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SI: DEVELOPING BRAIN

Physiologic artifacts in resting state oscillations in young children:
methodological considerations for noisy data

Kevin McEvoy & Kyle Hasenstab & Damla Senturk &

Andrew Sanders & Shafali S. Jeste

# Springer Science+Business Media New York 2015

Abstract We quantified the potential effects of physiologic
artifact on the estimation of EEG band power in a cohort of
typically developing children in order to guide artifact rejec-
tion methods in quantitative EEG data analysis in develop-
mental populations. High density EEGwas recorded for 2 min
while children, ages 2–6, watched a video of bubbles.
Segments of data were categorized as blinks, saccades,
EMG or artifact-free, and both absolute and relative power
in the theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz) and
gamma (35–45 Hz) bands were calculated in 9 regions for
each category. Using a linear mixed model approach with
artifact type, region and their interaction as predictors, we
compared mean band power between clean data and each type
of artifact. We found significant differences in mean relative
and absolute power between artifacts and artifact-free seg-
ments in all frequency bands. The magnitude and direction
of the differences varied based on power type, region, and
frequency band. The most significant differences in mean
band power were found in the gamma band for EMG artifact
and the theta band for ocular artifacts. Artifact detection
strategies need to be sensitive to the oscillations of interest
for a given analysis, with the most conservative approach
being the removal of all EMG and ocular artifact from EEG
data. Quantitative EEG holds considerable promise as a clin-
ical biomarker of both typical and atypical development.
However, there needs to be transparency in the choice of
power type, regions of interest, and frequency band, as each
of these variables are differentially vulnerable to noise, and

therefore, their interpretation depends on the methods used to
identify and remove artifacts.

Keywords Quantitative EEG . Artifacts . Resting state .

Children

Introduction

Quantitative electrocenphalography (QEEG) has served as a
powerful tool to study both typical and atypical brain devel-
opment and function, informing the understanding of process-
es such as perception, cognition, and cortical connectivity (For
review, see: Saby and Marshall 2012; Uhlhaas et al. 2010).
With a temporal resolution that facilitates quantification of
subtle changes in state and function over time, QEEG holds
tremendous promise as a quantitative biomarker of clinical
phenomenon such as the change in brain function over dis-
crete time points in development (Marshall et al. 2002), the
effects of intervention in developmental disorders (Dawson
et al. 2012), prediction of functional outcomes (Gou et al.
2011), early disorder detection (Bosl et al. 2011), disease
progression (Luckhaus et al. 2008), and subgroup (Clarke
et al. 2011) and group (Barry et al. 2010; Snyder and Hall
2006) differences in childhood psychiatric disorders (Loo and
Makeig 2012; Monastra et al. 1999). QEEG holds particular
appeal as a metr ic of indiv idual var iabi l i ty in
neurodevelopmental disorders, such as autism spectrum dis-
order (ASD), where behavioral output is limited and some-
times unable to capture phenotypic and functional heteroge-
neity (Cantor and Chabot 2009; Saby and Marshall 2012).

Scientific merits notwithstanding, it is the practical benefits
of QEEG that often motivate its use in the study of develop-
mental populations, as it is non-invasive, less vulnerable to
motion artifact, and more readily available in clinical settings
(Keil et al. 2014; Saby and Marshall 2012; Webb et al. 2013).
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Moreover, cognitive processes such as attention, memory, cog-
nitive inhibition, and feature binding can be characterized with-
out requiring an overt behavioral response. However, these prac-
tical benefits also lead to greater challenges in data acquisition
and quality, as the target populations of interest (infants, young
children, atypically developing children) may also generate the
most artifact, resulting in an insufficient amount of useable, clean
EEG data (Slifer et al. 2008;Webb et al. 2013). Unlike studies in
adults where recording duration often exceed 10min (Barry et al.
2010; Bonfiglio et al. 2013; Hagemann and Naumann 2001;
Leuchter et al. 2009), in infants and children a total of 2 min
of data are often gathered, with fewer than 30 s of
clean data remaining after artifact rejection (John et al.
1980; Marshall et al. 2002; Tierney et al. 2012).

Three of the most common internal sources of artifact
include eye blinks, saccades, and contraction of face, jaw or
neck muscles (electromyographic noise or EMG). Studies in
adults have investigated techniques for handling these artifacts
individually, such as independent component analysis (ICA;
Jung et al. 2000) and regression methods (Gratton et al. 1983).
In the study of developmental populations, ICA can be im-
practical because it requires substantial amounts of data (e.g.
at least 10 min with 128 channels and a sampling rate of
500 Hz; Onton et al. 2006). When the amount of available
data is already limited, there may not be enough artifacts of a
given type for clear component selection (Keren et al. 2010).
Down sampling the number of channels (e.g. 128 to 64) is one
proposed method for overcoming minimum data require-
ments; however, it does not necessarily make artifact related
components more identifiable. Furthermore, component selec-
tion in ICA increases is difficult when multiple artifact types
exist in the data. Regression methods in either the time or
frequency domains can also be problematic because the regres-
sion requires removal of electrooculographic (EOG) channels
thatmay also include relevant EEG signals alongwith the artifact
(Jung et al. 2000). When ICA or regression methods are not
possible, another traditional strategy for addressing artifacts in-
cludes the removal of contaminated sections of data from anal-
ysis. This strategy can result in the removal of large quantities of
data that may, in fact, contain valuable signal worth preserving.

Little is known about the contribution of artifacts (blinks,
saccades, EMG) to the calculation of EEG power in children,
despite the fact that developmental populations are the most
likely to generate the highest noise:data ratio. Previous studies
have provided valuable information about the effect of vary-
ing degrees of muscle contraction and its spatial spread on
QEEG measurements, but these studies have included only
adult subjects (Freeman et al. 2003; Goncharova et al. 2003;
Whitham et al. 2007; Yuval-Greenberg & Deouell 2009;
Yuval-Greenberg et al. 2008). Finally, as has been addressed
in several papers, the lack of uniformity in methods of data
processing and cleaning contributes to difficulties in replicat-
ing and comparing findings (Keil et al. 2014; Picton et al.

2000; Pivik et al. 1993; Webb et al. 2013). Such a challenge
holds particularly true in studies of infancy and early child-
hood, where no consistent parameters for data cleaning or
processing have been established.

We took a systematic approach to study the potential effects
of artifact on EEG power in a cohort of typically developing
young children, with the goal of guiding artifact rejection
methods in EEG data processing. We focused on three com-
mon physiologic artifacts, namely blinks, saccades, and EMG,
and we compared the estimation of mean spectral power
within these artifacts to the mean spectral power contained
in artifact-free data within characteristic frequency bands in-
cluding theta (4–7 hz), alpha (8–12 hz), beta (13–30 hz), and
gamma (35–45 hz). We asked whether certain power types,
regions or frequency bands would be more vulnerable to the
inclusion of ocular or EMG artifacts.

Methods

Participants

Full ethical approval for the research was obtained through the
University of California Institutional Review Board
(IRB#:11–000355), and all parents provided written permis-
sion for the study. We examined data from 32 typically devel-
oping children ages 2–6 years old (40 % girls; mean age=52.9
mo.; SD=13.7 mo) who were recruited as control participants
as part of a larger study of young children with ASD. Using
birth records provided by Los Angeles County, families with
children in the targeted age range were mailed invitations to
participate. Interested families returned a postcard and were
later contacted via telephone for a screening interview. During
the interview, parents of eligible children were asked about
their child’s preferences and interests, such as favorite movie
or toy. This information was used on the day of the experiment
to make the recording session as comfortable and enjoyable as
possible for each child. For example, children were offered a
snack or shown a favorite video during placement of the EEG
net. Children were excluded from the study if they had a
history of neurological abnormalities, birth-related complica-
tions, developmental delays, need for special school services,
uncorrected vision impairment, or a diagnosis of a psychiatric
condition such as ADHD, OCD, or bipolar disorder.

On the day of the testing session, each child underwent
cognitive assessments as part of the larger study. Tests includ-
ed the Vineland Adaptive Behavioral Scales (Sparrow et al.
2005) and either the Mullen Scales of Early Learning (Mullen
1995) or the Differential Abilities Scale-II (Elliott 1993) de-
pending on the child’s chronological age. For the purposes of
this study, the cognitive testing results were only used to
confirm that the children were age appropriate and not de-
layed. Any child with a full scale IQ or DQ more than 2
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standard deviations below the age expectancy was excluded
for this analysis.

EEG recording

EEG data were recorded using a 128-channel HydroCel
Geodesic Sensor Net (Electrical Geodesics Inc., Eugene,
OR). To improve each child’s comfort, four of the electrodes,
channels 125–128 had been removed from the net. These
electrodes were originally located below and lateral to the
eyes (Fig. 1). Placement of electrodes conformed to the
International 10–20 System (Jasper 1958). A combination of
a Net Amps 300 amplifier and Net Station 4.4.5 software on a
Macintosh Pro PC was used to record the EEG (Electrical
Geodesics Inc., Eugene, OR). Data were filtered online with
an analog band pass elliptical filter between 0.1 to 100 Hz.
The high impedance nature of this system allows us to accu-
rately record a child’s EEG while keeping impedances below
100KΩ (Ferree et al. 2001). The EEGwas sampled at 250 Hz.
Data were referenced online to a vertical reference in a loca-
tion equivalent to Cz. Two minutes of “resting-state” EEG

was recorded while children watched a video of bouncing
bubbles in a dark, sound-attenuated room. Children were
either seated in a chair or on a caregiver’s lap. A video time-
locked to the EEG was acquired in order to assist in subse-
quent data processing.

Data preprocessing

EEG data were processed offline through a series of steps in
order to categorize segments of data by artifact: blinks, sac-
cades, EMG, or “Other.” Segments were categorized as
“Other” if they contained drift, motion artifact because of
net manipulation or pulling, or multiple artifact types.
Segments that did not fall into one of these categories were
determined to be clean, and hereafter are referred to as “arti-
fact-free” segments.

The full series of processing steps included the following:

(1) We applied a 1–50Hz band-pass filter with a narrow roll-
off (.3 Hz) and strong attenuation (gain=−60 dB).

(2) We segmented the data into 1.024 s sequential, non-
overlapping epochs, which resulted in 256 samples per
segment. The segment length was chosen to optimize
inputs to the Fast Fourier Transform (FFT), which uses
inputs of 2n samples (Drongelen 2007).

(3) We reviewed the filtered file to identify channels with
gross abnormalities caused, for example, by an electrode
losing contact after recording began. Channels identified
as abnormal were then replaced by an interpolated signal
using the Net Station software’s “Bad Channel
Replacement” (BCR) waveform tool, which uses spher-
ical splines to approximate the signal from the remaining
electrodes (Fletcher et al. 1996; Perrin et al. 1987;
Srinivasan et al. 1996). The electrodes most commonly
requiring this interpolation included those located along
on the periphery of the net, either seated on the neck or
surrounding the ears. No channels in our regions-of-
interest (ROIs) required bad channel replacement at this
step (Fig. 1).

(4) We then identified channels whose maximum to mini-
mum voltage exceeded 150 μV within individual seg-
ments. Any segment with greater than 15% of electrodes
exceeding this threshold, was placed in the “Other”
category. These automated rejection criteria are based
on common practices in developmental populations (for
example, see Jeste et al. 2014).

(5) We manually reviewed all remaining segments and
placed them into one of the five previously described
categories: blinks, saccades, EMG, other, or artifact-free.
A minimum of 30 s of clean data was required for
inclusion into analysis, and this threshold was based on
prior studies in infants and young children (Marshall
et al. 2002; Swingler et al. 2011; Tierney et al. 2012).

Fig. 1 Electrode map. Nine ROIs were selected to provide maximal
spatial coverage of the left (red), midline (green), and right (blue)
portions of frontal (diamonds), central (stars), and posterior (squares)
scalp regions. All ROIs contain 4 electrodes, except for the midline-
central ROI, which contains 5 electrodes. The approximate 10–20
system electrode equivalents and the channel numbers for the regions
are: F3=23, 24, 27, 28; Fz=5, 11, 12, 16; F4=3, 117, 123, 124; C3=35,
36, 41, 42; Cz=7, 31, 80, 106, Ref; C4=93, 103, 104, 110; P3=51, 52,
59, 60; Pz=62, 71, 72, 76; and P4=85, 91, 92, 97. Channels 125–127
(marked with an X) were originally located below or lateral to the eyes,
but were removed tomake wearing the net more comfortable for children.
Interpolated signals were calculated most often for electrodes located
along the edge of a net (see 2.3 Data Preprocessing for details)
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Of the 32 children in the study, 2 subjects were removed
from analysis because they provided fewer than 30 seg-
ments of clean data, leaving a sample of 30 children
(40 % girls; mean age=53.6 mo; SD=13.3 mo).

(6) Segments underwent an additional BCR operation. In
contrast to the first BCR, which replaced a channel’s
data for the entire recording, this step was performed
on a segment-by-segment basis. Per segment, data were
interpolated for a maximum of 18 channels (15 % of the
124 channels).

The final processing steps before spectral decomposition
and frequency band power calculations included (7) baseline
correction, (8) re-referencing to the average of all channels, (9)
export of Net Station data to Matlab (Mathworks Inc., Natick,
MA) and then (10) removal of each segment’s DC trend using
Matlab’s DETREND function.

Several strategies, described below, were used to aid in
artifact detection. The most effective strategy (#1) was the
traditional method of correlating the expected electrophysio-
logic signal produced by an artifact with its expected spatial
location. This method sometimes leads to missed artifact
selection. Therefore other strategies were also employed, as
listed below. The strategies listed below are not mutually
exclusive. They were used in combination to guide decision
making during artifact detection. Finally, when no clear seg-
ment categorization could be made using all available re-
sources and strategies, segments were categorized as
“Other.” Our purpose in detailing each of these strategies is
to a) provide and promote transparency in artifact detection, b)
offer strategies based on experiencewith challenging data, and
c) spark a discussion for other methods that can be shared
across labs to foster collaborative efforts. The strategies
employed include:

1. Spatial location: An electrode’s scalp location was used to
identify and distinguish artifacts. For example, the elec-
trophysiological signal produced by blinks should be
maximal in electrodes located above the eyes, whereas
the signal from saccades should be maximal in lateralized
frontal electrodes, with opposite polarities on the left and
right. However, we observed several variations of this
pattern. For example, the signal produced by a saccade
for some individuals only appeared in electrodes ipsilat-
eral to the individual’s gaze. Similarly, some individuals
would demonstrate a saccade simultaneous to a blink,
producing a combined artifact that was more challenging
to identify or quantify.

2. Re-referencing: Temporarily switching the reference elec-
trode within a segment helped to localize the source of an
artifact. For example, switching to an average reference of
all electrodes can help identify movement artifacts,
whereas an average reference of all electrodes outside of

the default reference can help identify a poor reference
electrode in otherwise clean data. Also, referencing data
as linked, bipolar pairs, can be used to enhance the visu-
alization of eye movements.

3. Filters: Temporary filters can be used to minimize the
signal from neural or other sources, while maximizing
signals from the artifact in question. For instance, a 1–
6 Hz band-pass filter can enhance the visualization of the
signal from eye movements by smoothing out a
distracting signal from faster sources, such as muscle or
alpha generators. Similarly, a high pass filter (e.g. >
20 Hz) can help to distinguish EMG independent of, or
related to blink/saccades.

4. Topologic spectral maps: By combining techniques (1)
and (3), this strategy relies on the anatomical location of a
signal generator and the characteristic frequency band of
an artifact’s signal. For example, the signal generated by
EMG should be maximal in electrodes adjacent to mus-
cles and an EMG signal should increase power in fre-
quencies above 20 Hz (i.e. beta and gamma bands).

5. Current Source Density: Calculating the surface
Laplacian within a segment enhances information that is
maximally specific to each electrode relative to its closest
neighbors. Since the surface Laplacian is the second order
spatial derivative, this method acts as a spatial band-pass
filter that removes shared information. As such, it repre-
sents a reference-free method that enhances signals from
superficial sources, while minimizing shared signals orig-
inating from deeper neuronal sources (Nunez and
Srinivasan 2006). This technique can help to identify
artifacts that are channel specific (e.g. channel pops) from
artifacts whose signal spreads across electrodes (e.g.
EMG).

Spectral power calculations

We investigated frequency band power for 9 regions-of-
interest (ROI; Fig. 1). Regions were selected so that left,
midline, and right portions of frontal, central, and posterior
scalp were represented during analysis. Each region contained
data from four electrodes, except for the midline-central re-
gion which contained five. We calculated estimates of the
mean power spectral densities (PSD) separately for each arti-
fact type (blinks, saccades, EMG) and for the artifact-free
data. Due to the variability in the type of data in the “other”
category, we did not include segments categorized as “other”
in our analysis. Table 1 provides details on the number of
segments per category.

Transformation of the EEG signal from the time-domain to
the frequency-domain was accomplished usingWelch’s meth-
od and custom scripts written in Matlab. For each 256-sample
segment, FFTs were calculated on 128-point Hamming
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windows with 50 % overlap, yielding a frequency resolution
of 0.5 Hz. We calculated absolute and relative power for the
theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma
(35–45 Hz) frequency bands. Absolute power was calculated
by summing power estimates at every 0.5 Hz increment within
each frequency band. Relative power represents the power
contained within a frequency band relative to the total power
contained in all bands. As such, we calculated relative power
by dividing the absolute power for each band by the total
absolute power across all unfiltered frequencies, specifically
1–50 Hz. By averaging across all electrodes within each ROI,
final power values used for statistical analysis were obtained
for each segment, within each category, and for each subject
(Table 1). Values for all power estimates were log transformed
to achieve normality.

Statistical analysis

Analysis focused on the log-transformed absolute and relative
power estimates of theta, alpha, beta, and gamma bands. As a
preliminary analysis to investigate time trends across the
2 min recording, we plotted all subject-specific response tra-
jectories versus time segments per power band, and fitted
population loess smooths. Both population and subject level
smooths did not indicate a time trend. However, differences in
subject-specific intercepts were apparent. The eight (4Bands *
2Power Types) log-power bands were modeled with a linear
mixed model (LMM) using artifact type, region, and their
interaction as predictors. Given that we have studied a rela-
tively wide age range in early childhood, we performed a
subsequent analysis that include predictors of age and an
age*artifact interaction. In adding in these predictors, the
statistical comparison of power between artifacts and arti-
fact-free segments did not change, suggesting robustness of
these comparisons that are independent of the age of the child.
Therefore, the results are reported only for the simplified
model. A random intercept was included (using SAS PROC
MIXED) to account for subject-specific heterogeneity

observed in the temporal loess smooths (SAS Institute, Cary,
NC). In addition to accounting for within-subject correlations,
the LMM allows for unequal numbers of repetitions among
subjects. In other words, the LMM controls for the different
number of segments per category both within (e.g. Subject A:
Nartifact-free=75, NBlink=10) and between subjects (e.g. Subject
B: Nartifact-free=50, NBlink=40). Such modeling allowed for the
determination of mean power in artifact and artifact-free inde-
pendent of the amount of data in a given subject. Mean band
powers from the artifact-free category and each of the 3
artifact categories were compared for each of the 9 regions
and all 8 power bands (using LSMEANS), amounting to 27
tests per model. We have adjusted using SAS PROC
MULTITEST for multiple testing in all models (216 tests),
controlling the false discovery rate (FDR).

Results

We present the results as comparisons between the mean
relative and absolute power for artifact-contaminated and
artifact-free segments within each frequency band of interest.
These results are independent of the amount of artifact in the
recording. Bar graphs in Figs. 2–4 represent the difference in
mean power such that positive and negative values represent
higher and lower means for the artifact-contaminated seg-
ments compared to the means of the artifact-free segments,
respectively. Given the large number of comparisons (2Power
Types * 4Frequency Bands * 9ROIs * 3Artifact Types=216Comparisons),
we have limited the narrative of the results to the most clini-
cally meaningful or relevant trends within the corrected sig-
nificant results.

Mean absolute and relative power was significantly differ-
ent between blink segments and artifact-free data in all fre-
quency bands. In the theta band, for both absolute and relative
power, blink segments had significantly higher power than
artifact-free segments, with the most significant differences in
frontal regions. In the alpha band, the difference in power
varied based on both region and power type. Specifically, the
mean relative alpha power in blinks was significantly lower
than artifact-free segments across all ROIs, with the mean
absolute alpha power in blinks higher in frontal ROIs and
lower in central ROIs. Beta power seemed least affected by
blinks, particularly in absolute power, although some differ-
ences were evidenced in frontal relative beta power between
blinks and artifact-free segments. Finally, and somewhat sur-
prisingly, in the gamma band blinks significantly differed
from artifact-free segments. They demonstrated higher mean
absolute gamma and lower mean relative gamma power than
artifact-free segments. These differences were most prominent
in the midline regions.

Table 1 Number of segments by category

Category Mean (SD) Range Total (%)

Artifact-free 75.6 (19.7) 36–113 2269 (51.0)

Blink 11.8 (7.3) 1–29 353 (7.9)

Saccade 18.6 (14.7) 2–57 557 (12.5)

EMG 24.5 (29.2) 2–152 735 (16.5)

Other 17.8 (13.8) 2–63 534 (12.0)

Total 148.3 (41.0) 117–315 4448

Mean (with standard deviation in parentheses), range in number of
segments contributed by subjects, and the total number of segments per
category (with the percent of all segments) for each category. Of note, the
relatively high number of saccades is due to the bouncing of bubbles in
the video shown during EEG acquisition
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Themean power differences between saccades and artifact-
free segments followed the same general pattern as that of
blink segments, with two main distinctions: (1) the magnitude
of mean power difference was smaller between saccades and
artifact-free segments and (2) significant differences were

found in fewer ROIs, particularly central and posterior ROIs.
In the theta band, the mean absolute and relative power
estimates were higher in saccades than in artifact-free seg-
ments. Interestingly, the largest differences in absolute power
occurred across frontal regions, but relative theta power in the

Fig. 2 Blinks. Differences in mean power for the Blink and Artifact-Free
categories (i.e. PowerBlink – PowerArtifact-Free). Positive values represent
higher power in the Blink category. Figures 3 and 4 display the same
information (i.e. PowerArtifact – PowerArtifact-Free) for saccade and EMG

artifacts, respectively. Power values were log transformed (see Table 2)
prior to calculation of differences. All significant differences (*) are
p<0.05 and corrected for multiple comparisons

Fig. 3 Saccades. Differences in mean power for the Saccade and Artifact-Free categories (i.e. PowerSaccade – PowerArtifact-Free). See the caption of Fig. 2
for details
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same areas showed no significant differences. In the alpha and
beta band, the differences between Saccade segments and
artifact-free segments mirrored those of Blinks. Finally, we
found significant differences in mean relative gamma power
only in frontal ROI’s for saccades compared to artifact-free
segments. The mean absolute gamma power, on the other
hand, was significantly greater in saccade segments for all
midline and central ROIs.

As expected, EMG segments contained the highest amount
of high frequency power, but they showed significantly dif-
ferent power estimations in all frequency bands compared to
artifact-free segments. In the theta band, EMG segments had
higher mean absolute power than artifact-free segments in all
ROI’s except for midline-central, and had higher mean relative
power in the posterior regions. In the alpha band, mean
relative power in EMG segments was lower in all regions,
while the mean absolute power was unaffected. In the beta
band, EMG segments had higher mean absolute and relative
power than artifact-free segments in all lateral regions, with
some smaller differences seen in the midline ROIs. Finally, in
the gamma range, EMG segments showed significantly higher
mean absolute and relative power than artifact-free segments
in all regions, most prominently in the lateral regions.

Discussion

In QEEG studies of young children or developmental popu-
lations, participants are often excluded from analysis due to an

insufficient amount of artifact-free data. While some studies
have suggested that artifacts, such as blinks, may be included
in the analyses with the assumption that they do not affect
particular types of power estimations or power bands (Grasser
et al. 1985; Hagemann and Naumann 2001; Iacono and
Lykken 1981), there have been no studies that have directly
investigated the potential effect of artifacts on EEG power
analysis in young children. The present study was motivated
by the goal of characterizing and quantifying the potential
effect of artifacts, namely blinks, saccades and EMG, on
power estimations in young children, when data quantity does
not allow for the use of ICA and other blind source separation
(BSS) techniques. In order to address this goal, we used a
modeling approach that allowed us to compare equal units of
artifact to artifact-free data in order to understand differences
in power that are independent of the amount of data available.
By calculating the difference in mean power, we could then
consider whether the inclusion of the artifact within the data
could affect the power calculation. In other words, a signifi-
cant difference in mean power in a specific band between an
artifact and artifact-free data would suggest that the addition of
that artifact to the artifact-free data would impact the calcula-
tion of power in that frequency band. The extent of the effect
would depend on the total amount of data gathered and the
amount of artifact present.

In this study we have demonstrated that in young children,
eye blinks, saccades, and EMG contain spectral components
of all frequencies and, therefore, could affect the calculation of
mean power of both high and low frequency bands, but that

Fig. 4 EMG. Differences in mean power for the EMG and Artifact-Free categories (i.e. PowerEMG – PowerArtifact-Free). See the caption of Fig. 2 for
details
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the nature and direction of the differences depends on power
type, region, and frequency band of interest. Therefore, data
processing and cleaning needs to be sensitive to the oscilla-
tions of interest for a given analysis, with the most conserva-
tive approach being the removal of all EMG and ocular artifact
from data. Unfortunately, such an approach leads us to the
problem of excluding participants who provide insufficient
clean data. The two most robust findings in our study are the
following: (1) First, eye movements contain significantly
higher relative and absolute theta power than artifact-free data.
This result is particularly relevant for studies that induce
lateral eye movements and blinks, such as a dynamic visual
stimulus (bubbles) during resting-state recordings. The inclu-
sion of blinks in these data will likely result in a spurious
increase in the estimation of theta power . (2) Second, the high
frequency nature of EMG activity results in higher beta and
gamma power in EMG segments than in artifact-free seg-
ments, with the greatest difference found in lateral regions
that are nearest to facial and neck muscles. Notably, given the
lack of significant difference in absolute alpha power, we
would conclude that the alpha band does not seem to be
affected by EMG, suggesting that in experiments where head
and neck movements are difficult to avoid, absolute power in
the alpha band may be a more stable target variable. While
these results may be intuitive, a quantification of these power
differences can help justify the inclusion or exclusion of
certain artifact segments in data processing.

Relative vs. Absolute power

There is tremendous variability in the literature regarding the
choice of power type, with studies targeting absolute (e.g.
(Tierney et al. 2012)) or relative power (e.g. (Marshall et al.
2002)), or both (e.g. (Barry et al. 2010)), sometimes without
an explicit reason provided for the choice. Justifications in
favor of relative power include more robust test-retest reliabil-
ity and less vulnerability to differences in skull thickness
which, in turn, may facilitate the analysis of individual differ-
ences in early development (Benninger et al. 1984; John et al.
1980; Nunez and Srinivasan 2006). Absolute power, on the
other hand, can be easier to interpret and more intuitive since it
reflects the actual power value for one given band, without
dependence on power in other ranges (Pizzagalli 2007).
Sometimes, the choice of power type is contingent upon
methods used in prior studies, particularly when there is a
goal is replication or direct comparison of results.

Our results can contribute to this debate by demonstrating
that artifacts may differentially affect absolute and relative
power. It is likely that the differential effect on relative and
absolute power reflects the difference in the way the two
values are calculated, since relative power reflects the power
in one frequency band in relation to the power in all other
bands in a region. We would recommend that, whenever

possible, results of analyses for both absolute and relative
power should be reported, with a discussion about the impli-
cations of any differences. In instances where results are
reported for only one power type, it would be useful to
articulate the reasons supporting the choice of one power type
over another. One also should also take caution when com-
paring results from two QEEG studies using different power
measurements. General recommendations from our results
and experiences are listed in Table 2.

Regional effects

Our data show that artifacts might lead to increased or decreased
mean power depending on the scalp region. These differences
reflect the regional differences in the presence of artifacts such as
eye movements and EMG. For instance, an eye blink creates a
large amplitude, slow frequency (typically < 5 Hz) deflection in
the EEG signal that is most prominent in frontal ROIs (Iacono
and Lykken 1981). Thus, absolute power in the slow theta band
is expected to increase especially in frontal ROIs. Even when the
mean power measurements in all regions trend in the same
direction, the extent to which the regions are affected may not
be the same. Such a phenomenon is evidenced in our data by
greater differences between EMG and artifact-free data in mean
gamma power in lateral ROIs compared to midline ROIs.

Future directions and considerations

EEG power has been a powerful tool to s tudy
neurodevelopmental disorders such as ASD or ADHD, as a
biomarker that facilitates prediction of diagnosis, clinical
stratification, and quantification of changes over development
or with treatment. EEG biomarkers are particularly relevant
and necessary in populations with such behavioral and cogni-
tive heterogeneity. However, a “stable” electrophysiological
signal requires consistent methods in data acquisition and
cleaning. Analyses of group differences in EEG power be-
tween typical and atypical populations have yielded some
promising results in disorders such as autism (Wang et al.
2013). In these group level analyses, it will be critical to
measure any possible systematic differences in artifacts be-
tween groups. For instance, one might hypothesize that chil-
dren with delayed development would demonstrate more eye
movements or EMG artifact than typically developing chil-
dren. However, studies do not consistently examine this var-
iable in QEEG studies. Of note, several recent studies in fMRI
have shown that head motion leads to systematic biases in the
analysis of functional connectivity, and that that children with
ASD do generate more motion artifact than typically devel-
oping controls (Deen and Pelphrey 2012; Power et al. 2012;
Satterthwaite et al. 2012; Van Dijk et al. 2012). Such a
systematic bias can result in the erroneous appearance of
weaker long-range connections in children with ASD. These
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seminal studies have led to rigorous efforts for consistent
motion correction in fMRI data processing across studies
and sites in studies of typical and atypical development.
Similar considerations will be critical in the handling of
EEG artifacts in developmental populations.

Moreover, in the analysis of resting state oscillations, artifacts
may, in fact, serve as a proxy for the child’s emotional or
cognitive state. In a recent behavioral study, (Oh et al. 2012)
found that the spontaneous eye blink rate increased during an
attentional task (the Stroop) compared to a resting period, sug-
gesting that blinks may be a proxy for heightened attention or
cognitive effort. Whitman et al. investigated the effect of EMG
on high frequency oscillations in adults and found that cognitive
tasks were associated with greater EMG activity, which, in turn,
could confound the calculation of gamma power. We would
propose that, in children, particularly those with atypical devel-
opment, there can be tremendous variability in emotional and
cognitive states even during “resting state” recordings, with some
children requiring additional cognitive control to remain compli-
ant during testing. Such effort or vigilance may be reflected in
their power estimations (such as higher frontal theta power), but
alsomay be reflected in a higher blink frequency or greater EMG
activity. As we continue to expand our interpretation of resting
state oscillations in developmental disorders, we may consider
artifacts themselves as a clue to the etiology of the spectral power
characterizing subgroups or individuals, and we can quantify
their presence and consider them as a biomarker of a child’s state
before discarding them from data processing.

Conclusion

In this manuscript we have provided considerable detail about
data collection, preprocessing, artifact identification (without
the use of traditional methods such as ICA), and data analysis,
in part to reinforce the need for detailed methodological
descriptions that will facilitate common practices across study
sites and clinical populations. We highlight the need for trans-
parency regarding the choice of relative or absolute power,
regions of interest, and frequency band, as each of these
variables are differentially vulnerable to artifacts and, there-
fore, their interpretation depends on the methods used to
identify and remove artifacts. The use of QEEG and, specif-
ically, resting state power, as a biomarker of typical and
atypical development holds promise as a tool to better define
more subtle differences between individuals and subgroups
within clinical populations, where behavioral measures may
not be able to capture subtleties in clinical heterogeneity.
However, only through rigorous and consistent methods for
data processing and artifact removal can we make informed
conclusions about individual differences, both cross-sectional
and across development.
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