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Abstract

This dissertation explores the coupling of internal rotation to the overall rotation of

molecules and is divided into three distinct sections. The first section is a traditional torsion-

rotation problem studying the Ka band spectrum of methyl tert-butyl ether, a gasoline additive.

The molecule is extremely prolate (κ = −0.991) and has three possible large amplitude motions:

methoxy methyl torsion, tert-butyl torsion, and geared methyl torsion. These three internal ro-

tations were investigated by MP2/cc-pVDZ calculations, and the methoxy methyl torsion was

predicted to be the most influential in the microwave spectrum. Using a recently constructed Ka

band chirped-pulsed Fourier Transform Microwave Spectrometer, the torsional-rotational spectrum

of this molecule was recorded. Due to the minimal molecular asymmetry, the A state spectrum

resembled that of a symmetric top, while the torsion-rotation coupling in the E state spectrum

broke the near symmetric pattern and was a more typical asymmetric top spectrum. A total of

405 transitions were recorded and fit using XIAM, and the methyl torsional barrier height was

determined to be 495.648(720) cm−1.

The second section describes a new program, westerfit, for Cs molecules with internal

rotation and spin angular momentum. The code implements a single diagonalization Rho Axis

Method approach for the torsion-rotation alongside a complete treatment of nuclear quardupole

interaction and spin-rotation coupling. Unlike other programs designed for internal rotation with

spin effects, westerfit includes matrix elements off-diagonal in the rotational angular momentum

quantum number, N , rather than the perturbative treatment of the spin-rotation and quadrupole

interactions. This full combined approach allows fitting of all symmetrically allowed terms in both

the spin-rotation and the quadrupole tensors as well as inclusion of any higher order terms coupling

the large amplitude motion to the spin angular momentum. The program was benchmarked against

other published programs and found to be capable of reproducing results from three different

programs. Particular interest was paid to meta-chlorotoluene as this molecule has a low internal

rotation barrier and a spin 3/2 nucleus which make it the exact type of molecule the program

was designed to treat. Previous attempts to fit this molecule were complicated in part by XIAM’s

limitations at very low barrier heights and its perturbative quadrupole treatment. While the new
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fit in westerfit does offer reduced RMS error and better precision on the spectroscopic parameters,

transitions from excited torsional states will likely be necessary to accurately determine the barrier

height.

The final section details the theoretical interactions between the methyl rotation and a

single unpaired electron’s spin angular momentum. A Hamiltonian for spin-torsion-rotation in the

Rho Axis System was determined and the matrix element of the spin-torsion coupling operator

was derived as well as possible definitions for calculating the associated parameter. The operator

was implemented into the code described in the preceding chapter and was used for the theoretical

investigations. The interaction of this operator with other second order operators was explored

with the spin-torsion coupling being most sensitive to the torsional barrier height. Coupled cluster

parameters for the example molecule, meta-methyl-phenoxyl, were calculated, and spin-torsion-

rotation spectra were simulated with the spin-torsion term at zero and at a non-zero value. When

the spin-torsion term was changed from zero, most of the simulated transitions underwent a subtle

shift that was not uniform in magnitude or direction. The work presented here should provide a

foundation for future work on the rotational spectra of radicals with internal rotation.
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CHAPTER 1

Introduction

To provide context for the work contained in this text, a history of the field shall be provided

here. While microwave has been shown to have applications in astrochemistry and analytical

fields, it remains largely the domain of fundamental molecular interest. Rotational spectroscopy

has given deep, accurate insight into molecular structure, and remains one of the most sensitive

probes of intra- and inter-molecular interactions. The sensitivity to perturbation and frequency

precision associated with rotational spectroscopy make it a powerful tool for confirming ab initio

models. However, there remain areas where theory has not been developed to support rotational

investigation into all molecules, such as spin-torsion interaction.

1.1. 1920–1939: The Beginning of the Field

The field of molecular rotational spectroscopy began in the 1920s as an expansion of orbital

motions of electrons in the hydrogen atom. Dennison determined the energy levels of rigid linear

and symmetric molecules as well as determining the separate quantum numbers for overall angular

momentum and its projection onto the molecular symmetry axis, which would latter be referred

to as J and K respectively [1]. This paper also established that the rotational energy levels are

heavily dependent on the exact structure of the molecule which makes rotational spectroscopy a very

powerful tool for determining the molecular geometry. The exact connection between the moments

of inertia and the molecular energy levels is discussed in Chapter 2. Kronig and Rabi restructured

Dennison’s work into Schrödinger’s wave mechanics and determined that the quantum numbers

must take on integer values [2]. Witmer began the study on rigid asymmetric tops by building on

the wave mechanics approach and treating the asymmetry of the molecule as a perturbation on the

symmetric top problem [3]. Wang expanded Witmer’s work in 1929 with matrix mechanics and

his namesake unitary transformation for block diagonalizing the asymmetric top Hamiltonian [4].
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Wang also determined the selection rules of ∆J = 0,±1 and ∆K = 0,±1. While it wouldn’t be

until after World War II that works of Witmer and Wong would be experimentally tested, the

first experimental microwave spectrum was that of ammonia recorded in 1934 [5]. This was a

single pass direct absorption experiment performed at room temperature and pressure. Due to

aggressive pressure broadening and limited resolution, only a single broad feature was recorded,

which corresponded to the inversion motion of ammonia.

The theoretical advancements continued in this period, awaiting future experimental tech-

nologies. Conveniently for rotational spectroscopy, quantum angular momentum occurs frequently

in other aspects of physics and chemistry. Initially, the focus was centered on properties of atoms

such as spin-orbit coupling. This topic had been explored thoroughly by the mid 1930s, and Con-

don and Shortly released their textbook on atomic spectra in 1935 [6]. The coupling of vibrations

and rotations was also theorized with particular interest to structural distortions emerging from the

rotation as well as low energy modes with large nuclear displacements. The structural distortions,

referred to as centrifugal distortions, account for how the geometry of the molecule and thus the

exact rotational energy levels change with increasing angular momentum within a singular vibra-

tional state. Kivelson and Wilson proposed a Taylor expansion approach of adding fourth order

angular momentum operators to account for centrifugal distortion in 1932 [7]. By simply adding

higher order angular momentum operators, the rotational energy levels are corrected without the

need to solve the full vibrational Hamiltonian.

The low frequency vibrational modes with large nuclear displacement are referred to as

large amplitude motions. These modes are very anharmonic and complicate rotational spectra by

creating additional energy levels thus more transitions so the spectra can no longer be treated by

purely rotational models. The classic case of this is methyl rotation. Thermodynamic models to

study these torsions were introduced in the 1920s with a particular emphasis on ethane. Quantum

mechanical models for infrared and microwave spectra came about in the work of Neilson [8] in 1932

and were expanded to include rotational coupling by Dennison and his coworkers [9,10]. These

works introduced a quantum number for torsional angular momentum that takes on integer values
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as well as the singly and doubly degenerate symmetries for three-fold internal rotors. The torsion-

rotation energy levels were found to be heavily dependent on the potential energy barrier to internal

rotation thus expanding the possible information that can be extracted from a molecule’s rotational

spectrum. While ethane is the prototype for methyl internal rotation, its lack of permanent electric

dipole moment greatly inhibits its study via microwave spectroscopy. Thus, methanol became the

focus for these models.

1.2. 1940–1962: Expansion of RADAR Technology

World War II led to vast improvement in the generation and detection of microwave ra-

diation due to the growing telecommunications industry. During the testing of radio wave com-

munications, the ammonia inversion band was accidentally remeasured via vapors of a trash boat

in the Charles River [11]. The postwar period saw a surge of interest in microwave spectroscopy

as a result of these advancements. 1947 saw the publication of Hughes and Wilson’s description

of the Stark-modulated spectrometer [12]. This design improved the previously used waveguide

instruments by adding a metal septum along the waveguide and applying an oscillating voltage

to the septum. The repeated introduction and removal of the electric field removes and restores

the degeneracy of the angular momentum projection on the laboratory frame, which in turn alters

the transition frequencies. This combined with lock-in amplifiers boosted resolution and sensitivity

over previous designs. This Stark-modulated design would be the dominant technique of microwave

spectroscopists for nearly 40 years. By 1948, a review article on microwave spectroscopy was writ-

ten by Gordy [13]. This article discussed around 60 molecules that had been measured since 1934

with the bulk occurring after the war. For 17 of these molecules, their structures had been deter-

mined by comparing the changes in the moments of inertia across multiple isotopic variations of the

molecule. The review also demonstrated the technique’s sensitivity to large amplitude inversions

and nuclear hyperfine coupling.

One molecule measured in this postwar boom was methanol, which would become the core

test case for torsional-rotational spectroscopy. The first reported microwave spectra of methanol

was presented in 1947 by Hershberger and Turkevich [14]. The paper showed 5 transitions recorded
3



using a direct absorption cell and was expanded mere months later by Dailey using a stark modu-

lated spectrometer [15]. This work reported reported 23 transitions though the spectrum was not

analyzed with a torsion-rotation model until 1951 [10] wherein multiple moments of inertia for the

internal rotor in the analysis which determined corresponding barrier heights ranging from 377–383

cm−1. Over the next decade, internal rotation would remain such a core aspect of rotational spec-

troscopy that Lin and Swalen released a review article in 1959 [16]. It collected and explained both

Wilson’s Principal Axis Method of torsion-rotation as well as the Internal Axis Method of Neilson

and Dennison, which aligns with what modern literature refers to as the Rho Axis Method. It also

contains a collection of 35 molecules with their internal rotor barrier heights alongside discussions

of the spectral features. The review covered a range of barrier heights from 2–1250 cm−1 with the

average molecule containing 8 atoms.

In 1951, Wigner introduced the n-j symbols as a means of assessing the matrix elements and

wavefunctions of coupled angular momentum problems [17]. This, coupled with spherical tensors

via the Wigner-Eckart Theorem, provided a clear structure for calculating the energy levels of

quantum angular momentum problems [18]. These mathematics were developed with the focus on

atomic and nuclear problems. However, the attention turned more to molecules by 1951 with Van

Vleck’s application of angular momentum coupling to polyatomic systems [19]. This introduced

the idea of time-reversed spin as a means of addressing the “anomalous” commutator relations of

the molecular frame angular momentum projections. The anomalous relations emerge from the

shift from a laboratory reference frame to a molecular reference frame and are discussed further in

the next chapter. Van Vleck’s matrix elements established the foundation for more precise studies

of molecules with electronic or nuclear spin interacting with the overall rotations. Curl and Kinsey

applied Wigner’s approach to the problem of asymmetric tops in 1961 and found their results to

be consistent with Van Vleck’s approach while offering a more algebraic derivation of the matrix

elements [20].

The first successful report of the rotational spectra of a transient species was the OH

radical spectrum on 1955 [21]. It used a 300 W discharge oscillating at a frequency of 2 MHz to

break down the water vapor as it entered the Zeeman modulated spectrometer. These pre-free jet
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spectrometers struggled due to narrow cross-sections leading to the unstable species colliding with

the walls more. Additionally, the metal surfaces used for the modulation could help catalyze decay

pathways, thus further decreasing the lifetimes of the target molecules [22]. The OH measurement

used a glass cell inside a waveguide to alleviate this problem and relied on Zeeman modulation

instead of Stark modulation. The oscillating magnetic field caused only the radical signal to be

detected, preventing spectral congestion from the closed shell species. The transitions were split

by Λ doubling from the electronic orbital angular momentum as well as by the magnetic hyperfine

interaction of the nuclear spin and the unpaired election. This work provided experimental proof

of Van Vleck’s matrix elements as well as opened the possibility for future microwave studies on

unstable molecules. The first detection of spin-rotation would not come for nearly a decade.

1.3. 1962–1979: Mid-Century Theoretical Advancements

Stark modulated spectrometers would continue to dominate the the world of microwave

spectroscopy to such a degree that Hewlett-Packard produced and sold Stark modulated spectrom-

eters from the early 1960’s to the early 1970’s [23]. While it would be a considerable length of time

before a new experimental conceit entered the scene, many important theoretical works emerged in

this time period. Perhaps the most important of these was Watson’s 1967 reduction of the asym-

metric top Hamiltonian [24]. With the improving resolution and signal to noise since the initial

spectrometers, the ability for a simple rigid rotor approximation to model all the details recorded

in a spectrum declined. Watson showed that the number of distortion terms at fourth order can

be reduced from the previous six down to five. This reduction removes indeterminacies between

parameters and simplifies the asymmetric top problem by increasing the independence of the re-

maining operators. This Hamiltonian has become so ubiquitous in the field that it is colloquially

referred to as the “Watsonian” [25].

The higher resolution allowed for the first experimental case of spin-rotation coupling in

the SO radical [26]. This was measured in 1964 with a coating of Corning “K” mixture to reduce

the degradation of the radicals. The higher resolution also created a greater need for more precise

calculation of rotational energies coupled to spin interactions. Raynes expanded Van Vleck’s work

on angular momentum coupling for molecules in 1964 to address more of the symmetries and
5



distortions of asymmetric top molecules [27]. Similar to Van Vleck, this work used vector coupling

coefficients to determine the matrix elements. Nuclear hyperfine interactions were intially given

the spherical tensor treatment in 1966 by Benz [28]. This provided an exact treatment as opposed

to earlier perturbative approaches [29]. Bowater, Brown, and Carrington expanded the spherical

tensor approach in rotational spectroscopy for their 1973 study of the HCO radical [30]. The radical

was produced by reacting F atoms with formaldehyde and the species provides a minimally sized

asymmetric top to focus on the internal spin interactions without large amplitude motion or other

strong vibrational coupling. The theory given in this work treated all three angular momentum

sources (rotation, electron spin, hydrogen spin, all their couplings, and the impacts of the Stark

and Zeeman effects. Much was consistent with the prior work aside from some phase factors such

as the off-diagonal in N elements in spin-rotation relative to Raynes. A great advantage of this

approach is that it can systematically be expanded to include an indefinite number of angular

momentum sources [31]. In 1979, Brown and Sears would later add a set of fourth order terms

for spin-rotation centrifugal distortion as well as a reduction to the second order spin-rotation

Hamiltonian [32]. These new terms follow the structure established by the Watsonian and allowed

for fitting of asymmetric radicals past the rigid rotor approximation.

The torsion-rotation literature would begin to take on its more modern appearance in

the 1960s with Woods’s 1966 paper [33]. The paper by Woods described a general program for

abritrary-fold rotors and had a follow-up paper extending it to multiple rotors. The approach

Woods laid out involves rotating the molecular coordinates into the Internal Axis System and then

solving the torsional energy levels for a given K value via Mathieu equations. Then the coordinates

are rotated back to the Principal Axis System to solve the torsion-rotation energy levels. This

would go onto form the theoretical basis of the program XIAM. In 1968, Lees and Baker returned

attention to methanol with their approach for molecules with a plane of symmetry and a three-fold

internal rotor [34]. This work features the use of computers to more accurately and easily solve

for the non-periodic solutions of the torsion-rotation Hamiltonian that result from higher order

distortion terms in the torsional Hamiltonian. Lees and Baker’s approach allowed for transitions

involving as high as J = 25 andKa = 10 to be included in the fit all while simultaneously addressing
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vt = 0, 1, 2, and 3. This would form the theoretical basis for the 1984 work Herbst et al. which

introduced the two stage diagonalization approach [35]. The two stage approach solves the torsional

part of the Hamiltonian and then the torsion-rotation Hamiltonian thus allowing a larger torsional

basis to be used in the first stage and a smaller in the second. A balance of performance over a

large-basis single stage and accuracy over a small-basis single stage can be achieved.

1.4. 1979–2006: Era of Balle-Flygare Cavity

As radio frequency technologies improved, the Stark-modulated instruments ultimately

phased out in phase of Fourier Transform techniques. A particular advantage of these is that they

do not require use of a waveguide which allows for use of supersonic jet expansions. These allow the

rotational temperature of the gas samples to be heavily reduced thus aggressively simplifying the

spectrum by reducing the thermal population of the higher energy rovibrational states. Additionally

the increased time before collisions allow for longer coherence times and thus higher resolution

measurements. In 1979, to further increase resolution and sensitive, Balle and Flygare placed a

resonator cavity inside the vacuum chamber which would be tuned to specific frequency windows

[36]. The cavity produces standing waves in a 1 MHz window to greatly increase the sensitivity

and resolution of the instrument which allows for the study of harder to detect molecules such a

species with low dipole moments or transient species.

Jumping to 2000, the McCarthy group introduced a design of discharge nozzles used to

produce unstable species [37]. The nozzle immediately follows the pulsed valve and contains two

copper electrodes spaced by teflon. A high voltage, generally in the range of a few hundred volts, is

applied to the electrodes and the molecules are dissociated as they pass between two electrodes. This

discharge nozzle was first used for producing long carbon chain molecules such as methylpolyynes.

An alternative to the discharge approach, the pyrolysis reactor, as introduced by Chen in 1986 [38]

and popularized by Ellison in 2014 [39]. These reactors work by following the pulsed valve with a

silicon carbide rod that a high current is passed through. The electrical current heats the rod to

as much as 1600 K which causes the molecules passing through to undergo thermal decomposition.
7



Perhaps the most important paper in the rotational spectroscopy literature is Herb Pickett’s

1994 text on his program program SPFIT/SPCAT [40]. The program implemented the spherical

tensor approach of Ref. [30] alongside a modified Wang transformation to avoid explicit complex

algebra in the matrix elements of odd-ordered operators. The code also supports the ability to fit the

rotational spectra of multiple vibrational or electronic states at the same time with the option for

operators to couple the states. In its current form, SPFIT can support up to 99 vibronic states and

9 spin sources. This, alongside the use of only user-defined operators, makes the program incredibly

flexible. This is one of the most cited papers and influential programs in rotational spectroscopy

and has had two papers on its usage by other authors: one on more advanced usages [41] and a more

beginner directed paper [42]. In 1998, NASA’s Jet Propulsion Laboratory built an online spectral

database centered around this program [43]. The database contained nearly two million transitions

from 331 atomic and molecular species upon release. Each species has the necessary input files

for SPFIT/SPCAT including the spectroscopic parameters and a list of observed transitions. In

addition, a simulation to higher frequencies and quantum number is provided for each entry so

radio astronomers can use the database to identify species in the interstellar medium.

The 1990s saw the release of two key programs for the analysis of large amplitude motion

that are still widely used in present day rotational spectroscopy: BELGI-CS [44] in 1994 and

XIAM [45] two years later. The first of these, BELGI-CS, was developed by Hougen, Kleiner, and

Godefroid as an implementation of the two stage diagonalization approach given in Ref. [35]. This

program has been proven to be especially effective at low barrier rotor problems, which feature

such large splittings that the rigid rotor model qualitatively fails [46]. Many variants, such as ones

for C1 tops, perturbative treatment of hyperfine interactions, and methylamine-like molecules that

have a 2 welled oscillator alongside the methyl rotor, have been developed [47,48,49]. XIAM is

capable of fitting up to 3 internal rotors along side a perturbative hyperfine treatment. However

the smaller torsional basis and more limited number of parameters has given it more trouble in the

lower barrier cases. Sven Herbers working alongside Ha Vinh Lam Nguyen updated the code to

add in a few more parameters bring closer to BELGI’s performance [50]. The difference in feature
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set and performance as well as quantum number input, have allowed both programs to find and

continue serving for different spectroscopic cases around 30 years after their initial release.

There are two other programs available what will be mentioned here for historical com-

pleteness: ERHAM [51] and IAMCALC [52] which were introduced in 1997 and 2001 respectively.

While XIAM and BELGI both directly solve the internal rotor Hamiltonian, these two use Fourier

series to avoid directly solving the this part of the problem. ERHAM transforms the typical internal

rotor parameters into two non-physical fitting parameters. While this method has been effective at

fitting complex spectra, it does not provide as much physical insight as BELGI and XIAM. IAM-

CALC acts as a front-end to SPFIT and uses the Mathieu equations to convert the Hamiltonian

into an Internal Axis Method and then generates an input file with the spectroscpic parameters

into Fourier series variations. This program does not have accessible documentation aside from the

source code and has thus not gained as much popular usage despite the prevalence of SPFIT. The

present work takes inspiration from BELGI so the internal mechanisms of that program will be

addressed in the next chapter.

1.5. 2006–Present: Modern Microwave Spectroscopy

Brown et al introduced the Chirped-Pulse Fourier Transform Microwave Spectrometer

design [53] in 2006 as an alternative to the cavity design. It used a Gigahertz-spanning, linearly-

increasing frequency pulse to cover large frequency bands in a single pulse. The chirped pulse

trades the sensitivity of the cavity for greater efficiency at blind searches. Additionally, because it

does not require large microwave mirrors, the chirped pulse can be built in a variety of geometries.

For example, the room-temperature waveguide returned in designs like the one formerly at New

College of Florida [54]. This design allows for room temperature rotational spectra to be taken, thus

allowing for measurements of higher rotational states and rotational spectra of vibrational states

below ∼ 200 cm −1. In the case of 2-methylfuran, the spectra of first two torsional states were able

to be collected simultaneously using the room temperature chirped-pulse. This waveguide setup also

does not require as powerful pumps as the traditional jet expansion experiments which can allow

for cheaper instruments. Another structure is the cryogenic buffer gas cell designed by Patterson

and Daly [55]. This design uses cold helium atoms to collisionally cool the molecules of interest
9



which are then polarized with narrow band chirped pulses that are only ∼ 10 MHz wide. The more

gentle buffer gas cell over the jet expansions allows for better than room temperature populations of

higher energy conformers to be detected such as the gauche conformer of isoprene [56]. In addition

to offering new instrument geometries, the chirped allowed the average molecule size studied by

rotational spectroscopy to increase from ∼8.5 atoms to ∼13 just in the span if its first decade [57].

Thanks to the complementary nature of the chirped pulse and cavity experiments, both have

found continued usage in modern day microwave spectroscopy. There now exist instruments that

combine both techniques in a single vacuum chamber such as those of the McCarthy and Leopold

Groups [58,59]. These setups use the chirped pulse as an initial cursory survey of the spectrum

and then remeasure the transitions at higher resolution with the cavity. The combined setup is

able to record transitions at the superior resolution of a cavity without spending time recording

regions devoid of transitions.

Discharge and pyrolysis nozzles have also continued to find usage in modern spectroscopy.

The discharge nozzles have also been used to produce a variety of radicals from benzene discharge

[60]. By discharging pure benzene as well as mixtures with O2 and N2, over 150 species were

assigned alongside 60 isotopic or vibrational variations. One of these pyrolysis reactors has been

coupled to a buffer gas cell to study the ozonolysis of isoprene [61]. Another was coupled to a jet

expansion experiment used to probe phenoxyl [62] and 2-furanyloxyl [63].

About 15 years after the initial release of BELGI, Vadim Ilyushin released a derivative

program called RAM36 [64]. This offers both performance and user benefiting features over its

predecessor. The key new feature is user-definable operators. BELGI and XIAM both use hard

coded Hamiltonians which require the source code to be revised and recompiled to add higher order

operators. A quality of life feature included in this program is use of traditional asymmetric top

labels for the transitions as opposed to BELGI’s variant state labels which makes the program more

immediately approachable for rotational spectroscopists who are new to internal rotation. Six years

later, a version with perturbative treatment hyperfine interactions was released [65].
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1.6. Objectives of Present Work

A shortcoming of the previously mentioned programs is their inability to address torsion-

rotation and spin-rotation at the same time. This dissertation seeks to combine and expand these

approaches to lay the groundwork for a program that can treat Cs molecules with an arbitrary fold

internal rotor and a single strong spin source. After covering the background theory, this work will

demonstrate a more traditional methyl rotor problem in the case of methyl tert-butyl ether. The

new program’s development and performance in a variety of test cases is demonstrated in Chapter

4. Lastly, the potential interactions of electron spin and internal rotation will be discussed. An

operator and its matrix element will be derived and the impact on the energy levels will be shown.

11



CHAPTER 2

Theoretical Background

Spectroscopy provides a powerful set of tools for identifying molecules and probing their

quantum mechanical properties. Different frequencies of light correspond to different molecular

energy levels which can be used to experimentally probe a variety of molecular properties. The

Ultraviolet & Visible (UV-Vis) region is dominated by transitions between electronic states and the

infrared (IR) region by transitions between vibrational states. Low frequency radio waves can be

used to measure transitions between nuclear spins in a magnetic field. While both IR and UV-Vis

can achieve rotational resolution, the microwave region allows focus to be more easily placed on

molecular rotations within a single vibronic state at a time. Rotational spectroscopy is capable

of differentiating between molecules with any amount of structural differences such as conformers,

excited vibrational states, and isotopicly substituted species. This is due to full-bodied nature of the

end-over-end rotation as opposed to other forms of spectroscopy for which the transitions depend

only indirectly on the overall structure. As a result, rotational spectroscopy has been responsible

for the majority of molecular identifications in space [66]. The naturally narrow linewidths however

come with a very high sensitivity to perturbation which leads to more complex spectra and makes

the technique a powerful tool for exploring molecular physics. Two common sources of complexity

are large amplitude nuclear motion and angular momentum coupling between internal spins and

the overall rotation. Since the remaining chapters focus on analysis of such complex rotational

spectra, the fundamentals and notation shall be addressed in this chapter.

2.1. An Introduction to Rotational Spectroscopy

To bring the focus to rotational energy, the full molecular Hamiltonian will first be sim-

plified. The Born-Oppenheimer approximation allows the energy to be split into electronic and

nuclear parts as the less massive electrons move much faster than the nuclei. This approximation
12



allows a separate nuclear Hamiltonian to be written for a given electronic state. The kinetic energy

of the nuclei is given by [67]:

T =
1

2

∑
n

mnṘ
2
n (2.1)

This expression is summed over each nucleus taking the product of its mass, mn, and the square

of the velocities in the laboratory-fixed axes, Ṙn. The nuclear coordinates are chosen to satisfy the

Eckart Conditions which allow for the approximate separation of the translational and rotational

energies from the vibrational energy. It is more convenient to use the molecule-fixed coordinates

so Rn is changed to rn where rn satisfy the Eckart Conditions.

∑
n

mn∆rn = 0 (2.2)

∑
n

mn

(
r(e)n ×∆rn

)
= 0 (2.3)

In these equations, ∆rn is the deviation of the nth nucleus from its equilibrium position, r(e)n . The

first of these equations defines the coordinate system to be centered at the molecular center of mass.

The second expression negates angular momentum from the rotation of the coordinate system. The

position vector of a given nucleus can be written as:

Rn = R+Φ†(φ, θ, χ)
(
r(e)n +∆rn

)
(2.4)

Here R is the origin of the molecular-fixed coordinate system in the laboratory frame. The equi-

librium coordinates and their displacements are multipled by the transpose of the direction cosine

matrix, Φ(φ, θ, χ). The angles of this rotation are the Euler angles which represent a right-handed

rotation φ ∈ [0, 2π) about the laboratory-fixed Z axis, then a rotation θ ∈ [0, π]about the new

molecule-fixed y axis, and finally a rotation χ ∈ [0, 2π) about the new molecule-fixed z axis [67].

Now the velocity of nucleus n can be written as:

Ṙn = Ṙ+
(
ω ×

(
r(e)n +∆rn

))
+ ˙∆rn (2.5)

The above expression has introduced the angular velocity, ω, and the time derivative of the dis-

placement, ˙∆rn. Plugging into Equation 2.1 and simplifying gives an expression for the kinetic

13



energy separated by the types of motion:

2T = Ṙ2
∑
n

mn +
∑
n

mn

(
ω ×

(
r(e)n +∆rn

))2
+
∑
n

mn( ˙∆rn)
2 + 2ω

∑
n

(
∆rn × ˙∆rn

)
(2.6)

The first term on the right hand side is the translational energy and will be neglected going forward.

The second term is the rotational energy with ro-vibrational interaction. The third and fourth

terms are the vibrational kinetic energy and the Coriolis coupling of the rotation and vibration,

respectively. The rigid rotator approximation forces ∆rn = 0 which simplifies rotational term and

allows for the classical expression to be written with ω as the angular velocity and I as the inertial

tensor.

2Trot =
∑
n

mn

(
ω × r(e)n

)2
= ω†Iω (2.7)

The nuclear energy expression can be completed by adding in the potential energy along each

vibrational normal mode, V (Qk). The vibrational and Coriolis terms can also be rewritten in

terms of the normal modes.

Enuc =
1

2
ω†Iω +

1

2

∑
k

Q̇2
k + V (Qk) +

ωα

2

∑
kl

ζαklQkQ̇l (2.8)

The coefficient ζαkl is the Coriolis coupling parameter between axis α and modes k and l. The focus

will be firmly centered on the rotational component with the occasional look to vibration in the

form of centrifugal distortion and large amplitude motion, both of which will be discussed shortly.

The Coriolis term will only be included as it appears in the torsional-rotational problem.

The rotational energy levels of a molecule are dependent on the inverse moments of inertia

are calculated along the three axes of the molecule which are referred to as rotational constants.

They are dubbed A, B, and C as they correspond to the a, b, and c axes of the molecule:

A =
~2

2Ia
, B =

~2

2Ib
, C =

~2

2Ic
(2.9)

The rotational constants are given in energy units here but typically discussed in units of megahertz

or wavenumbers for more direct comparison to the units of experimental spectra. As part of the

Eckart conditions, the inertial tensor has been diagonalized so there are only 3 terms rather than

9 and this coordinate system is referred to as the Principal Axis System. The Hamiltonian can be

14



constructed from Equation 2.7 as:

H
(2)
rot =

1

2
ω†Iω =

1

2

∑
i,j

Iijωiωj
PAM−−−→ 1

2

∑
i

Iiiω
2
i (2.10)

The angular velocities are then replaced with the angular momentum operators on the correspond-

ing axes using the following conversion.

Ni =
1

~
Iiωi (2.11)

Compiling all of this gives the rigid rotator Hamiltonian.

H
(2)
rot = AN 2

a +BN 2
b + CN 2

c (2.12)

In the case of the symmetric top, which occurs when two of the rotational constants are identical,

the rotational energy levels can be determined from a closed form expression. For a prolate top

(A > B = C) and the Ir representation (a, b, c→ z, x, y), the Hamiltonian becomes:

H
(2)
rot = AN 2

z +B
(
N 2

x +N 2
y

)
(2.13)

Using, the relationship of N 2 = N 2
z +N 2

x +N 2
y , the Hamiltonian can be simplified further:

H
(2)
rot = AN 2

z +B
(
N 2 −N 2

z

)
= (A−B)N 2

z +BN 2 (2.14)

The above operator can be acted on the symmetric top wavefunction to calculate the rotational en-

ergy levels. The symmetric top wavefunction has three quantum numbers: the angular momentum,

N , its projection on the molecular z-axis, K, and its projection on the laboratory Z-axis, M .

|NKM〉 = (−1)M−K

√
2N + 1

8π2
DN

−M−K(φ, θ, χ) (2.15)

In this equation, D is the Wigner D-matrix and φ, θ, χ are the Euler angles. It is important to

note that when K = 0, DN
M0 ∝ Y N

M where Y N
M is the spherical harmonic. This work will assume

a field-free environment so M will be taken to be zero and will deviate from field convention by

using N instead of J to refer to the molecular frame angular momentum in the absence of electron

spin. This is done for better conceptual consistencies between chapters. Three mutually commuting
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operators may be chosen and by convention these are: the square of the total angular momentum

operator, its projection on the molecular z-axis, and its projection on to the laboratory Z axis.

These operators have the following matrix elements in the symmetric top basis.

〈NKM |N 2|NKM〉 = N(N + 1)|NKM〉 (2.16)

〈NKM |Nz|NKM〉 = K|NKM〉 (2.17)

〈NKM |NZ |NKM〉 =M |NKM〉 (2.18)

The units of ~ have been dropped from these matrix elements as they are assumed to be included

in the parameter definitions. Using the operators in Equations 2.16 and 2.17, it can be seen that

the combination of Equations 2.14 and 2.15 only has on-diagonal elements and thus the energy is

calculated as:

Erot(N,K) = (A−B)K2 +BN(N + 1) (2.19)

For an oblate top, when A = B > C, in the IIIr representation (a, b, c→ y, x, z), the energy levels

are instead:

Erot(N,K) = (C −B)K2 +BN(N + 1) (2.20)

In the case of the prolate top, the energy increases as K increases but for the oblate top, the energy

decreses as K increases. When all three moments of inertia are nonequivalent, the molecule is

referred to as an asymmetric top and there is no closed form expression for the rotational energy

levels. This complication comes from the three molecule-fixed angular momentum projections not

commuting and instead obeying the following relation:

[Ni,Nj ] = −ıeijkNk (2.21)

In these relations, f, g, and h are arbitrary projection axes and the Levi-Civita symbol efgh is

equal to 1 if f, g, and h are in a cyclic order of x, y, and z, to -1 if they are in an anticyclic order,

and to zero if any axes are repeated [32]. The minus sign in the above expression causes these

commutation relations to be called “anomalous” and is not present for the space-fixed operators.

The angular momentum about the x and y axes can be addressed by constructing raising and
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Table 2.1. The Four Group, V , with the symmetries of the Ir states based on the
even or odd values of Ka and Kc [31]

V E Rπ
x Rπ

y Rπ
z Ka,Kc Operator

A 1 1 1 1 ee −
Bx 1 1 −1 −1 oo Nx

By 1 −1 1 −1 oe Ny

Bz 1 −1 −1 1 eo Nz

lowering operators:

N±|NK〉 = (Nx ± ıNy)|NK〉 =
√
N(N + 1)−K(K ∓ 1)|NK ∓ 1〉 (2.22)

The mismatch of the operator subscript and the direction by which K is changed is a result of

the so-called anomalous commutation relations of the molecule-fixed axis system as opposed to the

laboratory-fixed axis system. The direction of the molecule’s rotation appears to go in opposing

directions if viewed from the molecule’s perspective or the laboratory’s perspective. Using the Ir

representation (a, b, c→ z, x, y) and rearranging Equation 2.12 to use the above operators gives the

practical form of the rotational Hamiltonian:

H
(2)
rot =

(
A− B + C

2

)
N 2

z +
B + C

2
N 2 +

B − C

4

(
N 2

+ +N 2
−
)

(2.23)

The energy levels are obtained by diagonalizing the Hamiltonian in the symmetric top basis. Us-

ing the operator definitions in Equations 2.16, 2.17, and 2.22, the matrix can be structured into

independent blocks for each N value. By invoking the Wang transformation, the N blocks can be

further block-diagonalized by the different irreducible representations of the four group, V , as pre-

sented in Table 2.1. After diagonalization, K is not a good quantum number so a different method

of labeling the states must be concocted. The states can also be labeled according to symmetry in

V . By combining the symmetries with the energetic ordering, the states are instead labeled with

”near” quantum numbers Ka and Kc which can be interpreted as K if the molecule were purely

prolate or purely oblate respectively. The values of Ka ascend with energy from 0 to N while Kc

spans from N down to 0. The sum of Ka and Kc always equals N or N + 1.

While V is the rotational symmetry group for any asymmetric top rigid rotor no matter its

geometry, other interactions break this symmetry. Most of the molecules explored in later chapters
17



Table 2.2. The Cs Group with the symmetries of the Ir states based on the even
or odd values of Ka and Kc

Cs E σxz Ka,Kc Operators
A1 1 1 ee, oe Ny

A2 1 −1 eo, oo Nx, Nz

possess Cs symmetry, with an xz reflection plane in the Ir representation (x, y, z → b, c, a). The

two group would be most appropriate to describe these states. This is isomorphic to Cs so Cs will

be used to more clearly connect to the molecular symmetry group. The Cs group in relation to the

state labels Ka and Kc is shown in Table 2.2. Additionally this expands the group theoretically

complete Hamiltonian to include an off-diagonal term on the x and z axis. The associated constant,

Dab, is calculated from an inverse product of inertia and will be discussed in greater detail in the

following section. Below is the adjusted Hamiltonian where {, } is an anti-commutator which follows

the form of {A,B} = AB+BA. This Hamiltonian is not in the rotational Principal Axis System so

the rotational constants have been marked with ′ to prevent confusion with the values in Equation

2.23. The values are still calculated from the moments of inertia along the given axes.

H
(2)
rot =

(
A′ − B′ + C

2

)
N 2

z +
B′ + C

2
N 2 +

B′ − C

4

(
N 2

+ +N 2
−
)
+Dab{Nz,Nx} (2.24)

The rigid rotor Hamiltonian has the obvious shortcoming of not accounting for the dis-

tortions in molecular geometry that result from increasing kinetic energy. The early methods of

accounting for this “centrifugal distortion” used a Taylor expansion of the following form [31]:

H
(4)
rot =

1

4

∑
α,β,γ,δ

τα,β,γ,δNαNβNγNδ (2.25)

This summation has an intuitive 81 terms which can be reduced down to 21 by assessing the

equivalent terms. A given τ can be calculated from the harmonic force constant matrix, fij , as well

as the derivative of the inertial tensor elements along the normal coordinates, Ri.

τα,β,γ,δ = − 1

2IeααI
e
ββI

e
γγI

e
δδ

∑
i,j

∂Iαβ
∂Ri

(
f−1

)
ij

∂Iγδ
∂Rj

(2.26)
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The centrifugal distortion Hamiltonian can be further reduced to a mere 6 terms by using the

symmetries of the Four Group as well as commutator relations which result in this condensed

form [31].

H
(4)
rot =

1

4

∑
α,β

τα,α,β,βN 2
αN 2

β (2.27)

Combining with Equation 2.12, the rotational Hamiltonian up to 4th order can be written as:

Hrot = H
(2)
rot + H

(4)
rot = (A+ 6R6)N 2

z + (B − 4R6)N 2
x + (C − 4R6)N 2

y

−DNN 4 −DNKN 2N 2
z −DKN 2

z − δN
2

{
N 2,N 2

+ +N 2
−
}

+R5

{
N 2

z ,N 2
+ +N 2

−
}
+R6

{
N 4

+ +N 4
−
}

(2.28)

The relationship between the τα,α,β,β values and the parameters in the above equation are listed in

Table 8.7 of [31]. Yet another reduction can be applied in the form of a unitary contact transfor-

mation designed to remove terms from the Hamiltonian particularly to increase how independent

the remaining parameters are when fitting to experimental data [68].

H̃ = ÛH Û−1 = eıĜH e−ıĜ (2.29)

The Hamiltonian here is constructed from the group theoretically complete Hamiltonian which in

this case contains all the even order operators of the symmetrically invariant irreducible repre-

sentation, such as N2
z , NzNx, N

4, etc. The reduction operator, Ĝ, is constructed from the odd

order operators that are also of the symmetrically invariant irreducible representation such as

Ny, NzNxNy, N
3
y , etc. This specific case of the transformation is carried out using the second and

fourth order operators to construct the Hamiltonian and the third order operators to construct the

reduction operator. Among the most common and immediate relevant are those carried out by

Watson [24] to reduce the centrifugal distortion terms in the asymmetric top Hamiltonian. This

brought about two constructions that each lowered the number of fourth order operators down to

five. The one implemented in BELGI [44] and more common in the torsional literature [69,70] is

the A-reduction:

H̃
(4)
rot = ∆NN 4 +∆NKN 2N 2

z +∆KN 4
z + δN

{
N 2,N 2

+ +N 2
−
}
+ δK

{
N 2

z ,N 2
+ +N 2

−
}

(2.30)
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Table 2.3. Conversion of Parameter Values between Watson A-Reduction and S-
Reduction [31]

Operator A-reduction value S-reduction value
N 2

z A+ 16R6 A+ 6R6 − 5R5(B−C)
2A−B−C

N 2
x B + 16R6(A−C)

B−C B − 4R6 + 4R5 +
2R5(B−C)
2A−B−C

N 2
y C + 16R6(A−B)

B−C C − 4R6 − 4R5 +
2R5(B−C)
2A−B−C

N 4 DN − 2R6 DN + R5(B−C)
2A−B−C

N 2N 2
z DNK + 12R6 DNK − 6R5(B−C)

2A−B−C

N 4
z DK − 10R6 DK + 5R5(B−C)

2A−B−C{
N 2,N 2

+ +N 2
−
}

δN δN{
N 2

z ,N 2
+ +N 2

−
}

−2R5 − 4(2A−B−C)R6

B−C 0

N 4
+ +N 4

− 0 R6 +
R5(B−C)

2(2A−B−C)

The other construction is the S-reduction and at fourth order, only the last operator is different.

H̃
(4)
rot = DNN 4 +DNKN 2N 2

z +DKN 4
z + dN

{
N 2,N 2

+ +N 2
−
}
+ dK

(
N 4

+ +N 4
−
)

(2.31)

The contact transformation also changes the values of the second order parameters. The conversions

for the parameters in Equation 2.28 into the A or S reduced forms are given in Table 2.3. This

contact transformation can be extended to indefinitely higher order operators [31]. The approach

of contact transformations can also be applied to other cases such as torsion-rotation [70] and

spin-rotation [32]. The process of carrying the contact transformation out is described in greater

detail in the books [31] and [68].

2.2. An Introduction to Torsion-Rotation Interaction

Large amplitude motion refers large nuclear displacements such as rotation about a single

bond or an amine inversion which converts the structure into an equivalent configuration. The most

common of these, and a central focus of this work, is the internal rotation, or torsion, of a methyl

group. Remarkably, this means that a very common organic functional group can contribute to

higher level of spectral complexity. The torsional energy of a methyl group is dictated largely by two

key factors: an internal rotation constant, F , and a potential barrier height based on the torsional

angle, V (α). For molecules with Cs symmetry, the torsional angle, α is the dihedral angle between

the symmetry plane and a methyl hydrogen. The potential barrier generally follows a three-fold
20



cosinusoidal structure but can be Fourier expanded to better match the actual potential.

V (α) =
V3
2

(1− cos 3α) +
V6
2

(1− cos 6α) + . . . (2.32)

The function for the potential defined such that the bottom of the well is at zero and V3 is the full

barrier height with minima at α = 0,±120◦. The internal rotor constant F0 is calculated from the

least inverse moment of inertia of the top, Iα. F0 is implemented in the Hamiltonian after being

scaled by a factor, r, based on the geometry of the molecule with the symbol being changed to

F [46].

F =
~2

2rIα
=
F0

r
(2.33)

This term r is based on the moments of inertia along each of the molecular axes and the direction

cosines between the internal rotor axis and the molecular axes, λg.

r = 1−
x,y,z∑
g

λ2gIα

Ig
(2.34)

It is also paired with the square of the torsional angular momentum to calculate the kinetic con-

tribution to the torsional energy. Together, the Hamiltonian for the torsion using only the leading

term of Equation 2.32 is:

Htor = FP2
α +

V3
2

(1− cos 3α) (2.35)

The eigenfunctions of Equation 2.35 are the free rotor wavefunctions as given by Equation 2.36.

|m〉 = 1√
2π
e−ımα (2.36)

The quantum number m can take on any integer value and is proportional to the torsional angular

momentum. In this basis, the momentum operator has a matrix element of:

〈m|Pα|m〉 = m (2.37)

The cosine operator creates off-diagonal elements and can be derived as follows:

〈m′| cos 3α|m〉 =
∫ 2π

0

1√
2π
eım

′α cos 3α
1√
2π
e−ımαdα (2.38)
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Table 2.4. Character Table for the G3 [47]

E (123) (132)
G3 1E C3(z) C2

3(z)
A: 1 1 1
E+: 1 ω ω2

E−: 1 ω2 ω
ω = exp(2πı/3)

Condensing the coefficients and then invoking Euler’s formula gives:

1

2π

∫ 2π

0
cos 3αeı(m

′−m)αdα =
1

2π

∫ 2π

0
cos 3α

(
cos(m′ −m)α+ ı sin(m′ −m)α

)
dα (2.39)

Substituting ∆m = m′ −m, for convenience and expanding out:

〈m′| cos 3α|m〉 = 1

2π

∫ 2π

0
cos 3α cos(∆mα) + ı cos 3α sin(∆mα)dα (2.40)

The imaginary term goes to zero and the real term is only non-zero when ∆m = ±3. This leaves

the final result as:

〈m′| cos 3α|m〉 = 1

2
δm′,m±3 (2.41)

With these matrix elements, the Hamiltonian can be expressed in the free rotor basis set

as Equation 2.42. The energy levels and eigenvectors are obtained by matrix diagonalization.

〈m′|Htor|m〉 = (Fm2 +
V3
2
)δm′,m − V3

4
δm′,m±3 (2.42)

As can be seen from the matrix elements, the Hamiltonian can be block-diagonalized into three

groups of m values: m mod 3 = 0, m mod 3 = +1, and m mod 3 = −1. These three groupings can

be mapped onto the irreducible representations of the G3 permutation-inversion group as shown

by Table 2.4 and can be labeled with σ = m mod 3. The E states form pairs of degenerate energy

levels with Em,+1 = E−m,−1. The A states are non-degenerate so long as V3 6= 0 cm−1. After

diagonalization, the energy levels can be labeled with vt which begins at 0 for the ground state and

increases in integer steps. Each vt value contains a distinct energy level for each symmetry. As

E → ∞, the spacing between the σ = 1 and σ = 0 states for a given vt approaches zero and vt

behaves as a vibrational quantum number.
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The complications grow and expand as angular momentum from the methyl top couples

to the angular momentum of the molecular frame. In the aforementioned case of a molecule with

Cs symmetry, the methyl rotor can couple to the a and b axes to give the following torsion-rotation

Hamiltonian:

HPAM = AN 2
z +BN 2

x + CN 2
y + F (Pα − ρzNz − ρxNx)

2 +
V3
2

(1− cos 3α) (2.43)

The terms ρz and ρx are coupling terms between the angular momentum projections on z and x

respectively. They are calculated by the following where λg is the direction cosine between the

internal rotation axis and the g principal axis.

ρg =
λgIα
Ig

(2.44)

The number of operators can be reduced by rotating the molecular coordinate system such that

the coupling between methyl rotor and the x axis is removed. This is referred to as the Rho Axis

Method (RAM) and is the dominant approach in modern rotational spectroscopy, with adapted

forms being used for multi-top problems [71]. The Hamiltonian for this method is:

HRAM = ARN 2
z +BRN 2

x + CN 2
y +Dab{Nz,Nx}+ F (Pα− ρzNz)

2 +
V3
2

(1− cos 3α) (2.45)

Here the values of AR and BR are not consistent with their principal axis counterparts, thus the need

to denote them with this subscript. The cost of this approach is that by leaving the Principal Axis

Method, an off-diagonal rotational constant, Dab, is introduced thus complicating the rotational

part of this Hamiltonian, especially as {Nz,Nx} is off-diagonal in K by 1. The value of Dab can

be calculated from the angle rotating into the Rho Axis System from the Principal Axis System,

θRAM = arccos
(
ρz
|ρ|

)
[46].

Dab =
AR −BR

2
tan 2θRAM (2.46)

This process can be viewed as a contact transformation as presented in [70]. The RAM approach has

proven very effective at low barrier internal rotor problems such as acetic acid [72] and 2-butynoic

acid [73]. This method has been implemented in the programs BELGI [44] and its derivative

RAM36 [64].
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Table 2.5. Character Table for the G6 [68]

E (123) (23)*
G6 1E 2C3(z) 3σv
A1: 1 1 1 Ny, cos 3α
A2: 1 1 -1 Nz, Nx, Pα, sin 3α
E: 2 -1 0

Large-amplitude motion also causes the standard point group symmetry to be insufficient;

instead a group which allows for the feasible permutation of equivalent atoms involved in the LAM

is required. By combining the (123) permutation of Table 2.4 and the (23)* permutation-inversion

operator which is equivalent to the xz reflection of Table 2.2, the best permutation-inversion group

to represent this problem is the G6 group, as shown in Table 2.5. The symmetry of a given energy

level can then be taken as the direct product of the torsional and the rotational symmetries. In

the high barrier limit, the (123) permutation is no longer feasible and the Hamiltonian returns to

the pure rotational problem.

The main effect of torsional motion on the rotational spectrum is through line splitting. In

the ground torsional state, each rotational transition is split into an A and an E component. The

separation between the two torsional components is inversely related to the potential barrier height.

For the higher barrier cases where the torsional splitting is still resolved, the spectrum follows the

asymmetric top selection rules with the additions of ∆σ = 0 and ∆vt = 0, 1. The E states will

also show forbidden transitions [74] including c-type transitions despite µc = 0 for Cs tops. The

forbidden transitions emerge from both the reduction in K meaning and 〈ψ′|µc|ψ〉 6= 0 for E states.

As the barrier height decreases, more of these “forbidden” transitions can be observed [46]. This

labeling ambiguity allows for transitions that would appear forbidden by the standard asymmetric

top rules [75].

2.3. An Introduction to Angular Momentum Coupling in Rotational Spectra

Internal spin sources like an unpaired electron or a nuclear spin can couple with the molecu-

lar angular momentum. Similarly to the large amplitude motion, this lifts the energetic degeneracy

of states and creates more transitions. In the case of an unpaired electron, the rotating molecule’s

moving electric charge creates a magnetic field which couples with the electron’s magnetic moment
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thus breaking the degeneracy of the electron spin projection states. This “spin-rotation interaction”

is calculated from the dot product of the molecular and spin angular momenta. The spin-rotation

coupling is generally treated from a Hund’s case (b) wavefunction where the total angular momen-

tum, J , is treated as the vector difference of the molecular frame’s angular momentum, N , and the

electron spin angular momentum, S. The coupled wavefunction is built from a linear combination

of the uncoupled states of the spin and the molecular frame angular momentum [76]. Regardless

of coupling scheme, the resulting energy levels are identical. The weighting factors of the different

uncoupled states are defined by the Clebsch-Gordan coefficients. These can be reconstructed into

the Wigner 3j symbols which will be the preferred notation of this work. The two symbols are re-

lated by the following, with the 3j symbol on the left-hand side and the Clebsch–Gordan coefficient

on the right:  j1 j2 j3

m1 m2 m3

 =
(−1)j1−j2−m3

√
2j3 + 1

(j1m1j2m2|j1j2j3 −m3) (2.47)

Exact calculations and other uses of these terms can be found in [18] and [77]. Using Wigner 3j

symbols, the coupled wavefunction can be written as [76]:

|JSNK〉 =
∑
Σ,Ω

(−1)N−S+Ω
√
2J + 1

J S N

Ω −Σ −K

 |SΣ〉|JΩ〉 (2.48)

Within the above 3j symbol are the quantum numbers Σ and Ω which are the projections of S

and J , respectively, on to the molecular z-axis. The Hamiltonian for the spin-rotation interaction

consists of the sum over all the anti-commutators between the spin angular momentum projections

and the molecular frame angular momentum projections.

Hsr =
1

2

∑
εgh{Ng,Sh} (2.49)

The term εgh is the spin-rotation tensor element for the g axis projection of molecular frame angular

momentum and the h axis projection of the electron spin angular momentum. The Hamiltonian’s

anti-commutator structure enforces the Hermitian nature of the Hamiltonian as the projections of

N and S do not always commute with each other.

[Nf ,Ng] = −ıefghNh (2.50)
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[Nf ,Sg] = −ıefghSh (2.51)

[Sf ,Sg] = ıefghSh (2.52)

Instead of working with these Cartesian operators, this Hamiltonian is often recast as into spherical

tensor notation, using the tensor product of the two angular momentum sources and then the scalar

product between that and the spin-rotation tensor [30]

Hsr =
1

2

2∑
k=0

T k(ε)T k(N ,S) + T k(N ,S)T k(ε) (2.53)

The spherical tensor form of the spin-rotation tensor relates back to the Cartesian form by the

following series of equations [78] and the operators are converted to the same structure but replacing

εgh with NgS.

T 0
0(ε) = −(εzz + εxx + εyy)/

√
3 (2.54)

T 2
0(ε) = (2εzz − εxx − εyy)/

√
6 (2.55)

T 2
±1(ε) = ∓((εzx + εxz)± ı(εzy + εyz))/2 (2.56)

T 2
±2(ε) = ((εxx − εyy)± ı(εxy + εyx))/2 (2.57)

In this form, the spin-rotation tensor does not commute with the operators. The matrix elements

can be determined from either the reversed angular momentum method of Van Vleck [19] and

Raynes [27] or the spherical tensor approach of Bowater, Brown, and Carrington [30]. Either

approach yields identical matrix elements.

〈JSN ′K ′|Hsr|JSNK〉 =
2∑

k=0

(−1)J+S+N ′

2

√
2k + 1

√
S(S + 1)(2S + 1)

√
(2N + 1)(2N ′ + 1)

N S J

S N ′ 1


√N(N + 1)(2N + 1)

 1 1 k

N ′ N N

+
√
N ′(N ′ + 1)(2N ′ + 1)

 1 1 k

N N ′ N ′




∑
q

(−1)N
′−K′

 N ′ k N

−K ′ q K

T k
q (ε) (2.58)
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The terms in {} are Wigner 6j symbols, which are similar to the 3j symbol but used for coupling

3 angular momenta instead of two [18]. The exact matrix element presented above does not fully

agree with what is printed in [30] on two accounts. They introduced an additional phase factor to

get the k = 1 terms to go to zero while the terms T 1
q (ε) were later shown go to zero by symmetry [32].

The other inconsistency is that the stated coupling scheme appears to be in N = J −S despite the

paper’s claim that it is J = N + S.

Another common form of spin interaction in rotational spectroscopy comes from the nuclear

spin. Nuclei with spin greater than 1/2 possess a cylindrically symmetric charge distribution, and

the interaction between the quadrupole moment of the charge distribution with the electric field

gradient of the molecule produces line splitting which is referred to as nuclear hyperfine splitting.

In the Hamiltonian, it is parameterized by the nuclear quadrupole tensor, χ, which is a symmetric

traceless, rank 2 tensor due to the aforementioned cylindrical symmetry. Each Cartesian element

of χ can be calculated by [31]:

χgh = eQ

(
∂2V

∂g∂h

)
(2.59)

Here e is the elementary charge, Q is the nuclear quadrupole moment, and V is the electrostatic

potential of the molecule evaluated at the nucleus. The spherical tensor form can be related back

to the Cartesian form by the following equations [79].

T 2
0(χ) = χzz (2.60)

T 2
±1(χ) = ∓

√
2

3
(χxz ± ıχyz) (2.61)

T 2
±2(χ) =

√
1

6
(χxx − χyy ± 2ıχxy) (2.62)

This tensor has 5 independent terms but by including Cs symmetry and keeping the nuclei in the

symmetry plane, χxy = χyz = 0. As a result, T 2
+1(χ) = T 2

−1(χ) and T 2
−2(χ) = T 2

+2(χ) which

brings the total number of independent terms down to 3. The Hamiltonian for this interaction is

constructed from the scalar product of the rank 2 spherical tensor for the quadrupole, T 2
q (Q), and
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for the field gradient, T 2
q (V ).

HQ = −
2∑

q=−2

(T 2
−q(Q) · T 2

q (V )) (2.63)

Traditionally, the spin of the nucleus is denoted I and it couples to J to give the total angular

momentum F . However, for consistency with the implementation used the program described in

Chapter 4, it will be written here using S, N , and J respectively. The traditional coupling scheme

used for nuclear hyperfine is J = N +S and has been used here for consistency with the literature.

This shift in notation is due to the code only supporting one spin source at a time. Evaluating

Equation 2.63 from the same wavefunction given in Equation 2.48 yields the following expression

for the matrix elements [28].

〈JSN ′K ′|HQ|JSNK〉 =

1

4
(−1)N

′+N−K′+S+J+1
√

(2N ′ + 1)(2N + 1)

J S N ′

2 N S



 N ′ 2 N

−K ′ q K


 S 2 S

−S 0 S

 χq (2.64)

The above is only non-zero for q = K ′ − K. This Hamiltonian will go to zero for any spin less

than 1 as the triangle conditions [18] will not be met in either the leading 6j symbol or in the

dividing 3j symbol. The nuclear spin can interact with the overall molecular rotations in the same

way as an electronic spin-rotation interaction. Nuclear spin-rotation is mathematically identical

to electronic spin-rotation but is generally denoted with C rather than ε [68] While the difference

in coupling scheme may raise concern, removing the additional factors for a second spin source

from the nuclear spin rotation expression in [80] produces an identical expression to electron spin

rotation of both [80] and this chapter.

The non-zero spin creates 2S + 1 different states that share N , Ka, and Kc. In the case

of a S = 1/2 radical, this doubles the number of distinct states that can undergo transitions. The

selection rule of ∆J = 0,±1 creates more transitions than the simple multiplication of 2S+1 would

suggest. The increased basis state mixing from off-diagonal matrix elements and degraded value
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of K similar to the torsional problem also allow for transitions that would be forbidden by the

standard selection rules. In uncommon cases such as iodine (S = 5/2), transitions of ∆N = 3 have

been observed.
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CHAPTER 3

On Large Amplitude Motion in the Rotational Spectrum of

Methyl tert-Butyl Ether

3.1. Introduction

Methyl tert-butyl ether (MTBE) is an additive used to raise the octane rating of gasoline

and to ease the initial combustion which can be necessary for starting automobiles in colder climates.

Due to the imperfections of gasoline storage, MTBE also acts as an environmental pollutant, seepins

out of containers and into groundwater leading its detection in public water supplies in 28 states

by 2002 [81]. MTBE can be tasted at concentrations as low as 7–12 µgL−1 [82]. The unpleasant

taste imparted into the water raised public concern about the compound’s usage, particularly after

incidents in Santa Monica and Maryland. In 1995, high levels of MTBE were found in the water

wells of Santa Monica. This lead to thousands more discoveries of MTBE contaminated wells

and city officials of Santa Monica suing several major oil companies to carryout a $200 million

cleanup. California banned the usage of MTBE as a gasoline additive in 2002. In addition to the

unpleasant taste, leeching of MTBE into groundwater is generally accompanied by other more toxic

compounds, such as benzene, also entering the wells [83]. Various other states have also banned

or begun heavily regulating the compound. Outside of the US, Japan and Canada have outright

banned use of MTBE as a gasoline additive. MTBE has been shown to be harmful to aquatic life

as it is able to break down into formaldehyde or tert-butanol [84].

Rotational spectroscopy has been used by the Twagirayezu group to detect polar fuel im-

purities, such as ethanol, toluene, and acetylaldehyde [85]. It is capable of differentiating molecules

even with similar functional groups, and the signal intensity is proportional to the dipole moment.

Because of octane’s low dipole moment, it is transparent to rotational spectroscopy. Therefore,

rotational spectroscopy is uniquely applicable to spectroscopic studies on gasoline impurities when

30



compared to THz [86] or infrared [87] spectroscopy. Ethanol, toluene, and acetylaldehyde have

incredibly well-documented spectra as they serve as simple cases of asymmetric tops with internal

rotors. In contrast, MTBE has not been previous measured in the millimeter wave region. To date,

only 32 lines in the 9 – 18.6 GHz region have been reported [88]. While the Twagirayezu group

did not search for MTBE, its absence could be from this previously limited number of centimeter

wave transitions. Extrapolating up to the 260–290 GHz region investigated by the Twagirayezu

group can be particularly difficult with a limited linelist, only a handful of distortion terms, and

large frequency uncertainties. This is especially true of torsional problems as the large amplitude

motion causes the rigid rotor model to be less applicable to MTBE. All this means that identifying

MTBE in a complex mixture using millimeter wave spectroscopy would be challenging.

MTBE also holds its own curiosities from a spectroscopic perspective. The B and C

rotational constants differ by only a few percent difference which makes the molecule a very near

prolate top thus the impacts of asymmetry on the spectrum are minimal. There are also 3 different

potential sources of large amplitude motion in MTBE: methyl group rotation in the methoxy

group, tert-butyl group rotation, and methyl rotation within the tert-butyl group. The most

visible is the methoxy methyl group which has an internal potential barrier, V3, of < 500 cm−1 thus

making MTBE’s rotational spectrum a moderate barrier internal rotation problem. The structure

is immediately reminiscent of pinacolone [89]. This molecule caused great difficulties in resolving

a fit due to the coupling of the methyl and the tert-butyl torsions. Pinacolone replaces MTBE’s

oxygen with a carbonyl group which causes pinacolone to have lower barrier to methyl rotation

than MTBE. Much of the following analysis of MTBE is done with inspiration of what was studied

on pinacolone due to the structural similarities. Another molecule featuring a tert-butyl group,

near symmetry, and large amplitude motion is tert-butyl isocyanate. The microwave spectrum and

barrier height of the tert-butyl rotation of this molecule was measured in 1992 [90]. The 41 cm−1

barrier height is much lower than the analogous barrier in pinacolone and likely MTBE as neither

of these two molecules observed splitting associated with this motion. The present work examines

the internal motions of MTBE via MP2/cc-pVDZ and the rotational spectrum from 26.5–40 GHz
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using a newly completed spectrometer, thus greatly improving the number of observed transitions,

improving the fit, and allowing for better prediction of higher frequency spectra.

3.2. Methods

3.2.1. Rotational Spectroscopy. The spectrum of MTBE was recorded using a Ka band

(26.5 – 40 GHz) chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer with an

instantaneous bandwidth of 13.5 GHz as shown in Figure 3.1. The instrument operates by gen-

erating a linear frequency-swept pulse spanning 1.52 – 4.895 GHz over 1 µs using an arbitrary

waveform generator (AWG, Tektronix AWG70002A, 16 GSa/s analog bandwith) which is filtered

by a 6 GHz low-pass filter (K&L Microwave 6L250-6000/T18000-O/O). This signal is upconverted

in a mixer (Marki MWave T3H-18IS) with an 11.52 GHz local oscillator which is generated at

5.76 GHz from a Valon Technology 5009 synthesizer, doubled with a Wright Technologies ASX13-

220, and filtered with a 11.52±0.2 GHz bandpass filter (K&L Microwave 6C52-11520/T200-O/O).

The resultant 6.625 – 10 GHz chrip is filtered (Mini-Circuits VHF-6010+ 6 GHz high pass filter

(HPF), K&L Microwave 8L250-10200/T30000-O/OP 10.2 GHz low pass filter (LPF)), amplified

to 13 dBm (Miteq AFSD5-060120-30-26P), and quadrupled (Wright Technologies ASX40-420) to

26.5 – 40 GHz. After a final pair of filters (AMTI H26G40G1 26.5 GHz HPF, Marki MWave FLP-

4300 43 GHz LPF) the chrip is sent through a programmable step attenuator (Agilent 84907L)

and amplified with a 170W traveling wave tube amplifier (Applied Systems Engineering 187Ka-

H). The chirp is broadcast into a stainless steel vacuum chamber via a 24 dBm Ka band horn

(Advanced Technical Materials PNR 28-449-6/24) and the molecular free induction decay is col-

lected with a matching horn. To protect the low noise amplifier (Miteq AMF-6F-26004000-25-13P),

the signal first goes through a diode limiter (Clear Microwave LT1840H) and a PIN diode switch

(Quinstar QSC-ASR000) which is open during the chirped pulse excitation. The amplified FID is

down-converted by a mixer (Marki MWave ML1-1644IS) driven with a a 40.96 GHz signal that is

generated by a Valon Tech synthesizer (Valon Tech 5009) at a 5.12 GHz and octopuled (Easter

Wireless Telecom EWT-31-0351). The lower band from the mixer is selected with a 17.4 GHz LPF

(Marki MWave FLP-1740) and amplified (Minicircuits ZVA-183-S+) before being digitized with a

40 GSa/s by a 16 GHz oscilloscope (Tektronix MSO72004C). To ensure phase consistency, the local
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Figure 3.1. Block diagram of the Ka band spectrometer

oscillators and timing sources are referenced to the 10 MHz clock of the AWG. The timings of the

chirp and gas pulses are controlled by a Quantum Composers 9528 digital pulse generator.

A pulsed super-sonic expansion was generated by a Parker Series 9 solenoid valve with a

500 µm ∅ apperature driven by an Iota One pulse driver. The sample was introduced by flowing

argon through a bubbler of MTBE. The argon pressure was 3.75 bar for one set of averages while

only the vapour pressure of the MTBE was used in the second. The valve was actuated at a rate

of 5 Hz with pulse width of 650 µs. Each FID was recorded for 15 µs and filtered with a Hanning

filter.

3.2.2. Calculations. The structure of MTBE was optimized at the MP2/cc-pVDZ level of

theory using CFOUR [91] with SCF and geometry convergence criteria of 10−8 to acquire the desired

spectroscopic parameters. The Cs structure from this calculation is shown in Figure 3.2. Once the

geometry was optimized, a finite difference harmonic calculation was carried out. This provided

both harmonic vibrational frequencies and approximations of the quartic centrifugal distortion

terms. The program Orca was used for a variety of potential energy scans [92]. These were done

to study the three potential large amplitude motions: the methoxy methyl rotation, the tert-butyl
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torsion, and the geared rotation of the methyls inside the tert-butyl group. The first three scans

were done as one-dimensional scans where the angle of interest was held fixed and stepped across

a 360◦ range in steps of 1◦ while the rest of the geometry was reoptimized. This resulted in a set

of 361 data points for each motion. This was followed up with two two-dimensional scans wherein

the methyl dihedral angle along with another of the two angles were held fixed and stepped across

a 240◦ range in steps of 10◦ while the rest of the geometry was reoptimized. These pairings were

selected to observe how the dominant large amplitude motion will interact with the other two. This

produced a 25 by 25 grid for each pair of motions. All of these were done with symmetry turned off

to prevent any accidental constraints on the intermediate geometries. Due to the lower likelihood

of resolving splitting from either the tert-butyl or the gear motion, a tert-butyl and gear 2D grid

was not run at this time.

Figure 3.2. Methyl tert-butyl ether in the principal axis system

3.2.3. Torsional-Rotational Hamiltonian. This work uses the Rho Axis Method (RAM)

as presented XIAM program [45], specifically the XIAM_mod [50] variant. Unlike other RAM

programs, XIAM takes Principal Axis parameters rotates them into the Rho Axis System internally.

The RAM has been described Chapter 2 but the expansion to treat two nonequivalent internal rotors

will be provided here. The full Hamiltonian is constructed as:

H = Hrot+Htor +Hαβ +∆JJ 4+∆JKJ 2J 2
z +∆KJ 4

z +
δJ
2

{
J 2,J 2

+ + J 2
−
}
+ΦJJ 6+ΦJKJ 4J 2

z

(3.1)
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In addition to introducing torsional operators for the tert-butyl group, a set of top-top coupling

terms were also introduced into the fit. This are represented by Hαβ which is given by:

Hαβ = Fαβ

(
(Pα − ραJz)(Pβ − ρβJz) + (Pβ − ρβJz)(Pα − ραJz)

)
+ Vcc(cos 3α)(cos 3β) + Vss(sin 3α)(sin 3β) (3.2)

Here α corresponds to the first internal rotor dihedral angle and β corresponds to the second. The

term Fαβ couples the kinetic energy of the internal rotors and is derived internally by XIAM from

the F0 values of the methyl and tert-butyl groups. The terms Vcc and Vss couple the potential

energies and are fit directly. For MTBE, the first internal rotor will refer to the methyl on the

methoxy group and the second will refer to the tert-butyl group or the geared methyl group as

necessary.

3.3. Results

3.3.1. Calculated Spectroscopic Parameters & Low Frequency Vibrational Modes.

The geometry and harmonic frequency calculations provided initial spectroscopic constants includ-

ing equilibrium rotational constants of A = 4373.11 MHz, B = 2743.30 MHz, and C = 2735.80

MHz as well as dipole projections of µa = 0.2 D, µb = 1.2 D, and µc = 0 D. MTBE is a very prolate

asymmetric top with a κ = −0.991. The Cartesian coordinates of the atoms are given in Table

A.1. The 5 lowest frequency normal modes are shown in Table 3.1 in comparison to gas phase

measurements [93]. The remaining calculated frequencies are listed in Table A.2. Visualizing the

normal modes in MOLDEN [94] showed the tert-butyl torsion with slight methyl torsion to be the

lowest frequency harmonic mode. The frequency discrepancy here likely stems from mode’s periodic

potential which makes the mode difficult to model in the harmonic oscillator approximation. The

harmonic oscillator approximation does not model motions with periodic potentials particularly

well. Mode 8 was shown to be the torsion of the methoxy methyl group with slight motion of the

geared methyls.
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Mode No. Sym Exp [93] Calc. Calc. Int Type
7 A′′ 101 17.7966 2.3981 tert-butyl torsion
8 A′′ 179 178.9342 1.0957 Methoxy methyl torsion
9 A′′ 219 238.7002 1.3775 Geared methyl torsion
10 A′ 262 262.8777 0.3777 COC in plane bend
11 A′′ 274 293.7098 1.7324 COC out of plane bend

Table 3.1. Lowest frequency normal Modes of MTBE calculated at MP2/cc-pVDZ
shown against the vapor experimental measurements of [93] in cm−1.

(a) Methoxy methyl dihedral scan (b) tert-Butyl dihedral scan

(c) Geared dihedral scan

Figure 3.3. MP2/cc-pVDZ potential barriers for the internal rotations of MTBE
each fit to the first two expansion terms. Points represent individual ab initio
energyies and the curves are the fitted function (3.3)

3.3.2. Internal Barrier Heights. The relaxed 1D potential scans for each of the torsional

motions are shown in Figure 3.2. Each potential was fitted to the periodic function:

V (α) =
V3
2

(1− cos 3α+ φ) +
V6
2

(1− cos 6α+ φ) (3.3)
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Parameter Methyl t-Butyl Geared
V3 638.68 1139.08 1267.36
V6 69.19 156.65 100.00

Table 3.2. MP2/cc-pVDZ calculated values for the potential terms from the three
different internal rotation motions in cm−1

(a) Change in the tert-butyl angle as the methyl angle
turns

(b) Change in the geared angle as the methyl angle
turns

Figure 3.4. MP2/cc-pVDZ potential barrier calculations for the methyl rotation
of MTBE. These show how the angles of the other large amplitude motions change
with highlighting based on energy. The tert-butyl group shows much more variance
as a function of the methyl angle than the geared methyl. In both cases, the step
size of the dependent angle along this path is much larger in the well than near the
top of the barrier.

φ is a phase factor used to match phase of the function to the calculated points. As the phase

factor does not alter the torsional energy levels, it is neglected from further discussions. The

results of these fits are tabulated in Table 3.2. In the methyl and tert-butyl scans, there is a

visible disagreement of the points and fits in the wells and at the ±120◦ peaks which indicates

a perturbation, likely from torsional coupling between the modes. MTBE’s calculated methoxy

methyl barrier (640 cm−1) height is substantially higher than the C(––O)CH3 methyl barrier in

pinacolone (156 cm−1). This is consistent with the shift from a methoxy to a methyl ketone group.

Using a hybridization interpretation, the electron density at the sp3 oxygen in the methoxy locks

the sp3 structure of the methyl group into a staggered position thus increasing the the barrier

height. The carbonyl oxygen helps pull electron density away from the sp2 ketone carbon thus

lowering the barrier rotation [95].
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(a) Change in the methyl angle as the tert-butyl angle
turns

(b) Change in the geared angle as the tert-butyl angle
turns

Figure 3.5. MP2/cc-pVDZ potential barrier calculations for the tert-Butyl rota-
tion of MTBE. These show how the angles of the other large amplitude motions
change with highlighting based on energy. The methyl motion along this path simi-
larly takes larger steps in the well than near the peak. The geared step size is more
uniform relative to the energy but spans a larger spatial range

(a) vt = 0 (b) vt = 0, 1, 2

Figure 3.6. MP2/cc-pVDZ internal potential barrier for the methyl rotation of
MTBE

Figure 3.4 shows how the other torsional angles and the energy change with the methyl

angle. Panel a shows the interaction with the tert-butyl angle and displays a roughly 8◦ swing in

either direction within the methyl’s V3 well. This broad spatial distribution shows a probability

for torsional coupling between the two internal torsional motions. The curvature of this pathway

is similar to the minimum energy pathway of pinacolone [89]. A similar interaction was seen in
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Figure 3.7. The 2D MP2/cc-pVDZ PES of MTBE along the tert-butyl and methyl
angles. The waving path shown in Figures 3.4a and 3.11a can been seen here as well
from the slanted structure of the potential wells

Panel b with the geared methyls but that motion only moved about ∼ 3◦ suggesting less interaction

between these motions. Doing a similar calculation about the tert-butyl dihedral angle showed that

the methyl undertakes a similar rotation in response. The methyl’s rotation is shown in Figure 3.5

which also shows the interaction with the geared motion.

A two dimensional PES was also run along the methyl and tert-butyl angles spanning

from −180◦ to 60◦ in steps of 5◦ and is shown in Figure 3.7. This showed a slanted well structure

consistent with the paths shown in Figures 3.4 and 3.5 as well as pinacolone [89]. The potential

well around (−60◦,−60◦) is a single well unlike pinacolone for which the analogous well is split

in two [89]. Compared with pinacolone, MTBE has higher V3 barriers and lacks the effective V6

structure which arrives from well splitting. The higher barriers in MTBE make the motions more

rigid and reduce the impact of the coupling between the different torsional motions. A similar PES

was calculated along the methyl and geared angles, spanning the same range, as shown in Figure
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Figure 3.8. The 2D MP2/cc-pVDZ PES of MTBE along the geared and methyl
angles. The wells are less slanted than in Figure 3.7 indicating that these two modes
are less coupled.

Expansion Term Operator m-t Fit (cm−1) m-g Fit (cm−1)
V3,α

1
2(1− cos 3α) 904.1 638.9

V6,α
1
2(1− cos 6α) −1.35 60.9

V3,β
1
2(1− cos 3β) 1282.1 1267.6

V6,β
1
2(1− cos 6β) 0.957 71.4

Vcc (cos 3α)(cos 3β) 156.4 −1.61

Vss (sin 3α)(sin 3β) −248.2 −72.04

Table 3.3. Potential Terms for MTBE calculated from 1D and 2D Scans at
MP2/cc-pVDZ

3.8. The two 2D surfaces were fit to all available potential terms in the XIAM_mod program and

are tabulated in Table 3.3. Based on the terms Vcc and Vss, the tert-butyl motion is much more

heavily coupled to the methyl torsion.
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Parameter Previous [88] This Work MP2/cc-pVDZ
F0 (cm−1) 5.261(18) 5.23768(704) 5.372
V3 (cm−1) 498.17(173) 495.648(720) 638.68
δ (◦) 25.848(196) 26.2998(910) 26.027

A (MHz) 4382.83875(107) 4382.839941(221) 4373.1086
B (MHz) 2732.392089(391) 2732.392478(293) 2743.3015
C (MHz) 2730.755439(380) 2730.755098(280) 2735.8024
∆J (kHz) 0.3100(122) 0.31192(281) 0.339727
∆JK (kHz) 4.274(109) 4.218841(437) 48.0197
∆K (kHz) −3.768(145) −3.659009(816) −47.5273
δJ (kHz) 0.00502(926) 0.01184(200) 0.00791227
ΦJ (Hz) – −0.061(11) −
ΦJK (Hz) – 0.012(1) −
RMS (kHz) 17.37 10.79 −

Lines 32 437 −

Table 3.4. Fit Results of MTBE

3.3.3. Torsional-Rotational Spectrum. The rotational spectrum of MTBE was measured

in the Ka band at roughly 20 K and 40 K thanks to the differing backing pressures. These

temperatures were approximated by adjusting the temperature of the simulation to roughly match

the intensity distribution in the q-branches. The temperature of the jet does not appear to be

uniform and is very likely bimodal so these are only listed as rough approximations. Unlike typical

methyl rotor problems which contain doublets with a 1:1 intensity ratio, the spectrum shows a

distinctive triplet structure with a 1:2:1 intensity pattern throughout its r branch as highlighted

in Figure 3.11. The triplet motif is a result of the very near prolate structure of MTBE. Since

B ≈ C, the asymmetric splitting between the energy levels of A states for JKa,J−Ka and JKa,J−Ka+1

approaches zero. This degeneracy is broken for the E states by terms such as ρF P̂αĴz which cause

more separation of states sharing J and Ka. There are also 4 distinctive q-branches such as the

one shown in Figure 3.10. The q-branches contain the same intensity ratio between the A and

the E states though these transitions lack the even structure of the r-branch transitions. The

colder spectrum was analysized first and then the higher J transitions of the warmer spectrum

were introduced into the fit discussed in the next section.
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3.4. Torsional-Rotational Fits

The spectrum was fit using XIAM_mod [50] using only a single rotor and the results of this

are shown in Table 3.4 with a comparison to the fit from [88] and the MP2/cc-pVDZ calculations.

This shows generally improved uncertainties on all parameters with a vastly expanded line to

parameter ratio. Unlike the structurally similar pinacolone, this fit proved satisfactory and should

offer sufficient predictive ability for higher frequency studies. This fit adds 405 lines to the previously

reported 32 for a total of 437 transitions with an RMS of 10.79 kHz. The uncertainty of the newly

added transitions was set to 10 kHz while the previous work’s transitions used an uncertainty of 4

kHz. The highest J value included in the fit is 37 and the highest Ka is 12. The determined V3 of

5.929 kJ/mol makes this a fairly typical methoxy barrier when compared to Table 3 of [96]. The

largest point of disagreement between the experimental spectrum and simulations from the fits is

in the intensities as can be seen in Figure 3.9. While a large number of transitions appear only in

the experimental spectra at these scales, most of these features did have a corresponding feature

at the same frequency in the simulation albeit at a much lower intensity.

To provide aid to higher temperature projects such as those similar to [85], room temper-

ature simulations shall be provided here. Figure 3.12 shows the spectrum at 298 K up to J = 70 in

the ground torsional state up to 600 GHz. This Jmax is the limit of XIAM_mod. The Boltzmann

peak can be seen to be around 400 GHz. The intensity in the 260–290 GHz is at roughly half

the maximum which should indicate plenty of signal strength from MTBE in a room temperature

experiment at this frequency range. The 260–290 GHz band shown in Figure 3.13 is the frequency

range of the instrument used in [85]. This spectra region is dominated by r branch transitions with

the strongest ones having J values in the 30s. The distinctive triplet pattern is still a dominant

feature in this region.

3.5. Conclusion

Methyl tert-butyl ether is a floppy near-symmetric prolate top. The only torsional mode

observed was the moderate barrier methyl rotor within the methoxy group for which the barrier

was measured to be 495.6 cm−1. The secondary motion of the methoxy group rocking relative to
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the tert-butyl group was computationally investigated but not directly experimentally observed.

The calculated coupling between the motions similar to but less extreme than those of the struc-

turally similar pinacolone. The new Ka band measurements add 405 transitions and reduces the

uncertainties on all spectroscopic parameters used in the effective Hamiltonian. The new fit and

resulting simulations should be sufficient for higher frequency experiments.

43



(a) The roughly 20 K Ka band spectrum of MTBE

(b) The roughly 40 K Ka band spectrum of MTBE

Figure 3.9. Broadband Spectrum of MTBE with the two different temperatures.
In both panels, the experimental spectrum is shown on top while the simulated is
shown on the bottom.
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Figure 3.10. The J10K′
c
− J9K′′

c
q branch where the A state transitions can be

visually distinguished from the E state transitions due to the 2:1 intensity ratio

Figure 3.11. The 54K′
c
− 43K′′

c
transitions display the triplet pattern of MTBE

where the central A state transition is a blend with around twice the intensity of
the the E state transitions which appear on either side
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Figure 3.12. Simulation of MTBE from 0–600 GHz with up toJ = 70

Figure 3.13. Simulation of MTBE from 260–290 GHz with up toJ = 70
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CHAPTER 4

On the Developement of a New Program & Application to

Meta-Chloro-Toluene

The programs currently available for rotational spectroscopy analysis have proven to be

capable of fitting the rotational spectra molecules containing either nuclear quadrupole moments or

methyl rotors. Unfortunately, there is not a singular program that can treat both simultaneously.

This restriction greatly inhibits the study of molecules containing elements other than hydrogen,

carbon, nitrogen, and oxygen as many other elements have nuclear spin greater than 1/2 and

larger nuclear quadrupole moments than that of N. Methyl groups are a prevalent structure in

organic molecules. The program SPFIT [40] uses an efficient spherical tensor method to implement

Benz’s exact nuclear hyperfine matrix elements [28] and is capable of fitting molecules with large

nuclear spin values. However it is not capable of treating methyl rotation problems with barrier

heights lower than around 500 cm−1 [41]. Methyl rotors with barriers as low as ∼ 1 cm−1 have

successfully been fit in the Rho Axis Method programs such as BELGI [44] and RAM36 [64].

The hyperfine variants of these programs [48,65] and the program XIAM [45] are all capable of

treating methyl rotors alongside a perturbative hyperfine treatment, limiting their ability treat

the nuclear quadrupole interactions of I > 1/2 nuclei other than N. This chapter presents a new

program, westerfit, designed to combine the quadrupole treatment of SPFIT with the internal rotor

treatment of BELGI. In addition to a description of the code, there is a collection of test cases

comparing published fits to the same linelists being fit in the new program.

Meta-chlorotoluene (m-Cl-tol), shown in Figure 4.6, was selected as a test case for the new

program due to the combination of chlorine’s larger spin and electric quadrupole moment relative

to nitrogen, a very low methyl internal rotation barrier height, and a preexisting linelist. M-Cl-tol

has been previously studied by Nair et al [97]. This spectrum was recorded from 5–25 GHz using a
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supersonic jet expansion in a Fabry-Pérot cavity. A fit of 336 transitions with a maximum J = 13

and maximum Ka = 5 was performed in XIAM [45] which uses a relatively small torsional basis

along with a perturbative treatment of the nuclear hyperfine interactions. This work struggled to

fit both the very low V3 and the larger V6 simultaneously but did achieve acceptable fits by fixing

either of these parameters to an ab initio value. It is the goal of the new program to provide a

more extensive torsional treatment as well as a complete, non-perturbative hyperfine treatment for

more accurate determination of the spectroscopic parameters of m-Cl-tol and other molecules in

its class.

4.1. Description of the Program

The program calculates the spin-torsion-rotation energy levels and then transition fre-

quencies and intensities from the parameters input by the user. The program cal also adjust the

parameter values to match a list of experimentally measured frequencies in a process referred to

as “fitting.” The code is written in the Julia [98] language and uses the WIGXJPF [99] package

via Julia’s Ccall functionality calculation of Wigner symbols. The input file is divided into three

blocks: control settings, second-order terms, and higher order terms. The control settings include

all options that are not directly parameters in the Hamiltonian such as the spin value, symmetry

fold of the rotor, simulation temperature, and the size of the torsional basis. The second-order block

contains the values for all the spectroscopic parameters found in the second order Hamiltonian as

well as the scale factors that are used during fitting. The hard-coded part of the Hamiltonian

combines Equations 2.45, 2.49, and 5.6. The final block allows for users to define higher order

operators along with their parameter values and fitting scale factors. The scale factors in the last

two blocks are used in the fitting mode, described in Section 4.1.4, to scale the step size with each

fitting iteration or to fix the parameter to its initial value by setting the scale factor to zero.

The code outputs four different files. The energy level calculator writes all of the calculated

levels and their labels to a delimited file. The simulator routine produces a file with each line

containing the upper and lower quantum numbers of a transition, the frequency, and the intensity.

By default this is a delimited file but there is also the option to emulate the SPCAT simulation

file structure for interfacing with other programs such as the spectral simulation plotting in AABS.
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The fitting routine generates two separate output files. The first one contains the parameters

and their adjustments at each iteration of the fitting routine. The last iteration is printed with

the uncertainties determined from the fitting process. The other file is a delimited collection of

residuals from the fit which contains the inputted line list alongside the calculated frequencies and

the observed minus calculated error.

4.1.1. Hamiltonian and Wavefunction. The Hamiltonian is split between a hard-coded

second-order Hamiltonian and user-definable terms for the higher order operators. The hard-coded

second order Hamiltonian allows for natural input of the terms, which are then transformed into

more effective structures. As an example, the user inputs the terms as seen in Equation 2.12 but

the code internally treats them as 2.23. The code defaults to an Ir representation (z, x, y → a, b, c)

but the relationship of A > B > C is not enforced by the code which could allow a user to use a

different mapping if so needed. All parameters are read in units of MHz with the exception F and

V3 which are input in cm−1 for consistency with the convention.

The user-defined operators are defined as the direct product of the anti-commutator of

the torsional parts and the anti-commutator of the rotation and spin-rotation operators. This

structure allows for the Watson-A reduction of rotation, spin-rotation [32], and torsion-rotation [70]

operators. The pure rotation Watson-S reduction terms can also be used but not the corresponding

spin-rotation terms [32] due to the lack of N n
+Sm

+ + N n
−Sm

− . The operators of the Watson-A

reduction were selected over the Watson-S as it shows up in more torsional works [44, 69, 70].

The link between the powers of Ny and sinhα is to allow for operators found in Xu’s global fit of

methanol [69] while also ensuring use of purely real matrix elements.

Ôabcd
efgh =

(
P f
α cos(gα) sin(hα) + sin(hα)(cos gα)P f

α

)
⊗(

NaN b
z (N

c
+ +N c

−)(NS)
dSe

zN
1−δ(h,0)
y +N1−δ(h,0)

y Se
z(NS)

d(N c
+ +N c

−)N
b
zN

a
)

(4.1)

More detailed discussions of these operators can be found in Chapter 2. The input file used for 2-

butynoic acid in Section 4.2.1 is shown in Figure 4.1. Additional examples of different Hamiltonians

supported by the code, including all those of the fits described in this chapter, can be found on the

westerfit github ( https://github.com/wes648/westerfit ).
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Figure 4.1. The westerfit input file for 2-butynoic acid as used in Section 4.2.1

The wavefunction used in the code is the product of the free rotor basis and the Hund’s case

(b) wavefunction. The free rotor basis was selected to properly handle low-barrier torsional cases,

and has also been shown to adequately handle high-barrier cases. Hund’s case (b) was selected to

keep the molecular frame’s angular momentum as the rotational pattern-forming quantum number

as the spin effects are generally smaller than the indefinitely increasing overall rotation [100]. Thus,

the program can to handle a wide range of both torsional and spin influences.

4.1.2. Quantum Number Assignment. The state assignments after diagonalization are

lacking in true meaning thus making this more a problem of semantics than physics [40]. Nev-

ertheless, it is convenient to have the eigenstates labeled in ways reminiscent of the basis states

or even just simpler spectroscopic cases. Ideally, when moving from one limiting case to another,
50



an assignment routine should be able to label states such that a smooth correlation diagram is

formed. This consistency can help allow for an intuitive comparison of more complicated energy

ladders by building off the more familiar patterns. The Ka, Kc, and vt labels are standard in the

field and desirable for data processing. Additionally, consistency across programs allows for bet-

ter functionality comparison, and internal consistency can provide a dual energetic and quantum

number check. The code contains a handful of approaches to this problem but only the two most

functional shall be described here. Both routines performed identically on the test of 2-butynoic

acid and m-Cl-tol.

The most difficult struggle in the development of this program has been how to assign the

quantum numbers after diagonalization. Fitting routines use these quantum number assignments

as the independent values while the Hamiltonian parameters are adjusted to match the simulated

frequencies to the observed frequencies. Thus it is necessary to find away to assign labels to the

states that do not change as parameters are adjusted and higher order operators are introduced.

Further complicating matters, even standard asymmetric rotor energetic trends break down due

to the torsion and spin coupling effects. The difficulty of finding meaningful state labels after

diagonalization is a documented problem in the torsional literature and various solutions have been

proposed for it, though most lack widespread use [75,79,101].

The first method of quantum number assignment is based on that of RAM36 [65] but is

expanded to account for spin quantum numbers. Since each matrix is built for a specific J and σ

pairing, those two are assigned automatically but N , Ka, Kc, and m need to be assigned. This

assignment method works by assessing the matrix of eigenvectors outputted by LAPACK’s syev

routine. First, all the eigenvector elements are squared. Then to assign m, a vector of length 2m+1

is initialized for each eigenvector. For each m value in the basis set, the (2S + 1)(2J + 1) elements

in the eigenvector that correspond to the target m basis state are added together and placed

in the new vector. From here, the routine determines which (2S + 1)(2J + 1) vectors have the

largest value corresponding to m = 0. These states are then marked as the ground torsional state.

Currently this routine only runs on the ground state but will be adapted to go up to arbitrarily

high torsional states. Now that the m = 0 states have been determined, N will be assigned. For
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the (2S+1)(2J +1) states marked as m = 0, a vector of length 2S+1 is initialized. Then for each

N value in the absis set, all the eigenvector elements that correspond the target N value are added

together and placed in the vector. Once this is completed, the elements of the vector are analyzed

to find the 2N + 1 states corresponding to each N value. Lastly, within each N and m pairing,

Ka and Kc are assigned by the simple energetic ordering. This is very consistent with RAM36

in the torsional-rotational case but less so with SPFIT/SPCAT DIAG=3 assignment routine in

spin-rotation and hyperfine cases. SPFIT/SPCAT leverage the symmetry of the V group while

westerfit is restricted to a subgroup of this. For a pure rotation case, the assignments should be

consistent. Some demonstrations of the differences are found and discussed in Section 4.2.

The second and default method uses the expectation values of P 2
α to group the torsional

states, and then the expectation values of N2 to determine the N states within that torsional state.

While the values of 〈P 2
α〉 do not tend to map onto obvious values from the basis set, they do tend to

form clear clusters. Thus m is assigned by simply sorting the 〈P 2
α〉 expectation value and assuming

the (2S + 1)(2J + 1) states with the lowest expectation values are in the ground torsional state.

Then, for each N , the 2N +1 states with expectation values closest to N(N +1) are assigned that

N value. Lastly, within each N , Ka and Kc are assigned by energetic sorting.

4.1.3. Calculation of Transition Intensities. The transition intensities are calculated using

a combination of the expressions from Gopalakrishnan et al [102] and Mekhtiev et al [103]. The

dipole operator can be expressed as a spherical tensor and Fourier expanded to account for the

changes in the dipole moment projections as the methyl group turns. The Fourier expansion of

the dipole components can be calculated from a similar potential energy surface calculations as

described in Sections 3.2.2 and 4.3.1 except by plotting the dipole projections against the methyl

rotor angle rather than the energies. The conversion from Cartesian to spherical tensor form is
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structured as:

T 1
−1(µ) = T 1

−1(µ
(0)) + T 1

−1(µ
(3)) =

1√
2

(
µ(0)x + µ(3)x cos 3α+ ıµ(3)y sin 3α

)
(4.2)

T 1
0 (µ) = T 1

0 (µ
(0)) + T 1

0 (µ
(3)) = µ(0)z + µ(3)z cos 3α (4.3)

T 1
+1(µ) = T 1

+1(µ
(0)) + T 1

+1(µ
(3)) =

−1√
2

(
(µ(0)x + µ(3)x cos 3α− ıµ(3)y sin 3α

)
(4.4)

The superscripts with parenthesis are used to denote Fourier expansion terms while those without

mark spherical tensor rank. The dipole moment projection values are based on the Rho Axis

coordinates for consistency with the torsional literature [46]. Due to the Cs symmetry, µ(0)y is

rigorously 0 and its Fourier expanded terms are multiplied by sinnα to ensure the matrix elements

are real. The combined matrix element for a given Fourier series dipole component is shown below:

〈J ′SN ′K ′m′|T 1
q (µ

(n))|JSNKm〉 = (−)S+J ′−K′+N ′+Kδm′,m±n

µ1q
√
(2J ′ + 1)(2J + 1)

√
(2N ′ + 1)(2N + 1)

 N ′ 1 N

−K ′ q K

N J S

J ′ N ′ 1

 (4.5)

The torsion-rotation interactions reduce the symmetry of the rotation group so the selection rules

based on values of Ka and Kc are broken. The rigorous remaining selection rules are |∆J | ≤ 1

and ∆σ = 0. The intensity for every pair of states with |∆J | ≤ 1 is calculated to determine if

a transition is allowed. The program does the calculation by building the dipole matrix for the

pair of upper and lower J values and the shared σ value. The dipole matrix is front multiplied

by the transpose of the upper J eigenvectors and back multiplied by the lower J eigenvectors. To

determine if the transition is included in a simulation, the calculated intensity is compared to a

user-defined threshold and if the intensity is above the threshold, the energy difference is calculated.

If the frequency is positive and within the bounds provided by the user, the lower energy state is

used to determine the thermal factor of the line intensity. Similarly, negative values switch signs

and assignment of the upper and lower states, and the thermal factor is determined. Transitions

that fall outside of the range are not included. In the future, group theoretical considerations could

sort the A states into the A1 and A2 irreducible representations of the G6 group to reduce the

number of pairs that must be checked.
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4.1.4. Levenberg-Marquardt Implementation. Experimental values for the operators’ co-

efficients, often called the spectroscopic parameters, are determined through comparison with exper-

imentally observed transitions via non-linear least squares fitting. The general process of non-linear

least squares fitting is to adjust a set of parameters, x, that are used as variables for a model func-

tion, f(x), in order to minimize the norm-2, || · || of the difference between a set of observables,

y, and the model function. This norm-2, ||y − f(x)||, is more commonly referred to as the RMS

error in spectroscopic literature. The program performs the least squares fitting through a modified

Levenberg-Marquardt routine. The parameters are adjusted by step vector η whose initial value is

calculated from the typical weighted Levenberg-Marquardt [104,105] expression using Fletcher’s

modification [106]. The step direction depends on the Jacobian which is calculated analytically

via the Hellmann-Feynman theorem [107]. For a given parameter, its derivative at a given state

is equal to the expectation value of the parameter’s associated operator at said state. Thus the

Jacobian element for a specific parameter is calculated from the difference of the expectation values

for the parameter’s operator for the upper and lower states. Unlike the actual energy levels, this is

calculated by matrix multiplication rather than diagonalization allowing for efficient use of analytic

derivatives rather than numeric ones. The Hessian is then approximated using the matrix of inverse

line uncertainties, or weights W , and the Jacobian of the frequency calculator, J .

H = J ′WJ (4.6)

A defining feature of the LM method is the damping parameters, λ, to control the step size. As

the dampening parameter approaches zero, the steps become equivalent to those of the Gauss-

Newton method while large dampening parameters restrict the step size and resemble the steepest

descent approach. In the traditional LM method, the dampening parameter is simply multiplied

by the identity matrix, I. For each iteration, k, the Jacobian, Hessian, dampening term, and model

function are all calculated and then the below expression is solved for the step size.

(J ′
kWJk − λkI)βk = J ′

k(y − fk(x)) (4.7)
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In the traditional method, the parameters are assumed to be of comparable orders of magnitude

and the dampening parameter restricts the step size uniformly. However, given the radically vary-

ing orders of magnitude among spectroscopic parameters, it is best to instead use the Fletcher’s

modification, which uses the diagonals of the approximate Hessian, D, thus tailoring the magnitude

of each parameters step to the magnitude of that parameter.

(J ′
kWJk − λkDk)βk = J ′

k(y − fk(x)) (4.8)

The dampening parameter λ0 is calculated from the product of a scale factor, µ, and a function

of the current RMS error. The starting value of the scale factor is arbitrarily defined as 10−5 but

can be set to a different initial value by the user. This factor increases when the fit steps away

from convergence and decreases as the error goes down. [108] The full expression for λ on the k-th

iteration is:

λk =
µk||y − fk(x)||

(
2 + ||y − fk(x)||

)
2(1 + ||y − fk(x)||)

(4.9)

To accelerate convergence [108], the steps can be supplemented by solving the previous expression

using the same Jacobian but an updated error yielding a different step vector γk.

(J ′
kWJk − λkDk)γk = J ′

k(y − fk(x+ βk)) (4.10)

The final step in a given iteration is determined from:

sk = βk +

(
1 +

λkγ
′
kγk

γ′kJ
′
kWJkγk

)
γk (4.11)

The code allows users to define how many nested steps are used and each will be scaled using the

same expression [109]. The multi-step approach is done to avoid the costs of calculating Jacobian.

The speed of the Jacobian calculator generally makes one or two steps using the same Jacobian

efficient while more than that loses stability from the Jacobian not be up to date with the parameter

values. As the code progresses, the step size and RMS error decrease are compared to convergence

criteria. If the change in RMS is less than 10−6 MHz or the norm-2 of the step size is less than 10−6

times the norm-2 of the parameters, convergence is signaled, and the routine ends. This is is more

an assumption that the objective function is close to a minimum and user intuition is needed to
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determine if the fit has converged appropriately or not. These conditions generally occur together

with one meeting the condition and the other being close. As scale factor µ often becomes much

larger than its initial value by the end of a fit, re-initializing µ by staring a new fit with the new

parameters can often help escape a false well as the sudden reduction in µ allows for a larger step

size.

4.2. Initial Testing

The energy level calculations of westerfit were tested against those published programs by

making equivalent input files for each program, calculating the energy levels, and then examining

the residuals between the levels calculated by westerfit and the other programs. The energy levels

have been directly compared to those of other published programs and found to be consistent with

both. These tests were performed by running simulations with identical arbitrary constants for

the second order operators in westerfit and either BELGI or SPCAT. The energy levels from each

program were then sorted energetically to directly compare the levels while bypassing potential

differences in assignment. BELGI was used for the torsional-rotational testing and was examined

up to N = 9 and vt = 2. This test resulted in an RMS difference of 0.4 Hz over a total of 600

states. The residuals, shown in Figure 4.2a, display very consistent agreement with most states

having exact agreement. The handful of outliers deviated by exactly ±2.998 Hz and resulted from

round off error from the last decimal printed by BELGI. The spin-rotation and nuclear quadrupole

terms were tested against SPCAT and these tests were run up to J = 14 with S = 1. First the

spin-rotation was tested alongside just the rotational parameters and result in an RMS difference

of 0.930 Hz over nearly 700 states. The residuals are plotting in Figure 4.2b with horizontal lines

marking the round-off error of SPFIT. This plot shows there is far less agreement that the code

had with BELGI. Replacing the spin-rotation terms with the nuclear hyperfine terms produces a

nearly identical RMS difference of 0.928 Hz and the residuals are plotted in Figure 4.2c. These

differences likely emerge from the Hamiltonian implementations and will be investigated further in

future work. Testing both at the same time resulted in an RMS difference of 1.36 MHz, six orders

of magnitude higher than the previous tests. The residuals can be seen in Figure 4.2d and display

an asymmetry between the positive and negative residuals. The source of this discrepancy has not
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(a) BELGI energy levels minus westerfit energy levels
plotted against the westerfit energy of the states for
the torsion-rotation test

(b) SPCAT energy levels minus westerfit energy levels
plotted against the westerfit energy of the states for
the spin-rotation test

(c) SPCAT energy levels minus westerfit energy levels
plotted against the westerfit energy of the states for
the nuclear hyperfine test

(d) SPCAT energy levels minus westerfit energy levels
plotted against the westerfit energy of the states for
the combined spin-rotation and nuclear hyperfine test

Figure 4.2. Comparison of westerfit energy calculations with those of other pub-
lished programs. The new program better agrees with BELGI as it is a more exact
reproduction of that Hamiltonian than that of SPCAT.

yet been found and did not seem to emerge in the experimental test in Section 4.2.2 which also

used both spin-rotation and nuclear hyperfine. These differences are minor, especially given the

magnitudes of the energy levels, thus westerfit is generally consistent with the other programs.

After completing this direct comparison of energy levels, performance of the code was

tested on specific molecular cases. To test the torsion-rotation treatment, 2-butynoic acid was

selected as it is a difficult torsion-rotation problem due to its very low barrier height of 1 cm−1.

The spin-rotation and hyperfine implementations were tested against the 1-iodoperfluoropropane
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molecule. In building up to the difficult torsional case of m-Cl-tol, 2-fluoro-4-chloro-toluene has

been used as a medium-low barrier height case with a strongly coupled quadrupolar nucleus.

4.2.1. Torsion-rotation Test on 2-Butynoic Acid. 2-butynoic acid (2ba) was one of the

first 3-fold rotor tests of the RAM36 program and has an almost free internal rotor with a barrier

height of 1.0090(4) cm−1 [73]. A total of 89 transitions were reported from 6–18 GHz, all in the

ground torsional state with N ≤ 10 and Ka ≤ 4 with experimental uncertainties of 3 kHz. The very

low barrier of the rotor makes it an excellent test case of westerfit’s ability to treat methyl rotor

problems. The experimental frequencies were fit using a Hamiltonian built using the operators

shown in Table 4.1. This Hamiltonian is identical to that used in RAM36, and the optimized

parameters show quantitative agreement. The residuals are plotted against the observed frequency

and the lower N values in Figure 4.3. The strong agreement shows that westerfit performs equally

well as RAM36 thus suggesting that the implementation of the torsion-rotation Hamiltonian is

correct.
Table 4.1. Spectroscopic Parameters of 2-butynoic acid determined by westerift &
RAM36. Values in parenthesis are 1σ uncertainties of the last digit

Parameter (units) Operator westerfit RAM36
A (MHz) N 2

z 11269.9001(11) 11269.90006(66)
B (MHz) N 2

x 1752.18588(15) 1752.18588(15)
C (MHz) N 2

y 1529.58083(15) 1529.58083(15)
Dab (MHz) {Nz,Nx} −16.185(24) −16.1845(48)
F (cm−1) P2

α 5.66(fixed) 5.66(fixed)
ρ PαNz 0.071528698(37) 0.071528698(37)

V3 (cm−1) 1
2(1− cos 3α) 1.00899(41) 1.00900(42)

−DN (kHz) N 4 −0.0440(17) −0.0440(17)
−DNK (kHz) N 2N 2

z −11.3517(96) −11.351(11)
−DK (kHz) N 4

z −2.65(21) −2.65(21)
d1 (kHz) {N 2,N 2

+ +N 2
−} −0.0120(7) −0.01200(65)

d2 (kHz) N 4
+ +N 4

− −0.0154(19) −0.0154(19)
FN (kHz) PαN 2 −37.253(95) −37.255(96)
ρbc (kHz) {Nz,N 2

+ +N 2
−}Pα −0.750(62) −0.748(63)

ρN (kHz) PαNzN 2 35.205(35) 35.204(36)
ρK (kHz) PαN 3

z 15.04(74) 15.05(74)
Number of lines 89 89
rms (kHz) 2.5 2.6

4.2.2. Hyperfine test on trans-1-iodoperfluoropropane. The lack of an isolated spin-

rotation experimental test is due to the limited amount of spectra that did not also show spin-spin
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(a) Residuals for 2ba plotted against frequency (b) Residuals for 2ba plotted against lower N

Figure 4.3. Residuals for 2ba plotted against either frequency lower N . Highlight-
ing indicates lower Ka and the horizontal line indicates the fit RMSE

interaction and westerfit’s current inability to treat multiple spin sources. To test the combination

of both spin-rotation interaction and nuclear quadrupole implementations, the molecule trans-1-

iodoperfluoropropane (ipfp) was selected. Its rotational spectrum was previously recorded from 1–4

& 8–18 GHz with experimental uncertainties of 25 kHz and 776 transitions were reported with up to

N = 50 and Ka = 15. The spectrum was fitted using SPFIT, including the full quadrupole tensor

and the on-diagonal nuclear spin-rotation tensor terms in the Ir representation [110]. Additionally,

trans-1-iodoperfluoropropane provides the exotic case of each diagonal element of the quadrupole

tensor being larger in magnitude than the corresponding rotational constant. Similarly to the

torsional test, there is rather good agreement between the two fits as shown in Table 4.2. There is

however slightly more disagreement than the previous test likely largely emerging from differences

in quantum number assignments and perhaps with some contribution from westerfit being a less

exact reproduction of SPFIT’s Hamiltonian than it is of RAM36’s. The residuals of the westerfit

fit are shown in Figure 4.4 and appear unstructured suggesting there are no systematic issues with

the fit. Despite the differences, the parameters, fit RMSE, and magnitudes of uncertainty are all

sufficiently comparable between the two fits as to say that westerfit is capable of adaquately treating

even strongly coupled nuclear spin cases.

4.2.3. A higher barrier halo-toluene: 2-fluoro-4-chlorotoluene. The molecule 2-fluoro-

4-chlorotoluene (2-F-4-Cl-tol) was previously recorded from 4–25 GHz in a Balle-Flygare cavity
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Table 4.2. Spectroscopic parameters for trans-1-iodoperfluoropropane determined
by westerfit & SPFIT. Values in parenthesis are 1σ uncertainties of the last digit

Parameter (units) westerfit SPFIT
A (MHz) 1572.12814(11) 1572.127966(99)
B (MHz) 398.458628(35) 398.458568(34)
C (MHz) 382.831179(35) 382.831125(34)
χaa (MHz) −1798.4057(57) −1798.4013(48)

χbb − χcc (MHz) −366.213(26) −366.224(13)
|χab| (MHz) 991.7039(43) 991.7058(35)
Caa (kHz) 1.98(15) 2.19(16)
Cbb (kHz) 0.90(15) 0.91(11)
Ccc (kHz) 1.36(15) 1.30(10)
−DN (kHz) −0.008408(38) −0.008305(39)
−DNK (kHz) −0.01023(11) −0.00986(12)
−DK (kHz) −0.0516(12) −0.05172(94)
d1 (kHz) −0.004145(12) −0.000394(11)
d2 (kHz) 0.0000444(26) 0.0000377(25)

Number of lines 776 776
rms (kHz) 5.0 5.14

(a) Residuals for ipfp plotted against frequency (b) Residuals for ipfp plotted against lower N

Figure 4.4. Residuals for ipfp plotted against either frequency lower N . Highlight-
ing indicates lower Ka and the horizontal line indicates the fit RMSE

FTMW spectrometer. A total of 312 transitions up to N = 15 and Ka = 2 all in the ground

torsional state with an experimental accuracy of 2 kHz [111] were fit in RAM36hf. This molecule

provides an interesting interaction of the RAS and the axes of the quadrupole moment as well as

a lower barrier test case. In the PAS, both the methyl rotor and the chlorine atom are off-axis

and thus require more coupling terms for proper treatment. However, in the RAS, the chlorine is
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also moved much closer to the ρ axis. As a result, the value of χxz is heavily diminished and was

excluded from the Hamiltonian in [111]. Two experimental transitions at 11985.9111 MHz and

11986.9271 MHz were excluded due to a suspected typographical error in the original work [111].

These are the 13/2 → 11/2 and 17/2 → 15/2 hyperfine components of the E state 818 → 717 in

the E states. These transitions are listed as being ∼660 MHz apart from the other two transitions

in the set. As a comparison, the 919 → 818 cluster in the E states is only spread by 0.41 MHz.

The complete treatment of the nuclear quadrupole in westerfit did allow for χxz to be determined

alongside a reduction in the RMS error. The parameters for both fits of this data are shown in

Table 4.3 with all parameters taking on their RAM values. However, C, χzz, and ρ all experienced

a reduction in precision with ρ being fit to four less digits of precision. The residuals of the new

fit are shown in Figure 4.5. These discrepancies may have emerged from differences in the nuclear

quadrupole implementations as well as the subtle changes in quantum state labels from impact of

the Hamiltonian matrix elements off-diagonal in N on the eigenvectors. This test has shown that

westerfit is capable of simultaneously addressing methyl torsions and nuclear quadrupole moments.

Table 4.3. Spectroscopic parameters for 2-F-4-Cl-tol determined by westerfit &
RAM36hf. Values in parenthesis are 1σ uncertainties of the last digit

Parameter (units) westerfit RAM36hf
A (MHz) 3030.11(19) 3036.35(23)
B (MHz) 864.753(83) 859.11(23)
C (MHz) 672.15(83) 672.4555(45)
Dab (MHz) −113.7(12) −125.9(14)
χaa (MHz) −70.23(26) −69.443(72)

χbb − χcc (MHz) 3.63(28) 2.329(51)
χab (MHz) −12.1(26) −
F (cm−1) 5.392521(fixed) 5.392521(fixed)

ρ 0.01831(24) 0.018022728(84)
V3 (cm−1) 223.751(91) 227.22(12)
−DN (kHz) −0.00821(17) −0.00809(22)
V3N (kHz) 0.283(14) −0.380(19)

Number of lines 310 312
rms (kHz) 5.7 7.5
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(a) Residuals for 2-F-4-Cl-tol plotted against fre-
quency

(b) Residuals for 2-F-4-Cl-tol plotted against lower
N

Figure 4.5. Residuals for 2-F-4-Cl-tol plotted against the transition frequency and
highlighted by the lower Ka state. The A and E states trend in opposing directions
as lower J increases.

Figure 4.6. The MP2/cc-pwCVDZ structure of Cl-tol and its principal axes

4.3. Meta-Chlorotoluene

4.3.1. Improved ab initio Calculations. The geometry results of Ref. [97] showed that

m-Cl-tol has a C1 structure at its equilibrium geometry. After confirming this with an MP2/cc-

pVDZ calculation in ORCA [92] with symmetry disabled, the structure of m-Cl-tol was optimized

at MP2/cc-pwCVDZ in CFOUR [91] using a fully C1 Z-matrix. The self-consistent field (SCF) was

set to converge when the largest change in the density matrix was 10−9 and geometry convergence

was set to 10−9 Hartree/Bohr. A relaxed potential energy scan was calculated with the same SCF

convergence but the geometry convergence relaxed to 10−5 Hartree/Bohr. This scan was run by
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fixing the methyl rotor dihedral angle and optimizing the rest of the geometry. The angle was

incremented with a 1◦ step-size across a full 360◦ span. The step energies are plotted against the

angle of the methyl group and the phenyl plane in Figure 4.7, showing clear six-fold behavior, and

were fit to the following Fourier expansion:

V (α) =
V3
2

(1− cos 3α) +
V6
2

(1− cos 6α) +
V9
2

(1− cos 9α) +
V12
2

(1− cos 12α) (4.12)

The fit was terminated at the V12 term as that was the first term to be less than V3. The potential

terms are tabulated in Table 4.4. The PES makes for a very unusual spectroscopic case as the V6

term is dominant over a nonzero V3 term. In general, an expansion led by the V6 term is indicative

of a C2v symmetry in the molecular frame. This makes V3 zero by symmetry, such as the cases of

toluene or para-fluorotoluene. Other meta substituted toluenes such as meta-fluorotoluene [112]

or 3,4-difluorotoluene [113] are led by a V3 term such as the case of meta-fluorotoluene which has

a V3 of about 17 cm−1. It is more typical for terms in this Fourier expansion to be on the order of

5% of the preceding term, thus making the fit of this molecule of particular interest.

Figure 4.7. MP2/cc-pwCVDZ relaxed methyl rotor scan of m-Cl-tol and then fit
up to Equation 4.12

4.3.2. Refit of Spectrum. First just the A states were fit to provide the initial estimations

of the hyperfine and distortion terms as shown in Table 4.5. Both fits were conducted in the

Ir representation. This fit showed reasonable agreement with a comparable analysis with SPFIT

though they did not report an exact line count or RMS for this fit [97].
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Expansion Term Operator MP2/cc-pwCVDZ (cm−1)
V3

1
2(1− cos 3α) 0.1207

V6
1
2(1− cos 6α) 8.4047

V9
1
2(1− cos 9α) −0.3921

V12
1
2(1− cos 12α) 0.0465

Table 4.4. Fit potential terms for m-Cl-tol

Parameter westerfit SPFIT [97]
A (MHz) 3373.33218(53) 3373.33216(42)
B (MHz) 1195.33775(37) 1195.337969(43)
C (MHz) 882.501635(37) 882.5014296(262)
χaa (MHz) −59.8964(3) −59.8964(23)

χbb − χcc (MHz) −5.9533(39) −5.9533(31)
χab (MHz) 33.036(45) 33.0452(287)
−DN (kHz) −0.03381(17) −0.037381(171)
−DNK (kHz) 0.0081(15) 0.02951(103)
−DK (kHz) −0.870(1) −0.891(83)
d1 (kHz) −0.02381(22) −0.011901(85)
d2 (kHz) −0.00357(19) −0.1066(46)

Number of Lines 240
RMS (kHz) 12.7

Table 4.5. Fit of the A state transitions of meta-chlorotoluene.

From here, a full fit of all parameters was attempted using the non-perturbative hyperfine

treatment and a global torsional basis including 11 torsional states. However, as pointed out by Dr.

Kleiner [97,114], it is not possible to fit both V3 and V6 using information from only the ground

torsional state. Table 4.6 shows the results from 3 fits: one in which V3 and V6 were adjusted,

one in which only V6 was adjusted, and lastly the V3 fixed fit from [97]. In both fits, the RMS is

lower than that of Ref. [97] while using a smaller total number of parameters. This limitation was

done to improve the uncertainties on the potential terms as the inclusion of additional parameters

reduced the precision. The attempt to float both V3 and V6 resulted in a substantially lower RMS

but neither potential term was fit to even a single digit of precision. In the second fit, V3 was

locked to the MP2/cc-pwcVDZ value as this term contributes less to the torsional barrier structure

than the V6 term. This fit yielded greater precision on all the floated torsional terms. Typically an

∼ 8 cm−1 difference between the calculated and experimental torsional barrier would be regarded

as good agreement though the general uncertainty on these terms is concerning. Many of the
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numerical differences between the two programs result from the RAM approach of westerfit and

the XIAM’s internal conversion from PAM to RAM [50]. The PAM values for the rotational

constants and nuclear quadrupole terms can be converted to RAM through δ and the RAM values

can be restored to PAM through Dab. Due to the lack of confidence in the potential term values,

neither of these conversions have been done here. The residuals for the westerfit V 3 fixed fit are

plotted in Figure 4.8; clearly the high RMS transitions belong to the E states which are more

sensitive to the torsional operators in the Hamiltonian. Inclusion of transitions from torsional

states above vt = 0 will likely be necessary properly determine the torsional parameters.

Table 4.6. Spectroscopic parameters for meta-chloro-toluene determined by west-
erfit and XIAM. Values in parenthesis are 1σ uncertainties of the last digit

Parameter (units) westerfit Neither fixed westerfit V3 Fixed XIAM V3 Fixed [97]
A (MHz) 3131.34(32) 3131.305(18) 3334.3779(40)
B (MHz) 1393.7592(24) 1393.7598(17) 1191.3563(11)
C (MHz) 882.5027(24) 882.5027(17) 882.50134(58)
Dab (MHz) −626.7339(48) −626.7347(31) −
χaa (MHz) −33.2(24) −33.2(24) −60.324(97)
χab (MHz) 51.68(33) 51.68(33) 32.47(63)

χbb − χcc (MHz) −32.69(25) −32.69(25) −5.58(12)
F (cm−1) 5.26805(fixed) 5.26805(fixed) 5.30448(fixed)

ρ 0.01663(13) 0.0166422(71) −
δ(deg) − − 42.1036(2)

V3 (cm−1) 0.5(28) 0.1207(fixed) 2.452(fixed)
V6 (cm−1) 14(19) 15.88(8) −17.197(36)
−DN (kHz) −0.0209(22) −0.0208(22) 0.0283(36)
−DNK (kHz) 0.1500(59) 0.1450(59) 0.018005(fixed)
−DK (kHz) −0.8000(21) −0.7900(21) 0.834915(fixed)
d1 (kHz) − − −0.0085(24)
d2 (kHz) − − 0.00196(fixed)
Dπ2J (kHz) − − 16.17(65)
Dπ2K (kHz) − − 162(13)
Dπ2− (kHz) − − 15.23(19)

Number of lines 336 336 336
RMS (kHz) 17.7 29.6 41.7

4.4. Conclusion

The program, westerfit, has been developed to provide a complete treatment of the rota-

tional spectra of Cs molecules with one internal rotor and one spin source. The code has been

shown to give comparable results to the existing programs which are capable of addressing either
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(a) Residuals for m-Cl-tol plotted against frequency (b) Residuals for m-Cl-tol plotted against lower N

Figure 4.8. Residuals for m-Cl-tol plotted against the transition frequency and
highlighted by the lower Ka state

the torsion or the spin. In the particularly low barrier case of meta-chlorotoluene, westerfit was able

to provide a substantial reduction in error as compared to a prior fit attempt using XIAM [97].

However, the lack of torsionally excited spectra prevented a complete fit of the unusual poten-

tial structure. The code has been publicly released and should serve as a beneficial tool to other

spectroscopists attempting to study complicated rotational spectra.
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CHAPTER 5

On the Coupling of Electron Spin & Internal Rotation

Radio astronomy has allowed for the astrochemical detection of both radicals and complex

organic molecules. However, there have not yet been any detections of methyl containing radical

species. This is due to the combined complexity of the unpaired electron’s spin-rotation coupling

and the methyl rotor’s torsion-rotation coupling. The lack of a suitable model and program to study

molecules with both complications has prevented study both in the laboratory and in space. The

program SPFIT [40] has been proven to be an incredibly powerful tool for studying molecules with

internal angular momentum coupling such as spin-rotation coupling or nuclear hyperfine coupling.

However, it lacks a way to properly treat methyl rotors with barrier heights lower than ∼ 500

cm−1 [41]. The internal rotor problem has been well addressed by Rho Axis Method programs

such as BELGI [44] and RAM36 [64]. These in turn lack the necessary operators and basis set

to address the spin-rotation coupling of radical species. The program XIAM [45] is able to treat

both internal rotation and spin-rotation. Unfortunately, the limited torsional basis in the second

diagonalization stage causes it to struggle in low barrier cases and the perturbative spin-rotation

treatment prevents its applicability to molecules with large amounts of spin-rotation coupling. In

adition, the SR treatment in XIAM is poorly document and does not appear to have been used in

any published work.

In order to study this class of molecules, the program in the previous chapter was developed

and the specific interactions of the spin and torsion shall be investigated here. A specific molecular

example of meta-methyl-phenoxyl (m-MePhO) as shown in Figure 5.1 will be used. The Cs frame

allows for many imaginary terms in the Hamiltonian matrix to be ignored and the phenyl ring

structure is relatively rigid thus reducing heavy torsion-vibration coupling and allowing the focus

to be on the torsional couplings. Additionally the presence of a radical but no other strong spin
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Figure 5.1. The structure of meta-methyl-phenoxyl calculated at CCSD(T)/cc-
pwCVDZ and shown with its principal axes.

sources limits the amount of spin-spin coupling necessary to make initial explorations into its

energetic structure.

This chapter will open with deriving the spin-torsion interaction term and expanding the

Rho Axis Method transformation to include spin. Then potential definitions of the spin-torsion

interaction parameter will be introduced and discussed. From here the various second order coupling

operators will be examined using the ab initio parameters for m-MePhO. This will provide context

for the relative magnitudes of the spin-torsion coupling for the following section which will examine

how the spin-torsion coupling evolves across more general spectroscopic trends. Lastly the simulated

spin-torsion-rotation spectrum of m-MePhO will be examined to provide a view as to how the spin-

torsion coupling impacts the spectrum.

5.1. Derivation of Spin-Torsion Coupling Interaction

This case is limited to molecules with a Cs frame, a C3v internal rotor, and doublet spin.

Per inspection of the G6 character table, shown in Table 5.1, only two symmetrically allowed
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Table 5.1. Character Table for the G6 [68]

E (123) (23)*
G6 1E 2C3(z) 3σv Operators
A1: 1 1 1 Jy, Ny, Sy, cos 3α
A2: 1 1 -1 Jz, Nz, Sz, Jx, Nx, Sx Pα, sin 3α
E: 2 -1 0

operators couple the spin and torsion at second order.

Hst,PAM = ηzPαSz + ηxPαSx (5.1)

By rotating the coordinate system into the Rho Axis System, the methyl top axis is positioned

such that the only the z axis coupling remains. Another way to approach this transformation is

through application of a contact transformation on the group theoretically complete second order

Hamiltonian, HGC . This allows HRAM to be derived by:

HRAM = e−ıĜHGCe
ıĜ = HGC + ı

[
HGC , Ĝ

]
+ ... (5.2)

The expansion is terminated at the first expansion term but could be continued out further by

evaluating additional commutators. This Hamiltonian is built from every A1 operator of second

order in Table 5.1. Operators with a power greater than 1 on any projection of S are neglected as

they contribute a constant amount of energy to doublet states. The operators will also be written the

“standard form” to ensure Hermiticity and to minimize interdependences between operators [32].

HGC = aN 2
z + bN 2

x + cN 2
y + d (NzNx +NxNz) + fP2

α + gPαNz + hPαNx + j cos 3α+

kNzSz + lNxSx +mNySy + n (NzSx + SxNz) + p (NxSz + SzNx) + rPαSz + sPαSx (5.3)

Similarly, the reduction operator of Ĝ is constructed through all the A1 operators of first order in

Table 5.1.

Ĝ = αNy + βSy (5.4)
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Carrying out the algebra, the torsional coupling operators reach this intermediate result:

HGC + ı[HGC , Ĝ] = ...+ (g + αh)PαNz + (h− αg)PαNy + ...

+ (r − αs+ βh− βs)PαSz + (s+ αr − βg + βr)PαSx (5.5)

Setting α = −h
g removes the x-axis torsion-rotation coupling term, thus producing the typical

RAM Hamiltonian. All of the terms independent of spin are not modified by the βSy term so the

rotational constants have the same transformation as their spin-free RAM values, thus making this

a spin-inclusive extension of the RAM. An additional contact transformation to remove ρz and ηz

would qualify this as an Internal Axis Method (IAM) [46]. Defining β = sg−hr
g(g−r) then allows for

the removal of the x-axis spin-torsion coupling term. Just one coupling term remains as the y-axis

interaction was already removed by symmetry.

Hst = ηPαSz (5.6)

Values of the spectropic parameters are shifted slightly as a result of the contact transformation.

However, none are as dramatic as the full removal of an operator. For example, the RAM value of

εzz becomes:

εRzz = εzz +
ρx(εzx − εxz)

ρz
+
εzx(ρzηx − ρxηz)

ρz(2Fρz + ηz)
(5.7)

Equation 5.7 replaces the parameters in Equation 5.3 with their principal axis values, including the

removal of d as it equals zero.

The wavefunction for this problem shall be a simple product between the Hund’s case

(b) function of Equation 2.48 and the free rotor basis of Equation 2.36. The projection onto the

laboratory frame will be dropped in this chapter.

|ψ〉 = |m〉|JSNK〉 (5.8)

As the torsions are not directly coupled to the other sources of angular momentum, the matrix

element calculation can be readily partitioned as:

〈ψ′|PαSz|ψ〉 = 〈m′|Pα|m〉〈J ′S′N ′K ′|Sz|JSNK〉 (5.9)
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The torsional part for this is very simply:

〈m′|Pα|m〉 = mδm′,m (5.10)

where δ is the Kronecker delta. The spin contribution to the matrix element can be determined

using spherical tensor notation and starting from the Wigner-Eckart Theorem [18]:

〈J ′S′N ′K ′|T 1
0 (S)|JSNK〉 = (−)N

′−K′

 N ′ 1 N

−K ′ 0 K

 〈J ′S′N ′||T 1
0 (S)||JSN〉 (5.11)

The Wigner 3j symbol requires this term to be on-diagonal in K. The reduced matrix element can

be evaluated from Equation 7.1.8 of Edmonds [18]:

〈JS′N ′||T 1
0 (S)||JSN〉 = (−)N+S+J+1

√
(2N + 1)(2N ′ + 1)

S′ N ′ J

N S 1

 〈S′||T 1
0 (S)||S〉 (5.12)

The term in {} is a Wigner 6j symbol [18] and the expression is on-diagonal in J . Because the

coupling scheme is N = J − S, N in Equation 5.12 corresponds to the J in the expression in

Edmonds while J and S correspond to j1 and j2. The final reduced matrix element is simply:

〈S′||T 1
0 (S)||S〉 = δS′,S

√
S(S + 1)(2S + 1) (5.13)

This term forces the operator to be on-diagonal in S. Reassembling the spherical tensor operator

gives the expression:

〈JSN ′K|T 1
0 (S)|JSNK〉 = (−)N

′−K+N+S+J+1

√
(2N + 1)(2N ′ + 1)S(S + 1)(2S + 1)

 N ′ 1 N

−K 0 K

S N ′ J

N S 1

 (5.14)
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Reintroducing the torsional component, the full matrix element for Equation 5.6 is:

〈JSN ′Km|PαSz|JSNKm〉 = (−)N
′−K+N+S+J+1

m
√
(2N + 1)(2N ′ + 1)S(S + 1)(2S + 1)

 N ′ 1 N

−K 0 K

S N ′ J

N S 1

 (5.15)

This operator is on-diagonal in all of the quantum numbers except N which contributes nonzero

matrix elements when ∆N = 0, ±1 The direct expression for the on-diagonal term is:

〈JSNKm|PαSz|JSNKm〉 = 2Km
N(N + 1) + S(S + 1)− J(J + 1)

N(N + 1)
(5.16)

and the off-diagonal term is:

〈JSN − 1Km|PαSz|JSNKm〉 =

m
√
(N2 −K2)

2N

√
(J + S +N + 1)(S +N − J)(J +N − S)(J + S −N + 1)

(2N − 1)(2N + 1)
(5.17)

The PαSz operator and matrix element was derived by Hirota for studying the acetyl radical [22],

and it differs from the one presented here by a factor of two. The spin-torsion parameter was not

tested in that paper; as it was left fixed to zero because they onlyonly fit states with Ka equal to

zero for which the PαSz operator has a minimal impact.

5.2. Potential Definitions of Spin-Torsion Interaction Term

Now that the spin-torsion operator and its matrix element have been defined, the question

becomes how to define the spin-torsion parameter. The definition for this term would be crucial for

predicting the magnitude of the operator’s impact on a spectrum and then for extracting physical

information from the experimentally determined values. One possible definition for the spin-torsion

parameter would be to follow the same logic as the definition of the spin-rotation tensor [115].

η
?
=

∂2E

∂Sz∂Pα
(5.18)
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Hirota proposed the following as an extension of spin-orbit coupling.

η
?
= 2FASO

∑
m

|〈0|Lz|m〉|2

E0 − Em
(5.19)

As neither of these approaches have been implemented into an ab initio package, an alternative

approximation becomes necessary. An exceedingly crude but trivially solvable approach is to assume

that the spin-torsion, torsion-rotation, and spin-rotation interaction parameters on the z axis follow

a consistent mathematical motif. This approach is inspired by the torsion-rotation coupling at

second order, ρFPαNz. The effective torsion-rotation coupling parameter, ρF , is constructed from

the structural parameters.

ρF = ρ
F0

1− ρ
=

AF0

F0 −A
(5.20)

An effective rotational constant, denoted G, can be created to generate a similar mathematical

structure as Equation 5.20 for the spin-rotation interaction and can then be determined as:

εzz =
AG

G−A
⇒ G =

Aεzz
A+ εzz

(5.21)

Finally, this pattern can be continued using F0 and G which allows the spin-torsion interaction

term to be approximated by:

η
?
=

FG

G− F
=

AεzzF0

Aεzz − F0A− F0εzz
(5.22)

Equation 5.22 uses the RAM values of all the listed parameters to determine the RAM value of

η. However, since the RAM transformation of εzz depends on the PAM values of ηz and ηx, the

PAM value of εzz will be used for now. The validity of this approach remains to be seen but, in

the absence of more rigorous approaches, it will be used in this chapter.

5.3. ab initio Parameters for Meta-Methyl-Phenoxyl

Most of the parameters used in this work were calculated at the CCSD(T)/cc-pwCVDZ

level of theory with a UHF reference using a developmental version of CFOUR [91]. The SCF,

CC, and linear equation convergences were set to 10−9 along side the geometry convergence of

10−9 Hartree/Bohr. The structure was optimized at this level to obtain the equilibrium rotational

constants and the principal axis coordinates are listed in Table C.1. This geometry was run through
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the moments.f script from I. Kleiner to determine F and ρ. A potential energy scan was run by

stepping the methyl rotor dihedral angle 5◦ and reoptimizing the rest of the geometry at CCSD/cc-

pwCVDZ. For this surface, a fully C1 z-matrix was used and the geometry convergence criteria was

relaxed to the default 10−5 Hartree/Bohr. The energy as a function of dihedral angle was fit to

Equation 2.32 to obtain V3 and V6. The spin-rotation tensor was calculated at CCSD/cc-pwCVDZ.

To complete the second order Hamiltonian, η was calculated using the CCSD(T)/cc-pwCVDZ A

and F0 values and the CCSD/cc-pwCVDZ εzz value using Equation 5.22. As in Section 3.2.2, a

harmonic frequency calculation at CCSD/cc-pwCVDZ was carried out using finit differences for

the gradients, yielding simulated values for the quartic centrifugal distortion terms. The harmonic

frequencies and their intensities are listed in Table C.2.

Parameter Operator ab initio Unit
A N 2

z 3666.961a MHz
B N 2

x 1833.626a MHz
C N 2

y 1231.939a MHz
Dab {Nz,Nx} −715.182a MHz
F P2

α 5.268a cm−1

ρ PαNz 0.01179a –
V3

1
2 (1− cos 3α) 174.861b cm−1

εzz NzSz 306.516b MHz
εxx NxSx 65.3026b MHz
εyy NySy −15.104b MHz
εxz {NxSz} −98.938 b MHz
εzx {NzSx} −199.655b MHz
η PαSz −283.378c MHz

∆N N 4 0.0628d kHz
∆NK N 2N 2

z 1.231d kHz
∆K N 4

z −0.687d kHz
δN

1
2{N

2,N 2
+ +N 2

−} 0.0220d kHz
δK

1
2{N

2
z ,N 2

+ +N 2
−} −0.839d kHz

V6
1
2 (1− cos 3α) −6.093b cm−1

Table 5.2. Predicted parameters for meta-methyl-phenoxyl. a CCSD(T)/cc-
pwCVDZ, b CCSD/cc-pwCVDZ, c A, F , εzz via Eq. 5.22,d fc-MP2/cc-pwCVDZ

5.4. Impact of Spin-Torsion on Energy Levels for meta-Methyl-Phenoxyl

Using the program developed in Chapter 4 and a torsional basis of 17 states, the energy

levels for m-MePhO were calculated up to J = 31/2 and vt = 2. This maximum J value was
74



Figure 5.2. Potential energy of m-MePhO as a function of the methyl rotor dihe-
dral angle

chosen to give just a few spin-rotational levels of the first torsionally excited states that are above

the barrier height for both the A and E torsional symmetries. Looking first at Figure 5.3, clear

clusters of energy levels form around six different 〈P2
α〉 values. The lowest energy cluster is the

vt = 0 A state cluster with the vt = 0 E state cluster immediately above it. The next lowest cluster

has a parabolic shape and corresponds to the vt = 1 states of E symmetry. The parabolic shape

emerges from the increased energy difference between states of ±K [46]. The next two clusters

are the A states of vt = 1 and vt = 2. In the free rotor limit of the purely torsional case, these

states are degenerate so determining the best method of assigning the states after diagonalization

in the torsion-rotation case can be difficult. In this specific case, there is a conflict of energy-based

assignment versus the expectation value-based assignment. Neither of these A clusters is higher

on both expectation value and energy. Because the torsional A state levels alternate between A1

and A2, starting with A1 in the ground state, the higher energy state is assigned to vt = 2 as it

has the same symmetry as the ground state. The lower of the two clusters is therefore assigned as

vt = 1. This symmetry and energetic assignment are consistent with the correlation diagram given

in Figure 2 of [16]. The last cluster, isolated from the others, contains the vt = 2 E states.

Before examining the impacts of spin-torsion, a reference point of the other dominant

coupling operators will be established. First the various couplings in m-MePhO will be examined.
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Figure 5.3. Expectation values of the torsional angular momentum squared plot-
ted against the energy of each state. The states are highlighted by the torsional
symmetry and torsional barrier height is marked for visual reference

Figure 5.4 shows the torsion-rotation coupling expectation values, 〈PαNz〉 plotted against the

energy. The magnitude of these interactions consistently increase with vt with the E states having

larger expectation values than the A states. The E states generally take on a more parabolic

structure of the expectation value while the A states seem to trend in a singular direction within

a given vt. The vt = 1 A states resemble the vt = 0 A states with greater magnitude. In the

free rotor and symmetric top limits, the expectation value for this operator would be mK. The

highest K value in this simulation is 16. In the ground A states, all mK pairs are zero in this limit

and for the ground E, the maximum |mK| = 16. However, Figure 5.4a shows that the vt = 0 A

states exceed this prediction while the vt = 0 E states undershoot these predictions. On the other

end, the highest |mK| would be ≈ 64 for the m = 4/vt = 2 E state of K = 16. The spread of

〈PαNz〉 values for this torsional state approaches but does not quite reach this value. The energetic

contributions from torsion-rotation coupling range from ones to tens of 2ρF which is on the order

of ones to tens of GHz.

The next effect of the spin-rotation interaction is shown in Figure 5.5. The NzSz operator

shows a parabolic form within each N grouping. Additionally, as this operator does not act on m, it

would be expected that there is no meaningful change in the expectation values from one torsional
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(a) vt = 0 (b) vt = 0, 1, 2

Figure 5.4. Expectation values of the torsion-rotation coupling term plotted
against the energies of the respective states. This operator contributes more to
a given states energy level than the spin-torsion interaction does.

(a) vt = 0 (b) vt = 0, 1, 2

Figure 5.5. Expectation values of the z-axis spin-rotation coupling term plotted
against the energies of the respective states. This operator also contributes more to
a given state’s energy level than the spin-torsion interaction does. The coloration
in panel b is consistent with Figure 5.4b

state to the next. This prediction is confirmed by Figure 5.5. In an uncoupled representation at

the symmetric top limit, 〈NzSz〉 = KΣ = ±K/2. The maximum value for this would be 8 and

this value is very nearly reached thus showing general agreement with the roughly predicted values.

The expectation values ranging from ones to almost tens of εzz correspond to energy contributions

of hundreds of MHz to ones of GHz.
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(a) vt = 0 (b) vt = 0, 1, 2

Figure 5.6. Expectation values of the spin-torsion coupling term plotted against
the energies of the respective states. The magnitudes of the values increase with
each vt and are larger on the E states than the A states.

The spin-torsion interaction is depicted in Figure 5.6. The contribution from the spin-

torsion interaction is similar to the spin-rotation interaction at vt = 0, but the magnitude and

spread of the values change visibly with increasing in torsional angular momentum like the torsion-

rotation interaction. The most critical difference here is the magnitude. In the ground state, this

interaction has values almost as much as two orders of magnitude smaller than the spin-rotation

coupling. Then in the E states of vt = 2, the maximum contribution is only about a fourth of the

spin-rotation interaction. This makes the energetic contribution of this term on the order of tens

of megahertz in the ground state and up to hundreds of megahertz in the torsionally excited states.

Digging deeper into the behavior of this operator, Figure 5.7 shows the expectation value

plotted against 〈Pα〉 with triangle markers to denote if N−J is positive or negative and highlighted

by
√

〈N 2
z 〉 for the vt = 0 and 1 states. This last quantity is used to provide an approximate |K| value

as the post-diagonalization quantum number assignment is a complicated procedure, as mentioned

in Chapter 4. Panels a and b show the vt = 0 states. For both torsional symmetries, the states

with N = J + 1/2 tend to have positive contributions while the N = J − 1/2 states tend to

have negative contributions. The A states tend to have a smoother arc shape while the E show

more elaborate shapes stemming from the decreased symmetry with respect to K. Additionally in

vt = 0, most of the states with negative contribution have N < J but this becomes more mixed
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as vt increases. There is a clear increase with respect to |K| and in the E states, this relation is

roughly parabolic with respect to 〈P2
α〉. The greatest magnitudes steadily approach ±1/2 as V3

decreases, approaching the free rotor limit behavior.

(a) vt = 0, σ = 0 (b) vt = 0, σ = 1

(c) vt = 1, σ = 0 (d) vt = 1, σ = 1

Figure 5.7. Expectation values of the spin-torsion coupling term plotted against
the expectation values of the square of the torsional angular momentum operator for
the respective states with highlighting based the square root of the z axis projection
of the molecular angular momentum.

Stepping to higher torsional levels, Figure 5.7c shows the vt = 1 A states. While this

mostly resembles the ground torsional state with just larger values, it can be seen that the relation

of N = J − 1/2 and N = J + 1/2 states has been reversed such that now the states with N > J

have the negative contribution, likely as a result of the change from A1 to A2 in torsional symmetry.

Figure 5.7d shows the vt = 1 E states and the most chaotic spread of values. The N = J + 1/2
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Table 5.3. Reference parameter values used in spin-torsion tests

Parameter Operator Value Unit
A N 2

z 3000.0 MHz
B N 2

x 1200.0 MHz
C N 2

y 1000.0 MHz
F P2

α 5.1021 cm−1

ρ PαNz 0.020014 –
V3

1
2 (1− cos 3α) 100.00 cm−1

εzz NzSz 300.00 MHz
εxx NxSx 120.00 MHz
εyy NySy −100.00 MHz
η PαSz −273.22 MHz

and N = J − 1/2 groups form two clusters with opposing correlations with the N > J trending

downward with increasing torsional angular momentum and the N < J trending upwards. Most

interestingly is that there are a number of states with low |K| but relatively high spin-torsion

interactions which is an occurrence not seen in any other torsional state.

5.5. Interactions of Spin-Torsion With Other Spectroscopic Properties

To provide a more generalized view, a series of simulations were run on a hypothetical

molecule with simplified set of parameters. Here we only consider only the on-diagonal terms of

the inertial and spin-rotation tensors. Thus the model Hamiltonian appears as:

H = AN 2
z +BN 2

x+CN 2
y +εzzNzSz+εxxNxSx+εyyNySy+F (Pα − ρNz)

2+
V3
2

(1− cos 3α)+ηPαSz

(5.23)

The parameters are listed in Table 5.3 and the subfigure using these parameters will be marked

with � for Figures 5.8–5.18 to aid comparison across the sequence of figures. The parameters

B, V3, ρ, εzz, εxx, εyy, and η are adjusted in the different test cases while all others will remain

fixed at the listed values. Similarly to Figure 5.7, upward triangle markers will be used to denote

states with N = J + 1/2 and downward triangle markers will be used for N = J − 1/2. Figure

5.8 demonstrates the result of adjusting B from 1100 to 1600 MHz in steps of 100 MHz such that

κ = −0.9, −0.8, −0.7, −0.6, −0.5 and −0.4. The prolate range was selected as the program is

currently hard-coded to only support the prolate Ir representation and only couple the torsion-

rotation & spin-torsion to the a-axis in this representation. This set of figures shows the difference
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(a) κ = −0.9, B = 1100 MHz (b) κ = −0.8, B = 1200 MHz �

(c) κ = −0.7, B = 1300 MHz (d) κ = −0.6, B = 1400 MHz

(e) κ = −0.5, B = 1500 MHz (f) κ = −0.4, B = 1600 MHz

Figure 5.8. The change in energy between including and excluding η in the second
order Hamiltonian plotted against the state energies for six different κ values
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in energy between including a non-zero η and fixing it zero in the spin-torsion-rotation problem as

plotting against the energy of the states for the different κ values. These figures show very little

variation with the exception of the κ = −0.7 plot which seems to experience a slight increase in

the energetic shifts. The changes are quite small at only about 0.013% of the total energy. The

consistencies here make sense as in an uncoupled basis, the pure rotational Hamiltonian and the

spin-torsion coupling operator do not act on the same parts of the wavefunction and would thus be

relatively independent.

The spin rotation values were stepped across 1%, 5%, 10%, 20%, 100%, and 1000% of their

respective rotational constants with εyy being given a negative value to emulate the structure of

m-MePhO’s spin-rotation tensor. The spin-torsion coupling parameter, η, was recalculated at each

of these by equation 5.22 to account for the change in εzz. Thus the various trials used values

of −29.709, −142.99, −273.22, −501.67, −1515.2, and −2777.8 MHz respectively, and these results

are shown in Figure 5.9. The energy differences seem to scale rather directly with the parameter

increases in subplots a through c. At the larger values, states were less consistently assigned thus

creating the large outliers seen in the e and f subfigures. The axes on the last two are restricted to

±5 GHz and ±50 GHz respectively in attempt to follow the progression set by a, b, and c. These

also seem to show less increase in the energetic change relative to the parameter value starting at

subplot d. Due to the amount of outliers in higher torsional states, the results for just the ground

A and E states are shown in Figure 5.10. At low εgg/Bgg values, the spread of N = J + 1/2

and N = J − 1/2 states have a generally symmetric arrangement. This symmetry is degraded

with larger relative magnitudes of the spin-rotation tensor. While the change in energy remains

consistent on both sides, the N = J + 1/2 do not extend to as high energy levels and thus have

a larger relative impact from the spin-torsion interaction. Figure 5.11 focuses on the ground A

states by plotting the change in energy in units of the spin-torsion coupling parameter against the

expectation value of P2
α with highlighting based on the square root of the expectation value of N 2

z .

The first expectation value was chosen to provide a reflection of the amount of torsional angular

momentum while the second to provide an approximate |K| value. Each of these cases show the

magnitude of the energetic change increase with respect to both torsional angular momentum and
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(a) εgg/Bgg = 1% (b) εgg/Bgg = 5%

(c) εgg/Bgg = 10% � (d) εgg/Bgg = 20%

(e) εgg/Bgg = 100% (f) εgg/Bgg = 1000%

Figure 5.9. The change in energy between including and excluding η in the second
order Hamiltonian plotted against the state energies for six different εgg/Bgg values
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(a) εgg/Bgg = 1% (b) εgg/Bgg = 5%

(c) εgg/Bgg = 10% � (d) εgg/Bgg = 20%

(e) εgg/Bgg = 100% (f) εgg/Bgg = 1000%

Figure 5.10. The change in energy between including and excluding η in the second
order Hamiltonian plotted against the state energies for six different εgg/Bgg values
for only the vt = 0 A and E states.
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(a) εgg/Bgg = 1% (b) εgg/Bgg = 5%

(c) εgg/Bgg = 10% � (d) εgg/Bgg = 20%

(e) εgg/Bgg = 100% (f) εgg/Bgg = 1000%

Figure 5.11. The change in energy, in units of η, between including and excluding
η in the second order Hamiltonian plotted against the 〈P2

α〉 for the ground A states
for six different εgg/Bgg values. Subfigure c has 2 outliers cut off at this scale
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(a) εgg/Bgg = 1% (b) εgg/Bgg = 5%

(c) εgg/Bgg = 10% � (d) εgg/Bgg = 20%

(e) εgg/Bgg = 100% (f) εgg/Bgg = 1000%

Figure 5.12. The change in energy, in units of η, between including and excluding
η in the second order Hamiltonian plotted against the 〈P2

α〉 for the ground E states
for six different εgg/Bgg values. Panel c has been cropped to hide two outliers
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approximate |K| as well as the direction of the change being consistent with the sign of J − N .

The overall magnitude is consistent across all εgg/Bgg values. In the A states, the same overall

curvature is observed though there is a reduction in the spread of the energy changes along these

curves. Subfigure 5.11e does disagree with trend of direction agreeing with the sign of J −N likely

due to the 1:1 ratio between the spin-rotation tensor and the inertial tensor causing a number of

states to be assigned differently with and without η. Figure 5.12 focuses on the ground E states.

The E states maintain their structure of 2 intersecting curves for N = J + 1/2 and N = J − 1/2

but with a similar tightening of the vertical spread to the A states, particularly in the N = J +1/2

states. Outliers resulting from state assignment disagreement have been excluded from subfigure e

for a clearer view of the trend. This assignment disagreements in subfigure e likely originate from

the comparable orders of magnitude in the off-diagonal elements from the pure rotation and the

spin-rotation operators. This would result in a more even distribution of basis state contributions

thus increasing the difficulty of a confident singular assignment.

Figures 5.13–5.15 examine the interaction of the spin-torsion coupling and the barrier

height, using V3 values of 200, 100, 50, and 25 cm−1. Reducing the barrier height from 200 cm−1 to

100 cm−1 shows a visible jump in the change in energy particularly in the vt > 0 states. Subfigures

d, e, and f unfortunately suffer from heavy state assignment disagreement as both their vt = 1

and vt = 2 A states are above the barrier height thus causing them to be closer to the free rotor

basis states of m = −3 and m = +3 respectively. As they are degenerate in the free rotor limit,

meaningfully distinguishing between them becomes increasingly difficult and futile. This leads to

differing same quantum number assignment when η is and is not included. Figure 5.14 focuses

on the ground A states and uses the same axes and highlighting as Figure 5.11. The change in

energy in units of η decreases with the barrier height alongside the 〈P2
α〉 as V3 approaches zero, the

torsions behave more like free rotor states for which 〈0|Pα|0〉 = 0. Additionally since the torsional

momentum is decreasing, so does the impact of the spin-torsion interaction. The overall shape of

the energy changes is consistent across the different barrier heights. The E states show a more

interesting evolution as is visible in Figure 5.15. The N = J + 1/2 states and the N = J − 1/2

states each form separate curves with an inflection point near 〈N 2
z 〉 = 0 and opposing sign to one
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(a) V3 = 500 cm−1 (b) V3 = 200 cm−1

(c) V3 = 100 cm−1 � (d) V3 = 50 cm−1

(e) V3 = 25 cm−1 (f) V3 = 5 cm−1

Figure 5.13. The change in energy between including and excluding η in the second
order Hamiltonian for six different V3 values plotted against the state energies. The
energetic impact increases from a to c but then d, e, and f suffer from too much
state mixing of the excited torsional states for obvious visual trends to be concluded
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(a) V3 = 500 cm−1 (b) V3 = 200 cm−1

(c) V3 = 100 cm−1 � (d) V3 = 50 cm−1

(e) V3 = 25 cm−1 (f) V3 = 5 cm−1

Figure 5.14. The change in energy, in units of η, between including and excluding
η in the second order Hamiltonian plotted against the 〈P2

α〉 for the ground A states
for six different V3 values
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(a) V3 = 500 cm−1 (b) V3 = 200 cm−1

(c) V3 = 100 cm−1 � (d) V3 = 50 cm−1

(e) V3 = 25 cm−1 (f) V3 = 5 cm−1

Figure 5.15. The change in energy, in units of η, between including and excluding
η in the second order Hamiltonian plotted against the 〈P2

α〉 for the ground E states
for six different V3 values
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another. As V3 decreases, these curves widen and begin to have a crossing at both low 〈N 2
z 〉 and

high 〈N 2
z 〉 when 〈P2

α〉 has also increased. Unlike the A states, the magnitude of the energy change

increases was V3 decreases. Figures 5.7a and 5.7b are visually quite consistent with the results of

Figures 5.14 and 5.15.

Lastly, the interplay of the torsion-rotation coupling term ρ, and the spin-torsion coupling

term η have been inspected. The values of ρ were stepped across 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1

while all other parameters were held fixed. While there have been ρ values as high as 0.7 [69] in the

case of methanol, the range was capped at 0.1 as ρ ≈ A/F and the state assignments using higher ρ

values were very inconsistent between the inclusion and exclusion of η. Additionally, only positive

values of ρ were used as the term is defined such that −2Fρ < 0 [46]. The direct comparison

of the energy levels is shown in Figure 5.16, revealing much more dramatic changes across the ρ

span as the spread of energy levels changes much more than in the rotation and spin-rotation tests.

The amount of divergence in all but the vt = 2 E states increases with ρ. The vt = 2 E states

remain consistent in the differences across each ρ value. The comparisons of the ground A states

are shown in Figure 5.17. These energetic differences show a consistent structure with Figures 5.11

and 5.14. The spread of energy differences in units of η increases as ρ increases. It can also be

seen that the 〈P2
α〉 values also drift upward with ρ. This helps physically justify the the connection

between ρ and η as it makes sense that a parameter that can increase the torsional momentum

would thus increase the spin-torsion coupling. Continuing the trend, the E states show a much

more dynamic sequences of changes in Figure 5.18. The decreased torsional-rotation coupling of

subfigure a resembles the lower barrier cases of Figure 5.15. Increasing ρ begins to make E states

resemble the curve of the A states.

From this prolonged sequence of figures, it is clear that the impact of the spin-torsion

interaction is most sensitive to changes in barrier height and torsion-rotation coupling. While the

energy levels did change visibly as the spin-rotation tensor was increased, the proportional impact

of the coupling remained generally consistent. The changes in κ did not produce noticeable changes.

V3 typically has the largest off-diagonal elements of the operators in the second order Hamiltonion

which causes this parameter to have a large impact on the expectation values of all other operators
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(a) ρ = 0.01, −2Fρ = −3059.1, MHz (b) ρ = 0.02, −2Fρ = −6118.2 MHz �

(c) ρ = 0.04, −2Fρ = −12237. MHz (d) ρ = 0.06, −2Fρ = −18355. MHz

(e) ρ = 0.08, −2Fρ = −24473. MHz (f) ρ = 0.1, −2Fρ = −30591. MHz

Figure 5.16. The change in energy between including and excluding η in the second
order Hamiltonian for six different ρ values plotted against the state energies
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(a) ρ = 0.01, −2Fρ = −3059.1, MHz (b) ρ = 0.02, −2Fρ = −6118.2 MHz �

(c) ρ = 0.04, −2Fρ = −12237. MHz (d) ρ = 0.06, −2Fρ = −18355. MHz

(e) ρ = 0.08, −2Fρ = −24473. MHz (f) ρ = 0.1, −2Fρ = −30591. MHz

Figure 5.17. The change in energy, in units of η, between including and excluding
η in the second order Hamiltonian plotted against the 〈P2

α〉 for the ground A states
for six different ρ values. The magnitude of the interaction increases with ρ
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(a) ρ = 0.01, −2Fρ = −3059.1, MHz (b) ρ = 0.02, −2Fρ = −6118.2 MHz �

(c) ρ = 0.04, −2Fρ = −12237. MHz (d) ρ = 0.06, −2Fρ = −18355. MHz

(e) ρ = 0.08, −2Fρ = −24473. MHz (f) ρ = 0.1, −2Fρ = −30591. MHz

Figure 5.18. The change in energy, in units of η, between including and excluding
η in the second order Hamiltonian plotted against the 〈P2

α〉 for the ground E states
for six different ρ values
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that act on the torsional part of the wavefunction. The parameters ρ and V3 each pull the 〈P2
α〉 in

opposing directions so the impact of η positively correlated with ρ and negatively correlated with

V3. Because the free rotor basis has large off-diagonal elements compared with the diagonal values

at lowm, it can make clear state assignment difficult and causes heavy alteration to the expectation

values of the on-diagonal operators like Pα. The resulting impact on the expectation values of the

torsional angular momentum then heavily shapes how much the spin-torsion interaction alters the

spin-torsion-rotation energy levels. As an additional note, the convenience gained from being able

to consistently assign states across heavy changes to the second order parameter values has been

demonstrated here. A number of the comparisons could have been made far more directly had the

assignments been more consistent. Future work will involve efforts to implement more consistent

and robust assignment routines.

5.6. Theoretical Spectrum of meta-Methyl-Phenoxyl

Using the parameters listed in Table 5.2, the spin-torsion-rotation spectrum was simulated

at 10 K from 0.5–40.0 GHz and the transitions were convolved with a Lorentzian of width 0.4 MHz.

This spectrum included up to J = 51/2 using only vt = 0 as the ground torsional state is more

readily observed in typical microwave experiments. Figure 5.19 shows the broadband simulated

spectrum both with and without the spin-torsion coupling parameter. The two spectra look similar

with only minor visually distinguishable features at this scale. This agrees with the predictions

from the examination of the energy levels that η would generally not have a heavy impact on

the spectrum. Figure 5.20 shows a segment of the spectrum from 10.88–11 GHz with separate

highlighting for the A and E symmetries as well as a difference of the intensity with and without η

at each frequency. Most of the transitions in this region are at least slightly offset as visible by the

non-zero differences. Generally these frequency differences are slight resulting in sharp shifts from

positive to negative or the reverse. As the transitions do not shift in a uniform direction or amount,

it is clear the spin-torsion interaction has a greater impact than simply red or blue shifting the

spectrum. The strongest two transitions are the 8
2 40,4−

7
2 30,3 A-E doublet. This pair is only subtly

shifted by inclusion of explicit spin-torsion coupling. The two lowest frequency transitions are the

A-E pair of 19
2 102,8− 19

2 101,9 which are each red-shifted by about half a MHz. The transition that
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Figure 5.19. A broadband plot of the simulated spectrum of m-MePhO at 10 K
from 0.5–40.0 GHz. The top spectrum includes the spin-torsion coupling parameter
while the bottom one does not. At this view, the impact of the parameter cannot
be seen.

is the most displaced is the E 7
2 32,1 −

5
2 30,3 which is red-shifted by 1.44 MHz. This transition has

the highest Ka relative to N and is consistent with the trend of the spin-torsion coupling being

sensitive to 〈N 2
z 〉.

Figure 5.21 shows another insert from 25.54–25.74 GHz. In comparison to the previous

insert, the transitions here appear to be more impacted by η as seen in the difference spectrum’s

lineshapes. These difference lines have more tail shape than the lower frequency sample. The four

strongest transitions are the A-E doublets of, in order of increasing frequency: 21
2 101,10 − 19

2 91,9,
19
2 101,10 − 17

2 91,9, 21
2 100,10 − 19

2 90,9, and 19
2 100,10 − 17

2 90,9. All of these are shifted minimally by η

as evidenced by the very low difference intensities at their frequencies. A more dramatically shifted

transition is the E 17
2 946 − 15

2 753 which is redshifted by 11.7 MHz.
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(a) me-MePhO’s simulated spectrum from 10.88–11 GHz with separate highlighting
for A and E states

(b) Difference between the η 6= 0 and η = 0 spectra from 10.88–11 GHz

Figure 5.20. A low frequency segment of the meta-methyl-phenoxyl’s simulated
spectrum to focus on transitions around N = 4
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(a) me-MePhO’s simulated spectrum from 25.54–25.74 GHz with separate highlighting
for A and E states

(b) Difference between the η 6= 0 and η = 0 spectra from 25.54–25.74 GHz

Figure 5.21. A spectral insert showing a 200 MHz window from 25.54–25.74 GHz
of me-MePhO’s simulated spectrum to focus the view around N = 10
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Lastly, Figure 5.22 shows the spectrum and difference from 37–37.145 GHz. The impact

of the spin-torsion operator is more apparent here as there are more gradual shifts from positive to

negative or the reverse in the difference spectrum. The four strongest peaks in the cluster around

37.1 GHz are the A-E pairs of 27
2 136,7 − 25

2 126,6 and 27
2 136,8 − 25

2 127,6. These transitions are

shifted by less than half a megahertz. From these inserts, the impact of spin-torsion interaction on

the spin-torsion-rotation spectrum is subtle and persistent. Being neither a consistent nor uniform

amount of shift, it seems unlikely that fits, particularly those of increasing Ka, without the explicit

coupling operator would be able to achieve satisfactory results.

5.7. Conclusion

The spin-torsion operator and its coefficient have been derived in order to expand the Rho

Axis Method to include radicals with methyl rotors. The operator’s connection to other terms in the

second order Hamiltonian was also explored and a particular connection to the potential barrier

height was found. The strong linkage between the spin-torsion coupling and potential barrier

results from the barrier having a heavy influence on the expectation values of the torsional angular

momentum and creating large deviations from the values of the basis states. Additionally, as with

many other second order operators, it has a much larger impact on the E states in the ground

torsional state. The spectral simulations showed a clear spectral shift as a result of the spin-torsion

coupling though future experimental efforts will be necessary to determine the magnitude of this

shift. The program and work discussed here should provide a initial basis for the experimental

spectroscopists interested in the rotational spectra of complex organic radicals. This work provides

a strong motivation for future ab initio calculation of η and exploring its relationship to electronic

and molecular structure.
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(a) me-MePhO’s simulated spectrum from 37–37.145 GHz with separate highlighting
for A and E states

(b) Difference between the η 6= 0 and η = 0 spectra from 37–37.145 GHz

Figure 5.22. A spectral insert showing a 145 MHz window from 37–37.145 GHz
of me-MePhO’s simulated spectrum to focus the view around N = 13
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APPENDIX A

Extended Tables for MTBE

Table A.1. MP2/cc-pVDZ Coordinates of Methyl tert-Butyl Ether.

atom x ( Å) y ( Å) z ( Å)
C −2.57302284 −0.95790007 −0.00000000
C −1.23333798 −0.24671976 −0.00000000
x −1.23333798 −0.24671976 1.00000160
H −3.40508236 −0.23369191 −0.00000000
H −2.67767003 −1.60213944 −0.89183846
H −2.67767003 −1.60213944 0.89183846
C −0.04835568 −1.01059928 −0.00000000
C −1.15087574 1.15874933 −0.00000000
C 1.29476127 1.04598901 0.00000000
C 1.20894242 −0.36763645 0.00000000
C 0.10635458 1.79046199 0.00000000
H −0.08652130 −2.10555105 0.00000000
H −2.06756859 1.75896848 0.00000000
O 2.33084406 −1.09925466 −0.00000000
H 0.16921487 2.88491013 0.00000000
H 2.27632313 1.52906514 0.00000000
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Table A.2. MP2/cc-pVDZ Harmonic Frequencies of Methyl tert-Butyl Ether

Sym Freq (cm−1) Intensity (km/mol) Sym Freq (cm−1) Intensity (km/mol)
A′′ 17.7966 2.3981 A′′ 1389.0635 20.6239
A′′ 178.9342 1.0957 A′ 1395.4595 18.5168
A′′ 238.7002 1.3775 A′ 1412.8939 11.2332
A′ 262.8777 0.3777 A′′ 1465.4034 0.0056
A′′ 293.7098 1.7324 A′ 1471.4836 0.7096
A′ 295.9728 0.4568 A′′ 1479.8989 0.0435
A′′ 342.6826 0.9321 A′ 1484.1250 0.5094
A′ 368.8281 0.7681 A′′ 1490.5040 4.7336
A′ 412.9177 0.3557 A′ 1497.9752 1.9680
A′′ 459.8673 6.2739 A′′ 1505.1709 0.5346
A′ 509.0937 1.6176 A′ 1514.8823 4.2789
A′ 746.6642 5.0142 A′ 1522.0329 14.4523
A′ 891.1843 14.2625 A′ 3054.3266 48.5046
A′′ 926.7454 0.0106 A′′ 3084.2111 12.9458
A′ 938.1635 0.1046 A′ 3086.8468 20.7724
A′′ 949.3175 0.0580 A′ 3091.2850 5.2736
A′′ 1037.2536 1.8054 A′′ 3132.0361 58.1400
A′ 1040.5070 1.3611 A′′ 3184.7151 1.3420
A′ 1144.7351 80.8842 A′ 3187.4378 38.0730
A′′ 1180.8001 2.0309 A′ 3189.8936 4.9988
A′ 1207.1908 0.9203 A′′ 3190.3563 2.8394
A′ 1246.5976 107.1851 A′ 3193.5805 32.0901
A′′ 1276.7574 16.2938 A′′ 3197.5203 22.6845
A′ 1304.3221 10.5343 A′ 3198.9383 37.3701

Table A.3. Fit Results of Methyl tert-Butyl Ether

Transitions used in 3.4

N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz) N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz)

2 0 2 1 1 0 1 9271.875 9271.872 7 1 6 6 2 5 1 33317.436 33317.422

2 0 2 1 1 1 0 9275.771 9275.774 4 4 1 3 3 1 1 33407.771 33407.768

2 0 2 1 1 1 1 9278.244 9278.239 4 4 1 3 3 0 0 33411.772 33411.771

2 1 2 1 1 1 0 10924.637 10924.640 12 9 3 11 10 1 0 34169.763 34169.753

2 1 2 1 1 1 1 10925.513 10925.510 12 9 4 11 10 2 1 34174.806 34174.813

2 0 2 1 0 1 1 10926.277 10926.274 9 4 5 8 5 3 1 34303.536 34303.540

2 0 2 1 0 1 0 10926.301 10926.301 9 4 5 8 5 3 0 34305.478 34305.478

2 1 1 1 1 0 1 10927.009 10927.008 9 4 6 8 5 4 1 34309.549 34309.550

2 1 1 1 1 0 0 10927.930 10927.931 6 1 6 5 0 5 0 34412.608 34412.608

2 1 2 1 0 1 1 12573.544 12573.545 6 1 6 5 0 5 1 34412.279 34412.268
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Continuation of MTBE Transitions

N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz) N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz)

2 1 2 1 0 1 0 12575.166 12575.167 11 11 0 11 10 1 1 34683.653 34683.649

2 1 1 1 0 1 1 12581.408 12581.409 11 11 0 11 10 1 0 34683.653 34683.652

3 0 3 2 1 1 1 14734.253 14734.253 12 11 1 12 10 2 1 34681.521 34681.521

3 0 3 2 1 2 0 14740.564 14740.564 12 11 1 12 10 2 0 34681.521 34681.524

3 0 3 2 1 2 1 14742.120 14742.117 11 11 1 11 10 2 1 34678.317 34678.325

2 2 1 1 1 0 1 15870.569 15870.576 12 11 2 12 10 3 1 34676.209 34676.205

2 2 1 1 1 1 1 15876.941 15876.943 14 11 4 14 10 4 0 34676.737 34676.736

2 2 1 1 1 0 0 15879.502 15879.506 14 11 3 14 10 4 1 34676.737 34676.734

2 2 0 1 1 1 0 15881.150 15881.153 13 11 3 13 10 4 1 34673.873 34673.909

2 2 0 1 1 0 1 15882.864 15882.865 15 11 5 15 10 5 0 34674.075 34674.077

2 2 0 1 1 1 1 15889.233 15889.232 15 11 4 15 10 5 1 34674.075 34674.075

3 1 3 2 1 2 0 16386.942 16386.941 16 11 6 16 10 6 0 34671.243 34671.241

3 1 3 2 1 2 1 16387.520 16387.518 16 11 5 16 10 6 1 34671.243 34671.239

3 0 3 2 0 2 1 16389.390 16389.389 15 11 5 15 10 6 1 34668.794 34668.788

3 0 3 2 0 2 0 16389.431 16389.430 17 11 6 17 10 7 1 34668.227 34668.226

3 1 2 2 1 1 1 16391.221 16391.221 17 11 7 17 10 7 0 34668.227 34668.228

3 1 2 2 1 1 0 16391.876 16391.877 16 11 6 16 10 7 1 34665.960 34665.963

4 1 4 3 2 1 0 16890.314 16890.309 18 11 7 18 10 8 1 34665.039 34665.036

4 1 3 3 2 2 0 16906.767 16906.767 18 11 7 18 10 8 0 34665.039 34665.038

3 1 3 2 0 2 1 18034.789 18034.790 17 11 7 17 10 8 1 34662.960 34662.962

3 1 3 2 0 2 0 18035.807 18035.807 19 11 8 19 10 9 1 34661.666 34661.670

3 1 2 2 0 2 1 18046.355 18046.357 19 11 8 19 10 9 0 34661.666 34661.671

3 1 2 2 0 2 1 18046.355 18046.357 18 11 8 18 10 9 1 34659.779 34659.785

7 3 4 6 4 2 1 26680.064 26680.064 20 11 9 20 10 10 0 34658.131 34658.128

7 3 5 6 4 2 0 26682.263 26682.265 20 11 9 20 10 10 1 34658.131 34658.127

7 3 5 6 4 3 1 26686.130 26686.132 19 11 9 19 10 10 1 34656.436 34656.431

4 2 3 3 1 2 1 26794.007 26794.011 21 11 10 21 10 11 1 34654.404 34654.407

4 2 3 3 1 2 0 26801.440 26801.440 20 11 10 20 10 11 1 34652.909 34652.902

4 2 3 3 1 3 1 26805.574 26805.578 22 11 11 22 10 12 0 34650.510 34650.512

4 2 2 3 1 2 1 26806.287 26806.289 21 11 11 21 10 12 1 34649.197 34649.196

4 2 2 3 1 3 0 26811.324 26811.332 23 11 12 23 10 13 1 34646.441 34646.438

4 2 2 3 1 3 1 26817.854 26817.856 23 11 12 23 10 13 0 34646.441 34646.439

103



Continuation of MTBE Transitions

N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz) N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz)

5 1 5 4 1 4 1 27311.608 27311.614 22 11 12 22 10 13 1 34645.320 34645.315

5 1 5 4 1 4 0 27311.474 27311.467 24 11 13 24 10 14 1 34642.192 34642.189

5 1 4 4 1 3 1 27319.418 27319.409 24 11 13 24 10 14 0 34642.192 34642.190

5 1 4 4 1 3 0 27319.669 27319.686 23 11 13 23 10 14 1 34641.265 34641.258

9 6 3 8 7 1 1 27695.703 27695.713 24 11 14 24 10 15 1 34637.019 34637.026

9 6 4 8 7 1 0 27697.060 27697.064 25 11 14 25 10 15 0 34637.763 34637.764

9 6 4 8 7 2 1 27701.581 27701.580 25 11 14 25 10 15 1 34637.763 34637.764

6 1 6 5 2 3 1 27801.621 27801.624 26 11 15 26 10 16 0 34633.158 34633.163

6 1 6 5 2 3 0 27807.563 27807.555 25 11 15 25 10 16 1 34632.614 34632.618

6 1 6 5 2 4 1 27813.892 27813.895 26 11 16 26 10 17 1 34628.054 34628.034

6 1 5 5 2 3 1 27836.432 27836.430 27 11 16 27 10 17 0 34628.384 34628.385

6 1 5 5 2 4 0 27842.119 27842.125 28 11 17 28 10 18 1 34623.436 34623.433

6 1 5 5 2 4 1 27848.706 27848.700 28 11 18 28 10 18 0 34623.436 34623.432

9 9 0 9 8 1 0 28075.533 28075.548 29 11 18 29 10 19 0 34618.305 34618.302

10 9 1 10 8 2 1 28074.725 28074.721 29 11 18 29 10 19 1 34618.305 34618.304

10 9 1 10 8 2 0 28074.103 28074.112 28 11 18 28 10 19 1 34618.305 34618.341

11 9 2 11 8 3 1 28073.136 28073.140 31 11 20 31 10 21 1 34607.519 34607.520

11 9 3 11 8 3 0 28072.524 28072.532 31 11 21 31 10 21 0 34607.519 34607.517

12 9 3 12 8 4 1 28071.419 28071.416 30 11 20 30 10 21 1 34607.938 34607.948

12 9 3 12 8 4 0 28070.800 28070.809 31 11 21 31 10 22 1 34602.489 34602.489

9 9 1 9 8 2 1 28070.552 28070.553 32 11 21 32 10 22 1 34601.923 34601.865

13 9 4 13 8 5 1 28069.551 28069.548 32 11 22 32 10 22 0 34601.855 34601.862

10 9 2 10 8 3 1 28069.093 28069.124 32 11 22 32 10 23 1 34596.852 34596.855

13 9 4 13 8 5 0 28068.936 28068.942 11 7 5 10 8 3 1 35323.622 35323.624

14 9 5 14 8 6 1 28067.538 28067.537 11 7 5 10 8 2 0 35318.931 35318.932

11 9 3 11 8 4 1 28067.538 28067.551 11 7 4 10 8 2 1 35317.849 35317.853

14 9 5 14 8 6 0 28066.918 28066.931 8 2 6 7 3 4 1 35446.081 35446.078

12 9 4 12 8 5 1 28065.814 28065.835 8 2 7 7 3 4 0 35448.474 35448.443

15 9 6 15 8 7 1 28065.390 28065.382 8 2 6 7 3 5 0 35448.659 35448.701

15 9 6 15 8 7 0 28064.765 28064.777 8 2 7 7 3 5 1 35452.182 35452.177

13 9 5 13 8 6 1 28063.974 28063.977 5 3 3 4 2 3 1 35568.063 35568.058

16 9 7 16 8 8 1 28063.083 28063.083 5 3 2 4 2 2 1 35574.158 35574.149
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Continuation of MTBE Transitions

N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz) N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz)

16 9 7 16 8 8 0 28062.463 28062.479 5 3 3 4 2 2 0 35571.834 35571.823

14 9 6 14 8 7 1 28061.976 28061.976 5 3 2 4 2 3 0 35571.834 35571.841

17 9 8 17 8 9 1 28060.642 28060.641 10 5 5 9 6 3 1 36463.354 36463.359

17 9 8 17 8 9 0 28060.026 28060.038 10 5 5 9 6 3 0 36465.019 36465.019

15 9 7 15 8 8 1 28059.844 28059.831 10 5 6 9 6 4 1 36469.300 36469.302

18 9 9 18 8 10 0 28057.441 28057.454 7 0 7 6 1 6 0 36607.601 36607.606

16 9 8 16 8 9 1 28057.560 28057.544 7 0 7 6 1 6 1 36607.786 36607.769

18 9 9 18 8 10 1 28058.060 28058.055 12 8 4 11 9 2 1 37475.844 37475.830

19 9 10 19 8 11 1 28055.312 28055.325 12 8 5 11 9 2 0 37476.631 37476.621

17 9 9 17 8 10 1 28055.125 28055.114 12 8 5 11 9 3 1 37481.505 37481.495

19 9 10 19 8 11 0 28054.712 28054.726 9 3 6 8 4 4 1 37606.608 37606.611

20 9 11 20 8 12 0 28051.856 28051.854 9 3 7 8 4 4 0 37608.834 37608.836

18 9 10 18 8 11 1 28052.558 28052.541 9 3 7 8 4 5 1 37612.671 37612.671

20 9 11 20 8 12 1 28052.423 28052.453 6 2 5 5 1 4 1 37713.022 37713.015

21 9 12 21 8 13 0 28048.837 28048.839 6 2 5 5 1 4 0 37719.891 37719.866

21 9 12 21 8 13 1 28049.441 28049.436 6 2 4 5 1 4 1 37725.285 37725.276

19 9 11 19 8 12 1 28049.815 28049.826 6 2 5 5 1 5 1 37738.259 37738.254

20 9 12 20 8 13 1 28046.975 28046.967 6 2 4 5 1 5 0 37744.613 37744.623

22 9 13 22 8 14 1 28046.281 28046.276 6 2 4 5 1 5 1 37750.525 37750.514

22 9 13 22 8 14 0 28045.679 28045.681 12 12 0 12 11 1 0 37988.218 37988.215

23 9 14 23 8 15 0 28042.379 28042.379 12 12 0 12 11 1 1 37987.922 37987.905

23 9 14 23 8 15 1 28042.969 28042.973 13 12 2 13 11 2 0 37985.696 37985.690

21 9 13 21 8 14 1 28043.964 28043.966 13 12 1 13 11 2 1 37985.398 37985.381

22 9 14 22 8 15 1 28040.819 28040.822 14 12 3 14 11 3 0 37982.971 37982.972

24 9 15 24 8 16 1 28039.526 28039.526 12 12 1 12 11 2 1 37982.792 37982.742

24 9 15 24 8 16 0 28038.940 28038.934 14 12 2 14 11 3 1 37982.652 37982.664

23 9 15 23 8 16 1 28037.538 28037.535 15 12 4 15 11 4 0 37980.056 37980.060

25 9 16 25 8 17 1 28035.944 28035.936 13 12 2 13 11 3 1 37980.268 37980.227

25 9 17 25 8 17 0 28035.357 28035.345 15 12 3 15 11 4 1 37979.771 37979.752

24 9 16 24 8 17 1 28034.120 28034.106 16 12 4 16 11 5 0 37976.958 37976.954

26 9 17 26 8 18 1 28032.208 28032.203 14 12 3 14 11 4 1 37977.519 37977.518

26 9 18 26 8 18 0 28031.602 28031.613 15 12 4 15 11 5 1 37974.628 37974.617
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Continuation of MTBE Transitions

N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz) N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz)

25 9 17 25 8 18 1 28030.549 28030.533 17 12 5 17 11 6 0 37973.658 37973.655

27 9 18 27 8 19 1 28028.331 28028.326 17 12 5 17 11 6 1 37973.353 37973.349

27 9 19 27 8 19 0 28027.757 28027.739 16 12 5 16 11 6 1 37971.537 37971.523

26 9 18 26 8 19 1 28026.827 28026.819 18 12 7 18 11 7 0 37970.161 37970.162

28 9 20 28 8 20 0 28023.720 28023.720 18 12 6 18 11 7 1 37969.858 37969.857

27 9 19 27 8 20 1 28022.951 28022.961 17 12 6 17 11 7 1 37968.248 37968.236

28 9 19 28 8 20 1 28024.301 28024.306 19 12 7 19 11 8 0 37966.478 37966.475

29 9 20 29 8 21 1 28020.167 28020.143 18 12 7 18 11 8 1 37964.760 37964.755

29 9 20 29 8 21 0 28019.562 28019.559 20 12 8 20 11 9 0 37962.596 37962.596

28 9 20 28 8 21 1 28018.957 28018.961 19 12 8 19 11 9 1 37961.091 37961.083

30 9 21 30 8 22 1 28015.865 28015.837 21 12 9 21 11 10 0 37958.523 37958.522

30 9 21 30 8 22 0 28015.253 28015.255 20 12 9 20 11 10 1 37957.229 37957.217

29 9 21 29 8 22 1 28014.837 28014.819 22 12 10 22 11 11 0 37954.257 37954.256

30 9 22 30 8 23 1 28010.564 28010.534 22 12 10 22 11 11 1 37953.950 37953.956

8 4 5 7 5 3 1 28846.210 28846.211 21 12 10 21 11 11 1 37953.165 37953.159

8 4 4 7 5 2 0 28842.122 28842.123 23 12 12 23 11 12 0 37949.796 37949.797

8 4 4 7 5 2 1 28840.192 28840.198 23 12 11 23 11 12 1 37949.485 37949.497

5 1 5 4 0 4 1 28954.060 28954.056 22 12 11 22 11 12 1 37948.922 37948.908

5 1 5 4 0 4 0 28954.528 28954.531 24 12 13 24 11 13 0 37945.139 37945.145

10 7 3 9 8 1 1 29854.281 29854.290 24 12 12 24 11 13 1 37944.817 37944.847

10 7 4 9 8 1 0 29855.351 29855.355 23 12 12 23 11 13 1 37944.488 37944.466

10 7 4 9 8 2 1 29860.063 29860.063 25 12 13 25 11 14 0 37940.286 37940.300

7 2 5 6 3 3 1 29982.861 29982.862 24 12 13 24 11 14 1 37939.834 37939.830

7 2 6 6 3 4 1 29988.971 29988.966 28 12 17 28 11 17 0 37924.581 37924.609

7 2 6 6 3 3 0 29985.289 29985.267 27 12 16 27 11 17 1 37924.797 37924.773

7 2 5 6 3 4 0 29985.390 29985.421 27 12 15 27 11 16 1 37929.727 37929.738

4 3 2 3 2 2 1 30105.235 30105.235 26 12 15 26 11 16 1 37930.026 37929.984

4 3 2 3 2 1 0 30108.996 30108.996 27 12 15 27 11 16 0 37930.026 37930.032

4 3 1 3 2 2 0 30108.996 30109.002 26 12 14 26 11 15 1 37934.975 37934.967

4 3 1 3 2 1 1 30111.334 30111.331 25 12 14 25 11 15 1 37934.975 37935.003

9 5 4 8 6 2 1 30999.930 30999.939 26 12 14 26 11 15 0 37935.254 37935.262

9 5 4 8 6 2 0 31001.582 31001.586 29 12 17 29 11 18 0 37918.992 37918.994
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Continuation of MTBE Transitions

N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz) N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz)

9 5 5 8 6 3 1 31005.883 31005.885 29 12 18 29 11 19 1 37913.758 37913.776

6 0 6 5 1 5 0 31139.689 31139.692 30 12 18 30 11 19 0 37913.185 37913.187

6 0 6 5 1 5 1 31140.018 31140.016 30 12 18 30 11 19 1 37912.880 37912.898

10 10 0 10 9 1 1 31379.744 31379.746 31 12 19 31 11 20 1 37906.878 37906.901

10 10 1 10 9 1 0 31379.433 31379.442 31 12 20 31 11 20 0 37907.184 37907.189

11 10 2 11 9 2 0 31377.671 31377.677 30 12 19 30 11 20 1 37907.989 37907.990

11 10 1 11 9 2 1 31377.972 31377.980 32 12 21 32 11 21 0 37900.982 37900.998

12 10 2 12 9 3 0 31375.744 31375.751 31 12 20 31 11 21 1 37902.012 37902.013

10 10 1 10 9 2 1 31374.264 31374.275 32 12 21 32 11 22 1 37895.815 37895.845

13 10 3 13 9 4 1 31373.965 31373.968 7 1 7 6 1 6 0 38235.856 38235.840

13 10 3 13 9 5 0 31373.663 31373.665 7 1 7 6 1 6 1 38235.856 38235.861

11 10 2 11 9 3 1 31372.516 31372.517 7 1 6 6 1 5 0 38247.345 38247.330

14 10 4 14 9 5 1 31371.714 31371.721 7 1 6 6 1 5 1 38247.130 38247.127

14 10 4 14 9 5 0 31371.416 31371.419 11 6 5 10 7 3 1 38622.699 38622.696

12 10 3 12 9 4 1 31370.594 31370.599 11 6 5 10 7 3 0 38624.076 38624.073

15 10 5 15 9 6 1 31369.312 31369.314 11 6 6 10 7 4 1 38628.565 38628.558

15 10 5 15 9 6 0 31369.017 31369.012 8 1 8 7 2 5 1 38715.666 38715.680

13 10 4 13 9 5 1 31368.520 31368.522 8 1 8 7 2 5 0 38721.375 38721.359

16 10 6 16 9 7 1 31366.749 31366.747 8 1 8 7 2 6 1 38727.918 38727.930

16 10 6 16 9 7 0 31366.438 31366.445 8 1 7 7 2 5 1 38774.698 38774.678

14 10 5 14 9 6 1 31366.274 31366.285 8 1 7 7 2 6 0 38780.642 38780.651

15 10 6 15 9 7 1 31363.864 31363.889 8 1 7 7 2 6 1 38786.954 38786.928

17 10 7 17 9 8 0 31363.709 31363.718 5 4 2 4 3 2 1 38870.476 38870.466

18 10 8 18 9 9 0 31360.824 31360.831 5 4 2 4 3 1 0 38874.484 38874.479

18 10 8 18 9 9 1 31361.141 31361.132 10 4 6 9 5 4 1 39766.887 39766.888

16 10 7 16 9 8 1 31361.319 31361.333 10 4 6 9 5 4 0 39768.841 39768.838

17 10 8 17 9 9 1 31358.614 31358.618 10 4 7 9 5 5 1 39772.905 39772.894

19 10 9 19 9 10 1 31358.081 31358.084 7 1 7 6 0 6 1 39869.582 39869.588

19 10 9 19 9 10 0 31357.777 31357.784 7 1 7 6 0 6 0 39869.836 39869.825

18 10 9 18 9 10 1 31355.744 31355.743 31 9 23 31 8 23 0 28010.805 28010.807

20 10 10 20 9 11 1 31354.874 31354.876 32 9 23 32 8 24 1 28006.802 28006.795

20 10 10 20 9 11 0 31354.570 31354.577 32 9 24 32 8 24 0 28006.245 28006.217
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Continuation of MTBE Transitions

N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz) N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz)

19 10 10 19 9 11 1 31352.704 31352.708 11 9 2 10 10 0 1 28705.591 28705.569

21 10 11 21 9 12 1 31351.504 31351.509 11 9 2 10 10 0 0 28706.029 28706.040

21 10 11 21 9 12 0 31351.206 31351.210 5 1 4 4 0 4 1 28979.293 28979.294

20 10 11 20 9 12 1 31349.508 31349.515 12 10 2 11 11 0 0 30861.819 30861.852

22 10 12 22 9 13 1 31347.985 31347.981 6 0 6 5 1 4 1 31114.764 31114.778

22 10 12 22 9 13 0 31347.680 31347.683 30 10 20 30 9 21 1 31314.011 31314.011

21 10 12 21 9 13 1 31346.162 31346.162 30 10 21 30 9 21 0 31313.741 31313.718

23 10 13 23 9 14 1 31344.297 31344.293 29 10 20 29 9 21 1 31313.598 31313.610

23 10 13 23 9 14 0 31343.998 31343.996 31 10 22 31 9 22 0 31308.734 31308.755

22 10 13 22 9 14 1 31342.652 31342.649 30 10 21 30 9 22 1 31308.838 31308.827

24 10 14 24 9 15 1 31340.442 31340.446 31 10 21 31 9 22 1 31309.024 31309.047

24 10 14 24 9 15 0 31340.147 31340.149 32 10 23 32 9 23 0 31303.639 31303.633

23 10 14 23 9 15 1 31338.981 31338.978 31 10 22 31 9 23 1 31303.893 31303.884

25 10 15 25 9 16 1 31336.440 31336.439 32 10 22 32 9 23 1 31303.893 31303.924

25 10 15 25 9 16 0 31336.146 31336.143 33 10 24 33 9 25 1 31293.510 31293.525

24 10 15 24 9 16 1 31335.141 31335.148 34 10 24 34 9 25 0 31292.954 31292.912

25 10 16 25 9 17 1 31331.173 31331.158 35 10 26 35 9 26 0 31287.317 31287.313

26 10 17 26 9 17 0 31331.983 31331.977 35 10 25 35 9 26 1 31287.613 31287.603

26 10 16 26 9 17 1 31332.267 31332.272 34 10 25 34 9 26 1 31288.107 31288.107

27 10 17 27 9 18 1 31327.945 31327.946 35 10 26 35 9 27 1 31282.541 31282.532

27 10 18 27 9 18 0 31327.648 31327.651 36 10 26 36 9 27 1 31281.846 31281.845

26 10 17 26 9 18 1 31327.017 31327.009 36 10 27 36 9 27 0 31281.615 31281.556

28 10 18 28 9 19 1 31323.461 31323.460 37 10 28 37 9 28 0 31275.657 31275.640

28 10 18 28 9 19 0 31323.169 31323.166 37 10 27 37 9 28 1 31275.902 31275.928

27 10 18 27 9 19 1 31322.689 31322.702 36 10 27 36 9 28 1 31276.804 31276.798

29 10 19 29 9 20 1 31318.824 31318.815 6 1 5 5 1 4 1 32783.320 32783.310

29 10 19 29 9 20 0 31318.528 31318.522 6 1 5 5 1 4 0 32783.491 32783.533

28 10 19 28 9 20 1 31318.256 31318.236 4 4 0 3 3 0 1 33413.822 33413.818

11 8 3 10 9 1 1 32012.169 32012.174 12 9 3 11 10 1 1 34169.256 34169.266

11 8 4 10 9 1 0 32012.947 32012.950 30 11 19 30 10 20 0 34612.982 34612.998

11 8 4 10 9 2 1 32017.837 32017.840 30 11 19 30 10 20 1 34612.982 34613.000

8 3 6 7 4 4 1 32149.403 32149.403 33 11 22 33 10 23 0 34596.034 34596.031
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Continuation of MTBE Transitions

N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz) N ′ K′
a K′

c N ′′ K′′
a K′′

c σ Obs(MHz) Calc(MHz)

8 3 6 7 4 3 0 32145.548 32145.551 33 11 22 33 10 23 1 34596.034 34596.034

5 2 4 4 1 3 1 32254.023 32254.020 34 11 23 34 10 24 1 34590.026 34590.029

5 2 4 4 1 3 0 32261.107 32261.095 34 11 23 34 10 24 0 34590.026 34590.025

5 2 3 4 1 3 1 32266.296 32266.290 35 11 24 35 10 25 0 34583.817 34583.844

5 2 4 4 1 4 1 32271.463 32271.463 35 11 24 35 10 25 1 34583.817 34583.849

5 2 3 4 1 4 0 32277.581 32277.590 35 11 25 35 10 26 1 34578.945 34578.907

5 2 3 4 1 4 1 32283.739 32283.733 36 11 25 36 10 26 1 34577.486 34577.493

6 1 5 5 1 4 1 32783.320 32783.310 36 11 26 36 10 26 0 34577.486 34577.488

6 1 5 5 1 4 0 32783.491 32783.533 36 11 26 36 10 27 1 34572.585 34572.575

10 6 4 9 7 2 1 33159.189 33159.190 37 11 26 37 10 27 0 34570.951 34570.958

10 6 5 9 7 2 0 33160.551 33160.554 37 11 26 37 10 27 1 34570.951 34570.964

10 6 5 9 7 3 1 33165.051 33165.055 33 12 21 33 11 22 1 37894.315 37894.332

7 1 7 6 2 4 1 33259.083 33259.090 34 12 23 34 11 23 0 37888.016 37888.042

7 1 7 6 2 4 0 33264.910 33264.894 5 4 1 4 3 1 1 38876.521 38876.510

7 1 7 6 2 5 1 33271.348 33271.351 13 9 5 12 10 3 1 39638.577 39638.568

7 1 6 6 2 4 1 33305.170 33305.162 13 9 4 12 10 2 1 39633.020 39633.023

7 1 6 6 2 5 0 33310.986 33310.997

End of Table
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APPENDIX B

Observed Transitions Used in Chapter 4 & Calculated Frequencies

Table B.1. Fit Results of 2-Butynoic Acid

Transitions used in 4.2.1

N ′ K′
a K′

c m′ N Ka Kc m Obs

(MHz)

Calc

(MHz)

N ′ K′
a K′

c m′ N Ka Kc m Obs

(MHz)

Calc

(MHz)

2 1 2 0 1 1 1 0 6340.852 6340.856 4 2 3 1 3 2 2 1 13143.434 13143.436

2 0 2 0 1 0 1 0 6559.941 6559.942 4 2 2 0 3 2 1 0 13159.176 13159.174

2 0 2 1 1 0 1 1 6561.099 6561.095 4 1 3 1 3 1 2 1 13228.712 13228.715

2 2 1 1 1 1 0 1 6565.204 6565.204 4 2 3 0 5 1 4 0 13435.008 13435.010

2 1 1 1 1 1 1 1 6573.932 6573.933 4 1 3 0 3 1 2 0 13564.835 13564.834

2 1 1 0 1 1 0 0 6786.012 6786.015 1 1 1 0 0 0 0 0 13667.467 13667.465

5 0 5 0 4 1 4 0 6910.385 6910.386 1 1 1 1 1 0 1 1 13763.988 13763.989

4 1 4 1 4 0 4 1 7105.787 7105.787 2 1 1 1 2 0 2 1 13776.828 13776.827

3 1 3 1 3 0 3 1 7186.713 7186.711 2 1 2 1 1 0 1 1 13780.175 13780.179

1 1 1 1 2 0 2 1 7202.892 7202.893 3 1 2 1 3 0 3 1 13831.097 13831.097

2 1 2 1 2 0 2 1 7219.083 7219.084 7 1 6 0 7 0 7 0 13950.991 13950.991

7 0 7 1 6 1 5 1 8113.628 8113.629 4 1 3 1 4 0 4 1 13966.498 13966.500

5 0 5 1 4 1 4 1 9233.921 9233.918 5 1 4 1 5 0 5 1 14229.150 14229.148

5 2 4 1 6 1 6 1 9343.330 9343.333 8 1 7 0 8 0 8 0 15055.904 15055.903

3 1 3 0 2 1 2 0 9509.087 9509.088 7 1 6 1 7 0 7 1 15303.212 15303.216

3 1 3 1 2 1 2 1 9800.235 9800.236 5 1 5 0 4 1 4 0 15837.007 15837.008

3 0 3 0 2 0 2 0 9831.069 9831.067 7 0 7 1 6 1 6 1 16070.457 16070.461

3 0 3 1 2 0 2 1 9832.608 9832.609 8 1 7 1 8 0 8 1 16172.040 16172.040

3 2 2 0 2 2 1 0 9844.943 9844.948 5 1 5 1 4 1 4 1 16185.557 16185.553

3 3 1 1 2 2 0 1 9847.591 9847.596 5 0 5 0 4 0 4 0 16338.167 16338.165

3 2 1 1 2 2 1 1 9850.229 9850.232 5 0 5 1 4 0 4 1 16339.702 16339.705

3 2 1 0 2 2 0 0 9859.092 9859.097 9 1 8 0 9 0 9 0 16355.380 16355.378

3 1 2 1 2 1 1 1 9886.879 9886.879 5 2 4 0 4 2 3 0 16400.377 16400.373
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Continuation of 2ba Transitions

N ′ K′
a K′

c m′ N Ka Kc m Obs Calc N ′ K′
a K′

c m′ N Ka Kc m Obs Calc

3 1 2 0 2 1 1 0 10176.790 10176.789 5 4 1 1 4 4 1 1 16413.489 16413.487

0 0 0 1 1 0 1 1 10482.286 10482.291 5 4 1 0 4 4 0 0 16414.735 16414.736

1 1 0 0 1 0 1 0 10608.310 10608.304 5 4 2 0 4 4 1 0 16414.735 16414.734

6 0 6 0 5 1 5 0 10640.885 10640.885 5 3 2 1 4 3 1 1 16417.918 16417.917

6 2 4 1 7 1 6 1 10753.105 10753.105 5 3 3 0 4 3 2 0 16419.464 16419.465

2 1 1 0 2 0 2 0 10834.381 10834.377 5 3 2 0 4 3 1 0 16420.206 16420.203

3 1 2 0 3 0 3 0 11180.099 11180.099 5 3 3 1 4 3 2 1 16420.726 16420.726

4 1 3 0 4 0 4 0 11653.320 11653.320 5 2 3 1 4 2 2 1 16430.097 16430.096

6 2 4 0 7 1 7 0 11949.542 11949.540 5 2 4 1 4 2 3 1 16440.064 16440.060

4 2 3 1 5 1 5 1 12226.486 12226.481 5 2 3 0 4 2 2 0 16470.876 16470.876

5 1 4 0 5 0 5 0 12264.311 12264.312 5 1 4 1 4 1 3 1 16602.351 16602.353

6 0 6 1 5 1 5 1 12616.869 12616.866 2 1 2 0 1 0 1 0 16726.580 16726.581

4 1 4 0 3 1 3 0 12674.734 12674.732 4 2 2 0 5 1 5 0 16825.719 16825.722

4 1 4 1 3 1 3 1 13012.394 13012.387 5 1 4 0 4 1 3 0 16949.158 16949.157

6 1 5 0 6 0 6 0 13025.498 13025.498 3 1 3 1 2 0 2 1 17019.318 17019.320

4 0 4 0 3 0 3 0 13091.613 13091.613 3 2 2 0 4 1 3 0 17260.326 17260.326

4 0 4 1 3 0 3 1 13093.309 13093.311 9 1 8 1 9 0 9 1 17283.027 17283.025

4 2 3 0 3 2 2 0 13123.845 13123.841 10 1 9 0 10 0 10 0 17863.403 17863.405

4 3 1 1 3 3 1 1 13131.971 13131.968 4 2 2 1 5 1 4 1 18015.285 18015.283

4 3 2 0 3 3 1 0 13133.110 13133.111 8 0 8 0 7 1 7 0 18237.550 18237.550

4 3 1 0 3 3 0 0 13133.314 13133.322 10 1 9 1 10 0 10 1 18643.783 18643.783

4 2 2 1 3 2 1 1 13138.189 13138.186

End of Table

Table B.2. Transitions used in 4.2.2

Iodoperfluoropropane Transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs

(MHz)

Calc

(MHz)

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs

(MHz)

Calc

(MHz)

11 13 5 8 10 13 4 9 10457.69 10457.679 15 13 10 3 14 12 10 2 10210.209 10210.207

16 17 5 13 16 17 4 14 10632.40 10632.406 13 13 10 3 12 12 10 2 10095.611 10095.622

18 18 5 14 18 18 4 15 10632.50 10632.507 14 13 10 3 13 12 10 2 10125.722 10125.717
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Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

10 13 5 8 10 13 4 9 10632.68 10632.682 11 14 10 4 10 13 10 3 10994.603 10994.605

10 13 5 9 10 13 4 10 10632.77 10632.773 14 14 10 4 13 13 10 3 10902.999 10902.994

15 16 5 11 15 16 4 12 10632.92 10632.920 16 14 10 4 15 13 10 3 10984.286 10984.282

19 18 5 14 19 18 4 15 10633.06 10633.059 13 14 10 4 12 13 10 3 10909.446 10909.444

14 16 6 10 13 16 5 11 12818.08 12818.080 13 15 10 5 12 14 10 4 11721.716 11721.724

17 19 7 12 16 19 6 13 15177.99 15177.985 14 15 10 5 13 14 10 4 11693.670 11693.669

18 19 7 12 17 19 6 13 15261.75 15261.753 16 15 10 5 15 14 10 4 11704.346 11704.339

20 19 7 13 19 19 6 14 15423.99 15424.001 17 15 10 5 16 14 10 4 11757.316 11757.316

33 32 7 25 33 32 6 26 15305.30 15305.302 15 15 10 5 14 14 10 4 11685.723 11685.727

21 20 7 13 20 20 6 14 15412.04 15412.045 12 15 10 5 11 14 10 4 11764.611 11764.614

15 13 5 9 14 13 4 10 10755.73 10755.754 15 16 10 6 14 15 10 5 12478.715 12478.718

11 13 5 9 10 13 4 10 10457.74 10457.760 13 16 10 6 12 15 10 5 12537.333 12537.331

33 35 5 30 33 35 4 31 10233.46 10233.462 14 16 10 6 13 15 10 5 12501.627 12501.627

36 35 5 30 36 35 4 31 10233.64 10233.647 16 16 10 6 15 15 10 5 12472.656 12472.654

34 35 5 30 34 35 4 31 10233.72 10233.721 17 16 10 6 16 15 10 5 12489.036 12489.032

32 35 5 30 32 35 4 31 10233.13 10233.130 18 16 10 6 17 15 10 5 12532.766 12532.765

37 35 5 30 37 35 4 31 10233.13 10233.143 16 17 10 7 15 16 10 6 13266.383 13266.384

41 40 6 35 41 40 5 36 12790.06 12790.048 18 17 10 7 17 16 10 6 13273.047 13273.047

47 50 6 45 47 50 5 46 12614.38 12614.391 19 17 10 7 18 16 10 6 13309.505 13309.502

14 14 3 11 13 14 0 14 10940.98 10940.974 15 17 10 7 14 16 10 6 13284.924 13284.928

4 2 0 2 3 1 0 1 1613.61 1613.620 17 17 10 7 16 16 10 6 13261.128 13261.125

2 2 0 2 2 1 0 1 1857.94 1857.938 14 17 10 7 13 16 10 6 13313.676 13313.677

6 4 0 4 5 3 0 3 3141.84 3141.843 19 18 10 8 18 17 10 7 14056.537 14056.534

7 5 0 5 6 4 0 4 3916.16 3916.163 15 18 10 8 14 17 10 7 14089.037 14089.043

14 13 0 13 13 12 0 12 10106.29 10106.295 20 18 10 8 19 17 10 7 14087.215 14087.215

15 13 0 13 14 12 0 12 10107.42 10107.423 18 18 10 8 17 17 10 7 14044.879 14044.875

11 13 0 13 10 12 0 12 10098.78 10098.779 17 18 10 8 16 17 10 7 14048.243 14048.242

12 13 0 13 11 12 0 12 10099.74 10099.746 19 19 10 9 18 18 10 8 14829.646 14829.632

10 13 0 13 9 12 0 12 10102.36 10102.366 20 19 10 9 19 18 10 8 14839.618 14839.616

13 13 0 13 12 12 0 12 10103.05 10103.056 21 19 10 9 20 18 10 8 14865.680 14865.681

12 14 0 14 11 13 0 13 10870.31 10870.312 17 19 10 9 16 18 10 8 14845.527 14845.539

14 14 0 14 13 13 0 13 10871.98 10871.987 21 20 10 10 20 19 10 9 15622.399 15622.402
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Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

11 14 0 14 10 13 0 13 10873.75 10873.758 22 20 10 10 21 19 10 9 15644.746 15644.748

15 14 0 14 14 13 0 13 10874.48 10874.485 17 20 10 10 16 19 10 9 15645.337 15645.341

16 14 0 14 15 13 0 13 10876.53 10876.530 18 20 10 10 17 19 10 9 15627.087 15627.093

16 15 0 15 15 14 0 14 11645.27 11645.269 20 20 10 10 19 19 10 9 15613.693 15613.697

13 15 0 15 12 14 0 14 11636.76 11636.763 19 20 10 10 18 19 10 9 15615.956 15615.960

12 15 0 15 11 14 0 14 11640.31 11640.309 13 13 11 2 12 12 11 1 10092.253 10092.260

15 15 0 15 14 14 0 14 11641.14 11641.144 12 13 11 2 11 12 11 1 10109.696 10109.706

17 15 0 15 16 14 0 14 11644.48 11644.486 12 14 11 3 11 13 11 2 10943.221 10943.232

18 16 0 16 17 15 0 15 12411.40 12411.409 16 14 11 3 15 13 11 2 10992.314 10992.322

14 16 0 16 13 15 0 15 12405.15 12405.149 14 14 11 3 13 13 11 2 10887.423 10887.419

15 16 0 16 14 15 0 15 12405.48 12405.488 15 14 11 3 14 13 11 2 10914.832 10914.833

16 16 0 16 15 15 0 15 12407.60 12407.607 13 14 11 3 12 13 11 2 10900.195 10900.199

13 16 0 16 12 15 0 15 12408.17 12408.174 11 14 11 3 10 13 11 2 11007.556 11007.562

17 16 0 16 16 15 0 15 12409.72 12409.727 17 15 11 4 16 14 11 3 11762.631 11762.626

18 17 0 17 17 16 0 16 13176.08 13176.086 12 15 11 4 11 14 11 3 11774.801 11774.789

19 17 0 17 18 16 0 16 13177.44 13177.441 14 15 11 4 13 14 11 3 11687.057 11687.061

15 17 0 17 14 16 0 16 13171.78 13171.780 15 15 11 4 14 14 11 3 11676.303 11676.305

16 17 0 17 15 16 0 16 13171.97 13171.975 13 16 11 5 12 15 11 4 12545.725 12545.727

17 17 0 17 16 16 0 16 13173.88 13173.888 16 16 11 5 15 15 11 4 12467.580 12467.572

14 17 0 17 13 16 0 16 13174.61 13174.617 15 16 11 5 14 15 11 4 12474.884 12474.888

19 18 0 18 18 17 0 17 13941.47 13941.473 14 16 11 5 13 15 11 4 12502.579 12502.578

20 18 0 18 19 17 0 17 13942.74 13942.743 17 16 11 5 16 15 11 4 12486.451 12486.446

16 18 0 18 15 17 0 17 13937.58 13937.579 18 16 11 5 17 15 11 4 12538.589 12538.588

17 18 0 18 16 17 0 17 13937.68 13937.692 17 17 11 6 16 16 11 5 13254.367 13254.364

18 18 0 18 17 17 0 17 13939.41 13939.411 16 17 11 6 15 16 11 5 13260.124 13260.124

15 18 0 18 14 17 0 17 13940.23 13940.232 19 17 11 6 18 16 11 5 13314.257 13314.248

19 19 0 19 18 18 0 18 14704.36 14704.368 18 17 11 6 17 16 11 5 13270.552 13270.550

16 19 0 19 15 18 0 18 14705.22 14705.224 14 17 11 6 13 16 11 5 13319.167 13319.170

20 19 0 19 19 18 0 18 14706.28 14706.279 17 18 11 7 16 17 11 6 14050.991 14050.991

21 19 0 19 20 18 0 18 14707.48 14707.480 18 18 11 7 17 17 11 6 14042.254 14042.250

18 20 0 20 17 19 0 19 15467.45 15467.471 20 18 11 7 19 17 11 6 14091.156 14091.155

19 20 0 20 18 19 0 19 15467.51 15467.500 16 18 11 7 15 17 11 6 14074.587 14074.592

113



Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

20 20 0 20 19 19 0 19 15468.91 15468.915 19 18 11 7 18 17 11 6 14054.326 14054.324

17 20 0 20 16 19 0 19 15469.76 15469.764 15 18 11 7 14 17 11 6 14099.552 14099.559

21 20 0 20 20 19 0 19 15470.68 15470.680 18 19 11 8 17 18 11 7 14824.550 14824.541

22 20 0 20 21 19 0 19 15471.81 15471.805 19 19 11 8 18 18 11 7 14824.712 14824.712

20 22 0 22 19 21 0 21 16996.10 16996.095 16 19 11 8 15 18 11 7 14866.871 14866.879

21 22 0 22 20 21 0 21 16996.11 16996.110 21 19 11 8 20 18 11 7 14868.947 14868.948

22 22 0 22 21 21 0 21 16997.30 16997.300 20 20 11 9 19 19 11 8 15610.175 15610.177

1 2 1 1 2 1 1 0 1584.99 1584.996 21 20 11 9 20 19 11 8 15620.624 15620.626

4 2 1 1 3 1 1 0 1742.38 1742.388 19 20 11 9 18 19 11 8 15612.947 15612.955

14 13 1 12 13 12 1 11 10244.83 10244.837 22 20 11 9 21 19 11 8 15647.436 15647.438

15 13 1 12 14 12 1 11 10246.14 10246.143 17 20 11 9 16 19 11 8 15648.901 15648.907

10 13 1 12 9 12 1 11 10241.50 10241.506 18 20 11 9 17 19 11 8 15626.537 15626.543

11 13 1 12 10 12 1 11 10238.68 10238.682 14 14 12 2 13 13 12 1 10876.854 10876.863

13 13 1 12 12 12 1 11 10242.44 10242.447 13 14 12 2 12 13 12 1 10892.207 10892.207

12 14 1 13 11 13 1 12 11024.25 11024.255 15 14 12 2 14 13 12 1 10909.818 10909.812

13 14 1 13 12 13 1 12 11025.03 11025.038 16 14 12 2 15 13 12 1 11000.413 11000.404

11 14 1 13 10 13 1 12 11026.79 11026.801 16 15 12 3 15 14 12 2 11697.217 11697.214

14 14 1 13 13 13 1 12 11027.44 11027.437 12 15 12 3 11 14 12 2 11786.195 11786.190

15 14 1 13 14 13 1 12 11029.69 11029.698 14 15 12 3 13 14 12 2 11681.838 11681.837

16 14 1 13 15 13 1 12 11030.72 11030.722 17 15 12 3 16 14 12 2 11771.543 11771.543

13 15 1 14 12 14 1 13 11808.88 11808.884 15 15 12 3 14 14 12 2 11670.166 11670.172

14 15 1 14 13 14 1 13 11809.49 11809.495 13 15 12 3 12 14 12 2 11723.317 11723.317

12 15 1 14 11 14 1 13 11811.21 11811.222 16 16 12 4 15 15 12 3 12449.976 12449.972

15 15 1 14 14 14 1 13 11811.58 11811.581 15 16 12 4 14 15 12 3 12464.527 12464.525

16 15 1 14 15 14 1 13 11813.63 11813.637 18 16 12 4 17 15 12 3 12542.893 12542.890

17 15 1 14 16 14 1 13 11814.61 11814.617 14 16 12 4 13 15 12 3 12503.076 12503.076

15 16 1 15 14 15 1 14 12593.02 12593.019 13 16 12 4 12 15 12 3 12554.815 12554.816

13 16 1 15 12 15 1 14 12594.74 12594.747 17 16 12 4 16 15 12 3 12477.056 12477.055

17 16 1 15 16 15 1 14 12596.73 12596.733 14 17 12 5 13 16 12 4 13326.578 13326.595

18 16 1 15 17 15 1 14 12597.72 12597.722 17 17 12 5 16 16 12 4 13258.196 13258.202

14 16 1 15 13 15 1 14 12592.55 12592.558 18 17 12 5 17 16 12 4 13272.625 13272.649

19 17 1 16 18 16 1 15 13379.93 13379.932 16 17 12 5 15 16 12 4 13260.283 13260.285
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Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

15 17 1 16 14 16 1 15 13375.21 13375.214 19 17 12 5 18 16 12 4 13320.451 13320.444

16 17 1 16 15 16 1 15 13375.54 13375.542 15 17 12 5 14 16 12 4 13283.436 13283.435

17 17 1 16 16 16 1 15 13377.15 13377.152 19 18 12 6 18 17 12 5 14052.188 14052.185

14 17 1 16 13 16 1 15 13377.30 13377.301 15 18 12 6 14 17 12 5 14100.576 14100.582

18 17 1 16 17 16 1 15 13378.90 13378.904 20 18 12 6 19 17 12 5 14095.600 14095.605

18 18 1 17 17 17 1 16 14158.40 14158.409 18 18 12 6 17 17 12 5 14035.831 14035.832

15 18 1 17 14 17 1 16 14158.79 14158.798 18 19 12 7 17 18 12 6 14825.294 14825.296

20 18 1 17 19 17 1 16 14161.14 14161.143 21 19 12 7 20 18 12 6 14872.667 14872.667

16 18 1 17 15 17 1 16 14156.77 14156.777 19 19 12 7 18 18 12 6 14820.962 14820.956

17 18 1 17 16 17 1 16 14156.98 14156.986 18 20 12 8 17 19 12 7 15628.296 15628.300

16 19 1 18 15 18 1 17 14939.13 14939.134 22 20 12 8 21 19 12 7 15650.563 15650.564

20 19 1 18 19 18 1 17 14940.08 14940.081 20 20 12 8 19 19 12 7 15607.932 15607.937

21 19 1 18 20 18 1 17 14941.25 14941.255 19 20 12 8 18 19 12 7 15612.117 15612.120

19 19 1 18 18 18 1 17 14938.52 14938.528 16 15 13 2 15 14 13 1 11693.327 11693.322

22 20 1 19 21 19 1 18 15720.17 15720.169 18 16 13 3 17 15 13 2 12551.262 12551.255

20 20 1 19 19 19 1 18 15717.40 15717.409 15 16 13 3 14 15 13 2 12463.768 12463.768

17 20 1 19 16 19 1 18 15718.15 15718.154 13 16 13 3 12 15 13 2 12564.921 12564.915

21 20 1 19 20 19 1 18 15718.86 15718.869 17 16 13 3 16 15 13 2 12479.847 12479.842

15 13 2 11 14 12 2 10 10203.92 10203.914 16 16 13 3 15 15 13 2 12453.193 12453.194

11 13 2 11 10 12 2 10 10196.24 10196.242 14 16 13 3 13 15 13 2 12503.598 12503.592

12 13 2 11 11 12 2 10 10197.39 10197.398 14 17 13 4 13 16 13 3 13334.756 13334.757

10 13 2 11 9 12 2 10 10198.93 10198.929 18 17 13 4 17 16 13 3 13265.853 13265.856

13 13 2 11 12 12 2 10 10200.05 10200.057 16 17 13 4 15 16 13 3 13251.362 13251.361

14 13 2 11 13 12 2 10 10202.16 10202.166 19 17 13 4 18 16 13 3 13325.687 13325.684

13 14 2 12 12 13 2 11 10988.95 10988.950 17 17 13 4 16 16 13 3 13243.295 13243.287

11 14 2 12 10 13 2 11 10989.76 10989.766 18 18 13 5 17 17 13 4 14028.727 14028.725

14 14 2 12 13 13 2 11 10991.33 10991.339 16 18 13 5 15 17 13 4 14064.305 14064.314

15 14 2 12 14 13 2 11 10993.16 10993.163 15 18 13 5 14 17 13 4 14107.288 14107.295

16 14 2 12 15 13 2 11 10994.01 10994.013 19 18 13 5 18 17 13 4 14047.713 14047.709

12 14 2 12 11 13 2 11 10987.77 10987.776 20 18 13 5 19 17 13 4 14098.980 14098.984

13 15 2 13 12 14 2 12 11779.95 11779.952 16 19 13 6 15 18 13 5 14881.767 14881.772

14 15 2 13 13 14 2 12 11781.13 11781.127 21 19 13 6 20 18 13 5 14876.932 14876.926
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Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

12 15 2 13 11 14 2 12 11781.42 11781.420 18 19 13 6 17 18 13 5 14822.656 14822.652

15 15 2 13 14 14 2 12 11783.27 11783.271 19 20 13 7 18 19 13 6 15606.824 15606.830

16 15 2 13 15 14 2 12 11784.82 11784.821 17 20 13 7 16 19 13 6 15657.624 15657.629

17 15 2 13 16 14 2 12 11785.10 11785.101 21 20 13 7 20 19 13 6 15617.114 15617.116

14 16 2 14 13 15 2 13 12572.63 12572.636 20 20 13 7 19 19 13 6 15602.658 15602.661

16 16 2 14 15 15 2 13 12575.74 12575.736 3 2 1 2 2 1 1 1 1347.783 1347.776

17 17 2 15 16 16 2 14 13368.58 13368.568 4 2 1 2 3 1 1 1 1684.545 1684.557

19 17 2 15 18 16 2 14 13369.41 13369.411 15 13 1 13 14 12 1 12 10045.832 10045.828

18 17 2 15 17 16 2 14 13369.65 13369.658 12 13 1 13 11 12 1 12 10038.812 10038.819

15 17 2 15 14 16 2 14 13365.65 13365.658 10 13 1 13 9 12 1 12 10041.704 10041.704

14 17 2 15 13 16 2 14 13366.22 13366.221 13 13 1 13 12 12 1 12 10042.388 10042.393

16 17 2 15 15 16 2 14 13366.86 13366.866 14 13 1 13 13 12 1 12 10045.503 10045.506

15 18 2 16 14 17 2 15 14160.36 14160.360 13 14 1 14 12 13 1 13 10810.035 10810.033

16 18 2 16 15 17 2 15 14159.34 14159.345 11 14 1 14 10 13 1 13 10811.156 10811.157

18 18 2 16 17 17 2 15 14161.76 14161.767 14 14 1 14 13 13 1 13 10813.235 10813.232

20 18 2 16 19 17 2 15 14162.19 14162.194 16 14 1 14 15 13 1 13 10816.010 10816.008

19 18 2 16 18 17 2 15 14163.22 14163.228 15 14 1 14 14 13 1 13 10816.278 10816.278

16 19 2 17 15 18 2 16 14952.74 14952.745 12 14 1 14 11 13 1 13 10807.763 10807.761

18 19 2 17 17 18 2 16 14953.28 14953.287 12 15 1 15 11 14 1 14 11582.054 11582.053

19 19 2 17 18 18 2 16 14954.62 14954.629 15 15 1 15 14 14 1 14 11583.343 11583.338

17 19 2 17 16 18 2 16 14952.26 14952.268 16 15 1 15 15 14 1 14 11585.665 11585.665

20 20 2 18 19 19 2 17 15747.58 15747.580 17 15 1 15 16 14 1 14 11585.915 11585.916

22 20 2 18 21 19 2 17 15747.92 15747.920 13 15 1 15 12 14 1 14 11579.594 11579.591

21 20 2 18 20 19 2 17 15748.33 15748.332 14 15 1 15 13 14 1 14 11580.634 11580.631

18 20 2 18 17 19 2 17 15745.44 15745.444 18 16 1 16 17 15 1 15 12355.537 12355.532

17 20 2 18 16 19 2 17 15745.88 15745.880 14 16 1 16 13 15 1 15 12349.960 12349.962

19 20 2 18 18 19 2 17 15746.32 15746.321 15 16 1 16 14 15 1 15 12350.852 12350.849

10 13 3 10 9 12 3 9 10164.85 10164.856 13 16 1 16 12 15 1 15 12352.165 12352.168

15 13 3 10 14 12 3 9 10173.39 10173.396 16 16 1 16 15 15 1 15 12353.247 12353.250

11 13 3 10 10 12 3 9 10158.37 10158.373 17 16 1 16 16 15 1 15 12355.396 12355.395

14 13 3 10 13 12 3 9 10159.15 10159.157 15 17 1 17 14 16 1 16 13119.883 13119.881

12 13 3 10 11 12 3 9 10159.54 10159.556 16 17 1 17 15 16 1 16 13120.653 13120.651
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Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

11 14 3 11 10 13 3 10 10949.80 10949.804 14 17 1 17 13 16 1 16 13121.879 13121.876

16 14 3 11 15 13 3 10 10953.32 10953.327 17 17 1 17 16 16 1 16 13122.790 13122.786

13 14 3 11 12 13 3 10 10945.67 10945.651 18 17 1 17 17 16 1 16 13124.718 13124.717

15 14 3 11 14 13 3 10 10946.74 10946.746 20 18 1 18 19 17 1 17 13893.860 13893.857

14 15 3 12 13 14 3 11 11729.85 11729.858 16 18 1 18 15 17 1 17 13889.394 13889.392

13 15 3 12 12 14 3 11 11730.24 11730.242 17 18 1 18 16 17 1 17 13890.063 13890.065

15 15 3 12 14 14 3 11 11731.05 11731.061 15 18 1 18 14 17 1 17 13891.213 13891.210

16 15 3 12 15 14 3 11 11733.07 11733.072 18 18 1 18 17 17 1 17 13891.978 13891.974

12 15 3 12 11 14 3 11 11734.13 11734.137 19 18 1 18 18 17 1 17 13893.722 13893.719

17 15 3 12 16 14 3 11 11738.76 11738.764 17 19 1 19 16 18 1 18 14658.525 14658.523

13 16 3 13 12 15 3 12 12518.76 12518.759 18 19 1 19 17 18 1 18 14659.117 14659.112

18 16 3 13 17 15 3 12 12522.33 12522.331 16 19 1 19 15 18 1 18 14660.197 14660.193

15 16 3 13 14 15 3 12 12515.22 12515.226 19 19 1 19 18 18 1 18 14660.834 14660.830

14 16 3 13 13 15 3 12 12515.48 12515.481 20 19 1 19 19 18 1 18 14662.421 14662.417

16 16 3 13 15 15 3 12 12516.49 12516.495 21 19 1 19 20 18 1 18 14662.572 14662.566

17 16 3 13 16 15 3 12 12518.44 12518.449 22 20 1 20 21 19 1 19 15430.986 15430.983

15 17 3 14 14 16 3 13 13301.23 13301.240 18 20 1 20 17 19 1 19 15427.299 15427.298

17 17 3 14 16 16 3 13 13302.39 13302.392 19 20 1 20 18 19 1 19 15427.818 15427.817

14 17 3 14 13 16 3 13 13303.95 13303.953 17 20 1 20 16 19 1 19 15428.843 15428.841

18 17 3 14 17 16 3 13 13304.17 13304.175 20 20 1 20 19 19 1 19 15429.370 15429.370

19 17 3 14 18 16 3 13 13306.98 13306.976 21 20 1 20 20 19 1 19 15430.822 15430.821

16 17 3 14 15 16 3 13 13301.14 13301.137 13 13 2 12 12 12 2 11 10145.855 10145.854

18 18 3 15 17 17 3 14 14088.87 14088.878 10 13 2 12 9 12 2 11 10147.637 10147.640

15 18 3 15 14 17 3 14 14089.84 14089.846 14 13 2 12 13 12 2 11 10148.767 10148.768

19 18 3 15 18 17 3 14 14090.45 14090.456 15 13 2 12 14 12 2 11 10152.590 10152.589

20 18 3 15 19 17 3 14 14092.48 14092.483 11 13 2 12 10 12 2 11 10143.237 10143.237

18 19 3 16 17 18 3 15 14874.89 14874.901 12 13 2 12 11 12 2 11 10143.378 10143.379

19 19 3 16 18 18 3 15 14876.05 14876.057 13 14 2 13 12 13 2 12 10923.022 10923.023

16 19 3 16 15 18 3 15 14876.52 14876.526 16 14 2 13 15 13 2 12 10930.828 10930.831

20 19 3 16 19 18 3 15 14877.43 14877.430 11 14 2 13 10 13 2 12 10926.625 10926.626

21 19 3 16 20 18 3 15 14878.87 14878.868 15 14 2 13 14 13 2 12 10927.914 10927.916

17 19 3 16 16 18 3 15 14874.73 14874.732 12 14 2 13 11 13 2 12 10922.869 10922.872
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Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

19 20 3 17 18 19 3 16 15662.92 15662.923 12 15 2 14 11 14 2 13 11705.246 11705.248

21 20 3 17 20 19 3 16 15665.19 15665.199 13 15 2 14 12 14 2 13 11701.996 11701.998

22 20 3 17 21 19 3 16 15666.17 15666.170 14 15 2 14 13 14 2 13 11702.158 11702.158

18 20 3 17 17 19 3 16 15662.64 15662.643 15 15 2 14 14 14 2 13 11704.161 11704.163

10 13 4 9 9 12 4 8 10136.93 10136.925 16 15 2 14 15 14 2 13 11706.573 11706.572

11 13 4 9 10 12 4 8 10145.08 10145.063 17 15 2 14 16 14 2 13 11708.887 11708.886

12 13 4 9 11 12 4 8 10153.03 10153.034 15 16 2 15 14 15 2 14 12480.799 12480.802

12 14 4 10 11 13 4 9 10986.04 10986.058 18 16 2 15 17 15 2 14 12486.685 12486.685

14 14 4 10 13 13 4 9 10957.27 10957.272 16 16 2 15 15 15 2 14 12482.609 12482.611

11 14 4 10 10 13 4 9 11024.52 11024.531 14 16 2 15 13 15 2 14 12480.636 12480.638

17 15 4 11 16 14 4 10 11733.66 11733.661 17 16 2 15 16 15 2 14 12484.784 12484.784

15 15 4 11 14 14 4 10 11709.54 11709.562 13 16 2 15 12 15 2 14 12483.486 12483.489

12 15 4 11 11 14 4 10 11713.82 11713.825 17 17 2 16 16 16 2 15 13260.602 13260.603

14 15 4 11 13 14 4 10 11718.60 11718.602 15 17 2 16 14 16 2 15 13258.799 13258.801

16 15 4 11 15 14 4 10 11669.15 11669.156 14 17 2 16 13 16 2 15 13261.296 13261.299

13 16 4 12 12 15 4 11 12507.82 12507.821 19 17 2 16 18 16 2 15 13264.176 13264.175

18 16 4 12 17 15 4 11 12514.79 12514.788 16 17 2 16 15 16 2 15 13258.976 13258.978

17 16 4 12 16 15 4 11 12500.52 12500.520 18 17 2 16 17 16 2 15 13262.559 13262.558

16 16 4 12 15 15 4 11 12502.68 12502.709 17 18 2 17 16 17 2 16 14036.639 14036.642

16 17 4 13 15 16 4 12 13287.18 13287.205 18 18 2 17 17 17 2 16 14038.092 14038.093

18 17 4 13 17 16 4 12 13288.17 13288.178 19 18 2 17 18 17 2 16 14039.843 14039.843

14 17 4 13 13 16 4 12 13292.08 13292.080 20 18 2 17 19 17 2 16 14041.311 14041.313

17 17 4 13 16 16 4 12 13287.07 13287.071 15 18 2 17 14 17 2 16 14035.416 14035.411

16 18 4 14 15 17 4 13 14067.68 14067.676 19 19 2 18 18 18 2 17 14815.334 14815.339

18 18 4 14 17 17 4 13 14070.91 14070.917 20 19 2 18 19 18 2 17 14817.371 14817.373

19 18 4 14 18 17 4 13 14072.47 14072.480 21 19 2 18 20 18 2 17 14818.070 14818.067

15 18 4 14 14 17 4 13 14075.28 14075.283 16 19 2 18 15 18 2 17 14819.568 14819.574

20 18 4 14 19 17 4 13 14078.02 14078.022 18 19 2 18 17 18 2 17 14813.858 14813.859

19 19 4 15 18 18 4 14 14854.72 14854.731 17 19 2 18 16 18 2 17 14814.253 14814.256

17 19 4 15 16 18 4 14 14855.18 14855.186 19 20 2 19 18 19 2 18 15590.536 15590.545

16 19 4 15 15 18 4 14 14858.37 14858.386 20 20 2 19 19 19 2 18 15591.720 15591.730

21 19 4 15 20 18 4 14 14861.39 14861.389 17 20 2 19 16 19 2 18 15592.296 15592.305
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Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

22 20 4 16 21 19 4 15 15644.55 15644.557 21 20 2 19 20 19 2 18 15593.007 15593.013

19 20 4 16 18 19 4 15 15637.20 15637.205 22 20 2 19 21 19 2 18 15594.399 15594.406

18 20 4 16 17 19 4 15 15637.83 15637.838 18 20 2 19 17 19 2 18 15590.396 15590.404

20 20 4 16 19 19 4 15 15638.38 15638.384 15 13 3 11 14 12 3 10 10170.239 10170.238

21 20 4 16 20 19 4 15 15640.72 15640.721 14 13 3 11 13 12 3 10 10155.924 10155.924

17 20 4 16 16 19 4 15 15641.65 15641.656 11 13 3 11 10 12 3 10 10156.391 10156.392

12 13 5 8 11 12 5 7 10103.26 10103.264 12 13 3 11 11 12 3 10 10156.885 10156.887

12 14 5 9 11 13 5 8 10954.69 10954.691 13 13 3 11 12 12 3 10 10157.472 10157.474

14 14 5 9 13 13 5 8 10932.15 10932.150 10 13 3 11 9 12 3 10 10162.180 10162.180

14 15 5 10 13 14 5 9 11718.18 11718.182 16 14 3 12 15 13 3 11 10951.277 10951.274

17 15 5 10 16 14 5 9 11741.20 11741.210 14 14 3 12 13 13 3 11 10941.517 10941.516

15 15 5 10 14 14 5 9 11714.22 11714.225 13 14 3 12 12 13 3 11 10940.408 10940.410

16 16 5 11 15 15 5 10 12494.94 12494.938 12 14 3 12 11 13 3 11 10940.900 10940.893

17 17 5 12 16 16 5 11 13306.02 13306.012 15 14 3 12 14 13 3 11 10943.075 10943.079

16 17 5 12 15 16 5 11 13285.08 13285.094 17 15 3 13 16 14 3 12 11732.743 11732.740

15 17 5 12 14 16 5 11 13328.70 13328.713 15 15 3 13 14 14 3 12 11724.970 11724.969

15 18 5 13 14 17 5 12 14056.96 14056.965 16 15 3 13 15 14 3 12 11727.061 11727.060

13 13 6 7 12 12 6 6 10139.47 10139.475 12 15 3 13 11 14 3 12 11728.587 11728.590

11 13 6 7 10 12 6 6 10159.94 10159.945 14 15 3 13 13 14 3 12 11723.732 11723.732

10 13 6 7 9 12 6 6 10181.04 10181.045 13 15 3 13 12 14 3 12 11724.286 11724.286

15 13 6 7 14 12 6 6 10182.00 10182.004 16 16 3 14 15 15 3 13 12508.164 12508.162

12 13 6 7 11 12 6 6 10144.40 10144.408 17 16 3 14 16 15 3 13 12510.272 12510.270

11 14 6 8 10 13 6 7 10957.62 10957.627 13 16 3 14 12 15 3 13 12511.068 12511.071

16 14 6 8 15 13 6 7 10961.57 10961.572 14 16 3 14 13 15 3 13 12507.382 12507.383

15 14 6 8 14 13 6 7 10934.48 10934.485 15 16 3 14 14 15 3 13 12506.912 12506.912

14 14 6 8 13 13 6 7 10925.19 10925.184 16 17 3 15 15 16 3 14 13289.996 13289.995

13 14 6 8 12 13 6 7 10930.35 10930.360 15 17 3 15 14 16 3 14 13290.358 13290.358

12 15 6 9 11 14 6 8 11735.47 11735.479 18 17 3 15 17 16 3 14 13293.193 13293.192

16 15 6 9 15 14 6 8 11720.51 11720.513 14 17 3 15 13 16 3 14 13293.527 13293.531

13 16 6 10 12 15 6 9 12514.11 12514.113 19 18 3 16 18 17 3 15 14075.963 14075.965

16 17 6 11 15 16 6 10 13292.20 13292.204 18 18 3 16 17 17 3 15 14074.141 14074.147

18 17 6 11 17 16 6 10 13294.82 13294.817 16 18 3 16 15 17 3 15 14073.247 14073.251
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Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

15 17 6 11 14 16 6 10 13300.59 13300.597 17 18 3 16 16 17 3 15 14072.983 14072.985

17 17 6 11 16 16 6 10 13278.31 13278.312 20 18 3 16 19 17 3 15 14078.573 14078.575

19 18 6 12 18 17 6 11 14063.86 14063.875 19 19 3 17 18 18 3 16 14856.968 14856.974

18 18 6 12 17 17 6 11 14060.04 14060.048 20 19 3 17 19 18 3 16 14858.627 14858.628

20 18 6 12 19 17 6 11 14084.15 14084.159 16 19 3 17 15 18 3 16 14858.451 14858.461

21 19 6 13 20 18 6 12 14860.17 14860.181 21 19 3 17 20 18 3 16 14860.738 14860.745

18 19 6 13 17 18 6 12 14844.94 14844.951 17 19 3 17 16 18 3 16 14856.057 14856.060

19 19 6 13 18 18 6 12 14840.18 14840.195 18 19 3 17 17 18 3 16 14855.871 14855.875

21 20 6 14 20 19 6 13 15736.28 15736.278 19 20 3 18 18 19 3 17 15638.641 15638.646

10 13 7 6 9 12 7 5 10188.53 10188.531 20 20 3 18 19 19 3 17 15639.675 15639.679

12 13 7 6 11 12 7 5 10134.40 10134.404 18 20 3 18 17 19 3 17 15638.765 15638.768

11 13 7 6 10 12 7 5 10153.43 10153.431 17 20 3 18 16 19 3 17 15640.879 15640.882

14 13 7 6 13 12 7 5 10145.45 10145.453 21 20 3 18 20 19 3 17 15641.179 15641.182

13 13 7 6 12 12 7 5 10131.17 10131.174 22 20 3 18 21 19 3 17 15642.929 15642.930

15 13 7 6 14 12 7 5 10187.10 10187.105 15 13 4 10 14 12 4 9 10174.255 10174.274

16 14 7 7 15 13 7 6 10963.64 10963.638 12 13 4 10 11 12 4 9 10152.993 10152.979

14 14 7 7 13 13 7 6 10918.82 10918.825 14 13 4 10 13 12 4 9 10146.726 10146.724

13 14 7 7 12 13 7 6 10923.40 10923.406 12 14 4 11 11 13 4 10 10985.964 10985.971

11 14 7 7 10 13 7 6 10964.78 10964.779 14 14 4 11 13 13 4 10 10957.191 10957.182

15 14 7 7 14 13 7 6 10930.25 10930.245 16 14 4 11 15 13 4 10 10953.234 10953.226

12 14 7 7 11 13 7 6 10939.85 10939.856 17 15 4 12 16 14 4 11 11733.523 11733.519

13 15 7 8 12 14 7 7 11721.49 11721.492 12 15 4 12 11 14 4 11 11713.677 11713.673

17 15 7 8 16 14 7 7 11741.58 11741.585 15 15 4 12 14 14 4 11 11709.382 11709.383

14 15 7 8 13 14 7 7 11708.13 11708.131 17 16 4 13 16 15 4 12 12500.278 12500.278

15 15 7 8 14 14 7 7 11704.52 11704.530 13 16 4 13 12 15 4 12 12507.593 12507.589

16 16 7 9 15 15 7 8 12489.29 12489.291 16 16 4 13 15 15 4 12 12502.451 12502.449

14 16 7 9 13 15 7 8 12503.91 12503.914 18 17 4 14 17 16 4 13 13287.613 13287.612

15 16 7 9 14 15 7 8 12492.53 12492.539 19 17 4 14 18 16 4 13 13295.447 13295.442

18 16 7 9 17 15 7 8 12520.84 12520.837 14 17 4 14 13 16 4 13 13291.723 13291.722

17 16 7 9 16 15 7 8 12497.72 12497.723 16 17 4 14 15 16 4 13 13286.162 13286.161

13 16 7 9 12 15 7 8 12519.01 12519.011 17 17 4 14 16 16 4 13 13286.662 13286.654

18 17 7 10 17 16 7 9 13281.12 13281.126 19 18 4 15 18 17 4 14 14072.099 14072.103
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Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

19 17 7 10 18 16 7 9 13301.87 13301.877 20 18 4 15 19 17 4 14 14078.407 14078.408

16 17 7 10 15 16 7 9 13277.45 13277.457 15 18 4 15 14 17 4 14 14074.742 14074.745

14 17 7 10 13 16 7 9 13297.65 13297.653 18 18 4 15 17 17 4 14 14070.337 14070.341

15 17 7 10 14 16 7 9 13288.70 13288.709 18 19 4 16 17 18 4 15 14853.261 14853.261

17 17 7 10 16 16 7 9 13273.41 13273.412 19 19 4 16 18 18 4 15 14853.856 14853.863

19 18 7 11 18 17 7 10 14066.56 14066.559 20 19 4 16 19 18 4 15 14855.662 14855.663

18 18 7 11 17 17 7 10 14057.32 14057.328 21 19 4 16 20 18 4 15 14860.275 14860.268

17 18 7 11 16 17 7 10 14070.09 14070.106 16 19 4 16 15 18 4 15 14857.594 14857.594

20 18 7 11 19 17 7 10 14089.63 14089.633 17 20 4 17 16 19 4 16 15640.512 15640.515

16 19 7 12 15 18 7 11 14856.47 14856.471 19 20 4 17 18 19 4 16 15636.724 15636.729

20 20 7 13 19 19 7 12 15623.92 15623.933 21 20 4 17 20 19 4 16 15639.114 15639.116

18 20 7 13 17 19 7 12 15646.35 15646.361 14 13 5 9 13 12 5 8 10132.787 10132.786

17 20 7 13 16 19 7 12 15635.87 15635.877 10 13 5 9 9 12 5 8 10172.993 10172.994

19 20 7 13 18 19 7 12 15638.17 15638.183 13 13 5 9 12 12 5 8 10142.254 10142.246

21 20 7 13 20 19 7 12 15642.22 15642.233 11 14 5 10 10 13 5 9 10950.523 10950.523

12 13 8 5 11 12 8 4 10131.61 10131.608 15 14 5 10 14 13 5 9 10946.913 10946.915

13 13 8 5 12 12 8 4 10122.63 10122.634 14 14 5 10 13 13 5 9 10932.158 10932.164

14 13 8 5 13 12 8 4 10140.82 10140.821 13 14 5 10 12 13 5 9 10945.843 10945.842

15 13 8 5 14 12 8 4 10194.31 10194.309 12 15 5 11 11 14 5 10 11726.678 11726.677

10 13 8 5 9 12 8 4 10200.98 10200.984 13 15 5 11 12 14 5 10 11722.581 11722.587

14 14 8 6 13 13 8 5 10913.52 10913.523 14 16 5 12 13 15 5 11 12491.956 12491.940

12 14 8 6 11 13 8 5 10942.01 10942.019 18 16 5 12 17 15 5 11 12516.942 12516.938

13 14 8 6 12 13 8 5 10920.41 10920.417 13 16 5 12 12 15 5 11 12482.124 12482.118

15 14 8 6 14 13 8 5 10926.40 10926.409 17 16 5 12 16 15 5 11 12492.183 12492.184

16 14 8 6 15 13 8 5 10969.22 10969.218 15 16 5 12 14 15 5 11 12499.292 12499.289

11 14 8 6 10 13 8 5 10974.26 10974.262 14 17 5 13 13 16 5 12 13367.583 13367.591

17 15 8 7 16 14 8 6 11745.71 11745.714 18 18 5 14 17 17 5 13 14051.840 14051.834

12 15 8 7 11 14 8 6 11747.73 11747.738 19 18 5 14 18 17 5 13 14008.404 14008.402

14 15 8 7 13 14 8 6 11703.08 11703.089 16 18 5 14 15 17 5 13 14054.482 14054.473

16 15 8 7 15 14 8 6 11710.93 11710.937 21 19 5 15 20 18 5 14 14858.209 14858.202

15 15 8 7 14 14 8 6 11698.63 11698.628 19 19 5 15 18 18 5 14 14846.723 14846.716

15 16 8 8 14 15 8 7 12487.88 12487.889 16 19 5 15 15 18 5 14 14851.784 14851.782
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Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

17 16 8 8 16 15 8 7 12494.73 12494.736 14 13 6 8 13 12 6 7 10150.064 10150.063

18 16 8 8 17 15 8 7 12523.40 12523.407 12 14 6 9 11 13 6 8 10944.441 10944.442

13 16 8 8 12 15 8 7 12524.30 12524.308 15 15 6 10 14 14 6 9 11710.313 11710.313

16 16 8 8 15 15 8 7 12484.36 12484.365 14 15 6 10 13 14 6 9 11724.666 11724.670

14 16 8 8 13 15 8 7 12502.08 12502.087 17 15 6 10 16 14 6 9 11748.585 11748.582

17 17 8 9 16 16 8 8 13269.12 13269.119 13 15 6 10 12 14 6 9 11750.618 11750.622

16 17 8 9 15 16 8 8 13271.91 13271.915 18 16 6 11 17 15 6 10 12415.921 12415.927

15 17 8 9 14 16 8 8 13283.68 13283.695 16 16 6 11 15 15 6 10 12491.065 12491.062

18 17 8 9 17 16 8 8 13278.04 13278.037 15 16 6 11 14 15 6 10 12452.798 12452.784

18 18 8 10 17 17 8 9 14053.23 14053.230 17 16 6 11 16 15 6 10 12475.408 12475.414

19 18 8 10 18 17 8 9 14061.01 14061.012 14 17 6 12 13 16 6 11 13292.840 13292.839

17 18 8 10 16 17 8 9 14055.62 14055.622 19 17 6 12 18 16 6 11 13356.777 13356.771

15 18 8 10 14 17 8 9 14080.52 14080.530 16 18 6 13 15 17 6 12 14067.864 14067.867

20 18 8 10 19 17 8 9 14081.50 14081.503 17 19 6 14 16 18 6 13 14838.102 14838.121

16 18 8 10 15 17 8 9 14065.65 14065.653 21 19 6 14 20 18 6 13 14860.101 14860.107

19 19 8 11 18 18 8 10 14836.87 14836.881 16 19 6 14 15 18 6 13 14827.419 14827.415

20 19 8 11 19 18 8 10 14843.83 14843.835 20 20 6 15 19 19 6 14 15654.196 15654.188

21 19 8 11 20 18 8 10 14861.84 14861.848 19 20 6 15 18 19 6 14 15629.592 15629.598

18 19 8 11 17 18 8 10 14839.30 14839.308 21 19 7 13 20 18 7 12 14753.181 14753.193

17 19 8 11 16 18 8 10 14848.28 14848.288 18 19 7 13 17 18 7 12 14800.558 14800.546

16 19 8 11 15 18 8 10 14859.72 14859.729 13 14 0 14 12 12 3 9 10165.284 10165.288

20 20 8 12 19 19 8 11 15620.19 15620.194 15 14 4 11 14 12 5 8 10361.298 10361.295

21 20 8 12 20 19 8 11 15626.78 15626.782 15 14 4 10 14 12 5 7 10361.463 10361.461

18 20 8 12 17 19 8 11 15633.13 15633.144 11 14 4 11 10 12 5 8 10648.526 10648.529

22 20 8 12 21 19 8 11 15643.65 15643.651 11 14 4 10 10 12 5 7 10648.693 10648.698

19 20 8 12 18 19 8 11 15623.62 15623.630 14 15 0 15 13 13 3 10 11642.957 11642.963

17 20 8 12 16 19 8 11 15639.40 15639.410 16 15 4 12 15 13 5 9 11950.642 11950.636

14 13 9 4 13 12 9 3 10136.39 10136.389 16 15 4 11 15 13 5 8 11950.965 11950.958

12 13 9 4 11 12 9 3 10125.88 10125.879 15 16 9 7 14 13 10 4 12641.089 12641.088

15 13 9 4 14 12 9 3 10202.75 10202.762 18 17 5 13 17 15 6 10 12690.081 12690.082

13 13 9 4 12 12 9 3 10114.46 10114.461 18 17 5 12 17 15 6 9 12690.094 12690.093

10 13 9 4 9 12 9 3 10214.14 10214.154 14 17 5 13 13 15 6 10 12976.939 12976.932
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Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

11 13 9 4 10 12 9 3 10161.59 10161.595 16 19 6 13 15 17 7 10 13688.465 13688.458

14 14 9 5 13 13 9 4 10904.28 10904.282 20 20 6 15 19 18 7 12 15047.918 15047.916

13 14 9 5 12 13 9 4 10912.69 10912.699 18 20 6 15 17 18 7 12 15210.767 15210.771

16 14 9 5 15 13 9 4 10975.93 10975.931 17 20 6 15 16 18 7 12 15305.689 15305.692

15 14 9 5 14 13 9 4 10922.50 10922.500 14 14 10 5 14 13 10 4 10966.037 10966.042

11 14 9 5 10 13 9 4 10983.13 10983.132 13 16 7 9 13 15 7 8 12614.539 12614.534

17 15 9 6 16 14 9 5 11751.10 11751.098 17 20 6 15 16 19 6 14 15710.783 15710.796

14 15 9 6 13 14 9 5 11704.08 11704.067 16 19 7 13 16 18 7 12 14959.397 14959.385

15 15 9 6 14 14 9 5 11694.06 11694.067 16 19 6 13 15 18 6 12 14827.422 14827.415

16 15 9 6 15 14 9 5 11707.63 11707.627 16 18 7 11 15 17 7 10 14093.557 14093.563

13 15 9 6 12 14 9 5 11729.23 11729.234 13 14 0 14 12 13 0 13 10872.272 10872.271

12 15 9 6 11 14 9 5 11758.94 11758.944 13 14 0 14 13 13 0 13 10917.818 10917.828

16 16 9 7 15 15 9 6 12478.22 12478.221 13 13 3 10 12 12 3 9 10157.718 10157.716

18 16 9 7 17 15 9 6 12527.69 12527.693 13 13 3 10 12 13 0 13 10864.705 10864.700

13 16 9 7 12 15 9 6 12527.80 12527.815 13 13 3 10 13 13 0 13 10910.259 10910.256

16 17 9 8 15 16 9 7 13268.04 13268.047 14 15 0 15 13 14 0 14 11635.393 11635.391

14 17 9 8 13 16 9 7 13306.90 13306.901 14 15 0 15 14 14 0 14 11681.224 11681.232

17 17 9 8 16 16 9 7 13264.52 13264.524 13 14 3 11 13 13 3 10 10980.368 10980.374

18 17 9 8 17 16 9 7 13275.54 13275.544 14 14 3 11 13 13 3 10 10948.546 10948.546

19 17 9 8 18 16 9 7 13305.35 13305.356 16 15 4 12 15 14 4 11 11668.941 11668.943

19 18 9 9 18 17 9 8 14058.73 14058.732 16 15 4 12 16 14 4 11 11528.423 11528.422

20 18 9 9 19 17 9 8 14083.85 14083.849 16 14 5 10 15 13 5 9 11009.942 11009.942

15 18 9 9 14 17 9 8 14084.56 14084.573 16 14 5 10 16 14 4 11 10587.729 10587.727

18 18 9 9 17 17 9 8 14049.26 14049.259 16 14 5 10 15 14 4 11 10728.247 10728.249

16 18 9 9 15 17 9 8 14064.52 14064.531 15 16 9 7 14 15 9 6 12479.645 12479.645

17 18 9 9 16 17 9 8 14052.05 14052.049 15 14 10 5 14 13 10 4 10922.503 10922.502

17 19 9 10 16 18 9 9 14846.14 14846.154 18 17 5 12 17 16 5 11 13386.711 13386.698

20 19 9 10 19 18 9 9 14841.59 14841.598 18 16 6 10 17 15 6 9 12415.921 12415.931

21 20 9 11 20 19 9 10 15624.24 15624.242 18 16 6 10 17 16 5 11 13112.541 13112.536

18 20 9 11 17 19 9 10 15627.95 15627.962 16 18 7 11 15 18 6 12 15232.515 15232.520

20 20 9 11 19 19 9 10 15616.99 15616.994 16 18 7 11 16 18 6 12 15408.421 15408.427

11 13 10 3 10 12 10 2 10163.36 10163.366 20 19 7 13 20 19 6 14 15358.430 15358.427
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Continuation of I-pF-p transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc Obs Calc

12 13 10 3 11 12 10 2 10114.95 10114.957 20 19 7 13 19 18 7 12 14817.722 14817.729

End of Table

Table B.3. Fit Results of 2-fluoro-4-chlorotoluene

Transitions used in the fit described in 4.2.3

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs

(MHz)

Calc

(MHz)

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs

(MHz)

Calc

(MHz)

3 3 0 3 1 2 0 2 0 4545.035 4545.024 24 10 0 10 22 9 0 9 0 14172.097 14172.101

5 3 0 3 3 2 0 2 0 4545.075 4545.078 22 10 0 10 20 9 0 9 0 14172.124 14172.129

9 3 0 3 7 2 0 2 0 4549.306 4549.304 18 10 0 10 16 9 0 9 1 14171.276 14171.270

7 3 0 3 5 2 0 2 0 4549.402 4549.394 20 10 0 10 18 9 0 9 1 14171.306 14171.301

9 3 0 3 7 2 0 2 1 4549.225 4549.235 24 10 0 10 22 9 0 9 1 14171.538 14171.532

7 3 0 3 5 2 0 2 1 4549.318 4549.324 22 10 0 10 20 9 0 9 1 14171.564 14171.559

5 4 0 4 3 3 0 3 0 6011.701 6011.695 18 10 1 10 16 9 0 9 0 14387.827 14387.838

7 4 0 4 5 3 0 3 0 6011.815 6011.803 20 10 1 10 18 9 0 9 0 14388.022 14388.034

11 4 0 4 9 3 0 3 0 6013.732 6013.718 24 10 1 10 22 9 0 9 0 14388.113 14388.125

9 4 0 4 7 3 0 3 0 6013.846 6013.834 22 10 1 10 20 9 0 9 0 14388.304 14388.316

5 4 0 4 3 3 0 3 1 6011.521 6011.536 18 10 1 10 16 9 0 9 1 14386.173 14386.157

7 4 0 4 5 3 0 3 1 6011.631 6011.644 20 10 1 10 18 9 0 9 1 14386.368 14386.354

11 4 0 4 9 3 0 3 1 6013.550 6013.559 24 10 1 10 22 9 0 9 1 14386.460 14386.445

9 4 0 4 7 3 0 3 1 6013.664 6013.675 22 10 1 10 20 9 0 9 1 14386.649 14386.634

7 5 0 5 5 4 0 4 0 7438.439 7438.430 20 10 2 9 18 9 2 8 0 15032.575 15032.554

9 5 0 5 7 4 0 4 0 7438.569 7438.558 22 10 2 9 20 9 2 8 0 15032.746 15032.728

13 5 0 5 11 4 0 4 0 7439.646 7439.634 18 10 2 9 16 9 2 8 0 15032.939 15032.922

11 5 0 5 9 4 0 4 0 7439.773 7439.762 24 10 2 9 22 9 2 8 0 15033.120 15033.100

7 5 0 5 5 4 0 4 1 7438.138 7438.146 20 10 2 9 18 9 2 8 1 15034.465 15034.485

9 5 0 5 7 4 0 4 1 7438.267 7438.275 22 10 2 9 20 9 2 8 1 15034.636 15034.659

13 5 0 5 11 4 0 4 1 7439.345 7439.350 18 10 2 9 16 9 2 8 1 15034.829 15034.852

11 5 0 5 9 4 0 4 1 7439.471 7439.479 24 10 2 9 22 9 2 8 1 15035.010 15035.029

7 5 1 5 5 4 0 4 0 8622.379 8622.394 22 11 0 11 20 10 1 10 0 15283.919 15283.918

13 5 1 5 11 4 0 4 0 8624.059 8624.050 20 11 0 11 18 10 1 10 0 15284.071 15284.072
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Continuation of 2-F-4-Cl-tol Transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs

(MHz)

Calc

(MHz)

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc

9 5 1 5 7 4 0 4 0 8624.162 8624.156 24 11 0 11 22 10 1 10 0 15284.108 15284.107

11 5 1 5 9 4 0 4 0 8625.828 8625.834 26 11 0 11 24 10 1 10 0 15284.260 15284.259

7 5 1 5 5 4 0 4 1 8617.585 8617.594 22 11 0 11 20 10 1 10 1 15284.497 15284.501

13 5 1 5 11 4 0 4 1 8619.265 8619.250 20 11 0 11 18 10 1 10 1 15284.649 15284.654

9 5 1 5 7 4 0 4 1 8619.366 8619.356 24 11 0 11 22 10 1 10 1 15284.686 15284.690

11 5 1 5 9 4 0 4 1 8621.031 8621.034 26 11 0 11 24 10 1 10 1 15284.838 15284.841

9 6 0 6 7 5 0 5 0 8826.308 8826.301 20 11 1 10 18 10 1 9 0 17024.347 17024.327

11 6 0 6 9 5 0 5 0 8826.443 8826.435 22 11 1 10 20 10 1 9 0 17024.430 17024.410

15 6 0 6 13 5 0 5 0 8827.121 8827.111 26 11 1 10 24 10 1 9 0 17024.593 17024.571

13 6 0 6 11 5 0 5 0 8827.238 8827.231 24 11 1 10 22 10 1 9 0 17024.622 17024.602

9 6 0 6 7 5 0 5 1 8825.879 8825.883 20 11 1 10 18 10 1 9 1 17023.056 17023.087

11 6 0 6 9 5 0 5 1 8826.015 8826.018 22 11 1 10 20 10 1 9 1 17023.121 17023.151

15 6 0 6 13 5 0 5 1 8826.693 8826.694 26 11 1 10 24 10 1 9 1 17023.282 17023.311

13 6 0 6 11 5 0 5 1 8826.810 8826.813 24 11 1 10 22 10 1 9 1 17023.331 17023.361

11 6 1 5 9 5 1 4 0 9643.083 9643.044 22 11 1 11 20 10 1 10 0 15425.975 15425.981

9 6 1 5 7 5 1 4 0 9643.508 9643.471 20 11 1 11 18 10 1 10 0 15426.028 15426.034

13 6 1 5 11 5 1 4 0 9643.695 9643.657 24 11 1 11 22 10 1 10 0 15426.177 15426.182

15 6 1 5 13 5 1 4 0 9644.130 9644.089 26 11 1 11 24 10 1 10 0 15426.231 15426.235

13 7 0 7 11 6 0 6 0 10182.771 10182.768 22 11 1 11 20 10 1 10 1 15425.786 15425.783

11 7 0 7 9 6 0 6 0 10182.697 10182.695 20 11 1 11 18 10 1 10 1 15425.839 15425.836

13 7 0 7 11 6 0 6 1 10182.243 10182.243 24 11 1 11 22 10 1 10 1 15425.987 15425.984

17 7 0 7 15 6 0 6 1 10182.706 10182.704 26 11 1 11 24 10 1 10 1 15426.042 15426.037

15 7 0 7 13 6 0 6 1 10182.837 10182.837 20 11 0 11 18 10 0 10 0 15500.063 15500.071

13 7 2 6 11 6 2 5 0 10630.291 10630.265 22 11 0 11 20 10 0 10 0 15500.077 15500.083

15 7 2 6 13 6 2 5 0 10630.424 10630.406 26 11 0 11 24 10 0 10 0 15500.276 15500.283

11 7 2 6 9 6 2 5 0 10631.455 10631.439 24 11 0 11 22 10 0 10 0 15500.289 15500.294

17 7 2 6 15 6 2 5 0 10631.641 10631.614 20 11 0 11 18 10 0 10 1 15499.546 15499.541

13 7 1 6 11 6 1 5 0 11193.528 11193.487 22 11 0 11 20 10 0 10 1 15499.559 15499.553

11 7 1 6 9 6 1 5 0 11193.754 11193.714 26 11 0 11 24 10 0 10 1 15499.759 15499.753

15 7 1 6 13 6 1 5 0 11194.009 11193.969 24 11 0 11 22 10 0 10 1 15499.771 15499.765

17 7 1 6 15 6 1 5 0 11194.240 11194.198 20 11 1 11 18 10 0 10 0 15642.021 15642.032
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Continuation of 2-F-4-Cl-tol Transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs

(MHz)

Calc

(MHz)

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc

13 7 1 6 11 6 1 5 1 11192.799 11192.834 22 11 1 11 20 10 0 10 0 15642.133 15642.146

11 7 1 6 9 6 1 5 1 11193.025 11193.061 26 11 1 11 24 10 0 10 0 15642.247 15642.259

15 7 1 6 13 6 1 5 1 11193.280 11193.316 24 11 1 11 22 10 0 10 0 15642.358 15642.369

17 7 1 6 15 6 1 5 1 11193.511 11193.545 20 11 1 11 18 10 0 10 1 15640.737 15640.723

15 8 1 7 13 7 1 6 0 12712.246 12712.207 22 11 1 11 20 10 0 10 1 15640.848 15640.836

13 8 1 7 11 7 1 6 0 12712.351 12712.313 26 11 1 11 24 10 0 10 1 15640.963 15640.949

17 8 1 7 15 7 1 6 0 12712.630 12712.591 24 11 1 11 22 10 0 10 1 15641.072 15641.059

19 8 1 7 17 7 1 6 0 12712.739 12712.699 24 12 0 12 22 11 1 11 0 16689.881 16689.883

15 8 1 7 13 7 1 6 1 12711.492 12711.531 22 12 0 12 20 11 1 11 0 16689.979 16689.982

13 8 1 7 11 7 1 6 1 12711.597 12711.636 26 12 0 12 24 11 1 11 0 16690.048 16690.046

17 8 1 7 15 7 1 6 1 12711.875 12711.914 24 12 0 12 22 11 1 11 1 16690.178 16690.173

19 8 1 7 17 7 1 6 1 12711.984 12712.022 22 12 0 12 20 11 1 11 1 16690.267 16690.272

15 8 1 8 13 7 1 7 0 11324.260 11324.260 26 12 0 12 24 11 1 11 1 16690.336 16690.336

13 8 1 8 11 7 1 7 0 11324.427 11324.430 28 12 0 12 26 11 1 11 1 16690.430 16690.433

17 8 1 8 15 7 1 7 0 11324.620 11324.622 22 12 1 11 20 11 1 10 0 18380.095 18380.084

19 8 1 8 17 7 1 7 0 11324.795 11324.794 24 12 1 11 22 11 1 10 0 18380.167 18380.155

15 8 1 8 13 7 1 7 1 11324.340 11324.341 28 12 1 11 26 11 1 10 0 18380.281 18380.269

13 8 1 8 11 7 1 7 1 11324.506 11324.511 26 12 1 11 24 11 1 10 0 18380.349 18380.337

17 8 1 8 15 7 1 7 1 11324.700 11324.703 22 12 1 11 20 11 1 10 1 18378.580 18378.606

17 9 0 9 15 8 1 8 0 12375.993 12375.985 24 12 1 11 22 11 1 10 1 18378.653 18378.678

19 9 0 9 17 8 1 8 0 12376.243 12376.238 28 12 1 11 26 11 1 10 1 18378.766 18378.791

15 9 0 9 13 8 1 8 0 12376.372 12376.368 26 12 1 11 24 11 1 10 1 18378.834 18378.860

21 9 0 9 19 8 1 8 0 12376.625 12376.616 24 12 1 12 22 11 1 11 1 16781.566 16781.560

17 9 0 9 15 8 1 8 1 12377.479 12377.491 22 12 1 12 20 11 1 11 1 16781.604 16781.599

19 9 0 9 17 8 1 8 1 12377.731 12377.745 26 12 1 12 24 11 1 11 1 16781.736 16781.730

15 9 0 9 13 8 1 8 1 12377.858 12377.874 28 12 1 12 26 11 1 11 1 16781.775 16781.769

21 9 0 9 19 8 1 8 1 12378.110 12378.122 22 12 0 12 20 11 0 11 0 16831.936 16831.943

15 9 0 9 13 8 0 8 0 12846.057 12846.061 24 12 0 12 22 11 0 11 0 16831.936 16831.945

17 9 0 9 15 8 0 8 0 12846.112 12846.115 28 12 0 12 26 11 0 11 0 16832.113 16832.119

21 9 0 9 19 8 0 8 0 12846.389 12846.391 26 12 0 12 24 11 0 11 0 16832.113 16832.120

19 9 0 9 17 8 0 8 0 12846.439 12846.441 22 12 0 12 20 11 0 11 1 16831.461 16831.453
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Continuation of 2-F-4-Cl-tol Transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs

(MHz)

Calc

(MHz)

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc

15 9 0 9 13 8 0 8 1 12845.470 12845.466 24 12 0 12 22 11 0 11 1 16831.461 16831.455

17 9 0 9 15 8 0 8 1 12845.525 12845.522 28 12 0 12 26 11 0 11 1 16831.638 16831.630

21 9 0 9 19 8 0 8 1 12845.803 12845.798 26 12 0 12 24 11 0 11 1 16831.638 16831.630

19 9 0 9 17 8 0 8 1 12845.846 12845.842 22 12 1 12 20 11 0 11 0 16923.795 16923.807

17 9 1 8 15 8 1 7 0 14192.724 14192.690 24 12 1 12 22 11 0 11 0 16923.857 16923.869

15 9 1 8 13 8 1 7 0 14192.749 14192.715 28 12 1 12 26 11 0 11 0 16923.980 16923.991

19 9 1 8 17 8 1 7 0 14193.036 14193.001 26 12 1 12 24 11 0 11 0 16924.040 16924.051

21 9 1 8 19 8 1 7 0 14193.067 14193.031 22 12 1 12 20 11 0 11 1 16922.792 16922.781

17 9 1 8 15 8 1 7 1 14191.841 14191.879 24 12 1 12 22 11 0 11 1 16922.855 16922.843

15 9 1 8 13 8 1 7 1 14191.865 14191.904 28 12 1 12 26 11 0 11 1 16922.978 16922.965

19 9 1 8 17 8 1 7 1 14192.152 14192.190 26 12 1 12 24 11 0 11 1 16923.038 16923.024

21 9 1 8 19 8 1 7 1 14192.182 14192.220 26 13 0 13 24 12 0 12 0 18167.270 18167.279

17 9 1 9 15 8 1 8 0 12698.631 12698.632 24 13 0 13 22 12 0 12 0 18167.276 18167.284

15 9 1 9 13 8 1 8 0 12698.741 12698.743 28 13 0 13 26 12 0 12 0 18167.418 18167.427

19 9 1 9 17 8 1 8 0 12698.923 12698.925 30 13 0 13 28 12 0 12 0 18167.426 18167.433

21 9 1 9 19 8 1 8 0 12699.037 12699.037 26 13 0 13 24 12 0 12 1 18166.832 18166.824

17 9 1 9 15 8 1 8 1 12698.590 12698.590 24 13 0 13 22 12 0 12 1 18166.839 18166.829

15 9 1 9 13 8 1 8 1 12698.700 12698.701 28 13 0 13 26 12 0 12 1 18166.981 18166.972

19 9 1 9 17 8 1 8 1 12698.882 12698.883 30 13 0 13 28 12 0 12 1 18166.990 18166.978

21 9 1 9 19 8 1 8 1 12698.996 12698.995 24 13 1 13 22 12 0 12 0 18225.967 18225.979

15 9 1 9 13 8 0 8 0 13168.426 13168.436 26 13 1 13 24 12 0 12 0 18225.998 18226.010

17 9 1 9 15 8 0 8 0 13168.750 13168.762 30 13 1 13 28 12 0 12 0 18226.122 18226.132

21 9 1 9 19 8 0 8 0 13168.801 13168.812 28 13 1 13 26 12 0 12 0 18226.150 18226.161

19 9 1 9 17 8 0 8 0 13169.118 13169.129 24 13 1 13 22 12 0 12 1 18225.174 18225.161

15 9 1 9 13 8 0 8 1 13166.311 13166.293 26 13 1 13 24 12 0 12 1 18225.204 18225.192

17 9 1 9 15 8 0 8 1 13166.636 13166.621 30 13 1 13 28 12 0 12 1 18225.328 18225.314

21 9 1 9 19 8 0 8 1 13166.689 13166.672 28 13 1 13 26 12 0 12 1 18225.356 18225.343

19 9 1 9 17 8 0 8 1 13166.998 13166.980 28 14 1 14 26 13 1 13 0 19483.808 19483.816

17 9 2 7 15 8 2 6 0 14504.952 14504.897 26 14 1 14 24 13 1 13 0 19483.830 19483.839

19 9 2 7 17 8 2 6 0 14505.146 14505.092 30 14 1 14 28 13 1 13 0 19483.934 19483.942

15 9 2 7 13 8 2 6 0 14505.520 14505.467 28 14 1 14 26 13 1 13 1 19483.519 19483.509
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Continuation of 2-F-4-Cl-tol Transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs

(MHz)

Calc

(MHz)

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc

21 9 2 7 19 8 2 6 0 14505.723 14505.666 26 14 1 14 24 13 1 13 1 19483.541 19483.532

17 9 2 7 15 8 2 6 1 14501.326 14501.371 30 14 1 14 28 13 1 13 1 19483.645 19483.635

19 9 2 7 17 8 2 6 1 14501.519 14501.565 28 14 0 14 26 13 0 13 0 19505.406 19505.418

15 9 2 7 13 8 2 6 1 14501.895 14501.943 26 14 0 14 24 13 0 13 0 19505.418 19505.426

21 9 2 7 19 8 2 6 1 14502.099 14502.143 30 14 0 14 28 13 0 13 0 19505.534 19505.545

17 9 2 8 15 8 2 7 0 13579.675 13579.653 32 14 0 14 30 13 0 13 0 19505.546 19505.554

19 9 2 8 17 8 2 7 0 13579.846 13579.841 28 14 0 14 26 13 0 13 1 19505.000 19504.990

15 9 2 8 13 8 2 7 0 13580.180 13580.179 26 14 0 14 24 13 0 13 1 19505.011 19504.999

21 9 2 8 19 8 2 7 0 13580.396 13580.373 30 14 0 14 28 13 0 13 1 19505.127 19505.117

17 9 2 8 15 8 2 7 1 13583.241 13583.259 32 14 0 14 30 13 0 13 1 19505.138 19505.126

19 9 2 8 17 8 2 7 1 13583.396 13583.446 30 15 0 15 28 14 1 14 0 20808.498 20808.506

15 9 2 8 13 8 2 7 1 13583.729 13583.782 28 15 0 15 26 14 1 14 0 20808.529 20808.538

21 9 2 8 19 8 2 7 1 13583.961 13583.976 30 15 0 15 28 14 1 14 1 20808.352 20808.341

19 10 0 10 17 9 1 9 0 13849.227 13849.222 28 15 0 15 26 14 1 14 1 20808.382 20808.373

21 10 0 10 19 9 1 9 0 13849.444 13849.441 30 15 1 15 28 14 1 14 0 20831.762 20831.771

17 10 0 10 15 9 1 9 0 13849.465 13849.464 32 15 1 15 30 14 1 14 0 20831.872 20831.880

23 10 0 10 21 9 1 9 0 13849.684 13849.680 28 15 1 15 26 14 1 14 0 20831.779 20831.790

19 10 0 10 17 9 1 9 1 13850.195 13850.202 30 15 1 15 28 14 1 14 1 20831.459 20831.446

21 10 0 10 19 9 1 9 1 13850.413 13850.421 32 15 1 15 30 14 1 14 1 20831.569 20831.556

17 10 0 10 15 9 1 9 1 13850.433 13850.443 28 15 1 15 26 14 1 14 1 20831.476 20831.465

23 10 0 10 21 9 1 9 1 13850.653 13850.659 30 15 0 15 28 14 0 14 0 20845.625 20845.635

17 10 1 9 15 9 1 8 0 15630.311 15630.292 28 15 0 15 26 14 0 14 0 20845.638 20845.646

19 10 1 9 17 9 1 8 0 15630.321 15630.284 32 15 0 15 30 14 0 14 0 20845.735 20845.746

23 10 1 9 21 9 1 8 0 15630.546 15630.517 30 15 0 15 28 14 0 14 1 20845.240 20845.228

17 10 1 9 15 9 1 8 1 15629.217 15629.253 28 15 0 15 26 14 0 14 1 20845.254 20845.239

19 10 1 9 17 9 1 8 1 15629.229 15629.264 32 15 0 15 30 14 0 14 1 20845.351 20845.339

23 10 1 9 21 9 1 8 1 15629.464 15629.498 30 15 1 15 28 14 0 14 0 20868.888 20868.900

21 10 1 9 19 9 1 8 1 15629.501 15629.536 28 15 1 15 26 14 0 14 0 20868.888 20868.897

19 10 1 10 17 9 1 9 0 14065.384 14065.387 32 15 1 15 30 14 0 14 0 20869.000 20869.011

17 10 1 10 15 9 1 9 0 14065.459 14065.462 30 15 1 15 28 14 0 14 1 20868.347 20868.333

21 10 1 10 19 9 1 9 0 14065.625 14065.628 28 15 1 15 26 14 0 14 1 20868.347 20868.331
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Continuation of 2-F-4-Cl-tol Transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs

(MHz)

Calc

(MHz)

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc

23 10 1 10 21 9 1 9 0 14065.701 14065.704 32 15 1 15 30 14 0 14 1 20868.458 20868.444

19 10 1 10 17 9 1 9 1 14065.255 14065.255 32 16 0 16 30 15 1 15 0 22164.050 22164.055

17 10 1 10 15 9 1 9 1 14065.333 14065.330 30 16 0 16 28 15 1 15 0 22164.069 22164.079

21 10 1 10 19 9 1 9 1 14065.497 14065.496 34 16 0 16 32 15 1 15 0 22164.143 22164.151

23 10 1 10 21 9 1 9 1 14065.574 14065.572 32 16 0 16 30 15 1 15 1 22163.837 22163.823

17 10 0 10 15 9 0 9 0 14171.834 14171.839 30 16 0 16 28 15 1 15 1 22163.859 22163.846

19 10 0 10 17 9 0 9 0 14171.864 14171.869 34 16 0 16 32 15 1 15 1 22163.934 22163.919

End of Table

Table B.4. Fit Results of m-Chlorotoluene

Transitions used in 4.3.2

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs

(MHz)

Calc

(MHz)

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs

(MHz)

Calc

(MHz)

5 3 0 3 3 2 0 2 0 6107.166 6107.162 19 8 5 3 17 7 5 2 0 16779.249 16779.228

3 3 0 3 1 2 0 2 0 6107.197 6107.198 13 8 5 3 11 7 5 2 0 16780.155 16780.136

7 3 0 3 5 2 0 2 0 6110.907 6110.903 17 8 5 4 15 7 5 3 0 16773.726 16773.706

9 3 0 3 7 2 0 2 0 6110.920 6110.915 15 8 5 4 13 7 5 3 0 16774.663 16774.643

9 4 0 4 7 3 0 3 0 8015.691 8015.688 19 8 5 4 17 7 5 3 0 16778.194 16778.173

11 4 0 4 9 3 0 3 0 8015.710 8015.708 13 8 5 4 11 7 5 3 0 16779.104 16779.084

9 4 2 2 7 3 2 1 0 8579.101 8579.086 17 9 0 9 15 8 0 8 0 16815.440 16815.446

7 4 2 2 5 3 2 1 0 8581.217 8581.202 15 9 0 9 13 8 0 8 0 16815.527 16815.534

11 4 2 2 9 3 2 1 0 8585.095 8585.078 19 9 0 9 17 8 0 8 0 16815.722 16815.727

5 4 2 2 3 3 2 1 0 8587.161 8587.144 21 9 0 9 19 8 0 8 0 16815.809 16815.816

7 4 1 3 5 3 1 2 0 8866.661 8866.649 15 9 0 9 13 8 0 8 1 17043.367 17043.368

9 4 1 3 7 3 1 2 0 8867.294 8867.283 17 9 0 9 15 8 0 8 1 17043.537 17043.530

5 4 1 3 3 3 1 2 0 8867.984 8867.978 21 9 0 9 19 8 0 8 1 17043.711 17043.709

11 4 1 3 9 3 1 2 0 8868.940 8868.926 19 9 0 9 17 8 0 8 1 17043.872 17043.865

9 5 0 5 7 4 0 4 0 9838.578 9838.580 17 9 1 8 15 8 1 7 0 18853.806 18853.833

13 5 0 5 11 4 0 4 0 9839.627 9839.629 15 9 1 8 13 8 1 7 0 18853.927 18853.954

11 5 0 5 9 4 0 4 0 9839.667 9839.668 19 9 1 8 17 8 1 7 0 18854.046 18854.072
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Continuation of m-Cl-Tol Transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc

7 5 0 5 5 4 0 4 0 9838.682 9838.687 21 9 1 8 19 8 1 7 0 18854.174 18854.200

11 5 2 3 9 4 2 2 0 10866.925 10866.911 17 9 1 8 15 8 1 7 1 18226.504 18226.451

9 5 2 3 7 4 2 2 0 10867.391 10867.376 19 9 1 8 17 8 1 7 1 18226.702 18226.649

13 5 2 3 11 4 2 2 0 10869.933 10869.916 15 9 1 8 13 8 1 7 1 18226.955 18226.902

7 5 2 3 5 4 2 2 0 10870.288 10870.273 21 9 1 8 19 8 1 7 1 18227.161 18227.105

9 5 2 3 7 4 2 2 1 11444.579 11444.620 17 9 1 9 15 8 1 8 0 16735.035 16735.040

11 5 2 3 9 4 2 2 1 11444.808 11444.851 15 9 1 9 13 8 1 8 0 16735.174 16735.181

7 5 2 3 5 4 2 2 1 11445.522 11445.559 19 9 1 9 17 8 1 8 0 16735.304 16735.310

13 5 2 3 11 4 2 2 1 11445.574 11445.616 21 9 1 9 19 8 1 8 0 16735.447 16735.453

9 5 1 4 7 4 1 3 0 11011.800 11011.790 17 9 1 9 15 8 1 8 1 16642.457 16642.433

11 5 1 4 9 4 1 3 0 11012.409 11012.399 15 9 1 9 13 8 1 8 1 16642.623 16642.602

7 5 1 4 5 4 1 3 0 11012.534 11012.524 19 9 1 9 17 8 1 8 1 16642.724 16642.699

13 5 1 4 11 4 1 3 0 11013.159 11013.149 21 9 1 9 19 8 1 8 1 16642.898 16642.875

11 5 2 4 9 4 2 3 0 10317.884 10317.876 17 9 2 7 15 8 2 6 0 19974.370 19974.411

9 5 2 4 7 4 2 3 0 10318.417 10318.408 19 9 2 7 17 8 2 6 0 19974.539 19974.580

13 5 2 4 11 4 2 3 0 10320.969 10320.959 15 9 2 7 13 8 2 6 0 19974.769 19974.812

7 5 2 4 5 4 2 3 0 10321.291 10321.285 21 9 2 7 19 8 2 6 0 19974.945 19974.986

11 5 3 2 9 4 3 1 0 10514.038 10514.022 17 9 2 8 15 8 2 7 0 18165.305 18165.324

9 5 3 2 7 4 3 1 0 10516.239 10516.225 19 9 2 8 17 8 2 7 0 18165.463 18165.481

13 5 3 2 11 4 3 1 0 10520.745 10520.730 15 9 2 8 13 8 2 7 0 18165.803 18165.823

7 5 3 2 5 4 3 1 0 10523.047 10523.031 21 9 2 8 19 8 2 7 0 18165.969 18165.989

11 5 3 3 9 4 3 2 0 10473.444 10473.429 19 9 3 6 17 8 3 5 0 19567.729 19567.762

9 5 3 3 7 4 3 2 0 10475.619 10475.607 17 9 3 6 15 8 3 5 0 19567.742 19567.776

13 5 3 3 11 4 3 2 0 10480.117 10480.103 15 9 3 6 13 8 3 5 0 19568.849 19568.880

7 5 3 3 5 4 3 2 0 10482.443 10482.428 21 9 3 6 19 8 3 5 0 19568.867 19568.898

9 6 0 6 7 5 0 5 0 11604.226 11604.234 19 9 3 7 17 8 3 6 0 18874.382 18874.402

11 6 0 6 9 5 0 5 0 11604.235 11604.239 17 9 3 7 15 8 3 6 0 18874.416 18874.436

13 6 0 6 11 5 0 5 0 11604.852 11604.857 15 9 3 7 13 8 3 6 0 18875.472 18875.495

15 6 0 6 13 5 0 5 0 11604.982 11604.987 21 9 3 7 19 8 3 6 0 18875.525 18875.547

9 6 0 6 7 5 0 5 1 11554.666 11554.651 19 9 4 6 17 8 4 5 0 18969.579 18969.589

11 6 0 6 9 5 0 5 1 11554.788 11554.760 17 9 4 6 15 8 4 5 0 18969.817 18969.828

15 6 0 6 13 5 0 5 1 11555.465 11555.443 21 9 4 6 19 8 4 5 0 18971.588 18971.596

130



Continuation of m-Cl-Tol Transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc

13 6 0 6 11 5 0 5 1 11555.578 11555.544 15 9 4 6 13 8 4 5 0 18971.790 18971.800

11 6 1 6 9 5 1 5 0 11326.638 11326.641 19 10 0 10 17 9 0 9 0 18562.663 18562.668

9 6 1 6 7 5 1 5 0 11327.053 11327.058 17 10 0 10 15 9 0 9 0 18562.747 18562.751

13 6 1 6 11 5 1 5 0 11327.175 11327.179 21 10 0 10 19 9 0 9 0 18562.892 18562.895

15 6 1 6 13 5 1 5 0 11327.627 11327.630 23 10 0 10 21 9 0 9 0 18562.975 18562.979

11 6 1 6 9 5 1 5 1 11040.223 11040.206 17 10 0 10 15 9 0 9 1 18746.623 18746.624

13 6 1 6 11 5 1 5 1 11040.734 11040.714 19 10 0 10 17 9 0 9 1 18746.729 18746.722

9 6 1 6 7 5 1 5 1 11041.200 11041.183 23 10 0 10 21 9 0 9 1 18746.988 18746.887

15 6 1 6 13 5 1 5 1 11041.500 11041.482 21 10 0 10 19 9 0 9 1 18746.890 18746.984

15 6 2 4 13 5 2 3 0 13186.393 13186.382 19 10 1 9 17 9 1 8 0 20608.181 20608.214

9 6 2 4 7 5 2 3 0 13186.448 13186.435 17 10 1 9 15 9 1 8 0 20608.290 20608.323

11 6 2 4 9 5 2 3 0 13184.730 13184.719 21 10 1 9 19 9 1 8 0 20608.380 20608.410

13 6 2 4 11 5 2 3 0 13184.789 13184.778 23 10 1 9 21 9 1 8 0 20608.488 20608.521

13 6 2 4 11 5 2 3 1 13399.700 13399.788 19 10 1 9 17 9 1 8 1 20395.689 20395.651

11 6 2 4 9 5 2 3 1 13399.789 13399.872 21 10 1 9 19 9 1 8 1 20395.873 20395.834

15 6 2 4 13 5 2 3 1 13401.128 13401.273 17 10 1 9 15 9 1 8 1 20395.873 20395.883

9 6 2 4 7 5 2 3 1 13401.196 13401.203 23 10 1 9 21 9 1 8 1 20396.123 20396.085

11 6 1 5 9 5 1 4 0 13098.214 13098.212 19 10 1 10 17 9 1 9 0 18514.821 18514.825

9 6 1 5 7 5 1 4 0 13098.627 13098.626 17 10 1 10 15 9 1 9 0 18514.929 18514.935

13 6 1 5 11 5 1 4 0 13098.696 13098.693 21 10 1 10 19 9 1 9 0 18515.042 18515.046

15 6 1 5 13 5 1 4 0 13099.118 13099.115 23 10 1 10 21 9 1 9 0 18515.154 18515.158

11 6 1 5 9 5 1 4 1 11815.732 11815.752 19 10 1 10 17 9 1 9 1 18464.197 18464.171

13 6 1 5 11 5 1 4 1 11815.832 11815.854 17 10 1 10 15 9 1 9 1 18464.304 18464.280

9 6 1 5 7 5 1 4 1 11817.354 11817.367 21 10 1 10 19 9 1 9 1 18464.422 18464.394

15 6 1 5 13 5 1 4 1 11817.470 11817.485 23 10 1 10 21 9 1 9 1 18464.530 18464.507

13 6 3 3 11 5 3 2 0 12692.723 12692.709 19 10 2 8 17 9 2 7 0 22105.840 22105.908

11 6 3 3 9 5 3 2 0 12693.584 12693.570 21 10 2 8 19 9 2 7 0 22105.998 22106.063

15 6 3 3 13 5 3 2 0 12696.597 12696.583 17 10 2 8 15 9 2 7 0 22106.110 22106.173

9 6 3 3 7 5 3 2 0 12697.422 12697.409 23 10 2 8 21 9 2 7 0 22106.267 22106.333

13 6 3 4 11 5 3 3 0 12587.311 12587.300 19 10 2 9 17 9 2 8 0 20047.569 20047.596

11 6 3 4 9 5 3 3 0 12588.228 12588.214 21 10 2 9 19 9 2 8 0 20047.717 20047.742

15 6 3 4 13 5 3 3 0 12591.211 12591.197 17 10 2 9 15 9 2 8 0 20047.937 20047.964
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Continuation of m-Cl-Tol Transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc

9 6 3 4 7 5 3 3 0 12591.985 12591.974 23 10 2 9 21 9 2 8 0 20048.089 20048.115

13 6 4 3 11 5 4 2 0 12568.167 12568.145 19 10 2 9 17 9 2 8 1 19673.669 19673.645

11 6 4 3 9 5 4 2 0 12570.213 12570.192 21 10 2 9 19 9 2 8 1 19673.782 19673.758

15 6 4 3 13 5 4 2 0 12575.024 12575.003 17 10 2 9 15 9 2 8 1 19674.233 19674.209

9 6 4 3 7 5 4 2 0 12577.035 12577.016 23 10 2 9 21 9 2 8 1 19674.351 19674.327

13 6 4 2 11 5 4 1 0 12571.830 12571.809 21 11 0 11 19 10 0 10 0 20316.250 20316.252

11 6 4 2 9 5 4 1 0 12573.882 12573.862 19 11 0 11 17 10 0 10 0 20316.325 20316.327

15 6 4 2 13 5 4 1 0 12578.693 12578.672 23 11 0 11 21 10 0 10 0 20316.440 20316.439

9 6 4 2 7 5 4 1 0 12580.703 12580.682 25 11 0 11 23 10 0 10 0 20316.515 20316.514

13 7 0 7 11 6 0 6 0 13342.333 13342.340 19 11 0 11 17 10 0 10 1 20449.326 20449.319

11 7 0 7 9 6 0 6 0 13342.409 13342.415 21 11 0 11 19 10 0 10 1 20449.376 20449.364

15 7 0 7 13 6 0 6 0 13342.809 13342.815 25 11 0 11 23 10 0 10 1 20449.536 20449.528

17 7 0 7 15 6 0 6 0 13342.889 13342.896 23 11 0 11 21 10 0 10 1 20449.586 20449.572

11 7 0 7 9 6 0 6 1 13482.944 13482.931 21 11 1 10 19 10 1 9 0 22321.292 22321.334

13 7 0 7 11 6 0 6 1 13483.157 13483.133 19 11 1 10 17 10 1 9 0 22321.413 22321.443

17 7 0 7 15 6 0 6 1 13483.539 13483.521 23 11 1 10 21 10 1 9 0 22321.453 22321.495

15 7 0 7 13 6 0 6 1 13483.738 13483.711 25 11 1 10 23 10 1 9 0 22321.574 22321.606

13 7 1 7 11 6 1 6 0 13144.805 13144.810 21 11 1 10 19 10 1 9 1 22464.423 22464.416

11 7 1 7 9 6 1 6 0 13145.077 13145.083 19 11 1 10 17 10 1 9 1 22464.521 22464.516

15 7 1 7 13 6 1 6 0 13145.227 13145.232 23 11 1 10 21 10 1 9 1 22464.611 22464.602

17 7 1 7 15 6 1 6 0 13145.511 13145.516 25 11 1 10 23 10 1 9 1 22464.689 22464.683

13 7 1 7 11 6 1 6 1 12929.945 12929.924 23 12 0 12 21 11 0 11 0 22074.237 22074.233

15 7 1 7 13 6 1 6 1 12930.274 12930.253 21 12 0 12 19 11 0 11 0 22074.303 22074.301

11 7 1 7 9 6 1 6 1 12930.353 12930.338 25 12 0 12 23 11 0 11 0 22074.395 22074.391

17 7 1 7 15 6 1 6 1 12930.812 12930.792 26 12 0 12 25 11 0 11 0 22074.462 22074.459

15 7 3 4 13 6 3 3 0 14923.332 14923.326 21 12 0 12 19 11 0 11 1 22166.216 22166.197

13 7 3 4 11 6 3 3 0 14923.667 14923.662 23 12 0 12 21 11 0 11 1 22166.229 22166.208

17 7 3 4 15 6 3 3 0 14925.771 14925.764 26 12 0 12 25 11 0 11 1 22166.387 22166.368

11 7 3 4 9 6 3 3 0 14926.061 14926.055 25 12 0 12 23 11 0 11 1 22166.399 22166.378

11 7 3 4 9 6 3 3 1 15469.538 15469.493 23 13 0 13 21 12 0 12 0 23835.082 23835.069

13 7 3 4 11 6 3 3 1 15469.821 15469.769 25 13 0 13 23 12 0 12 0 23835.024 23835.009

17 7 3 4 15 6 3 3 1 15469.963 15469.915 28 13 0 13 26 12 0 12 0 23835.211 23835.204
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Continuation of m-Cl-Tol Transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc

15 7 3 4 13 6 3 3 1 15470.123 15470.071 26 13 0 13 25 12 0 12 0 23835.150 23835.144

15 8 0 8 13 7 0 7 0 15075.963 15075.971 25 13 0 13 23 12 0 12 1 23898.307 23898.275

13 8 0 8 11 7 0 7 0 15076.051 15076.057 23 13 0 13 21 12 0 12 1 23898.317 23898.285

17 8 0 8 15 7 0 7 0 15076.324 15076.330 26 13 0 13 25 12 0 12 1 23898.446 23898.418

19 8 0 8 17 7 0 7 0 15076.412 15076.419 28 13 0 13 26 12 0 12 1 23898.459 23898.427

13 8 0 8 11 7 0 7 1 15303.883 15303.880 13 7 0 7 11 6 1 6 0 12824.803 12824.810

15 8 0 8 13 7 0 7 1 15304.086 15304.073 11 7 0 7 9 6 1 6 0 12825.287 12825.294

19 8 0 8 17 7 0 7 1 15304.316 15304.309 15 7 0 7 13 6 1 6 0 12825.178 12825.186

17 8 0 8 15 7 0 7 1 15304.536 15304.520 17 7 0 7 15 6 1 6 0 12825.681 12825.687

15 8 1 8 13 7 1 7 0 14946.266 14946.270 15 8 0 8 13 7 1 7 0 14755.962 14755.971

13 8 1 8 11 7 1 7 0 14946.454 14946.461 13 8 0 8 11 7 1 7 0 14756.259 14756.269

17 8 1 8 15 7 1 7 0 14946.598 14946.604 17 8 0 8 15 7 1 7 0 14756.274 14756.284

19 8 1 8 17 7 1 7 0 14946.794 14946.800 19 8 0 8 17 7 1 7 0 14756.582 14756.591

15 8 1 8 13 7 1 7 1 14798.144 14798.120 13 8 1 8 11 7 0 7 0 15266.245 15266.250

13 8 1 8 11 7 1 7 1 14798.413 14798.393 15 8 1 8 13 7 0 7 0 15266.267 15266.270

17 8 1 8 15 7 1 7 1 14798.460 14798.435 19 8 1 8 17 7 0 7 0 15266.625 15266.628

19 8 1 8 17 7 1 7 1 14798.746 14798.724 17 8 1 8 15 7 0 7 0 15266.646 15266.650

15 8 1 7 13 7 1 6 0 17026.506 17026.523 11 7 1 7 9 6 0 6 0 13662.199 13662.204

13 8 1 7 11 7 1 6 0 17026.678 17026.697 13 7 1 7 11 6 0 6 0 13662.336 13662.340

17 8 1 7 15 7 1 6 0 17026.812 17026.829 17 7 1 7 15 6 0 6 0 13662.720 13662.725

19 8 1 7 17 7 1 6 0 17026.975 17026.993 15 7 1 7 13 6 0 6 0 13662.859 13662.861

15 8 1 7 13 7 1 6 1 16023.944 16023.900 17 9 0 9 15 8 1 8 0 16625.138 16625.147

17 8 1 7 15 7 1 6 1 16024.143 16024.099 15 9 0 9 13 8 1 8 0 16625.332 16625.342

13 8 1 7 11 7 1 6 1 16024.669 16024.621 19 9 0 9 17 8 1 8 0 16625.397 16625.406

19 8 1 7 17 7 1 6 1 16024.975 16024.826 21 9 0 9 19 8 1 8 0 16625.598 16625.607

15 8 2 6 13 7 2 5 0 17765.222 17765.242 1 2 2 1 1 1 1 0 0 10995.843 10995.816

17 8 2 6 15 7 2 5 0 17765.395 17765.414 3 2 2 1 3 1 1 0 0 10995.957 10995.923

13 8 2 6 11 7 2 5 0 17765.839 17765.859 7 2 2 1 5 1 1 0 0 10999.893 10999.861

19 8 2 6 17 7 2 5 0 17766.020 17766.039 5 2 2 1 3 1 1 0 0 11006.671 11006.632

15 8 2 6 13 7 2 5 1 16782.871 16783.000 3 2 2 1 1 1 1 0 0 11010.786 11010.759

17 8 2 6 15 7 2 5 1 16782.908 16783.038 3 3 2 2 1 2 1 1 0 12760.749 12760.724

13 8 2 6 11 7 2 5 1 16783.927 16784.050 9 3 2 2 7 2 1 1 0 12765.640 12765.607
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Continuation of m-Cl-Tol Transitions

2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc 2J ′ N ′ K′
a K′

c 2J N Ka Kc m Obs Calc

19 8 2 6 17 7 2 5 1 16783.977 16784.101 5 3 2 2 3 2 1 1 0 12767.596 12767.564

17 8 3 5 15 7 3 4 0 17216.308 17216.316 7 3 2 2 5 2 1 1 0 12772.335 12772.299

15 8 3 5 13 7 3 4 0 17216.373 17216.381 7 5 1 5 5 4 0 4 0 10632.978 10632.983

19 8 3 5 17 7 3 4 0 17217.889 17217.897 9 5 1 5 7 4 0 4 0 10633.708 10633.707

13 8 3 5 11 7 3 4 0 17218.030 17218.036 13 5 1 5 11 4 0 4 0 10634.192 10634.194

15 8 3 5 13 7 3 4 1 17935.429 17935.416 11 5 1 5 9 4 0 4 0 10634.975 10634.974

13 8 3 5 11 7 3 4 1 17935.558 17935.546 9 5 1 5 9 4 0 4 0 10638.981 10638.985

17 8 3 5 15 7 3 4 1 17935.665 17935.727 9 6 1 6 7 5 0 5 0 12121.350 12121.355

19 8 3 5 17 7 3 4 1 17935.742 17935.654 11 6 1 6 9 5 0 5 0 12121.766 12121.769

17 8 3 6 15 7 3 5 0 16794.965 16794.968 15 6 1 6 13 5 0 5 0 12122.193 12122.196

15 8 3 6 13 7 3 5 0 16795.007 16795.013 13 6 1 6 11 5 0 5 0 12122.483 12122.486

19 8 3 6 17 7 3 5 0 16796.498 16796.504 11 6 2 5 9 5 2 4 0 12326.100 12326.097

13 8 3 6 11 7 3 5 0 16796.662 16796.667 9 6 2 5 7 5 2 4 0 12327.896 12327.891

17 8 4 4 15 7 4 3 0 16860.662 16860.657 13 6 2 5 11 5 2 4 0 12326.166 12326.160

15 8 4 4 13 7 4 3 0 16861.142 16861.136 15 6 2 5 13 5 2 4 0 12327.809 12327.805

19 8 4 4 17 7 4 3 0 16863.537 16863.531 11 6 0 6 9 5 1 5 0 10809.107 10809.112

13 8 4 4 11 7 4 3 0 16863.975 16863.970 13 6 0 6 11 5 1 5 0 10809.545 10809.550

17 8 4 5 15 7 4 4 0 16828.161 16828.157 9 6 0 6 7 5 1 5 0 10809.932 10809.937

15 8 4 5 13 7 4 4 0 16828.670 16828.663 15 6 0 6 13 5 1 5 0 10810.418 10810.421

19 8 4 5 17 7 4 4 0 16831.052 16831.046 5 4 2 3 3 3 1 2 0 14367.921 14367.907

13 8 4 5 11 7 4 4 0 16831.464 16831.460 11 4 2 3 9 3 1 2 0 14370.895 14370.869

17 8 5 3 15 7 5 2 0 16774.779 16774.759 7 4 2 3 5 3 1 2 0 14372.480 14372.456

15 8 5 3 13 7 5 2 0 16775.715 16775.695 9 4 2 3 7 3 1 2 0 14375.315 14375.288

End of Table
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APPENDIX C

Additional Computational Results of meta-Methyl-Phenoxyl

Table C.1. CCSD(T)/cc-pwCVDZ Coordinates of Meta-Methyl-Phenoxyl. A
dummy atom was required to build the Cs structure in the z-matrix and has been
included here as reference for ease of future use.

atom x ( Å) y ( Å) z ( Å)
C −2.57302284 −0.95790007 −0.00000000
C −1.23333798 −0.24671976 −0.00000000
x −1.23333798 −0.24671976 1.00000160
H −3.40508236 −0.23369191 −0.00000000
H −2.67767003 −1.60213944 −0.89183846
H −2.67767003 −1.60213944 0.89183846
C −0.04835568 −1.01059928 −0.00000000
C −1.15087574 1.15874933 −0.00000000
C 1.29476127 1.04598901 0.00000000
C 1.20894242 −0.36763645 0.00000000
C 0.10635458 1.79046199 0.00000000
H −0.08652130 −2.10555105 0.00000000
H −2.06756859 1.75896848 0.00000000
O 2.33084406 −1.09925466 −0.00000000
H 0.16921487 2.88491013 0.00000000
H 2.27632313 1.52906514 0.00000000
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Table C.2. MP2/cc-pwCVDZ Harmonic vibrational frequencies for meta-methyl-
phenoxyl

Symmetry Frequency (cm−1) Intensity (km/mol)
A′′ 99.4803 1.5868
A′′ 236.0530 0.7689
A′′ 291.9830 1.8687
A′ 314.7844 2.1174
A′′ 494.0467 1.8517
A′ 497.0857 4.3366
A′ 501.7042 13.2967
A′ 538.8682 2.1285
A′′ 616.3099 4.8040
A′′ 744.0449 13.7159
A′ 753.7599 193.4353
A′ 759.3548 4.7190
A′′ 871.2238 42.7564
A′′ 956.5066 1.0248
A′ 986.8986 5.1974
A′ 998.9436 12.2234
A′′ 1015.3064 6.7574
A′ 1021.5093 21.5011
A′′ 1070.9072 0.1305
A′′ 1091.7648 4.0707
A′ 1112.8956 1.4148
A′ 1143.4727 23.2879
A′ 1213.8641 8.6282
A′ 1234.8884 15.2288
A′ 1305.5971 0.5103
A′ 1412.2509 0.1136
A′ 1457.5953 0.6880
A′′ 1484.3475 7.1463
A′ 1492.6408 3.9034
A′ 1528.3330 8.4789
A′ 1589.8029 54.6212
A′ 1701.5994 21.1775
A′ 3077.1651 20.6908
A′′ 3167.0691 8.4087
A′ 3185.4240 5.8080
A′ 3226.1893 4.0263
A′ 3242.6665 8.0591
A′ 3247.5689 0.7004
A′ 3266.2473 1.2587
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