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ABSTRACT OF THE THESIS

Towards End-To-End Learning-Based Algorithms in Motion Planning

by

Yinglong Miao

Master of Science in Computer Science

University of California San Diego, 2020

Professor Michael C. Yip, Chair
Professor Henrik I. Christensen, Co-Chair

Motion planning is one of the most critical tasks in robotics, as it is one of the few critical

functions for robot autonomy. This component requires fast computations and generalization

to different environments for problems such as collision avoidance. Deep learning, as a new

fast-growing field, offers great advances in computational speed and generalization. It has

shown success in computer vision and reinforcement learning, which is closely related to motion

planning. In this thesis, we will investigate the combination of learning and motion planning

methods. Specifically, we separately consider individual components of motion planning tasks.

By combining the proposed learning-based methods for each component, we can obtain an

xii



integrated end-to-end learning-based motion planning algorithm. We show experimental results

for each component. In general, our learning-based methods showed high computational speed

with generalization in several motion planning tasks.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Motion Planning

Planning refers to the problem of finding a sequence of actions to achieve certain goals.

It is a fundamental problem in computer science and a general problem in everyday life. Motion

planning is one planning problem that aims to find a sequence of motion controls for the robot or

a general agent to achieve specific goals. This field has been studied for more than five decades

in literature, with one well-known example problem, the Piano Mover’s problem [92].

Motion planning is also used in other areas, such as computer graphics and computational

biology, where motions are taken into consideration [56]. For example, in computer graphics,

objects need to follow specific motion dynamics. These tasks require some level of motion

planning[56]. In terms of algorithms, motion planning field combines methods from combina-

torial search (e.g., greedy method, graph theory), optimization (e.g., trajectory optimization),

control theory (e.g., stability analysis), geometry (e.g., analysis of the shape of the robot and

obstacles, geometric control) and machine learning (e.g., reinforcement learning, imitation

learning). Thus motion planning is a meaningful research direction with practical applications

and can benefit many other areas, while itself can take advantage of novel research from different

domains.

In research, as a result of a variety of constraints, motion planning in robotics includes
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several different subfields. These include, but are not limited to, planning under partial ob-

servations and planning with dynamics constraints. Planning under partial observations is a

general problem to apply motion planning to real-time execution of robots in real environments.

It requires local planning and updating global information. For example, the famous SLAM

algorithm is one way to update the global information from local perceptions[25]. Planning with

dynamics constraints is important in underactuated robotics, where the controls connecting robot

states cannot be directly obtained [35]. For example, cars driving at high speed and satellites

often fall into this scenario [35]. The dynamics constraints in this problem need to be explicitly

considered during planning. This problem is generally termed kinodynamic motion planning in

the motion planning community, which we will work on later in this thesis.

In terms of algorithms, complete motion planning algorithms, including search-based

methods and sampling-based methods, are often uninformed. However, as they can cover the

entire search space asymptotically, correctness can be guaranteed. In this thesis, we are more

interested in making motion planning more intelligent and efficient. Instead of using classical

approaches with hand-crafted heuristics, we are interested in applying artificial intelligence to

this problem. Specifically, given the success of deep learning in robotic applications such as

autonomous driving, deep learning is a promising method to improve motion planning, especially

in problems where domain knowledge is hard to obtain. In the big picture, this direction might

be directly related to the advancement in automation of robotics and the realization of scalable

artificial intelligence.

We have identified two potential components in a motion planning pipeline that can

benefit from deep learning: collision checking and path planning. Collision checking is usually

the computational bottleneck in the motion planning pipeline [60]. The algorithmic structure

of it indicates deep learning can be applied. Meanwhile, in path planning, several past works

have studied how to make planning more informed. Given the success of deep learning in

reinforcement learning, it can be one way to guide path planning heuristically.

2



1.1.2 Deep Learning

The field of deep learning has been studied since the 1950s [83]. It uses models such as

neural networks to extract information from past experiences. During extraction, only useful

information is kept by statistical analysis. Hence the extracted information is embedded in

space with a much lower dimension, similar to compressing. Later, when query, the embedded

information can be used to find a similar experience in the past. Since the embedded space is

highly complex, it can mimic abstraction during human reasoning. Due to this advantage, deep

learning can often achieve human-level reasoning, even under variations in the problem.

However, deep learning has shown practical values since very recently, because of the

advances of computational power. Since then, it has demonstrated success in areas such as

computer vision [36], natural language processing [22], and reinforcement learning [93], due to

the power of pattern recognition.

The advantages of deep learning can be summarized as low computational cost and high

accuracy, with the ability to generalize to different inputs. It can extract features that are better

than human knowledge. These advantages are promising for motion planning, as the eventual

goal of motion planning is to generate real-time planning and execution for robots. Specifically,

the computational speed and the power of pattern recognition of deep learning can help find

sub-optimal paths faster than classical methods. Meanwhile, deep learning’s generalizability can

help with recognizing different inputs, such as different planning scenes.

1.1.3 Deep Learning in Motion Planning

There exist past works that have shown the success of deep learning in motion planning

and related fields. Examples are the applications of reinforcement learning and imitation learning

in optimal control, navigation and manipulation tasks [71][79]

Reinforcement learning algorithms focus on learning a good policy that produces optimal

actions in each state. On the other hand, imitation learning mimics expert policy. If the expert

3



policy is optimal, then imitation learning also achieves the same goal as reinforcement learning.

These learning algorithms often directly work on the joint distribution of state and control.

In contrast, motion planning algorithms work on the state distribution, and only implicitly obtains

the control sequences. This difference brings up our intuition of learning the state distribution.

Learning only the state distribution can potentially reduce the amount of information to be

captured by the neural network. Meanwhile, the connection between states can be achieved by

steering functions, such as boundary value problem (BVP) solvers.

Another significant difference between learning methods and motion planning algorithms

is that learning approaches do not have completeness guarantees as motion planning algorithms.

Unlike motion planning algorithms, the safety of the learned policy cannot be guaranteed during

online execution.

1.1.4 Summary

In this chapter, we have previously shown the importance of research in the motion

planning field and how it can be benefited from deep learning. We have also identified two

possible components where deep learning can be applied. In this thesis, we will show our work

on a learning-based collision checker and a motion planner. Meanwhile, we also investigate

life-long learning, which relates to real-life motion planning applications. In the end, we extend

the learning-based motion planner to the kinodynamic motion planning setting, where the control

sequence is required.

1.2 Problem Definition

This section will give the formal problem definition of motion planning, collision check-

ing, and deep learning.
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1.2.1 Motion Planning

The problem formulation of our motion planning problem is aligned with the formulation

of the Markov decision process (MDP) [26], as the physical motion model satisfies Markov

assumption [6]. Unlike MDP, the observable Markov decision process (POMDP) includes an

additional observational model, as the search space is not fully observable [3]. Although we

do not consider the observation model in this thesis, we want to give a complete picture of the

general motion planning problem. Hence, we use the more general POMDP formulation to

introduce the general problem.

The input to a general motion planning problem contains x0 (start state), xG (goal state)

and W (planning scene, or world). The output is a trajectory x(·) and u(·) indexed by time t. The

world W is usually not fully-observable, and in which case, it is represented by the observation

sequence z(·). The mathematical formulation of this as an optimization problem is as follows:

min
x,u

J(x,u;W )

s.t. ẋ(t) = fw(x(t),u(t), t),∀t (motion model)

z(t) = fz(x(t), t,W ),∀t (observation model)

fx(x(t), t)≤Vx(t),∀t (task-specific constraints, such as collision free)

x(t) ∈X ,u(t) ∈U (state boundary and control boundary)

x(0) = x0 (start constraints)

d(x(T ),xG)≤VG (goal constraints)

(1.1)

Here J denotes a general cost function that can be defined by the specific problems. fw and fz

denote the general motion model and observation model, respectively. fx specifies a general

function that represents metrics in the state space at each time. For instance, one implementation

of this can be the shortest distance to obstacles. Vx specifies the valid criteria for the state metrics.

X and U specify the feasible state space and control space, respectively. VG determines the size
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of the goal region, and d denotes a general distance function between two states. Specifically, in

Euclidean space, d is the Euclidean distance.

Implementations of the functions stated above create different variants of motion planning

problems. These variants include geometric motion planning, kinodynamic motion planning,

moving objects, partial observation, manipulation, and locomotion, to name a few. In this thesis,

we will focus on geometric motion planning and kinodynamic motion planning with complete

knowledge of the environment. We will give a detailed description of these two specific tasks

later in this section.

In computer science, problems are classified based on if efficient algorithms exist to solve

them. In this notion, realistic motion planning problems are mostly NP-hard. As a well-known

problem instance, the Piano Mover problem is considered to be PSPACE-hard [80]. However, by

discretization or probabilistic approaches, the problems can still be solved efficiently in practice.

These methods will be discussed in detail in chapter 2.

The evaluation criteria of motion planning algorithms include feasibility (Correctness and

Completeness), optimality, and efficiency (time efficiency and memory efficiency), according to

the general evaluation criteria in algorithm design [20][56]. In most motion planning algorithms,

these notions are either resolution-wise or asymptotically probabilistic. Evaluations of the above

notions can be obtained for many motion planning algorithms such as A* and RRT*. The

theoretical performance often studies the convergence rate of a specific notion of evaluation. In

contrast, experimental evaluation gives actual performance obtained from experiments.

The above defines motion planning problems in continuous space. A discretized version

is usually used in real-life applications and actual implementations. Below is a discretized
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definition of the problem to make our discussion more complete.

min
x,u

J(x,u;W )

s.t. x[t +1]− x[t] = fw(x[t],u[t], t),∀t (motion model)

z[t] = fz(x[t], t,W ),∀t (observation model)

fx(x[t], t)≤Vx(t),∀t (task-specific constraints, such as collision free)

x[t] ∈X ,u[t] ∈U (state boundary and control boundary)

x[0] = x0 (start constraints)

d(x[T ],xG)≤VG (goal constraints)

(1.2)

Here the motion model can have different implementations based on the integration method.

Meanwhile, we only consider the discretized time step in this formulation. However, in actual

definition, the mapping from the discretized time step to the time needs to be considered.

Geometric Motion Planning

In geometric motion planning, the differential motion model is not needed. Instead,

planning needs to make sure the state trajectory is continuous. Controls are not considered in this

problem. The discrete version usually linearly interpolates states by a fixed short distance. Thus

the planning needs to make sure the discretized trajectory is collision-free w.r.t. to the specific

resolution defined by the fixed distance.

Kinodynamic Motion Planning

Kinodynamic motion planning explicitly considers the motion model. Hence controls

also need to be determined during planning. Similar to geometric motion planning, the discrete

version also checks constraints with a particular resolution. Real-time execution using the

planned state and control trajectories is often affected by noise. Thus, robustness also needs

to be considered for a complete kinodynamic motion planning algorithm targeting real-life
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applications.

1.2.2 Collision Checking

The input of a collision checker contains O, denoting a representation of the obstacles,

which can be partial or compact, and x denoting the test state for collision query. In robotic

applications, both robots and objects have shapes. Hence collision checkers can also take input

O1 and O2 denoting two shapes and corresponding locations.

The output of a collision checker has several different specifications, often depending on

the problem requirements. Several possible queries are:

• in collision or not

• probability of collision

• collision region

• distance of two inputs (point-set distance or set-set distance)

Based on the input type, the problem has several variants, including deforming objects, moving

objects, and partial representation, to name a few[103]. The performance of a collision checker

includes correctness and efficiency (time and memory).

1.2.3 Deep Learning

Deep learning is often classified into supervised learning and unsupervised learning[31].

In this thesis, we will focus on supervised learning. The input of a supervised learning algorithm

contains a training set Dtrain, a validation set Dval and a test set Dtest, where each dataset is in the

form of

D = {(xi,yi) : xi ∼ Px(·)}.

Here Px denotes some probability distribution of x. The deep learning algorithm tries to learn a

conditional distribution Py|x using only the training set to minimize the loss ∑i L(ŷi,yi) on test
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set, with some predefined loss function L. Here {ŷi} are the outputs of the algorithm using the

test set. They can be considered as samples according to the learned conditional distribution

Py|x(·;θ), where θ denotes the neural network parameters. Generally, the learned conditional

distribution can also be represented as a functional mapping fθ (x).

The evaluation of a deep learning algorithm usually considers its generalization and

sample efficiency. Generalization measures how well the algorithm performs, given unseen data

by measuring losses on training data and test data. Sample efficiency is termed as trainability and

expressivity of neural networks in a recent paper [46]. It measures the size of the neural networks

as a function of the dataset’s size to achieve optimality in learning. A detailed discussion of

deep learning can refer to [31]. In this thesis, we will also explore continual learning, which is a

sub-field of deep learning.

Continual Learning

Traditional supervised learning tries to solve optimization problem given a collection of

identically and independently distributed (i.i.d.) data D = {(xi,yi)}N
i=1, w.r.t. some loss function

defined on each sample, as we defined previously. However, real-world problems may break the

i.i.d. assumption, where data may be ordered and locally correlated.

As defined in [63], in this problem, each sample is a tuple (xi, ti,yi). where ti ∈ T is

a task descriptor, xi ∈Xti is the feature vector, and yi ∈ Yti is the target vector. The feature

vector space and target vector space are parameterized by task ti. The sample (xi, ti,yi) may not

follow i.i.d. distribution. For simplicity, in this thesis the data is assumed to be locally i.i.d., i.e.

(xi,yi)
i.i.d.∼ Pxi,yi|ti(·, ·). Additionally, the data of the same task is assumed to come together.

With this definition, it is interesting to analyze the effect of current tasks on previous

or future tasks. [63] obtains an evaluation metrics regarding this. The performance decrease in

past tasks is called catastrophic forgetting in the community. In contrast, the performance gain

on future tasks can be referred to as transfer learning. The objective is to minimize the loss on

the current task while minimizing the catastrophic forgetting effect and maximizing the transfer
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learning effect.

1.3 Challenges

1.3.1 Motion Planning

In this thesis, the complication of geometric motion planning is the difficulty of obtaining

a theoretical guarantee for heuristic methods’ completeness, especially the learning-based ap-

proach. Kinodynamic motion planning also adds complexities. It requires explicit consideration

of the motion dynamics, which is proved to be NP-hard [44]. Meanwhile, the state space geom-

etry is non-trivial, and thus the distance function is more complicated than simple Euclidean

distance.

1.3.2 Collision Checking

The challenge in collision checking is the difficulty to represent shapes and obtain

reasoning based on them. Realistic objects often have complicated shapes, and direct analysis of

them is both time-consuming and memory-inefficient. Thus a proper representation of the shape

needs to be obtained to allow efficient processing without hurting the performance.

1.3.3 Learning-Based Motion Planning

Trajectories in motion planning are high dimensional, and thus learning the entire distri-

bution is not a trivial problem.

1.4 Contribution

In this thesis, we have the following contributions:

• We constructed an efficient approximate collision checker using neural networks, which

also achieves high accuracy on our dataset.
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• We constructed a sequential predictive model for geometric motion planning that result in

an informed and efficient algorithm with a high success rate and sub-optimality.

• We extended this motion planning method to the continual learning task where data comes

in a streamline, thus achieving life-long learning.

• We constructed a sequential waypoint prediction model for kinodynamic motion planning,

with two planning methods: line search and tree search. We showed improvement in

computational time and sub-optimality of the algorithm in toy control problems.

1.5 Thesis Roadmap

In Chapter 2, we provide a literature review for the past works. After that, in Section

3.1, Section 3.2, Section 3.3 and Section 3.4 of Chapter 3, we provide detailed descriptions of

our implementations. In Chapter 4, we provide the experimental results for our implemented

methods. Chapter 5 concludes this thesis, and talks about future directions to extend this work.
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Chapter 2

Literature Review

2.1 Motion Planning

2.1.1 Collision Checking

Collision checking is one crucial component in the motion planning pipeline. In motion

planning, this is often treated as one black-box. Recent advances in deep learning might help

with the efficiency of this component. In this section, we will review the classical approaches

and several learning-based methods for collision checking.

Classical Approach

The research of collision checker has been around for more than three decades [103]. In

actual implementation, there exist many libraries such as PhysX, Bullet, and V-Rep. Generally,

collision checking algorithms follows three stages: preprocessing, the global phase, and the

narrow phase [103].

The preprocessing phase processes the input objects into a hierarchical data structure.

The data structure is often implemented by Hierarchical Boundary Volume (HBV) and is later

used in other phases for efficient collision checking. The global phase uses the obtained data

structure to rule out collision-free pairs of volumes. Several algorithms for this phase include

brutal-force [105], spatial partitioning [109] and topological methods [19]. The narrow phase

conducts collision checking for basic shapes represented by a set of geometric primitives. It
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includes two sub-phases: filtering of collision-free geometric primitives, and exact detection of a

small set of geometric primitives.

Collision checking of geometric primitives is a fundamental problem in computational

geometry [65]. Based on the representation of geometric primitives, these include polygonal

intersection checking [17] and non-polygonal intersection checking. Non-polygonal intersection

checking algorithms include collision checking with parametric surfaces, implicit surfaces, CSG

model, and point cloud [60].

Point cloud collision detection has recently emerged as point clouds are easy to obtain in

reality. In this thesis, we are also using point cloud as inputs to collision checking algorithms.

There are, however, very few works on collision checking with point clouds. Most algorithms in

this line use a hierarchical data structure of point clouds to represent the shape. For local collision

checking, they estimate surfaces using the point cloud, and then achieve collision checking using

the estimated surfaces.

Specifically, in the earliest work in this direction [51], HBV is used to represent the

object, where each node stores a sample of points of the point cloud with a sphere covering

them. For local surface estimation, it uses weighted least square to obtain the implicit function

f (x) representing the distance from a point to the surface [1]. Then the collision is determined

by checking for some sampled test points {pi} if there is some point pi that satisfies fA(pi) =

fB(pi) = 0. Here, fA and fB denote functions of distance to point clouds A and B, respectively.

The work achieved low memory consumption and efficient collision checking, with an

average of 0.5−2.5ms. However, preprocessing takes a noticeable amount of time. For 50000

points, it takes around 16s, and for 200000 points, it takes around 120s to build the hierarchical

data structure, with a linear increase of time w.r.t. number of points [51].

Later work in [52] improves these results by using the proximity graph to approximate

geodesic distance rather than Euclidean distance to compute the distance f (x). Meanwhile,

instead of blindly sampling test points, it locates test points directly from the surface’s information.

As a result, it achieves a time complexity of O(log logN) for finding collision points with a
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constant number of test samples.

Another work [27] uses the voxel representation of the scene to divide point cloud

samples. Each voxel is later divided into a tree hierarchy of groups of points using the Axis-

Aligned Bounding Box method. It tests the algorithm on a navigation task where the robot

contains 3617 points, and the scene includes 587923 points. After a preprocessing of the raw

point cloud, it achieves 25 minutes at the highest speed.

Learning-Based Collision Checking

[69] uses a machine-learning algorithm SVM to estimate the surface implicitly, and check

collisions at the leaf level. BVH is also used for efficient collision detection. For one collision

checking query, it takes around 500-1000 ms to obtain results for 10000 points. Meanwhile,

the performance matches the collision checker on triangle mesh in navigation and manipulation

tasks.

A more recent work [21] does not explicitly model the shape of the objects, thus bypassing

the huge preprocessing overhead. Instead, it imitates proximal high-precision collision detectors

used in motion planning algorithms. It achieves this by using a machine-learning method to learn

a function f (x), which indicates if the input in configuration space is in collision. Hence this

method can be directly combined with motion planning algorithms for speedup.

2.1.2 Motion Planning

Here we give a literature review of motion planning. An informative textbook of motion

planning can be found in [56]. Motion planning is a hard problem in terms of time complexity. For

instance, the well-known Piano Mover’s problem is proved to be PSPACE-hard [80]. However,

in reality, practical motion planning problems have several relaxations, so they usually admit

optimal solutions that can be found quickly. Motion planning algorithms can be generally

classified into search-based motion planning and sampling-based motion planning [56], which

will be introduced in detail later.
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2.1.3 Heuristics in Motion Planning

Most research works in motion planning try to accelerate the algorithm by applying

heuristics. Most algorithms extract heuristic information from the topological and geometric

properties of the search space. Some examples are bidirectional search and search space

restriction in Informed-RRT* [77][29].

For heuristic distance, [85] introduces two criteria of heuristic distance function in A*

algorithm: admissibility and consistency. Admissibility is obtained if the heuristic distance is

shorter than the actual distance. At the same time, consistency requires a much stronger property

of triangle inequality. Specifically, consistency requires the difference of heuristic function

at two points should be shorter than the actual distance between those two points [85]. The

time improvement of using heuristic methods is theoretically showed in work such as A* and

Informed RRT* [85][29].

Search-Based Motion Planning

Search-based motion planning is usually achieved by discretizing the search space and

applying graph-search methods, such as BFS, DFS, A* [56][85]. Due to discretization, search-

based motion planning can only achieve resolution completeness [56]. The size of the discretized

graph usually determines the complexity. In the worst case, traversing the entire graph will

take linear time w.r.t. the number of edges in the graph [56]. After a solution is obtained, the

resolution can be refined to obtain a more optimal solution.

In research, the Search-based Planning Laboratory at CMU has done leading work in

search-based motion planning algorithms. Some examples of their work include [12][41].

Sampling-Based Motion Planning

Unlike the search-based method, sampling-based methods do not discretize the space,

but instead, randomly sample possible waypoints that probabilistically cover the search space.

The sampled waypoints are later used to construct data structures such as graphs and trees for
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discrete search. A general sampling-based motion planning algorithm is shown in [56]. After the

initial solution is obtained, it can be further refined to obtain more optimal paths.

Classical sampling-based methods include random roadmap, and RRT-like algorithms

such as RRT, RRT* [45], BIT* [96], FMT* [42], etc. The random roadmap covers the search

space with graphs constructed from random samples. It can reuse graphs for the same envi-

ronment [56]. Notice that the idea of storing graphs and reusing sees a possible extension.

Specifically, a life-long learning approach in [7] stores a database of past feasible paths to aid

future planning. However, it does not utilize the advances in machine learning and deep learning.

In terms of the order of sampling, RRT-like methods can be classified into sequential sampling

and batch sampling. Sequential sampling iteratively samples, and thus can be combined with

online heuristic methods such as online learning. On the other hand, Batch sampling obtains all

the samples at once.

For heuristic algorithms, there are at least two potential components in the algorithm

where heuristics can be applied: sampling step and distance metrics. Past work such as informed-

RRT* and FMT* explored heuristic sampling methods. Heuristics in distance metrics are useful

in kinodynamic motion planning, since the search space is non-Euclidean.

Since sampling-based motion planning algorithms do not require discretization of the

environment but rely on random sampling, classical methods achieve asymptotically probabilistic

completeness and optimality[45].

Kinodynamic Motion Planning

Kinodynamic motion planning is hard as the dynamics constraints are hard to satisfy.

In [44], the BVP problem for connecting two waypoints is proved to be NP-hard. In literature,

there exist two general approaches for planning with motion constraints: direct optimization and

hierarchical approach using waypoints.

Direct optimization formulates the problem as an optimal control problem. Hence algo-

rithms in optimal control [57], and reinforcement learning [8] can be applied to this problem. The
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advantage of this formulation is that theoretical advances in optimal control can be applied. For

instance, sufficient conditions for optimality can be obtained from the Hamilton–Jacobi–Bellman

equation [50]. In contrast, necessary conditions can be obtained from the Pontryagin’s maximum

principle [64]. These conditions can be used to characterize and possibly guide the search for

optimal solutions.

However, as stated in [38], RL, which can be considered one algorithm in optimal control,

lacks long-horizon planning capabilities. To deal with this challenge, A recent method tries to

combine ideas of waypoints in motion planning with RL [38]. Our work also follows similar

ideas of combining long-term planning and short-term optimization for connections.

The hierarchical approach satisfies the motion constraints by extending the local con-

nector. The local connector can be implemented by random control sequences [24], motion

primitives [88], and exact BVP solvers [107]. The BVP solver can usually be implemented by

trajectory optimization method [107], or as local optimal control problems [16].

Specifically, random sampling of control sequences has the advantage of theoretical

elegance. [58] uses this to prove the probabilistically asymptotic completeness and optimality

of the SST (Sparse-RRT) method. Motion primitives can add more heuristics to planning as in

[94]. However, as the motion primitive set is finite, this can suffer from a lack of completeness.

BVP solvers cannot achieve actual completeness due to the time complexity. However, this

method can allow more freedom than motion primitives, and provide more information, such as

optimization loss. [107][100] are two works on this line of research.

Heuristics methods in kinodynamic motion planning have works in [53][108][61]. Specif-

ically, [53][108] rely on an initial solution to obtain the informed region defined as

{x : f (x)+h(x)≤ c},

where f , h, and c denote the cost from start, the heuristic cost to goal, and the cost of previously

found solution. [53] uses rejection sampling method, while [108] achieves this by iterative
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sampling through Markov Chain Monte Carlo. [61] also uses heuristic distance, but defines

several local regions around tree node, termed as DIS (Dominance-Informed Regions), to obtain

informed planning. [68] develops theoretical results for admissible heuristics in kinodynamic

motion planning.

2.2 Deep Learning

We use deep learning in this thesis to achieve three tasks:

• to learn a good representation of the environment which encodes the obstacle shapes

• to learn a good representation of the waypoints representing the trajectory

• to achieve continual learning in motion planning

In this section, we will cover the review for general deep learning in shape learning and continual

learning, while also covering some related theoretical insights from information geometry.

2.2.1 Shape Learning

The theory of shape learning first starts from differential geometry [14] and spectral

geometry [54]. Shape learning studies about learning a compact representation of the shape,

which is related to the topic of data embedding in research [39]. In machine learning, data

embedding belongs to the field of unsupervised learning, which tries to extract inter-dependencies

within data. Several classical data embedding methods, including PCA [104] and isomap [4] are

used to extract the embedded representation of data input.

In deep learning, autoencoders often achieve data embedding. Autoencoders are con-

structed by an encoder and a decoder [31]. The encoder embeds the data into a lower-dimensional

latent space. At the same time, the decoder reconstructs the input from the latent space [31]. In

this line of research, several advanced techniques include generative adversarial networks (GAN)

[110] and variational autoencoder (VAE) [73].
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Since we use point clouds and voxels to represent the objects, we will introduce here

shape learning using these two representations. For deep learning on point clouds, several novel

methods include [75][43]. The insights in the paper use the observation that the point cloud is an

unordered set [75]. Hence functions such as sum and max, which preserve the unordered nature,

need to be used in the neural networks [75]. For deep learning on voxels, the representation

groups point clouds into several cells and achieve a more compact yet coarse representation of

the object [111].

2.2.2 Trajectory Learning

Motion planning and control are achieved in deep learning by several methods, including

reinforcement learning and imitation learning. Typically, reinforcement learning is an optimal

control algorithm that uses a neural network as a general function approximator [98]. It iteratively

improves the trajectory or policy by several methods. These methods include using the Bellman

update rule in the value iteration method and the policy iteration method [98] and directly

optimizing the expected trajectory reward by Monte Carlo sampling [99]. Thus RL implicitly

learns the trajectory distribution by optimizing the reward. On the other hand, imitation learning

learns the trajectory distribution by imitating the expert behaviors from recorded trajectories.

Imitation learning can be modeled as the following optimization problem:

min
θ

D(τθ ,τe)

s.t. constraints on τθ

(2.1)

Here τθ denotes the learned trajectory parameterized by θ , and τe denotes the expert trajectory.

The constraints on the estimated trajectory include dynamics constraints and boundary conditions.

Often due to the noise in practice and possible variations in the expert policy, the trajectory

is considered to follow certain probabilistic distributions. The discrepancy between these

probabilistic distributions can be modeled with several options, including KL divergence, Total
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Variation, Jensen-Shannon divergence, Earth-Mover distance, and Wasserstein distance [2].

KL divergence is widely used in literature as in [67]. Since KL divergence is not

symmetric, there are two different optimization problems, referred to as I-projection and M-

projection in [67]. I-projection in our formulation is the following optimization problem:

min
θ

DKL(Pθ ,Pe) = min
θ

Eθ [logPθ (τ)]−Eθ [logPe(τ)],

while M-projection is given by:

min
θ

DKL(Pe,Pθ ) = min
θ

Ee[logPe(τ)]−Ee[logPθ (τ)].

Here Eθ and Ee denotes the expectation w.r.t. the distribution Pθ (·) and Pe(·).

According to [67], I-projection is seldom used, as the expectation w.r.t. the distribution

Pθ (τ) is hard to approximate. On the other hand, Ee can be approximated by the Monte Carlo

sampling method. Notice that minimizing the M-projection is equivalent to maximizing the

log-likelihood for parameter θ , i.e.

argmin
θ

DKL(Pe,Pθ ) = argmax
θ

Ee[logPθ (τ)].

which is the maximum likelihood principle [66].

After obtaining an idea of the loss function, we classify the important methods in imitation

learning area by three categories: sequential state-action model, motion primitive, and state

distribution model.
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Sequential state-action model

The sequential state-action model uses the MDP formulation, which shows the maxi-

mization of the expected log-likelihood of trajectories satisfies:

argmax
θ

Ee[logPθ (τ)] = argmax
θ

Ee[logP(x0)ΠtP(xt+1|xt ,ut)Pθ (ut |xt)]

= argmax
θ

Ee[logP(x0)+∑
t

logP(xt+1|xt ,ut)+∑
t

logPθ (ut |xt)]

= argmax
θ

Ee[∑
t

logPθ (ut |xt)]

(2.2)

Thus under the same dynamics and initial state distribution, the problem reduces to minimizing

the divergence between conditional distributions of state-action pairs. In RL, this is referred

to as policy learning [99]. This category has two sub-categories of methods: direct supervised

learning and distribution matching.

The direct supervised learning approach uses the likelihood maximization principle as in

equation 2.2. One important algorithm in this direction is [84]. In this direction, the key challenge

is that the actual state experienced may not be in the support of the expert data [67]. Several

methods might help with this problem, including confidence-based approach [15], dynamical

recovery, and interactive data aggregation [84].

The distribution matching method comes from research in RL. This method matches the

distribution of state-action pairs, which, under the assumption of MDP, can be defined as [74]

D = {ρ : ρ ≥ 0,∑
u

ρ(x,u) = p0(x)+ γ ∑
x′,u

P(x|x′,u)ρ(x′,u),∀x}.

In the RL community, this is referred to as occupancy measure, and it uniquely maps to a policy

[37]. However, the algorithms do not explicitly achieve distribution matching, but rather through

inverse reinforcement learning (IRL). The relation between IRL and occupancy measure is later

found out in [37].
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From the observation that RL requires a predefined cost function, IRL learns a cost

function for which the expert policy is optimal. Hence IRL often uses RL as a subroutine to

find the optimal policy for a given cost function. [37] provides a comprehensive framework to

analyze the theoretical relation between RL, IRL, and distribution matching. It observes that

the relationship between IRL and occupancy matching closely connects to the optimization

problem’s primal-dual structure. Indeed [37] shows that IRL with constant regularization function

is the dual program of occupancy measure matching problem. Moreover, by setting a specific

regularization function, [37] gives a formulation of IRL using GAN.

Meanwhile, closely related to this line of research, recent work also uses occupancy

measure as a probability distribution to learn the dynamics function, or transition model [106].

Learning Motion Primitive

Motion primitive methods directly parameterize the dynamics function fθ (x,u), and

match with the expert demonstration by implicitly learning the control trajectory u. Several

important methods include DMP [91], ProMP [70], and SEDS [48]. They explicitly model

the trajectory as a parameterized control system and obtain the parameters by tracking [91], or

through learning using the Gaussian model [70][48]. Because they explicitly model the dynamics

function, some methods such as [48] can even obtain theoretical stability properties, which is not

possible in other methods.

Learning State Distribution

In the expert trajectories, the state correlation might be strong enough to determine the

future state, without information about the controls. If this is true, we may reduce the trajectory

learning problem to the state distribution matching problem. A more generalized version is

treated as trajectory feature distribution learning in [67]. With the learned state trajectory

distribution, the control sequence may be later reconstructed by trajectory optimization method,

if the dynamics model is known [67]. This can also benefit the latter process as trajectory
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optimization is greatly affected by initialization [67].

This line of research is useful in motion planning to obtain informative waypoints. For

instance, sampling-based methods can be accelerated by providing informative samples as in

[76][30]. Also closely related to this is the human pose trajectory learning [59][90], as human

poses can be considered as states in kinodynamic motion planning problems.

Most work in this direction uses a sequential model. For instance, in [78], a transition

model fθ (xt+1|x0,xt ,xT ,W ) is constructed to solve the motion planning task from x0 to xT in

environment W . This model is iteratively used to generate a trajectory from the start point to

the goal point. Although this work does not consider kinodynamic constraints, a possible future

extension is to use trajectory optimization to connect planned waypoints [107].

The problem of the sequential model is the divergence from the expert distribution, as we

introduced before. An analogy to this is the Lyapunov exponent in nonlinear dynamic systems

[9]. A small error might lead to exponential divergence in the future when following a trajectory.

This problem might be due to repeatedly calling the function as:

xn = f ( f (. . . f ( f (x0,u0),u1), . . .),un−1)

Instead of using a sequential model that might cause chaos as in nonlinear dynamic systems,

learning the distribution of the trajectory globally might be more beneficial. This direction is

also beneficial as it also applies to situations when the Markov assumption does not hold.

Recent work in [62] uses a global Wasserstein Distance minimization of state visitation

distribution between expert demonstrations and the learned policies. [38] uses methods similar

to road-map to manually ”memorize” the trajectory distribution. In this line of research, a more

general study is needed to investigate how to best represent the trajectory distribution in the state

space without a sequential model.
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2.2.3 Continual Learning

In literature, continual learning is another name for lifelong learning, which has been

studied for a long time [81][101][63]. Several theoretical results have done in this direction using

linear models [5][72], with applications in [87][11]. The continual learning aims to solve the

catastrophic forgetting problem [33], which emerges if naive algorithms are used in the continual

learning setting.
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Chapter 3

Methods

3.1 Learning-Based Collision Checker

In this chapter, we will explain details about our implementation of the collision checker

using deep learning methods. Our collision checker takes the input of two point clouds repre-

senting the objects and returns the collision probability. We use recent advances in 3D computer

vision community, specifically, PointNet [75], combined with siamese structure [18] to construct

the neural network.

3.1.1 PointNet

PointNet is a network that takes advance of point cloud’s unordered nature and uses

point-wise operations to extract local and global features [75]. In our work, we use the network

structure of PointNet as defined in figure 3.1, which is used as a submodule in the siamese

structure for data embedding.

3.1.2 Siamese Net

The siamese structure was first introduced in [18], and is widely used in the deep learning

community to extract distance information for complicated data manifolds [47]. It, at the same

time, solves the data scarcity problem. The basic idea is to use the same network structure and

weights for two different inputs to transform them into latent space. Later another network is
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Figure 3.1. PointNet Structure

used to extract distance information from the latent space. In our work, we represent the collision

probability as distance in the latent space.

We use the siamese structure as defined in 3.2, taking advantage of the previously defined
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PointNet. Specifically, we transform the output of PointNet by a series of fully-connected layers

Figure 3.2. Siamese Net Structure

and then obtain the feature space, which is of dimension 16. We then compute the distance of the

two feature vectors and obtain the absolute values. This is due to the symmetry of in-collision

relation. To be more precise, the output of the network for two inputs (P1,P2) and (P2,P1) should

be the same. After obtaining the absolute values, we further transform them by a fully-connected

layer to a vector of dimension 2.

The output can be viewed as specifying the ”probability” of in-collision or collision-free.
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To see this, if we further transform the 2d vector using the softmax function, we can ensure that

the entries are non-negative and sum up to 1. Hence, by comparing the values of the two entries,

we can obtain the decision for in-collision or collision-free. For this task, we use the first entry

as the probability of choosing collision-free, and the second entry as the probability of choosing

in-collision. We use the cross-entropy loss to measure the difference between neural network

outputs and data labels.

3.1.3 Pipeline

Here we describe the pipeline for training and testing the collision checker.

Data Generation

We generate object pairs together with a label indicating if the pair is in collision or not

in the format:

(P1,P2,o)

where P1 and P2 represent point clouds of the pair of objects. o takes values of 0 or 1, with 0

denoting not in-collision, and 1 denoting in-collision. We split the generated dataset into training

dataset, validation dataset and testing dataset.

Training Pipeline

After obtaining the data through the data generation procedure, We use the standard deep

learning training method to train the collision checking neural network on the training dataset.

We also validate our training procedure on the validation dataset.

Testing Pipeline

After training, we test the trained neural network on the testing dataset, and compare the

results with the ground truth.
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3.1.4 Experiments and Results

For experiments and results, please refer to Section 4.1 in Chapter 4.

3.2 Learning-Based Motion Planner

In this thesis, we use a learning-based sequential prediction model to learn optimal paths’

state distribution. After the state distribution is learned, we use this model as an oracle to produce

informative waypoints in a bidirectional and recursive path planning algorithm. We separately

give details about the predictive model and motion planning algorithm as follows.

3.2.1 Sequential Prediction Model

Network Structure

Our neural network contains two parts: the encoder network and the planning network.

We term this neural network approach as MPNet (Motion Planning Network).

Our encoder network aims at learning useful features of the environment information.

Our planning network takes the encoded environment representation, the current state in planning

and goal state, and produce the next waypoint. Thus the planning network is iteratively used to

generate a path in the state space from start to goal.

For the implementation of the encoder network, we use a fully-connected neural network

for simple environments and VoxelNet for more complicated environments [111]. We also

compared the implementation using PointNet and VoxelNet. We chose VoxelNet as PointNet

suffers from computational time even for a relatively small point cloud in robotic tasks [75][111].

For the VoxelNet structure, we use 3D CNN layers combined with fully-connected layers. Details

about the VoxelNet structure are given as in figure 3.3.

For the planning network implementation, we use a fully-connected neural network

combined with dropouts to model stochasticity during planning. According to [28], dropout adds

Gaussian randomness to the network. Together with the encoder, the entire structure is given as
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Figure 3.3. Voxel Encoder Structure

in figure 3.4.

3.2.2 Pipeline

For the pipeline of the prediction model, we first generate the paths and point clouds

representing obstacles using classical optimal motion planners. Then we preprocess the obstacle
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Figure 3.4. Full MPNet Structure

point clouds into voxels if using VoxelNet. Next, we transform the paths and obstacle into the

structure of

(xt ,xT ,o,xt+1)

for training, where o denotes the obstacle representation. After training the network on the

training dataset, we test the network on the unseen paths.
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3.2.3 Motion Planning Algorithm

In this section, we give details about the motion planning algorithms using the trained

sequential prediction model. Our idea is to use a bidirectional and recursive path-searching-and-

refining method.

In general, we iterate between the forward planning and backward planning using a

bidirectional searching method. For the forward planning, we use the backward endpoint as

the target goal position and generate the next state leading to it. Similarly, we perform the

same for backward planning. We first only use the predictive model to generate a sequence of

informative waypoints. If the forward path and backward path are connectable, we will consider

the neural planning as successful, and thus check the connectability by verifying collisions on

the edges. If a certain part of the planned path is not connectable, we only repeat the planning

procedure for the invalid node pairs, until the entire path is collision-free. Meanwhile, we also

use a path smoothing method called lazy states contraction (LSC) to reduce the number of nodes

and collision checks needed for the path. A detailed description of the algorithm is given in the

algorithm 1.

Algorithm 1: neural-based geometric planning(x0,xG,O)
1 z← encoder(O);
2 τ ← [x0,xG] ; // initialization for the path

3 for i← 1 to MAX ITER do
4 τ ← replan(τ,z);
5 τ ← lazyStatesContraction(τ);
6 if feasible(τ) then
7 return τ;

8 return /0 ; // plan failed

3.2.4 Experiments and Results

For experiments and results, please refer to Section 4.2 in Chapter 4.
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Algorithm 2: replan(τ,z)
1 τnew← /0 ; // initialize the return path

2 for i← 1 to size(τ)−1 do
3 if steerTo(τi,τi+1) then
4 τ ′← τnew∪ [τi,τi+1] ; // store if connectable

5 else
6 τ ′← neuralPlan(τi,τi+1,z) ; // local plan using neural network

7 τnew← τnew∪ τ ′;

8 return τnew;

Algorithm 3: neuralPlan(x0,xG,z)
1 τa← [x0], τb← [xG];
2 τ ← [];
3 direction = 0 ; // initialize the return path

4 for i← 1 to MAX PLAN do
5 xnew← planNeuralNetwork(z,τa

end,τ
b
end);

6 τa← τa∪ [xnew];
7 if steerTo(τa

end,τ
b
end) then

8 τ ← concatenate(τa,τb,direction);
9 return τ;

10 direction← 1−direction;
11 swap(τa,τb);

12 return [x0,xG] ; // plan failed

3.3 Life-long learning in Motion Planning

In this chapter, we describe a life-long learning algorithm to make the learning-based

motion planner improve in an online fashion as more planning is done.

We first describe a method called Gradient Episodic Memory [63] to make learning

achievable from stream-line data. Then we incorporate this continual-learning framework into

an active learning module, which trains MPNet only when its plan fails, thus achieving data

efficiency.
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Algorithm 4: lazyStatesContraction(τ)
1 for i← 1 to τ.size()−1 do
2 for j← τ.size() to i+2 do
3 if steerTo(τ[i],τ[ j]) then

/* can connect to later nodes besides adjacent nodes */

4 return lazyStatesContraction(τ[1 : i]∪ τ[ j : τ.size()]);

5 return τ;

3.3.1 Continual Learning MPNet

Our method of continual learning builds upon a previous work called Gradient Episodic

Memory [63]. The previous work solves the continual learning problem by combining an episodic

memory with loss gradient projection. Specifically, an episodic memory Mk is constructed for

each task k. Thus the loss on the memory Mk

l(Mk;θ) =
1
|Mk|

E(xi,k,yi)∼Mk
[l( fθ (xi,k),yi]

can represent the loss on the task k. It thus tries to solve the following optimization problem:

min
θ

l( fθ (x, t),y)

s.t. l(Mk;θ)≤ l(Mk;θt−1),∀k < t
(3.1)

where θt−1 denotes the network parameters after training with samples on task t−1.

The idea is to ensure the inner product of gradients satisfies

〈g,gt〉= 〈g,
∂ l( fθ (x, t),y)

∂θ
〉 ≥ 0,〈g,gMk〉= 〈g,

∂ l(Mk;θ)

∂θ
〉 ≥ 0,

where g is the gradient used in the gradient descent, gt and gMk denote the gradient of loss on

current batch and the loss on Mk. Then gradient descent can ensure the loss on the current data

and the episodic memory is non-increasing. This is the key step in [63].
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Unlike [63], which targets reducing the effect of catastrophic forgetting on previous tasks,

we focus on learning with stream-line data. Thus our problem considers the loss on the current

batch of data and the loss of past samples. We want to ensure that the overall loss gradually

decreases. Hence our problem is a more relaxed version of the continual learning problem. Thus

instead of constructing an episodic memory for each task, we only construct the memory for the

past data. Thus our problem becomes:

min
θ

l( fθ (xt),yt)

s.t. l(M;θ)≤ l(M;θt−1)

(3.2)

Here (xt ,yt) denotes the data sample at time t, and θt denotes the network after trained on the

t-th sample. Thus by using the gradient projection method, we need to ensure the gradient g used

in gradient descent satisfies:

〈g,gt〉= 〈g,
∂ l( fθ (xt),yt)

∂θ
〉 ≥ 0,〈g,gM〉= 〈g,

∂ l(M;θ)

∂θ
〉 ≥ 0,

To make sure this condition is valid, we follow a similar method as in [63] to project the gradient

of loss on the current batch to the previous data:

min
g

1
2
‖gt−g‖2

2

s.t. 〈g,gm〉 ≥ 0
(3.3)

This can be solved by quadratic programming [63].

Moreover, we also investigate several approaches to implement the episodic memory.

Specifically, by following a previous paper [40], we experiment with sampling methods by

surprise maximization, reward maximization, coverage maximization, and global distribution

matching. As a result, we use the global distribution matching method to construct the memory.

For details, please see chapter 4. We use a global distribution matching method called reservoir
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sampling, which can obtain uniform sampling from a stream of samples in an online fashion.

The algorithm for reservoir sampling is described in algorithm 5.

Algorithm 5: reservoirSample(i (data number), d (data), M)
1 if i≤M.capacity then
2 M←M∪ [d]
3 else
4 if uniformSample(0,1)≤ M.capacity

i then
/* with probability

M.capacity
i , keep the new data */

5 k← randomInteger(1,M.capacity) ; // obtain the memory index to

replace with the new data

6 M[k]← d;

Meanwhile, we also use rehearsal to improve the performance in the continual learning

setting, by following [82]. Specifically, we keep a separate memory B that stores a subset of the

data seen, and trains the network periodically on a uniform sampled batch from this memory.

We also treat the replay batch as new data seen and use the gradient projection method for

training. However, We do not store the replay batch again into the episodic memory. Since in

our problems, the memory is enough to hold the entire training data, we use B to store all the

data seen.

With these defined, our algorithm for continual learning is described in algorithm 6. We

term this learning-based method as CMPNet.

3.3.2 Active Learning MPNet

After introducing CMPNet, we further extend it to an active learning setting, thus making

the algorithm more practical. Our active-learning MPNet (ACMPNet) considers an online-

learning scenario where the classical motion planners can be used as a backup. Our idea is that

after some training samples, MPNet has encapsulated some trajectories, but is still uncertain

in other cases. To distinguish learned paths from paths that have not been learned, we use the

criterion of success during neural planning. If motion planning with MPNet is successful, we

36



Algorithm 6: continualLearningUpdate( t (training iteration), (x0,xG,O) (plan-
ning problem), θ (network parameters), M (episodic memory), B (rehersal mem-
ory))

1 Predefined parameters: r (replay period), NB (replay batch size);
2 τ ← getExpertDemonstration(x0,xG,O);
3 Dt ← transformToTrainingData(τ,O);
4 reservoirSample(t,Dt,M);
5 B← B∪Dt ;
6 gt ← E(x,y)∼Dt

∂ l( fθ (x),y)
θ

;

7 gM← E(x,y)∼M
∂ l( fθ (x),y)

θ
;

8 g← QPProjection(gt ,gM) ; // quadratic programming for Equation 3.3

9 update parameters θ using g;
/* rehersal */

10 if (B.size())> NB and (t%r == 0) then
11 b← uniformSampleBatch(B);
12 gt ← E(x,y)∼b

∂ l( fθ (x),y)
θ

;

13 gM← E(x,y)∼M
∂ l( fθ (x),y)

θ
;

14 g← QPProjection(gt ,gM) ; // quadratic programming for Equation

3.3

15 update parameters θ using g;

assume the MPNet has already learned enough about the environment embedding and the path

distribution. Otherwise, we need to train MPNet.

With this idea in our ACMPNet algorithm, we call the classical motion planners when

MPNet fails, and only use the failure paths to train MPNet. We thus expect an improvement in

data efficiency, as only part of the data is needed. Meanwhile, this algorithm is a prototype for a

realistic online planning setting. The algorithm is described in algorithm 7.

3.3.3 Experiments and Results

For experiments and results, please refer to Section 4.2 in Chapter 4.
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Algorithm 7: activeLearningUpdate( t (training iteration), (x0,xG,O) (planning
problem), θ (network parameters), M (episodic memory), B (rehersal memory))

1 Predefined parameters: r (replay period), NB (replay batch size), NC (number of
iterations to pretrain MPNet);

/* pretrain MPNet */

2 if t ≤ NC then
3 continualLearningUpdate(t,(x0,xG,O),θ ,M,B);
4 return;

/* active learning */

5 τ ← neuralBasedPlanning(x0,xG,O) ; // using MPnet to plan first

6 if τ == /0 then
/* neural planning failed. Use expert demonstration */

7 continualLearningUpdate(t,(x0,xG,O),θ ,M,B);

3.4 Learning-Based Kinodynamic Motion Planning

3.4.1 Adding Kinodynamic Constraints

We further extend the learning-based motion planning algorithm by adding kinodynamic

constraints specified by

ẋt = f (xt ,ut).

In our problems, we use linear discretization to discretize this differential constraint into

xt+1 = xt +dt ∗ ẋt .

with some specified dt. Hence the algorithm needs to plan both a state trajectory and a control

trajectory. To incorporate the previously introduced sequential motion planner in kinodynamic

motion planning tasks, we use insights from [107]. We change the steering function to a BVP

solver implemented by the cross-entropy method (CEM) [10].

A BVP solver tries to obtain the intermediate state trajectory and control trajectory

given specified start and goal states, through optimization method. Specifically, it considers the
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following optimization problem:

min
x,u

J(x,u;W )

s.t. ẋ(t) = f (x(t),u(t)),∀t (motion model)

x(t) ∈X ,u(t) ∈U (state boundary and control boundary)

x(0) = x0 (start constraints)

x(T )≤ xT (goal constraints)

other constraints such as collision constraints

(3.4)

This is similar to the problem as defined in section 1.2.1. However, BVP has smaller horizons,

and approximate optimization solvers can often find solutions fast. Algorithm 8 describes our

implementation of the BVP solver using CEM. Specifically, it iteratively estimates the Gaussian

distribution that minimizes the distance between the endpoint and the goal.

We obtain a line-search planning algorithm (MPC-MPNetLine) and a tree-based planning

algorithm (MPC-MPNetTree) for the kinodynamic motion planning task. In both algorithms,

we maintain a search tree recording the history of planning. The differences between these two

algorithms lie in the orders for the expansion of nodes.

3.4.2 Line-Search Planning

We adapted the geometric line-based motion planning algorithm to the kinodynamics mo-

tion planning by changing it to unidirectional planning and removing the lazy vertex contraction.

These changes come from the challenges of kinodynamic motion planning.

Firstly, in kinodynamic motion planning, simple discretization methods will cause the dy-

namic propagation to be asymmetric concerning the direction. For example, forward propagation

xt +dt ∗ f (xt ,ut)
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Algorithm 8: MPC(x0,xG)
1 initialize the distribution of controls µu[0..NT ], σu[0..NT ], and time µt [0..NT ],

σt [0..NT ];
2 for iter← 1 to MAX ITER+1 do

/* sample N control and time trajectories */

3 for i← 1 to N do
4 for j← 1 to NT do
5 u[i, j]←N (µu[ j],σu[ j]));
6 t[i, j]←N (µt [ j],σt [ j]));

/* evaluate the samples to obtain loss */

7 for i← 1 to N do
8 x[i]←propagate(u[i], t[i]);
9 if IsInCollision(x[i]) then

10 l[i]← ∞;

11 else
12 l[i]← d(x[i,−1],xG);

/* select top-k of loss, and update the distribution */

13 φl ← topKIndices(−l) ; // obtain the k indices that obtain the

lowest k losses

/* update the statistics */

14 for j← 1 to NT do
15 µu[ j] =mean(u[φl, j]);
16 σu[ j] =std(u[φl, j]);
17 µt [ j] =mean(t[φl, j]);
18 σt [ j] =std(t[φl, j]);

/* return the trajectory with the lowest cost */

19 return x[0],u[0], t[0];

and backward propagation

xt+1−dt ∗ f (xt+1,ut+1)

will create two different trajectories. Meanwhile, due to the differential motion constraints, a

small change in the state space might be unattainable. Hence we cannot guarantee successful

connections between any two points. Thus naive bidirectional method and lazy vertex contraction

may not be valid. The issues are evident by using the analysis of the controllability of each

point in the state space [34]. In literature, these problems are bypassed by defining a valid
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region around each node [100][13][55]. However, as controllability cannot be guaranteed, this

bypassing might cause problems during the path’s real executions. Due to this consideration, we

do not use the bidirectional method as in geometric motion planning. The details of the algorithm

are described in 9.

Algorithm 9: MPC-MPNetLine(x0,xG,O,d,VG)
1 z← encoder(O);
2 x← x0;
/* initialize the search tree */

3 T←{x0};
4 for i← 1 to MAX ITER do

/* obtain waypoints from MPNet */

5 xnew← planNeuralNetwork(z,x,xG);
6 τlocal← steerTo(x,xnew);

/* if local steering is unsuccessful, then reset the state to

a random point in the tree */

7 if τlocal == /0 then
8 x← randomNode(T);

9 else
/* if local steering is successful, then set the state as

the endpoint of the local trajectory */

10 addToTree(τlocal,T);
11 if d(x,xG)≤ εG ∗VG then

/* if the state is near goal region, then reset to start

*/

12 x← x0;

13 else
14 x← τlocal[−1];

15 if d(T,xG)≤VG then
16 return solution path from T;

In this algorithm, we also added tricks to make it work more efficiently in practice. One

example trick is periodic goal sampling. These tricks are standard in motion planning literature

[56].
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Algorithm 10: steerTo(xt ,xt+1)
/* a general function that returns a local trajectory connecting

two nodes. Here we show implementation using BVP solver. */

1 xlocal,ulocal, tlocal←CEM(xt ,xt+1);
/* BVP solution might be approximate and does not follow system

dynamics. Hence we propagate again using the solution to

find the path according to the dynamics */

2 τ ← [xt ];
3 for i← i to ulocal.size() do
4 Ndt = round(tlocal[i]/dt);
5 for j← 1 to Ndt do
6 xnew← propagate(τend,ulocal[i],dt);
7 if feasible(xnew) then
8 τ ← τ ∪ [xnew];

9 else
/* collision happens, propagation ends here */

10 return τ;

11 return τ;

3.4.3 Tree-based Planning

From the observation that randomness affects line-based planning, we use tree-based

planning to improve the sample efficiency. Our tree-based algorithm takes insights from [58].

We generalize the algorithm to algorithm 11.

Notice that we can use parallel methods to implement MPC, neural networks, and

sampling-based methods. Hence our MPC-MPNetLine and MPC-MPNetTree methods can both

be accelerated by vectorization and running on GPU. We obtain a CUDA implementation of the

MPC-MPNetTree algorithm to further accelerate it by evaluating a batch of samples at once [89].

3.4.4 Experiments and Results

For experiments and results, please refer to Section 4.3 in Chapter 4.
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Algorithm 11: neural-based kinodynamic tree-search planning with BVP
solver(x0,xG,O,d,VG)

1 T←{x0}; // initialize the tree structure

2 z← encoder(O);
3 for i← 1 to MAX ITER do
4 xt ← randomSample();
5 xt ← nearestNeighbor(xt ,T);
6 xt+1← planNeuralNetwork(z,xt ,xG);
7 τlocal← steerTo(xt ,xt+1);
8 addToTree(τlocal,T);
9 if d(T,xG)≤VG then

10 return solution path from T;

11 return /0;
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Chapter 4

Experiments and Results

In this chapter, we present our experimental results for the algorithms in the previous

chapters.

For all our experiments, we run on a system with 3.40GHz×8 Intel Core i7 processors,

32 GB RAM and GeForce GTX 1080 GPUs.

4.1 Learning-Based Collision Checker

In this section, we present the results of our learning-based collision checker on two

sets of data, namely, simple geometry dataset and complex shape dataset. For each dataset, we

randomly place the objects and generate labels for collision checking.

4.1.1 Data Generation

We generate two sets of data, simple geometry and complex shapes. For simple geometry,

we generate two types of shapes, boxes, and balls. We firstly generate point clouds for standard

shapes, and then randomly change the size and location within specific ranges. After obtaining

the transformed point clouds, we obtain the meshes from them and then check collisions using

the meshes. This gives us the labels for a pair of shapes. Examples are shown in the figure 4.1.

For complex geometry, we obtain shapes including the dragon, happy buddha, horse, and

bunny from the Large Geometric Models Archive [102]. Figure 4.2 shows pictures for each of

these models.
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Figure 4.1. Simple Shapes for Collision Checking

(a) Dragon Mesh and Point Cloud

(b) Happy Buddha Mesh and Point Cloud

(c) Horse Mesh and Point Cloud (d) Bunny Mesh and Point Cloud

(e) In-Collision Case for Dragon and Happy
Buddha

(f) Collision-Free Case for Bunny and Happy
Buddha

Figure 4.2. Complex Shapes for Collision Checking

We use similar generation procedures as simple geometric data, and randomly select a

pair of shapes for inputs.
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By following the above procedures, we generate data in the format:

(P1,P2,o)

where P1 and P2 represent point clouds of the pair of objects. o takes values of 0 or 1, with 0

denoting not in-collision, and 1 denoting in-collision.

We use pyntcloud to convert point clouds into meshes, and use Klamp’t (Kris’ Locomo-

tion and Manipulation Planning Toolbox) packages to check collisions between meshes.

4.1.2 Training and Testing

After obtaining the data through the data generation procedure, we separately train a

model for the simple and complex dataset. We use the standard deep learning training method to

obtain the model.

On the simple geometry dataset, we have a total of 80000 pairs of objects. Each object

is represented using 2800 points. We use 57600 pairs as the training dataset, 8000 pairs as

validation dataset, and 14400 pairs as the test dataset. We train the neural network for a total of

10 epochs, with a batch size of 32. Meanwhile, we use Adam optimizer [49] with learning rate

0.001, and gamma parameter 0.5.

After training separately on the simple and complex dataset, we test the trained model

on them. We do not cross test the models as deep learning assumes training and testing dataset

comes from similar distributions.

4.1.3 Results and Analysis

Here we present the experimental results of the learning-based collision checker on the

previously mentioned dataset. Figure 4.3 is the evolution of loss and accuracy for training,

validation, and testing stages. For complex geometry dataset, we use the same setting, and figure

4.4 shows the results.
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(a) loss and accuracy during training and validation on simple geometry

(b) loss and accuracy during testing on simple geometry

Figure 4.3. Results on Simple Geometry

Both of these results show the testing accuracy of more than 96%, which shows that

the learning-based approach is promising. We use the same neural network structures for both

simple geometry and complex geometry dataset. Hence we only need to record the average time

for neural network propagation to represent the collision checking time. The average time for

collision checking for both cases is 0.0088s. Since preprocessing is not needed in our approach,

this result is much faster than the classical methods introduced before.
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(a) loss and accuracy during training and validation on complex geometry

(b) loss and accuracy during testing on complex geometry

Figure 4.4. Results on Complex Geometry

4.2 Learning-Based Motion Planning

In this section, we present the results of our learning-based motion planner on six different

environments, namely, 2D point-mass with simple and complex environments (S2D and C2D),

3D point-mass (C3D), SE2, SE3, and 7DOF manipulation planning. For all of the environments,

we create different obstacles and plan with collision avoidance constraints.
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4.2.1 Environment Setting

In the S2D environment, we randomly generate 7 square boxes with size 5 in random

positions. Meanwhile, we randomly pick start and goal positions for planning and restrict the

planning region to be 40x40. We generate 110 different obstacle configurations. Within each

configuration, we generate 6000 paths with different start and goal positions using classical

planners. The obstacles are represented by point clouds with size 1400x2. Figure 4.5 shows two

planned paths of MPNet in two S2D scenes.

Figure 4.5. S2D Planning Scene

In the C2D environment, we randomly generate seven rectangles with different sizes in

random positions. Like the S2D environment, we randomly pick start and goal positions and

restrict the planning region to 40x40. We use the same data generation methods as in the S2D

environment. Figure 4.6 shows two planning instances in two C2D scenes.

In the C3D environment, we randomly generate ten rectangular cuboids with different

sizes in random positions. Similar to before, we randomly pick start and goal positions and

restrict the planning region to be 40x40x40. We also use the same data generation methods

as before. The point clouds representing obstacles have shape 1400x3. Figure 4.7 shows two

planned paths in two C3D scenes.

In the SE2 environment, we use the S2D environment setting, but consider planning for a
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Figure 4.6. C2D Planning Scene

Figure 4.7. C3D Planning Scene

rectangle robot with size 2x5. Due to the shape of the robot, we need to consider its position and

orientation during planning. Hence this planning problem has DOF of three. The data generation

method is the same as above. Figure 4.8 shows two paths in two SE2 scenes.

In the SE3 environment, we consider a planning scene for a chair robot in a home-like

environment with complicated obstacles and narrow passages [97]. As the robot position and

orientation need to be considered in the 3D space, the search space is of DOF 7. We use one

obstacle configuration, and generate 2696 paths with random start and goal positions. We obtain

the point clouds from the OMPL [97] mesh representation, with a shape of 150008x3. Two

example paths are shown in Figure 4.9.
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Figure 4.8. R2D Planning Scene

Figure 4.9. R2D Planning Scene

In the manipulation task, we consider planning for a Baxter robot in an environment with

two L-shaped tables where five different objects are randomly placed. We consider the reaching

task for one arm of the robot. In total, we generate ten different environments, each with 1000

paths generated by classical planners. We obtain the point cloud information by using a KINECT

depth camera in the simulated environment. The point clouds are captured by using the ROS

packages of PCL [86]. The size of the point cloud is 3x5351. Four real-world scenes for the

Baxter environments are shown in Figure 4.10.

51



En
vi

ro
nm

en
t 4

En
vi

ro
nm

en
t 3

En
vi

ro
nm

en
t 2

En
vi

ro
nm

en
t 1

Goal configurationStart configuration Intermediate configurations

Figure 4.10. Baxter Planning Scene in Real World

4.2.2 Training and Testing

Here we specify details about the training and testing phases. For training, we convert

the generated training trajectories into input-target pairs as specified before, and follow the

general deep learning training procedure. For the testing phase, we consider two separate cases to

evaluate the performance of both the encoder and the planner network. Individually, we consider

testing on seen environments where obstacle settings are the same as the training data, and on

unseen environments where the obstacles are not present in the training data. We use the seen

environments to test the planner network’s performance and the unseen environments to test the

performance of the encoder and planner networks.

Here we specify the data size for training and testing phases. In the S2D, C2D, C3D,

SE2 planning problems, we use 100 environments, each with 4000 paths for training. For the

seen testing environments, we use the same environments as in training, each with 200 paths.

Additionally, we also use ten unseen environments, each with 2000 paths for testing.
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Table 4.1. Performance accuracies of all MPNet variants in the four environments on both test
datasets, seen and unseen (shown inside brackets).

Methods
Environments

S2D C2D C3D SE2
MPNet 99.30 (98.30) 99.71 (98.80) 99.11 (97.76) 94.21 (95.18)

CMPNet 93.33 (93.18) 83.44 (83.78) 89.88 (90.86) 83.77 (86.18)
ACMPNet 96.70 (97.83) 84.36 (84.08) 96.60 (95.28) 87.08 (87.64)

Table 4.2. Mean computation times with standard deviations are presented for MPNet (all
variations), Informed-RRT* and BIT* on test datasets.

Methods
Environments

S2D C2D C3D SE2
Informed-RRT* 1.06±0.33 (1.10±0.09) 1.60±0.47 (1.49±0.16) 2.99±0.82 (2.76±0.20) 15.58±2.85 (14.80±2.83)

BIT* 0.59±0.28 (0.65±0.30) 1.79±1.35 (1.61±0.53) 0.19±0.12 (0.20±0.04) 7.16±1.95 (6.52±1.65)
MPNet 0.02±0.00 (0.02±0.00) 0.04±0.00 (0.04±0.01) 0.06±0.01 (0.07±0.01) 0.38±0.04 (0.37±0.02)

CMPNet 0.02±0.00 (0.02±0.00) 0.05±0.01 (0.05±0.01) 0.07±0.01 (0.08±0.01) 0.41±0.08 (0.39±0.07)
ACMPNet 0.03±0.01 (0.03±0.01) 0.06±0.01 (0.06±0.01) 0.08±0.01 (0.08±0.01) 0.53±0.12 (0.42±0.08)

For the other two planning problems, we only consider seen environments for testing.

For the SE3 planning problem, we use 2196 paths for training and 500 paths for testing. For the

Baxter planning problem, we use ten environments, each with 900 paths for training and 100

paths for testing.

4.2.3 Performance Analysis

Here we show the experimental results of our previously introduced algorithms, specifi-

cally the barefoot neural-based motion planner (termed as MPNet), the continual learning motion

planner (termed as CMPNet), and the active learning motion planner (termed as ACMPNet). We

test MPNet and CMPNet on all problems and ACMPNet only on S2D, C2D, C3D, and SE2

problems.

Meanwhile, we compare these algorithms with classical planners, including RRT*,

Informed-RRT*[29], and BIT*[30]. We let Informed-RRT* and BIT* run until the path quality

in terms of Euclidean cost is within the range of 5% of the MPNet planned path. We show the

comparison of these planners in terms of computational time and path quality.

The comparison of each method is shown in table 4.1 and 4.2. Table 4.3 shows the
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Table 4.3. Computation time, path cost/length, and success rate comparison of different methods
in Baxter environment.

Methods
Baxter

Time Path cost Success rate(%)
BIT* (Initial Path) 0.94±0.20 13.91±0.60 83.0

BIT* (±40% MPNet cost) 9.20±7.61 10.78±0.31 56.0
MPNet 0.59±0.08 7.86±0.20 87.8

CMPNet 0.81±0.08 6.98±0.18 78.6

results for the Baxter planning problem.

For the SE3 planning problem, MPNet achieves a success rate of around 85%. The mean

computation times for finding an initial path solution are 0.96s, 1.61s, and 2.84s for MPNet,

CMPNet, and BIT*, respectively. Meanwhile, the mean path costs for MPNet, CMPNet, and

BIT* are 457.8, 512.73, and 836.85. Furthermore, we notice that BIT* takes up to several

minutes to find a path of similar cost as MPNet’s solution.

comparison against classical planners

As we observe in the results, neural planners achieve significant speedup compared with

classical planners for finding paths with similar optimality. Table 4.2 shows the comparison

of computational time in different environments. From the figure, we can observe that the

computational speedup is consistent in different obstacle settings. It can also be observed from

the table that, as the planning task becomes more complicated with higher dimensions, the

speedup becomes more evident.

comparison of neural planners

As shown in the results, MPNet has the best performance compared with the other two

algorithms in terms of accuracy and time. However, CMPNet and ACMPNet require only one

training epoch in simple problems, and ten epochs in Baxter and SE3 planning problems to

achieve acceptable results. On the other hand, MPNet requires 100 training epochs. We also

observe that CMPNet and ACMPNet can achieve similar performance if given a similar number

of training epochs as MPNet.

54



Meanwhile, we also observe the sample efficiency of ACMPNet compared with MPNet.

We compare the number of paths MPNet and ACMPNet are trained on for each of the environ-

ments. ACMPNet achieves a significant reduction of training samples needed to achieve similar

performance, as shown in figure 4.11.
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Figure 4.11. Number of training paths required for MPNet/CMPNet vs. ACMPNet

Sample selection in CMPNet and ACMPNet

We also compare different sample selection methods for continual learning. We follow

the definitions in [82] and use four methods for selecting samples. Specifically, these are surprise

maximization, reward (in our case, it is training loss) maximization, coverage maximization, and

global distribution matching. The surprise maximization and reward maximization prefer samples

with higher prediction loss or lower prediction loss, respectively. The coverage maximization

maintains a memory of k-nearest neighbors. The global distribution matching uses the reservoir

sampling technique as discussed before to obtain a uniform sampled subset for representing the
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global distribution.

We evaluate these four methods on the S2D dataset and report the results in 4.12. It can

be seen that the global distribution matching method obtains the best results, slightly better than

the reward maximization method and the coverage maximization method. The explanation of

this result might be that the violation of the distribution may lead to deep learning algorithms’

inconsistent behaviors.
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Figure 4.12. Impact of sample selection methods for episode memory on the performance of
CMPNet/ACMPNet in S2D

4.2.4 Discussion

Although our algorithms achieve improvement compared with classical planning algo-

rithms, they have several directions for improvement. Firstly, we did not utilize advanced features

in deep learning but just representing stochasticity by dropout. A combination with generative

methods such as GAN [32] and VAE [23] might better model stochasticity explicitly. Meanwhile,

our algorithms are general solutions to motion planning tasks, adding domain knowledge when

applying them to specific tasks.

4.3 Learning-Based Kinodynamic Motion Planning

In this section, we present the results of the extension of the motion planning algorithm

to kinodynamic planning tasks. Different from the previous problem, the robots need to satisfy
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additional kinodynamic motion constraints. We benchmark our algorithm against the state-of-the-

art SST (sparseRRT) algorithm [58] in a double-pendulum environment with obstacles. Figure

4.13 shows an example of the planning scene.

Figure 4.13. Double-Pendulum Problem with Obstacles. Green: start position. Red: goal
position.

4.3.1 Environment Setting

In the double-pendulum environment, the state space is of four dimensions, represented

by:

s = [θ0,θ1, θ̇0, θ̇1].

For simplicity, we use linear interpolation with fixed time step dt = 0.02s for propagation. The

dynamics thus satisfies:

s(t +1) = s(t)+ f (s(t),u(t))dt.

Here f (s(t),u(t)) denotes the derivative given the state and control. The detailed equation is

given in [95].
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The endpoints of the first pole are given by:

[0,0], [Lcos(θ0)−
π

2
,Lsin(θ0)−

π

2
].

The last endpoint of the second pole is given by:

[L(cos(θ0−
π

2
)+ cos(θ0 +θ1−

π

2
)),L(sin(θ0−

π

2
)+ sin(θ0 +θ1−

π

2
))].

Here L denotes the length of the pole, which is 20 in our problem setting. The cost in this

problem is the time spent on the trajectory.

We make this classical problem more complicated by adding four obstacles, and ran-

domly place the obstacles while making sure the problem is solvable and complicated enough.

Meanwhile, we generate start and goal states by fixing the start state to (0,0,0,0) and randomly

place the goal states so that the end position is above the height of one pole.

We generate trajectories for training and testing from these randomly generated planning

problems using the SST algorithm [58]. After letting the SST algorithm run for 300000 iterations,

we can obtain an optimized trajectory suitable for training the MPNet. In total, we generated ten

environments, each with 1000 trajectories.

4.3.2 Training and Testing

Here we specify details about the training and testing phases. For training, we directly

use the waypoints generated by SST and follow the same steps as in the geometric MPNet.

The propagation duration between adjacent points ranges from 0.1s to 2s. We use the ten

environments, each with 900 trajectories for training. During testing, we use the remaining 100

trajectories in each environment for evaluation.
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4.3.3 Performance Analysis

Here we show the experimental results of our previously introduced learning-based

kinodynamic planning algorithms. As introduced before, our algorithm can be accelerated by

vectorization and implementation using GPU. During experiments, we implemented the CUDA

version of the MPC-MPNetTree algorithm, which is faster than the CPU version.

We compare the performances against SST. For comparison of time, we rerun SST on

the testing dataset by setting a stopping threshold of cost. If the cost reaches 120% of the data

cost, we will terminate SST and use it for comparison. For our learning-based kinodynamic

planning algorithms, we will terminate once a trajectory is found. Meanwhile, we consider

planning that takes more than 40s as a failure. However, our planning algorithm still results in a

high success rate even when we limit the computational time. Specifically, the success rate of

MPC-MPNetLine is 90.0%, and the success rate of MPC-MPNetTree is 96.5%.

Figure 4.14 shows some sample planned trajectories using different methods. Figure

(a) Sample Planned Trajectories of MPC-MPNetLine

(b) Sample Planned Trajectories of MPC-MPNetTree

(c) Sample Planned Trajectories of SST

Figure 4.14. Sample Planned Trajectories of each Method
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4.15 shows the box plots of computational time for each method.

Figure 4.15. Box Plot of Computational Time for Different Kinodynamic Motion Planning
Methods.

Meanwhile, to evaluate the optimality of trajectories, we compare the three methods with

a baseline of the RRT algorithm. We run the baseline RRT algorithm for a fixed time of 200s.

Figure 4.16 shows the box plots of trajectory cost for each method.

As shown in the figures, our learning-based approach can find a more optimized solution

than the RRT method with a much shorter computational time. Our learning-based approach is

much faster than SST with more than 90% of paths within two times of the SST solution cost.

4.3.4 Discussion

In experiments, we show that learning-based algorithms achieve improvement in com-

putational time for finding paths with 2x cost in kinodynamic motion planning. This result can

be further improved with system speedup, such as parallelization and usage of GPU. The cost

can also be further optimized by using SST algorithm after the initial solution is found by our
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Figure 4.16. Box Plot of Cost for Different Kinodynamic Motion Planning Methods.

algorithm.
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Chapter 5

Conclusion and Future Work

Traditional planning algorithms achieve theoretical optimality guarantees and also achieve

decent results in practical problems. However, for complicated tasks, these algorithms require

much computational time, which is not suitable for real-time planning in robotics.

By utilizing recent advances in deep learning, past planning instances can be better

utilized to accelerate the planning pipeline. Specifically, by learning from past successful

trajectories, neural networks can learn a sampling distribution where samples are near the

solution of good-quality paths. This experience can be generalized to problem instances with

similar environment settings.

In this thesis, we show out motion planning algorithms using neural samplers in simple

geometric tasks and complicated kinodynamic motion planning tasks. We show the success

of this method by benchmarking with traditional motion planners. Specifically, it achieves a

high success rate while requiring much less computational time. Thus, in practice, we can

benefit by learning from planned instances and using neural samplers to accelerate the planning

pipeline. Meanwhile, we offer an active learning pipeline to combine the merits of traditional

motion planners and learning-based motion planners. Specifically, we only use traditional motion

planners when learning-based motion planners fail. This method results in a system that can

dynamically improve and achieves life-long learning.

At the same time, we also investigated another essential component in the motion planning
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pipeline, collision checking. We show how this component can also be accelerated by deep

learning. We showed a high success rate with low computational time without preprocessing the

point cloud inputs.

By combining both components, future directions can work on building an end-to-end

motion planning pipeline. This direction may also generalize to partially-observable planning

problems and dynamic environments.

It would also be interesting to see how deep learning can help with more practical and

complicated tasks such as hierarchical planning in manipulation and locomotion problems. Future

projects can work on the real deployment of these learning-based motion planning methods.

Meanwhile, more compact representation of the trajectory will also be beneficial. The

combination with generative neural networks will be an interesting direction.

Furthermore, our approach belongs to imitation learning, where expert demonstrations

are required for training. Another direction is self-supervised methods such as reinforcement

learning. These methods can learn without demonstrations but might require more time to

converge. A hybrid method might be another direction to combine the merits of both fields.
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