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Abstract. A dicut in a directed graph is a cut for which all of its edges are directed to a
common side of the cut. A famous theorem of Lucchesi and Younger states that in every
finite digraph the least size of a set of edges meeting every non-empty dicut equals the
maximum number of disjoint dicuts in that digraph. Such sets are called dijoins. Woodall
conjectured a dual statement. He asked whether the maximum number of disjoint dijoins in
a directed graph equals the minimum size of a non-empty dicut.

We study a modification of this question where we restrict our attention to certain classes
of non-empty dicuts, i.e. whether for a class B of dicuts of a directed graph the maximum
number of disjoint sets of edges meeting every dicut in B equals the size of a minimum
dicut in B. In particular, we verify this questions for nested classes of finite dicuts, for the
class of dicuts of minimum size, and for classes of infinite dibonds, and we investigate how
this generalised setting relates to a capacitated version of this question.
Keywords. Woodall’s conjecture, digraphs, directed cuts, dijoins, dijoin packing
Mathematics Subject Classifications. 05C20, 05C70 (primary); 05C65, 05C63 (sec-
ondary)

1. Introduction

In this paper we consider directed graphs, which we briefly denote as digraphs. A dicut in a
digraph is a cut for which all of its edges are directed to a common side of the cut. A famous

∗Supported by the Institute for Basic Science (IBS-R029-Y3).
†Supported by a postdoc fellowship of the German Academic Exchange Service (DAAD) and partly by the

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(ERC consolidator grant DISTRUCT, agreement No. 648527).

https://www.combinatorial-theory.org
mailto:pascalgollin@ibs.re.kr
mailto:karheu@dtu.dk
mailto:konstantinos.stavrop@gmail.com


2 J. Pascal Gollin et al.

theorem of Lucchesi and Younger [LY78] states that in every finite digraph the least size of a set
of edges meeting every non-empty dicut equals the maximum number of disjoint dicuts in that
digraph. Such sets of edges are called dijoins.

Woodall conjectured the following in some sense dual statement, where the roles of the
minimum and maximum are reversed.

Conjecture 1 (Woodall 1976 [Woo78]). The size of a smallest non-empty dicut in a finite di-
graph D is equal to the size of the largest set of disjoint dijoins of D.

This conjecture is a long-standing open question in this area and is included in a list of
important conjectures compiled by Cornuéjols [Cor01].

Not much is known in general about this conjecture. It is easy to find two disjoint dijoins in
a bridgeless weakly connected digraph D: just consider an orientation of the underlying undi-
rected multigraph that yields a strongly connected digraph, which exists by a theorem of Rob-
bins [Rob39]; then the two desired dijoins of D are the set of edges which agrees with this
orientation and the set of edges which disagrees with this orientation. This observation was
noted by Seymour and DeVos [WWWb].

But beyond that, there is no known bound on the size of a smallest dicut that can guarantee
the existence of even three disjoint dijoins [WWWa, WWWb].

There are several partial results restricting the attention to digraphs with certain properties.
Lee and Wakabayashi [LW01] verified Conjecture 1 for digraphs whose underlying multigraph is
series-parallel, which was later improved by Lee and Williams [LW06] proving the conjecture for
digraphs whose underlying multigraph is planar and does not contain a triangular prismK3□K2

as a minor1. Schrijver [Sch82] and independently Feofiloff and Younger [FY87] verified the
conjecture for source-sink connected digraphs, i.e. digraphs where from every source there exists
a directed path to every sink. For additional partial results see [M1́8].

Thomassen [Tho] showed with some tournament on 15 vertices that a dual version regarding
directed cycles and disjoint sets of edges meeting every directed cycle (so called feedback arc
sets or decycling sets), fails for non-planar digraphs. For planar digraphs, these questions are
obviously equivalent and still open.

A capacitated version of Woodall’s Conjecture (cf. Section 3), conjectured by Edmonds and
Giles [EG77] was proven to be false by Schrijver [Sch80]. Although false in general, the con-
jecture of Edmonds and Giles has been verified in some special cases. In particular, the works
by Lee and Wakabayashi [LW01], Lee and Williams [LW06], and Feofiloff and Younger [FY87]
are actually about the conjecture of Edmonds and Giles and obtain corresponding results about
Woodall’s Conjecture as corollaries. For more research regarding this line of work, including a
study of the structure of possible counterexamples, see [CG02, WG05, CEK+16, SV05].

Instead of focusing on specific classes of digraphs, one other possible avenue to explore
Conjecture 1 is to restrict the attention not to all dicuts, but to some specific classes of dicuts
of a digraph. In [GH21, GH22], Gollin and Heuer considered a similar approach regarding

1Note that they proved the dual statement about feedback arc sets in planar digraphs without a minor isomorphic
to K5 − e, the graph obtained from K5 by deleting one of its edges, which is the planar dual of the triangular
prism K3 □K2.
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classes of dicuts in their attempt of generalising the theorem of Lucchesi and Younger to infinite
digraphs.

For a digraph D and a non-empty class of non-empty dicuts B of D, a set of edges meeting
every dicut in B is a B-dijoin. Using this terminology, a natural modification of Conjecture 1
is the following question.

Question 2. For which digraphs D and classes of dicuts B of D is the size of a smallest dicut
in B equal to the size of a largest set of disjoint B-dijoins of D?

A dibond of D is a minimal non-empty dicut. We say a class B of dicuts of a digraph D
is dibond-closed if every dibond which is contained in some dicut in B is contained in B as
well. Note that whenever B is a dibond-closed class of dicuts, then Question 2 for this class is
equivalent to the question for the class of all dibonds contained in B. Hence in the setting of
Question 2, Conjecture 1 translates into the question for the class Bdibond of all dibonds of D.

For classes of dicuts which are not dibond-closed in digraphs that are not necessarily weakly
connected, this question relates to the capacitated version of Question 2 for classes of dibonds.
We will investigate this connection in Section 3.

In this paper, we will give positive answers for Question 2 for several classes of dicuts. Two
dicuts are nested if some side of one of them is a subset of some side of the other. A set of dicuts
is nested if the dicuts in that set are pairwise nested. We prove a result for nested classes of finite
dicuts, using the machinery developed by Berge [Ber89] for transversal packings in balanced
hypergraphs.

Theorem 3. Let D be a digraph and B be a nested class of finite dicuts of D. Then the size of
a smallest dicut in B is equal to the size of a largest set of disjoint B-dijoins of D.

Another interesting class is the class Bmin of dicuts of minimum size. An inductive con-
struction allows us to reduce the following theorem to Theorem 3.

Theorem 4. The size of a smallest dicut in a digraph D that contains finite dicuts is equal to the
size of largest set of disjoint Bmin-dijoins of D, where Bmin denotes the class of dicuts of D of
minimum size.

The parts of Theorems 3 and 4 regarding infinite digraphs are proved using the compactness
principle in combinatorics. We will also use that technique to prove a finitary version of the
results of Lee and Williams [LW06] and Feofiloff and Younger [FY87] for infinite digraphs only
considering dicuts of finite size (capacity).

Finally, we verify a cardinality version of Question 2 for classes of infinite dibonds. This
proof uses a transfinite recursion to construct the dijoins in the case where the dibonds have
the same cardinality as the order of the digraph. To complete the proof, we use the concept of
bond-faithful decompositions due to Laviolette [Lav05].

Theorem 5. Let D be a digraph and B be a class of infinite dibonds of D. The size of a smallest
dibond in B is equal to the size of largest set of disjoint B-dijoins of D.
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This paper is structured as follows. After introducing some terminology in Section 2, we
discuss the capacitated version of Question 2 and its connection to classes of dicuts which are
not dibond-closed in Section 3. In Section 4, we look at transversal packings of balanced hy-
pergraphs and prove Theorem 3. Section 5 is dedicated to prove Theorem 4 for finite digraphs.
We turn our attention to infinite digraphs in Section 6. After showing that a more structural
generalisation of Conjecture 1 to infinite digraphs fails (see Example 6.1), in Subsection 6.1
we use the compactness principle in combinatorics to finish the proof of Theorem 4 for infinite
digraphs and prove a finitary version of the results of Lee and Williams [LW06] and Feofiloff
and Younger [FY87]. Finally, in Subsection 6.2 we prove Theorem 5 and give an example that
a capacitated version of that theorem fails.

2. Preliminaries

For general facts and notation for graphs we refer the reader to [Die18], for digraphs in partic-
ular to [BJG09], and for hypergraphs to [Ber89]. For some set theoretic background, including
ordinals, cardinals and transfinite induction, we refer the reader to [Jec03]. In particular, we use
the convention that an ordinal (cardinal) is the set of all smaller ordinals and the notation that κ+

denotes the smallest cardinal larger than κ.

2.1. Digraphs

Let D be a digraph with vertex set V (D) and edge set E(D). We allow D to have parallel edges,
but may assume for most purposes in this paper that D does not contain any loops. We view the
edges of D as ordered pairs (u, v) of vertices u, v ∈ V (D) and shall write uv instead of (u, v),
although this might not uniquely determine an edge if D contains parallel edges. We say D is
simple if it does not contain parallel edges (or loops). For an edge uv ∈ E(D) we furthermore
call the vertex u as the tail of uv and v as the head of uv.

A digraph D is weakly connected if its underlying undirected (multi-)graph is connected.
The components of the underlying undirected (multi-)graph are the weak components of D.

For two sets X, Y ⊆ V (D) of vertices we define ED(X, Y ) ⊆ E(D) as the set of those
edges that have their head in X \ Y and their tail in Y \X , or their head in Y \X and their tail
in X \ Y .

We consider a bipartition of V (D) to be an ordered pair (X, Y ) for which X ∩ Y = ∅
and X ∪ Y = V (D). We call (X, Y ) trivial if either X or Y is empty.

A set B of edges of D is a cut of D if there is a non-trivial bipartition (X, Y ) of V (D) such
that B = ED(X, Y ). We call (X, Y ) a representation of B (or say (X, Y ) represents B), and we
refer to X and Y as the sides of the representation (or the sides of the cut, if the representation is
inferred from context). Note that a cut of a weakly connected digraph has up to the ordering of
the pair a unique representation. For a set B of cuts, a set R of bipartitions of V (D) represents B
if for each B ∈ B there is a bipartition (X, Y ) ∈ R that represents B.

We define a partial order on the set of bipartitions of V (D) by

(X, Y ) ⩽ (X ′, Y ′) if and only if X ⊆ X ′ and Y ⊇ Y ′.
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We say that two bipartitions (X, Y ) and (X ′, Y ′) of V (D) are nested if one of (X, Y ), (Y,X)
is ⩽-comparable with one of (X ′, Y ′), (Y ′, X ′). Note that (X, Y ) ⩽ (X ′, Y ′) if and only
if (Y ′, X ′) ⩽ (Y,X). A set R of bipartitions of V (D) is nested if its elements are pairwise
nested.

Two cuts B1 and B2 are nested if they can be represented by nested bipartitions of V (D).
Moreover, we call a set (or sequence) B of cuts of D nested if there is a nested set of bipartitions
that represents B. Note that in a digraph which is not weakly connected, a set of pairwise nested
cuts is not necessarily nested itself. If two cuts of D are not nested, we call them crossing.

A bond is a minimal non-empty cut (with respect to the subset relation). Note that if D is
weakly connected, then a cut B of D represented by (X, Y ) is a bond, if and only if the induced
subdigraphs D[X] and D[Y ] are weakly connected digraphs.

We call a cut B directed, or briefly a dicut, if all its edges have their head in one common
side of the cut. A bond that is also a dicut is called a dibond.

If a bipartition (X, Y ) of V (D) represents a non-empty dicut, we call the side of the rep-
resentation that contains the heads of the edges of the dicut the in-shore inD(X, Y ) of the rep-
resentation, and we call the side of the representation that contains the tails of the edges of the
dicut the out-shore outD(X, Y ) of the representation. If the representation of a dicut B is clear
from the context (for example if D is weakly connected) we will speak of the in-shore inD(B)
of B, or out-shore outD(B) of B.

A cut or dicut separates two vertices (or two sets of vertices) if there is a representation for
which they are contained in different sides. Similarly, B separates two sets of vertices, if they
are contained in different sides of some representation of B.

Let B be a class of dibonds of D. A B-dijoin is a set of edges meeting every dibond in B.
We say D is B-Menger if the size of a smallest dibond in B is equal to the size of a largest set
of disjoint B-dijoins of D.

2.2. Hypergraphs

A hypergraph H is a tuple (X,H) consisting of a set X and a set H of subsets of X . The set X
is called the ground set of H and the elements of H are called hyperedges.

A set T ⊆ X is a transversal of H if T ∩ h is non-empty for every hyperedge h ∈ H .
For a set Y ⊆ X we define the subhypergraph of H induced on Y as

H[Y ] :=
(
Y, {h ∩ Y : h ∩ Y ̸= ∅, h ∈ H}

)
.

For a subset H ′ ⊆ H , the hypergraph H(H ′) = (X,H ′) is the partial hypergraph of H gen-
erated by H ′. A partial subhypergraph of H is a partial hypergraph of an induced subhyper-
graph. Lastly, for a set Y ⊆ X we call for H↾Y := {h ∈ H : H ⊆ Y } the partial subhyper-
graph H↾Y := (Y,H↾Y ) the restriction of H to Y .

For a positive integer k, a map c : X → [k] is a k-colouring of H if no hyperedge of size at
least 2 is monochromatic, i.e. |c(h)| > 1 for each h ∈ H with |h| > 1. If there is a k-colouring
of H, then we say H is k-colourable.
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3. On the capacitated version

A map c : E(D) → K, where K denotes a set of cardinals, is called a capacity of D. If K = N
(the set of non-negative integers), then we say c is finitary. We say a capacity c : E(D) → {0, 1}
is simple.

Given a capacity c and a subset A ⊆ E(D), then by c(A) we denote the cardinality of the
disjoint union of {c(a) : a ∈ A} (which is considered to be the cardinal sum of the cardinals).
If this cardinal is finite, then we say A has finite capacity. For a finitary capacity c and a fi-
niteA ⊆ E(D) this coincides to the integer

∑
e∈A c(e), and for a simple capacity c this coincides

with the cardinal |A ∩ c−1(1)|.
Given a capacity c of D, a dibond B ∈ B is c-cheapest in B if c(B) is minimum among all

dibonds in B, and a set of dijoins is c-disjoint if each edge e ∈ E(D) is contained in at most c(e)
dijoins of that set. We sayD isB-Menger with respect to c if the size of a c-cheapest dibond inB
is equal to the size of a largest set of c-disjoint B-dijoins. This leads to the following capacitated
version of Question 2.

Question 3.1. Which digraphs D with capacity c and classes of dicuts B are B-Menger with
respect to c?

In this setting, the conjecture of Edmonds and Giles [EG77] (which was proven to be false
by Schrijver [Sch80], cf. Figure 3.1) translates to the statement that every finite digraph D with
capacity c of D is Bdibond-Menger with respect to c, where Bdibond denotes the class of all finite
dibonds of D.

Figure 3.1: Schrijver’s counterexample to the conjecture of Edmonds and Giles. The dashed
edges have capacity 0, and the solid edges have capacity 1.

Given a capacity c of a digraph D one can replace each edge of e of positive capacity by a
set of |c(e)| many distinct parallel edges. Defining the capacity of each of these newly created
edges as 1 we obtain a digraph with a simple capacity, and it is not hard to see that the question
whether for a class B of dicuts is B-Menger with respect to c is equivalent to the corresponding
question for the ‘corresponding’ class of dicuts of D′. In fact, the key feature of any known
counterexample of the conjecture of Edmonds and Giles is to assign capacity 0 to some edges.
Going one step further by deleting the edges of capacity 0 allows us equivalently talk about
Question 3.1 in the setting of Question 2, as the following construction and proposition shows.

Construction 3.2. Given a digraph D with a capacity c of D we define a digraph D̂.
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Let D̂ be the digraph on V (D) obtained by replacing each edge e of D with c(D) many
distinct edges {eα : 0 ⩽ α < c(D)}, each of which has the same head and tail as e. Note that
any edge of capacity 0 is deleted in this process.

For each dicut B of D represented by (X, Y ), we define a corresponding dicut B̂ of D̂
as B̂ := ED̂(X, Y ). It is not hard to see that this is indeed well-defined and that the capacity
of B equals the size of B̂.

Moreover, for a class B of dicuts of D we define B̂ as {B̂ : B ∈ B}.

Proposition 3.3. Let D be a digraph, let c be a capacity of D, and let B be a class of dicuts
of D. Then D is B-Menger with respect to c if and only if D̂ is B̂-Menger.

Proof. For a set Â of edges of D̂ we call the set tr(Â) := {e ∈ E(D) : eα ∈ Â} the trace of Â.
For a set A of edges of D and a set Â of edges of D̂, we say the pair (A, Â) is compatible
if A = tr(Â). Note that for each set A of edges e of D such that c(e) > 0 for all e ∈ A, there is
a set of edges of D̂ such that (A, Â) is compatible.

For a compatible pair (F, F̂ ) it is easy to see that F is a B-dijoin of D if and only if F̂ is
a B̂-dijoin of D̂. Moreover, if F̂ is a set of disjoint B̂-dijoins of D̂, then {tr(F̂ ) : F̂ ∈ F̂} is
c-disjoint.

Given a c-disjoint set {Fα : α ∈ κ} of B-dijoins of D for some cardinal κ we define a set
of disjoint B̂-dijoins iteratively as follows. In step α we construct F̂α by taking for each e ∈ Fα

the edge eβ for the smallest ordinal β such that eβ /∈
⋃
{F̂γ : γ < α}. By the assumption that e

is contained in at most c(e) many of the dijoins, this construction is well-defined and (Fα, F̂α)
is compatible. Hence we have the desired equivalence.

Recall that we say a class B of dicuts of a digraph D is dibond-closed if every dibond
which is contained in some dicut in B is contained in B as well. In the context of Question 2
it is quite natural to consider classes which are dibond-closed. Indeed, whenever we consider
Question 2 for a dibond-closed class B we can equivalently consider the question for the class of
dibonds in B. But by considering the construction from Proposition 3.3 we may destroy weak
connectivity by deleting the capacity 0 edges. Therefore, a dibond in B may correspond to a
dicut in B̂ which is not a dibond. In this way, Question 3.1 for dibonds can be thought of as a
special case of Question 2, albeit for a slightly modified digraph.

In fact, the reverse is also true, as the following construction shows.

Construction 3.4. Given a digraph D we define a digraph D̃ with a capacity c̃ of D̃.
For every subset S ⊆ V (D) we add a distinct vertex vS and edges vSs for each s ∈ S. Now

we define a capacity c̃ on D̃ by setting c(e) = 1 if e is an edge of D and 0 otherwise.
For each dicut B of D represented by (X, Y ), we define a corresponding dibond B̃ of D̃ as

follows. We define XB ⊆ V (D̃) as the union of inD(X, Y ) with {vS : S ⊆ inD(X, Y )}. Then
we define B̃ as the set of ingoing edges of XB in D̃, i.e. ED(V (D) \XB, XB). It is not hard
to see that this is indeed well-defined and that the size of B equals the capacity of B̃ since the
edges of capacity 1 that B̃ contains are precisely the edges in B.

Moreover, for a class B of dicuts of D we define B̃ as {B̃ : B ∈ B}.

Proposition 3.5. Let D be a digraph and let B be a class of dicuts of D. Then D is B-Menger
if and only if D̃ is B̃-Menger with respect to c̃.
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Proof. Since by construction B ⊆ B̃ for every dicut B of D we get that every B-dijoin of D is
a B̃-dijoin of D̃. Vice versa, every B̃-dijoin of D̃ that does not contain any capacity 0 edges is
a B-dijoin of D. Since the capacity c̃ is simple, the proposition immediately follows.

Therefore, the natural restriction of Question 3.1 for classes of dibonds (or, equivalently,
dibond-closed classes) can really be thought of as Question 2 for non dibond-closed classes of
dicuts.

In fact this observation will yield capacitated versions of many of our main results as it is
easy to observe that if a class B of dibonds of a digraph D is nested, then so are B̂ and B̃.

4. The dicut hypergraph

Let D be a digraph and let B be a class of dicuts of D. Then H(D,B) :=
(
E(D),B

)
is the

B-dicut hypergraph of D. Note that a transversal of H(D,B) is a B-dijoin. If B is the set of
all dicuts of D, then we denote by H(D) the dicut hypergraph H(D,B).

4.1. Transversal packings of hypergraphs

Let H = (X,H) be a hypergraph. A tuple (x1, h1, x2, h2, . . . , xn, hn, xn+1) is a Berge-cycle
of H if

1. x1, . . . , xn ∈ X are distinct;

2. h1, . . . , hn ∈ H are distinct;

3. xn+1 = x1; and

4. xi, xi+1 ∈ hi ∈ H for all i ∈ [n].

The length of the Berge-cycle is n. A Berge-cycle of odd length is called odd. We call a Berge-
cycle improper if some hyperedge hi contains some xj for j /∈ {i, i+ 1}.

We call H balanced if every odd Berge-cycle is improper. Balanced hypergraphs are one
type of generalisation of bipartite graphs. By a theorem of Berge, finite balanced hypergraphs
contain k pairwise disjoint transversals for k being the minimum size of a hyperedge. For the
sake of completeness we will include a proof of this theorem.

Theorem 4.1 (Berge [Ber89, Corollary 2 of Section 5.3]). Every finite balanced hypergraph
H = (X,H) contains k := minh∈H |h| disjoint transversals of H.

In order to provide a proof of this theorem, we will use the following characterisation of
balanced hypergraphs.

Theorem 4.2 (Berge [Ber89, Theorem 7 of Section 5.3]). A finite hypergraph H is balanced, if
and only if every induced subhypergraph of H is 2-colourable.
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Proof. IfH contains an odd Berge-cycle (x1, h1, x2, h2, . . . , xn, hn, xn+1)which is not improper,
then the hypergraph induced on {xi : i ∈ [n]} contains the edges of an odd cycle, and hence is
not 2-colourable.

For the other direction it is enough to show that a finite balanced hypergraph is 2-colourable.
Suppose for a contradiction that H = (X,H) is a counterexample with a ground set X of min-
imum size. From the minimality we can deduce that each x ∈ X is contained in at least two
hyperedges of size 2 and hence the subgraph G of H containing all hyperedges of size 2 has min-
imum degree 2. Since H is balanced, G is bipartite. Let x ∈ X be such that it is no cut-vertex
of G. The hypergraph induced on X \ {x} has a 2-colouring by the minimality assumption.
Since G is bipartite and x is not a cut-vertex, the neighbourhood of x in G is monochromatic.
Hence we can extend the 2-colouring to H, contradicting that H is a counterexample.

Given this theorem, we can prove Theorem 4.1.

Proof of Theorem 4.1. For k = 1 the statement is obvious and if k = 2, the statement follows di-
rectly from Theorem 4.2 since each colour class of a proper 2-colouring is a transversal. If k > 2,
consider a k-colouring c for which the sum

∑
h∈H |c(h)| is as large as possible. Note that if this

sum equals k|H|, then each colour class of c is a transversal. So suppose for a contradiction that
the sum is smaller. Then there is a hyperedge h0 with |c(h0)| < k. Since by assumption every
hyperedge has size at least k, there is a colour p appearing twice on h0 as well as a colour q not
appearing on h0. Consider the subhypergraph induced on the colour classes Sp and Sq of these
two colours. By Theorem 4.2, this hypergraph has a 2-colouring c′. But then

ĉ(x) :=

{
c(x) if x /∈ Sp ∪ Sq

c′(x) if x ∈ Sp ∪ Sq

defines a k-colouring for which
∑

h∈H |ĉ(h)| >
∑

h∈H |c(h)|, a contradiction.

The technique of the compactness principle in combinatorics allows us to push these results
about finite hypergraphs to infinite hypergraphs of finite character, i.e. hypergraphs in which
every hyperedge is finite. We omit stating the compactness principle here but refer to [Die18,
Appendix A].

Lemma 4.3. LetH = (X,H) be a hypergraph of finite character such that for each finite Y ⊆ X
there is a finite Y ⊆ X containing Y such that H↾Y contains minh∈H↾Y |h| disjoint transversals
of H↾Y . Then H contains k := minh∈H |h| disjoint transversals of H.

Proof. We construct the k disjoint transversals of H via compactness. Given sets Z and Y
with Z ⊆ Y ⊆ X , note that for a transversal T of H↾Y the set T ∩ Z is a transversal of H↾Z.
Hence, by the assumptions of this lemma and the compactness principle in combinatorics there
is a set {Ti : i ∈ [k]} of subsets of X such that for each finite Y ⊆ X the set {Ti ∩ Y : i ∈ [k]}
is a set of k disjoint transversals of H↾Y . Hence Ti ∩ Tj = ∅ for i ̸= j. Moreover, each Ti meets
any h ∈ H since Ti ∩ h is a transversal of H↾h which is a finite subhypergraph of H since H
has finite character. Therefore, {Ti : i ∈ [k]} is as desired.
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Since every partial subhypergraph of a balanced hypergraph is again balanced (cf. [Ber89,
Proposition 1 of Section 5.3], we obtain the following corollary of Lemma 4.3 and Theorem 4.1.

Corollary 4.4. Every balanced hypergraph H = (X,H) of finite character contains
k := minh∈H |h| disjoint transversals of H.

4.2. Applications to the dicut hypergraph

We now turn our attention back to the dicut hypergraph and will show that the dicut hypergraph
for a nested class of dicuts is balanced. Note that the following lemma holds for infinite digraphs
as well.

Lemma 4.5. For any digraph D, every odd Berge-cycle (e1, B1, e2, B2, . . . , en, Bn, e1) of the
dicut hypergraph H(D) of D for which the set {Bi : i ∈ [n]} is nested, is improper.

Proof. Let (e1, B1, e2, B2, . . . , en, Bn, e1) be an odd Berge-cycle and let {(Xi, Yi) : i ∈ [n]} be
a nested set of bipartitions of V (D) representing {Bi : i ∈ [n]} such that (Xi, Yi) represents Bi

and inD(Xi, Yi) = Yi for all i ∈ [n].
By setting B0 := Bn, X0 := Xn and Y0 := Yn, since ei+1 ∈ Bi ∩Bi+1 for all 0 ⩽ i < n,

we get either (Xi, Yi) ⩽ (Xi+1, Yi+1) or (Xi+1, Yi+1) ⩽ (Xi, Yi). While n is odd, these two
possibilities cannot occur in an alternating fashion throughout the whole cycle. Hence we
may assume without loss of generality that either (Xn, Yn) ⩽ (X1, Y1) ⩽ (X2, Y2) holds or that
(X2, Y2) ⩽ (X1, Y1) ⩽ (Xn, Yn) holds. We continue the argument with the former inequality,
the other case is symmetric.

Consider the set I of all i ∈ [n] for which either (X1, Y1) ⩽ (Xi, Yi) or (Yi, Xi) ⩽ (X1, Y1).
Since 2 ∈ I and n /∈ I , there is an integer j with 2 ⩽ j < n with j ∈ I and j + 1 /∈ I . And
since Bj ∩Bj+1 is nonempty and hence (Xj, Yj) and (Xj+1, Yj+1) are ⩽-comparable, we get
either (Yj, Xj) ⩽ (X1, Y1) ⩽ (Yj+1, Xj+1), or (Xj+1, Yj+1) ⩽ (X1, Y1) ⩽ (Xj, Yj).

Note that the first case is not possible since ej+1 would be an edge with tail in Y1 and head
in X1, contradicting that Y1 is the in-shore of B1. Hence, (Xj+1, Yj+1) ⩽ (X1, Y1) ⩽ (Xj, Yj)
and ej+1 ∈ B1 ∩Bj ∩Bj+1, proving that (e1, B1, e2, B2, . . . , en, Bn, e1) is improper.

Hence, if B is a nested class of dicuts of D, Lemma 4.5 shows that H(D,B) is balanced,
and with Theorem 4.1 we get Theorem 3 for finite digraphs, and together with Lemma 4.3 we
can complete the proof.

Theorem 3. Let D be a digraph and B be a nested class of finite dicuts of D. Then D is
B-Menger.

Proof. Let k denote the size of a smallest dicut in B. By Lemma 4.5, the B-dicut hyper-
graph H := H(D,B) is balanced and by assumption has finite character. Each finite restriction
ofHwhose set of hyperedges is non-empty is balanced and hence contains k disjoint transversals
by Theorem 4.1. The theorem follows from Lemma 4.3.

With the observations of Section 3, we obtain the capacitated version of this theorem.
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Corollary 4.6. Let D be a digraph with a capacity c and let B be a nested class of dibonds of D
of finite capacity. Then D is B-Menger with respect to c.

A dicut of D is atomic if it has a representation in which one the sides contains only a single
vertex, i.e. a source or a sink. It is easily verified that a set of atomic dicuts is nested. Hence, we
get the following corollary.

Corollary 4.7. Let D be a digraph (with a capacity c) and let B be a class of atomic dicuts of D
of finite size (capacity). Then D is B-Menger (with respect to c).

5. Minimum size dicuts and disjoint mini-dijoins

Let D be a digraph and let B be a class of dicuts of D. We say B is corner-closed if for each
non-empty B,B′ ∈ B which are crossing and represented by (X, Y ) and (X ′, Y ′), respectively,
the dicuts

B ∧B′ := ED(outD(X, Y ) ∪ outD(X
′, Y ′), inD(X, Y ) ∩ inD(X

′, Y ′))

and
B ∨B′ := ED(outD(X, Y ) ∩ outD(X

′, Y ′), inD(X, Y ) ∪ inD(X
′, Y ′))

are in B. Note that it is easy to see that B ∧B′ and B ∨B′ are indeed non-empty dicuts whose
definition does not depend on the choice of the representations of B and B′. In particular,
for any representations (X, Y ) and (X ′, Y ′) of B and B′, respectively, with inD(X, Y ) = Y
and inD(X

′, Y ′) = Y ′, the bipartition (X ∪ X ′, Y ∩ Y ′) represents B ∧B′ and the biparti-
tion (X ∩X ′, Y ∪ Y ′) represents B ∨B′.

Moreover, we observe that for the digraphs D̂ and D̃ from Constructions 3.2 and 3.4, respec-
tively, for dicuts B and B′ of D, we obtain

B̂ ∧ B̂′ = B̂ ∧B′, B̂ ∨ B̂′ = B̂ ∨B′, B̃ ∧ B̃′ = B̃ ∧B′, and B̃ ∨ B̃′ = B̃ ∨B′.

In particular, a class B of dicuts of D is corner-closed, if and only if B̂ is corner-closed, if and
only if B̃ is corner-closed.
Remark 5.1. Similarly to the proof of Theorem 4.1, we can consider a set {Fi : i ∈ [m]} of dis-
jointB-dijoins of a digraphD as a partial colouring of the edges ofD where an edge e is coloured
with the colour i if and only if e ∈ Fi. We call such a colouring f :

⋃
{Fi : i ∈ [m]} → [m] a

B-Menger colouring of D.
Since each Fi is a B-dijoin, we obtain that each dicut B ∈ B is coloured with every colour.

Note that if |B| = m, then B is necessarily colourful, i.e. B contains every colour.

Theorem 5.2. Let D be a finite digraph (with capacity c), let m be a positive integer and let B
denote a corner-closed class of dicuts of D all of size m (capacity m). Then D is B-Menger
(with respect to c).
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Proof. The capacitated version of this theorem follows from the non-capacitated version by the
observations of both Section 3 and above. We prove the non-capacitated version by induction
on the number of non-atomic dicuts in B. If B contains only atomic dicuts, then the statement
follows from Corollary 4.7.

Otherwise, let B ∈ B be non-atomic represented by (X, Y ) with inD(X, Y ) = Y . Con-
sider the digraph D1 obtained by identifying all vertices in Y to a single vertex (and delet-
ing loops, afterwards) with B1 being the class of dicuts in B that are dicuts of D1, as well
as the digraph D2 obtained by identifying all vertices in X to a single vertex (and deleting
loops, afterwards) with B2 being the class of dicuts in B that are dicuts of D2. By construc-
tion, E(D1) ∩ E(D2) = B. Note that in both B1 and B2 the number of non-atomic dicuts
strictly decreased since B is atomic in both D1 and D2 and each non-atomic dicut of D1 or D2 is
non-atomic in D as well. By induction, for j ∈ {1, 2} there are sets {F j

i : i ∈ [m]} of disjoint
Bj-dijoins of Dj . Note that since |B| = m, for each e ∈ B there is a unique ie ∈ [m] and a
unique je ∈ [m] such that e ∈ F 1

ie ∩ F 2
je . We claim that {F 1

ie ∪ F 2
je : e ∈ B} is a set of disjoint

B-dijoins. As in Remark 5.1, we consider these edges sets as partial colourings of E(D) with
colours B.

The fact that the sets are pairwise disjoint follows from the observation that they are the union
of disjoint dijoins of D1 and D2 respectively and that E(D1) ∩ E(D2) = B.

Note that any bipartition (X ′, Y ′) of V (D) which is nested with (X, Y ) naturally defines
a bipartition of V (D1) and V (D2), one of which is trivial and the other representing a cut
of the respective digraph which equals ED(X

′, Y ′). Let B′ ∈ B be represented by (X ′, Y ′)
with inD(X

′, Y ′) = Y ′ and assume B′ /∈ B1 ∪B2. Consider the corners B ∧B′ and B ∨B′

represented by (X ∪X ′, Y ∩ Y ′) and (X ∩X ′, Y ∪ Y ′), respectively. Since B′ /∈ B1 ∪B2,
both of the corners are non-empty, and since B is corner-closed, they are in B as well. Fur-
thermore, since both (X ∪X ′, Y ∩ Y ) and (X ∩X ′, Y ∪ Y ′) are nested with (X, Y ), we ob-
tain that B ∨B′ ∈ B1 and B ∧B′ ∈ B2. Note that since both B ∧B′ and B are colourful by
assumption, every colour that appears on B ∩ E(D[X ′]) also appears on B′ ∩ E(D[Y ]), and
since B ∨B′ and B are colourful, every colour that appears on B ∩ E(D[Y ′]) also appears
on B′ ∩ E(D[X]). Together with the colours appearing in B ∩B′ we deduce that B′ is colour-
ful as well, as desired.

Lemma 5.3. Let D be a digraph (with capacity c) that contains a dicut of finite size (capacity).
The class Bmin of dicuts of D of minimum size (capacity) is corner-closed.

Proof. Let B1, B2 ∈ Bmin be crossing. Hence neither B1 ∧B2 nor B1 ∨B2 are empty. A sim-
ple double counting argument yields c(B1) + c(B2) = c(B1 ∧B2) + c(B1 ∨B2). Therefore
both B1 ∧B2 and B1 ∨B2 are of capacity c(B1), since neither of them can be smaller. Hence
they are dicuts of minimum capacity and hence in Bmin.

Now we can deduce the version of Theorem 4 for finite digraphs as a direct corollary of
Theorem 5.2 and Lemma 5.3.

Theorem 5.4. Every finite digraph D (with finitary capacity c) is Bmin-Menger (with respect
to c), where Bmin denotes the class of dicuts of D of minimum size (capacity).



combinatorial theory 2 (3) (2022), #16 13

6. Dijoins in infinite digraphs

First, we should ask what the ‘right’ generalisation of Conjecture 1 for infinite digraphs should
be. Often a more structural generalisation of such min-max theorems yields a more meaning-
ful result than a simple generalisation using cardinalities. For example, Erdős conjectured and
Aharoni and Berger [AB09] proved a structural generalisation of Menger’s theorem, where in
every graph we can simultaneously find a set P of disjoint paths between two sets A and B of
vertices and a set S of vertices separating A and B such that each path in P contains precisely
one vertex in S and S contains no vertices not included in some path in P .

However, such an Erdős-Menger-like structural generalisation of Conjecture 1 fails in infinite
digraphs, as we will illustrate in the following example.

Example 6.1. We give an example of an infinite digraph with no pair a dicut B and a set of
disjoint dijoins {Fe : e ∈ B} such that B ∩ Fe = {e} for all e ∈ B.

Consider the digraph D with vertex set V (D) := Z× {1,−1} and edge set

E(D) := {(z, i)(z + i, i) : z ∈ Z, i ∈ {1,−1}} ∪ {(z, 1)(z,−1) : z ∈ Z},

as depicted in Figure 6.1. We call the edges (z, 1)(z,−1) of the second type the rungs of D.

Figure 6.1: A counterexample to an Erdős-Menger-like structural generalisation of Conjecture 1
to infinite digraphs.

Note that D has no finite dicut and for each infinite dicut B there is an n ∈ Z such that B
contains all rungs {(z, 1)(z,−1) : z ⩽ n} up to n. Moreover, whenever F1 and F2 are two dis-
joint dijoins, then at least one of them contains infinitely many rungs of {(z, 1)(z,−1) : z ⩽ n}
up to any n ∈ Z. Hence every dicut meets such a dijoin infinitely often. Moreover, note that in
this example, the set of dicuts is nested.

In the light of this example, we can only hope for weaker generalisations to be possible.
In Subsection 6.1, we will consider Question 2 for classes of dicuts of finite size (capacity),

where the structural generalisation as hinted above is still equivalent to a comparison of cardinals.
In this setting, we can extend the respective results from the finite case using the compactness
principle (or more precisely, Lemma 4.3). Such an approach will not work for classes of dicuts
that contain dicuts of both finite and infinite size (capacity).

In Subsection 6.2, we will consider Question 2 for classes of infinite dibonds, where we will
proof a cardinality-version of this question for any class of infinite dibonds. We will also show
that even a cardinality-version for classes of infinite dicuts (and hence a capacitated version,
cf. Question 3.1) can fail.
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6.1. Classes of finite dicuts in infinite digraphs

Let D be a digraph. Given a set B of dicuts of D, we define an equivalence relation on V (D)
by setting v ≡B w if and only if we cannot separate v from w by a dicut in B.

It is easy to check that ≡B indeed defines an equivalence relation. Let D/≡B denote the
digraph which is obtained from D by identifying the vertices in the same equivalence class
of ≡B and deleting loops. Note that D/≡B does not contain any directed cycles, and that if B
is the set of all dicuts of D, then the equivalence classes of ≡B are the strong components of D.
For more general sets B of dicuts, the equivalence classes are unions of strong components of D
(depending on B).

Given a capacity c of D, we call the restriction of c to E(D/≡B) the capacity of D/≡B
induced by c. We shall use the following observation from [GH21] about this digraph.

Proposition 6.2. [GH21, Proposition 2.9(ii)] Let D be a digraph and let B be a set of dicuts
ofD. Then every dicut (or dibond, respectively) inB ofD is also a dicut (or dibond, respectively)
of D/≡B.

The main tool we use to extend results about Question 2 from classes of finite graphs to
finitary infinite versions is the following compactness-type lemma.

Lemma 6.3. Let D be a digraph (with capacity c) and let B be a class of dicuts of D of finite
size (capacity). Suppose that for every finite set B ⊆ B there is a finite set B ⊆ B containing B
such that the digraph D/ ≡B is B-Menger (with respect to the capacity induced by c). Then D
is B-Menger (with respect to c).

Proof. Let k denote the capacity of a c-cheapest dicut in B and let E ′ ⊆ E(D) denote the set
of all edges of D of positive capacity. Consider the B̂-dicut hypergraph H := H(D̂, B̂) for D̂
and B̂ as in Construction 3.2. It is easy to observe that H has finite character.

Moreover, note that for a finite setB ⊆ B containing a dicut of capacity k and for aB as in the
assumption, the hypergraph HB := H(D̂/ ≡

B̂
, B̂) has by Proposition 3.3 and the assumption k

disjoint transversals. By construction HB is a restriction of H to a finite set. Moreover, for
each restriction of H to a finite set Y ⊆ E(D̂) there is a finite set Y ⊆ E(D̂) containing Y such
that H↾Y = HB for some finite B ⊆ B. Hence the result follows from Lemma 4.3 and again
Proposition 3.3.

Lemma 6.3 together with Theorem 5.2 yield the following corollary.

Corollary 6.4. Let D be a digraph (with capacity c), let m be a positive integer and let B
denote a corner-closed class of dicuts of D all of size m (capacity m). Then D is B-Menger
(with respect to c).

Recall that by Lemma 5.3 and the observations in Section 5, applying Construction 3.2 yields
that B̂min is corner-closed. Hence we deduce the following corollary (and hence Theorem 4).

Corollary 6.5. Let D be a digraph (with capacity c) that contains a dicut of finite size (capacity)
and let Bmin be the set of dicuts of minimum size (capacity). Then D is Bmin-Menger.
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Lemma 6.3 also yields the following corollary.

Corollary 6.6. If Conjecture 1 is true for all weakly connected finite digraphs, then every weakly
connected digraph D is Bfin-Menger for the class Bfin of finite dicuts of D.

The triangular prism K3□K2 is the undirected graph with vertex set V (K3)× V (K2) and
edges between (v1, w1) and (v2, w2) if and only if both v1v2 ∈ E(K3) and w1w2 ∈ E(K2). As
mentioned in the introduction, the capacitated version Conjecture 1 has been verified for planar
digraphs with no minor isomorphic to the triangular prism K3□K2 by Lee and Williams.

Theorem 6.7. [LW06] Every finite weakly connected digraph D (with finitary capacity c)
whose underlying multigraph is planar and contains no minor isomorphic to the triangular
prism K3□K2 is B-Menger (with respect to c) for the class B of all dicuts of D.

In order to extend Theorem 6.7 to infinite digraphs, we begin by observing that each finite
set B of finite dicuts of D can be extended to a finite set B of finite dicuts of D such that the
auxiliary graph D/≡B is a minor2 of D. If instead B is a finite set of dicuts of finite capacity,
then we can still extend B to a finite set B and find a minor D∗ of D which is B∗-Menger with
respect to the capacity obtained by restricting c to E(D∗) for the set B∗ of all dicuts of D∗, as
we will establish in the following lemma.

Lemma 6.8. Let D be a weakly connected digraph with capacity c, let B be a finite set of dicuts
of D of finite capacity. Then there is a finite set B of dicuts of D of finite capacity with B ⊆ B
and a finite minor D∗ of D such that for the set B∗ of dicuts of D∗ we have

{B \ c−1(0) : B ∈ B∗} = {B \ c−1(0) : B ∈ B}.

Proof. Let E ′ :=
⋃

B. Let B′ be the set of all dicuts B of D with B ⊆ E ′. Note that each dicut
in B′ has finite capacity. Consider the digraph D′ obtained from D by contracting E(D) \ E ′.
Note that the sets of dicuts of D/≡B′ and of D′ coincide and both graphs have E ′ as their edge
set. We claim that D′ and D/≡B′ are isomorphic. Suppose for a contradiction that two distinct
vertices v and w of D′ cannot be separated by a dicut in B′, and hence are contained in the same
strong component of D′. Let P be a directed path from v to w in D′. As D/≡B′ contains no
directed cycles, each edge of P is a loop of D/≡B′ , contradicting its construction. Conversely,
any vertices v and w which are not equivalent with respect to ≡B′ do not lie in the same weak
component of D − E ′ and hence are not identified in D′.

If B′ is finite, then D′ has only finitely many vertices and the result follows with B := B′ and
the digraph D∗ obtained from D′ by deleting for all pairs of vertices all but finitely many edges
of capacity 0 between them. So let us assume B′ and hence D′ is infinite.

Let W the set of all vertices of D′ that are incident with some edge of positive capacity. If B′

contains a dicut with a representation (X, Y ) for which W ⊆ Y , for some vertex v0 ∈ X we
define W ′ := W ∪ {v0}, and W ′ := W if no such dicut exists. For each non-empty proper sub-
set Z ⊊ W , fix a directed path PZ from Z to W \ Z in D′ if such a path exists, and let P denote

2We say a directed graph D is a minor of a directed graph D′, if D can be obtained from D′ by an arbitrary
sequence of vertex-deletions, edge-deletions and edge-contractions. Note that in the literature these type of minors
are also known as weak minors.
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the set of all these chosen paths PZ . Now let D∗ be the digraph obtained from D′[W ′] ∪
⋃
P by

deleting for each pair of vertices all but finitely many edges of capacity 0 between them.
Note that every weak component of D∗ contains a vertex in W ′ and each edge of D∗ is con-

tained in a directed path between some vertices ofW ′. Consider a dicutB ofD∗ with a represen-
tation (X, Y ). As each weak component of D∗ contains a vertex of W ′, note that both X ∩W ′

and Y ∩W ′ are non-empty proper subsets of W ′. First, consider the case that both X ∩W
and Y ∩W are proper non-empty subsets of W . If there were directed paths in D′ in both direc-
tions between X ∩W and Y ∩W , the set P would contain such paths PX∩W and PY ∩W , con-
tradicting that B is a dicut of D∗. Hence, there is a dicut B′ of D′ with a representation (X ′, Y ′)
such that X ∩W ⊆ X ′ and Y ∩W ⊆ Y ′. In the other case, one of X or Y is disjoint from W
and is equal to {v0}, thus B has capacity 0 and we can choose B′ to be the dicut of D′ separat-
ing {v0} from W . In particular, in both cases we obtain B \ c−1(0) = B′ \ c−1(0).

On the other hand, each dicut B′ ∈ B′ with a representation (X ′, Y ′) that separates W de-
fines a dicut B of D∗ represented by (X ′ ∩ V (D∗), Y ′ ∩ V (D∗)) for which we trivially obtain
that B \ c−1(0) = B′ \ c−1(0). Lastly, if there is a dicut B′ ∈ B′ with a representation (X ′, Y ′)
that does not separates W , then c(B′) = 0 and ({v0}, V (D∗) \ {v0}) represents a dicut B with
B \ c−1(0) = B′ \ c−1(0) = ∅. Hence, the result follows with any finite B ⊇ B that for each
B ∈ B′ contains a B′ ∈ B′ with B \ c−1(0) = B′ \ c−1(0).

We now lift Theorem 6.7 to infinite digraphs using Lemmas 6.3 and 6.8.

Corollary 6.9. Every weakly connected digraph D (with capacity c) whose underlying multi-
graph contains no minor isomorphic to either the triangular prism K3□K2, K5 or K3,3 is
Bfin-Menger (with respect to c) for the class Bfin of dicuts of D of finite size (capacity).

Proof. We may assume that D contains no dicuts of capacity 0 or else there is nothing to show.
Consider a finite set B of dicuts of D of finite capacity. By Lemma 6.8 there is a finite set B of
dicuts with B ⊆ B of finite capacity and a finite minor D∗ of D such that with B∗ denoting the
set of dicuts of D∗ and c∗ denoting the capacity of D∗ obtained from restricting c to E(D∗), we
have that {B \ c−1(0) : B ∈ B} = {B \ c−1(0) : B ∈ B∗}. In particular, we conclude D/B is
B-Menger with respect to c if and only if D∗ is B∗-Menger with respect to c∗.

Since B contains no dicuts of capacity 0, we observe that ∅ /∈ B∗ and hence that D∗ is
weakly connected. Since D does not contain a minor isomorphic to either K3□K2, K5 or K3,3,
neither does D∗. Therefore, D∗ is B∗-Menger with respect to c∗ by Theorem 6.7. The result now
follows from Lemma 6.3.

Before we come to the next result we again have to introduce further notation.
A one-way infinite path is called a ray and the unique vertex of degree 1 in a ray is called

its start vertex. An orientation of a ray R such that every vertex is oriented away from the start
vertex of R is called a forwards directed ray, or briefly an out-ray. A backwards directed ray,
or briefly a back-ray, is defined analogously.

For a weakly connected digraph D call a strongly connected component C of D a source
component if no edge of D has its head in V (C) and its tail in V (D) \ V (C). A sink component
of D is defined analogously. Furthermore, call a dicut B of D sink-sided (resp. source-sided)
if outD(B) (resp. inD(B)) contains neither a sink component (resp. source component) of D nor
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a out-ray (resp. back-ray) of D. A dicut of D that is either source-sided or sink-sided is called a
source-sink dicut.

The following result is due to Feofiloff and Younger. We state it here adapted to our notation.

Theorem 6.10. [FY87] Every finite weakly connected digraph D (with finitary capacity c) is
Bs-s-Menger (with respect to c) for the class Bs-s of all source-sink dicuts of D.

Note that this result is seemingly slightly stronger than what we mentioned in the introduction
about source-sink connected digraphs as Bs-s is the set of all dicuts in source-sink connected
digraphs.

Let us call a weakly connected digraph D source-sink connected if for every C+ which is
either a source component of D or a back-ray of D, and for every C− which is either a sink
component of D or a out-ray of D, there exists a directed path from C+ to C− in D.

With Theorem 6.10, Feofiloff and Younger verified Conjecture 1 for the class of finite source-
sink connected digraphs since each dicut of a finite source-sink connected digraph is a source-
sink dicut.

Now we shall lift Theorem 6.10 to infinite digraphs using Lemma 6.3.

Corollary 6.11. Every weakly connected digraph D (with capacity c) is Bs-s-Menger (with re-
spect to c) for the class Bs-s of all source-sink dicuts of D of finite size (capacity).

Proof. Note that given a finite set B ⊆ Bs-s, every B ∈ B is also a finite source-sink dicut
of D/ ≡B. Hence, from Theorem 6.10 we deduce that D/ ≡B is B-Menger with respect to
the capacity obtained by restricting c to E(D/ ≡B), which indeed is finitary. The result now
follows from Lemma 6.3.

As for finite digraphs, this has an immediate consequence for source-sink connected digraphs
regarding Conjecture 1 and the class of all finite dicuts.

Corollary 6.12. Every weakly connected, source-sink connected digraph D (with capacity c) is
Bfin-Menger (with respect to c) for the class Bfin of dicuts of D of finite size (capacity).

Proof. The proof follows from Corollary 6.11 and the observation that every dicut of D is a
source-sink dicut.

6.2. Classes of infinite dibonds

In this subsection, we will prove Theorem 5.
First we concentrate on the case where each dibond in the class has the same size as the

digraph itself. Note that the following proof works for sets of bonds in undirected multigraphs
as well.

Lemma 6.13. Let κ be an infinite cardinal, let D be a weakly connected digraph of size κ, and
let B be a class of dibonds of D each of which has size κ. Then D is B-Menger.
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Proof. We build the dijoins inductively. For each i < κ we start with empty sets F 0
i . We fix an

arbitrary enumeration {(iα, uα, vα) : α < κ} of the set κ× V (D)× V (D).
Suppose for α < κ we already constructed a family of disjoint sets (Fα

i : i < κ) of edges
such that Fα :=

⋃
{Fα

i : i < κ} has cardinality less than |α|+ · ℵ0. Let Xα ⊆ V (G) denote
the set containing the end vertices of Fα as well as uα and vα. For each pair of distinct ver-
tices x, y ∈ Xα, let Pα(x, y) denote an undirected path between x and y in D which is edge-
disjoint from Fα if such a path exists, or let Pα(x, y) := ∅ otherwise. We set

Fα+1
iα

:= Fα
iα ∪

⋃
{Pα(x, y) : x, y ∈ Xα} and Fα+1

j := Fα
j for each j ̸= iα.

Note that Fα+1 =
⋃
{Fα+1

i : i < κ} has cardinality less than |α|+ · ℵ0, and hence we can con-
tinue the construction.

For a limit ordinal λ ⩽ κ, we set F λ
i :=

⋃
{Fα

i : α < λ} for each i < κ. Note that by con-
struction each F λ

i has cardinality at most |λ|. Moreover, for all but at most λ many i < κ the
set F λ

i is empty. Hence F λ :=
⋃
{F λ

i : i < κ} has cardinality at most |λ|2 = |λ| < |λ|+ and we
can continue the construction as long as λ < κ.

Claim 6.14. Fα+1
iα

meets every dibond B ∈ B separating uα and vα.

Proof of Claim 6.14. By construction Xα meets both outD(B) and inD(B). Since B has size κ
there is an edge in B \ Fα, and since B separates some pair of vertices in Xα, there are ver-
tices x, y ∈ Xα with x ∈ outD(B) and y ∈ inD(B) for which there is an undirected path be-
tween x and y which is edge-disjoint from Fα. And since every such path meets B, so does
Pα(x, y) ̸= ∅ and hence Fα+1

iα
.

With Claim 6.14 we can deduce that the set {F κ
i : i < κ} is the desired set of disjoint

B-dijoins.

A decomposition H of a graph G is a set of subgraphs of G such that each edge of G is
contained in a uniqueH ∈ H. For an infinite cardinal κ, a decomposition ofG is κ-bond-faithful
if

1. each H has at most κ many edges;

2. any bond of size at most κ of G is a bond of some H ∈ H; and

3. any bond of size less than κ of some H ∈ H is a bond of G.

Theorem 6.15 (Laviolette [Lav05, Theorem 3], Soukup [Sou11, Theorem 6.3]). For all infinite
cardinals κ every graph has a κ-bond-faithful decomposition.

Note that Laviolette originally only proved this theorem under the assumption of the gener-
alised continuum hypothesis [Lav05, Theorem 3]. This assumption was subsequently removed
by Soukup using the technique of elementary submodels [Sou11, Theorem 6.3].

Moreover, note that while this theorem was originally proven for simple graphs, it holds for
multigraphs as well, and additionally we may assume that each graph in the decomposition is
connected, as the following corollary summarises.
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Corollary 6.16. For every infinite cardinal κ every multigraph has a κ-bond-faithful decompo-
sition into connected graphs.

Proof. For a multigraph G, consider a simple graph G′ obtained by iteratively deleting parallel
edges and loops. By Theorem 6.15, this graph has a κ-bond-faithful decomposition H′. For
each H ∈ H′ which is not connected, we replace it by its connected components to obtain a
decomposition H′′, which is again κ-bond-faithful as every bond is contained in a unique con-
nected component. We construct a decomposition of G as follows. For any two vertices v and w
such that there are at most κ many parallel edges between v and w, we add all of those edges
to the unique simple graph H ∈ H′′ containing vw. Otherwise, we decompose the edges be-
tween v and w into sets of size κ, add one of those sets to the unique simple graph H ∈ H′′

containing vw, and for each other of those sets add a new graph to the decomposition consisting
of precisely the edges in that set. Now it is easy to verify that the decomposition H obtained in
this manner is κ-bond-faithful.

We will use this concept to deduce Theorem 5.

Proof of Theorem 5. Let κ be the cardinality of a smallest dibond in B. Let H be a κ-bond-
faithful decomposition of the underlying multigraph as in Corollary 6.16.

Every dibondB inB induces a dicut of size at most κ in some of the members of the κ-bond-
faithful decomposition. This dicut cannot contain dibonds of size less than κ since such dibonds
would be dibonds of D contained B, contradicting that B is a dibond.

To each H ∈ H we apply Lemma 6.13 to the class BH of those dibonds of H that are con-
tained in some dicut of H that is induced by some dibond B ∈ B. Let {FH

i : i < κ} denote the
set of disjoint BH-dijoins of H . It is now easy to see that

{⋃
{FH

i : H ∈ H} : i < κ
}

is a set
of disjoint B-dijoins.

Finally, we show that a generalisation of this theorem to classes of dicuts fails. With the
observations from Section 3 we also see that a capacitated version of Theorem 5 fails.
Example 6.17. For any infinite cardinal κ consider the digraph D consisting of κ many pairwise
non-incident edges eα for all α < κ, i.e. the edge set of D is

E := {eα : α < κ}.

For every I ⊆ κ let BI := {eα : α ∈ I} denote the dicut consisting of the edges index by ele-
ments from I . Now consider the class of dicuts

B := {BI : I ⊆ κ, |I| = κ}.

Note that any B-dijoin F of D has size at least κ since there are κ many disjoint dicuts in B.
Moreover, note that E \ F has size less than κ since BI /∈ B for the set I for which BI = E \ F .
Hence, D does not contain two disjoint B-dijoins both contained in E.

However, we conjecture that the generalisation holds for nested classes of dicuts, which
would yield with the observations from Section 3 the capacitated version for nested classes of
infinite dicuts.
Conjecture 6.18. Let D be a digraph and B be a nested class of infinite dicuts of D. Then D
is B-Menger.
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