . . . , R′′

s) are achievable for the s-write WOM, then for all λ ∈ [0, 1], with

˘ = 1 − λ, the rate tuple (R1, . . . , Rt) = (λR′
1, ˘R′′

1 , λR′
2, ˘R′′

2 , . . . , λR′
s, ˘R′′

s) is achievable for

the t-write consecutive two-step WOM.

For odd t, let s = (t − 1)/2. If the rate tuple (R′
1, . . . , R′

s+1) is achievable for the

(s + 1)-write WOM and the rate tuple (R′′
1 , . . . , R′′

s) is achievable for the s-write WOM, then

for all λ ∈ [0, 1], the rate tuple (R1, . . . , Rt) = (λR′
1, ˘R′′

1 , λR′
2, ˘R′′

2 , . . . , λR′
s, ˘R′′

s , λR′
s+1) is

achievable for the t-write consecutive two-step WOM.

Proof. See Appendix.

The above outer and inner bounds coincide at the sum-rate and establish the sum-

capacity of the consecutive two-step WOM for every t.

Theorem 4.2.3. The sum-capacity C1
sum(t) of the t-write consecutive two-step WOM is

C1
sum(t) = log2

(⌈
t

2

⌉
+ 1

)
.

51

Proof. See Appendix.

In the following, we give a code construction1 for even t, which is sum-rate optimal. It

also serves as part of the proof for Proposition 4.2.2. Partition the set of all cells into two blocks

and write odd messages to one block on odd writes and even messages to the other block on even

writes, as shown in Table 4.1. Thus, each block of cells can reliably store t/2 messages using a

traditional (t/2)-write WOM code and decoder i can recover both messages (Mi−1, Mi) stored

in the two blocks.

Construction 4.2.1 Let t and n be positive integers, with t even, and let λ ∈ [0, 1] such that

λn is an integer. Let ˘ = 1 − λ and s = t/2. Suppose that the cell levels after the i-th write,

i ∈ [1 : t], are (y′
i, y′′

i), where y′
i and y′′

i denote blocks of lengths λn and (1− λ)n, respectively.

Let C1 be a [λn, s; 2λnR′
1 , . . . , 2λnR′

s] WOM code of length λn with encoder E ′
i (mi, y′

i−1), mi ∈
[1 : 2λnR′

i], on the i-th write, i ∈ [1 : s]. Let C2 be a [˘n, s; 2˘nR′′
1 , . . . , 2˘nR′′

s] WOM code of

length ˘n with encoder E ′′
i (mi, y′′

i−1), mi ∈ [1 : 2˘nR′′
i], on the i-th write, i ∈ [1 : s]. Let

R2i−1 = λR′
i and R2i = ˘R′′

i , ∀i ∈ [1 : s]. An [n, t; 2nR1 , . . . , 2nRt] consecutive two-step WOM

code C of length n is constructed as follows. The cells are partitioned into block 1 with length λn

and block 2 with length ˘n. On the i-th write, the encoder i assigns the codeword xi = (x′i, x′′i)

as follows:

1. For odd i = 2 j − 1, write message mi ∈ [1 : 2nRi] to block 1 using the encoder on the

j-th write from C1 and keep block 2 unchanged, i.e.,

x′i = E ′
j(mi, y′

i−1).

2. For even i = 2 j, write message mi ∈ [1 : 2nRi] to block 2 using the encoder on the j-th

write from C2 and keep block 1 unchanged, i.e.,

x′′i = E ′′
j (mi, y′′

i−1).

"

It can be seen that C is a consecutive two-step WOM code. If R′
i = R′′

i , ∀i ∈ [1 : s], the

sum-rate of C in Construction 4.2.1 is ∑
t
i=1 Rt = ∑

s
i=1 λR′

i + ∑
s
i=1 ˘R′′

i = ∑
s
i=1 R′

i. Therefore,

1In all the following constructions, the decoders of the WOM codes for Problems 1, 2, and 3 are similar to the

decoders of the traditional WOM codes that are assumed to exist in each construction, and thus we omit the details

of the decoders here.

52

if C1 and C2 are sum-rate optimal, then C achieves the sum-capacity log2(
t
2 + 1). For odd t, a

consecutive two-step WOM code can be constructed similarly.

It is readily to generalize Construction 4.2.1 to the problem of consecutive k-step WOM,

where on the i-th write, i ∈ [1 : t], encoder i stores (Mi−k+1, Mi−k+2, . . . , Mi) (Mi = ∅, ∀i 6

0) and decoder i has to recover all of the k messages. Furthermore, the sum-capacity of consec-

utive k-step WOM can be expressed as the following.

Corollary 4.2.4. The sum-capacity C1
sum(k, t) of the t-write consecutive k-step WOM is

C1
sum(k, t) = log2

(⌈
t

k

⌉
+ 1

)
.

4.3 Arbitrary Two-Step WOM

In this section we study the arbitrary two-step WOM defined in Problem 2. Note that

if a WOM code C is a t-write arbitrary two-step WOM code, then we can construct from it a

t-write consecutive two-step WOM code. Therefore, the sum-capacity C2
sum(t) of the arbitrary

two-step WOM is upper bounded as C2
sum(t) 6 C1

sum(t) = log2(
⌈

t
2

⌉
+ 1).

Now we give a construction that strictly outperforms the construction in the introduction

and achieves 2/3 of C1
sum(t) of the consecutive two-step WOM, while keeping track of arbitrary

messages as required. Partition the set of all cells into three blocks as illustrated in Table 4.2. In

the first two blocks, we write in the exactly same manner as for the consecutive two-step WOM.

The third block is updated with Ms(i) every other write to help retrieve the desired message of

the arbitrary demand. This can be improved by further enlarging the number of blocks as given

in Construction 4.3.1.

Table 4.2: Writing arrangement of the arbitrary 2-step WOM code

block 1 block 2 block 3

1st write M1

2nd write M1 M2 Ms(2)

3rd write M3 M2 Ms(2)

4th write M3 M4 Ms(4)

5th write M5 M4 Ms(4)

Construction 4.3.1 Let ℓ and t be positive integers such that t is a multiple of ℓ. The cells

consist of ℓ+ 1 blocks, each of size n′; thus n = n′(l + 1). After the i-th write, i ∈ [1 : t],

the cell levels are (y
(1)
i , y

(2)
i , . . . , y

(ℓ+1)
i), where y

(j)
i , j ∈ [1 : ℓ+ 1], denotes the j-th block of

53

length-n′ cells. Let CW be an [n′, t/ℓ; 2n′R′
1 , . . . , 2

n′R′
t/ℓ] WOM code of length n′ with encoder

E ′
i (mi, yi−1), mi ∈ [1 : 2n′R′

i], on the i-th write, i ∈ [1 : t/ℓ]. An [n, t; 2nR1 , 2nR2 , . . . , 2nRt]

arbitrary two-step WOM code C is constructed, where Ri = R′
⌈i/ℓ⌉, i ∈ [1 : t]. On the i-th write,

i ∈ [1 : t], the encoder i assigns the codeword xi = (x
(1)
i , x

(2)
i , . . . , x

(ℓ+1)
i) using the following

rules. Let h = (i − 1 mod ℓ) and j = ⌈ i
ℓ⌉.

1. Write message mi ∈ [1 : 2n′Ri] to the (h + 1)-st block, using the encoder on the j-th write

from CW and keep the rest of the first n′ℓ cells unchanged, i.e.,

x
(h+1)
i = E ′

j(mi, y
(h+1)
i−1).

2. If h = 0 and i 6= 1, write message ms(i) to the (ℓ+ 1)-st block, using the encoder on the

(j − 1)-st write from CW , i.e.,

x
(ℓ+1)
i = E ′

j−1(ms(i), y
(ℓ+1)
i−1).

Otherwise, the last block is kept unchanged.

"

Proposition 4.3.1. If the WOM code CW is sum-rate optimal, then the code C in Construc-

tion 4.3.1 is an arbitrary two-step WOM code with sum-rate

R2
sum(t) =

ℓ

ℓ+ 1
log2

(
t

ℓ
+ 1

)
.

For large t, let ℓ = log2 t. Then the asymptotic sum-rate is

R2
sum(t) =

log2 t
log2 t+1 log2(

t
log2 t + 1) = log2 t − O(log2(log2 t)).

Since an upper bound on the sum-capacity is log2

(⌈
t
2

⌉
+ 1

)
, this construction is asymptotically

optimal in t.

If t is not a multiple of ℓ we slightly modify Construction 4.3.1. We use a
⌈

t
ℓ

⌉
-write

WOM code for the first (t mod ℓ) blocks and a
⌊

t
ℓ

⌋
-write WOM code for the last (ℓ + 1 −

(t mod ℓ)) blocks. The constructions yield the following corollary.

Corollary 4.3.2 A lower bound of C2
sum(t) is given by

max
ℓ∈[1:t]

(t mod ℓ) log2(
⌈

t
ℓ

⌉
+ 1) + (ℓ− (t mod ℓ)) log2(

⌊
t
ℓ

⌋
+ 1)

ℓ+ 1
.

Figure 4.1 shows the upper and lower bounds on the value of C2
sum(t).

Finally, for the particular case of t = 3 we have a different construction achieving sum-

rate 1.2 while we can show that an upper bound is 1.5. The construction is presented next.

54

0 50 100 150 200
0

1

2

3

4

5

6

7

 t

 C
sum

2
(t) lower bound

 C
sum

2
(t) upper bound

Figure 4.1: Bounds on C2
sum(t)

4.4 Incremental WOM

We study the incremental WOM model in Problem 3.

Theorem 4.4.1. The sum-capacity of the t-write incremental WOM is

C3
sum(t) = log2(t + 1).

The optimal trade-off between the common-message sum-rate Rc
sum := ∑

n
i=1 Rc

i and the private-

message sum-rate R
p
sum := ∑

n
i=1 R

p
i is the set of rate pairs (Rc

sum, R
p
sum) such that

Rc
sum 6

t−1

∏
i=1

pi,

Rc
sum + R

p
sum 6

t−1

∏
i=1

pi +
t−1

∑
i=1

(
i−1

∏
k=1

pk

)
H(pi)

for some p1, p2, . . . , pt−1 ∈ [1
2 , 1].

Proof. Theorem 4.4.1 follows by noting that Rc
1 = Rc

2 = · · · = Rc
t−1 = 0 is optimal for the

sum-rate trade-off.

55

Nowwe focus on the symmetric sum-capacity C3
ssum(t), defined as the maximum achiev-

able sum-rate when Rc
1 = R

p
1 = Rc

2 = R
p
2 = · · · = Rc

t = R
p
t = R. We denoted by [n, t; 2nR]

the t-write symmetric incremental WOM code. The following lemma gives an upper bound on

the symmetric sum-capacity.

Lemma 4.4.2. The symmetric sum-capacity of the t-write incremental WOM is upper bounded

as

C3
ssum(t) 6 2 − 2

t + 1
< 2.

Proof. Let C be an [n, t; (2nR, 2nR)] symmetric t-write incremental WOM code. On

each write, the rate of all recoverable information is not greater than 1. In particular, on the

t-th write, the t + 1 messages Mc
1, Mc

2, . . . , Mc
t , M

p
t are recoverable. Therefore, (t + 1)R 6 1,

which gives R 6 1
t+1 , and hence 2tR 6 2t

t+1 = 2 − 2
t+1 < 2.

In the following, we give a construction of t-write symmetric incremental WOM codes.

To illustrate the basic idea, we show a construction for t = 3. Suppose that every private/common

message represents k = nR bits. Partition the n cells into three blocks. Write Mc
1 to the first

block. Partition M
p
1 into two messages M

p
11 with λk bits and M

p
12 with (1 − λ)k bits. Write

M
p
11 and Mc

2 to the second block and M
p
12, M

p
2 , (Mc

3, M
p
3) to the third block. Thus, in the first

block we use a one-write WOM code, in the second block we use a two-write WOM code and

in the third block we use a three-write WOM code, as illustrated in Table 4.3.

Table 4.3: Writing arrangement of the 3-write incremental WOM code

block 1 block 2 block 3

1st write Mc
1 M

p
11 M

p
12

2nd write Mc
1 Mc

2 M
p
2

3rd write Mc
1 Mc

2 (Mc
3, M

p
3)

Suppose that the lengths of the first, second, and third blocks are n1, n2, and n3, re-

spectively. For the fixed k, the problem of maximizing the symmetric sum-rate is identical to

minimizing the value of n = n1 + n2 + n3 as a function of λ. Now we state the construction

formally and then present the symmetric sum-rate analysis.

Construction 4.4.1 Let k be a positive integer, λ ∈ [0, 1], and n1 = k. Suppose that the cell

levels after the i-th write are (y′
i, y′′

i , y′′′
i), where y′

i, y′′
i , and y′′′

i denote blocks of length n1, n2,

and n3, respectively. Let C1 be an [n1, 1; 2k]WOM code with encoder E ′
1(m1) for the first write,

56

C2 be an [n2, 2; 2λk, 2k] WOM code with encoders E ′′
i (mi, y′′

i−1), i ∈ [1 : 2], for the first two

writes, and C3 be an [n3, 3; 2(1−λ)k, 2k, 22k]WOM code with encoder E ′′′
i (mi, y′′′

i−1), i ∈ [1 : 3],

for all three writes. An [n, 3; (2k , 2k)] symmetric incremental WOM code C is constructed. On

the i-th write, encoder i assigns the codeword xi = (x′i, x′′i , x′′′i) using the following encoding

rules:

1. If i = 1, then write message mc
1 ∈ [1 : 2k] to block 1 using the encoder from C1, write

message m
p
11 ∈ [1 : 2λk] to block 2 using the encoder for the first write from C2, and write

message m
p
12 ∈ [1 : 2(1−λ)k] to block 3 using the encoder for the first write from C3, i.e.,

(x′1, x′′1 , x′′′1) =
(
E ′

1(m
c
1), E ′′

1

(
m

p
11

)
, E ′′′

1

(
m

p
12

))
.

2. If i = 2, then the first n1 cells are unchanged, write message mc
2 ∈ [1 : 2k] to block 2

using the encoder for the second write from C2, and write message m
p
2 ∈ [1 : 2k] to block

3 using the encoder for the second write from C3, i.e.,

(x′′2 , x′′′2) =
(
E ′′

2 (mc
2, y′′

1) , E ′′′
2

(
m

p
2 , y′′′

1

))
.

3. If i = 3, then the first n1 + n2 cells are unchanged and write message (m
c
3, m

p
3) ∈ [1 :

22k] to block 3, using the encoder for the third write from C3, i.e.,

x′′′3 = E ′′′
3

(
(mc

3, m
p
3), y′′′

2

)
.

"

The symmetric sum-rate of the code C is given by 6k/n. As k is fixed, this value is

maximized when n is minimized. We denote by n2(λ) the minimum length of an [n2, 2; 2λk, 2k]

WOMcode and similarly n3(λ) is the minimum length of an [n3, 3; 2(1−λ)k, 2k, 22k]WOM code.

Then, the problem is to find the value of minλ∈[0,1](n2(λ) + n3(λ)).

Proposition 4.4.3. The minimum value of n in Construction 4.4.1 is n = 4.386k, which is

achieved by setting λ = 0.3116. The corresponding symmetric sum-rate is R3
ssum(3) = 1.3679.

Proof. See Appendix.

We are now ready to generalize the construction for an arbitrary number of writes t. Each

of the messages Mc
1, M

p
1 , . . . , Mc

t , M
p
t represents k = nR bits, and the n cells are partitioned

57

Table 4.4: Writing arrangement of the t-write incremental WOM code

block 1 · · · · · · · · · · · · · · · block t

1 Mc
1 M

p
11 M

p
12 · · · · · · M

p
1,t−2 M

p
1,t−1

2 Mc
1 Mc

2 M
p
21 · · · · · · M

p
2,t−3 M

p
2,t−2

3 Mc
1 Mc

2 Mc
3 M

p
31 · · · M

p
3,t−4 M

p
3,t−3

...
...

...
...

...
. . .

...
...

Mc
1 Mc

2 Mc
3 Mc

4 · · · M
p
t−2,1 M

p
t−2,2

Mc
1 Mc

2 Mc
3 Mc

4 · · · Mc
t−1 M

p
t−1

t Mc
1 Mc

2 Mc
3 Mc

4 · · · Mc
t−1 (Mc

t , M
p
t)

into t blocks. Message M
p
i , i ∈ [1 : t − 2], is partitioned into t− i parts (M

p
i1, M

p
i2, . . . , M

p
i,t−i).

The arrangement of these messages when written into the memory is depicted in Table 4.4.

According to this layout, the i-th block, for i ∈ [1 : t], consists of ni cells and is

used to construct an i-write WOM code. Assume that message M
p
i j for i ∈ [1 : t − 2], j ∈

[1 : t − i] represents λi, jk bits, where ∑
t−i
j=1 λi, j = 1. Then for i ∈ [2 : t − 1], messages

(M
p
1,i−1, M

p
2,i−2, . . . , M

p
i−1,1, Mc

i) will be written as an i-write WOM code of length ni, and

messages
(

M
p
1,t−1, M

p
2,t−2, . . . , M

p
t−2,2, M

p
t−1, (Mc

t , M
p
t)
)
will be written as a t-write WOM

code of length nt, where (Mc
t , M

p
t) represents 2k bits.

Similarly to the three-write case, the symmetric sum-rate of the t-write incremental

WOM code is R3
ssum(t) =

2tk
n . If k is fixed, R3

ssum(t) is maximized when n is minimized. For

j ∈ [2 : t], let λ j be a length-(j − 1) vector defined as

λ j = (λ1, j−1, λ2, j−2, . . . , λ j−1,1) ∈ [0, 1] j−1,

where ∑
t−i
h=1 λi,h = 1, ∀i ∈ [1 : t − 1]. Let n1 = k be fixed and we denote by n j(λ j) to be

the minimum length of an [n j, j; 2λ1, j−1k, 2λ2, j−2k, . . . , 2λ j−1,1k, 2k]WOM code for j ∈ [2 : t − 1]

and nt(λt) is the minimum length of an [nt, t; 2λ1,t−1k, 2λ2,t−2k, . . . , 2λt−2,2k, 2k, 22k] WOM code.

According to Table 4.4, we seek to find the minimum total block length N∗
t , which is equivalent

to solving the following minimization problem

Find N∗
t = min

λ2 ,...,λt

{
n1 +

t

∑
j=2

n j(λ j)

}
, (P1)

subject to λi,h ∈ [0, 1], ∑
t−i
h=1 λi,h = 1, ∀i ∈ [1 : t − 1], h ∈ [1 : t − i].

The solution to Problem (P1) is closely related to the following minimization problem.

Definition 4.4.4. Let pi = (pi,i+1, pi,i+2, . . . , pi,t) ∈ [0, 1
2]

t−i, for i ∈ [1 : t − 1], be t − 1

58

vectors of decreasing length. Let

ft(p1, . . . , pt−1)
def
= 1 +

(
t−1

∑
j=2

1

∏
j−1
ℓ=1(1 − pℓ, j)

)
+

2

∏
t−1
ℓ=1(1 − pℓ,t)

,

and define the minimization problem

minimize ft(p1, . . . , pt−1), (P2)

with respect to p1, . . . , pt−1, subject to the following conditions

pi,h ∈ [0,
1

2
], ∀i ∈ [1 : t − 1], h ∈ [i + 1 : t],

and (
t−1

∑
h=i+1

h(pi,h)

∏
h−1
s=i (1 − ps,h)

)
+

h(pi,t)(
∏

t−2
s=i (1 − ps,t)

)
h(pt−1,t)

= 1,

for all i ∈ [1 : t − 2], where pt−1,t satisfies
h(pt−1,t)
1−pt−1,t

= 1
2 .

Let F∗
t be the minimum value of Problem (P2). A vector (p1, . . . , pt−1) is called an

optimal solution or simply optimal to problem (P2) if ft(p1, . . . , pt−1) = F∗
t .

Lemma 4.4.5. The minimum block length N∗
t for Problem (P1) is

N∗
t = kF∗

t ,

Furthermore, the symmetric sum-capacity of incremental WOM satisfies C3
ssum(t) >

2t
F∗

t
.

Proof. See Appendix.

According to Lemma 4.4.5, we are left to solve Problem (P2). Theorem 4.4.6 recur-

sively solves Problem (P2). Let p̂i = (p̂i,i+1, p̂i,i+1, . . . , p̂i,t+1), for i ∈ [1 : t], be optimal for

the (t + 1)-write incremental WOM code, and let p̃i = (p̃i,i+1, . . . , p̃i,t) for i ∈ [1 : t − 1],

be optimal for the t-write incremental WOM code. Then an optimal (p̂1, . . . , p̂t) can be de-

rived from the optimal (p̃1, . . . , p̃t−1). Since the solution when t = 3 is known, the solution to

Problem (P2) for arbitrary t can be derived accordingly.

Theorem 4.4.6. Let p̂i = (p̂i,i+1, p̂i,i+2, . . . , p̂i,t+1) ∈ [0, 1
2]

t−i+1 for i ∈ [1 : t]. Let p̃i =

(p̃i,i+1, . . . , p̃i,t) ∈ [0, 1
2]

t−i for i ∈ [1 : t − 1]. Suppose (p̃1, . . . , p̃t−1) is optimal, then there

exists an optimal (p̂1, . . . , p̂t), such that

p̂i = p̃i−1, ∀i ∈ [2 : t],

and p̂1 = (p1,2, . . . , p1,t), where ∀ j ∈ [2 : t], p1, j satisfies
h(p1, j)
1−p1, j

= 1
F∗

t
.

59

Proof. See Appendix.

Figure 4.2 shows the achievable symmetric sum-rate of the time-sharing scheme de-

scribed in the introduction and our construction based on the optimal partition strategy, λi, j,

i ∈ [1 : t − 2], j ∈ [1 : t − i], that maximizes R3
ssum(t).

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

2

number of writes t

b
it
s
/c

e
ll

Incremental WOM

time−sharing

our construction

upper bound

Figure 4.2: Lower and upper bounds on C3
ssum(t)

4.5 Conclusion

Write-once memory (WOM) is a binary storage medium in which each memory cell is

initially in state 0 and can be irreversibly programmed to state 1. This chapter studies the problem

of writing multiple messages into a WOM. Instead of writing a new message (and obliterating

old ones) as in the traditional setup, the user wishes to retain access to some of the previously

written messages. The capacity region is studied and code constructions are proposed for three

canonical cases.

4.6 Appendix A

Proof of Proposition 4.4.3. Let us first find the value of n2(λ). That is, we find aWOM

code of minimum length n2(λ) such that its rate on the first write is R1 = λk/n2(λ) and its rate

on the second write is R2 = k/n2(λ). Thus, we have R1/R2 = λ. Since the capacity region

60

of the two-write WOM is given by {(R1, R2)|R1 6 h(p1), R2 6 p1, for some p1 ∈ [1/2, 1]},
and we find a WOM code of minimum length, the ratio of R1 and R2 satisfies

h(p1)/p1 = λ, (4.1)

for some p1 ∈ [1/2, 1]. Note that if λ is positive then equation (4.1) always has a solution,

which we denote by p1(λ). Now, we deduce from R2 = k/n2 = p1 that n2(λ) = k/p1(λ).

Similarly, the capacity region of the three-write WOM is given by {(R1, R2, R3)|R1 6

h(p2), R2 6 p2h(p3), R3 6 p2 p3, for some p2, p3 ∈ [1/2, 1]}. Thus, it can be shown that the
values of p2, p3 ∈ [1/2, 1] that give the minimum code length for n3(λ) satisfy

h(p2)/(p2h(p3)) = 1 − λ, (4.2)

h(p3)/p3 = 1/2. (4.3)

The value of p3 is independent of λ and is given by p3 = 0.9055, and p2(λ) is the solution to

equation (4.2). Hence, n3(λ) satisfies n3(λ) = 2k/((p2(λ)p3).

We are now left to solve the minimization problem

minimize

(
1

p1(λ)
+

2

p2(λ)p3

)
, (4.4)

with λ ∈ [0, 1], where p1(λ), p2(λ), and p3 satisfy equations (4.1), (4.2), and (4.3) respec-

tively.

From Equation (4.3), p3 was already calculated numerically. From Equation (4.1)

and (4.2), we have
h(p1(λ))

p1(λ)
+

h(p2(λ))

p2(λ)h(p3)
= 1.

Therefore, we can formulate the minimization problem as

minimize

(
1

p1
+

2

p2 p3

)

with p1, p2 ∈ [1
2 , 1], subject to

h(p1)

p1
+

h(p2)

p2h(p3)
= 1, where p3 = 0.9055.

It follows that p1 = p2 = 0.9479 and we get λ = h(p1)/p1 = h(p3)/(h(p3) + 1) =

0.3116. Therefore, n = n1 + n2(λ) + n3(λ) = 4.386k and R3
ssum(3) satisfies

61

R3
ssum(3) = 6R =

6k

n
=

6k

n1 + n2(λ) + n3(λ)
= 1.3679.

This completes the proof.

Proof of Lemma 4.4.5. First, remember that the capacity region of a j-write WOM is

CWOM(j) =
{
(R1, . . . , R j)|R1 6 h(p1, j), R2 6 (1 − p1, j)h(p2, j),

. . . , R j−1 6
(j−2

∏
ℓ=1

(1 − pℓ, j)
)

h(p j−1, j), R j 6
j−1

∏
ℓ=1

(1 − pℓ, j),

where 0 6 p1, j, . . . , p j−1, j 6 1/2
}

.

In this particular construction, the j-th block for j ∈ [2 : t − 1] of length n j is an

[n j, j; 2λ1, j−1k, 2λ2, j−2k, . . . , 2λ j−1,1k, 2k] WOM code. Thus, the ratio between the rate of the ℓ-th

write, Rℓ, and the last write, R j, is
Rℓ
R j

= λℓ, j−ℓ, ∀ℓ ∈ [1 : j − 1]. If such a WOM code has

minimum length n j(λ j), then all inequalities on Rℓ, ∀ℓ ∈ [1 : j] in the capacity region CWOM(j)

turn to equality, and therefore
Rℓ
R j

=
h(pℓ, j)

∏
j−1
s=ℓ(1−ps, j)

. Thus we have

λℓ, j−ℓ =
h(pℓ, j)

∏
j−1
s=ℓ(1 − ps, j)

, ∀ j ∈ [2 : t − 1], ℓ ∈ [1 : j − 1],

and by substitution of indices we have

λℓ, j =
h(pℓ,ℓ+ j)

∏
ℓ+ j−1
s=ℓ (1 − ps,ℓ+ j)

, ∀ j ∈ [1 : t − 2], ℓ ∈ [1 : t − j].

From the definition of the vectors λ j for j ∈ [2 : t], the values of p1, j, . . . , p j−1, j are a function

of only the entries in the vector λ j, and thus we can denote pℓ, j(λ j), ∀ j ∈ [2 : t − 1], ℓ ∈ [1 :

j − 1].

Moreover, since on the last write k bits are written, we get R j =
k

n j(λ j)
= ∏

j−1
ℓ=1(1 −

pℓ, j(λ j)). Thus,

n j(λ j) =
k

∏
j−1
ℓ=1(1 − pℓ, j(λ j))

.

Similarly, for j = t, the t-th block is an [nt, t; 2λ1,t−1k, 2λ2,t−2k,

. . . , 2λt−2,2k, 2k , 22k] WOM code. The ratio between the rate of the ℓ-th write and the (t − 1)-st

write is
Rℓ

Rt−1
= λℓ,t−ℓ, ∀ℓ ∈ [1 : t − 2]. For such a WOM code with minimum length nt(λt),

we have

λℓ,t−ℓ =
Rℓ

Rt−1
=

h(pℓ,t)

∏
t−2
s=ℓ(1 − ps,t)h(pt−1,t)

, ∀ℓ ∈ [1 : t − 2]

62

and thus pℓ,t, which is a function of λt, is denoted by pℓ,t(λt). The value of pt−1,t satisfies

h(pt−1,t)
1−pt−1,t

= 1
2 , and for the simplicity of the coming notation will be denoted by pt−1,t(λt). There-

fore, as before, we get that

nt(λt) =
2k

∏
t−1
ℓ=1(1 − pℓ,t(λt))

.

Now we get that that total number of cell is expressed by

n = k +
t

∑
j=2

n j(λ j)

= k +

(
t−1

∑
j=2

k

∏
j−1
ℓ=1(1 − pℓ, j(λ j))

)
+

2k

∏
t−1
ℓ=1(1 − pℓ,t(λt))

,

where the constraints on (λ2, . . . , λt) are

t−i

∑
h=1

λi,h = 1, ∀i ∈ [1 : t − 2],

and the constraint λt−1,1 = 1 has already been satisfied in the code construction.

Therefore, ∀i ∈ [1 : t − 2],

t−i

∑
h=1

λi,h =
t−i−1

∑
h=1

λi,h + λi,t−i

=
t−i−1

∑
h=1

h(pi,i+h)

∏
i+h−1
s=i (1 − ps,i+h)

+
h(pi,t)

∏
t−2
s=i (1 − ps,t)h(pt−1,t)

=

(
t−1

∑
h=i+1

h(pi,h)

∏
h−1
s=i (1 − ps,h)

)
+

h(pi,t)(
∏

t−2
s=i (1 − ps,t)

)
h(pt−1,t)

= 1,

and pt−1,t satisfies
h(pt−1,t)
1−pt−1,t

= 1
2 .

Finally, we conclude that in order to minimize the block length n under the constraints

on (λ2, . . . , λt), it is suffice the minimize the function ft(p1, . . . , pt−1) under the constraints on

(p1, . . . , pt−1). Furthermore, we get that N∗
t = kF∗

t , and hence C3
sym(t) >

2t
F∗

t
.

Proof of Theorem 4.4.6. First we prove the following lemma.

Lemma 4.6.1. Suppose (p1, . . . , pt−1) is optimal for Problem (P2), i.e., ft(p1, . . . , pt−1) =

F∗
t , then

p1,r = p1, ∀r ∈ [2 : t],

where p1 is a constant.

63

Proof. There are t − 2 constraints on (p1, . . . , pt−1), that is, for pi,h ∈ [0, 1
2], ∀i ∈ [1 :

t − 1], h ∈ [i + 1 : t], they should satisfy

(
t−1

∑
h=i+1

h(pi,h)

∏
h−1
s=i (1 − ps,h)

)
+

h(pi,t)(
∏

t−2
s=i (1 − ps,t)

)
h(pt−1,t)

= 1,

for all i ∈ [1 : t − 2], where pt−1,t satisfies
h(pt−1,t)
1−pt−1,t

= 1
2 . We denote the t − 2 constraints by

Constraint ℓ, for ℓ ∈ [1 : t − 2].

Using t − 2 Lagrange multipliers (γ1, . . . ,γt−2), let

L(γ1 , . . . ,γt−2) = ft(p1 , . . . , pt−1)

+
t−2

∑
i=1

γi

(t−1

∑
h=i+1

h(pi,h)

∏
h−1
s=i (1 − ps,h)

+
h(pi,t)(

∏
t−2
s=i (1 − ps,t)

)
h(pt−1,t)

)

Note that only Constraint 1 involves p1,r, for r ∈ [2 : t], and

(
h(x)

1 − x

)′
=

− log(x)

(1 − x)2
.

Taking partial derivative respective to p1,r, for r = [2 : t − 1], we have

∂L

∂p1,r
=

∂ ft(p1, . . . , pt−1)

∂p1,r

+γ1
∂

∂p1,r

(t−1

∑
h=2

h(p1,h)

∏
h−1
s=1 (1 − ps,h)

+
h(p1,t)(

∏
t−2
s=1(1 − ps,t)

)
h(pt−1,t)

)

=
∂ ft(p1, . . . , pt−1)

∂p1,r
+ γ1

∂

∂p1,r

t−1

∑
h=2

h(p1,h)

∏
h−1
s=1 (1 − ps,h)

,

where

∂ ft(p1, . . . , pt−1)

∂p1,r

=
∂

∂p1,r

(
t−1

∑
j=2

1

∏
j−1
ℓ=1(1 − pℓ, j)

+
2

∏
t−1
ℓ=1(1 − pℓ,t)

)

=
∂

∂p1,r

t−1

∑
j=2

1

∏
j−1
ℓ=1(1 − pℓ, j)

=
∂

∂p1,r

1

∏
r−1
ℓ=1(1 − pℓ,r)

=
1

(1 − p1,r)2 ∏
r−1
ℓ=2(1 − pℓ,r)

,

64

and

∂

∂p1,r

t−1

∑
h=2

h(p1,h)

∏
h−1
s=1 (1 − ps,h)

=
∂

∂p1,r

h(p1,r)

∏
r−1
s=1(1 − ps,r)

=
− log(p1,r)

(1 − p1,r)2 ∏
r−1
ℓ=2(1 − pℓ,r)

.

Therefore, for r = [2 : t − 1],

∂L

∂p1,r
=

(1 − γ1 log2 p1,r)

(1 − p1,r)2 ∏
r−1
j=2(1 − p j,r)

SET
= 0.

Then p1,r = 2−γ1 = p1, ∀r ∈ [2 : t − 1].

Similarly, for p1,t,

∂L

∂p1,t
=

2(
(1 − p1,t)2 ∏

t−1
j=2(1 − p j,t)

)

− γ1 log2 p1,t

h(pt−1,t)
(
(1 − p1,t)2 ∏

t−2
j=2(1 − p j,t)

)

SET
= 0,

Note that
h(pt−1,t)
1−pt−1,t

= 1
2 , we have γ1 = 1

log2 p1,t
. Therefore, p1,r = 2−γ1 = p1, ∀r ∈ [2 : t].

Let p̂i = (p̂i,i+1, p̂i,i+1, . . . , p̂i,t+1), for i ∈ [1 : t]. We would like to find

F∗
t+1 = min

p̂1 ,..., p̂t

ft+1(p̂1, . . . , p̂t),

subject to pi,h ∈ [0, 1
2], ∀i ∈ [1 : t], h ∈ [i + 1 : t + 1], and

t

∑
h=i+1

h(pi,h)(
∏

h−1
s=i (1 − ps,h)

)

+

h(pi,t+1)(
∏

t−1
s=i (1 − ps,t+1)

)
h(pt,t+1)

= 1,

for all i ∈ [1 : t − 2], where pt,t+1 satisfies
h(pt,t+1)
1−pt,t+1

= 1
2 .

It has been proved that in order to achieve the minimum, we have p̂1,r = p1, ∀r ∈ [2 :

65

t + 1], where p1 is a constant. Therefore,

min
p̂1 ,..., p̂t

ft+1(p̂1, . . . , p̂t)

= min
p̂1 ,..., p̂t

1 +

(
t

∑
j=2

1

∏
j−1
ℓ=1(1 − p̂ℓ, j)

)
+

2

∏
t
ℓ=1(1 − p̂ℓ,t+1)

=1 + min
p1, p̂2 ,..., p̂t

(
1 + ∑

t
j=3

1

∏
j−1
ℓ=2(1− p̂ℓ, j)

+ 2
∏

t
ℓ=2(1− p̂ℓ,t)

)

1 − p1

=1 + min
p1, p̃1 ,..., p̃t−1

1

1 − p1
ft(p̃1, . . . , p̃t−1),

where p̃i = (p̃i,i+1, . . . , p̃i,t) for i ∈ [1 : t − 1], and

p̃i−1 = p̂i, ∀i ∈ [2 : t],

According to Constraint 1 and considering that
h(p̂t,t+1)
1− p̂t,t+1

= 1
2 , we have

h(p1)

1 − p1
ft(p̃1, . . . , p̃t−1) = 1.

Therefore, the problem is formulated as finding

F∗
t+1 = 1 + min

p1∈[0, 1
2]

1

h(p1)
, (P3)

subject to p̃i,h ∈ [0, 1
2], ∀i ∈ [1 : t − 1], h ∈ [i + 1 : t],

h(p1)

1 − p1
ft(p̃1, . . . , p̃t−1) = 1, (1)

and (
t−1

∑
h=i+1

h(p̃i,h)

∏
h−1
s=i (1 − p̃s,h)

)
+

h(p̃i,t)(
∏

t−2
s=i (1 − p̃s,t)

)
h(p̃t−1,t)

= 1, (2)

for i ∈ [1 : t − 2].

Note that in Problem (P3), 1
h(p1)

is a decreasing function for p1 ∈ (0, 0.5]. Then

we would like to find the maximum p1 ∈ (0, 0.5] under the constraints of Equation (1) and

Equation (2). From Equation (1), we have h(p1)
1−p1

= 1
ft(p̃1 ,..., p̃t−1)

, meaning that p1 is a function

of (p̃1, . . . , p̃t−1), and we denote by p1(p̃1, . . . , p̃t−1). Since d
dp1

(
h(p1)
1−p1

)
=

− log2(p1)
(1−p1)2 >

0, ∀p1 ∈ (0, 0.5], we conclude that p1(p̃1, . . . , p̃t−1) increases monotonically with
h(p1)
1−p1

, thus

inversely with ft(p̃1, . . . , p̃t−1). Therefore, p1(p̃1, . . . , p̃t−1) is a decreasing function of ft(p̃1,

. . . , p̃t−1).

66

Among all the tuples of (p̃1, . . . , p̃t−1) that satisfy the constraints of Equation (2), sup-

pose (p̃∗
1 , . . . , p̃∗

t−1) minimizes ft(p̃1, . . . , p̃t−1). From the arguments above, we conclude that

(p̃∗
1, . . . , p̃∗

t−1) together with p1(p̃∗
1, . . . , p̃∗

t−1) = 1
ft(p̃∗

1 ,..., p̃∗
t−1)

= 1
F∗

t
achieve the minimum of

Problem (P3). This completes the proof.

Acknowledgments

This chapter is in part a reprint of the material in the paper: Lele Wang, Minghai Qin,

Eitan Yaakobi, Young-Han Kim, and Paul H. Siegel, “WOM with retained messages”, in Proc.
IEEE International Symposium of Information Theory (ISIT) 2012, Cambridge, MA, USA, July

2012.

Chapter 5

Inter-cell interference free codes for

flash memories

5.1 Introduction

In Chapter 3 and 4, we studied WOM models that can be applied to flash memory

systems where some important physical properties of flash memory cells are not considered.

In this chapter, we study constrained codes that take into account the coupling capacitance of

adjacent flash memory cells to mitigate the inter-cell interference.

Non-volatile memories — in particular, flash memories — have attracted considerable

attention due to their high data-transfer rate and low power consumption [12]. Flash memory

cells consist of floating gate transistors, in which the amount of trapped charge determines the

cell voltage, referred to as the cell level. A flash memory cell is written to, or “programmed,”

by applying a suitable voltage to the cell in order to inject the desired amount of charge to

reach a certain cell level. Programming precision is an important factor governing the achievable

capacity of flash memory storage. Another is inter-cell interference (ICI), caused by the parasitic

capacitance between adjacent cells, as a result of which the voltage level of a so-called victim
cell may be increased when a high voltage is applied to neighboring cells [21, 58].

As an example of ICI, consider a single-level cell (SLC) flash memory, meaning a mem-

ory whose cells supports only two levels. (The SLC designation is somewhat of a misnomer.)

We denote the low level by the symbol 0 and the high level by the symbol 1. Now, if a group

of three consecutive cells in a row are programmed with the 1 0 1 pattern, the level of the mid-

dle cell may be inadvertently increased due to the effect of ICI. During data recovery, the level

67

68

of the victim cell may be erroneously interpreted as representing a programmed symbol 1. To

combat this effect, the use of a constrained code that prevents the appearance of the ICI-prone

symbol pattern 1 0 1 has been proposed. Similar ICI-mitigating constraints for multi-level flash

memory cells, preventing the appearance of, say, the pattern (q − 1) 0 (q − 1) in consecutive

q-ary cells, have also been considered [5, 59]. We will refer to constrained codes that eliminate

these ICI-inducing patterns as ICI-free codes.
In this chapter, we investigate the application of ICI-mitigating codes in two flash mem-

ory settings. First, we study information-theoretic limits on the efficiency of binary ICI-free

codes that are also balanced, meaning that codewords have an equal number of 0’s and 1’s.

These codes are of interest when a dynamic read threshold is used to reduce the number of

errors caused by cell level drift resulting from charge leakage. Specifically, we determine the

asymptotic information rate of ICI-free balanced codes.

We then consider codes that allow for the efficient re-use of a binary ICI-free write-

once-memory (WOM), that is, a binary WOM that does not support codewords containing the

1 0 1 pattern. The ICI-free WOM provides a model for a flash memory system that uses a

multiple-write WOM code to extend the device lifetime, with the added constraint that none of

the codewords contain the ICI-inducing 101 pattern. Our main result is a characterization of the

t-write, sum-rate capacity of an ICI-free WOM, as well as an explicit numerical evaluation for

2 6 t 6 7.

We now discuss these two applications in more detail.

5.1.1 ICI-free Balanced Codes for Dynamic Threshold Detection

Charge leakage, which results in a downward drift in cell voltage levels in a flash mem-

ory, can lead to errors in the data retrieval process when the read threshold(s) are fixed. In [97], a

dynamic read threshold was proposed as a means to compensate for cell-level drift in SLC flash

memory. The threshold adaptation is facilitated by the use of a balanced code, that is, a code

in which every codeword has an equal number of 0’s and 1’s. (See, for example, [52].) (Of

necessity, the codeword length is even.)

Under the assumption that the cell-level drift is essentially uniform across all cells, the

relative ranking of cell levels is largely preserved. Therefore, by adjusting the threshold value

to the point where half of the cell levels are above the threshold and half fall below, the cells

programmed to a 1 or a 0 may still be correctly identified with high probability. Since the

asymptotic information rate of balanced binary codes is 1, the rate penalty associated with the

69

use of a balanced code can be made negligibly small with proper code design.

The construction of efficient balanced codes has been extensively studied in [38, 39,

52, 85, 86, 89], and extensions to non-binary and two-dimensional balanced codes have been

considered in [62, 63, 67, 83]. Codes that combine the balanced property with certain other

constraints, such as runlength limitations, have also been addressed in, for example, [40].

We are specifically interested in binary codes that are both balanced and ICI-free, as

defined above. These codes can be used with a dynamic threshold scheme, while also mitigating

ICI effects.

5.1.2 Coding for an ICI-Free Write-Once-Memory (WOM)

One of the most conspicuous properties of flash memory cells is the asymmetry in the

programming process. Cell levels can be easily increased by injecting additional charge into

them [12]. In contrast, to decrease the level of even a single cell, the whole block of cells (∼ 106

cells) containing it has to be erased and then reprogrammed accordingly. These block erasures
not only introduce significant latency into the writing process, but also degrade the floating gate

cells, thereby shortening the usable lifetime of the device. Therefore, it is desirable to reduce

the number of these block erasures in order to enhance the endurance of the flash memory and

increase its lifetime storage capacity, which is the total amount of information that can be stored.

The original motivation for the use of rewriting codes came from storage media such as

punch cards, optical disks, electronically programmable memories, and paper tapes, all of which

consisted of “write-once” bits, or “wits,” whose physical states could be changed only once.

These technologies could be modeled as a write-once memory (WOM), that is, a binary storage

medium consisting of cells supporting two states, designated as 0 and 1, such that during the

recording process, a cell can remain in its existing state or, if it is in state 0, can be irreversibly

changed to state 1.

Rivest and Shamir [71] showed that, through the use of properly designed codes, a

WOM can store multiple generations of information much more efficiently than might have

been expected.

Wolf et al. [91] studied binary WOMs from an information-theoretic perspective under

various assumptions about state information available at the encoder and decoder. Heegard [36]

determined the capacity region of achievable rates for binary WOMs with state information at

the encoder, while also introducing several generalized models that allowed for noise, non-binary

input and output alphabets, and different types of cell level transitions. The capacity region of

70

non-binary WOMs with cell-state transitions described by an arbitrary directed acyclic graph

was found by Fu and Han Vinck [5]. On the other hand, a WOM can be viewed as a special type

of write-efficient memory (WEM) [2]. Within this framework, Fu and Yeung [29] derived the

sum-capacity of deterministic WOMs described by a more general graph.

Several other works pertaining to WOMs and WOM codes have appeared, a number of

them motivated by the relevance of the WOM model to flash memory devices [27,30,43,51,87,

88, 93].

In view of the distinct and complementary performance benefits offered by multiple-

write WOM codes and ICI-mitigating codes, we investigate their combination in the framework

of coding for an input-constrained WOM. Broadly speaking, an input-constrained WOM is a

WOM that restricts the input words that it can store by forbidding the appearance of certain

symbol patterns. In this framework, an ICI-free WOM is one that does not allow the pattern 1 0

1 to be written at any time.

5.1.3 Outline of the Chapter

In Section 5.2.1, we present the derivation of an exact expression for the generating

function of the number of binary ICI-free balanced sequences, as well a combinatorial formula

for its coefficients. From each of these, we deduce the asymptotic information rate of ICI-free

balanced sequences. In Section 5.2.2, we describe a heuristic, probabilistic argument that yields

the same rate. Extending it to the non-binary setting, we develop a conjecture for the asymptotic

information rate of q-ary ICI-free balanced codes. Section 5.3.1 gives background on input-

constrained WOMs and two-dimensional constraints. In Section 5.3.2, we prove that the t-write

sum-capacity of the input-constrained WOM is equal to the capacity of a corresponding two-

dimensional constraint defined on an infinite t-row strip. Section 5.3.3 describes a construction

of 2-write ICI-free WOM codes based upon covering subset partitions of bipartite graphs. Sec-

tion 5.4 concludes this chapter.

5.2 ICI-free Balanced Codes

In this section, we study information-theoretic properties of ICI-free balanced codes.

We derive the asymptotic information rate of ICI-free balanced codes over the binary alphabet

using combinatorial properties of walks on the two-dimensional lattice Z2. We then present a

heuristic, probabilistic argument that yields the same result. Extending this heuristic argument

71

to q-ary codes, we make a conjecture as to the asymptotic information rate of q-ary ICI -free

balanced codes.

We begin with some definitions.

Definition 5.2.1. A length-2n binary sequence u ∈ {0, 1}2n is said to be ICI-free balanced if

1. it contains exactly n symbols that are 0 and n symbols that are 1;

2. ui−1, ui, ui+1 6= 101, for all i such that 2 6 i 6 2n − 1.

We refer to a set of ICI-free balanced sequences of the same length as an ICI-free bal-
anced code.

Definition 5.2.2. Let Cn be the set of all binary ICI-free balanced sequences of length 2n. The

asymptotic information rate of Cn is defined as

C〈2〉 = lim sup
n→∞

log2 |Cn|
2n

.

Remark 5.2.1. It can be deduced from Lemma 5.2.9 and Lemma 5.2.10 that limn→∞

log2 |Cn|
2n

exists. It is also observed by simulation that
log2 |Cn|

2n is an increasing sequence and upper bounded

by 1.

Referring to Definition 5.2.2, let C(x) be the generating function of |Cn|, that is,

C(x) = ∑
n>1

cnxn,

where cn = |Cn| for n > 1. Our main contribution in this section is the following theorem, which

gives a closed-form expression for C(x) and determines precisely the asymptotic information

rate C〈2〉.

Theorem 5.2.3. The generating function C(x) is given by

C(x) =

√
1 + x

1 − 3x
− 1,

and the asymptotic information rate of binary ICI-free balanced codes is

C〈2〉 =
1

2
log2 3.

72

5.2.1 Derivation of the Asymptotic Information Rate

This section is devoted to the proof of Theorem 5.2.3.

Let Sn denote the set of binary balanced sequences of length 2n. We denote by An the

set of all ICI-free balanced sequences of length 2n that start with a 1 and by Bn the set of all

ICI-free balanced sequences of length 2n that start with a 0. Finally, the cardinalities of these

subsets are denoted by An = |An| and Bn = |Bn|, and the corresponding generating functions
of the cardinalities are denoted by A(x) and B(x), respectively.

The derivation of C(x) will make use of the close connection between ICI-free balanced

sequences and paths in the integer lattice Z2. The following definition introduces several types

of paths that will play a role in the analysis.

Definition 5.2.4. A path of length n is an n-step walk on Z2, starting at (0, 0), such that every

step is either an upstep obtained by adding U = (1, 1) or a downstep obtained by adding

D = (1,−1), respectively, to the current position. If the path is at (xi, yi) after i steps, the

height at step i is defined to be yi.

A path of length n is called a symmetric path if it ends in (n, 0).

A path is called a UDU-free path if UDU is not a subsequence of the path.

A symmetric path is called aDyck path if it never goes below the horizontal axis y = 0,

i.e, the heights are non-negative after every step.

Let P denote the set of all symmetric paths, including the empty path. Let F be the set

of all UDU-free symmetric paths, including the empty path. Let U ⊂ F be the set of non-empty

paths that start with a U, let D ⊂ F be the set of non-empty paths that start with a D, and let H
be the set of UDU-free Dyck paths.

Now, let Pn ⊂ P be the set of symmetric paths of length 2n, for n > 0. DefineFn ⊂ F
to be the set of UDU-free paths of length 2n. We use Fn = |Fn| to denote the cardinality of Fn,

and F(x) to denote the corresponding generating function of Fn.

We define in an entirely analogous manner the sets Un,Dn, and Hn, their cardinalities

Un, Dn, and Hn, and their generating functions U(x), D(x) and H(x).

The evident connection between balanced sequences and symmetric paths, as well as

between their subsets defined above, is stated formally in the following lemma.

Lemma 5.2.5. There is a bijection between Sn and Pn. The bijection maps Cn to Fn and, more

specifically, An to Un and Bn to Dn.

73

Proof. The bijective mapping between balanced sequences and symmetric paths is ob-

tained by identifying the symbols 1 and 0 with steps U and D, respectively. It is clear that this

mapping establishes the bijection between Cn and Fn, as well as between An and Un and be-

tween Bn and Dn.

The following lemma follows immediately from the definitions above and the properties of the

bijection established in Lemma 5.2.5.

Lemma 5.2.6. The generating functions C(x) and F(x) can be written as:

C(x) = A(x) + B(x) = U(x) + D(x)

and

F(x) = U(x) + D(x) + 1.

For any n > 1, we will define a mapping from the subset Un ⊂ Fn of length-2n,

UDU-free symmetric paths that begin with U to the subset Dn ⊂ Fn of length-2n, UDU-free

symmetric paths that begin withD. We will then show that this mapping is actually a bijection. In

order to describe the mapping succinctly, we introduce the following terminology and notation.

Definition 5.2.7. Let u = [u1, ..., u2n−1, u2n] be a path in Un. The k-left cyclic shift of u,

denoted by u(k), is the path obtained by cyclically shifting u by k steps to the left. That is,

u(k) = [uk+1, . . . , u2n, u1, . . . , uk−1, uk].

Note that all shifts of u are symmetric paths because the number of U steps and D steps

remain equal. Define the mapping

φ : U 7→ P

as follows: Given a path u ∈ U , let i be the index of the last symbol D in u such that the path

falls from height 1 to height 0. Thenφ(u) = u(i−1), the (i − 1)-left cyclic shift of u.

Proposition 5.2.8. The restriction of the mapping φ to Un is a bijection from Un to Dn, for all

n > 1. Therefore, |Un| = |Dn|, and U(x) = D(x).

Proof. We first show thatφ(u) ∈ Dn, ∀u ∈ Un.

By construction, φ(u) is a symmetric path that starts with a D, so we need to show that

φ(u) is UDU-free. Since u ∈ Un, this translates into showing that the UDU-free constraint is

not violated when u1 (which is a U) is cyclically shifted and concatenated with u2n. Let i be the

index of the last D that causes the path to fall from height 1 to height 0. If u2n = D, then i = 2n

74

and the first two steps of φ(u) are DU; otherwise, u2nu1 = UU. In either case, we conclude

thatφ(u) is UDU-free. Hence, the image of φ lies in Dn.

We now prove the injectivity ofφ, that is, if u, v ∈ Un and u 6= v, thenφ(u) 6= φ(v).

For any two distinct paths u ∈ Un and v ∈ Un, let φ(u) = p, where p = [p1, . . . , p2n]

and φ(v) = q, where q = [q1, . . . , q2n]. Let iu, resp. iv, be the index of the last D such that

u, resp. v, falls from height 1 to height 0. If iu = iv, then p 6= q since, by definition of a left

cyclic shift, distinct paths that are left-shifted by the same amount must yield distinct paths. On

the other hand, suppose iu 6= iv and, without loss of generality, assume iu < iv.

Then we claim that at least one of the following statements is true:

(a) There exists an index j ∈ {1, 2, . . . , (2n − iv + 1)} such that p j 6= q j;

(b) p(2n−iv+2) 6= q(2n−iv+2).

Each of these statements implies that φ(u) 6= φ(v), as desired.

It suffices to prove that if (a) does not hold, then b) must. To see this, note that q

is obtained by the (iv − 1)-left cyclic shift of v, implying that q(2n−iv+1) = v2n. Therefore,

q(2n−iv+2) = v1 = U. Meanwhile the height of q after q(2n−iv+1) is −1. Now suppose (a) does

not hold, i.e., [p1, . . . , p(2n−iv+1)] = [q1, . . . , q(2n−iv+1)]. Then, by construction, p(2n−iv+1) =

u(2n−iv+iu) and the height of u after u(2n−iv+iu) is 0. Thus, p(2n−iv+2) = u(2n−iv+iu+1) =

D since, otherwise, the height of u after u(2n−iv+iu+1) is 1 and uiu
would not be the last D

corresponding to a fall from height 1 to height 0 in u, contradicting the definition of iu. Thus,

p(2n−iv+2) = U and q(2n−iv+2) = D, confirming that condition (b) holds.

This completes the proof that the mappingφ restricted to Un is in injection into Dn, and

so |Un| 6 |Dn|, for all n > 1.

In a similar manner, we define a mapping

γ : Dn → Un

as follows: Given a path d ∈ Dn, let i be the label of the first U such that the path rises from

height -1 to height 0. Then γ(d) = d(i−1), the (i − 1)-left cyclic shift of d.

The proof that the restriction of the mapping γ to Dn is an injection into Un, for all n >

1, is similar to that of φ being an injection, so we omit the details. Consequently, |Dn| 6 |Un|,
for all n > 1.

In fact, one can see that γ and φ are inverse functions of one another, so they in fact

define bijections between Un and Dn.

75

We can now conclude that |Un| = |Dn| for all n > 1, and, therefore, U(x) = D(x).

Example 5.2.1. Figure 5.1 illustrates the bijection between U3 and D3. There are 10 UDU-free

paths of length 6 and the last D (or first U) that the path falls from height 1 to 0 (or rises from -1

to 0) is circled for each path.

Last D from

height 1 to 0

First U from

height 1 to 0

Figure 5.1: Bijection between U3 and D3

We are now in a position to prove the main result.

Proof of Theorem 5.2.3: Any path in U can be written in one of the following two forms:

1. UDP, where P is empty or in D; or,

2. UPDQ, where P is a non-empty path inH, and Q is in F .

76

(This is the so-called first return decomposition of a path in U .)
This gives rise to the equation

U(x) = x(1 + D(x)) + x(H(x)− 1)F(x).

From Proposition 5.2.8, we have D(x) = U(x). Together with Lemma 5.2.6, this implies that

F(x) = 2U(x) + 1. Therefore,

U(x) =
xH(x)

1 + x − 2xH(x)
.

It was shown in [81] that

H(x) =
1 + x −

√
1 − 2x − 3x2

2x
.

Therefore,

U(x) =
xH(x)

1 + x − 2xH(x)

=
1 + x −

√
1 − 2x − 3x2

2
√

1 − 2x − 3x2

=
1

2

√
1 + x

1 − 3x
− 1

2
.

We conclude that

C(x) = 2U(x) =

√
1 + x

1 − 3x
− 1.

If we treat C(x) as a complex function, the Cauchy-Hadamard Theorem [1, p. 39], [14,33] states

that

lim sup
n→∞

|cn|1/n =
1

ρ
,

where ρ is the smallest modulus of a singularity of C(x). From the expression for C(x) shown

above, we see that

ρ =
1

3
.

Recalling that cn = |Cn|, we conclude that

C〈2〉 = lim
n→∞

log |Cn|
2n

=
1

2
log 3.

This completes the proof.

Note that the proof of Theorem 5.2.3 above does not involve explicit expressions for

|Un| and |Dn|. However, Deutsch (A005773, [77]) and Callan [11] have shown that

Un = Dn =
n−1

∑
j=0

(
j

⌊ j
2⌋

)(
n − 1

j

)
(5.1)

77

and from this formula, one can obtain an alternative derivation of the asymptotic information

rate C〈2〉, as we now show.

From Callan’s formula, we have

C〈2〉 = lim
n→∞

log2 (Un + Dn)

2n

= lim
n→∞

1

2n

(
1 + log2

n−1

∑
j=0

(
j

⌊ j
2⌋

)(
n − 1

j

))

= lim
n→∞

1

2n

(
log2

n−1

∑
j=0

(
j

⌊ j
2⌋

)(
n − 1

j

))
.

The following lemma shows that replacing the summation with a maximization does not

affect the value of the limit in the formula above.

Lemma 5.2.9.

C〈2〉 = lim
n→∞

1

2n
log2 max

06 j6n−1

(
j

⌊ j
2⌋

)(
n − 1

j

)
.

Proof. Since all terms in the summation above are positive, we have

lim
n→∞

1

2n

(
log2

n−1

∑
j=0

(
j

⌊ j
2⌋

)(
n − 1

j

))

> lim
n→∞

1

2n
log2 max

06 j6n−1

(
j

⌊ j
2⌋

)(
n − 1

j

)
.

On the other hand, by replacing the sum of terms with their maximum, we have

lim
n→∞

1

2n

(
log2

n−1

∑
j=0

(
j

⌊ j
2⌋

)(
n − 1

j

))

6 lim
n→∞

1

2n
log2

(
n max

06 j6n−1

(
j

⌊ j
2⌋

)(
n − 1

j

))

6 lim
n→∞

log2 n

2n
+ lim

n→∞

1

2n
log2 max

06 j6n−1

(
j

⌊ j
2⌋

)(
n − 1

j

)

= lim
n→∞

1

2n
log2 max

06 j6n−1

(
j

⌊ j
2⌋

)(
n − 1

j

)

Therefore,

C〈2〉 = lim
n→∞

1

2n
log2 max

06 j6n−1

(
j

⌊ j
2⌋

)(
n − 1

j

)
.

78

The next lemma gives the limit of the normalized value of argument j that achieves the

maximum in Lemma 5.2.9.

Lemma 5.2.10.

lim
n→∞

1

n
arg max

06 j6n−1

(
j

⌊ j
2⌋

)(
n − 1

j

)
=

2

3
.

Proof. Note that (
j

⌊ j
2⌋

)(
n − 1

j

)
=

(
n − 1

⌊ j
2⌋, ⌈ j

2⌉, n − 1 − j

)
.

If n− 1 is a multiple of 3, then this quantity is maximized when ⌊ j
2⌋ = ⌈ j

2⌉ = n− 1− j = n−1
3 ,

i.e., when j = 2(n−1)
3 . Similar reasoning shows that the maximizing values of j for all n > 1

satisfy limn→∞

j
n = 2

3 .

From Lemma 5.2.9 and Lemma 5.2.10, we conclude that

C〈2〉 =
1

2
log2 3.

Remark 5.2.2. The capacity of the “no 101” constraint is approximately 0.8114. Compared

to C1, there is a 2% rate loss due to the additional balanced constraint. Balanced codes are

special types of constant weight codes [9], where the weight is half of the code length n. In

general, constant weight codes can be used to adapt to the voltage drift during read cycles as

well. It might be better to use constant weight codes with weight less than n
2 if rate optimization

is the only figure of merit; however, balanced codes have the advantage of easy encoding and

decoding, while sacrificing only a small portion (2%) of the rate.

5.2.2 Heuristic Probabilistic Derivation

We now provide a heuristic probabilistic argument that yields the result derived in the

previous section, namely C〈2〉 = 1
2 log2 3. Extending this argument to q-ary ICI-free balanced

codes, we arrive at a conjecture for their asymptotic information rate C〈q〉.

Let S be the set of all balanced sequences of length 2n. It is evident that |S| = (2n
n).

Now, let Z be a randomly chosen sequence in S , and let Zi be the i-th entry in Z, for 1 6 i 6 2n.

Clearly P(Zi = 1) = P(Zi = 0) = 1
2 and, if n is sufficiently large, P(Zi−1 = Zi+1 = 1|Zi =

0) is approximately 1
4 . Define a sequence of events Ei

def
= {(Zi−1, Zi, Zi+1) 6= (101)|Zi = 0},

for 2 6 i 6 2n − 1. Then P(Ei) ≈ 3
4 . The number of 0’s in Z is n, so if we treat the events Ei

as independent (though, in reality, they are not), then the probability that Z satisfies the ICI-free

79

balanced constraint is approximately
(

3
4

)n
. Thus, the number of ICI-free balanced sequences in

S is approximately (2n
n)

(
3
4

)n
. That is,

log2 |Cn|
2n

≈
log2

(
(2n

n)
(

3
4

)n
)

2n

n→∞−−−→ 1

2
log2 3.

Although the independence assumption is not valid, this line of reasoning yields the correct

answer because the dependency of Ei and E j decreases as |i − j| increases.
Now, recall that, for q-level flash cells, ICI arises when three consecutive cells are pro-

grammed to the levels (c1, c2, c3) such that c1 and c3 are much larger than c2. It is expected

that the most severe ICI will occur when three consecutive cells are programmed to the levels

((q − 1), 0, (q − 1)). We now extend the definition of ICI-free balanced sequences to the q-ary

case to avoid the most severe ICI pattern.

Definition 5.2.11. A q-ary sequence u ∈ {0, 1, . . . , q − 1}qn is said to satisfy the q-ary ICI-free

balanced constraint if

1. ∀ j, such that 0 6 j 6 q − 1, the number of j’s in u is n;

2. (ui−1, ui, ui+1) 6= ((q − 1), 0, (q − 1)), for all i such that 2 6 i 6 qn − 1.

Let C〈q〉
n be the set of all q-ary ICI-free-balanced sequences of length qn. The asymptotic

information rate of C〈q〉
n is defined as

C〈q〉 = lim
n→∞

log2 |C
〈q〉
n |

nq
.

By direct analogy to the heuristic argument used in the binary case, q = 2, one might

conjecture that the asymptotic information rate is

C〈q〉
conj = log2 q +

1

q
log2

(
q2 − 1

q

)
.

However, based on [73], C〈3〉 ≈ 1.5258 while the heuristic argument overestimates C〈3〉, yield-

ing C〈3〉
conj ≈ 1.5283.

5.3 ICI-free WOM Codes

In this section, we study the WOMmodel with certain input constraints. We first present

the definition of an input-constrained WOM and then provide a derivation of the t-write sum-

capacity. Finally, we give code constructions based on coverings of bipartite graphs.

80

5.3.1 Definitions

Suppose the number of cells is n and the number of rewriting cycles is t. The cell

levels of a generalized q-level WOM after the i-th write are denoted by yn
i,1 ∈ [0 : q − 1]n, for

i ∈ [1 : t], where [k1 : k2]
def
= {k ∈ Z|k1 6 k 6 k2} and yk2

i,k1

def
= (yi,k1

, yi,k1+1, . . . , yi,k2
). We

will use [n] as a shorthand for [1 : n] when no confusion could occur. Furthermore, we write

xn
1 B yn

1 if and only if ∀i ∈ [n], xi > yi. We can describe the discrete memoryless generalized

WOM by a directed graph G = (V , E), where V is the set of vertices and E ⊆ V × V is the

set of edges. For a q-level WOM, V = {0, 1, . . . , q − 1}. If the level can be changed directly
from s1 to s2, where s1, s2 ∈ V , then there exists an edge from s1 to s2 and we denote it by

(s1, s2) ∈ E . For a state sequence (s0, s1, . . . , st), if ∀i ∈ [0 : t − 1], (si , si+1) ∈ E , then
we say the path (s0, s1, . . . , st) exists and we denote it by s0 → s1 → · · · → st. For two

vectors (xn
1,1, xn

2,1) ∈ [0 : q − 1]n × [0 : q − 1]n, we write xn
1,1 ⇒ xn

2,1 if and only if ∀i ∈ [n],

(x1,i, x2,i) ∈ E . The transition matrix A =
(
ai, j

)
∈ {0, 1}q×q is defined as follows. For

i, j ∈ [0 : q − 1], ai j = 1 if (i, j) ∈ E ; otherwise, ai j = 0.

Definition 5.3.1. Let yn
i,1 denote the cell-state vector after the i-th write, for i ∈ [t]. An

[n, t; 2nR1 , . . . , 2nRt] q-ary WOM code Cq,G described by the graph G is a coding scheme con-

sisting of n cells and t pairs of encoders and decoders (Ei,Di), where ∀i ∈ [t], the encoder is a

mapping

Ei : [1 : 2nRi]× Im{Ei−1} → [0 : q − 1]n ,

such that ∀(m, yn
i−1,1) ∈ [1 : 2nRi]× Im{Ei−1},

yn
i−1,1 ⇒ yn

i,1 = Ei(m, yn
i−1,1),

where, by abuse of notation, we use Im{E0} to represent the initial cell-state vector {(0, ..., 0)}.
The decoder is a mapping

Di : Im{Ei} → [1 : 2nRi],

such that ∀m ∈ [1 : 2nRi],

Di(Ei(m, yn
i−1,1)) = m.

Let w be a q-ary sequence. An input-constrained WOM code CSw,q,G avoiding w is a

q-ary WOM code such that w is not a subsequence of any codeword in CSw ,q,G.

Definition 5.3.2. A rate tuple (R1, . . . , Rt) is said to be achievable if there exists a sequence

of [n, t; 2nR1 , . . . , 2nRt] WOM codes. The capacity region is defined as the closure of the set of

81

all achievable rate tuples. The sum-capacity is defined as the supremum of achievable sum-rates

∑
t
i=1 Ri.

To mitigate ICI, the sequence is chosen such that w
def
= (101) and the corresponding

input-constrained WOM code is called the binary ICI-free WOM code. In this section, we

are interested in the sum-capacity of the ICI-free binary WOM, i.e., the supremum sum-rate

of CS101,2,G , where G = (V , E), V = {0, 1}, E = {(0, 0), (0, 1), (1, 1)}, and, therefore,
A =

[
1 1
0 1

]
. We will first provide general results for an arbitrary constraint S and arbitrary

number of levels q, and then apply them in the binary ICI-free WOM setting.

There is a connection between two-dimensional constrained codes and codes for input-

constrained WOMs. Specifically, every t-write WOM code of length n can be expressed as a

set of t × n arrays where the i-th row, i ∈ [t], corresponds to the memory state after the i-th

write. We will exploit this fact in our derivation of the t-write sum-capacity. Let us first recall

the definition of the capacity of a two-dimensional constraint.

Definition 5.3.3. Given a two-dimensional constraint S2D, its capacity is defined to be

C2D(S2D) = lim
m,n→∞

log2 NS(m, n)

mn
,

where NS(m, n) is the number of m × n arrays that satisfy the constraint S2D. The t-write

column capacity is defined to be

C(t, S2D) = lim
n→∞

log2 NS(t, n)

n
.

Remark 5.3.1. The exact capacity of most non-trivial two-dimensional constraints is not known.

However, the t-write column capacity can be calculated numerically with the aid of the charac-

teristic function of the adjacency matrix associated with the constraint S2D when we fix one

dimension of the 2-D array to be of size t [57].

There are a number of two-dimensional constraints that have been extensively studied,

e.g., 2-D (d, k)-runlength-limited (RLL) [50], no isolated bits [23,34], and checkerboard [65,72].

For the input-constrained WOM codes CSw ,q,G, where G = (V , E), we define a constraint on
two-dimensional arrays, denoted by S2D

w , that is used to calculate the sum-capacity. Specifically,

in a q-ary two dimensional array B = {bi, j}m×n, we must have

(bi, j, bi+1, j) ∈ E , ∀i ∈ [m − 1], j ∈ [n]

and the pattern w must not be a subsequence in any row of B. However, we denote the two-

dimensional constraint corresponding to the ICI-free WOM by S2D
101.

82

5.3.2 Sum-Capacity

The following theorem characterizes the t-write sum-capacity of an input-constrained

WOM in terms of the t-write column capacity of an associated two-dimensional constraint.

Theorem 5.3.4. The t-write sum-capacity of the q-ary input-constrained WOM that does not

allow w is C(t, S2D
w).

In particular, for the binary ICI-free WOM, the t-write sum-capacity is C(t, S2D
101).

In order to prove Theorem 5.3.4, we will make use of the characterization of the sum-

capacity of a WOM described by a general directed graph G, as presented in [29, Prop. 2]. The

derivation in [29] uses results about the sum-capacity of write-efficient memories [2]. Here we

will present an alternative derivation based upon the Markov-chain WOM model from [36].

Lemma 5.3.5. The sum-capacity Csum(t, G) of the generalized discrete memoryless q-level

WOM described by graph G is the base-2 logarithm of the number of length-t paths that starts

from state 0, i.e.,

Csum(t, G) = log2(δ
T
0,q · At

G · 1q),

where AG is the transition matrix of the graph G, and δi,q = (0, . . . , 0, 1, 0, . . . , 0)T , 0 6 i 6

q − 1, is a column vector of length q such that the (i + 1)-st entry is 1 and the remaining entries

are 0’s.

Proof. We adopt the notation used in [36]. According to Theorem 3 in [36], the sum-capacity

equals

Csum =
t

∑
i=1

Ri

=
t

∑
i=1

H(Yi|Yi−1)

= H(Y1, Y2, . . . , Yt),

where Yi, i ∈ [t] is a random variable representing the state of the WOM after the i-th write. The

last equality follows from the fact that Y1 → Y2 → · · · → Yt form a Markov chain.

First we prove Csum 6 log2(δ
T
0,q · At · 1q). The random vector Yt

1 = (Y1, . . . , Yt)

corresponds to a path in G; thus, the cardinality of Yt
1 is upper bounded by the number of length-

t paths from state 0. Therefore, H(Yt
1) 6 log2(δ

T
0,q · At · 1q).

Next we prove achievability. Let p(yt
1) be the joint probability mass function of Yt

1.

Let p(yt
1) be factored as p1(y1)p2(y2|y1) · · · pt(yt|yt−1), where pi(yi|yi−1) is the conditional

83

transition probability for the i-th write. We show that by appropriately choosing p1(y1)p2(y2|y1)

· · · pt(yt|yt−1), (Y1, . . . , Yt) is uniformly distributed on its support. Let

p1(y1 = j) =

δT
j,q·At−1·1q

δT
0,q·At·1q

, if (0, j) ∈ E ;

0, otherwise,

for all j ∈ [0 : q − 1]. For 2 6 i 6 t, let

pi(yi = j|yi−1 = ℓ) =

δT
j,q·At−i·1q

δT
ℓ,q·At−i+1·1q

, if (ℓ, j) ∈ E , {Ai−1}0,ℓ = 1;

0, otherwise,

for all j, ℓ ∈ [0 : q − 1].

Then, for a state sequence (s1, s2, . . . , st), we have

P(Y1 = s1, Y2 = s2, . . . , Yt = st)

=p1(y1 = s1)p2(y2 = s2|y1 = s1)

· p3(y3 = s3|y2 = s2) · · · pt(yt = st|yt−1 = st−1)

=
δT

s1 ,q · At−1 · 1q

δT
0,q · At · 1q

·
δT

s2,q · At−2 · 1q

δT
s1,q · At−1 · 1q

·
δT

s3,q · At−3 · 1q

δT
s2,q · At−2 · 1q

· · ·
δT

st ,q · A0 · 1q

δT
st−1,q · A · 1q

=
1

δT
0,q · At · 1q

if the path s1 → · · · → st exists; otherwise,

P(Y1 = s1, Y2 = s2, . . . , Yt = st) = 0.

This proves that (Y1, . . . , Yt) is uniformly distributed on its support set. Since the cardinality of

the support set is δT
0,q · At · 1q, then H(Y1, . . . , Yt) = log2(δ

T
0,q · At · 1q).

Example 5.3.1.

For the state transition diagram in Figure 5.2, suppose the number of writes is t = 4.

We set the conditional probabilities as follows:

p1(y1 = 0) =
7

11
, p1(y1 = 1) =

4

11
.

84

0 1 !

Figure 5.2: Generalized WOM with state transition diagram

p2(y2 = 0|y1 = 0) =
4

7
, p2(y2 = 1|y1 = 0) =

3

7
.

p2(y2 = 1|y1 = 1) =
3

4
, p2(y2 = 2|y1 = 1) =

1

4
.

p3(y3 = 0|y2 = 0) =
2

4
, p3(y3 = 1|y2 = 0) =

2

4
.

p3(y3 = 1|y2 = 1) =
2

3
, p3(y3 = 2|y2 = 1) =

1

3
.

p3(y3 = 2|y2 = 2) = 1.

p3(y4 = 0|y3 = 0) =
1

2
, p3(y4 = 1|y3 = 0) =

1

2
.

p3(y4 = 1|y3 = 1) =
1

2
, p3(y4 = 2|y3 = 1) =

1

2
.

p3(y4 = 2|y3 = 2) = 1.

Then, each possible state sequence has probability 1
11 , which means the 4-write sum-capacity is

log2 11.

Now we are ready to prove Theorem 5.3.4. We give the proof for the case of a binary

ICI-free WOM, i.e., the transition diagram G = (V , E) is defined by V = {0, 1} and E =

{(0, 0), (0, 1), (1, 1)}, and the input constraint is given by w = (101). The generalization to an

arbitrary input-constrained WOM follows a similar line of reasoning. Proof of Theorem 5.3.4.

Proof of achievability:
Let n and m be two positive integers such that n is a multiple of (m + 2), i.e., n = ℓ(m + 2).

The memory consists of n cells, denoted by (c1, . . . , cn), which are partitioned into ℓ blocks,

each with (m + 2) cells. When the messages are written into the memory, within each block,

the last 2 cells are kept at level 0, i.e., ci(m+2) = ci(m+2)−1 = 0, ∀i ∈ [ℓ]. In this way, it can

be guaranteed that no 3 consecutive cells at the boundaries of adjacent blocks are (101). Each

block of m cells constitutes the same t-write WOM code that avoids 101. To be more precise,

we first introduce the following definitions.

85

Let b : Z+ 7→ {0, 1}m be the function that maps a non-negative integer M ∈ [0, 2m − 1]

to its binary representation of length m, and let b−1(x) be the inverse function for x ∈ {0, 1}m .

The following construction yields a sequence of binary ICI-free WOM codes with the

claimed sum-rate efficiency.

Construction 5.3.1 Let n, m and ℓ be positive integers such that n = ℓ(m + 2). Suppose the

cell-state vector is cn
i,1 ∈ {0, 1}n after the i-th write, for i ∈ [t]. Let yℓi,1 ∈ [0 : 2m − 1]ℓ satisfy

yi, j = b−1(c
(j−1)(m+2)+m

i,(j−1)(m+2)+1
), for j ∈ [ℓ].

A directed graph Gm = (V , E) with 2m vertices/states is defined as follows. The vertex

set is V = [0 : 2m − 1], and ∀i, j ∈ V , (i, j) ∈ E ⇔ b(j) B b(i) and (101) is not a subsequence

of b(j). Let Am be the transition matrix for Gm.

Let CW be an [ℓ, t; 2ℓR1 , 2ℓR2 , . . . , 2ℓRt] t-write 2m-ary WOM code of length ℓ described

by Gm. Let Ei(mi, yℓi−1,1) be its encoder on the i-th write, for i ∈ [t]. An [n, t; 2ℓR1 , . . . , 2ℓRt]

binary ICI-free WOM code CICI of length n is constructed as follows. On the i-th write, the

encoder uses the following rules:

1. in each block of size (m + 2), the last two cells are kept as 0, i.e.,

c
(m+2) j

i,(m+2) j−1
= c

(m+2) j

i−1,(m+2) j−1
= 0, ∀ j ∈ [ℓ].

2. write the message Mi ∈ [1 : 2ℓRi] to the remaining mℓ cells. Specifically, let yℓi,1 =

Ei(Mi, yℓi−1,1), and write the remaining mℓ cells such that c
(j−1)(m+2)+m

i,(j−1)(m+2)+1
= b(yi, j), ∀ j ∈

[ℓ].

The decoder can be designed accordingly and we omit the details. #

If CW is sum-rate optimal, then the sum-rate of CICI is

Rm,ICI(t) =
ℓ∑

t
i=1 Ri

ℓ(m + 2)

=
Csum(t, Gm)

m + 2

=
log2(δ

T
0,q · At

m · 1q)

m + 2

=
log2(δ

T
0,q · At

m · 1q)

m
· m

m + 2
.

Note that δT
0,qAt

m1q counts the number of binary arrays B = {bi, j}t×m such that bi+1, j >

bi, j, ∀i ∈ [t − 1], j ∈ [m], and the pattern (101) is not a subsequence of any row in B.

86

Letting m go to infinity, we see that there exists a sequence of t-write ICI-free WOM

codes with rates

RICI(t) = lim
m→∞

Rm,ICI(t)

> lim
m→∞

log2(δ
T
0,q · At

m · 1q)

m
· m

m + 2

= C(t, S2D
101).

The existence of the limit can be shown by the sub-additive property [61] of binary arrays B.

Proof of converse:
The converse can be easily proved by noting that if there exists a genie that, at decoding

step j ∈ [t], can provide all of the sequences written into the WOM from the first to the (j− 1)-st

write, then the sum-capacity equals the t-write column capacity, which is C(t, S2D
101). However,

this genie does not exist, so for any t-write ICI-free WOM code with sum-rate RICI(t), it follows

that

RICI(t) 6 C(t, S2D
101).

Example 5.3.2. Table 5.1 shows the t-write sum-capacity CICI(t) of the ICI-free WOM, calcu-

lated using the techniques in [90]. Also shown is the t-write capacity of an unconstrained WOM,

which is log(t + 1), for 2 6 t 6 7. An interesting observation is that CICI

log(t+1)
is close to 0.79.

t 2 3 4 5 6 7

CICI(t) 1.264 1.584 1.831 2.035 2.207 2.356

log(t + 1) 1.585 2 2.322 2.585 2.807 3

Table 5.1: Sum-capacity of ICI-free WOM

5.3.3 Code Constructions

We now proceed to the construction of some input-constrained WOM codes. In partic-

ular, we construct binary ICI-free WOM codes for t = 2 writes. The construction technique

generalizes to q-ary alphabets with q > 2, t > 2 writes, and more general input constraints.

Let C be the set of binary vectors of length n that avoid 101. Let C = L ∪ R be a

partition of C. For a pair of vectors (ℓ, r) ∈ L×R, we say r covers ℓ if r B ℓ. A bipartite graph

87

B = (L ∪R, E) is defined where L and R are the sets of left and right nodes, respectively. An

edge (ℓ, r) connecting ℓ ∈ L and r ∈ R exists if r covers ℓ and we denote such an edge by

(ℓ, r) ∈ E . For R̂ ⊆ R, the covering of R̂, denoted by CV(R̂), is defined as {ℓ ∈ L : ∃r ∈
R̂, r covers ℓ} and the covering cardinality of R̂ is defined as |CV(R̂)|. We say that R̃ ⊆ R
is a covering subset if CV(R̃) = L. A partition R = ∪k

i=1Ri is called a covering subset

partition of R ifRi is a covering subset for all i ∈ [k].

Lemma 5.3.6. Let R = ∪k
i=1Ri be a covering subset partition. Then there exists a 2-write

ICI-free WOM code of length n with rate pair (log |L|
n ,

log k
n).

For a bipartite graph, finding the maximum covering subset partition k is an interest-

ing problem in its own right. In [92], a greedy algorithm is proposed to find covering subset

partitions. We extend the greedy algorithm in [92] by adding another parameter g that controls

the level of greediness. The algorithm in [92] would coincide with the following algorithm for

g = 1.

Algorithm 5.3.7. FINDING COVERING SUBSETS OF A BIPARTITE GRAPH

Input:

a bipartite graph B = (L ∪R, E), where L = {ℓ1, . . . , ℓn} R = {r1, . . . , rm};
a positive integer g that measure the extent of greediness in searching for a covering

subset;

Output:

a partition ofR = ∪k
i=1Ri such that Ri is a covering subset for all i ∈ [k].

1: k ← 0;

2: Runused ← R;

3: Mark all ℓi ∈ L, i ∈ [n] as “uncovered”;

4: Rtemp ← ∅;
5: if Runused = ∅
6: return (R1, . . . ,Rk−1,Rk ∪Rtemp);

7: end if

8: Choose R̂ ⊆ Runused such that |R̂| 6 g and R̂ has the largest covering

cardinality |CV(R̂)|; /* In case of a tie, choose R̂ with minimum cardinality |R̂|; if there is still
a tie, choose any.*/

9: Rtemp ← Rtemp ∪ R̂;

10: Runused ← Runused \ R̂;

88

11: Mark ℓi ∈ CV(R̂) as “covered”;

12: If for all i ∈ [n], ℓi are covered,

13: k ← k + 1;

14: Rk ← Rtemp;

15: Go to Step 3;

16: else

17: Go to Step 5;

18: end if

The following construction uses Algorithm 5.3.7 to construct a two-write ICI-free WOM

code.

Construction 5.3.2 Let m, n, n′, ℓ be integers such that m 6 n and n′ = (n + 1)ℓ. Let Cn be

the set of binary vectors that avoid 101 of length n, and let Cn = L∪R be a partition of Cn such

that L = {x ∈ Cn : wt(x) 6 m} and R = Cn \ L. Let M1 = |L| and f1 : [0 : M1 − 1] →
L be an arbitrary bijective function. Let R = ∪k−1

i=0 Ri be a covering subset partition of R
obtained by running Algorithm 5.3.7. Suppose the cell-state vectors are yn′

1,1 and yn′
2,1 after the

first and second write, respectively. A two-write ICI-free WOM code of length n′ is constructed

as follows:

1. On the first write, let m ∈ [0 : Mℓ
1 − 1] be the information message. Suppose (m1, m2, . . . ,

mℓ) is the M1-ary representation of m, i.e., m = ∑
ℓ
i=1 miM

ℓ−i
1 . Then for each i ∈ [1 : ℓ],

write y
i(n+1)−1

1,(i−1)(n+1)+1
according to the following rule,

y
i(n+1)−1

1,(i−1)(n+1)+1
= f1(mi), ∀i ∈ [1 : ℓ];

and write y1,i(n+1) according to the following rule

y1,i(n+1) =

1, if y1,i(n+1)−1 = 1 and y1,i(n+1)+1 = 1;

0, otherwise .

2. On the second write, let m ∈ [0 : kℓ− 1] be the information message. Suppose (m1, m2, . . . , mℓ)

is the k-ary representation of m, i.e., m = ∑
ℓ
i=1 mik

ℓ−i. Then for each i ∈ [1 : ℓ], write

y
i(n+1)−1
2,(i−1)(n+1)+1

according to the following rule,

y
i(n+1)−1
2,(i−1)(n+1)+1

= xi ∈ Rmi
,

such that xi covers y
i(n+1)−1

1,(i−1)(n+1)+1
;

89

and write y2,i(n+1) according to the following rule

y2,i(n+1) =

1, if y2,i(n+1)−1 = 1 and y2,i(n+1)+1 = 1;

0, otherwise .

Decoding is simply implemented by reversing the steps of the encoding procedure.

Remark 5.3.2. Construction 5.3.2 is a realization of Construction 5.3.1 for t = 2. The extension

to t > 2 is straightforward. Only one “buffer” cell is used to avoid the ICI between adjacent

blocks. Note that in Construction 5.3.1, it is possible to decrease the number of “buffer” cells

from two to one. Two “buffer” cells are used to simplify the proof in Construction 5.3.1 since

the number of “buffer” cells does not affect the asymptotic rate.

Table 5.2 shows the best rate we found using Algorithm 5.3.7 for selected values of n.

From the table, we see that there exists a sequence of two-write ICI-free WOM codes of rate

R = 1.105 × 16
17 ≈ 1.04, which represents 82% of the sum-capacity listed in Table 5.1.

Table 5.2: Rates found by Algorithm 5.3.7

n 10 14 16

m 2 3 3

|L| 48 336 513

k 46 139 1103

sum-rate 1.111 1.108 1.105

5.4 Conclusion

ICI-free codes are used to mitigate the ICI during programming of flash memories. We

extended ICI-free codes in two directions. First, we considered ICI-free balanced codes, which

can be used with a dynamic read threshold to adapt to cell-level drift, and determined their

asymptotic information rate. We then considered ICI-free WOM codes, which can be used to

prolong the flash memory lifetime by reducing the number of block erasures. We calculated the

sum-capacity of an ICI-free input-constrained WOM and provided simple code constructions

that were used to design several codes with short block lengths. The derivation of the sum-

capacity can also be generalized to WOMs with other input constraints.

90

Acknowledgments

This chapter is in part a reprint of the material in the paper: Minghai Qin, Eitan Yaakobi,

and Paul H. Siegel, “Constrained codes that mitigate intercell interference in read/write cycles

for flash memories”, IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp.
836-846, May 2014.

Chapter 6

Parallel programming of flash

memories with quantizers

6.1 Introduction

Flash memories are a widely-used technology for non-volatile data storage. The basic

memory units in flash memories are floating-gate cells, which use charge (i.e., electrons) stored

in them to represent data; the amount of charge stored in a cell determines its level. The hot-
electron injection mechanism or Fowler-Nordheim tunneling mechanism [12] is used to increase

and decrease a cell level by injecting charge into it or by removing charge from it, respectively.

The cells in flash memories are organized as blocks, each of which contains about 106 cells.

One of the most prominent features of programming flash memory cells is its asymmetry in

programming and erasing. That is, increasing a cell level (injecting charge into a cell) is easy to

accomplish by applying a certain voltage to the cell. However, decreasing a cell level (removing

charge from a cell) is expensive in the sense that the block containing the cell must first be erased,

i.e., all charge in the cells within the block is totally removed, before reprogramming them to

their target levels. The erase operation, called a block erasure, is not only time-consuming, but
also degrades the performance and reduces the longevity of the flash memory [12].

In order to minimize the number of block erasures, programming flash memories is

accomplished very carefully using multiple rounds of charge injection to avoid “overshooting”

the desired cell level. Therefore, a flash memory can be modeled as aWrite Asymmetric Memory

(WAM), for which capacity analysis and coding strategies are discussed in [8, 42, 71].

Parallel programming is a crucial tool to increase the write speed when programming

91

92

flash memory cells. Two important properties of parallel programming are the use of shared pro-

gram voltages and the need to account for variation in charge injection [94]. Instead of applying

distinct program voltages to different cells, parallel programming applies a common program

voltage to many cells simultaneously. Consequently, the write speed is increased and the com-

plexity of hardware realization is substantially reduced. Parallel programming must also account

for the fact that cells have different hardness with respect to charge injection [60, 80]. When ap-

plying the same program voltage to cells, the amount of charge trapped in different cells may

vary. Those cells that have a large amount of trapped charge are called easy-to-program cells

and those with little trapped charge are called hard-to-program cells. Understanding this intrin-

sic property of cells will allow the programming of cells according to their hardness of charge

injection. One widely-used programming method is the Incremental Step Pulse Programming
(ISPP) scheme [60,80], which allows easy-to-program cells to be programmed with a lower pro-

gram voltage and hard-to-program cells to be programmed with a higher program voltage. In

this and the following chapters, we study the mathematical models of parallel programmings of

flash memories.

In [46, 47], optimized programming for a single flash memory cell was studied. A pro-

gramming strategy to optimize the precision with respect to two cost functions was proposed,

where one of the cost functions is the ℓp metric and the other is related to rank modulation [48].

It was assumed that the programming noise, which is the difference between the ideal and ac-

tual trapped charge in the cell, follows a uniform distribution and the level increment is chosen

adaptively according to the current cell level to minimize the cost function.

In [94], algorithms for parallel programming were studied. The underlying model in-

corporated shared program voltages and variations in cell hardness, as well as a cost function

based upon the ℓp metric. The programming problem was formulated as a special case of the

Subspace/Subset Selection Problem (SSP) [35] and the Sparse Approximate Solution Problem

(SAS) [66], both of which are NP-hard. Then an algorithm with polynomial time complexity

was proposed to search for the optimal programming voltages.

We note that flash memories use multiple discrete levels to represent data in real ap-

plications [12]. Hence, if the actual cell level is within a certain distance from the target level,

it will be quantized to the correct target level even though there is a gap between them. Read

errors can be mitigated by use of error correction codes. If the error correction capability is e,

then any read error will be totally eliminated as long as the number of read errors is less than

e. This motivates us to consider another cost function, which is the number of cells that are not

quantized correctly to their target levels.

93

To formulate this more precisely, let Θ = (θ1, . . . ,θn) be the vector of target cell levels

and let ℓt = (ℓ1,t, . . . , ℓn,t) be a vector of random variables which represent the level of every

cell after t programming rounds. Note that in general the value of ℓi,t, for 1 6 i 6 n, depends on

the applied voltages, the hardness of the cell, and the programming noise. We will evaluate the

performance of any programming method by some cost function C(Θ, ℓt) involving the target

cell levels Θ and the actual cell levels ℓt. Then, the programming problem is to find an algorithm

which minimizes the expected value of C(Θ, ℓt). In [94], the cost function was based upon the

ℓp metric, i.e., Cp(Θ, ℓt) =
(

∑
n
i=1

∣∣θi − ℓi,t

∣∣p
) 1

p
. In this chapter, we study a cost function

motivated by the quantization of cell levels, namely

C∆(Θ, ℓt) =
∣∣ {i ∈ [n] :

∣∣θi − ℓi,t

∣∣ > ∆i

} ∣∣,

where ∆i is the quantization distance for the i-th cell. We analytically solve the corresponding

problem of finding an optimal parallel programming algorithm for the special case where the

hardness of each cell is known and there is no programming noise. We also derive optimal

programming algorithms for a single cell in the presence of noise, both with and without the

availability of feedback during the programming process. We focus upon these scenarios because

of their amenability to analysis; the solution to the general cell-programming problem remains

open.

Another factor that limits the precision of flash programming is inter-cell interference

(ICI), which can cause the level of a cell to increase when its neighboring cells are programmed.

The ICI is caused by the parasitic capacitance between neighboring cells, and it is of particular

concern in multilevel cell programming [21, 58]. Constrained codes that mitigate the effect of

ICI have been studied in [5, 59]. In this chapter, we consider a simple model of ICI and, by

application of dynamic programming in the form of the Viterbi algorithm, we derive an optimal,

linear-time algorithm for parallel programming with ICI in the absence of noise.

The rest of the chapter is organized as follows. In Section 6.2, we formulate the parallel

programming problem with the cost function that reflects the quantization of cell levels. In

Section 6.3, we derive a polynomial-time algorithm for optimal parallel programming in the

absence of noise, assuming known, deterministic cell-hardness parameters. In Section 6.4, we

extend this to a polynomial-time, optimal parallel programming algorithm for the case where

ICI is present. In Section 6.5, we study the problem of programming a single cell in the presence

of noise, but with no feedback on the cell level during programming. In Section 6.6, we then

consider noisy cell programming with applied voltages chosen adaptively using feedback about

the current cell level.

94

6.2 Preliminaries

Let us define the cell programming problem in a general information-theoretic frame-

work, such as a cascade channel described in Figure 6.1, where the number of channels is the

number of programming rounds, t. We assume that there are n cells, denoted by c1, c2, . . . , cn,

whose initial levels (i.e., charge levels) are all 0. Each cell is characterized by some target level
θi > 0 and the target-level vector is Θ ! (θ1, . . . ,θn). Each round of programming is first de-

scribed by an encoder Ei, 1 6 i 6 t. The input to the first encoder is the target-level vector. For

the other encoders, the input also includes feedback on the cell levels after the previous round

of programming. The output of encoder Ei is the vector Vi which includes information about

the programming voltage of the i-th round and the set of cells that are programmed with this

voltage. The output of the i-th channel, which is the outcome of the i-th round of programming,

is a function of Vi and ǫi as well as ℓi−1 if i > 1. The vector ǫi represents the noise in each cell

and any other property of the cell that will affect its level. For i > 1, the vector ℓi represents the

value of cells after the i-th round. For round i + 1, the outcome of the i-th round of program-

ming ℓi is used to generate a feedback vector Fi on the cell levels to be used in the next round of

programming. The goal is to minimize a cost function that measures the difference between the

channel output ℓt after t rounds of programming and the target level vector Θ.

Remark 6.2.1. In practice, electrons trapped in the oxide layer can cause transient charge leak-

age during programming, which leads to a slight decrease of cell levels. Since the leakage

and other detrimental factors are typically significantly smaller than the programming noise and

inter-cell interference discussed in Section 6.4, we simply assume the cell levels can only in-

crease during programming.

Feedback information on cell levels after a particular write can be used to adaptively

choose the programming voltage of the next round, thus increasing the precision of program-

ming. However, obtaining the feedback information is time- and energy-consuming since read-

ing the cell level is accomplished by comparing it to a sequence of reference values.

In the remainder of the chapter, we denote by [m : n] the integer set {i ∈ Z : m 6 i 6

n}. We will sometimes shorten [1 : n] to [n] when the meaning is clear from the context. We

will use R+ to denote the set of all non-negative real numbers, i.e., R+ = {x ∈ R : x > 0}.
When applying a voltage V to a memory cell ci, where i ∈ [n], we assume that the

increase of the level of cell ci is linear with V, that is, the level of ci will increase by

αV +ǫ,

95

&' *+<+ n= V*&E*' =

*

>@XZ\^_
E

`{|@@^}
=+' *** Vh

~

E*
`{|@@^}

�^^\�|X�
** fF

*

&' *+<+ n=

~

V~&E~' + F*=>@XZ\^_
E~

`{|@@^}
=++' *~~~ Vh

*

fF

&' *+<+ n=

�

V�&E�' + F~=

�^^\�|X�

>@XZ\^_
`{|@@^}

~

~~ fF

=++' ~��� Vh

�^^\�|X�

E�
`{|@@^}

�� fF

!

�^^\�|X�
F!�*"#f#'$!�*=

** !! fF

*!

&' *+<+ n=

!

V!&E!' + F!� *=>@XZ\^_
E!

`{|@@^}

! * ! * *!

=++' *!!!! Vh

Figure 6.1: The information-theoretic framework of the cell programming model.

where α and ǫ are random variables that might be different for each cell ci and each round of

programming. Each cell ci is associated with anα and we call it the hardness of charge injection
for cell ci, and ǫ is the programming noise. (Note that the distribution of ǫ may vary among

different cells and different writes.) We define the parallel programming problem in detail as

follows.

Let Θ = (θ1, . . . ,θn) be the target cell levels andα = (α1, . . . ,αn) be the hardness of

charge injection and let V = (V1, V2, . . . , Vt)T ∈ Rt
+ be the vector of voltages applied on the t

96

rounds of programming. Define the indicator matrix

B =

b1,1 b2,1 · · · bn,1

b1,2 b2,2 · · · bn,2

...
...

. . .
...

b1,t b2,t · · · bn,t

∈ {0, 1}t×n

where, for i ∈ [n] and j ∈ [t], the entry bi, j ∈ {0, 1} indicates whether the cell ci is programmed

on the j-th round; i.e., bi, j = 1 if voltage Vj is applied to cell ci, and bi, j = 0, otherwise. Denote

the programming noise of the i-th cell on the j-th programming round by ǫi, j, for i ∈ [n] and

j ∈ [t]. For i ∈ [n], let ℓi,t be the random variable representing the level of cell ci after t rounds

of programming; that is,

ℓi,t =
t

∑
j=1

(
αiVj +ǫi, j

)
bi, j.

We define ℓt = (ℓ1,t, . . . , ℓn,t) to be the cell-state vector after t rounds of programming.

We evaluate the performance of the programming by reference to a cost function C(Θ, ℓt).

The programming problem is to minimize the expected value of C(Θ, ℓt) over V and B. That is,

given Θ,α and {ǫi, j}n×t, we seek to solve the optimization problem

minimize E [C(Θ, ℓt)] , (P1)

over V ∈ Rt
+ and B ∈ {0, 1}t×n, where, for a random variable X, E [X] denotes its expected

value.

In [94], the ℓp metric is considered as the cost function, i.e.

Cp(Θ, ℓt) =

(
n

∑
i=1

∣∣θi − ℓi,t

∣∣p

) 1
p

,

and the optimal solution for (P1) was derived for known α in the absence of noise. However,

in real applications, flash memories use multiple discrete levels to represent data and if the cell

level ℓi,t is within a certain distance from the target level θi, it will be quantized to the correct

target level even though there is a gap between ℓi,t and θi. This motivates us to consider as the

cost function the number of cells that are not correctly quantized to their target levels. To be

more precise, letting ∆ = (∆1, . . . , ∆n), we define

C∆(Θ, ℓt) =
∣∣ {i ∈ [n] :

∣∣θi − ℓi,t

∣∣ > ∆i

} ∣∣

97

to be the cost function, where ∆i is the quantization distance for ci. Therefore, the cell program-

ming problem is to solve

minimize E
[∣∣ {i ∈ [n] :

∣∣θi − ℓi,t

∣∣ > ∆i

} ∣∣] , (P2)

with V ∈ Rt
+ and B ∈ {0, 1}t×n.

Remark 6.2.2. Problem (P2) is the most general form of the cell programming problem and,

therefore, difficult to solve analytically. In the following sections of the chapter, we consider

four special cases, of both theoretical and practical interest, for which analytical solutions can

be found.

Remark 6.2.3. Another concern in programming is the writing speed, which strongly depends

on the number of programming rounds. Therefore, an alternative criterion for evaluating the

performance of a programming method is the minimum number of programming rounds needed

to achieve a specified level of programming accuracy, as described by the expected cost. That is,

given the values of Θ,α and {ǫi, j}n×t, we seek to determine

min
V∈Rt

+ ,B∈{0,1}t×n
t, subject to E[C∆(Θ, ℓt)] 6 γ, (P2′)

where γ is the maximum allowable expected cost.

If t can be bounded above by a finite number tmax, Problem (P2′) can be translated to

Problem (P2) through a binary search for t between 0 and tmax. If there exists an algorithm with

time complexity O(f (n)) for Problem (P2), then there exists an algorithm with time complexity

O(log(tmax) f (n)) for (P2′). As tmax is usually a small number between 6 and 10 in practice [80,

94], we focus on solving Problem (P2) throughout this chapter.

Remark 6.2.4. In practice, quantization is performed by comparing to predetermined voltage

levels. The number of such reference levels may therefore affect the read latency, as well as the

chip area in a circuit implementation. The trade-off between storage capacity – a function of

the number of levels – and quantization speed is determined by the cell quantization distances,

{∆i}. In the case of a uniform quantizer with quantization distance ∆, if the maximum cell level

is θmax, then the number of levels equals ⌊θmax2∆ ⌋+ 1.

6.3 Noiseless Parallel Programming

In this section, we assume that the cell hardness parameters (α1, . . . ,αn) are known

and deterministic, and there is no programming noise, i.e., ǫi, j = 0, ∀i ∈ [n], j ∈ [t]. In this

98

scenario, ℓi,t is deterministic so that we can omit the expectation in (P2) and ℓi,t = αi ∑
t
j=1 Vjbi, j.

Let n, t, ∆ = {∆1, . . . , ∆n} and Θ = {θ1, . . . ,θn} denote the block length, the number of

programming rounds, the set of quantization distances, and the set of target levels, respectively.

Our goal is to find a solution to (P2).

Lemma 6.3.1. The solution to Problem (P2) is equivalent to the solution of the following:

maximize f (V , B), (P3)

with V = (V1, . . . , Vt)T ∈ Rt
+, bi = (bi,1, . . . , bi,t)

T ∈ {0, 1}t and B = (b1, . . . , bn), where

ui =
θi−∆i
αi

, vi =
θi+∆i
αi

, i ∈ [n] and f (V , B) =
∣∣∣
{

i ∈ [n] : ui 6 bT
i · V 6 vi

} ∣∣∣.

Proof. The following chain of equations is easily established:

min
V ,B

∣∣ {i ∈ [n] :
∣∣θi − ℓi,t

∣∣ > ∆i

} ∣∣

=n − max
V ,B

∣∣ {i ∈ [n] :
∣∣θi − ℓi,t

∣∣ 6 ∆i

} ∣∣

=n − max
V ,B

∣∣∣
{

i ∈ [n] :
∣∣θi

αi
− ℓi,t

αi

∣∣ 6 ∆i

αi

} ∣∣∣

=n − max
V ,B

∣∣∣
{

i ∈ [n] :
∣∣θi

αi
− bT

i · V
∣∣ 6 ∆i

αi

} ∣∣∣

=n − max
V ,B

∣∣∣
{

i ∈ [n] :
θi

αi
− ∆i

αi
6 bT

i · V 6
θi

αi
+

∆i

αi

} ∣∣∣

=n − max
V ,B

∣∣∣
{

i ∈ [n] : ui 6 bT
i · V 6 vi

} ∣∣∣,

where V ∈ Rt
+, B ∈ {0, 1}t×n , ui =

θi−∆i
αi

and vi =
θi+∆i
αi

. This establishes the lemma.

The quantities ui and vi defined in the statement of Lemma 6.3.1 represent the bound-

aries of the correct quantization interval for cell ci, ∀i ∈ [n]. We call them the upper threshold
point and the lower threshold point for cell ci and we call the interval [ui, vi] the quantization
interval for cell ci. Any pair (V , B) that achieves the maximum for (P3) is called an optimal
solution pair, and V is called optimal or an optimal solution if there exists B such that (V , B) is

an optimal solution pair.

Definition 6.3.2. Suppose ui and vi, i ∈ [n], are defined as in Lemma 6.3.1. Let Tu be the set

of upper threshold points and Tv be the set of lower threshold points, i.e., Tu =
⋃

i∈[n]{ui} and
Tv =

⋃
i∈[n]{vi}. Let T = Tu ∪ Tv be the set of all upper and lower threshold points.

99

Example 6.3.1. Suppose the target levels are Θ = (10, 13, 8, 5, 10), the quantization distances

are∆ = (2, 2, 2, 3, 1), and the cell hardness parameters areα = (0.5, 0.5, 1, 1, 0.5). According

to Lemma 6.3.1, (u1, . . . , u5) = (16, 22, 6, 2, 18) and (v1, . . . , v5) = (24, 30, 10, 8, 22). Then

T = {2, 6, 8, 10, 16, 18, 22, 24, 30}.

Remark 6.3.1. We assume that |T | > t since otherwise we can easily achieve C∆(Θ, ℓt) = 0

by using the set of threshold points, T , as the set of programming voltages {V1, . . . , Vt}.

Definition 6.3.3. Suppose V = (V1, . . . , Vt)T ∈ Rt
+. We define SV to be

SV =
⋃

b∈{0,1}t

{bT · V}.

and call it the attainable set of V . That is, SV is the set of voltage values that can be achieved

by applying V .

Remark 6.3.2. Note that, for any i ∈ [n], if there exists z ∈ SV such that ui 6 z 6 vi, then

there exists b ∈ {0, 1}t such that ui 6 bT · V 6 vi, and thus the level of ci can be quantized to

the correct target level.

For a fixed V , maximizing the function f (V , B) over B is easy to accomplish by check-

ing whether there exists, for each i, an attainable voltage level z ∈ SV such that ui 6 z 6 vi. If

one could enumerate all possible vectors V , one could use this approach to exhaustively search

for an optimal solution. However, since V can be, in principle, any vector in Rt
+, there is an

uncountably infinite number of possible choices of V to consider. Nevertheless, Lemma 6.3.4

states that we can limit the number of vectors V under consideration to be polynomial in n, and

still guarantee that an optimal solution will be found.

Lemma 6.3.4. There exists a matrix A ∈ {0, 1}t×t , invertible over R, such that

A · V = p,

where p ∈ T t and V is an optimal solution for (P3).

Proof. See Appendix 6.8.

Remark 6.3.3. In Lemma 6.3.4 and Algorithm 6.3.5 below, the binary matrix A has to be

invertible over R, not necessarily over GF(2). Therefore, enumerating only the binary matrices

invertible over GF(2) may not be sufficient to find an optimal solution.

100

Next we give an algorithm to search for an optimal solution to (P3), which, as we have

shown, is also an optimal solution to (P2). First, let {p1, . . . , pM} be an arbitrary ordering of the
points in T , where M = |T | is the number of different threshold-point values and pi can be the

value of either an upper or a lower threshold point, for i ∈ [M]. Since p is of length t, there are

N = Mt choices of p (the entries can be repeated). Let {p1, . . . , pN} be an arbitrary ordering
of the choices. Now, let Ã ∈ {0, 1}t×t be a binary matrix with distinct rows; the number of such

matrices is Q = ∏
t−1
k=0(2

t − k). Let {Ã1, . . . , ÃQ} be an arbitrary ordering of these matrices.
Algorithm 6.3.5 will iterate over all choices of p and those matrices Ã that are invertible.

Algorithm 6.3.5 (Parallel Programming)

Function (f ∗, V∗, B∗) =ParallelProgramming(t, un
1 , vn

1).

Input:

t, (u1, . . . , un), and (v1, . . . , vn).

Output:

f ∗: maximum value of Problem (P3);

(V∗, B∗): the optimal solution pair.

1. Let f ∗ = 0;

2. Let V = V∗ = (0, . . . , 0) ∈ Rt
+,

3. Let B = (b1, . . . , bn) ∈ {0, 1}t×n, bi = 0, ∀i ∈ [n];

4. Let B∗ ∈ {0, 1}t×n, b∗i, j = 0, ∀i ∈ [t], j ∈ [n];

5. For i = 1, 2, . . . , N {
6. For j = 1, 2, . . . , Q {
7. If Ã j is invertible and Ã−1

j · pi ∈ Rt
+{

8. Let V = Ã−1
j · pi;

9. Let f = 0;

10. For k = 1, 2, . . . , n {
11. If ∃z ∈ SV , such that uk 6 z 6 vk {
12. Find b ∈ {0, 1}t , such that bT · V = z;

13. Let bk = b;

14. f = f + 1;

15. }
16. }
17. If f > f ∗

18. f ∗ = f , V∗ = V , B∗ = B;

101

19. }}}
Output the optimal solution pair (V∗, B∗) with maximized f (V ∗, B∗) = f ∗.

Example 6.3.2. Supposeα, Θ, ∆, ui and vi, 1 6 i 6 5, are given as in Example 6.3.1. Suppose

the number of programming rounds is t = 2. If pi = (30, 8)T ∈ T 2 and

Ã j =

 1 1

1 0

as we iterate through Line 5 to Line 19, then

V = (V1, V2)
T = Ã−1

j · pi = (8, 22)T ,

and

SV = {0, 8, 22, 30}.

By choosing the indicator matrix as

B =

 b1,1 b2,1 b3,1 b4,1 b5,1

b1,2 b2,2 b3,2 b4,2 b5,2

 =

 0 1 1 1 0

1 1 0 0 1

 ,

the final cell levels are ℓ2 = (11, 15, 8, 8, 11), where

ℓi,2 = αi

2

∑
j=1

Vjbi, j = αi (V1bi,1 + V2bi,2) , ∀1 6 i 6 5.

It can be easily checked that

θi − ∆i 6 ℓi,2 6 θi +∆i, ∀1 6 i 6 5,

implying all cells are correctly quantized and V = (8, 22)T is an optimal solution.

Theorem 6.3.6. Algorithm 6.3.5 finds an optimal solution pair (V∗, B∗) and computes the

optimal value f (V∗, B∗) for Problem (P3). The time complexity of the algorithm is O(nt+1).

Proof. According to Lemma 6.3.4, there exists an optimal solution (V , B), an invertible

matrix A ∈ {0, 1}t×t, and a threshold-point vector p ∈ T t, such that

A · V = p.

In Algorithm 6.3.5, all possible A’s and p’s, have been exhaustively considered and there is at

least one optimal V among all the V ’s derived from A’s and p’s. The algorithm outputs the best

V among them. This proves that this algorithm will find an optimal solution to (P3).

102

The number of iterations of the algorithm is of order NQt3n2t, where N = Mt 6 (2n)t

and Q = ∏
t−1
k=0(2

t − k). Therefore, the complexity is O(nt+1).

Remark 6.3.4. The efficiency of the algorithm could be improved if, rather than iterating over

the Q = ∏
t−1
k=0(2

t − k) binary matrices with distinct rows, we instead iterated only over the set

of binary matrices that are invertible over R.

6.4 Noiseless Parallel Programming with Inter-cell Interference

In this section, we consider the scenario where cell density has increased to the point

that inter-cell interference (ICI) exists. The phenomenon of ICI in flash memories was studied

in [21, 58] and constrained codes that mitigate the effect of ICI were presented in [5, 59]. In this

section, we extend the results of Sections 6.2 and 6.3, formulating the cell programming problem

with ICI as an optimization problem and providing an efficient polynomial time algorithm to

solve it.

Suppose the cell layout is a one-dimensional array. When a cell is programmed by

applying a voltage to it, the levels of the left and right neighboring cells will also increase. Those

cells that cause the ICI are called interfering cells and those cells whose levels are increased

unexpectedly because of ICI are called victim cells. Since a large programming voltage will

result in a more severe ICI, we make the further assumption that the ICI of the victim cell is

proportional to the voltage applied to the interfering cell. We define a sequence of parameters

βi,i+1 ∈ R+ and βi+1,i ∈ R+, i ∈ [n − 1] to describe the effect of ICI from ci to ci+1 and from

ci+1 to ci, respectively.

To be more precise, suppose the flash memory cells are c = (c1, . . . , cn) with injection

hardness parameters (α1, . . . ,αn). There are t rounds of charge injection, corresponding to a set

of applied voltages (V1, . . . , Vt). There is no programming noise, i.e.,ǫi, j = 0, ∀i ∈ [n], j ∈ [t].

If the voltage applied to the cell ci in round j is Vj, then

• the cell level of ci is increased byαibi, jVj, for all i ∈ [n]

• the cell level of ci+1 is increased byαi+1bi+1, jβi,i+1Vj, for all i ∈ [n − 1]

• the cell level of ci−1 is increased byαi−1bi−1, jβi,i−1Vj, for all i ∈ [2 : n].

We represent the indicator matrix as B = (b1, . . . , bn) ∈ {0, 1}t×n, where the vector b j, for

j ∈ [n], denotes the j-th column of B. For convenience, we also define β0,1 = βn+1,n = 0,

103

reflecting the fact that the leftmost cell c1 and rightmost cn have only one neighboring cell each.

Similarly, we define b0 = (b0,1, . . . , b0,t)
T = 0, bn+1 = (bn+1,1, . . . , bn+1,t)

T = 0.

Now, let β denote the vector (β0,1,β1,2,β2,3, . . . ,βn,n+1, β2,1, . . . ,βn,n−1,βn+1,n).

Assuming there is no programming noise, the final cell level of ci, i ∈ [n] after t rounds of

programming can be written as

ℓi,t =
t

∑
j=1

αi(bi, j +βi+1,ibi+1, j +βi−1,ibi−1, j)Vj.

The cell programming problem is the same as Problem (P2), which is to solve

minimize E
[∣∣ {i ∈ [n] :

∣∣θi − ℓi,t

∣∣ > ∆i

} ∣∣] ,

with V ∈ Rt
+ and B ∈ {0, 1}t×n.

Lemma 6.4.1. The solution to Problem (P2) is equivalent to the solution of the following:

maximize f̂ (V , B), (P3′)

with V = (V1, . . . , Vt)T ∈ Rt
+, bi = (bi,1, . . . , bi,t)

T ∈ {0, 1}t and B = (b1, . . . , bn), where

ui =
θi−∆i
αi

, vi =
θi+∆i
αi

, i ∈ [n] and

f̂ (V , B)

=
∣∣∣
{

i ∈ [n] : ui 6 (bT
i +βi+1,ib

T
i+1 +βi−1,ib

T
i−1) · V 6 vi

} ∣∣∣.

Proof. The following chain of equations is easily established.

min
V ,B

∣∣∣{i : |θi − ℓi,t| > ∆i, i ∈ [n]}
∣∣∣

=n − max
V ,B

∣∣∣{i : |θi − ℓi,t| 6 ∆i, i ∈ [n]}
∣∣∣

=n − max
V ,B

∣∣∣
{

i ∈ [n] :
∣∣θi

αi
− ℓi,t

αi

∣∣ 6 ∆i

αi

}∣∣∣

=n − max
V ,B

∣∣∣
{

i ∈ [n] :

∣∣θi

αi
− (bT

i +βi+1,ib
T
i+1 +βi−1,ib

T
i−1) · V

∣∣ 6 ∆i

αi

}∣∣∣

=n − max
V ,B

∣∣∣
{

i ∈ [n] :

θi −∆i

αi
6 (bT

i +βi+1,ib
T
i+1 +βi−1,ib

T
i−1) · V 6

θi +∆i

αi

}∣∣∣

=n − max
V ,B

∣∣∣
{

i ∈ [n] :

ui 6 (bT
i +βi+1,ib

T
i+1 +βi−1,ib

T
i−1) · V 6 vi

}∣∣∣,

104

where V ∈ Rt
+, B ∈ {0, 1}t×n , ui =

θi−∆i
αi

and vi =
θi+∆i
αi

.

As was the case for Problem (P3) in Section 6.3, the optimization in Problem (P3′) is

over the applied voltage vector V and the binary indicator matrix B. In Section 6.3, however,

there was no ICI and the cells could be treated independently. Consequently, for a fixed voltage

vector V , we could maximize f (V , B) over B simply by checking for each i ∈ [n] individually

whether there exists an attainable value z ∈ SV such that ui 6 z 6 vi. The time complexity of

this procedure is O(n).

Unfortunately, this procedure is not applicable in the presence of ICI because the level of

a given cell depends on the voltage increments applied to neighboring cells. Therefore, to solve

Problem (P3′), we first develop an efficient algorithm with time complexity O(n) to maximize

f̂ (V , B) over B for a fixed V . We then prove a generalization of Lemma 6.3.4 that limits the

number of candidate voltage vectors V to be polynomial in n, and, finally, present an efficient

algorithm to search for the optimal solution pair (V , B).

We call si = (bi−1, bi) ∈ {0, 1}t×2 the state of cell ci, ∀i ∈ [n + 1]. Note that the last

column of sn+1 is all zeros. Let s0 ∈ {0, 1}t×2 be the all-zero matrix. For example, if t = 1, then

there are 4 states, corresponding to all binary vectors of length 2, i.e., (0, 0), (0, 1), (1, 0), (1, 1).

We can relate Problem (P3′) to an optimization problem over a trellis T, which we define as

follows [55].

Definition 6.4.2. A trellis T of depth n is a triplet (S, E, L), where S = S0 ∪S1 ∪S2 ∪ · · · ∪Sn

denotes the set of states; E = E1 ∪ E2 ∪ · · · ∪ En denotes the set of edges, where each edge

e ∈ Ei has initial state σ(e) ∈ Si−1 and terminal state τ(e) ∈ Si; and L : E → Σ1 denotes a

label function that assigns to each edge a value in the set Σ1.

For our cell programming problem, we construct a trellis as follows.

Construction 6.4.1 Suppose the number of cells is n and the number of programming rounds

is t. We define a trellis T of depth n + 1, where S0 = {0} and Si is the set of states of cell ci,

for all i ∈ [n + 1]. There exists as edge e ∈ Ei from state si ∈ Si to state si+1 ∈ Si+1 if and

only if the last column of si is the same as the first column of si+1. In that case, σ(e) = si and

τ(e) = si+1.

We will make use of two label functions. The terminal state label function is L :

E → {0, 1}t , where for all e ∈ E, L(e) equals the last column of τ(e). The branch metric

label functions are Lb
i : Ei → {0, 1}, ∀i ∈ [2 : n + 1], where Lb

i (e) = 1 if and only if

105

e ∈ Ei and the cell ci−1 can be quantized correctly by the voltage vector V and the submatrix

(σ(ei), L(ei)) = (bi−2, bi−1, bi) of the indicator matrix, i.e.,

ui−1 6 (bT
i−1 +βi,i−1bT

i +βi−2,i−1bT
i−2) · V 6 vi−1.

Since the construction of the trellis T depends upon t, V ,β, un
1 and vn

1 , we denote the

trellis by T(t, V ,β, un
1 , vn

1).

A path e = (e1, e2, . . . , en) in T is a sequence of edges, where σ(e1) ∈ S0,σ(ei+1) =

τ(ei), ∀i ∈ [1 : n − 1]. The associated path metric is defined as m(e) = ∑
n
i=1 Lb

i (ei). A path

e also defines an indicator matrix B(e), which is obtained by reading off and concatenating the

column vectors corresponding to the terminal state labels of its edges. The path metric m(e)

can be interpreted as the number of cells being quantized correctly when the voltage tuple is V

and the indicator matrix is B(e), i.e., m(e) = f̂ (V , B(e)). Therefore, for a fixed V , solving

Problem (P3′) is equivalent to finding a path e from S0 to Sn that maximizes m(e), and thus

finding the indicator matrix B(e).

Example 6.4.1. Figure 6.2 shows an example of a trellis T with terminal state label function for

n = 5 cells and t = 1. The number of states for each cell is 22t = 4. The number of paths

emanating from each state is 2t = 2. For the highlighted path e, the corresponding indicator

matrix B(e) = (1, 0, 0, 1, 1).

Figure 6.2: Illustration of a terminal state label function of a trellis

Next we state the principle of optimality underlying the technique of dynamic program-

ming and, in particular, the well-known Viterbi algorithm.

106

Theorem 6.4.3. [Principal of Optimality] Let e = (e1, e2, . . . , ei−1, ei) be a path from state

s0 ∈ S0 to state si ∈ Si with maximum path metric m(e). Let si−1 ∈ Si−1 be the terminal state

of ei−1, i.e., si−1 = τ(ei−1). Then, the path ẽ = (e1, . . . , ei−1) from state s0 to si−1 has the

maximum path metric over all paths from s0 to si−1.

Now, we present the Viterbi algorithm as applied to the search for the maximum path

metric from S0 to Sn.

Algorithm 6.4.4 (Viterbi Algorithm)

Function (mi(s), qi(s)) = Viterbi(T(t, V ,β, un
1 , vn

1)).

Input:

Trellis T(t, V ,β, un
1 , vn

1) in Construction 6.4.1.

Output:

mi(s), ∀i ∈ [n], s ∈ S: the maximum path metric from s0 to s ∈ Si;

qi(s) ∈ Si, ∀i ∈ [n], s ∈ S: the state sequence corresponding to the path from s0 to s

with maximum metric.

The algorithm has 4 steps.

1. Initialize.

Let m0(s) = 0, ∀s ∈ S. Let q0(s0) = s0.

2. Add.

For each state s ∈ Si, and edge e ∈ Ei such that τ(e) = s, let

m̃i(e) = mi−1(σ(e)) + Lb
i (e)

3. Compare.

For each state s ∈ Si, determine edge e∗ with τ(e∗) = s, such that m̃i(e
∗) > m̃i(e), ∀e

such that τ(e) = s.

4. Select.

Let mi(s) = mi−1(σ(e
∗)) + Lb

i (e
∗) and qi(s) = (qi−1(σ(e

∗)), s).

Example 6.4.2. Let α, Θ, ∆, ui and vi, 1 6 i 6 5, be specified as in Example 6.3.1. Suppose

t = 1, V1 = 20, βi+1,i = βi+1,i = 0.2, ∀i ∈ [n − 1]. Figs. 6.3 and 6.4 show the trellis

structure along with the value of the branch metric label function on each edge. Recall that

u = (16, 22, 6, 2, 18) and v = (24, 30, 10, 8, 22). The values mi(s), s ∈ Si are also shown.

107

The highlighted paths have the maximum path metric from s0 to any state s6 ∈ S6, namely

m6(10) = 4, where the indicator matrices are (1, 1, 1, 0, 1) and (1, 1, 0, 0, 1), respectively.

Figure 6.3: Path with maximum metric in a trellis with t = 1

Figure 6.4: Another path with maximum metric in a trellis with t = 1

Theorem 6.4.5. Algorithm 6.4.4 finds the path with the maximum path metric with time com-

plexity O(n).

Proof. The correctness follows from Theorem 6.4.3 and the linear complexity follows from the

properties of the Viterbi Algorithm.

So far we have constructed an algorithm with linear complexity to determine B that

maximizes f̂ (V , B) for a fixed V . It is left to determine V that maximizes f̂ (V , B).

As in Section 6.3, we define a threshold-point vector p = (pk1
, . . . , pkt

) ∈ T t, where

T is given as in Definition 6.3.2, such that pk j
is a threshold point for the k j-th cell, for j ∈ [t]

108

and k j ∈ [n]. For a fixed p, we define a finite set of matrices A(p) of size t × t, such that

ai, j ∈ {0, 1, βki+1,ki
, 1 + βki+1,ki

, βki−1,ki
, 1 + βki−1,ki

, βki+1,ki
+ βki−1,ki

, 1 +βki+1,ki
+

βki−1,ki
}. To determine the optimal V , we make use of the following modified version of

Lemma 6.3.4.

Lemma 6.4.6. There exists a threshold-point vector p and an invertible matrix A(p) in the

corresponding finite set of matrices such that

A(p) · V = p,

where V ∈ Rt
+ is an optimal solution.

Proof. See Appendix 6.8.

Remark 6.4.1. Note that, in contrast to Lemma 6.3.4, when ICI is present the matrices that we

consider for a given threshold vector p are defined in terms of p.

Finally, we give an algorithm to search for an optimal solution to Problem (P3′), which

is also an optimal solution to Problem (P2) when ICI exists. Let {p1, . . . , pM} be an arbitrary
ordering of the points in T , where M = |T | is the number of different threshold point values.
Since p is of length t, there are N = Mt choices of p (the entries can be repeated). Let

{p1, . . . , pN} be an arbitrary ordering of the choices. For a fixed pi, i ∈ [M], a sequence of

matrices Ã(pi)
t×t is formed such that no two rows are the same. Thus, the number of different

Ã(pi)’s is Q(pi) = ∏
t−1
k=0(8

t − k). Let {Ã1(pi), . . . , ÃQ(pi)
(pi)} be an arbitrary ordering of

all possible Ã(pi)’s. Algorithm 6.4.7 will iterate over all choices of pi and those Ã(pi)’s that

are invertible.

Algorithm 6.4.7 (Parallel Programming with ICI)

Function (f ∗, V∗, B∗) =ParallelProgrammingICI(t, un
1 , vn

1 ,β).

Input:

t, (u1, . . . , un), (v1, . . . , vn) and β;

Output:

f ∗: maximum value of Problem (P3′);

(V∗, B∗): optimal solution pair.

1. Let f ∗ = 0;

2. Let V = V∗ = (0, . . . , 0) ∈ Rt
+;

109

4. Let B∗ ∈ {0, 1}t×n, b∗i, j = 0, ∀i ∈ [t], j ∈ [n];

5. For i = 1, 2, . . . , N {
6. For j = 1, 2, . . . , Q(pi) {
7. If Ã j(pi) is invertible and Ã j(pi)

−1 · pi ∈ Rt
+{

8. Let V = Ã j(pi)
−1 · pi;

8. Construct the trellis T(t, V,β, un
1 , vn

1) according to Con-

struction 6.4.1;

9. Let (mk(s), qk(s)) = Viterbi (T(t, V,β, un
1 , vn

1)), for k ∈
[n], s ∈ S;

10. Let s∗ = arg maxs∈Sn mn(s) and f = mn(s∗);

11. If f > f ∗ {
12. f ∗ = f , V∗ = V ;

13. Let the path e = (s0, q1(s
∗), q2(s

∗), . . . , qn(s∗));

14. Let B∗ = B(e);}
15. }}}

Output the optimal solution pair (V∗, B∗) with maximized f̂ (V∗, B∗) = f ∗.

The proof of the following theorem is similar to that of Theorem 6.3.6, so we omit the

details.

Theorem 6.4.8. Algorithm 6.4.7 finds the optimal solution pair (V∗, B∗) and computes the

optimal value f̂ (V∗, B∗) for Problem (P3′). The time complexity of the algorithm is O(nt+1).

6.5 Single Cell Noisy Programming without Feedback

In this section, programming noise is assumed to exist. To carry out our analysis, we

must restrict to the case of programming a single cell, with injection hardness α. The number

of programming rounds is again denoted by t, and the programming noise vector ǫ1, . . . ,ǫt

consists of independently distributed Gaussian random variables with zero means and variances

σ2
j , j ∈ [t], respectively.

Remark 6.5.1. Note that according to this model, after every programming round the level of

each cell could decrease because ǫ j could be negative. We choose to study this model while

assuming that the variance σ j, j ∈ [t] is much smaller than αVj, i.e., P
(
αVj +ǫ j < 0

)
is very

small. Thus, the probability of decreasing the cell levels is negligible. This model is a reasonable

approximation to a physical cell and it can be studied analytically, as will be seen in this section.

110

Another reasonable assumption we make is that σ j = σVj, j ∈ [t], where σ is a fixed

number; that is, the standard deviation of the programming noise is proportional to the program-

ming voltage. This makes sense since larger voltage applied to the cell results in larger power

of the programming noise [46]. We further assume that during programming, no feedback in-

formation is available, meaning that the actual amount of charge trapped in the cell after each

round of programming is not known. The goal is to maximize the probability that after t rounds

of programming the final level is in [θ−∆,θ+ ∆], i.e.,

maximize P

(
θ−∆ 6

t

∑
j=1

(αVj +ǫ j) 6 θ+∆
)

, (P4)

with V ∈ Rt
+.

Lemma 6.5.1. The cell programming problem (P4) is equivalent to

maximize g(V), (P5)

with V ∈ Rt
+, where

g(V) =
1√
2π

∫ c(V)+δ(V)

c(V)−δ(V)
e−u2/2du,

c(V) =
θ−α ∑

t
j=1 Vj

σ
√

∑
t
j=1 V2

j

, and δ(V) = ∆

σ
√

∑
t
j=1 V2

j

.

Proof. We rewrite the probability in (P4) as

P

(
−∆+θ 6

t

∑
j=1

(αVj +ǫ j) 6 ∆+θ
)

=P

(−∆+θ−α ∑
t
j=1 Vj√

∑
t
j=1(σ

2
j)

6 X 6
∆+θ−α ∑

t
j=1 Vj√

∑
t
j=1(σ

2
j)

)
,

where X =
∑

t
j=1(αVj+ǫ j)−α ∑

t
j=1 Vj√

∑
t
j=1σ

2
j

∼ N (0, 1).

Under the assumption that σ j = σVj, we have

P

(−∆+θ−α ∑ Vj

σ
√

∑ V2
j

6 X 6
∆+θ−α ∑ Vj

σ
√

∑ V2
j

)

=
1√
2π

∫
∆+θ−α∑ Vj

σ

√
∑ V2

j

−∆+θ−α∑ Vj

σ

√
∑ V2

j

e−u2/2du,

= g(V).

111

Let p(y) = 1√
2π

e−y2/2 be the N (0, 1) Gaussian probability density function. Then

g(V) can be interpreted as the area between the curves p(y) and y = 0 on the interval deter-

mined by V , where the interval is centered at
θ−α ∑

t
j=1 Vj

σ
√

∑
t
j=1 V2

j

, with radius ∆

σ2
√

∑
t
j=1 V2

j

.

Remark 6.5.2. In the remainder of the chapter, we will on occasion simplify notation by writing

summations of the form ∑
t
j=1(·) as ∑(·), provided that the meaning is clear from the context.

Lemma 6.5.2. If V∗ is the optimal solution to (P5), then ∀ j ∈ [t], V∗
j = x, for some constant

x ∈ R+.

Proof. See Appendix 6.9.

Theorem 6.5.3. The optimal solution V∗ to (P5) satisfies the following: V∗
j = x∗, ∀ j ∈ [t],

where x∗ is the positive root of the equation
(

2 ln
b

a

)
x2 + 2(b − a)cx + (a2 − b2) = 0,

and a = −∆+θ

σ
√

t
, b = ∆+θ

σ
√

t
, c = α

√
t

σ
.

Proof.

According to Lemmas 6.5.1 and 6.5.2, the optimal solution to (P5) is achieved by a

sequence of programming voltages V∗ = (V1, . . . , Vt), where Vj = x, ∀ j ∈ [t], for some

x ∈ R+. Referring to the definition of g(V), we must therefore find x ∈ R+ that maximizes

h(x) =
∫ b−cx

x

a−cx
x

e−
u2

2 du

where a = −∆+θ

σ
√

t
, b = ∆+θ

σ
√

t
, and c = α

√
t

σ
. Note that h(x) > 0, ∀x > 0. Moreover, h(0) = 0

and h(x) → 0 as x → 0. To determine a value of x that maximizes h(x), we examine the points

where h′(x), the first derivative of h(x), vanishes. A simple calculation shows that

h′(x) = e−
1
2 (

b−cx
x)

2

· −cx − (b − cx)

x2

− e−
1
2 (

a−cx
x)

2

· −cx − (a − cx)

x2
.

112

The condition h′(x) = 0 translates to

(
2 ln

b

a

)
x2 + 2(b − a)cx + (a2 − b2) = 0.

Since
(

2 ln b
a

)
(a2 − b2) < 0, this equation has two real solutions, one of which is positive. We

denote this solution by x∗. Noting that h(x) is clearly positive for some x ∈ R+, we conclude

that the maximum value of h(x) must be achieved when x = x∗. This completes the proof.

Example 6.5.1. Using Theorem 6.5.3, a simple calculation shows that the probability of the cell

being quantized correctly is a function of three parameters: the number of programming rounds

t, the ratio between θ and ∆, and the ratio between α and σ .

Figure 6.5 shows the probability of correct programming as a function of the number of

programming rounds t for different σ’s, where α = 1,θ = 1, and ∆ = 0.2. Figure 6.6 and

Figure 6.7 show the minimum number of programming rounds t, for different θ/∆ and α/σ ,

such that the probability of correct quantization is above 90% and 80%, respectively.

0 5 10 15 20

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of programming rounds t

P
r(

c
o

rr
e

c
t)

σ = 0.2

σ = 0.3

σ = 0.4

σ = 0.5

Figure 6.5: Probability of correct quantization as a function of the number of programming

rounds.

113

0 5 10 15 20
0

2

4

6

8

10

12

θ /∆

M
in

im
u

m
 t
 n

e
e

d
e

d

α /σ = 4

α /σ = 6

α /σ = 8

α /σ = 10

Figure 6.6: Minimum number of rounds required to ensure 90% probability of correct

programming.

0 5 10 15 20
0

2

4

6

8

10

12

θ /∆

M
in

im
u

m
 t
 n

e
e

d
e

d

α /σ = 4

α /σ = 6

α /σ = 8

α /σ = 10

Figure 6.7: Minimum number of rounds to ensure 80% probability of correct programming.

114

6.6 Single Cell Noisy Programming with Feedback

In this section, we assume that after every round of programming, we can evaluate the

amount of charge that has already been trapped in the cells1. That is, we can measure the value

∑
k
j=1(αVj + ǫ j) after the k-th round of programming, ∀k ∈ [t]. Therefore, we can adaptively

choose the applied voltages according to the current cell level. Similarly, we assume the injection

hardness α of the cell is known and fixed, and the programming noise values ǫ1, . . . ,ǫt are

independent random variables with probability density functions p j(x), ∀ j ∈ [t].

Our goal is to maximize the probability that after t rounds of programming the final level

is in [θ−∆,θ+ ∆], i.e.,

maximize P

(
θ−∆ 6

t

∑
j=1

(αVj +ǫ j) 6 θ+∆
)

, (P6)

with V ∈ Rt
+.

Definition 6.6.1. Let P(V t
1,θ, ∆, t) be the probability that the final cell level after t rounds of

programming is in [θ − ∆,θ + ∆] when the voltages are V t
1, where V

j
i = (Vi, Vi+1, . . . , Vj).

Let P(θ, ∆, t) be the maximum probability over all choices of V t
1, i.e.,

P(θ, ∆, t) = max
V t

1∈Rt
+

P(V t
1,θ, ∆, t),

where

P(V t
1,θ, ∆, t) = P

(
θ−∆ 6

t

∑
j=1

(αVj +ǫ j) 6 θ+∆

)
.

Suppose the target level and quantization distance areθ and∆, respectively. Let P(θ, ∆, t)

be as in Definition 6.6.1. Then we have

P(θ, ∆, 1) = max
V1∈R+

∫ θ+∆

θ−∆
p1(x −αV1)dx.

Suppose V1 is the voltage applied on the first programming round. Then

P(V t
1,θ, ∆, t) =

∫

R+

p1(x −αV1)P(θ− x, ∆, t − 1)dx.

Since feedback information is available, the recursion

P(θ, ∆, t) = max
V1∈R+

∫

R+

p1(x −αV1)P(θ− x, ∆, t − 1)dx

1Measuring the exact amount of charge injected is time-consuming for real applications, thus it is common to

compare the cell level to certain threshold values and to obtain a range for the cell level. In this work, we follow the

assumption that the actual cell level is available, as in [46].

115

holds for t > 2. It follows that the problem of finding P(θ, ∆, t) can be reduced to the problem

of finding P(θ− x, ∆, t − 1).

We can compute P(θ, ∆, t) numerically using the recursion once we know the distri-

bution of the noise p j(x), j ∈ [t]. However, analytical results are difficult to derive since the

noise distribution p j(x), j ∈ [t] could be an arbitrary probability distribution. In the sequel,

we assume a simple yet non-trivial noise distribution, namely, ǫ j is uniformly distributed over

[αVj − δ1Vj,αVj + δ2Vj] for j ∈ [t], where 0 6 δ1 6 α and δ2 > 0. Thus p j(x) =
1

(δ1+δ2)Vj
Ix∈[−δ1Vj ,δ2Vj]. This assumption is similar to the one made in [46] except that we do

not constrain Vj to be integer-valued. The size of the support set of the noise distribution is pro-

portional to the programming voltage, which is reasonable since larger voltages result in larger

deviations of the noise distribution.

Lemma 6.6.2. In Definition 6.6.1,

P(θ, ∆, 1) =

1, if θ−∆
θ+∆

< α−δ1
α+δ2

α+δ2
δ1+δ2

2∆
θ+∆

if θ−∆
θ+∆

> α−δ1
α+δ2

and the optimal solution is achieved by V1 = θ+∆
α+δ2

.

Proof. See Appendix 6.10.

Next we would like to find the values of V t
1 that maximize P(V t

1,θ, ∆, t) with feedback

information, for arbitrary t.

Lemma 6.6.3. P(θ, ∆, t) is a non-increasing function of θ.

Proof. See Appendix 6.10.

Theorem 6.6.4. P(V t
1,θ, ∆, t) is maximized when V1 = θ+∆

α+δ2
.

Proof. The proof consists of two parts. First we prove that for any V̂
t

1
def
= (V̂1, . . . , V̂t) such that

V̂1 < V1 = θ+∆
α+δ2

, max
V̂

t
2

P(V̂
t

1,θ, ∆, t) 6 maxV t
2

P(V t
1,θ, ∆, t). Next, we prove that for any

Ṽ
t

1
def
= (Ṽ1, . . . , Ṽt) such that Ṽ1 > V1 = θ+∆

α+δ2
, max

Ṽ
t
2

P(Ṽ
t

1,θ, ∆, t) 6 maxV t
2

P(V t
1,θ, ∆, t).

Case (1): Suppose V̂1 < V1 = θ+∆
α+δ2

.

First we provide a sketch of the proof. If the first voltage applied is V1 (resp. V̂1),

then the cell level after the first programming round is uniformly distributed over F = [(α −

116

δ1)V1, (α + δ2)V1] (resp. F̂ = [(α − δ1)V̂1, (α + δ2)V̂1]). We will divide F (resp. F̂) into

non-overlapping intervals and prove that in each interval applying V1 yields higher probability

of correct programming than applying V̂1.

Let ℓ = ⌈ (δ1+δ2)V̂1

(α−δ1)(V1−V̂1)
⌉ and divide F (resp. F̂) evenly into ℓ non-overlapping intervals.

That is, let Fi =
[
(α − δ1)V1 + (i − 1) (δ1+δ2)V1

ℓ , (α − δ1)V1 + i (δ1+δ2)V1

ℓ

]
(resp. F̂i =

[
(α −

δ1)V̂1 +(i− 1) (δ1+δ2)V̂1

ℓ , (α−δ1)V̂1 + i
(δ1+δ2)V̂1

ℓ

]
), for i ∈ [ℓ]. Note that if x ∈ Fi and x̂ ∈ F̂i,

then x > x̂, ∀i ∈ [ℓ]. Then

max
V t

2

P(V t
1,θ, ∆, t) =

∫

F

p1(x −αV1)P(θ− x, ∆, t − 1)dx

=
∫
⋃ℓ

i=1 Fi

1

(δ1 + δ2)V1
P(θ− x, ∆, t − 1)dx

=
ℓ

∑
i=1

∫

Fi

1

(δ1 + δ2)V1
P(θ− x, ∆, t − 1)dx

and

max
V̂

t
2

P(V̂
t

1,θ, ∆, t) =
∫

F

p1(x −αV̂1)P(θ− x, ∆, t − 1)dx

=
∫
⋃ℓ

i=1 F̂i

1

(δ1 + δ2)V̂1

P(θ− x, ∆, t − 1)dx

=
ℓ

∑
i=1

∫

F̂i

1

(δ1 + δ2)V̂1

P(θ− x, ∆, t − 1)dx.

According to Lemma 6.6.3, P(θ− x, ∆, t − 1) is a non-decreasing function of x; therefore, for

each element in the summation, we have

∫

Fi

1

(δ1 + δ2)V1
P(θ− x, ∆, t − 1)dx

>
|Fi|P(θ− ((α − δ1)V1 + i (δ1+δ2)V1

ℓ), ∆, t − 1)

(δ1 + δ2)V1

>
|F̂i|P(θ− ((α − δ1)V̂1 + (i − 1) (δ1+δ2)V̂1

ℓ), ∆, t − 1)

(δ1 + δ2)V̂1

>
∫

F̂i

1

(δ1 + δ2)V̂1

P(θ− x, ∆, t − 1)dx,

117

for all i ∈ [ℓ]. This proves max
V̂

t
2

P(V̂
t

1,θ, ∆, t) 6 maxV t
2

P(V t
1,θ, ∆, t).

Case (2): Suppose Ṽ1 > V1 = θ+∆
α+δ2

.

If the first voltage applied is Ṽ1, then the voltage of the cell after the first round of

programming is uniformly distributed over F̃ = [(α − δ1)Ṽ1, (α + δ2)Ṽ1]. Once the voltage is

in [θ + ∆, (α + δ2)Ṽ1], the probability that after t rounds of programming the final cell level is

within the interval [θ − ∆,θ+ ∆] is 0, since the cell level cannot be decreased in our model of

flash cell programming.

Now, since Ṽ1 > V1, we have

max
Ṽ

t
2

P(Ṽ
t

1,θ, ∆, t) =
∫

F̃

p1(x −αṼ1)P(θ− x, ∆, t − 1)dx

=
∫ θ+∆

(α−δ1)Ṽ1

1

(δ1 + δ2)Ṽ1

P(θ− x, ∆, t − 1)dx

6
∫ θ+∆

(α−δ1)Ṽ1

1

(δ1 + δ2)V1
P(θ− x, ∆, t − 1)dx

6
∫ θ+∆

(α−δ1)V1

1

(δ1 + δ2)V1
P(θ− x, ∆, t − 1)dx

= max
V t

2

P(V t
1,θ, ∆, t).

Noting that

max
V t

1

P(V t
1,θ, ∆, t) = max

V1

max
V t

2

P(V t
1,θ, ∆, t),

we conclude that P(V t
1,θ, ∆, t) is maximized when V1 = θ+∆

α+δ2
.

Next we give an algorithm for determining the optimal cell programming for Prob-

lem (P6), where feedback information is available.

Algorithm 6.6.5 The voltage Vj on the j-th round of programming, where 1 6 j 6 t, is set as

follows.

Let x j denote the feedback representing the cell level before the j-th write, where, for

j = 1, we set x1 = 0.

Set Vj =
θ−x j+∆

α+δ2
.

Corollary 6.6.6. Algorithm 6.6.5 gives an optimal solution for the cell programming problem

(P6).

118

Proof. According to Theorem 6.6.4, if we need to reach the level θ, then the voltage applied on

the first round is θ+∆
α+δ2

. Thus, after the (j − 1)-st round, if we know that the current cell level is

x j, then the voltage applied on the j-th round is
θ−x j+∆

α+δ2
, which completes the proof.

6.7 Conclusion

Accurate and efficient cell programming is critical to the enhancement of flash memory

functionality and storage capacity. Programming techniques must take into account the asym-

metric nature of the write process, the manner in which discrete data values are represented

within the range of cell levels, the presence or absence of noise, and the reduction in write

latency that parallel programming can provide.

In this chapter, we make the realistic assumption that cell levels are quantized to a dis-

crete set of levels to represent digital data. The programming of a cell is considered to be

successful if the programmed cell level is correctly quantized to the desired target level. For

several scenarios, we present programming algorithms that, for a specified number of program-

ming rounds, achieve optimality with respect to this figure of merit. Specifically, when cells

have known hardness to charge injection and the programming process is noiseless, we derive

an optimal parallel programming algorithm whose complexity is polynomial in the number of

cells. We also modify the algorithm to take into account the presence of inter-cell interference

from adjacent cells.

We also consider techniques for programming a single cell in the presence of noise.

Assuming that no feedback on the cell level is available during the write process, we present a

programming algorithm that, for a given number of programming rounds, maximizes the prob-

ability of attaining a cell level corresponding to the desired target level. We then address the

situation where feedback is available and present an optimal strategy for adaptively choosing the

programming voltages.

6.8 Appendix A

Proof of Lemma 6.3.4. We prove the lemma by induction.

For t = 1, it is equivalent to prove that there exists an optimal V1 such that V1 ∈ T . So,

suppose V∗
1 is an optimal solution. If V∗

1 ∈ T , then the lemma holds for t = 1; if not, define

119

δmin to be the smallest distance from V∗
1 to an element of T , i.e.,

δmin = min
p∈T

{|V∗
1 − p|} .

If δmin is achieved by choosing an upper threshold point, set V̂1 = V∗
1 + δmin; otherwise, set

V̂1 = V∗
1 − δmin. That is, V̂1 is the closest threshold point to V∗

1 . By the definition of δmin, any

cell that can be quantized correctly using V∗
1 can be quantized correctly using V̂1; thus, V̂1 is

also an optimal solution. Meanwhile, V̂1 ∈ T . This proves that there always exists an optimal

solution V1 ∈ T .

Suppose the lemma holds if the number of programming rounds is t − 1. That is, for

t > 2, assume there exists an invertible matrix A ∈ {0, 1}(t−1)×(t−1), such that

AV = p,

where V ∈ R
t−1
+ is an optimal solution for (P3) and p ∈ T (t−1). We are going to prove by

contradiction that the lemma holds if the number of programming rounds is t.

Suppose the opposite is true. Then, for any p′ ∈ T t, there does not exist an invertible

matrix A ∈ {0, 1}t×t, such that

AV = p,

where V is an optimal solution for (P3). Let t′ be the largest number, 0 6 t′ < t, such that there

exists a matrix A′ ∈ {0, 1}t′×t with full row rank, such that

A′V∗ = p′,

where V∗ is an optimal solution for (P3) and p′ ∈ T t′ .

Let V ∈ Rt
+ satisfy A′V = p′. Since rank(A′) = t′ < t, the solution space for V is a

non-empty polytope P consisting of the non-negative vectors in a t′-dimensional subspace. That

is,

P =
{

V ∈ R
t
+|A′V = p′} .

(Note that if t′ = 0, then P is the space of non-negative t-dimensional vectors.)

Claim 6.8.1. There exists a V̂ in P such that V̂ is on the boundary of P , i.e., ∃V̂ ∈ P and

k ∈ [t], such that V̂k = 0.

Proof. Since P is a non-trivial polytope, there exists X ∈ Rt
+ in P such that X 6= V∗. If there

exists j ∈ [t] such that X j < V∗
j , let

zmin = arg min
16 j6t

X j

V∗
j

.

120

If there exists more than one index j ∈ [t] that minimizes
X j

V∗
j
, then zmin is chosen arbitrarily

from among these indices. Let

ymin = min
16 j6t

X j

V∗
j

=
Xzmin

V∗
zmin

< 1,

and set

V̂ =
X − yminV∗

(1 − ymin)
.

Since V̂ is a linear combination of X and V∗, we have A′V̂ = p′. Then

V̂zmin =
Xzmin − yminV∗

zmin

(1 − ymin)
=

Xzmin −
Xzmin
V∗

zmin

V∗
zmin

(1 − ymin)
= 0,

and

V̂j =
X j − yminV∗

j

(1 − ymin)
> 0, ∀ j ∈ [t].

Therefore V̂ ∈ P and V̂zmin = 0.

If there does not exist j ∈ [t] such that X j < V∗
j , then there exists j ∈ [t] such that

V∗
j < X j since X 6= V∗. Following similar reasoning, we can prove that there exists V̂ ∈ P

such that V̂k = 0, for some k ∈ [t].

Now, there are two different cases to consider for the V̂ of Claim 6.8.1.

Case (1): V̂ is an optimal solution of (P3).

Claim 6.8.2. If V̂ is optimal, then all of the n cells can be quantized correctly using t− 1 rounds

of programming.

Proof. Suppose the opposite is true, and there exists ci with quantization interval [vi, ui] that is

not quantized correctly by V̂ . Set Ṽj = V̂j for all j such that 1 6 j 6= k 6 t and set Ṽk = vi.

Then the number of cells that are quantized correctly by Ṽ is larger than V̂ , contradicting the

assumption that V̂ is optimal.

By the induction assumption, if the number of programming rounds is t− 1, there exists

an invertible matrix A ∈ {0, 1}(t−1)×(t−1), such that

AV = p,

where V ∈ R
(t−1)
+ is an optimal solution and p ∈ T (t−1). Note that in this case, according

to Claim 6.8.2, all of the n cells can be quantized correctly. We form another invertible matrix

121

Ã ∈ {0, 1}t×t by adding one column and one row to A, where all added entries are 0 except

that ãt,t = 1. Let Ṽ = (V1, . . . , Vt−1, pt)T ∈ Rt
+ where pt ∈ T is any threshold point. Let

p̃ = (pT, pt)T = (p1, . . . , pt−1, pt)T be a threshold-point vector. Then we have

ÃṼ =

 A 0

0T 1

 V

pt

=

 p

pt

 ∈ T t.

and Ṽ is optimal since all of the n cells are quantized correctly. The existence of Ã, Ṽ and p̃

contradicts the assumption that t′ is the maximum row rank.

Case (2): V̂ is not an optimal solution of (P3).

Note that because V∗ is optimal while V̂ is not optimal, the following claims hold.

Claim 6.8.3. There exists b ∈ {0, 1}t such that bTV∗ ∈ [vi, ui] and bTV̂ /∈ [vi, ui], for some

i ∈ [n].

Proof. Since V∗ is optimal while V̂ is not optimal, at least one cell can be quantized correctly by

V∗ but not by V̂ . Suppose the cell is ci. Then there exists b ∈ {0, 1}t such that bTV∗ ∈ [vi , ui]

and bTV̂ /∈ [vi , ui].

Claim 6.8.4. Every b ∈ {0, 1}t satisfying the property in Claim 6.8.3 is linearly independent

with respect to the set of row vectors of A′.

Proof. Suppose the opposite is true. That is, bT = xA′, for some x ∈ Rt′ . Then

bTV∗ = xA′V∗ = xp′ = xA′V̂ = bTV̂ .

This contradicts the fact that bTV∗ 6= bTV̂ .

Suppose the number of triplets (b, vi, ui) for b ∈ {0, 1}t and i ∈ [n] in Claim 6.8.3

is K. We list all such triplets and label them by (bk, wk, yk), k ∈ [K]. Note that one and only

one of wk and yk is between bT
k V∗ and bT

k V̂ . Without loss of generality, we assume that wk is

between bT
k V∗ and bT

k V̂ . In particular, bT
k V̂ 6 wk 6 bT

k V∗. Define

δmin = min
16k6K

bT
k V∗ − wk

bT
k V∗ − bT

k V̂
∈ [0, 1]

122

and

kmin = arg min
16k6K

bT
k V∗ − wk

bT
k V∗ − bT

k V̂
.

Consider the convex combination of V∗ and V̂ given by

Ṽ = V∗ − δmin(V
∗ − V̂) = (1 − δmin)V

∗ + δminV̂ .

Claim 6.8.5. Ṽ is an optimal solution of (P3).

Proof. Suppose ci can be programmed into its quantization interval [vi , ui], i ∈ [n] by V∗ but

not by V̂ . According to Claim 6.8.3, let b ∈ {0, 1}t be a vector such that bTV∗ ∈ [vi, ui], but

bTV̂ /∈ [vi , ui]. We will prove that vi 6 bTṼ 6 ui.

Without loss of generality, we assume bTV̂ < vi 6 bTV∗ 6 ui. Then

ui > bTV∗ 1©
> bTṼ = bT

(
V∗ − δmin(V

∗ − V̂)
)

> bTV∗ − bT bTV∗ − vi

bTV∗ − bTV̂
(V∗ − V̂)

= bTV∗ − bT(V∗ − V̂)
bTV∗ − vi

bT(V∗ − V̂)

= vi,

where 1© follows from the fact that

bTṼ = bT
(

V∗ − δmin(V
∗ − V̂)

)

= bTV∗ − δminbT(V∗ − V̂)

6 bTV∗.

If ci can be programmed into its quantization interval [vi, ui], i ∈ [n] by V∗ and V̂ , then

it can be programmed into [vi, ui] by Ṽ as well, since Ṽ is a convex combination of V∗ and

V̂ . Thus, each cell that can be quantized correctly by V∗ can also be quantized correctly by Ṽ ,

implying that Ṽ is optimal.

Let

Ã =

 A′

bT
kmin

 .

Claim 6.8.6. Ã has row rank t′ + 1 and ÃṼ ∈ T (t′+1).

123

Proof. According to Claim 6.8.4, each bT is linearly independent of the set of row vectors of

A′, implying that rank(Ã) = t′ + 1.

Consider

ÃṼ =

 A′

bT
kmin

 Ṽ =

 A′Ṽ

bT
kmin

Ṽ

 def
= p̃,

Since Ṽ is a convex combination of V∗ and V̂ , it is in the polytope P , thus A′Ṽ = p′ ∈
T t′ .

Now,

bT
kmin

Ṽ = bT
kmin

(
V∗ − δmin(V

∗ − V̂)
)

= bT
kmin

(
V∗ − bT

kmin
V∗ − wkmin

bT
kmin

V∗ − bT
kmin

V̂
(V∗ − V̂)

)

= bT
kmin

V∗ − bT
kmin

(V∗ − V̂)
bT

kmin
V∗ − wkmin

bT
kmin

(V∗ − V̂)

= wkmin
∈ T .

Therefore, p̃ ∈ T (t′+1).

For both Case (1) and Case (2), the existence of Ã, Ṽ and p̃ contradicts the assumption

that t′ is the maximum row rank of a matrix A such that AV∗ = p′. Therefore, there exists an

invertible matrix A ∈ {0, 1}t×t such that

AV = p,

where V ∈ Rt
+ is an optimal solution for (P3) and p ∈ T t is a threshold-point vector.

Proof of Lemma 6.4.6. The proof is based on induction and is very similar to the proof

of Lemma 6.3.4. Therefore, we prove the initial step of the induction and omit the remaining

details.

For t = 1, we prove that there exist a threshold-point pi ∈ T of the cell i and a real

number

a ∈ {0, 1,βi−1,i,βi+1,i, 1 +βi−1,i, 1 +βi+1,i,βi−1,i +βi+1,i,

1 +βi−1,i +βi+1,i}
=

⋃

b∈{0,1}3

{(βi−1,i, 1,βi+1,i) · b}

124

such that

aV = pi,

where V > 0 is optimal.

Suppose V∗ is optimal. If ∃a ∈ {0, 1,βi−1,i,βi+1,i, 1 + βi−1,i, 1 + βi+1,i,βi−1,i +

βi+1,i, 1 +βi−1,i +βi+1,i} and pi ∈ T such that

aV∗ = pi,

then the statement holds for t = 1. Otherwise, let

δ = min
i∈[n],b∈{0,1}3

(V∗(βi−1,i, 1,βi+1,i) · b − pi)
+ ,

where, for x ∈ R, x+ = x if x > 0 and x = +∞ if x < 0. Suppose the minimum is achieved

for i = imin ∈ [n] and b = bmin. That is,

δ = (βimin−1,i, 1,βimin+1,i) · bminV
∗ − pimin .

Let

V̂ =
pimin

pimin + δ
V∗.

Then, by setting a = (βimin−1,i, 1,βimin+1,i) · bmin, we have

aV̂ = (βimin−1,i, 1,βimin+1,i) · bminV̂

= (βimin−1,i, 1,βimin+1,i) · bmin
pimin

pimin + δ
V∗

= pimin .

In addition, the number of cells quantized correctly does not decrease in going from V∗ to V̂

since, by definition, V̂ 6 V∗ is chosen such that if a cell is quantized correctly by the voltage

V∗, the cell can be also quantized correctly by V̂. This completes the proof of the case where

t = 1.

6.9 Appendix B

Proof of Lemma 6.5.2. We first prove the following claim as it is used to establish the

inequalities in the proof of Lemma 6.5.2.

125

Claim 6.9.1. Let c1, c2 and δ1, δ2 > 0 be real numbers. Let

p1 =
1√
2π

∫ c1+δ1

c1−δ1

e−u2/2du and p2 =
1√
2π

∫ c2+δ2

c2−δ2

e−u2/2du.

Then the following three statements hold:

1. If c1 = c2 and δ1 > δ2, then p1 > p2.

2. If δ1 = δ2 and |c1| < |c2|, then p1 > p2.

3. If |c1| 6 |c2| and δ1 > δ2, then p1 > p2.

Proof.

1. If δ1 > δ2, then [c1 − δ1, c1 + δ1] ⊃ [c2 − δ2, c2 + δ2]; thus p1 > p2 since the integrand

is strictly positive on R.

2. Let δ1 = δ2 = δ. We prove the result for the case where 0 6 c1 < c2 and [c1 − δ, c1 +

δ]
⋂
[c2 − δ, c2 + δ] = ∅. Other cases can be reduced to this case by subtracting the

integration over the intersection of the intervals. In the case considered, ξ1 6 ξ2, ∀ξ1 ∈
[c1 − δ, c1 + δ],ξ2 ∈ [c2 − δ, c2 + δ].

Note that f (u) = e−u2/2 is symmetric with respect to u = 0 and f (u) is a continuous

strictly decreasing function for u > 0. Therefore, there exists ξi ∈ [ci − δ, ci + δ] such

that

pi =
∫ ci+δ

ci−δ
e−u2/2du = 2δe−ξ2

i /2, i = 1, 2.

It follows that p1 > p2 since ξ1 < ξ2.

3. Let p3 =
∫ c3+δ3

c3−δ3
e−u2/2du, where c3 = c1 and δ3 = δ2. Then from 1) we have p1 > p3,

and from 2) we have p3 > p2. Therefore, p1 > p2.

Now we proceed to the proof of Lemma 6.5.2. Suppose the opposite is true; that is, for

some i and j in [t], V∗
i 6= V∗

j . Consider another vector V̂ = (V̂1, . . . , V̂t), where V̂k = V
def
=√

∑
t
j=1 V∗

j
2

t , ∀k ∈ [t]. Then
√

∑
t
j=1 V̂2

j =
√

∑
t
j=1 V∗

j
2. Furthermore, we have

t

∑
j=1

V̂j = tV = t

√
∑

t
j=1 V∗

j
2

t
>

t

∑
j=1

V∗
j .

126

This is a special case of the Cauchy-Schwartz Inequality, and the inequality is strict due to the

assumption that V∗
i 6= V∗

j for some i, j ∈ [t]. Therefore, θ−α ∑
t
j=1 V̂j < θ−α ∑

t
j=1 V∗

j .

We want to show that V∗ is not optimal, in particular, g(V̂) > g(V∗). We consider two

cases.

Case (1): Suppose θ−α ∑
t
j=1 V̂j = θ−αtV > 0.

Let

p1 = g(V ∗) =
1√
2π

∫ c(V∗)+δ(V∗)

c(V∗)−δ(V∗)
e−

u2

2 du

and

p2 = g(V̂) =
1√
2π

∫ c(V̂)+δ(V̂)

c(V̂)−δ(V̂)
e−

u2

2 du,

where c(V) and δ(V) are as defined in Lemma 6.5.1.

Recall that c(V̂) =
θ−α∑ V̂j

σ
√

∑ V̂2
j

and c(V∗) =
θ−α ∑ V∗

j
2

σ
√

∑ V∗
j

2
, and let s =

√
∑

t
j=1 V̂2

j =

√
∑

t
j=1 V∗

j
2. Then we have

0 6 c(V̂) =
θ−α ∑

t
j=1 V̂j

σ
√

∑
t
j=1 V̂2

j

=
θ−α ∑

t
j=1 V̂j

sσ

<
θ−α ∑

t
j=1 V∗

j
2

sσ

=
θ−α ∑

t
j=1 V∗

j
2

σ
√

∑
t
j=1 V∗

j
2

= c(V∗).

Recall that δ(V̂) = ∆

σ
√

∑ V̂2
j

and δ(V∗) = ∆

σ
√

∑ V∗
j

2
. Then δ(V̂) = δ(V ∗). Set c1 = c(V̂), c2 =

c(V∗), δ1 = δ(V̂), and δ2 = δ(V ∗). According to 2) in Claim 6.9.1, we conclude that p1 < p2.

Therefore, g(V∗) < g(V̂), implying V∗ is not optimal.

Case (2): Suppose θ−α ∑
t
j=1 V̂j = θ−αtV < 0.

Consider another vector Ṽ = (Ṽ1, . . . , Ṽt) where Ṽj = θ
αt , ∀ j ∈ [t]. Then θ −

α ∑
t
j=1 Ṽj = 0 and we have

√√√√
t

∑
j=1

Ṽ2
j =

√(
θ

αt

)2

t <

√
V

2
t =

√√√√
t

∑
j=1

V̂2
j =

√√√√
t

∑
j=1

V∗
j

2.

127

It is easy to see that

|c(Ṽ)| =
∣∣∣
θ−α ∑

t
j=1 Ṽj

σ
√

∑
t
j=1 Ṽ2

j

∣∣∣ = 0 6 |c(V ∗)|,

and

δ(Ṽ) =
∆

σ
√

∑
t
j=1 Ṽ2

j

>
∆

σ
√

∑
t
j=1 V∗

j
2
= δ(V ∗).

Let p1 = g(Ṽ) and p2 = g(V ∗). Set c1 = c(Ṽ), c2 = c(V∗), δ1 = δ(Ṽ), and δ2 = δ(V ∗).

According to 3) in Claim 6.9.1, we conclude that p1 > p2. Therefore, g(Ṽ) > g(V ∗), implying

that V∗ is not optimal.

These contradictions of the optimality of V∗ arose from the assumption that V∗
i 6= V∗

j

for some i, j ∈ [t]. Therefore, we conclude that V∗
i = V∗

j , ∀i, j ∈ [t].

6.10 Appendix C

Proof of Lemma 6.6.2. Recall that when applying voltage Vj, the cell-level increment

is uniformly distributed in [(α − δ1)Vj, (α + δ2)Vj]. Consider the following two cases.

Case (1): Suppose θ−∆
θ+∆

< α−δ1
α+δ2

. Setting V1 = θ+∆
α+δ2

, we have

P(V1,θ, ∆, 1) =
∫ θ+∆

θ−∆
p1(x −αV1)dx

=
∫ θ+∆

θ−∆

1

(δ1 + δ2)V1
Ix−αV1∈[−δ1V1,δ2V1]dx

=
∫ θ+∆

θ−∆

1

(δ1 + δ2)V1
Ix∈[(α−δ1)V1,(α+δ2)V1]dx

=
∫ (α+δ2)V1

(α−δ1)V1

1

(δ1 + δ2)V1
dx

= 1.

Therefore,

1 > P(θ, ∆, 1) = max
V1

P(V1,θ, ∆, 1) > 1.

128

Case (2): Suppose θ−∆
θ+∆

> α−δ1
α+δ2

. Then

P(V1,θ, ∆, 1) =
∫ θ+∆

θ−∆
p1(x −αV1)dx

=
∫ θ+∆

θ−∆

1

(δ1 + δ2)V1
Ix−αV1∈[−δ1V1 ,δ2V1]dx

=
∫

R

1

(δ1 + δ2)V1
Ix∈[(α−δ1)V1,(α+δ2)V1]

⋂
[θ−∆,θ+∆]dx.

There are two possibilities to consider.

1. If V1 6
θ+∆
α+δ2

, then (α + δ2)V1 6 θ+∆ and (α − δ1)V1 6 θ− ∆. Therefore

P(V1,θ, ∆, 1)

=
∫

R

Ix∈[(α−δ1)V1,(α+δ2)V1]
⋂
[θ−∆,θ+∆]

(δ1 + δ2)V1
dx

=
∫ (α+δ2)V1

θ−∆

1

(δ1 + δ2)V1
dx

=
α + δ2

δ1 + δ2
− θ− ∆

(δ1 + δ2)V1

6
α + δ2

δ1 + δ2
− θ−∆

(δ1 + δ2)
θ+∆
α+δ2

=

(
α + δ2

δ1 + δ2

)(
2∆

θ+∆

)
,

where equality holds if V1 = θ+∆
α+δ2

.

2. If V1 > θ+∆
α+δ2

, then (α + δ2)V1 > θ+ ∆. Therefore

P(V1,θ, ∆, 1)

=
∫

R

Ix∈[(α−δ1)V1,(α+δ2)V1]
⋂
[θ−∆,θ+∆]

(δ1 + δ2)V1
dx

6
∫ θ+∆

θ−∆

1

(δ1 + δ2)V1
dx

=
2∆

(δ1 + δ2)V1

<
2∆

(δ1 + δ2)
θ+∆
α+δ2

= P

(
θ+ ∆

α + δ2
,θ, ∆, 1

)

129

It can be seen that under both circumstances, P(V1,θ, ∆, 1) is maximized when V1 =
θ+∆
α+δ2

. Consequently,

P(θ, ∆, 1) =

1, if θ−∆
θ+∆

< α−δ1
α+δ2

,

α+δ2
δ1+δ2

2∆
θ+∆

if θ−∆
θ+∆

> α−δ1
α+δ2

.

Proof of Lemma 6.6.3. We first prove the following two claims as they serve as the

basis for the proof of Lemma 6.6.3.

Claim 6.10.1. For β 6= 0, P(βθ,β∆, t) = P(θ, ∆, t).

Proof. We proceed by induction. For t = 1, we have

P(βθ,β∆, 1) =

1, if βθ−β∆
βθ+β∆

< α−δ1
α+δ2

,

α+δ2
δ1+δ2

2β∆
βθ+β∆

if βθ−β∆
βθ+β∆

> α−δ1
α+δ2

,

=

1, if θ−∆
θ+∆

< α−δ1
α+δ2

,

α+δ2
δ1+δ2

2∆
θ+∆

if θ−∆
θ+∆

> α−δ1
α+δ2

,

= P(θ, ∆, 1).

For notational convenience, let a
∧

b
def
= min{a, b}. Now, suppose that P(βθ,β∆, t − 1) =

P(θ, ∆, t − 1). Then

130

P(βθ,β∆, t)

=max
V1

∫

R+

p1(x −αV1)P(βθ− x,β∆, t − 1)dx

(1)
= max

V1

∫

R+

Ix∈[(α−δ1)V1,((α+δ2)V1)
∧
βθ]

(δ1 + δ2)V1

· P(βθ− x,β∆, t − 1)dx

(2)
= max

V1

∫

R+

Iβy∈[(α−δ1)V1 ,((α+δ2)V1)
∧
βθ]

(δ1 + δ2)V1

· P(βθ−βy,β∆, t − 1)dβy

(3)
= max

V1

∫

R+

Iβy∈[(α−δ1)V1 ,((α+δ2)V1)
∧
βθ]

(δ1 + δ2)V1

· P(θ− y, ∆, t − 1)dβy

(4)
= max

V1

∫

R+

I
y∈[(α−δ1)

V1
β

,
(
(α+δ2)

V1
β

)∧
θ]

(δ1 + δ2)
V1
β

P(θ− y, ∆, t − 1)dy

(5)
= max

V ′
1

∫

R+

Iy∈[(α−δ1)V
′
1,((α+δ2)V

′
1)

∧
θ]

(δ1 + δ2)V′
1

P(θ− y, ∆, t − 1)dy

(6)
= max

V ′
1

∫

R+

p1(y −αV′
1)P(θ− y, ∆, t − 1)dy

=P(θ, ∆, t).

Equation (1) follows from the definition of p1(x). Equation (2) follows from the change of

variables x = βy. Equation (3) follows from the induction hypothesis that P(βθ,β∆, t − 1) =

P(θ, ∆, t − 1). Equation (4) follows from the linearity of the indicator function and the min

operator. That is Iβy∈[a,b] = Iy∈[a/β,b/β], and
1
y min{a, b} = min{ a

y , b
y}. Equation (5) follows

from the change of variables V′
1 = V1

β
. Equation (6) holds for the same reason as Equation (1).

Claim 6.10.2. For β > 1, P(βθ,β∆, t) > P(βθ, ∆, t).

Proof. Since the interval [βθ − ∆,βθ + ∆] ⊆ [βθ −β∆,βθ +β∆] for β > 1, the event “the

cell level is in [βθ − ∆,βθ + ∆] after t rounds of programming” is included in the event “the

cell level is in [βθ − β∆,βθ + β∆] after t rounds of programming”. Thus, P(βθ,β∆, t) >

P(βθ, ∆, t).

131

It follows from Claim 6.10.1 and Claim 6.10.2 that, for β > 1,

P(θ, ∆, t) = P(βθ,β∆, t) > P(βθ, ∆, t),

which proves that P(θ, ∆, t) is non-increasing in θ.

Acknowledgments

This chapter is in part a reprint of the material in the paper: Minghai Qin, Eitan Yaakobi,

and Paul H. Siegel, “Optimized cell programming for flash memories with quantizers”, IEEE
Transaction on Information Theory, vol. 60, no. 5, pp. 1-16, May 2014.

I would also like to thank Lele Wang for her comments on the statement and proof of

Lemma 6.3.4.

Chapter 7

Parallel programming of rank

modulation for flash memories

7.1 Introduction

One way in which the storage capacity of flash memory devices has been increased is

through the use of a larger number of levels in each cell. However, as the quantization of the cell

levels becomes finer, the problem of overshooting can be exacerbated, thereby compromising

data integrity and limiting the achievable storage capacity. A novel idea called rank modula-

tion [48] has been proposed to solve such overshooting problems. With rank modulation, the

information is represented by the permutation induced by the levels of an ordered set of n cells.

As a result, it does not require a discrete set of target cell levels, and recovery of the stored

information is easily implemented by comparing the charges of the n cells. However, to date,

programming algorithms for rank modulation, as described in [32, 48, 49], for example, have

been based upon sequential programming of individual cells, resulting in fundamental limita-

tions on the programming speed.

In this chapter, we study two approaches to parallel programming for rank modulation

where cell levels are integer-valued. In the first, our objective is to minimize the number of

programming rounds needed to produce a cell-level vector representing the target permutation,

under the assumption that there is no constraint on the magnitude of cell-level increments. A

consequence of this assumption is that the cell levels may approach their physical upper limits

quickly, implying that this programming technique may limit the number of information updates

that can be made before a block erasure is required. In contrast, the second approach aims to

132

133

minimize the number of programming rounds subject to a constraint on the difference between

the maximum cell level before and after programming. This technique therefore allows the

maximum possible number of subsequent information updates before a block erasure is required.

These two scenarios represent different trade-offs between programming speed and the lifetime

of the flash memory.

Since the minimum number of programming rounds is a function of the target permuta-

tion τ and the initial cell-state vector ℓ0, we denote them by t∗1(τ , ℓ0) and t∗2(τ , ℓ0), respectively,

in the two programming scenarios. We will use the notation t∗i and t∗i (τ , ℓ0) interchangeably,

i = 1, 2, in contexts where there is no ambiguity. We first derive universal lower and upper

bounds on t∗1(τ , ℓ0) as a function of τ . These bounds show that, when compared to the push-

to-top programming scheme proposed in [48], the minimal number of programming rounds re-

quired in this scenario is approximately 1
3 of that used in the push-to-top scheme. In the second

scenario, the smallest set of cell-level increments needed to represent the target permutation can

be determined as in [32]. We derive an upper bound on t∗2(τ , ℓ0) and propose an algorithm with

complexity O(n2 log n) to search for the optimal set of voltages in each round of programming.

The resulting number of programming rounds is shown to be only 2.5% more than the minimum

number obtained by a brute-force optimal search.

The rest of the chapter is organized as follows. In Section 7.2, we model the cell in-

crements during parallel programming mathematically. In Section 7.3, we aim to minimize the

number of programming rounds for rank modulation when cells are allowed to increase to arbi-

trarily high levels. In Section 7.4, we aim to minimize the number of programming rounds for

rank modulation when the cell increment is minimized.

7.2 Preliminaries

We denote n flash memory cells by c1, . . . , cn. Cells are programmed by injecting charge

to increase the cell levels. We denote by [m : n] the set of integers {i ∈ Z|m 6 i 6 n} and

[1 : n] is denoted by [n]. The set of non-negative real numbers and non-negative integers are

denoted byR+ andZ+, respectively. As assumed in [70,94], the number of programming rounds

(charge injection) is t and when a voltage Vj, j ∈ [t], is applied to cell ci, the cell level of ci will

be increased by αiVj. We call αi the hardness of charge injection of ci, and we define the

cell-hardness vector α = (α1, . . . ,αn). Suppose the cell-state vector is ℓ0 before programming

and denote the set of voltages that can be applied in the t rounds of parallel programming by

V = (V1, . . . , Vt). The final cell-state vector is then

134

ℓi,t = ℓi,0 +αi

t

∑
j=1

bi, jVj, (7.1)

where the (i, j) entry in the matrix

B =

b1,1 b2,1 · · · bn,1

b1,2 b2,2 · · · bn,2

...
...

. . .
...

b1,t b2,t · · · bn,t

∈ {0, 1}t×n

indicates whether or not voltage Vj is applied to cell ci during the j-th round of programming,

for i ∈ [n], j ∈ [t].

Let ℓt = (ℓ1,t, . . . , ℓn,t) be the final cell-state vector after programming. We assume

ℓi,t 6= ℓ j,t, ∀i 6= j. Let Σn be the set of all permutations of [n]. Let τ = (τ1, . . . , τn) ∈ Σn be

the rank permutation of ℓt, denoted by rank(ℓt) = τ , where τi is the index of the cell with the

i-th lowest level. For example, if ℓt = (1.5, 3.5, 0.5, 2), then rank(ℓt) = τ = (3, 1, 4, 2).

The figure of merit for the programming algorithm is the number of required program-

ming rounds, t. The cell programming problem is to find a set of positive real programming

voltages V ∈ Rt
+ and a binary matrix B ∈ {0, 1}t×n of cell-programming indicators such that

rank(ℓt) = τ and t is minimized, where ℓt is given by Equation (7.1).

7.3 Rank modulation minimizing programming rounds

In this section, we assume αi = 1, ∀i ∈ [n] and both ℓi, j and Vj, i ∈ [n], j ∈ [t] are

integers. We further assume there is no physical upper limit on the cell levels. Given the initial

cell-state vector ℓ0 with rank(ℓ0) ∈ Σn and the target permutation τ ∈ Σn, we would like to find

a set of programming voltages V ∈ Zt
+ and a binary matrix B ∈ {0, 1}t×n of cell-programming

indicators such that rank(ℓt) = τ and t is minimized, where ℓt can now be expressed as

ℓi,t = ℓi,0 +
t

∑
j=1

bi, jVj. (7.2)

The following definitions will be useful in deriving bounds on the minimum possible

value of t.

Definition 7.3.1. A decomposition of a permutation σ = (σ1, . . . ,σn) ∈ Σn decomposes

σ into subsequences ((v1), . . . , (vm)), where (vi), i ∈ [m], is a subsequence of the form

(σu1
,σu2

, . . . ,σuk
), in which the relative orders withinσ are preserved, i.e., for any two u j, uk ∈

[n] in (vi), σu j
is to the left of σuk

in vi if and only if σu j
is to the left of σuk

in σ .

135

An increasing block (σu,σu+1, . . . ,σv), 1 6 u 6 v 6 n, of a permutation σ =

(σ1, . . . ,σn) is a contiguous subsequence of σ such that σi < σi+1, ∀i ∈ [u : v − 1]. An

increasing block decomposition of σ is a decomposition such that each subsequence is an in-

creasing block.

An increasing subsequence (σu1
,σu2

, . . . ,σuk
), ui ∈ [n], i ∈ [k], of a permutation

σ = (σ1, . . . ,σn) is a subsequence (not necessarily contiguous) ofσ such thatσui
< σui+1

, ∀i ∈
[k − 1]. An increasing subsequence decomposition of σ is a decomposition such that each sub-

sequence is an increasing subsequence. A decreasing subsequence is defined similarly.

Example 7.3.1. Ifσ = (3, 1, 4, 5, 6, 2), then an increasing block decomposition is ((3), (1, 4, 5,

6), (2)) and an increasing subsequence decomposition is ((3, 4, 5, 6), (1, 2)).

Without loss of generality, we assume the initial rank is the identity permutation, i.e.,

σ = (1, 2, . . . , n). It is clear that the optimal t∗ depends on τ and the initial cell-state vector

ℓ0, so we denote it by t∗1(τ , ℓ0). The next theorem gives a universal bound on t∗1(τ , ℓ0) as a

function of τ .

Theorem 7.3.2. Let m1 and m2 be the minimum number of subsequences in an increasing

block decomposition and an increasing subsequence decomposition of τ , respectively. Then the

optimal t∗1 satisfies

⌈log m2⌉ 6 t∗1(τ , ℓ0) 6 ⌈log m1⌉.

Proof. First we prove the lower bound. We will invoke the following lemma, whose

proof is omitted due to space constraints.

Lemma 7.3.3. The minimum number of subsequences in any increasing subsequence decom-

position of a permutation σ is equal to the length of the longest decreasing subsequence in σ .

According to Lemma 7.3.3, the length of the longest decreasing subsequence in τ is m2. Let this

decreasing subsequence be

(d1, d2, . . . , dm2
),

where

d1 > d2 > · · · > dm2

and

ℓd1 ,t < ℓd2 ,t < · · · < ℓdm2
,t.

136

Since the initial permutation is assumed to be the identity permutation σ = (1, . . . , n), meaning

ℓd1 ,0 > ℓd2 ,0 > · · · > ℓdm2,0
, the increments of the di-th cell, denoted by (Id1

, . . . , Idm2
), where

Idi
= ℓdi ,t − ℓdi ,0, ∀i ∈ [m], have to satisfy

Id1
< Id2

< · · · < Idm2
,

i.e., at least m2 distinct increments are needed. It follows that the number of programming

rounds satisfies the lower bound ⌈log m2⌉ 6 t∗1.

We now proceed to the proof of the upper bound, which is achieved by a specific pro-

gramming strategy.

Suppose

((τ1, . . . , τk1
), (τk1+1, . . . , τk2

), . . . , (τkm1−1+1, . . . , τkm1
))

is an increasing block decomposition of τ of size m1, where km1
= n. By assumption, the initial

permutation is an identity permutation, so the cell levels satisfy

ℓ1,0 < ℓ2,0 < · · · < ℓn,0 < N

for some integer N, which implies that |ℓi,0 − ℓ j,0| < N, ∀i, j ∈ [n]. Let t = ⌈log m1⌉
and V = (V1, . . . , Vt), where Vj = 2 j−1N, ∀ j ∈ [t]. The set of achievable increments is,

therefore, I = {iN|i ∈ [0 : 2t − 1]}. Now, for every index i ∈ [n], we determine the the

block index j ∈ [m1] such that i lies in the j-th block of the increasing block decomposition of

τ , and we increase the level of the cell ci by (j − 1)N. Since 1 6 j 6 m1 6 2t, it follows that

(j− 1)N ∈ I , meaning that the cell level increments that are produced can all be achieved by V .

We now show that the rank permutation of the cell-state vector ℓt attained by this programming

strategy is τ .

Consider a pair of cell indices u and v in τ such that u is to the left of v. If they are both

in the same increasing block, then

ℓu,t = ℓu,0 + Iu = ℓu,0 + Iv < ℓv,0 + Iv = ℓv,t,

where the first and last equalities follow from the definition of Iu, u ∈ [n], and the second

equality follows from the fact that the cell increments are the same within each block and the

inequality follows from the relation u < v. If u is in the i-th block and v is in the j-th block,

where i < j, then

ℓu,t = ℓu,0 + Iu = ℓu,0 + (i − 1)N

< N + (i − 1)N = iN 6 (j − 1)N = Iv < ℓv,t.

137

This proves ℓu,t < ℓv,t if u is on the left of v in τ . Since u and v are chosen arbitrarily, the rank

permutation of the final cell-state vector ℓt is τ . Therefore, t∗1 6 ⌈log m1⌉.

Lemma 7.3.3 establishes the connection between the increasing subsequence decompo-

sition and the longest decreasing subsequence of a permutation τ ∈ Σn. Efficient algorithms

with time complexity O(n log n) that find the longest increasing/decreasing subsequence of

τ ∈ Σn were studied in [74, 78, 79] and it was shown that partitioning a permutation into a

minimum number of monotone subsequences is NP-hard [79]. The problem of decomposing a

permutation into a minimum number of increasing subsequences is interesting by itself and next

we would like to give an algorithm with time complexity O(n log n) that performs the minimum

increasing subsequence decomposition of τ ∈ Σn.

Algorithm 7.3.4. FINDING MINIMUM NUMBER OF INCREASING SUBSEQUENCES

Input:

A permutation τ = (τ1, τ2, · · · , τn) of the integer set [n];

Output:

m increasing subsequences S1, S2, . . . , Sm;

m ← 1, S1 ← {τ1}, T ← {τ1};
for i = 2 to n do

if τi is smaller than all the integers in T then

m ← m + 1, Sm ← {τi}, T ← T ∪ {τi};
else

Find the largest integer p in T that is less than τi;

Suppose p is contained in S j;

S j ← (S j, τi);

Replace p by τi in T.

end for

Note that, at each step, the set T represents the last entries in the increasing subsequences

considered up to that point.

Theorem 7.3.5. The output of Algorithm 7.3.4 satisfies

1. m = m2;

2. the subsequences S1, S2, · · · , Sm are an increasing subsequence decomposition of τ .

138

The time complexity of Algorithm 7.3.4 is O(n log n).

Figure 7.1 shows the lower and upper bounds on t∗1(τ , ℓ0) averaged over all n! permuta-

tions of τ ∈ Σn. Also shown, in the curve labeled “No parallel,” is the number of rounds required

for “push-to-top” programming [48]. The parallel programming scheme requires roughly 1
3 of

the number of programming rounds compared to the push-to-top scheme.

4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

Number of cells n

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
p

ro
g

ra
m

m
in

g
 r

o
u

n
d

s

t
*

1,upper

t
*

1,lower

No parallel

Figure 7.1: Lower and upper bounds on t∗1(τ , ℓ0)

For the case of small n, the optimal t∗1(τ , ℓ0) can be derived by examining each τ ∈ Σn.

For example, if n = 3, then

t∗1(τ , ℓ0) =

0, if τ = (1, 2, 3);

2, if τ = (3, 2, 1);

1, otherwise.

Table 7.1 shows t∗1(τ , ℓ0) for n = 4. In the table, t∗1((3142), ℓ0) = 1 if ℓ4,0 − ℓ3,0 > 2

and ℓ2,0 − ℓ1,0 > 2; and t∗1((3142), ℓ0) = 2, otherwise.

139

Table 7.1: t∗1(τ , ℓ0) as a function of τ

τ t∗ τ t∗ τ t∗ τ t∗

1234 0 2134 1 3124 1 4123 1

1243 1 2143 1 3142 - 4132 2

1324 1 2314 1 3214 2 4213 2

1342 1 2341 1 3241 2 4231 2

1423 1 2413 1 3412 1 4312 2

1432 2 2431 2 3421 1 4321 2

Conjecture7.3.6 For each τ ∈ Σn, there exists an ℓ0, such that t∗1(τ , ℓ0) equals the lower bound

⌈log m2⌉; i.e., Theorem 7.3.2 provides a tight universal lower bounds on t∗1(τ , ℓ0).

7.4 Rank modulation maximizing the number of updates

As in the previous section, we assumeαi = 1, ∀i ∈ [n] and both ℓi, j and Vj are integers,

for i ∈ [n], j ∈ [t]. Suppose that the rank of the initial cell-state vector ℓ0 is the identity

permutation σ = (1, . . . , n) and let the target permutation be τ ∈ Σn. According to [32], in

order to maximize the number of updates (or equivalently minimize the maximum cell level

after programming), the final cell-state vector satisfies ℓτ1 ,t = ℓτ1 ,0, and ℓτi ,t = max{ℓτi−1,t +

1, ℓτi ,0}, i ∈ [2 : n].

Our goal is to minimize the number of programming rounds t such that the final cell-

state vector is ℓt. Define the set of cell-level increments I = {I1, . . . , Im} to be the set of distinct
integers in ℓt − ℓ0. Without loss of generality, we assume 0 < I1 < I2 < · · · < Im. The cell

programming problem can be formulated as follows: given I , minimize t such that there exists

V T = (V1, . . . , Vt) ∈ Zt
+ and for each Ii ∈ I , i ∈ [m], there exists a bi ∈ {0, 1}t such that

V T · bi = Ii. The pair (V , B) is called an optimal pair if (V , B) achieves the minimum number

of rounds t. A vector V is called optimal if there exists a B such that (V , B) is an optimal pair.

For V ∈ Zt
+, we call the set of integers {z ∈ Z|z = V T · b for some b ∈ {0, 1}t} the

span of V , denoted by S(V). If I ⊂ S(V), we say V covers I . Therefore, the cell programming
problem translates to finding a vector V of minimum length that covers a given integer set.

Example 7.4.1. Suppose I = {2, 5, 7, 8, 10}. Let V = (2, 3, 5)T , and the bi’s are chosen such

that

(2, 3, 5)

1 0 1 0 1

0 0 0 1 1

0 1 1 1 1

 = (2, 5, 7, 8, 10).

140

Therefore, there exists a V of length 3 that covers I .

This problem is related to a well-known NP-complete problem, Subset Sum Problem.

Finding the optimal V for each given I is therefore a hard task, so we will settle for finding

a solution which, though not necessarily optimal, compares favorably to the simple push-to-

top [48] solution.

First we provide a general upper bounds on t∗2(τ , ℓ0) in the following theorem.

Theorem 7.4.1. The minimum possible number of programming rounds satisfies

t∗2 6 min{⌈log(Im + 1)⌉, 1 + ⌈log(Im − I1 + 1)⌉, m}.

Proof. If V is chosen as (20, 21, . . . , 2⌈log(Im+1)⌉−1), then it is guaranteed that V covers

[2⌈log(Im+1)⌉ − 1] ⊃ [Im] ⊃ I .

Therefore, t∗2 6 ⌈log(Im + 1)⌉.
If V is chosen as (I1, 20, 21, . . . , 2⌈log(Im−I1+1)⌉−1), then it is guaranteed that V covers

[I1 : I1 + 2⌈log(Im−I1+1)⌉ − 1] ⊃ [I1 : Im]. Therefore, t∗2 6 1 + ⌈log(Im − I1 + 1)⌉.
If V is chosen as (I1, I2, . . . , Im), then it is guaranteed that V covers I . Therefore,

t∗2 6 |I| = m.

Here are some further results and conjectures related to this parallel programming prob-

lem.

Proposition 7.4.2. There exists an optimal V such that all the elements in V are distinct.

Proof. The proof is omitted due to space limitations.

Conjecture7.4.3 If the integrality constraint on V is loosened, requiring only that V ∈ Rt
+,

then there still exists an optimal V such that V ∈ Zt
+; i.e., t2 is achieved using integer-valued

voltages V .

Next we present an algorithm that searches for a short, but not necessarily minimum-

length, vector V that covers the given integer set I . Theorem 7.4.1 suggests that Im, the largest

elements in I , and |I|, the cardinality of I have a strong influence on the size and composition

of an optimal V . Note that once V1 is fixed, we can reduce all elements greater than V1 by V1,

and reformulate the problem into that of finding a vector Ṽ that covers Inew = {i ∈ I|i <

141

V1} ∪ {i|(i +V1) ∈ I}. The following algorithm is based on an iterative, greedy search for V1

that, in each iteration, chooses V1 to minimize |Inew| and, should more than one such V1 exist,

chooses one that minimizes the largest element in Inew.

Algorithm 7.4.4. FINDING V THAT COVERS I
Input:

an integer set I = {I1, . . . , Im};
Output:

an integer vector V that covers I ;
V ← ∅;
while I 6⊂ S(V)

I ← ascending sort(I);
min size ← |I|;
max elem← I1;

V1 ← 0;

for v = 1 to Im do

Inew ← reduced set(I , v);

if |Inew| < min size then

V1 ← v;

min size ← |Inew|;
max elem← max{Inew};

else

if |Inew| = min size then

Imaxnew ←= max{Inew};
if Imaxnew < max elem then

V1 ← v;

max elem← max{Inew};
end for

V ← (V , V1); // append V1 to V

end while

In Algorithm 7.4.4, ascending sort(I) sorts I in ascending order and max{Inew} re-

turns the maximum element of a set Inew. For a given v ∈ [1 : Im], reduced set(I , v), calculated

using Algorithm 3, generates Inew for the next iteration and minimizes |Inew| and Imaxnew .

142

Algorithm 7.4.5. INEW=REDUCED SET(I , v)

Input:

a sorted integer set I = {I1, . . . , Im} in ascending order and an integer v ∈ [1 : Im];

Output:

an integer set Inew;
flag← all-zero vector of length m;

for i = m downto 1 do

if Ii > v and flag[i] == 0 then

Ii ← Ii − v;

flag[k] ← 1 for all k such that Ik = Ii;

end for

Inew ← the set of distinct elements of I ;

Proposition 7.4.6. Suppose Im < N for some N ∈ Z. Then the complexity of Algorithm 7.4.5

is O(N) and that of Algorithm 7.4.4 is O(N2 log N).

Figure 7.2 shows results obtained using Algorithm 2 (and Algorithm 3). The horizontal

axis represents the number of cells n and the vertical axis represents the number of programming

rounds t averaged over all n! target rank permutations τ ∈ Σn. Also shown in the figure is the

upper bound of Theorem 7.4.1, the number of rounds using the push-to-top strategy [32, 48],

and the optimal number obtained using a brute-force, exhaustive search that minimizes t for

each τ ∈ Σ. We note that the number of programming rounds obtained using Algorithm 7.4.4

(and 7.4.5) is only 2.5% above the optimal result when n = 10.

7.5 Conclusion

Rank modulation is a technique for representing stored information in an ordered set

of flash memory cells by a permutation that reflects the ranking of their voltage levels. In this

chapter, we consider two figures of merit that can be used to compare parallel programming

algorithms for rank modulation. These two criteria represent different trade-offs between the

programming speed and the lifetime of flash memory cells. In the first scenario, we want to find

the minimum number of programming rounds required to increase a specified cell-level vector

ℓ0 to a cell-level vector corresponding to a target rank permutation τ , with no restriction on

the maximum allowable cell level. We derive lower and upper bounds on this number, denoted

by t∗1(τ , ℓ0). In the second scenario, we seek an efficient programming strategy to achieve

143

4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

Number of cells n

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
p

ro
g

ra
m

m
in

g
 r

o
u

n
d

s

Optimal

Algorithm 1 and 2

Theorem 5

No parallel

Figure 7.2: Number of programming rounds needed to achieve ℓt

a cell-level vector ℓ(τ) consistent with the target permutation τ , such that the maximum cell

level after programming is minimized. Equivalently, this strategy maximizes the number of

information update cycles supported by the device before requiring a block erasure. We derive

upper bounds on the minimum number of programming rounds required to achieve cell-level

vector ℓ(τ), denoted by t∗2(τ , ℓ0), and propose a programming algorithm for which the resultant

number of programming rounds is close to t∗2(τ , ℓ0).

Acknowledgments

This chapter is in part a reprint of the material in the paper: Minghai Qin, Anxiao Jiang,

and Paul H. Siegel, “Parallel programming of rank modulation”, in Proc. IEEE International
Symposium of Information Theory (ISIT) 2013, Istanbul, Turkey, July 2013.

I would also like to thank Aman Bhatia and Bing Fan for helpful discussions.

144

Bibliography

[1] L. V. Ahlfors, Complex Analysis. New York: McGraw-Hill, 1966.

[2] R. Ahlswede and Z. Zhang, “Coding for write-efficient memory,” Inform. and Comput.,
vol. 83, no. 1, pp. 80–97, October 1989.

[3] N. Alon and J. Spencer, The Probabilistic Method. New York: John Wiley Inc., 1992.

[4] T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice Hall, 1971.

[5] A. Berman and Y. Birk, “Constrained flash memory programming,” in Proc. IEEE Int.
Symp. Inform. Theory, St. Petersburg, Russia, July - August 2011, pp. 2128 – 2132.

[6] A. Bhatia, A. R. Iyengar, and P. H. Siegel, “Multilevel 2-cell t-write codes,” in Proc. IEEE
Information Theory Workshop, Lausanne, Switzerland, September 2012, p. 101 105.

[7] A. Bhatia, M. Qin, A. R. Iyengar, B. M. Kurkoski, and P. H. Siegel, “Lattice-based WOM

codes for multilevel flash memories,” IEEE J. Selected Areas in Comm., vol. 32, no. 5, pp.
933 – 945, May 2014.

[8] V. Bohossian, A. Jiang, and J. Bruck, “Buffer codes for asymmetric multi-level memory,”

in Proc. IEEE Int. Symp. Inform. Theory, June 2007, pp. 1186–1190.
[9] A. Brouwer, J. Shearer, N. Sloane, and W. Smith, “A new table of constant weight codes,”

IEEE Trans. Inform. Theory, vol. 36, no. 6, pp. 1334–1380, November 1990.
[10] G. Burr, M. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson,

B. Kurdi, C. Lam, L. Lastras-Montaño, A. Padilla, B. Rajendran, S. Raoux, and R. Shenoy,

“Phase change memory technology,” Journal of Vacuum Science and Technology, vol. 28,
no. 2, pp. 223–262, March 2010.

[11] D. Callan, October 2012, Personal communication.

[12] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash Memories. Kluwer Academic

Publishers, 1st Edition, 1999.

[13] Y. Cassuto and E. Yaakobi, “Practical re-write codes with access considerations,” in Non-
Volatile Memories Workshop, March 2012.

[14] A. Cauchy, Analyse algébrique, 1821.
[15] G. D. Cohen, “A nonconstructive upper bound on covering radius,” Discrete Mathematics,

vol. 29, no. 3, pp. 352–353, May 1993.

[16] G. D. Cohen and G. Zemor, “Write-isolated memories (WIMs),” Discrete Math., vol. 114,
no. 1-3, pp. 105–113, April 1993.

[17] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups. New York, NY,
Springer-Verlag, 3rd ed., 1999.

[18] T. Cover, “Enumerative source encoding,” IEEE Trans. Inform. Theory, vol. 19, no. 1, pp.
73 – 77, January 1973.

145

[19] S. Datta and S. W. McLaughlin, “An enumerative method for runlength-limited codes:

permutation codes,” IEEE Trans. Inform. Theory, vol. 45, no. 6, pp. 2199–2204, September

1999.

[20] ——, “Optimal block codes for m-ary runlength-constrained channels,” IEEE Trans. In-

form. Theory, vol. 47, no. 5, pp. 2069–2078, July 2001.

[21] G. Dong, S. Li, and T. Zhang, “Using data postcompensation and predistortion to tolerate

cell-to-cell interference in MLCNAND flash memory,” IEEE Transactions on Circuits and

Systems, vol. 57, no. 10, pp. 2718 – 2728, October 2010.

[22] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge: Cambridge Uni-

versity Press, 2011.

[23] S. Forchhammer and T. V. Laursen, “A model for the two-dimensional no isolated bits

constraint,” in Proc. IEEE Int. Symp. Inform. Theory, Seattle, Washington, July 2006, pp.

1189 – 1193.

[24] G. D. Forney, R. G. Gallager, G. R. Lang, F. M. Longstaff, and S. U. H. Qureshi, “Efficient

modulation for band-limited channels,” IEEE J. Selected Areas in Comm., vol. 2, no. 5, p.

632 647, September 1984.

[25] G. D. Forney and L.-F. Wei, “Multidimensional constellations part 1: Introduction, figures

of merit, and generalized cross constellations,” IEEE J. Selected Areas in Comm., vol. 7,

no. 6, p. 877 892, August 1989.

[26] F. Freitas and W. Wickle, “Storage-class memory: The next storage system technology,”

IBM Journal of Research and Development, vol. 52, no. 4/5, pp. 439–447, 2008.

[27] F. Fu, “Maximum information bits stored in reusable memory,” Chinese Science Bulletin,

vol. 40, no. 15, pp. 1241–1244, August 1995.

[28] F. Fu and A. J. Han Vinck, “On the capacity of generalized write-once memory with state

transitions described by an arbitrary directed acyclic graph,” IEEE Trans. Inform. Theory,

vol. 45, no. 1, pp. 308–313, September 1999.

[29] F. Fu and R. Yeung, “On the capacity and error-correcting codes of write-efficient memo-

ries,” IEEE Trans. Inform. Theory, vol. 46, no. 7, pp. 2299 – 2314, November 2000.

[30] R. Gabrys and L. Dolecek, “Characterizing capacity achieving write once memory codes

for multilevel flash memoriess,” in Proc. IEEE Int. Symp. Inform. Theory, July-August

2011, pp. 2517–2521.

[31] R. Gabrys, E. Yaakobi, L. Dolecek, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Non-

binary wom-codes for multilevel flash memories,” in Proc. IEEE Inform. Theory Workshop,

Paraty, Brazil, October 2011.

[32] E. Gad, A. Jiang, and J. Bruck, “Compressed encoding for rank modulation,” in Proc. IEEE

Int. Symp. Inform. Theory, St. Petersburg, Russia, July–August 2011, pp. 884–888.

[33] J. Hadamard, “Sur le rayon de convergence des séries ordonnées suivant les puissances

d’une variable,” C. R. Acad. Sci. Paris 106, pp. 259–262.

146

[34] S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf, “Improved bit-stuffing bounds

on two-dimensional constraints,” IEEE Trans. Inform. Theory, vol. 50, no. 5, pp. 824 – 838,

May 2004.

[35] D. Haugland, “A bidirectional greedy heuristic for the subspace selection problem,” Lecture

Notes in Computer Science, vol. 4638, pp. 162–176, August 2007.

[36] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. Inform. Theory, vol. 31,

no. 1, pp. 34–42, January 1985.

[37] C. Heegard and A. El Gamal, “On the capacity of computer memory with defects,” IEEE

Trans. Inform. Theory, vol. 29, no. 5, pp. 731 – 739, September 1983.

[38] P. Henry, “Zero disparity coding system,” U.S. Patent No. 4,309,694, 1982.

[39] K. Immink and J. Weber, “Very efficient balanced codes,” IEEE Jounal on Selected Areas

in Communications, vol. 28, no. 2, pp. 188–192, February 2010.

[40] K. Immink, J. Weber, and H. Ferreira, “Balanced runlength limited codes using knuth’s

algorithm,” in Proc. IEEE Int. Symp. Inform. Theory, August 2011, pp. 317–320.

[41] K. S. Immink, P. Siegel, and J. Wolf, “Codes for digital recorders,” IEEE Trans. Inform.

Theory, vol. 44, no. 6, pp. 2260–2299, Oct. 1998.

[42] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint information storage in write

asymmetric memories,” in Proc. IEEE Int. Symp. Inform. Theory, June 2007, pp. 1166–

1170.

[43] ——, “Rewriting codes for joint information storage in flash memories,” IEEE Trans. In-

form. Theory, vol. 56, no. 10, pp. 5300–5313, October 2010.

[44] A. Jiang, J. Bruck, and H. Li, “Constrained codes for phase-change memories,” in Proc.

IEEE Inform. Theory Workshop, Dublin, Ireland, August-September 2010.

[45] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Universal rewriting in constrained

memories,” in Proc. IEEE Int. Symp. Inform. Theory, Seoul, Korea, July 2009, pp. 1219–

1223.

[46] A. Jiang and H. Li, “Optimized cell programming for flash memories,” in Proc. IEEE

Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM),

Victoria, BC, Canada, August 2009, pp. 914–919.

[47] A. Jiang, H. Li, and J. Bruck, “On the capacity and programming of flash memories,” IEEE

Trans. Inform. Theory, vol. 58, no. 3, pp. 1549–1564, March 2011.

[48] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for flash memories,”

IEEE Trans. Inform. Theory, vol. 55, no. 6, pp. 2659 – 2673, June 2009.

[49] A. Jiang and Y. Wang, “Rank modulation with multiplicity,” in Proc. Globecom 2010,

Miami, FL, USA, December 2010, pp. 1866–1870.

147

[50] A. Kato and K. Zeger, “On the capacity of two-dimensional run-length constrained chan-

nels,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1527 – 1540, July 1999.

[51] S. Kayser, E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple-write WOM-

codes,” in Proc. 48-th Annual Allerton Conference on Communication, Control and Com-

puting, Monticello, IL, September 2010.

[52] D. E. Knuth, “Efficient balanced codes,” IEEE Trans. Inform. Theory, vol. 32, no. 1, pp. 51

– 53, January 1986.

[53] B. Kurkoski, “Notes on a lattice-based wom construction that guarantees two writes,” in

Proc. 34th Symp. Information Theory and Applications, Ousyuku, Iwate, Japan, November

- December 2011, pp. 520–524.

[54] ——, “Lattice-based wom codebooks that allow two writes,” in International Symposium

on Information Theory and its Applications, Honolulu, Hawaii, October 2012, p. 101 105.

[55] J. Lafferty and A. Vardy, “Ordered binary decision diagrams and minimal trellises,” IEEE

Transactions on Computers, vol. 48, no. 9, pp. 971 – 986, September 1999.

[56] L. Lastras-Montaño, M. Franceschini, T. Mittelholzer, J. Karidis, and M. Wegman, “On the

lifetime of multilevel memories,” in Proc. IEEE Int. Symp. Inform. Theory, Seoul, Korea,

July 2009, pp. 1224–1228.

[57] J. Lee and V. K. Madisetti, “Constrained multitrack RLL codes for the storage channel,”

IEEE Transaction on Magnetics, vol. 31, no. 3, pp. 2355 – 2364, May 1995.

[58] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interference on NAND flash

memory cell operation,” IEEE Electron Device Letters, vol. 23, no. 5, pp. 264 – 266, May

2002.

[59] Q. Li, “WOM codes against inter-cell interference in NAND memories,” in Proc. 49-th

Annual Allerton Conference on Communication, Control and Computing, Monticello, IL,

September 2011, pp. 1416 – 1423.

[60] H. T. Lue, T. H. Hsu, S. Y. Wang, E. K. Lai, K. Y. Hsieh, R. Liu, and C. Y. Lu, “Study

of incremental step pulse programming (ISPP) and STI edge effiect of BE-SONOS NAND

flash,” in Proc. IEEE int. Symp. on Reliability Physiscs, vol. 30, no. 11, May 2008, pp.

693–694.

[61] B. H.Marcus, R. M. Roth, and P. H. Siegel, Constrained Systems and Coding for Recording

Channels. Handbook of Coding Theory (V. S. Pless and W. C. Huffman, eds.), ch. 20,

Elsevier Science, 1998.

[62] R. Mascella and L. G. Tallini, “On symbol permutation invariant balanced codes,” in Proc.

IEEE Int. Symp. Inform. Theory, Adelaide, Australia, September 2005, pp. 4–9.

[63] ——, “Efficient m-ary balanced codes which are invariant under symbol permutation,”

IEEE Trans. Computers, vol. 55, no. 8, pp. 929–946, August 2006.

[64] J. Moon and B. Brickner, “Maximum transition run codes for data storage systems,” IEEE

Trans. Magn., vol. 32, no. 5, pp. 3992–3994, Sep. 1996.

148

[65] Z. Nagy and K. Zeger, “Asympototic capacity of two-dimensional channels with checker-

board constraints,” IEEE Trans. Inform. Theory, vol. 49, no. 9, pp. 2115–2125, September

2003.

[66] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM J. Comput.,

vol. 30, no. 2, pp. 227–234, April 1995.

[67] E. Ordentlich and R. M. Roth, “Two-dimensinal weight-constrained codes through enu-

meration bounds,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1292–1301, July 2000.

[68] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini, A. Lacaita, and

R. Bez, “Reliability study of phase-change nonvolatile memories,” IEEE Trans. Device

and Materials Reliability, vol. 4, no. 3, pp. 422–427, September 2004.

[69] Q. Huang, S. Lin, and K. A. S. Abdel-Ghaffar, “Error-correcting codes for flash coding,”

IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6097 – 6108, September 2011.

[70] M. Qin, E. Yaakobi, and P. H. Siegel, “Optimized cell programming for flash memories

with quantizers,” in Proc. IEEE Int. Symp. Inform. Theory, Cambridge, MA, USA, July

2012, pp. 1000–1004.

[71] R. Rivest and A. Shamir, “How to reuse a write-once memory,” Inform. and Contr., vol. 55,

no. 1-3, pp. 1–19, December 1982.

[72] R. M. Roth, P. H. Siegel, and J. K. Wolf, “Efficient coding schemes for the hard-square

model,” IEEE Trans. Inform. Theory, vol. 47, no. 3, pp. 1166 – 1176, March 2001.

[73] R. Roth, July 2013, Personal Communication.

[74] C. Schensted, “Longest increasing and decreasing subsequences,” Canad. J. Math. 13, pp.

179–191, 1961.

[75] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Tech. J., vol. 27,

p. 379 423, 1948.

[76] A. Shpilka, “Capacity achieving two-write wom codes,” in Latin American Symp. on The-

oretical Informatics, Arequipa, Peru, April 2012, pp. 631 – 642.

[77] N. J. A. Sloane, The Online Encyclopedia of Integer Sequences, https://oeis.org/.

[78] R. Stanley, “Increasing and decreasing subsequences and their variants,” in Proc. Internat.

Cong. (Madrid 2006). American Mathematical Society, 2007, pp. 545–579.

[79] G. Stefano, S. Krause, M. Lübbeck, and U. Zimmermann, “On minimum k-modal parti-

tions of permutations,” J. Discrete Alg. 6, pp. 381–392, 2008.

[80] K.-D. Suh, B.-H. Suh, Y.-H. Lim, Y.-J. C. J-K. Kim, Y.-N. Koh, S.-S. Lee, S.-C. Kwon,

B.-S. Choi, J.-S. Yum, J.-H. Choi, J.-R. Kim, and H.-K. Lim, “A 3.3V 32 Mb NAND flash

memory with incremental step pulse programming scheme,” IEEE Journal of Solid-State

Circuits, vol. 30, no. 11, pp. 1149–1156, November 1995.

149

[81] Y. Sun, “The statistic ”number of udu’s” in Dyck paths,” Discrete Mathematics, 287, pp.

177 – 186, July 2004.

[82] R. E. Swanson and J. K. Wolf, “A new class of two-dimensional RLL recording codes,”

IEEE Transations on Magnetics, vol. 28, no. 6, pp. 3407 – 3416, November 1992.

[83] T. G. Swart and J. H. Weber, “Efficient balancing of q-ary sequences with parallel de-

coding,” in Proc. IEEE Int. Symp. Inform. Theory, Seoul, Korea, June - July 2009, pp.

1564–1568.

[84] I. Tal and R. M. Roth, “Convex programming upper bounds on the capacity of 2-D con-

straints,” IEEE Trans. Inform. Theory, vol. 57, no. 1, pp. 381–391, January 2011.

[85] L. G. Tallini and B. Bose, “Balanced codes with parallel encoding and decoding,” IEEE

Trans. Computers, vol. 48, no. 8, pp. 794–814, August 1999.

[86] L. G. Tallini, R. M. Capocelli, and B. Bose, “Design of some new efficient balanced codes,”

IEEE Trans. Inform. Theory, vol. 42, no. 3, pp. 790–802, May 1996.

[87] L.Wang, M. Qin, E. Yaakobi, Y.-H. Kim, and P. H. Siegel, “WOMwith retained messages,”

in Proc. IEEE Int. Symp. Inform. Theory, Cambridge, MA, USA, July 2012, pp. 1396–

1400.

[88] L. Wang and Y.-H. Kim, “Sum-capacity of multiple-write noisy memory,” in Proc. IEEE

Int. Symp. Inform. Theory, St. Petersburg, Russia, July–August 2011, pp. 2494–2498.

[89] J. Weber and K. Immink, “Knuth’s balanced codes revisited,” IEEE Trans. Inform. Theory,

vol. 56, no. 4, pp. 1673–1679, April 2010.

[90] W. Weeks and R. Blahut, “The capacity and coding gain of certain checkerboard codes,”

IEEE Trans. Inform. Theory, vol. 44, no. 3, pp. 1193–1203, May 1998.

[91] J. K. Wolf, A. D. Wyner, J. Ziv, and J. Korner, “Coding for a write-once memory,” AT&T

Bell Labs. Tech. J., vol. 63, no. 6, pp. 1089–1112, 1984.

[92] Y. Wu, “Low complexity codes for writing write-once memory twice,” in Proc. IEEE Int.

Symp. Inform. Theory, Austin, Texas, June 2010, pp. 1928–1932.

[93] Y. Wu and A. Jiang, “Position modulation code for rewriting write-once memories,” IEEE

Trans. Inform. Theory, vol. 57, no. 6, pp. 3692–3697, June 2011.

[94] E. Yaakobi, A. Jiang, P. H. Siegel, A. Vardy, and J. K. Wolf, “On the parallel programming

of flash memory cells,” in Proc. IEEE Inform. Theory Workshop, Dublin, Ireland, August–

September 2010.

[95] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Efficient two-write WOM-

codes,” in Proc. IEEE Inform. Theory Workshop, Dublin, Ireland, August 2010.

[96] E. Zehavi and J. K. Wolf, “On runlength codes,” IEEE Trans. Inform. Theory, vol. 34, no. 1,

pp. 45–54, January 1988.

150

[97] H. Zhou, A. Jiang, and J. Bruck, “Error-correcting schemes with dynamic thresholds in

nonvolatile memories,” in Proc. IEEE Int. Symp. Inform. Theory, St. Petersburg, Russia,

July–August 2011, pp. 2143 – 2147.

