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Fixed-smoothing Asymptotics and Accurate F Approximation
Using Vector Autoregressive Covariance Matrix Estimator

Yixiao Sun and David M. Kaplan�

Department of Economics,
University of California, San Diego

Abstract

We develop a new asymptotic theory for autocorrelation robust tests using a vector
autoregressive (VAR) covariance matrix estimator. In contrast to the conventional asymp-
totics where the VAR order goes to in�nity but at a slower rate than the sample size, we
have the VAR order grow at the same rate, as a �xed fraction of the sample size. Under this
�xed-smoothing asymptotic speci�cation, the associated Wald statistic remains asymptot-
ically pivotal. On the basis of this asymptotics, we introduce a new and easy-to-use F �

test that employs a �nite sample corrected Wald statistic and uses critical values from an
F distribution. We also propose an empirical VAR order selection rule that exploits the
connection between VAR variance estimation and kernel variance estimation. Simulations
show that the new VAR F � test with the empirical order selection is much more accurate
in size than the conventional chi-square test.
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1 Introduction

The paper considers statistical inference with time series data when model parameters are esti-

mated by the generalized method of moments (GMM) or the method of estimating equations.

To avoid possible misspeci�cation and to be completely general, we often do not parametrize

the dependence structure of the moment conditions or the estimating equations. The problem

is how to nonparametrically estimate the covariance matrix of the GMM estimator. The recent

literature has mainly focused on kernel-based methods, although quite di¤erent approaches

like the vector autoregressive (VAR) approach (see, for example, Berk 1974, Parzen 1983, den

Haan and Levin 1998) have been explored. Under fairly general conditions, den Haan and

Levin (1997, 1998) show that the VAR covariance estimator converges at a faster rate than

commonly used positive semide�nite kernel covariance estimators. This faster rate of conver-

gence may lead to a chi-square test with good size and power properties. However, Monte

Carlo simulations in den Haan and Levin (1998) show that the �nite sample performance of

the chi-square test based on the VAR covariance estimator is unsatisfactory, especially when

there is strong autocorrelation in the data.

The key asymptotic result underlying the chi-square test is the consistency of the VAR

covariance estimator. It requires that the VAR order p increase with the sample size T but

at a slower rate. While theoretically convenient, the consistency result does not capture the

sampling variation of the covariance estimator in �nite samples. In addition, the consistency

result completely ignores the estimation uncertainty of the model parameters. In this paper,

we develop a new asymptotic theory that avoids these drawbacks. The main idea is to view

the VAR order p as proportional to the sample size T . That is, p = bT for some �xed

constant b 2 (0; 1). Under this new statistical thought experiment, the VAR covariance

estimator converges in distribution to a random matrix that depends on the VAR order and

the estimation error of model parameters. Furthermore, the random matrix is proportional

to the true covariance. As a result, the associated test statistic is still asymptotically pivotal

under this new asymptotics. More importantly, the new asymptotic distribution captures the

sampling variation of the covariance estimator and provides a more accurate approximation

than the conventional chi-square approximation.

To develop the new asymptotic theory, we observe that the VAR(p) model estimated by

the Yule-Walker method is stationary almost surely and has conditional population autoco-
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variances (conditional on the estimated model parameters) that are identical to the empirical

autocovariances up to order p. These crucial observations drive our asymptotic development.

Given the stationarity and �reproducing�properties of the Yule-Walker estimator, we know

that the VAR covariance estimator is asymptotically equivalent to the kernel covariance esti-

mator based on the rectangular kernel with bandwidth equal to p. The speci�cation of p = bT

is then the same as the so-called �xed-b speci�cation in Kiefer and Vogelsang (2005), Kuan

and Lee (2006), Sun, Phillips and Jin (2008), and Sun (2010). The rectangular kernel is not

continuous and has not been considered in the literature on �xed-b asymptotics. Existing re-

sults does not directly apply. One of the contributions of this paper is to �ll in this important

gap and develop a new asymptotic theory for the VAR covariance estimator and associated

tests.

The new asymptotics obtained under the speci�cation that p = bT for a �xed b may

be referred to as the �xed-smoothing asymptotics, as the asymptotically equivalent kernel

estimator has a �nite and thus �xed e¤ective degree of freedom. On the other hand, when

b ! 0, the e¤ective degree of freedom increases with the sample size. The conventional

asymptotics obtained under the speci�cation that p ! 1 but b ! 0 may be referred to

as the increasing-smoothing asymptotics. The two speci�cations can be viewed as di¤erent

asymptotic devices to obtain approximations to the �nite sample distribution. The �xed-

smoothing asymptotics does not require that we �x the value of b in �nite samples. In fact, in

empirical applications, the sample size T is usually given beforehand, and the VAR order needs

to be determined using a priori information and/or information obtained from the data. While

the selected VAR order may be relatively small for large T , it is also true that b = p=T > 0,

so intuition alone is ambivalent. Additionally, we can show that the two types of asymptotics

coincide as b! 0. In other words, the �xed-smoothing approximation is asymptotically valid

under the conventional thought experiment.

Following Sun (2010), we show that, after some modi�cation, the nonstandard �xed-

smoothing limiting distribution can be approximated by a standard F distribution. The

F approximation can also be derived from a high-order Edgeworth expansion under the con-

ventional asymptotics where p ! 1 but at a slower rate than the sample size. On the basis

of the F approximation, we propose a new F � test. The F � test statistic is equal to the Wald

statistic multiplied by a �nite sample correction factor, which can be motivated as a Bartlett-
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type correction. See Bartlett (1937, 1954). In addition to the multiplicative correction, the

F � test employs an F distribution instead of a �2 distribution as the reference distribution.

The F � test is as easy to use as the standard Wald test as both the correction factor and the

critical values are easy to obtain.

The connection between the VAR spectrum estimator and the kernel spectrum estimator

with the rectangular kernel does not seem to be fully explored in the literature. First, the

asymptotic equivalence of these two estimators can be used to prove the consistency and as-

ymptotic normality of the VAR estimator as the asymptotic properties of the kernel estimator

have been well researched in the literature. Second, the connection sheds some light on the

faster rate of convergence of the VAR spectrum estimator and the kernel spectrum estimator

based on �at-top kernels. The general class of �at-top kernels, proposed by Politis (2001),

includes the rectangular kernel as a special case. Under the conventional asymptotics, Politis

(2011, Theorem 2.1) establishes the rate of convergence of �at-top kernel estimators, while den

Haan and Levin (1998, Theorem 1) give the rate for the VAR estimator. Careful inspection

shows that the rates in Politis (2011) are the same as those in den Haan and Levin (1998),

although the routes to them are completely di¤erent. In view of the asymptotic equivalence,

the identical rates of convergence are not surprising at all. Finally, the present paper gives an-

other example that takes advantage of this connection. Among others, the connection inspires

us to specify p to be proportional to the sample size in order to derive the new asymptotics.

This rate speci�cation is not obvious from the rate conditions given under the conventional

asymptotic theory, say for example, Berk (1974).

Compared with a �nite-order kernel estimator, the VAR covariance estimator enjoys the

same bias reducing property as any in�nite-order �at-top kernel estimator does. Like a �at-

top kernel estimator, there is no bias induced by kernel downweighing. This is one of the

main reasons for the renewed interest in the rectangular kernel and other �at-top kernels;

See for example Politis (2011) and Lin and Sakata (2009). Compared with the rectangular

kernel estimator, which may not be positive semide�nite in �nite samples, the VAR covari-

ance estimator is guaranteed to be positive semide�nite, a very desirable property in empirical

applications. Although our theoretical development exploits the connection between the VAR

estimator and the rectangular kernel estimator, we do not recommend the use of the rectan-

gular kernel in �nite samples. The rectangular kernel estimator involves hard thresholding in

3



that the autocovariances �cut o¤�after the truncation lag. In contrast, the VAR estimator ex-

tends the autocovariances beyond the truncation lag. This is very much like a general �at-top

kernel estimator with a smooth kernel function. The VAR estimator also has the information-

theoretic property that it is the maximum entropy estimator, subject to some autocovariance

constraints. See Burg (1967) for the original contribution and Cover and Thomas (2006, pp.

415) for a textbook treatment.

The small bias, coupled with the new asymptotic theory that captures the randomness

of the VAR covariance estimator, gives the proposed F � test a great size advantage. This is

con�rmed in the Monte Carlo experiments. Simulation results indicate that the size of the

VAR F � test with a new empirically determined VAR order is as accurate as, and sometimes

more accurate than, the kernel-based F � tests recently proposed by Sun (2010). The VAR F �

test is as accurate in size as the nonstandard test using simulated critical values. The VAR

F � test is uniformly more accurate in size than the conventional chi-square test. The power

of the VAR F � test is also very competitive relative to the kernel-based F � test and �2 test.

The paper contributes to the recent and growing literature on �xed-smoothing asymptotics

for semiparametric testing. The �xed-smoothing asymptotics for kernel covariance estimators

has been well researched. It is an open and long standing problem of how to develop the

�xed-smoothing asymptotics for the VAR covariance estimator. The paper provides a simple

and illuminating solution to this problem. The main innovation lies in the insight that asymp-

totically uni�es the VAR covariance estimator with the class of kernel covariance estimators.

The rest of the paper is organized as follows. Section 2 presents the GMM model and the

testing problem. It also provides an overview of the VAR covariance estimator. The next two

sections are devoted to the �xed-smoothing asymptotics of the VAR covariance estimator and

the associated test statistic. Section 5 details a new method for lag order determination, and

Section 6 reports simulation evidence. The last section provides some concluding discussion.

Proofs are given in the appendix.

A word on notation: we use Fq;K�q+1 to denote a random variable that follows the F

distribution with degrees of freedom (q;K � q + 1). When there is no possibility of confusion,

we also use Fq;K�q+1 to denote the F distribution itself. We use the same convention for

other distributions. For notational convenience, we assume that bT is an integer. Wm(r) is

the m-dimensional standard Brownian motion.
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2 GMM Estimation and Autocorrelation Robust Testing

We are interested in a d � 1 vector of parameters � 2 � � Rd. Let vt denote a vector of

observations. Let �0 be the true value and assume that �0 is an interior point of the compact

parameter space �. The moment conditions or estimating equations

Ef (vt; �) = 0; t = 1; 2; : : : ; T

hold if and only if � = �0 where f (�) is an m�1 vector of continuously di¤erentiable functions

with m � d and rank E [@f (vt; �0) =@�0] = d. De�ning

gt (�) = T
�1

tX
j=1

f(vj ; �);

the GMM estimator (Hansen, 1982) of �0 is then given by

�̂T = argmin
�2�

gT (�)
0WT gT (�) ;

whereWT is anm�m positive de�nite and symmetric weighting matrix. The GMM estimator

includes many popular estimators as special cases, for example, the linear and nonlinear least

squares estimators, the linear and nonlinear instrumental variable estimators, and general M

estimators.

Let

Gt(�) =
@gt (�)

@�0
=
1

T

tX
j=1

@f(vj ; �)

@�0
:

Under some regularity conditions, �̂T satis�es

�̂T � �0 = �
�
GT

�
~�T

�0
WTGT

�
~�T

���1
GT (�0)

0WT gT (�0) + op

�
1p
T

�
;

where ~�T is a value between �̂T and �0. If plimT!1GT (~�T ) = G; plimT!1WT = W and
p
TgT (�0)) N(0;
); where 
 is the so-called long run variance (LRV) of f(vt; �); then

p
T
�
�̂T � �0

�
) N(0;V); (1)

for V = (G0WG)�1 (G0W
WG) (G0WG)�1. The above asymptotic result provides the basis

for inference on �0.

Consider the null hypothesis H0 : r(�0) = 0 and the alternative hypothesis H1 : r (�0) 6= 0

where r (�) is a q� 1 vector of continuously di¤erentiable functions with �rst-order derivative
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matrix R(�) = @r(�)=@�0. Denote R = R(�0). The F -test version of the Wald statistic for

testing H0 against H1 is

FT =
hp
Tr(�̂T )

i0
V̂�1R

hp
Tr(�̂T )

i
=q;

where V̂R is an estimator of the asymptotic covariance VR of R
p
T (�̂T � �0). When r (�) is a

scalar function, we can construct the t-statistic as tT =
p
Tr(�̂T )=

p
V̂R.

It follows from (1) that VR = RVR0. To make inference on �0; we have to estimate the

unknown quantities in V. W andG can be consistently estimated by their �nite sample versions

WT and ĜT = GT (�̂T ), respectively. It remains to estimate 
. Let 
̂T be an estimator of 
.

Then VR can be estimated by

V̂R = R̂T
�
Ĝ0TWT ĜT

��1
(Ĝ0TWT 
̂TWT ĜT )

�
Ĝ0TWT ĜT

��1
R̂0T ;

where R̂T = R(�̂T ).

Many nonparametric estimators of 
 are available in the literature. The most popular ones

are kernel estimators, which are based on the early statistical literature on spectral density

estimation. See Priestley (1981). Andrews (1991) and Newey and West (1987) extend earlier

results to econometric models where the LRV estimation is based on estimated processes.

In this paper, we follow den Haan and Levin (1997, 1998) and consider estimating the LRV

by vector autoregression. The autoregression approach can be traced back to Whittle (1954).

Berk (1974) provides the �rst proof of the consistency of the autoregressive spectrum estimator.

Let

ht = R̂T (Ĝ
0
TWT ĜT )

�1Ĝ0TWT f(vt; �̂T ) (2)

be the transformed moment conditions based on the estimator �̂T . Note that ht is a vector

process of dimension q. We outline the steps involved in the VAR covariance estimation below.

1. Fit a VAR(p) model to the estimated process ht using the Yule-Walker method (see, for

example, Lütkepohl (2007)):

ht = Â1ht�1 + : : :+ Âpht�p + êt;

where Â1; : : : ; Âp are estimated autoregression coe¢ cient matrices and êt is the �tted

residual. More speci�cally,

Â =
�
Â1; : : : ; Âp

�
= [�̂h (1) ; : : : ; �̂h (p)]�̂

�1
H (p); (3)
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where

�̂h (j) =

8<: T�1
PT
t=j+1 hth

0
t�j ; j � 0

T�1
PT+j
t=1 hth

0
t�j ; j < 0

is a q � q matrix and

�̂H(p) =

26664
�̂h (0) : : : �̂h (p� 1)
...

. . .
...

�̂h (�p+ 1) : : : �̂h (0)

37775 :
2. Compute

�̂e = �̂h (0)� Â1�̂h (1)� : : :� Âp�̂h (p) (4)

and estimate VR by

V̂R =
�
Iq � Â1 � : : :� Âp

��1
�̂e

�
Iq � Â01 � : : :� Â0p

��1
where Iq is the q � q identity matrix.

We note that the Yule-Walker estimator can be computed using OLS based on a simple

augmented data set. For more details, see Stoica and Moses (2005, pages 97�98). So it is easy

to compute the Yule-Walker estimator using standard statistical packages.

It is important to point out that we �t a VAR(p) model to the transformed moment

condition ht instead of the original moment condition f(vt; �̂T ). There are several advantages

of doing this. First, the dimension of ht can be much smaller than the dimension of f(vt; �̂T );

especially when there are many moment conditions. So the VAR(p) model for ht may have

substantially fewer parameters than the VAR model for f(vt; �̂T ). Second, by constructionPT
t=1 ht = 0; so an intercept vector is not needed in the VAR for ht. On the other hand, when

the model is overidenti�ed, that is, m > d;
PT
t=1 f(vt; �̂T ) 6= 0 in general. Hence, a VAR model

for f(vt; �̂T ) should contain an intercept. Finally and more importantly, ht is tailored to the

null hypothesis under consideration. The VAR order we select will re�ect the null directly. In

contrast, autoregressive �tting on the basis of f(vt; �̂T ) completely ignores the null hypothesis,

and the resulting covariance estimator V̂R may be poor in �nite samples.

Let

Â =

26666664
Â1 : : : Âp�1 Âp

Iq : : : 0 0
...

. . .
...

...

0 : : : Iq 0

37777775 and �̂E =

26666664
�̂e : : : 0 0

0 0 : : : 0
...

...
...

...

0 0 0 0

37777775 ;
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then the Yule-Walker estimators Â and �̂E satisfy:

�̂H (p) = Â�̂H (p) Â
0 + �̂E : (5)

It is well known that for scalar time series the estimated AR model obtained via the

Yule-Walker method is stationary almost surely. See Brockwell and Davis (1987, ch 8.1) and

Lütkepohl (2007, ch 3.3.4). We expect this to hold for vector time series. To the best

of authors�knowledge, a rigorous proof for the multivariate case is currently lacking in the

statistical literature. We collect the stationarity result in the proposition below and provide

a simple proof in the appendix.

Proposition 1 If �̂H (p) and �̂H (p+ 1) are Toeplitz matrices and are positive de�nite almost

surely, then


�Â

 < 1 almost surely where �Â is any eigenvalue of Â:

Proposition 1 is a crucial result that drives our asymptotic development. It gives precise

conditions under which the �tted VAR(p) process is stationary. The proof requires that

the covariance estimators �̂H(p) and �̂H(p + 1) be Toeplitz matrices. For the Yule-Walker

estimator, these conditions are satis�ed. Hence the �tted VAR(p) model is stationary almost

surely. For the OLS estimator, the corresponding matrices are not Toeplitz. As a result, the

�tted VAR(p) model may not be stationary.

3 Fixed-smoothing Asymptotics for the Covariance Estimator

In this section, we derive the asymptotic distribution of V̂R. Depending on how the VAR order

p and the sample size T go to in�nity, there are several di¤erent types of asymptotics. When the

VAR order is set equal to a �xed proportion of the sample size, i.e. p = bT for a �xed constant

b 2 (0; 1); we obtain the so-called �xed-smoothing asymptotics. On the other hand, if b! 0 at

the rate given in den Haan and Levin (1998), we obtain the conventional increasing-smoothing

asymptotics. Under this type of asymptotics, b ! 0 and T ! 1 jointly. So the increasing-

smoothing asymptotics is a type of joint asymptotics. An intermediate case is obtained when

we let T ! 1 for a �xed b followed by letting b ! 0. Given the sequential nature of the

limiting behavior of b and T; we call the intermediate case the sequential asymptotics.

An important property of the Yule-Walker estimator is that conditional on Â1; : : : ; Âp and

�̂e; the �tted VAR(p) process has theoretical autocovariances that are identical to the sample
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autocovariances up to lag p: To see this, consider a generic VAR(p) process ~ht;

~ht = A1~ht�1 + : : :+Ap~ht�p + ~et;

where ~et s iid(0;�e) and Ai are autoregression matrices. De�ne

�H (p) =

26664
� (0) : : : � (p� 1)
...

. . .
...

� (�p+ 1) : : : � (0)

37775
where � (j) = E~ht~h0t�j : Then the autocovariance sequence satis�es

�H (p) = A�H (p)A
0 +�E ; (6)

where A and �E are de�ned similarly as Â and �̂E . It follows that

vec [�H (p)] =
�
Ip2q2 � (A
A)

��1
vec (�E) :

That is, when Ip2q2 � (A
A) is invertible, we can represent the autocovariances of f~htg as a

function of A1; : : : ; Ap and �e :

� (j) � �j (A1; : : : ; Ap;�e) ; j = 0; 1; : : : ; p: (7)

That is, given A1; : : : ; Ap;�e; the set of autocovariances is uniquely determined by the function

�j in (7).

By the de�nition of the Yule-Walker estimator, Â and �̂E satisfy �̂H (p) = Â�̂H (p) Â0 +

�̂E : Comparing this with the theoretical autocovariance sequence in (6) and in view of (7),

we have

�̂h (j) = �j

�
Â1; : : : ; Âp; �̂e

�
; j = 0; 1; : : : ; p;

provided that Ip2q2 � Â 
 Â is invertible. The almost sure invertibility of Ip2q2 � Â 
 Â is

guaranteed by Proposition 1. In other words, conditional on Â1; : : : ; Âp; �̂e; the autocovari-

ances of the �tted VAR(p) process match exactly with the empirical autocovariances used in

constructing the Yule-Walker estimator.

Using this �reproducing�property of the Yule-Walker estimator, we can relate the VAR

covariance estimator to the kernel estimator of VR based on the rectangular kernel. Let
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krect (r) = 1 fjrj � 1g and krect;b (r) = 1 fjrj � bg ; where 1 f�g is the indicator function. Then

the rectangular kernel estimator of VR is

~VR =
pX

j=�p
�̂h (j) =

1

T

TX
t=1

TX
s=1

hth
0
skrect

�
t� s
p

�
;

where ht is de�ned in (2) and p is the bandwidth or truncation lag. By de�nition, V̂R =

~VR +MR where MR =
P
jjj>p

~�h (j),

~�h (j) =

pX
i=1

Âi�̂h (j � i) for j > p; and ~�h (�j) = ~�h (j)0 for j < �p: (8)

Intuitively, the �tted VAR process necessarily agrees exactly up to lag order p with the

estimated autocovariances. The values of the autocovariances after lag p are generated re-

cursively in accordance with the VAR(p) model as in (8). The di¤erence between the VAR

covariance estimator and the rectangular kernel covariance estimator is that for the former

estimator the autocovariances of order greater than p are based on the VAR(p) extrapolation

while for the latter estimator these autocovariances are assumed to be zero.

Using the relationship between the VAR covariance estimator and the rectangular kernel

covariance estimator, we can establish the asymptotic distribution of the VAR covariance

estimator under the �xed-smoothing asymptotics. We make the following assumptions.

Assumption 1 plimT!1�̂T = �0.

Assumption 2 T 1=2g[rT ](�0) ) �Wm(r) where ��0 = 
 =
P1
j=�1Eutu

0
t�j > 0 is the LRV

of ut := f (vt; �0).

Assumption 3 plimT!1G[rT ](~�T ) = rG uniformly in r for any ~�T between �̂T and �0 where

G = E [@f(vj ; �0)=@�
0].

Assumption 4
PT�bT
�=1 f (v�+bT ; �0) g

0
� (�0)) �

R 1�b
0 dWm(b+ r)W

0
m(r)�

0.

Assumption 5 WT is positive semide�nite, plimT!1WT = W; and G0WG is positive de�-

nite.

Assumption 1 is made for convenience. It can be proved under more primitive assumptions

and using standard arguments. Assumptions 2 and 3 are similar to those in Kiefer and Vogel-

sang (2005), among others. Assumption 2 regulates ff (vt; �0)g to obey a functional central
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limit theorem (FCLT) while Assumption 3 requires f@f(vj ; �0)=@�0g satisfying a uniform law

of large numbers (ULLN). Note that FCLT and ULLN hold for serially correlated and het-

erogeneously distributed data that satisfy certain regularity conditions on moments and the

dependence structure over time. These primitive regularity conditions are quite technical and

can be found in White (2001). Assumption 4 is a new high-level condition we maintain for

the rectangular kernel. It is not needed to derive the �xed-smoothing asymptotics for other

kernels. Using the same argument as in de Jong and Davidson (2000), we can show that under

some moment and mixing conditions on the process ff (vt; �0)g:

T�bTX
�=1

f (v�+bT ; �0) g
0
� (�0)� �+T ) �

Z 1�b

0
dWm(b+ r)W

0
m(r)�

0;

where �+T = T
�1PT�bT

�=1

P�
t=1Eu�+bTu

0
t. But for �u(s� t) = Eusu0t; we have

�+T =
1

T

T�bTX
�=1

�X
t=1

�u (� + bT � t) =
1

T

T�bTX
�=1

��1X
j=0

�u (bT + j)

=
1

T

T�bT�1X
j=0

T�bTX
�=j+1

�u (bT + j) =
T�bT�1X
j=0

�
1� b� j

T

�
�u (bT + j)

=

1X
j=0

�u (bT + j) + o(1) = o(1);

where we have assumed the stationarity of ff (vt; �0)g and the absolute summability of its

autocovariances. Hence Assumption 4 holds under some regularity conditions.

Lemma 1 Let Assumptions 1-5 hold. Then under the �xed-smoothing asymptotics, MR =

op(1) and V̂R ) VR;1 where

VR;1 =
h
R
�
G0WG

��1
G0W�

i
Qm(b)

h
R
�
G0WG

��1
G0W�

i0
Qm(b) = �

�Z 1�b

0
dVm(b+ r)V

0
m (r) +

Z 1�b

0
Vm(r)dV

0
m(r + b)

�
(9)

and Vm(r) =Wm(r)� rWm (1) is the standard Brownian bridge process.

The �xed-smoothing asymptotics of V̂R is new in the literature. Because of the discontinu-

ity of the rectangular kernel, the typical arguments for deriving the �xed-smoothing asymp-

totics do not go through without modi�cation. Here we take advantage of the explicit form of

the kernel function and use the indispensable Assumption 4 to prove the lemma.
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The asymptotic distribution VR;1 is proportional to the true covariance matrix VR through

R (G0WG)�1G0W�. This contrasts with the increasing-smoothing asymptotic approximation

where V̂R is approximated by a constant matrix, i.e. VR. The advantage of the �xed-smoothing

asymptotic result is that the limit of V̂R depends on the order of the autoregression through

b but is otherwise nuisance parameter free. Therefore, it is possible to obtain a �rst-order

asymptotic distribution theory that explicitly captures the e¤ect of the VAR order used in

constructing the VAR covariance estimator.

The following lemma gives an alternative representation of Qm(b). Using this represen-

tation, we can compute the variance of VR;1. The representation uses the centered kernel

de�ned by

k�b (r; s)

= krect

�
r � s
b

�
�
Z 1

0
krect

�
r � s
b

�
dr �

Z 1

0
krect

�
r � s
b

�
ds+

Z 1

0

Z 1

0
krect

�
r � s
b

�
drds

= krect

�
r � s
b

�
+max(0; r � b) + max(0; s� b)�min(1; b+ r)�min(1; b+ s)� b (b� 2) :

(10)

Lemma 2 (a) Qm(b) can be represented as

Qm(b) =

Z 1

0

Z 1

0
k�b (r; s)dWm(s)dW

0
m (r) ;

(b) E�Qm(b)�0 = �1
 and

var(vec(�Qm(b)�
0)) = �2 (

 
) (Im2 +Km2) ;

(c) EVR;1 = �1VR and

var(vec(VR;1)) = �2 (VR 
 VR)
�
Iq2 +Kq2

�
;

where

�1 = �1 (b) =

Z 1

0
k�b (r; r)dr = (1� b)

2

�2 = �2 (b) =

Z 1

0

Z 1

0
[k�b (r; s)]

2 drds =

8<: b
�
3b3 + 8b2 � 15b+ 6

�
=3; b � 1=2

(b� 1)2
�
3b2 � 2b+ 2

�
=3; b > 1=2

and Km2 is the m2 �m2 commutation matrix.
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It is often tedious to �nd the moments of the �xed-smoothing limiting distribution. The

calculation has to be done on a case-by-case basis. For this reason, explicit moment formu-

lae are not readily available in the literature. An exception is Hashimzade and Vogelsang

(2007) who compute the �rst two moments of the �xed-smoothing limiting distribution for

the Bartlett kernel. Lemma 2 is another attempt in this direction. It allows us to compare the

�rst two moments of the �xed-smoothing limiting distribution with those of the increasing-

smoothing limiting distribution.

It follows from Lemma 2 that the mean of VR;1 is proportional to the true covariance VR.

When b ! 0, we have �1 ! 1 and �2(b) ! 0. So plimb!0VR;1 = VR. A direct implication

is that as b goes to zero, the �xed-smoothing asymptotics coincides with the conventional

increasing-smoothing asymptotics. More precisely, the probability limits of V̂R are the same

under the sequential asymptotics and the joint asymptotics.

As b! 0; we have

lim
b!0

b�1var(vec(VR;1)) = 2 (VR 
 VR)
�
Iq2 +Kq2

�
:

Note that
R 1
�1 k

2
rect (r) dr =

R 1
�1 1 fjrj � 1g dr = 2. The right hand side is exactly the as-

ymptotic variance one would obtain under the joint asymptotic theory. That is, the second

moment of the �xed-smoothing asymptotic distribution becomes arbitrarily close to that of

the increasing-smoothing asymptotic distribution. Therefore, V̂R has not only the same prob-

ability limit but also the same asymptotic variance under the sequential and joint asymptotics.

When b > 0 is �xed, EVR;1 � VR = b (b� 2)VR. So V̂R is not asymptotically unbiased.

The asymptotic bias arises from the estimation uncertainty of model parameter �. It may be

called the demeaning bias as the stochastic integral in (9) depends on the Brownian bridge

process rather than the Brownian motion process. One advantage of the �xed-smoothing

asymptotics is its ability to capture the demeaning bias. In contrast, under the conventional

increasing-smoothing asymptotics, the estimation uncertainty of � is negligible. As a result,

the �rst-order conventional asymptotics does not re�ect the demeaning bias.

4 Fixed-smoothing Asymptotics for Test Statistics

In this section, we �rst establish the asymptotic distribution of FT under the �xed-smoothing

asymptotics. We then develop an F approximation to the nonstandard limiting distribution.
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Our asymptotic results can be extended straightforwardly to the t-statistic.

The following theorem can be proved using Lemmas 1 and 2.

Theorem 2 Let Assumptions 1-5 hold. Assume that R is of full rank q. Under the �xed-

smoothing asymptotics where b is held �xed, we have FT ) F1 (q; b) where

F1 (q; b) =W
0
q (1) [Qq (b)]

�1Wq(1)=q;

and Qq(b) =
R 1
0

R 1
0 k

�
b (r; s)dWq(r)dW

0
q(s):

Theorem 2 shows that F1 (q; b) depends on b but otherwise is nuisance parameter free. So

the new asymptotic theory gives rise to an asymptotically pivotal test that re�ects the choice

of the VAR order. This is in contrast with the asymptotic results under the standard approach

where FT would have a limiting �2q=q distribution regardless of the choice of b or VAR order.

When b ! 0; Qq (b) !p Iq and as a result F1 (q; b) ) �2q=q. Hence, when b ! 0; the

�xed-smoothing asymptotics approaches the standard increasing-smoothing asymptotics. In

a sequence of papers on kernel LRV estimation with �nite order kernels, Sun (2010) and Sun,

Phillips and Jin (2008) show that critical values from the �xed-smoothing asymptotics are high-

order correct under the conventional joint asymptotics. It is not di¢ cult to generalize their

result to in�nite order kernels which include the rectangular kernel as a special case. In fact,

in a simple Gaussian location model, Jun (2011) has obtained an Edgeworth expansion for the

t-statistic using the autoregressive variance estimator. So the �xed-smoothing approximation

is not only asymptotically valid but also second-order correct under the increasing-smoothing

asymptotics.

The asymptotic distribution F1 (q; b) is nonstandard. Critical values are not readily avail-

able from statistical tables or software packages. For this reason, we approximate F1 (q; b) by

a convenient F distribution. Let

� = exp(2qb) and F �1(q; b) = F1(q; b)=�

The theorem below follows from Theorem 1 of Sun (2010).

Theorem 3 As b! 0; we have

P (F �1(q; b) � z) = P (Fq;K� � z) + o(b) (11)
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where

K� = max(d(2b)�1e � q + 1; 1): (12)

Let F�q;K� and F�1(q; b) be the 1� � quantiles of the standard Fq;K� distribution and the

nonstandard F1 (q; b) distribution, respectively. Then

P
�
F1(q; b) > �F

�
q;K�

�
= �+ o(b); (13)

which implies that F�1(q; b) = �F
�
q;K� +o(b). Since the approximation error is of smaller order

o(b) rather than O(b) as b! 0; �F�q;K� is second-order correct. So for the original F statistic,

we can use

F�q;b = �F�q;K� (14)

as the critical value for the test with nominal size �. In the rest of the paper, we call this test

the F � test. To emphasize its reliance on vector autoregression, we also refer to it as the VAR

F � test. Of course, the VAR F � test is equivalent to the test that is based the modi�ed Wald

statistic FT =� and uses F�q;K� as the critical value. We use these two de�nitions interchangingly.

The correction factor � in (14) can be regarded as a Bartlett-type correction; see Bartlett

(1937, 1954). The idea is to choose � to make the mean of F �1(q; b) closer to that of �
2
q=q. In

addition to the Bartlett-type correction, Theorem 3 approximates the nonstandard distribution

by an F distribution rather than a chi-square distribution.

So far the F approximation has been motivated from the �xed-smoothing asymptotics. It

can also be obtained by developing a second-order expansion under the conventional increasing-

smoothing asymptotics. See Sun (2010) for details. To save space, we do not present them

here. So the F approximation can be justi�ed under both the sequential asymptotics and

the second-order joint asymptotics. It does not have to be regarded as an approximation to

F1(q; b): Under the joint asymptotics, both the F distribution and the nonstandard distri-

bution F1(q; b) are second-order correct. Without a third-order joint asymptotic theory, it

is not clear which distribution provides a more accurate approximation to the �nite sample

distribution of the test statistic.

We end this section by discussing the t-statistic. All the results for the Wald statistic can be

extended to the t-statistic with q = 1. For example, we can show that tT )W1(1)=
p
Q1 (b): In

addition, tT =� can be approximated by the t-distribution with degree of freedom K� as de�ned
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in (12). In Gaussian location models, the second order correctness of our t-approximation

under the conventional asymptotic theory follows from Jun (2011).

5 VAR Lag Order Determination

For VAR models, it is standard practice to use model selection criteria such as AIC or BIC

to choose the lag order. However, the AIC and BIC are not aimed at the testing problem

we consider. In this section, we propose a new lag order selection rule that is based on the

bandwidth choice for the rectangular kernel LRV estimator. We set the VAR lag order equal

to the bandwidth (i.e. bT ) for the rectangular kernel LRV estimator.

The question is how to select the bandwidth for the rectangular kernel LRV estimator

that is directed at the testing problem at hand. Before addressing this question, we review

the method proposed by Sun (2010) who considers �nite-order kernel LRV estimators and

associated F � tests. He proposes to select the bandwidth to minimize an asymptotic measure

of the type II error while controlling for the asymptotic type I error. More speci�cally, the

testing-optimal bandwidth is given by

b� = argmin eII(b); s.t. eI (b) � �� (15)

where eI (b) and eII (b) are approximate measures of type I and type II errors and � > 1 is

the so-called tolerance parameter.

Under some regularity conditions, for a kernel function k(x) with Parzen exponent %, the

type I error of the kernel F � test is shown to approximately equal

eI(b) = �� (bT )�%G0q
�
X�q
�
X�q �B with �B =

tr(BV�1R )

q

where � is the nominal type I error, X�q is the �-level critical value from Gq(�), the CDF of

the �2q distribution, and B is the asymptotic bias of the kernel LRV estimator for VR. The

average type II error under the local alternative H1(�2o) : r(�0) = (RVR0)
1=2 ~c=

p
T where ~c is

uniformly distributed on Sq(�2o) = f~c 2 Rq : k~ck
2 = �2og is

eII(b) = Gq;�2o
�
X�q
�
+ (bT )�%G0q;�2o

�
X�q
�
X�q �B +

�2o
2
G0(q+2);�2o

�
X�q
�
X�q c2b

where G`;�2o (�) is the CDF of the noncentral �
2
`

�
�2o
�
distribution and c2 =

R1
�1 k

2 (x) dx. In

the above expression, higher-order terms and a term of order 1=
p
T that does not depend on
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b have been omitted. Note that �2o is not known in practice. We choose �
2
o such that the �rst

order power of the chi-square test is 75%. This is a reasonable choice when we do not have

any information on local alternatives.

The testing optimal bandwidth depends on the sign of �B. When �B < 0; the constraint

eI (b) � �� is binding and the optimal b� satis�es eI (b�) = �� . When �B > 0; the constraint

eI (b) � �� is not binding and the optimal b� minimizes eII(b).

The problem is that the above testing optimal bandwidth works only for �nite-order kernels

while the rectangular kernel is an in�nite-order kernel. For in�nite order kernels, we cannot

obtain an exact order of the asymptotic bias with an explicit data-dependent coe¢ cient,

although we may be able to obtain that the asymptotic bias is of smaller order than some

rate. For example, with enough smoothness conditions, the asymptotic bias can be made of

order o(1=
p
T ). A similar problem is also present for optimal bandwidth choice under the

MSE criterion, as an explicit asymptotic bias formula is lacking. This is a general problem

in nonparametric estimation with in�nite order kernels. To address this problem, we employ

a second-order kernel as the target kernel and use its testing-optimal bandwidth as a basis

for bandwidth selection for the rectangular kernel. Our proposal is ad hoc to some degree,

but there is no procedure that is free from being ad hoc in this situation. Further, we show

that the rectangular kernel with our proposed bandwidth improves upon the size and power

properties of the target kernel.

Let ktar(�) be the target kernel and b�tar be the associated testing-optimal bandwidth pa-

rameter. For example, we may let ktar (�) be the Parzen kernel, the QS kernel, or any other

commonly used �nite-order kernel. We set the bandwidth for the rectangular kernel to be

b�rect =

8<: b�tar; if �B < 0

(c2;tar) (c2;rect)
�1 b�tar; if �B > 0

(16)

where c2;tar =
R1
�1 k

2
tar (x) dx, c2;rect =

R1
�1 k

2
rect (x) dx = 2; and

b�tar =

8>>><>>>:
�
G0p(X�

p )X�
p j �Bj

(��1)�

�1=q
1
T ;

�B < 0�
2qG0

p;�2o
(X�

p )j �Bj
�2oG

0
(p+2);�2

(X�
p )c2;tar

� 1
q+1

T
� q
q+1 ; �B > 0

For example, when the Parzen kernel is used as the target kernel,

b�rect = b
�
Parzen1

�
�B < 0

	
+
0:539285

2
b�Parzen1

�
�B > 0

	
: (17)
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When the QS kernel is used as the target kernel,

b�rect = b
�
QS1

�
�B < 0

	
+
1

2
b�QS1

�
�B > 0

	
: (18)

Given b�rect; we set the VAR lag order to be p = db�rectT e. For convenience, we refer to this

bandwidth selection and lag order determination method as the method of target kernels

(MTK).

When �B < 0; the bandwidth based on the MTK is the same as the testing-optimal band-

width for the target kernel. In this case, all F � tests are expected to be over sized, thanks to

the asymptotic bias of the associated LRV estimator. For a given bandwidth parameter and

under some regularity conditions, the asymptotic bias of the rectangular kernel LRV estimator

is of smaller order than that of any �nite-order kernel (see Politis, 2011). As a consequence,

the bandwidth selected by the MTK is expected to control the type I error better than the

testing-optimal bandwidth selection rule for the target kernel.

When �B > 0; the type I error of the F � test is expected to be capped by the nominal type

I error. This gives us the opportunity to select the bandwidth to minimize the type II error

without worrying about over rejection. With the bandwidth selected by the MTK, the third

term of the form �2oG
0
(q+2);�2o

�
X�q
�
X�q c2b=2 in eII(b) is the same for the rectangular kernel

and the target kernel, while the second term is expected to be smaller for the rectangular

kernel. Therefore, the F � test based on the rectangular kernel and the MTK is expected to

have smaller type II error than the F � test based on the target kernel with testing-optimal

bandwidth choice.

To sum up, when the F � tests are expected to over-reject, the rectangular kernel with

bandwidth selected by the MTK delivers an F � test with a smaller type I error than the

corresponding target kernel. On the other hand, when the F � tests are expected to under-

reject so that the asymptotic type I error is capped by the nominal type I error, the F � test

based on the rectangular kernel and the MTK is expected to have smaller type II error than

the F � test based on the �nite-order target kernel.

Our bandwidth selection rule via the MTK bears some resemblance to a rule suggested

by Andrews (1991, footnote on page 834). Andrews (1991) employs the MSE criterion and

suggests setting the bandwidth for the rectangular kernel equal to the half of the MSE-optimal

bandwidth for the QS kernel. Essentially, Andrews (1991) uses the QS kernel as the target

kernel. This is a natural choice as the QS kernel is the optimal kernel under the MSE criterion
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in the class of positive semide�nite kernels. Lin and Sakata (2009) make the same recommen-

dation and show that the resulting rectangular kernel LRV estimator has smaller asymptotic

MSE than the QS kernel LRV estimator. When �B > 0; the MTK is analogous to that sug-

gested by Andrews (1991) and Lin and Sakata (2009). However, when �B < 0 such that the

F � tests tend to over-reject, the MTK is di¤erent. It suggests using the same bandwidth,

rather than a fraction of it, as the bandwidth for the target kernel in order to control the size

distortion.

6 Simulation Study

This section provides some simulation evidence on the �nite sample performance of the VAR

F � test. We compare the VAR F � test with the nonstandard VAR test, the standard chi-square

test and kernel-based F � tests recently proposed by Sun (2010).

6.1 Location model

In our �rst simulation experiment, we consider a multivariate location model of the form

yt = � + ut;

where yt = (y1t; y2t; y3t)
0; ut = (u1t; u2t; u3t)

0 and � = (�1; �2; �3)
0. The error processes fuitg

are independent of each other. We consider two cases. In the �rst case, all components of uit

follow the same AR(2) process:

uit = �1uit�1 + �2uit�2 + eit

where eit s iid(0; �2e) and �
2
e = (1 + �2)

h
(1� �2)2 � �21

i
(1� �2)�1. In the second case, all

components of uit follow the same MA(2) process:

uit = �1eit�1 + �2eit�2 + eit

where eit s iid(0; �2e) and �2e =
�
1 + �21 + �

2
2

��1. In both cases, the value of �2e is chosen such
that the variance of uit is one. The error eit follows either a normal distribution or centered

chi-square distributions with di¤erent degrees of freedom.

We consider the following null hypotheses:

H0q : �1 = : : : = �q = 0
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for q = 1; 2; 3. The corresponding restriction matrix is R0q = Id(1 : q; :); i.e., the �rst q rows

of the identity matrix I3. The local alternative hypothesis is H1q
�
�2
�
: R0q� = cq=

p
T where

cq = (R0q
R
0
0q)

1=2~c, 
 is the LRV matrix of ut; ~c is uniformly distributed over the sphere

Sq
�
�2
�
; that is, ~c = ��= k�k ; � s N(0; Iq). It is important to point out that �2 is not the same

as �2o used in the testing-oriented criterion and the MTK.

We consider the following (�1; �2) combinations:

(�1; �2) = (�:8; 0) ; (�:4; 0) ; (0; 0) ; (:4; 0) ; (:8; 0) ; (1:5;�:75) ; (:25; :25) ; (:35; :35) :

The last two combinations come from den Haan and Levin (1998). The combination with

negative �2 comes from Kiefer and Vogelsang (2002a,b). The remaining combinations consist

of simple AR(1) or MA(1) models with di¤erent persistence.

We consider two sets of testing procedures. The �rst set consists of the tests using the VAR

covariance estimator. For each restriction matrix R0q; we �t a VAR(p) model to R0q (ut � �u)

by OLS. We select the lag order of each VAR model by AIC or BIC. As standard model

selection methods, the details on AIC and BIC can be found in many textbooks and papers,

see for example, Lütkepohl (2007, sec 4.3) and den Haan and Levin (1998). We also consider

selecting the VAR order by the MTK, that is p = db�rectT e where b�rect is de�ned in (16). We

use Parzen and QS kernels as the target kernels. We call the resulting two VAR order selection

rules the VAR-Par rule and VAR-QS rule.

For each of the VAR order determination methods, we construct the VAR covariance

estimator and compute the Wald statistic. We perform the nonstandard test, the F � test, and

the traditional �2 test. The nonstandard test is based on Theorem 2. It employs the Wald

statistic FT and simulated critical values from the nonstandard limiting distribution. For

convenience, we call the nonstandard test the S2 test, re�ecting its Simulation-based nature

and the similarity between the nonstandard distribution and Hotelling�s T 2 distribution. The

F � test employs the Wald statistic FT and the critical value �F�q;K̂ where K̂ = max(dT=(2p̂)e�

q + 1; 1) and p̂ is the selected VAR order. The traditional �2 test employs the Wald statistic

FT and the critical value X�q =q.

The second set of testing procedures consists of kernel-based tests. We consider two com-

monly used second-order kernels: the Parzen and QS kernels. For each kernel, the bandwidth

is determined via the testing-oriented criterion (Sun 2010). The bandwidth is selected to solve

the constrained minimization problem in (15). We set � = 1:2 in the simulation experiment.

20



As in the VAR case, there are three tests: the S2 test which uses simulated critical values from

a nonstandard �xed-smoothing asymptotic distribution, the F � test which uses critical values

from an F distribution, and the �2 test which uses critical values from a �2 distribution. The

testing-optimal bandwidth requires a plug-in implementation. We use the VAR model selected

by the AIC as the approximating parametric model.

To explore the �nite sample size of the tests, we generate data under the null hypothesis.

To compare the power of the tests, we generate data under the local alternative. For each

test, we consider two signi�cance levels � = 5% and � = 10%; three di¤erent sample sizes

T = 100; 200; 500. The number of simulation replications is 10000.

Tables 1-3 give the type I errors of the 18 testing methods for the AR error with normal

distribution and sample size T = 100. The signi�cance level is 5%, which is also the nominal

type I error. We can make several observations from these tables. First, the conventional

chi-square tests can have a large size distortion. The size distortion increases with both the

error dependence and the number of restrictions being jointly tested. The size distortion can

be very severe. For example, when (�1; �2) = (:8; 0) and q = 3, the empirical type I error of a

�2 test can be more than 50%, which is far from 0.05, the nominal type I error.

Second, the size distortion of the VAR F � test is often substantially smaller than the

corresponding VAR �2 test. Note that the lag order underlying the VAR F � test is the

same as that for the corresponding VAR �2 test. The VAR F � test is more accurate in size

because it employs an asymptotic approximation that captures the estimation uncertainty of

the covariance estimator. Based on this observation, we can conclude that the proposed �nite

sample correction, coupled with the use of the F critical values, is very e¤ective in reducing

the size distortion of the �2 test. For the same reason, the size distortion of the F �-Parzen

and F �-QS tests is also much smaller than that of the corresponding kernel-based �2 tests.

Third, among the F � tests using the VAR covariance estimator, the test based on the MTK

has the smallest size distortion. Unreported results show that in an average sense the VAR

order selected by the MTK is the largest. In terms of size accuracy, the AIC and BIC appear

to be conservative in that they choose smaller VAR lag orders. It is well known that BIC is

consistent in selecting the true model. However, the error in approximating the distribution of

FT by an F distribution does not necessarily increase with the VAR lag order. Our simulation

result shows that for size accuracy it is advantageous to use a larger model, even though this
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may lead to some power loss.

Fourth, when the error process is highly persistent, the VAR F � test with the VAR order

selected by the MTK is more accurate in size than the corresponding kernel F � test. On the

other hand, when the error process is not persistent, all the F � tests have more or less the

same size properties. So the VAR F � test with the VAR order selected by the MTK reduces

the size distortion when it is needed most, and maintains the good size property when it is

not needed.

Finally, the VAR F � test is as accurate in size as the nonstandard VAR S2 test. In fact,

when the error process is highly persistent, the VAR F � test is more accurate that the VAR

S2 test. This provides some evidence that the standard F approximation is a convenient

alternative to the nonstandard �xed-smoothing approximation.

Figures 1 and 2 present the �nite sample power in the Gaussian AR case for q = 2, which is

representative of the cases q = 1 and q = 3. We compute the power using 5% empirical �nite

sample critical values under the null. The empirical critical values are simulated separately

for each testing method with data-driven smoothing parameter. So the �nite sample power is

size-adjusted and power comparisons are meaningful. It should be pointed out that the size

adjustment is not feasible in practice. The parameter con�guration is the same as those for

Tables 1-3 except that the DGP is generated under the local alternatives. The power curves

are for the F � tests. We do not include S2 and �2 tests as these three types of tests have the

same size-adjusted power. It is clear from the �gure that the VAR F � test based on the AIC

or BIC is more powerful than the other F � tests. Among all F � tests, the VAR F � test based

on the BIC is most powerful. However, this F � test also has the largest size distortion. The

power di¤erences among the F � tests are small in general. Compared with the kernel F � test

with testing optimal bandwidth, the VAR F � test based on the MTK has very competitive

power� sometimes it is more powerful than the kernel F � test. Therefore, the VAR F � test

based on the MTK achieves more accurate size without sacri�cing much power.

We omit the tables of simulated type I errors for the MA case, as the qualitative observa-

tions on size comparison for the AR case remain valid. In fact, these qualitative observations

hold for other parameter con�gurations such as di¤erent sample sizes, signi�cance levels, and

error distributions. We do not present the power �gures for the MA case but note that the

qualitative observations on power comparison for the AR case still hold.

22



6.2 Regression model

In our second simulation experiment, we consider a regression model of the form:

yt = 
 + x
0
t� + "t;

where xt is a 3� 1 vector process and xt and "t follow either an AR (1) process

xt;j = �xt�1;j +
p
1� �2et;j ; "t = �"t�1 +

p
1� �2et;0

or an MA(1) process

xt;j = �et�1;j +
p
1� �2et;j ; "t = �et�1;0 +

p
1� �2et;0:

The error term et;j s iidN(0; 1) across t and j. For this DGP, we havem = d = 4. Throughout

we are concerned with testing for the regression parameter � and set 
 = 0 without the loss

of generality.

Let � = (
0; �0)0. We estimate � by the OLS estimator. Since the model is exactly identi�ed,

the weighting matrix WT becomes irrelevant. Let ~x0t = [1; x
0
t] and ~X = [~x1; : : : ; ~xT ]

0; then the

OLS estimator is �̂T � �0 = �G�1T gT (�0) where GT = � ~X 0 ~X=T , G = E(GT ), gT (�0) =

T�1
PT
t=1 ~xt"t. The asymptotic variance of

p
T (�̂T ��0) is V = G�1
G�1 where 
 is the LRV

matrix of the process ~xt"t.

We consider the following null hypotheses:

H0q : �1 = : : : = �q = 0

for q = 1; 2; 3. The local alternative hypothesis is H1q
�
�2
�
: R0q� = cq=

p
T where cq =�

R0qG
�1
G�1R00q

�1=2
~c and ~c is uniformly distributed over the sphere Sq

�
�2
�
.

Tables 4-6 report the empirical type I error of di¤erent tests for the AR(1) case with

sample size T = 200. Other unspeci�ed parameters such as � and the number of simulation

replications are the same as in Tables 1-3. As before, it is clear that the F � test is more

accurate in size than the corresponding �2 test. Among the three VAR F � tests, the test

based on the MTK has less size distortion than that based on AIC and BIC. This is especially

true when the error is highly persistent. The VAR F � test based on the MTK is as accurate

in size as kernel F � tests and nonstandard tests.

To sum up, the VAR F � test has much smaller size distortion than the conventional �2

test, as considered by den Haan and Levin (1998). Compared to the kernel F � tests and VAR
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and kernel nonstandard tests, it has either more accurate size or equally accurate size. The

size accuracy of the VAR F � test is achieved with no or small power loss.

7 Conclusions

The paper has established a new asymptotic theory for the covariance matrix estimator that

is based on �tting a vector autoregressive model to the estimated moment process. The new

asymptotic theory assumes that the VAR order is proportional to the sample size. Compared

with the conventional asymptotics, the new asymptotic theory has two attractive properties:

the limiting distribution re�ects the VAR order used and the estimation uncertainty of model

parameters. On the basis of this new asymptotic theory, we propose a new and easy-to-use

F � test. The test statistic is equal to a �nite sample corrected Wald statistic and the critical

values are from the standard F distribution.

The VAR F � test is attractive in three respects. First, the underlying VAR covariance

estimator is automatically positive semide�nite. There is no need to do any modi�cation.

Second, the VAR covariance estimator has smaller asymptotic bias than the kernel LRV esti-

mators commonly used in practice. As shown in Sun, Phillips, and Jin (2008), bias reduction

is especially important when we focus on size accuracy rather than the MSE of the covariance

estimator. Third, the VAR F � test is as easy to use as the conventional kernel-based and

VAR-based chi-square tests but is much more accurate in size than the latter tests.

The new asymptotic theory can be extended to the autoregressive estimator of spectral

densities at other frequencies. It is also straightforward to extend the overidenti�cation test

of Sun and Kim (2012) and the M tests of Kuan and Lee (2006) to the present setting. All the

tests considered in the paper can be combined with prewhitening procedures such as those in

Andrews and Monahan (1992) and Lee and Phillips (1994). The idea of the paper may be used

to develop more accurate approximations in other problems that employ vector autoregression

to model short run dynamics.
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Table 1: Type I error of di¤erent tests for Gaussian location models with AR errors and
T = 100: the number of restrictions q = 1

(�1; �2) (-0.8,0) (-0.4,0) (0,0) (0.4,0) (0.8,0) (1.5,-.75) (.25,.25) (.35,.35)

S2-VAR-AIC 0.049 0.052 0.056 0.063 0.104 0.050 0.089 0.102
F*-VAR-AIC 0.051 0.053 0.058 0.065 0.106 0.051 0.090 0.104
�2-VAR-AIC 0.061 0.062 0.066 0.075 0.119 0.069 0.107 0.125

S2-VAR-BIC 0.046 0.048 0.052 0.059 0.102 0.047 0.104 0.114
F*-VAR-BIC 0.048 0.050 0.055 0.061 0.105 0.048 0.107 0.117
�2-VAR-BIC 0.056 0.058 0.061 0.071 0.115 0.065 0.120 0.135

S2-VAR-Par 0.049 0.052 0.055 0.056 0.089 0.050 0.064 0.082
F*-VAR-Par 0.050 0.053 0.056 0.046 0.076 0.045 0.054 0.070
�2-VAR-Par 0.066 0.063 0.072 0.122 0.175 0.090 0.133 0.167

S2-VAR-QS 0.048 0.051 0.055 0.058 0.088 0.050 0.063 0.082
F*-VAR-QS 0.050 0.053 0.056 0.055 0.075 0.046 0.057 0.070
�2-VAR-QS 0.058 0.061 0.067 0.099 0.175 0.089 0.124 0.164

S2-Parzen 0.048 0.050 0.057 0.062 0.084 0.031 0.072 0.086
F*-Parzen 0.046 0.049 0.056 0.062 0.087 0.033 0.074 0.087
�2-Parzen 0.066 0.066 0.070 0.097 0.173 0.081 0.128 0.169

S2-QS 0.053 0.053 0.057 0.063 0.067 0.032 0.073 0.070
F*-QS 0.054 0.054 0.060 0.072 0.103 0.046 0.091 0.102
�2-QS 0.066 0.066 0.069 0.092 0.186 0.079 0.127 0.179

Note: For each smoothing parameter choice, there are three tests that use the same test sta-
tistic but critical values from di¤erent reference distributions. The S2 test uses simulated
critical values from the nonstandard �xed-smoothing asymptotics; the F � test uses critical
values from an F distribution; and the �2 test uses critical values from a chi-square distrib-
ution. The VAR orders are selected by AIC, BIC or MTK based on Parzen and QS kernels.
The MTK rules are denoted as VAR-Par and VAR-QS, respectively. For the Parzen and QS
kernels, the smoothing parameters are determined by a testing-optimal rule developed by Sun
(2010). Results for our recommended F*-VAR-Par and F*-VAR-QS tests are in bold fonts.
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Table 2: Type I error of di¤erent tests for Gaussian location models with AR errors and
T = 100: the number of restrictions q = 2

(�1; �2) (-0.8,0 ) (-0.4,0) (0,0) (0.4,0) (0.8,0) (1.5,-.75) (.25,.25) (.35,.35)

S2-VAR-AIC 0.040 0.043 0.051 0.067 0.151 0.053 0.120 0.146
F*-VAR-AIC 0.046 0.051 0.057 0.076 0.161 0.053 0.126 0.149
�2-VAR-AIC 0.062 0.069 0.077 0.097 0.184 0.089 0.166 0.200

S2-VAR-BIC 0.038 0.041 0.049 0.064 0.148 0.050 0.169 0.199
F*-VAR-BIC 0.045 0.050 0.056 0.073 0.160 0.051 0.181 0.207
�2-VAR-BIC 0.059 0.065 0.073 0.093 0.181 0.085 0.213 0.249

S2-VAR-Par 0.042 0.045 0.050 0.064 0.135 0.050 0.083 0.122
F*-VAR-Par 0.046 0.051 0.051 0.034 0.087 0.043 0.048 0.079
�2-VAR-Par 0.061 0.069 0.086 0.232 0.347 0.135 0.257 0.330

S2-VAR-QS 0.041 0.045 0.050 0.063 0.135 0.050 0.083 0.122
F*-VAR-QS 0.045 0.050 0.054 0.049 0.088 0.044 0.059 0.080
�2-VAR-QS 0.060 0.068 0.078 0.168 0.346 0.128 0.229 0.326

S2-Parzen 0.037 0.043 0.053 0.064 0.101 0.024 0.082 0.102
F*-Parzen 0.034 0.040 0.052 0.059 0.095 0.022 0.076 0.095
�2-Parzen 0.064 0.070 0.073 0.141 0.288 0.101 0.201 0.280

S2-QS 0.045 0.045 0.054 0.067 0.087 0.031 0.090 0.091
F*-QS 0.049 0.048 0.057 0.080 0.146 0.041 0.115 0.142
�2-QS 0.069 0.070 0.071 0.135 0.361 0.097 0.207 0.340

Note: see note to table 1
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Table 3: Type I error of di¤erent tests for Gaussian location models with AR errors and
T = 100: the number of restrictions q = 3

(�1; �2) (-0.8,0) (-0.4,0) (0,0) (0.4,0) (0.8,0) (1.5,-.75) (.25,.25) (.35,.35)

S2-VAR-AIC 0.037 0.044 0.053 0.079 0.224 0.058 0.166 0.206
F*-VAR-AIC 0.043 0.048 0.058 0.085 0.235 0.061 0.174 0.212
�2-VAR-AIC 0.067 0.071 0.085 0.117 0.279 0.118 0.241 0.298

S2-VAR-BIC 0.037 0.042 0.052 0.078 0.224 0.056 0.239 0.349
F*-VAR-BIC 0.042 0.047 0.057 0.085 0.234 0.060 0.251 0.361
�2-VAR-BIC 0.065 0.070 0.084 0.115 0.276 0.116 0.301 0.418

S2-VAR-Par 0.035 0.041 0.051 0.075 0.199 0.057 0.102 0.176
F*-VAR-Par 0.043 0.048 0.054 0.022 0.090 0.048 0.037 0.079
�2-VAR-Par 0.066 0.071 0.097 0.384 0.570 0.194 0.430 0.536

S2-VAR-QS 0.035 0.041 0.049 0.074 0.199 0.059 0.110 0.177
F*-VAR-QS 0.042 0.048 0.056 0.051 0.092 0.052 0.065 0.084
�2-VAR-QS 0.065 0.070 0.087 0.272 0.567 0.181 0.356 0.530

S2-Parzen 0.034 0.044 0.058 0.069 0.129 0.025 0.105 0.130
F*-Parzen 0.031 0.040 0.053 0.060 0.101 0.018 0.084 0.102
�2-Parzen 0.065 0.078 0.079 0.195 0.435 0.126 0.282 0.420

S2-QS 0.045 0.046 0.060 0.072 0.116 0.029 0.119 0.130
F*-QS 0.048 0.050 0.057 0.091 0.211 0.041 0.137 0.202
�2-QS 0.079 0.076 0.077 0.181 0.564 0.126 0.294 0.523

Note: see note to table 1
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Table 4: Type I error of di¤erent tests in a regression model with Gaussian AR(1) regressors
and error and T = 200: the number of restrictions q = 1

�1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 0.9

S2-VAR-AIC 0.050 0.049 0.051 0.054 0.058 0.066 0.093 0.159
F*-VAR-AIC 0.050 0.049 0.051 0.054 0.058 0.067 0.093 0.159
�2-VAR-AIC 0.054 0.054 0.055 0.058 0.064 0.071 0.101 0.169

S2-VAR-BIC 0.049 0.048 0.049 0.052 0.056 0.065 0.092 0.160
F*-VAR-BIC 0.049 0.048 0.049 0.052 0.056 0.065 0.092 0.160
�2-VAR-BIC 0.052 0.052 0.052 0.055 0.061 0.069 0.098 0.166

S2-VAR-Par 0.045 0.046 0.048 0.051 0.052 0.058 0.078 0.126
F*-VAR-Par 0.047 0.048 0.050 0.051 0.050 0.047 0.062 0.107
�2-VAR-Par 0.055 0.056 0.057 0.059 0.081 0.109 0.152 0.222

S2-VAR-QS 0.046 0.047 0.049 0.053 0.055 0.059 0.074 0.127
F*-VAR-QS 0.048 0.049 0.051 0.052 0.056 0.056 0.063 0.108
�2-VAR-QS 0.055 0.056 0.057 0.057 0.069 0.088 0.138 0.222

S2-Parzen 0.044 0.045 0.047 0.053 0.062 0.066 0.078 0.127
F*-Parzen 0.044 0.046 0.048 0.053 0.063 0.068 0.079 0.128
�2-Parzen 0.056 0.058 0.058 0.061 0.074 0.090 0.130 0.221

S2-QS 0.046 0.047 0.047 0.055 0.065 0.068 0.080 0.110
F*-QS 0.049 0.051 0.049 0.055 0.067 0.074 0.092 0.148
�2-QS 0.056 0.058 0.058 0.061 0.074 0.089 0.126 0.228

See note to Table 1
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Table 5: Type I error of di¤erent tests in a regression model with Gaussian AR(1) regressors
and error and T = 200: the number of restrictions q = 2

�1 -0.75 -0.5 0.25 0 0.25 0.5 0.75 0.9

S2-VAR-AIC 0.061 0.049 0.047 0.048 0.053 0.065 0.105 0.208
F*-VAR-AIC 0.068 0.056 0.053 0.054 0.061 0.074 0.114 0.221
�2-VAR-AIC 0.078 0.065 0.062 0.063 0.070 0.086 0.126 0.237

S2-VAR-BIC 0.060 0.049 0.046 0.047 0.052 0.064 0.104 0.206
F*-VAR-BIC 0.066 0.055 0.053 0.053 0.060 0.073 0.113 0.219
�2-VAR-BIC 0.075 0.063 0.061 0.062 0.068 0.084 0.123 0.233

S2-VAR-Par 0.059 0.050 0.046 0.048 0.052 0.061 0.087 0.173
F*-VAR-Par 0.043 0.052 0.052 0.052 0.051 0.043 0.050 0.118
�2-VAR-Par 0.171 0.082 0.062 0.066 0.106 0.178 0.291 0.405

S2-VAR-QS 0.060 0.050 0.046 0.047 0.053 0.064 0.088 0.172
F*-VAR-QS 0.058 0.056 0.054 0.053 0.058 0.062 0.064 0.118
�2-VAR-QS 0.117 0.069 0.062 0.063 0.081 0.127 0.243 0.405

S2-Parzen 0.069 0.054 0.050 0.052 0.063 0.072 0.084 0.149
F*-Parzen 0.070 0.056 0.052 0.054 0.065 0.073 0.086 0.145
�2-Parzen 0.107 0.067 0.062 0.064 0.082 0.115 0.197 0.357

S2-QS 0.072 0.056 0.050 0.053 0.065 0.074 0.086 0.131
F*-QS 0.081 0.059 0.055 0.057 0.069 0.085 0.117 0.205
�2-QS 0.106 0.069 0.061 0.064 0.081 0.111 0.188 0.390

See note to Table 1
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Table 6: Type I error of di¤erent tests in a regression model with Gaussian AR(1) regressors
and error and T = 200: the number of restrictions q = 3

�1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 0.9

S2-VAR-AIC 0.090 0.061 0.055 0.054 0.060 0.078 0.133 0.275
F*-VAR-AIC 0.096 0.067 0.061 0.061 0.067 0.086 0.141 0.287
�2-VAR-AIC 0.110 0.082 0.073 0.075 0.080 0.102 0.160 0.311

S2-VAR-BIC 0.088 0.060 0.054 0.054 0.059 0.078 0.132 0.273
F*-VAR-BIC 0.095 0.066 0.061 0.061 0.066 0.085 0.139 0.285
�2-VAR-BIC 0.108 0.080 0.072 0.075 0.079 0.100 0.157 0.308

S2-VAR-Par 0.077 0.058 0.053 0.053 0.058 0.069 0.106 0.223
F*-VAR-Par 0.028 0.054 0.059 0.060 0.056 0.040 0.032 0.093
�2-VAR-Par 0.340 0.139 0.077 0.079 0.137 0.274 0.461 0.602

S2-VAR-QS 0.074 0.061 0.054 0.054 0.060 0.073 0.109 0.222
F*-VAR-QS 0.061 0.063 0.061 0.061 0.065 0.069 0.056 0.094
�2-VAR-QS 0.202 0.098 0.073 0.076 0.096 0.169 0.374 0.602

S2-Parzen 0.081 0.069 0.059 0.060 0.068 0.077 0.101 0.171
F*-Parzen 0.081 0.069 0.059 0.060 0.069 0.078 0.094 0.146
�2-Parzen 0.166 0.093 0.071 0.074 0.092 0.144 0.277 0.499

S2-QS 0.085 0.073 0.060 0.061 0.072 0.081 0.102 0.148
F*-QS 0.102 0.076 0.062 0.064 0.076 0.094 0.140 0.262
�2-QS 0.159 0.093 0.071 0.074 0.091 0.137 0.261 0.569

See note to Table 1
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Figure 1: Size-adjusted power of the di¤erent F � tests under the Gaussian location model
with AR error, sample size T = 100 and number of restrictions q = 2.
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Figure 2: Size-adjusted power of the di¤erent F � tests under the Gaussian location model
with AR error, sample size T = 100 and number of restrictions q = 2.
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8 Appendix: Proofs

Proof of Proposition 1. Note that the Yule-Walker estimators Â1; : : : ; Âp and �̂e satisfy
(3) and (4). These two equations can be written as B̂�̂H (p+ 1) = Ĉ; where

B̂ =
�
Iq; �Â1 : : : ; �Âp

�
; Ĉ =

�
�̂e; 0; : : : ; 0

�
:

Let � be an eigenvalue of Â0 and x = (x01; : : : ; x
0
p)
0 be the corresponding eigenvector. Then

Â01x1 + x2 = �x1;

Â02x1 + x3 = �x2;

: : :

Â0p�1x1 + xp = �xp�1;

Â0px1 = �xp:

From these equations, we know that x 6= 0 implies x1 6= 0. Writing these equations more
compactly, we have

� B̂0x1 +
�
x
0

�
= �

�
0
x

�
: (A.1)

We consider the case � 6= 0. In this case, B̂0x1 6= 0. It follows from (A.1) and the Toeplitz
structure of �̂H (p+ 1) that

x��̂H (p)x

=

�
x
0

��
�̂H (p+ 1)

�
x
0

�
=

�
B̂0x1 + �

�
0
x

���
�̂H (p+ 1)

�
B̂0x1 + �

�
0
x

��
= x�1B̂�̂H (p+ 1) B̂

0x1 + k�k2 x��̂H (p)x+ �x�1B̂�̂H (p+ 1)
�
0
x

�
+ ��

�
0
x

��
�̂H (p+ 1) B̂

0x1

= x�1B̂�̂H (p+ 1) B̂
0x1 + k�k2 x��̂H (p)x+ �x�1Ĉ

�
0
x

�
+ ��

�
0
x

��
Ĉ 0x1

= x�1B̂�̂H (p+ 1) B̂
0x1 + k�k2 x��̂H (p)x;

where the last line follows because

Ĉ

�
0
x

�
=

�
0
x

��
Ĉ 0 = 0:

So, we get

k�k2 = 1� x
�
1B̂�̂H (p+ 1) B̂

0x1

x��̂H (p)x
:

As a result, k�k2 < 1 almost surely if �̂H (p) and �̂H (p+ 1) are positive de�nite almost surely.

Proof of Lemma 1. Since the �tted VAR process is stationary almost surely, the long run
variance

V̂R =
�
I� Â1 � : : :� Âp

��1
�̂e

�
I� Â01 � : : :� Â0p

��1
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is well-de�ned almost surely. As a result,

V̂R =
pX

j=�p
�̂h (j) +

X
jjj>p

~�h (j) <1

almost surely. That is, MR =
P
jjj>p

~�h (j) = o(1) almost surely.

De�ne St =
Pt
j=1 hj ; S0 = 0. It is easy to show that

~VR =
1

T

TX
t=1

TX
�=1

hth
0
�krect

�
t� �
bT

�
=
1

T

TX
t=1

TX
�=1

D(t; �)StS
0
� ;

where

D(t; �) = krect(
t� �
bT

)� krect(
t+ 1� �
bT

)� krect(
t� � � 1
bT

) + krect(
t� �
bT

):

To simplify the notation, we assume that bT is an integer and write Gt = Gt (�0) and gt =
gt (�0). Note that D(t; �) 6= 0 if and only if jt� � j = bT or bT + 1. So

~VR = T�1
T�bTX
�=1

S�+bTS
0
� � T�1

T�bT�1X
�=1

S�+bT+1S
0
� ;

+ T�1
T�bTX
t=1

StS
0
t+bT � T�1

T�bT�1X
t=1

StS
0
t+bT+1

= �T�1
T�bT�1X
�=1

h�+bT+1S
0
� � T�1

T�bT�1X
t=1

Sth
0
t+bT+1:

To establish the limiting distribution of T�1
PT�bT�1
�=1 h�+bT+1S

0
� ; we write

ht = R̂T

�
Ĝ0TWT ĜT

��1
Ĝ0TWT

�
f (vt; �0) +

@f(vt; ��T )

@�0

�
�̂T � �0

��
= R̂T

�
Ĝ0TWT ĜT

��1
Ĝ0TWT

�
f (vt; �0)�

@f(vt; ��T )

@�0

��
~G0TWT

~GT

��1
G0TWT gT + op

�
1p
T

���
;

where ~GT = GT
�
~�T

�
and ��T ; ~�T satisfy ��T = �0 +Op(1=

p
T ) and ~�T = �0 +Op(1=

p
T ). So

S� = R̂T

�
Ĝ0TWT ĜT

��1
Ĝ0TWT

�
Tg� � T �G�

��
~G0TWT

~GT

��1
G0TWT gT + op

�
1p
T

���
;

where �G� = GT
�
��T
�
. As a result,

T�1
T�bT�1X
�=1

h�+bT+1S
0
� = R̂T

�
Ĝ0TWT ĜT

��1
(I1 + I2 + I3 + I4)

�
Ĝ0TWT ĜT

��1
R̂0T + op(1);
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where

I1 =
T�bT�1X
�=1

Ĝ0TWT f (v�+bT+1; �0) g
0
�WT ĜT ;

I2 = �
T�bT�1X
�=1

Ĝ0TWT f (v�+bT+1; �0) g
0
TWTGT

�
~G0TWT

~GT

��1
�G0�WT ĜT ;

I3 = �
T�bT�1X
�=1

Ĝ0TWT
@f(v�+bT+1; ��T )

@�0

�
~G0TWT

~GT

��1
(G0TWT gT )(g

0
�WT ĜT );

I4 =
T�bT�1X
�=1

Ĝ0TWT
@f(v�+bT+1; ��T )

@�0

�
~G0TWT

~GT

��1
G0TWT gT g

0
TWTGT

�
~G0TWT

~GT

��1
�G0�WT ĜT :

We consider each of the above terms in turn. For I1; we use Assumptions 4-5 to obtain

I1 ) G0W�
Z 1�b

0
dWm(b+ r)W

0
m(r)�

0WG:

For I2; we have, by Assumptions 3-4:

I2 = �
T�bT�1X
�=1

G0Wf (v�+bT+1; �0) g0TWG
�
G0WG

��1 �
T
GWG (1 + op (1))

= � 1
T

T�bT�1X
�=1

G0W�f (v�+bT+1; �0) g0TWG (1 + op (1))

) �G0W�
Z 1�b

0
dWm(b+ r)rW

0
m(1)�

0WG:

For I3 and I4; we have

I3 = �
T�bT�1X
�=1

G0W @f(v�+bT+1; ��T )

@�0
�
G0WG

��1
(G0WgT )(g0�WG) (1 + op (1))

= �T
T�bT�1X
�=1

G0W
�
�G�+bT+1 � �G�+bT

� �
G0WG

��1
(G0WgT )(g0�WG) (1 + op (1))

= �
T�bT�1X
�=1

(G0WgT )(g0�WG) (1 + op (1))

) �G0W�
�
Wm(1)

Z 1�b

0
W 0
m(r)dr

�
�0WG;
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and

I4 =
T�bT�1X
�=1

G0W @f(v�+bT+1; ��T )

@�0
�
G0WG

��1
G0WgT g0TWG

�
G0WG

��1 �G0�WG (1 + op (1))
= T

T�bT�1X
�=1

G0W
�
�G�+bT+1 � �G�+bT

� �
G0WG

��1
G0WgT g0TWG

�

T
(1 + op (1))

=

T�bT�1X
�=1

�

T
G0WgT g0TWTG (1 + op (1)))

�Z 1�b

0
rdr

�
G0W�Wm(1)W

0
m(1)�

0WG

=
1

2
(b� 1)2G0W�Wm(1)W

0
m(1)�

0WG:

Hence,

I1 + I2 + I3 + I4

) G0W�
�Z 1�b

0
dWm(b+ r)W

0
m(r)�

Z 1�b

0
dWm(b+ r)rW

0
m(1)

�
Z 1�b

0
Wm(1)W

0
m(r)dr +

1

2
(b� 1)2Wm(1)W

0
m(1)

�
�0WG (A.2)

= G0W�
�Z 1�b

0
dWm(b+ r)V

0
m (r)

�
�0WG

�G0W�
�Z 1�b

0
Wm(1)W

0
m(r)dr �

1

2
(b� 1)2Wm(1)W

0
m(1)

�
�0WG

= G0W�
��Z 1�b

0
dWm(b+ r)V

0
m (r)

�
�
Z 1�b

0
drWm(1)V

0
m (r)

�
�0WG

= G0W�
�Z 1�b

0
dVm(b+ r)V

0
m (r)

�
�0WG:

Combining the above results yields ~VR ) VR;1. Since V̂R = ~VR+ op (1) ; we have V̂R ) VR;1
as stated.

Proof of Lemma 2. (a) It follows from equation (A.2) that

�
Z 1�b

0
dVm(b+ r)V

0
m (r)

= �
Z 1�b

0
dWm(b+ r)W

0
m(r) +

Z 1�b

0
dWm(b+ r)rW

0
m(1)

+

Z 1�b

0
Wm(1)W

0
m(r)dr �

1

2
(b� 1)2Wm(1)W

0
m(1)

= �
Z 1

b

�
dWm(s)

Z s�b

0
dW 0

m (r)

�
+

Z 1

0

�Z 1

b
(s� b) dWm(s)

�
dW 0

m (r)

+

Z 1�b

0
Wm(1)W

0
m(r)dr �

Z 1

0

Z 1

0

1

2
(b� 1)2 dWm(s)dW

0
m (r) :
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But using integration by parts we haveZ 1�b

0
Wm(1)W

0
m(r)dr =

Z 1�b

0
(1� b� r)

�Z 1

0
dWm(s)

�
dW 0

m (r) ;

so

�
Z 1�b

0
dVm(b+ r)V

0
m (r)

= �
Z 1

b

�
dWm(s)

Z s�b

0
dW 0

m (r)

�
+

Z 1

0

�Z 1

b
(s� b) dWm(s)

�
dW 0

m (r)

�
Z 1�b

0
(b+ r � 1)

�Z 1

0
dWm(s)

�
dW 0

m (r)�
Z 1

0

Z 1

0

1

2
(b� 1)2 dWm(s)dW

0
m (r)

or

�
Z 1�b

0
dVm(b+ r)V

0
m (r)

=

Z 1

0

Z 1

0
�1 fr 2 [0; s� b]; s 2 [b; 1]g+ 1 fr 2 [0; 1]; s 2 [b; 1]g (s� b)

+ (1� b� r)1 fr 2 [0; 1� b]; s 2 [0; 1]g � 1
2
(b� 1)2 1 fr 2 [0; 1]; s 2 [0; 1]g dWm(s)dW

0
m (r)

=

Z 1

0

Z 1

0

~kb(r; s)dWm(s)dW
0
m (r) ;

and

~kb(r; s) = �
1

2
(b� 1)2 +

8>>>><>>>>:
1� b� r; if r 2 [0; 1� b]; s 2 [0; b]
s� b; if r 2 [1� b; 1]; s 2 (b; 1]
s� r � 2b; if r 2 (0; s� b); s 2 (b; 1]
s� r � 2b+ 1; if r 2 [s� b; 1� b); s 2 (b; 1]
0; if r 2 (1� b; 1]; s 2 (0; b]

For the second term in Qm (b) ; we note that

�
Z 1�b

0
Vm(r)dV

0
m(r + b) =

�
�
Z 1�b

0
dVm(b+ r)V

0
m (r)

�0
=

Z 1

0

Z 1

0

~kb(r; s)dWm(r)dW
0
m (s) =

Z 1

0

Z 1

0

~kb(s; r)dWm(s)dW
0
m (r) :

Therefore Qm (b) =
R 1
0

R 1
0 k

�
b (r; s)dWm(s)dW

0
m (r) ; where k

�
b (r; s) =

~kb(r; s) + ~kb(s; r). Some
algebra shows that k�b (r; s) can be simpli�ed to the expression given in (10).

(b) Note that E�Qm(b)�0 =
�R 1
0 k

�
b (r; r)dr

�

. It is easy to show that

R 1
0 k

�
b (r; r)dr =

(1� b)2. Hence E�Qm(b)�0 = �1
.
Let

A =

Z 1

0

Z 1

0
k�b (r; s)dWm(s)dW

0
m (r) ;

then
vec

�
�Qm (b) �

0� = vec ��A�0� = (�
 �) [vec (A)] :
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To compute var(vec (�Qm (b) �0)) ; it is su¢ cient to compute var(vec (A)) :

var (vec (A)) = var

�Z 1

0

Z 1

0
k�b (r; s)vec

�
dWm(s)dW

0
m (r)

��
= var

�Z 1

0

Z 1

0
k�b (r; s) [dWm(r)
 dWm(s)]

�
:

But

var

�Z 1

0

Z 1

0
k�b (r; s) [dWm(r)
 dWm(s)]

�
=

�Z 1

0

Z 1

0
[k�b (r; s)]

2 drds

�
(Im2 +Km2) :

Consequently,
var

�
vec

�
�Qm (b) �

0�� = �2 (

 
) (Im2 +Km2) ;

where �2 =
R 1
0

R 1
0 [k

�
b (t; �)]

2 dtd� . The expression of �2 in the lemma can be obtained by
elementary albeit lengthy calculations. To save space, we do not present the details here but
they are available upon request. As a result

var(vec(VR;1)) = �2 (VR 
 VR)
�
Iq2 +Kq2

�
:

(c) Part (c) follows directly from part (b). Details are omitted here.

Proof of Theorem 2. Note that

V̂R ) VR;1 := R
�
G0WG

��1
G0W�Qm(b)�0WG

�
G0WG

��1
R0;

p
Tr(�̂T )) �R

�
G0WG

��1
G0W�Wm (1) :

In addition, it is easy to show that Qm(b) is positive de�nite with probability one for any
b 2 (0; 1). So by the continuous mapping theorem, we have

FT )
h
R
�
G0WG

��1
G0W�Wm (1)

i0
�
�
R
�
G0WG

��1
G0W�
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�
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��1
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��1

�
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��1
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i
=q:

Let
R
�
G0WG

��1
G0W�Wm (r)

d
= DWq(r)

for a q � q matrix D such that

DD0 = R
�
G0WG

��1
G0W��0WG

�
G0WG

��1
R0:

Then

FT ) [DWq(1)]
0
�
D

Z 1

0

Z 1

0
k�b (r; s)dWq(s)dW

0
q(r)D

0
��1

DWq(1)=q

d
=W 0

q (1) [Qq (b)]
�1Wq(1)=q

as desired.
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