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Relaxation oscillations and 
hierarchy of feedbacks in  
MAPK signaling
Marek Kochańczyk1, Paweł Kocieniewski1, Emilia Kozłowska2,†, Joanna Jaruszewicz-Błońska1, 
Breanne Sparta3, Michael Pargett3, John G. Albeck3, William S. Hlavacek4 & Tomasz Lipniacki1

We formulated a computational model for a MAPK signaling cascade downstream of the EGF receptor 
to investigate how interlinked positive and negative feedback loops process EGF signals into ERK 
pulses of constant amplitude but dose-dependent duration and frequency. A positive feedback loop 
involving RAS and SOS, which leads to bistability and allows for switch-like responses to inputs, is 
nested within a negative feedback loop that encompasses RAS and RAF, MEK, and ERK that inhibits 
SOS via phosphorylation. This negative feedback, operating on a longer time scale, changes switch-like 
behavior into oscillations having a period of 1 hour or longer. Two auxiliary negative feedback loops, 
from ERK to MEK and RAF, placed downstream of the positive feedback, shape the temporal ERK 
activity profile but are dispensable for oscillations. Thus, the positive feedback introduces a hierarchy 
among negative feedback loops, such that the effect of a negative feedback depends on its position 
with respect to the positive feedback loop. Furthermore, a combination of the fast positive feedback 
involving slow-diffusing membrane components with slower negative feedbacks involving faster 
diffusing cytoplasmic components leads to local excitation/global inhibition dynamics, which allows the 
MAPK cascade to transmit paracrine EGF signals into spatially non-uniform ERK activity pulses.

A canonical mitogen-activated protein kinase (MAPK) pathway responsible for transducing signals from 
growth factors consists of three tiers of sequentially activated protein kinases: RAF, MEK, and ERK1. Activated 
ERK, considered the output of the cascade, phosphorylates more than 100 substrates including several tran-
scription factors2 and elicits a variety of cellular responses including growth, proliferation, and differentiation3,4. 
Unsurprisingly, dysregulated MAPK signaling underlies many cancers5. There is growing evidence that the cell 
fate decisions are regulated by temporal6–8 or even spatiotemporal profiles of ERK and RAF9–15. It is thus impor-
tant to understand how information about the level and gradient of an extracellular stimulus is encoded and 
transmitted to intracellular downstream effectors.

In the last two decades, numerous positive and negative feedback loops regulating the MAPK network have 
been discovered and characterized16,17. A positive feedback from RAS to SOS allows for signal amplification in the 
vicinity of the receptor and has been proposed to introduce bistability18, which enables the system to respond to 
inputs in a switch-like (digital) fashion19. Negative feedbacks emanating from ERK have been associated mainly 
with response attenuation20, but negative feedbacks in general may be harnessed to ensure perfect adaptation21,22 
or give rise to oscillations23–26. System-level mechanisms of controlling information processing in MAPK are still 
not fully understood, partially due to the fact that systems involving interlocked positive and negative feedback 
loops may exhibit rich nonlinear dynamical behavior. Dynamics assumed by such complex systems depends 
on the characteristic time scales involved and network connectivity/topology, i.e., where the feedbacks act and 
how they relate to each other. For example, sustained oscillations may arise when a negative feedback loop is 
embedded within a relatively slow positive feedback loop27 or when a positive feedback loop is embedded within 
a relatively slow negative feedback loop28. In the latter case, the time profiles may be similar to those produced by 
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a relaxation oscillator, i.e., consisting of a fast activation phase and a phase of (usually slow) relaxation to a state 
in which subsequent activation is possible29. In recent work30, we observed similar pulses using a sensor based on 
phosphorylation-regulated Förster resonance energy transfer (FRET) to monitor EGF-stimulated ERK activity 
in single MCF10A cells. These pulses differ from constant-frequency quasisinusoidal oscillations in ERK nuclear 
translocation observed in other studies26 and are characterized by an EGF dose-independent amplitude and an 
EGF dose-dependent period.

In this study, we construct a computational model for MAPK/ERK signaling downstream of EGFR with 
three aims: (i) to verify whether the combination of the positive and negative feedbacks considered in the model 
leads to observed relaxation oscillations, (ii) to characterize the functional roles of the different feedback loops 
depending on their position in the network, and (iii) to analyze the consequences of proteins participating in the 
feedback loops being localized to distinct subcellular compartments (the plasma membrane or the cytosol) for 
spatiotemporal profiles of the response. We restrict our analysis to four feedbacks: one positive and three negative 
(shown in Fig. 1 and discussed in Supplementary Text S1). The proposed model is corroborated by experimen-
tal analysis of single-cell responses to a broad range of EGF doses using a fast sensor of ERK activity based on 
phosphorylation-dependent regulation of nucleocytoplasmic shuttling31,32.

Results
Model. We constructed a model for EGFR-mediated activation of ERK that captures the feedback loops illus-
trated in Fig. 1. In addition to well-known negative feedbacks from ERK to its upstream signaling partners, MEK, 
RAF, and SOS, which have been considered in earlier experimental and modeling studies, our model includes a 
positive feedback loop involving SOS and RAS. This relatively recently discovered feedback loop, labeled PF1 in 
Fig. 1, is upstream of negative feedback from ERK to RAF (labeled NF2 in Fig. 1), as well as negative feedback 
from ERK to MEK (labeled NF3 in Fig. 1), and it is encompassed within the negative feedback loop involving 
ERK and SOS (labeled NF1 in Fig. 1). It is known that interlocked positive and negative feedback loops can give 
rise to excitatory behavior, which we have observed in a recent study of single-cell ERK dynamics30. Our model 
was built and analyzed to determine whether positive feedback between plasma membrane-associated signaling 
proteins could potentially be responsible for the observed behavior, which includes apparent relaxation oscilla-
tions in ERK activity.

We formulated the model as a system of coupled ordinary differential equations (ODEs) for the mass-action 
kinetics of the reaction scheme shown in Fig. 2. Although this scheme provides a simplified representation of the 
MAPK signaling network downstream of EGFR, it preserves the dynamical structure of the network, meaning 
that it includes the essential processes responsible for the feedbacks connecting the main signaling proteins of the 
network (cf. Figs 1 and 2). Importantly, with this model, we can assign values to parameters that determine the 
relative time scales of activating and inhibiting processes. As we will discuss later, we considered two extensions 
of the model. One is a Markov chain that includes the same processes as those considered in the ODE model 
but adds stochastic processes that affect the level of EGFR expression on the surface of a single cell. This model 

Figure 1. Feedback loops in the MAPK/ERK pathway. Loops captured in the model are shown with 
solid lines. The arrow labeled PF1 represents positive feedback. This feedback loop has been implicated in 
mediating bistable switching. The arrows labeled NF1–NF3 represent negative feedbacks. The NF1 feedback 
loop encompasses the positive feedback loop. The NF2 and NF3 feedback loops are placed out of the positive 
feedback loop. Dotted lines indicate feedbacks not included in the model.
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extension is intended to account for extrinsic noise and the heterogeneity of cell populations (see Materials and 
Methods). The second extended model consists of a set of partial differential equations (PDEs). These equations 
incorporate the right-hand side terms of the ODE model. Reaction–diffusion processes in the extracellular space, 
on the plasma membrane, and in the cytosol are coupled through Robin-type boundary conditions. This model 
extension was formulated to study the subcellular spatial heterogeneity of responses to paracrine signaling, mod-
eled as secretion of EGF at random times and random extracellular locations (see Materials and Methods).

An executable specification of the ODE model and the extended stochastic version of the model are 
provided in Supplementary Data 1. Default parameter settings for the ODE model are summarized in 
Supplementary Table S1. Supplementary Text S2 and Supplementary Table S2 contain non-dimensional model 
equations and parameters, respectively. Code for bifurcation analysis are provided in Supplementary Data 2. 
The stochastic extension of the ODE model has unique parameters that describe the dynamics of EGFR surface 
expression (Supplementary Table S3) and is provided in Supplementary Data 3. An executable specification of the 
PDE model is provided in Supplementary Data 4. This model has unique parameters that describe diffusion pro-
cesses and paracrine signaling (Supplementary Table S4). Parameters were assigned default values as described 
in Materials and Methods. Simulations and bifurcation analyses were performed as described in Materials and 
Methods.

Positive feedback and bistability. According to the model with the default parameter settings of 
Supplementary Table S1, in the absence of negative feedbacks, the system exhibits bistability, i.e., bistable switch-
ing behavior (also known as hysteretic switching). As illustrated in Fig. 3, bistability depends on parameters gov-
erning positive feedback between SOS and RAS (Fig. 3A), as well as parameters governing saturation of RasGAP 
(Fig. 3B).

The results of Fig. 3A are consistent with earlier work, which has implicated positive feedback from SOS 
to RAS in hysteretic switching33. Positive feedback arises because the product of SOS’s GEF activity, which is 
RAS-GTP, binds to SOS at SOS’s REM domain, which is non-overlapping with SOS’s GEF domain (also known 
as the Cdc25 homology domain). The outcome of RAS-GTP binding to SOS is an increase in the GEF activity of 
SOS. RAS-GDP binding to SOS also increases SOS’s GEF activity, but to a lesser extent. The parameter values of 
Supplementary Table S1 were selected so that positive feedback from SOS to RAS generates hysteretic switching 
in the absence of negative feedbacks. The parameter values characterizing SOS GEF activity (k2C, k2B, and k2A) are 
such that SOS’s GEF activity is zero when its REM domain is not bound to RAS (i.e., k2C =  0), and its GEF activity 
when SOS’s REM domain is bound to RAS-GDP is an order of magnitude lower than when SOS’s REM domain 

Figure 2. Model for MAPK signaling.  Reactions considered in the model are represented by lines with 
arrowheads. Multiple arrowheads denote reactions with multiple steps (e.g., multi-site phosphorylation of SOS 
by ERK). Positive influences (e.g., ERK-catalyzed phosphorylation of SOS) are indicated by lines attached to 
small circles, with the circles identifying the reactions affected. The reactions and influences responsible for 
various feedback mechanisms are highlighted with shading: RAS-to-SOS positive feedback (red shading), ERK-
to-SOS negative feedback (purple shading), ERK-to-MEK negative feedback (green shading), and ERK-to-RAF 
negative feedback (blue shading). Tripartite arrows, labeled with both binding and unbinding rate constants, are 
used to represent association and dissociation reactions.
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is bound to RAS-GTP (i.e., k2B =  0.1 ×  k2A). As shown in Fig. 3A, bistability requires both parameters, k2B and k2C, 
to be sufficiently small with respect to k2A.

Bistability is enabled by constraints on parameters related to SOS’s GEF activity (mentioned above) or by 
saturability of RasGAP (Fig. 3B). Saturation of RasGAP may occur during a response to EGF if the abundance of 
RasGAP is sufficiently lower than that of RAS, or if RasGAP-RAS complexes are sufficiently long lived. We have 
set parameter values such that RasGAP is saturable (Supplementary Table S1). Different parameter settings used 
in an independent modeling study34 are also consistent with saturability of RasGAP (Fig. 3B). In the steady state, 
the outcome of the pathway depends on the level of EGF-activated and SOS-bound receptors. In the bifurcation 
diagram of Fig. 3C, the level of EGFRa–SOSu complexes serves as a bifurcation parameter. Here, we use the 
notation “EGFRa–SOSu” to refer to activated EGFR in complex with SOS, which can bind EGFR only when not 
phosphorylated. Bistability arises for a certain range of EGFRa–SOSu abundance; below this range the system is 
monostable inactive (i.e., a low fraction of ERK is active), whereas above it, the system is monostable active (i.e., 
a high fraction of ERK is active).

Negative feedbacks and oscillations. Analysis of the bifurcation diagram in Fig. 3C suggests that the 
slow negative feedback mediated by ERK, which reduces the number of EGFRa–SOSu complexes (by phosphoryl-
ation of SOS to the state in which it cannot bind EGFR), may lead to relaxation oscillations. The mechanism may 
be explained as follows. In unstimulated cells the level of EGFRa–SOSu complexes is below the level correspond-
ing to the saddle node bifurcation point SN1 in Fig. 3C, and thus ERK is inactive. EGF stimulation activates recep-
tors, with formation of EGFRa–SOSu complexes. When the level of EGFRa–SOSu exceeds the level corresponding 
to the saddle node bifurcation point SN2, ERK is activated. Subsequently, ERK phosphorylates SOS, reducing the 
level of EGFRa–SOSu complexes. When this level drops below SN1, ERK activity is terminated. After ERK activity 
is terminated, SOS is dephosphorylated and the system resets; therefore, with persistent EGF stimulation, ERK 
activity pulses can be recurrent. The cycle is shown in parametric plot in Fig. 3D.

The full system (with all three negative feedbacks illustrated in Fig. 1 and parameterization according to 
Supplementary Table S1) can exhibit oscillations (Fig. 4). The amplitude of these oscillations very weakly depends 
on the strength of EGF stimulation, in contrast to the period and pulse width. These properties, indicating that 
the system switches between on and off states corresponding to the steady states of the system when only the pos-
itive feedback is present (Fig. 3C), are characteristic of relaxation oscillations. At a low level of EGF stimulation, 
ERK activity is pulsatile (Fig. 4A). In contrast, at a high level of EGF stimulation, pulse width is wide and off time 
is short, such that ERK activity is high most of the time (Fig. 4C). As a consequence, the ERK activity integrated 
over a population of (unsynchronized) cells would be expected to increase gradually with the EGF dose.

In the analyzed MAPK relaxation oscillator, period of oscillations is controlled by the speed of the inhibi-
tion and relaxation processes: inhibition relies on the phosphorylation of SOS by phosphorylated ERK (ERKpp), 

Figure 3. Conditions for bistability and the emergence of relaxation oscillations. With all negative feedbacks 
removed, the system exhibits either bistable switching or graded responses to EGF stimulation depending on 
parameter values. (A) Range of parameters governing positive feedback for which the system exhibits bistability 
(for some EGF concentrations higher than 0.1 pg/ml). The parameters are ratios of rate constants, which 
characterize the relative nucleotide exchange activity of SOS when the REM domain in SOS is not bound to 
RAS or bound to RAS-GDP compared to the activity when the REM domain is bound to RAS-GTP (k2C/k2A and 
k2B/k2A). We vary these ratios with k2A fixed at the value given in Supplementary Table S1. (B) Range of  
parameters governing saturation of RasGAP for which the system exhibits bistability (for some EGF 
concentrations higher than 0.1 pg/ml). The parameters considered in this diagram characterize RasGAP 
activity: the ratio of enzyme (RasGAPtot) to substrate (RAStot) and the rate constant for dissociation of the 
enzyme-product complex (u3). We vary the ratio RasGAPtot/RAStot by varying RasGAPtot while keeping the 
value of the product b3 ×  RasGAPtot constant. This product governs the rate of formation of the enzyme-
substrate complex. For more information about parameters, see Supplementary Table S1. In both panels, 
a solid dot marks the location in parameter space that corresponds to the values of parameters given in 
Supplementary Table S1. In panel B, an open dot marks the location in parameter space that corresponds to 
the values of parameters in the model of Stites et al. (Ref. 34). (C) Bifurcation diagram showing the active ERK 
fraction vs. the level of EGFRa–SOSu complexes in the system without all three negative feedbacks. Solid lines 
show two stable steady states; dashed line shows unstable steady state. (D) Analysis of the system with the 
negative feedback from ERK to SOS present and other two negative feedbacks absent. Parametric plot shows a 
projection of the limit cycle on the (active ERK fraction)—(EGFRa–SOSu complexes) plane.
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whereas relaxation relies on the resurgence of dephosphorylated SOS (SOSu) that can form complex with active 
EGFR (EGFRa) – see Fig. 4, violet dashed line. In the model we assume that SOS phosphorylation and dephos-
phorylation are possible only when SOS is not bound to EGFR. At a low stimulation dose (Fig. 4a) the resurgence 
phase is long, because SOSu has to recover to a high level (higher than in the case of a high stimulation dose) in 
order initiate a next pulse; at a high stimulation dose (Fig. 4c) the inhibition phase is long because SOSu has to 
drop to a low level (lower than for low stimulation dose) in order to terminate pathway activation.

The prediction of relaxation oscillations (Fig. 4) is consistent with observations of periodic ERK activity made 
using two different ERK activity reporters, EKAR3 and ERKTR32. The ERKTR reporter indicates bursts of ERK 
activity separated by distinct periods of essentially no activity. The EKAR3 reporter indicates similar oscillatory 
dynamics, but the off periods are less pronounced (see Fig. 5B in ref. 32). To determine if these features can be 
explained by the different kinetics of ERK interaction with the two reporters on the top of the model of Fig. 2 we 
explicitly included ERK activity reporters (see Materials and Methods). As shown in Supplementary Figure S3, the 
shape of predicted oscillations in the level of reporter phosphorylation depends on the kinetics of ERK-reporter 
interaction. With slower interaction kinetics, the off periods become shorter.

To investigate the parameter dependence of oscillatory behavior, we performed a bifurcation analysis (Fig. 5). 
Two-dimensional bifurcation diagrams (Fig. 5A and B) illustrate how qualitative behavior depends on the 
strength of EGF stimulation and the strengths of three negative feedbacks. As indicated in Fig. 5B, four regimes 
of behavior are possible: monostable on and off states, bistability (wherein the steady state occupied depends on 
history), and oscillations. These regimes are separated by bifurcations of different types, which are indicated by 
the labeling of boundaries. Figure 5C–E are one-dimensional bifurcation diagrams (with the strength of EGF 
stimulation chosen as a bifurcation parameter) corresponding to different cross-sections of the parameter space 
of Fig. 5B. The cross-section in Fig. 5D corresponds to the default parameter values of Supplementary Table S1. 
This diagram shows that the system is off (on) at low (high) levels of EGF stimulation and exhibits oscillations 
over a ~100-fold intermediate range of EGF stimulation strength. Over this range, the period of oscillations in 
ERK activity first decreases and then increases with EGF dose. The default parameters, which were chosen for 
consistency with observed system behaviors30, allow for a rich repertoire of behaviors. Moreover, the relatively 
modest modification of these parameters can change the system behavior from bistable to oscillatory, which is in 
line with the conjecture that complex systems are poised at criticality35.

Oscillatory behavior depends on feedback strengths (Fig. 5A–D), and bistability is only realized when negative 
feedback from ERK to SOS is weak or absent (Fig. 5B and E). As can be seen by inspecting Fig. 5B and also by 
comparing Fig. 5C and D, the range of oscillatory behavior increases with the strength of negative feedback from 
ERK to SOS. Conversely, the range of oscillatory behavior shrinks with stronger feedbacks from ERK to MEK 
and RAF (Fig. 5A). Generally, for a system with a single negative feedback, increasing the strength of negative 
feedback tends to switch off the response of the system to a signal. Here, somewhat paradoxically, increasing the 
strength of the negative feedbacks from ERK to MEK and from ERK to RAF can push the system from oscillatory 
behavior to a persistent on state if EGF stimulation is sufficiently strong (Fig. 5A). This behavior arises because 

Figure 4. Simulated trajectories for three EGF stimulation doses. The active ERK fraction (left column) 
together with levels of EGFRa–SOSu complexes, EGFRa–SOSu–RAS-GTP complexes, RAFa and MEKpp 
normalized to their maxima (right column) are shown as a function of time after stimulation by (A) low,  
(B) intermediate, and (C) high doses of EGF.
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negative feedbacks from ERK to MEK and from ERK to RAF weaken ERK activity, such that the ERK-to-SOS 
negative feedback cannot be engaged to induce oscillations.

We note that oscillatory behavior requires not only a sufficiently strong negative feedback from ERK to SOS 
(Fig. 5) but also multi-site phosphorylation of SOS (Supplementary Figure S2). In the model, the effect of (dis-
tributive) multi-site phosphorylation is to introduce a delay in reactivation of SOS after deactivation of ERK. The 
delay arises from the time required for phosphatases to act and an assumption that phosphorylation of a single 
site in SOS by ERK is sufficient to suppress SOS activity. The model accounts for four SOS residues that can be 
phosphorylated by ERK. If the number of such residues is reduced to three, oscillatory behavior is observed over 
a much narrower range of EGF concentrations and oscillations are not observed for less than three phosphoryl-
atable residues in SOS (Supplementary Figure S2).

The shape of ERK activity pulses is controlled by the strengths of negative feedbacks from ERK to MEK and 
from ERK to RAF (Fig. 6). As illustrated in Fig. 6A and B, for a given strength of negative feedback from ERK to 
SOS, increasing the strengths of negative feedbacks from ERK to MEK and from ERK to RAF changes the wave-
form of system response from a square wave to a long-tail pulse. Although the ERK-to-MEK and ERK-to-RAF 
feedbacks are somewhat redundant, both being downstream of positive feedback from RAS to SOS, the 
ERK-to-RAF feedback is more far ranged and therefore more strongly impacts pulse shape (Fig. 6C and D). Note 
that we have taken the ERK-to-MEK and ERK-to-RAF feedbacks to be equally strong (Supplementary Table S1). 
Additional phase space analysis in Supplementary Figure S4 shows in parametric plots that cycle trajectories with 
two feedback strengths in common group together in tight clusters whereas trajectories with only one feedback 
strength in common group together in looser clusters.

Figure 5. Bifurcation diagrams. Each plot indicates the recurrent solutions for the fraction of activated ERK 
(ERKpp/ERKtotal) as a function of either one or two bifurcation parameters. EGF dose (or stimulation level) 
is a bifurcation parameter in each plot. In the two-dimensional bifurcation diagrams, the second bifurcation 
parameter characterizes the strength of the negative feedbacks from ERK to RAF and MEK (A) and the strength 
of the negative feedback from ERK to SOS (B). Areas are colored to indicate distinct qualitative behaviors: 
oscillatory, monostable with low or high ERK activity, and bistable. The boundaries are labeled to indicate the 
bifurcation types that separate the different regimes of behavior. The one-dimensional bifurcation diagrams 
correspond to different strengths of the negative feedback from ERK to SOS (i.e., they correspond to different 
cross-sections of the parameter space of panel B): twice the default strength (C), the default strength (D), and 
absent (E). Solid green lines indicate stable steady states; dashed green lines indicate unstable steady states. 
Yellow dots indicate the upper and lower envelopes of stable limit cycles. Purple lines indicate the periods of 
oscillations. Cyclic fold (CF) bifurcations in panels C and D are accompanied by subcritical Hopf bifurcation 
points (not marked). In a tiny parameter region between the two bifurcation points there coexist a stable limit 
cycle, an unstable limit cycle, and a stable steady state. In panel D, supercritical Hopf bifurcation lies close to a 
series of complex bifurcations (seen as the period discontinuity) which effects in a junction of limit cycles.
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Noisy oscillatory excitation of ERK. In earlier work30, using the EKAR-EV reporter, we observed bursts 
of ERK activity at low EGF doses, regular pulses of ERK activity at intermediate EGF doses, and sustained ERK 
activity with short, intermittent off periods at high EGF doses. These behaviors have been confirmed using the 
ERKTR reporter (Ref. 32, Fig. 7), which because of its faster kinetics is able to better resolve oscillatory dynamics 
(Supplementary Figure S3).

As discussed above, the model of Fig. 2 predicts that oscillations, when they appear, will have an EGF 
dose-dependent frequency and dose-independent amplitude (Fig. 4). These features of predicted oscillatory 
behavior in single cells are similar to the oscillations in ERK activity that we observe in single cells (Ref. 30 and 
Fig. 7). However, the experimentally observed oscillations are noisy, with irregularity both within individual 
cells and across cells in the population monitored in experiments. To investigate how these irregularities could 
potentially arise (and whether they are consistent with the model), we extended the model of Fig. 2 to account 
for extrinsic noise. For simplicity, we considered only a single extrinsic noise source, which we took to be sto-
chastic, time-varying cell-specific surface expression of EGFR. This extension is consistent with heterogeneity in 
protein expression levels across cell populations, which has been extensively studied and linked to bursts of gene 
expression36,37.

Thus, the extended model was obtained by recasting the original model as a Markov chain and by adding 
processes for stochastic generation and clearance of EGFR. Parameters introduced with these extensions are 
summarized in Supplementary Table S3. Parameter values are such that EGFR surface expression changes on a 
time scale of hours (Fig. 8A). The influence of extrinsic noise characteristics on active ERK dynamics is analyzed 
in Supplementary Figure S5. Separate influences of the intrinsic and extrinsic noise on ERK dynamics are demon-
strated in Supplementary Figure S6 and Supplementary Figure S7.

Figure 8 shows time courses obtained from the extended, stochastic model for a collection of 20 individ-
ual cells responding to different doses of EGF. As can be seen, the extended model predicts irregular EGF 
dose-dependent excitations of ERK, suggesting that the similar irregularities observed in experiments (Fig. 7) 
can be attributed to extrinsic noise, which may arise partly from cell-specific time-varying stochastic EGFR sur-
face expression. For the lowest dose considered, 2 pg/ml, ERK is excited in bursts, which tend to be separated 
by relatively long periods of inactivity (Fig. 8B). According to the deterministic model, this dose lies outside the 
oscillatory range (Fig. 5D). Indeed, this dose places the system’s steady state in the monostable, inactive regime. 
The stochastic model predicts bursts of ERK activity arising due to fluctuations of EGFR that allow the level of 
activated EGFR to exceed a threshold required for ERK activation. We note that inhibition of EGFR (with the 
kinase inhibitor gefitinib) immediately eliminates pulsatile ERK activity (Fig. 7), indicating that ERK activity 
pulses require uninhibited EGFR level being above a threshold. Additional analyses of 10-day-long trajectories is 
provided in Supplementary Figure S8.

Excitation of ERK by transient EGFR signaling. Positive feedback mediated by SOS influences system 
behavior, such that transient EGF stimulation is expected to produce responses having certain experimentally 

Figure 6. Negative feedback from ERK to MEK and RAF shape the time profile of response to EGF 
stimulation at 10 pg/ml. Each time course illustrates an oscillatory response to EGF stimulation. In the top 
panels, the strength of ERK-to-SOS negative feedback is set at the default level (A) or twice the default level (B). 
In these panels, different dash patterns correspond to different strengths of feedback from ERK to MEK and 
RAF, as indicated in the legends. The ERK-to-MEK and ERK-to-RAF feedback strengths are taken to be equal. 
In the bottom panels, the ERK-to-MEK and ERK-to-RAF feedback strengths are varied separately, as indicated 
in the legends.
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detectable features. In Fig. 9, we consider predicted responses of the system to different transient doses of EGF. 
The smallest dose considered, 3 pg/ml, induces a pulse of high ERK activity only for the longest period of EGF 
stimulation, 20 min (Fig. 9A). In contrast, for a relatively high EGF dose of 60 pg/ml, even the shortest period of 
EGF stimulation, 30s, induces a pulse of high ERK activity (Fig. 9D). The stimulation time required to induce 
high ERK activity decreases with increasing EGF dose, which follows from the fact that there exists a threshold 
level of EGFR that must be activated to trigger downstream signaling. For short EGF stimulation times, active 
EGFR level increases linearly with time, with a rate proportional to the EGF stimulation dose. Therefore, in this 
regime, ERK is activated when the product of stimulation time and EGF dose exceeds some threshold. For longer 
stimulation times, the level of active EGFR saturates; in this limit, the critical dose for long stimulation converges 
to the critical dose for sustained stimulation, 2.5 pg/ml (cf. Figs 5D and 9E). Figure 9B–D show that for short, 
transient EGF stimulation periods, ERK activity starts to rise after EGF stimulation stops, which shows that after 
the level of active EGFR exceeds a threshold, signal propagates independently of further EGF stimulation.

Figure 7. Kinetics of ERK activity as reported by ERKTR at four different doses of EGF. EGFR inhibition 
by gefitinib is sufficient for elimination of ERK pulses. The time points are spaced by 3 minutes. A smaller set of 
data from the same experiment was published previously32.
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Recently, we observed a similar effect in which the integral of stimulus (i.e., time ×  amplitude) determines the 
fraction of activated cells in a population in the case of LPS stimulation38. As in the case of growth factor signa-
ling, the immunogenic signal is integrated at the membrane and after surpassing a threshold activates a down-
stream pathway. This property results from ultrasensitivity or positive feedback operating at the membrane level.

ERK responses to localized secretion of EGF. A notable feature of the feedback mechanisms involved in 
MAPK signaling is their ability to propagate signals through space. Positive feedback requires interactions on the 
plasma membrane (Fig. 2). In contrast, negative feedback signals are relayed by faster diffusing cytosolic proteins 
(Fig. 2). Such a combination of feedbacks can potentially give rise to local excitation/global inhibition (LEGI) 

Figure 8. Single-cell temporal EGFR surface expression and ERK activity profiles obtained from stochastic 
simulations with fluctuating EGFR levels. We considered the effect of extrinsic noise on oscillations in ERK 
activity. As illustrated in panel (A), which shows representative single-cell simulations, we took EGFR surface 
expression dynamics to be stochastic and marked by bursts of synthesis/expression of variable size (total 
amount of EGFR added to the plasma membrane) and duration, with bursts being separated by intervals of 
variable duration. The bottom four panels show heat maps that indicate single-cell responses (ERK activity as 
a function of time) to different levels of EGF stimulation: (B) 2 pg/ml, (C) 10 pg/ml, (D) 50 pg/ml, and 200 pg/ml  
(E). Each row in a heat map corresponds to an individual cell characterized by a unique set of parameters for 
EGFR surface expression dynamics. The cells considered are otherwise identical. To demonstrate and isolate 
the effect of EGF dose, we have taken the temporal EGFR expression profile to be the same across panels for 
each cell (i.e., each row in each heat map corresponds to a common profile). Supplementary Table S3 provides 
information about the parameters that are unique for the stochastic simulations shown here.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:38244 | DOI: 10.1038/srep38244

dynamics. In LEGI-type regulation, the membrane components are activated due to propagation of a heteroclinic 
traveling wave (enabled by bistability introduced by a positive feedback). Activation of membrane components 
is followed by more uniform activation of cytoplasmic components and then global inhibition of membrane 
components via negative feedback. LEGI can generate spatial essential for proper cellular responses to direc-
tional cues, such as chemotactic movement of ameboid cells toward a higher concentration of a chemokine39–42. 
Detection of directional cues may be an important function of the EGFR signaling network. EGF gradient sensing 
or ERK heterogeneities have been implicated in mechanotransduction, cell polarization, and motility12–14.

To investigate spatial heterogeneities in MAPK signaling, we extended the ODE model of Fig. 2 to obtain 
a reaction–diffusion PDE-based model. This extended model accounts for both the spatiotemporal kinetics 
of the signaling network components within the cell and extracellular randomized release of (paracrine) EGF.  
A more detailed description of this model extension is provided in the Materials and Methods section; parameters 
introduced with this extension are summarized in Supplementary Table S4. We used the PDE model to predict 
responses to localized (paracrine) EGF stimulation (Fig. 10). A sequence of simulation snapshots is shown in 
Fig. 10, which are taken from Supplementary Video 1. This sequence illustrates how non-uniform EGF stimula-
tion, which is visualized in the top row of images, can trigger a traveling wave of activated RAS that spreads over 
the plasma membrane (Supplementary Video 1) and that produces a transient gradient of ERK activity within the 
cell, which is visualized in the bottom row of images. This spatiotemporal behavior is in accordance with LEGI 
dynamics.

Figure 9. Predicted responses to pulsed EGF stimulations of various doses and durations. Each curve is 
obtained from a simulation of an experiment wherein EGFR signaling is stimulated by a low (A), intermediate 
(B,C) or high (D) dose of ligand (EGF) for the duration indicated in the legend. EGF stimulation pulse starts at 
time =  0. After this pulse of stimulation free ligand is removed. (E) Dependence of critical EGF stimulation dose 
on stimulation duration.

Figure 10. Spatiotemporal dynamics of EGF, RAS activity (RAS-GTP/RAStotal), and ERK activity (ERKpp/
ERKtotal) for a cell responding to localized EGF secretion. Shown are sequential snapshots taken from 
Supplementary Video 1 in the Supporting Information that illustrate the response of a cell to a wave of EGF, 
which is produced by point sources releasing EGF at random times and locations in a shell surrounding the 
cell. At each time point, the spatial distribution of EGF at the cell surface is shown in the top row, fraction 
of activated RAS is shown in the middle row, and the spatial distribution of activated ERK inside the cell is 
shown in the bottom row (on a cross-section passing through the cell center). Supplementary Table S4 provides 
information about the parameters that are unique for the spatiotemporal simulations shown here.
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Interestingly, ERK may be activated even when the average surface concentration of EGF is below the thresh-
old concentration required for activation in the well-mixed limit (i.e., below the level corresponding to the saddle 
node bifurcation point SN2 in Fig. 5E). This behavior, which can be seen at approximately 20 hr in Supplementary 
Video 1, occurs because the local concentration of EGF exceeds the average concentration, as well as SN2, the 
threshold required to trigger a traveling wave of RAS activation. Once the heteroclinic wave is initiated on the 
membrane, its propagation requires only that the concentration of EGF remains above the lower limit of the 
bistability range, i.e., above the level of EGF corresponding to the saddle node bifurcation point SN1 in Fig. 5E.

Discussion
The MAPK signaling cascade transmits signals that control diverse cell functions such as proliferation, differ-
entiation, motility, and apoptosis3. The mechanisms allowing the pathway to achieve specificity are still elusive. 
There is growing evidence that diverse cellular functions are coordinated through multiple posttranslational 
modifications of RAF. These modifications allow RAF isoforms to propagate signals into diverse downstream 
pathways43,44. Another mode of cell fate control is associated with the temporal profiles of RAF, MEK, and ERK 
activity. Recently, Ryu et al. demonstrated in PC‐12 cells that the choice between proliferation and differentia-
tion depends on the frequency of ERK activity oscillations8. Here, we constructed and analyzed a computational 
model of MAPK signaling to clarify how such oscillations can be generated in response to persistent stimuli, and 
how their frequency and time profile (i.e., pulse shape) are controlled.

Within the MAPK/ERK signaling cascade, ERK mediates apparently redundant negative feedback loops that 
inhibit signal propagation at multiple upstream points. In our modeling study, we focused on the positive feed-
back loop that involves the small GTPase RAS and its guanine nucleotide exchange factor SOS. In the absence 
of negative feedbacks, this positive feedback loop leads to bistable switching. However, when this loop is nested 
within the negative feedback loop from ERK to SOS, the system produces relaxation oscillations, which match 
experimental time courses. The two other negative feedbacks, from ERK to MEK and RAF, play only auxiliary 
roles in the generation of oscillations, principally modulating the shape of ERK activity pulses. The presence of 
these two loops, however, allow for controlling activity of RAF, which has numerous targets in addition to MEK45. 
The positive feedback introduces a hierarchy between negative feedbacks, such that the ERK to SOS feedback is 
responsible for generating oscillations and the other two feedbacks considered in our analysis are responsible for 
shaping the waveform of oscillations.

In addition to the feedbacks discussed above, there are at least two other positive feedbacks that are nested 
within the ERK–SOS negative feedback loop: the ERK/MEK hidden feedback, in which bistability may arise 
in the double phosphorylation/dephosphorylation cycle due to distributive phosphorylation and saturability in 
dephosphorylation reaction46, and the RAS–GAB1–PI3K feedback47. Both feedbacks fit into the discussed topol-
ogy that can give rise to relaxation oscillations, but, importantly, only the RAS–GAB–PI3K feedback (in addition 
to the RAS–SOS feedback) can act as an initial signal amplifier, because it is upstream of the RAF/MEK/ERK 
cascade.

Overall, the feedbacks considered here encode a graded input into constant-amplitude pulses, such that the 
level of a stimulus is translated to the frequency of oscillation and pulse duration. We speculate that, in compari-
son with amplitude-to-amplitude coding, amplitude-to-frequency coding may decrease ambiguity in signal inter-
pretation by downstream effectors and increase information channel capacity. The NF-κ B signaling system, which 
is characterized by a constant period of oscillations and thus appears to employ the former scheme48, was found 
to transmit only ~1 bit of information49,50. Interestingly, in the MAPK pathway, Aoki et al. found that frequency, 
but not amplitude, of ERK activity pulses is correlated with cell proliferation rates51.

The ERK pathway can modulate cell adhesion and promote cell migration by activation of actin polymeriza-
tion52 or vimentin filament remodeling53. To respond properly to extracellular, directional cues14,54, the pathway 
should be organized spatially55. By analyzing the MAPK/ERK network as a reaction–diffusion system we found 
that when a cell is exposed to localized bursts of EGF, ERK activation exhibits local excitation/global inhibition 
(LEGI) dynamics56. LEGI dynamics arise because of the existence of a fast positive feedback involving slowly 
diffusing membrane-bound proteins. Under these conditions, localized EGFR excitation can trigger RAS activa-
tion that spreads over the membrane as a traveling wave, which induces a non-uniform surge of RAF, MEK and 
ERK activity in the cytosol. Ultimately, ERK-mediated phosphorylation of SOS globally inhibits pathway activity 
because cytosolic proteins diffuse faster than membrane proteins, by at least one order of magnitude. Such a 
mechanism allows cells to encode information about concentration gradients of extracellular ligand into spatially 
structured pulses of cytosolic proteins activity. It has been suggested that ERK-controlled EGF shedding can 
maintain an intrinsic cell spatial polarity15 which may be exploited to induce directed cell migration.

In our spatial model, RAS kinetics is simplified: we consider only a membrane pool of RAS and we neglect 
the existence of membrane microdomains that can be enriched in RAS. We are however aware that the het-
erogeneity in RAS distribution combined with the positive feedback between RAS and SOS can substantially 
influence signaling. In our earlier modelling efforts on B-cell activation57 we demonstrate that clusterization of 
membrane components can itself lead to a local activation, which can then spread over the membrane by means 
of a traveling wave. Also, EGFR and RAS trafficking between plasma membrane and subcellular compartments, 
and trafficking-dependent signaling from inside the cell (in addition to signaling from the plasma membrane) 
would influence spatiotemporal activity profiles of downstream components, RAF, MEK, and ERK.

In summary, we have shown that the presence of the short positive feedback coupling RAS and SOS introduces 
bistability into the system and that this bistability, when frustrated by the negative feedback loop from ERK to 
SOS, introduces relaxation oscillations which can explain pulsatile time courses of active ERK observed in exper-
iments. This regulatory circuitry allows for translation of graded inputs into constant-amplitude oscillations that 
have a period and pulse duration determined by signal strength. Because the positive feedback operates on a short 
time scale and involves slow-diffusing membrane components while the negative feedback operates on a longer 
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time scale but involves faster-diffusing cytoplasmic components, in response to localized EGF stimulation, the 
system exhibits local activation/global inhibition dynamics. This allows for translation of spatially-graded stimuli 
to spatially oriented pulses of RAF, MEK and ERK activity, which could be used to direct cell migration or induce 
polarity.

Materials and Methods
Setting parameters. It is challenging to identify parameter values even when abundant experimental data 
are available to guide parameter estimation58. Here, we selected parameter values so as to obtain certain qualita-
tive system behaviors and to allow for qualitative behavior to change in response to variation in the strength of 
EGF stimulation. This approach is consistent with the hypothesis that cellular regulatory systems operate close 
to bifurcation points35,59. First, we considered the system with only the positive feedback loop from RAS to SOS. 
We set parameter values so that there is a regime of bistability at low EGF stimulation levels. We then adjusted 
parameter values so that the time required for information to flow from RAS to ERK yields ERK activation 
kinetics in accord with experimental observations. Then, we considered negative feedback from ERK to SOS. We 
set parameters influencing this feedback such that SOS inhibition lasts long enough to allow for nearly complete 
deactivation of RAF, MEK and ERK. Finally, we considered negative feedbacks from ERK to MEK and RAF and 
set parameter values governing these feedbacks such that the time profiles of ERK activity are sensitive to the 
feedback strengths.

Active ERK reporters. The ODE-based model was supplemented with two ERK activity reporters, EKAR3 
and ERKTR. Their activation and deactivation reaction rate constants (Supplementary Table S1) have been tuned 
to be reproduce experimentally measured reporter kinetics32.

Numerical integration of ODEs. The deterministic model is based on an assumption of well-mixed reac-
tion compartments. It was written in terms of reaction rules using the BioNetGen language (BNGL)60. The rules, 
which are provided in Supplementary Data 1, can be processed by BioNetGen60 to obtain a reaction network and 
a corresponding system of coupled ordinary differential equations (ODEs) for the mass-action kinetics of the 
reaction network. The ODEs were numerically integrated using CVODE61, which is an integral component of 
BioNetGen. We used BioNetGen’s default settings for CVODE parameters, which are appropriate for stiff systems.

Construction of bifurcation diagrams. Bifurcation diagrams were obtained using Matlab/Matcont62. 
Supplementary Data 2 contains scripts which can be used to obtain the bifurcation diagrams shown in Supplementary  
Figure S1.

Modeling stochastic EGFR surface expression dynamics. To investigate how ERK response dynamics 
are influenced by stochasticity, we introduced a source of extrinsic noise by allowing the EGFR level to change 
over time and in this way to modulate cellular sensitivity to EGF stimulation. In the stochastic model, EGFR is 
expressed in bursts and has a predefined half-life, τEGFR (Supplementary Table S3). Bursts occur at random time 
points, distributed exponentially with a mean waiting time of λ interburst

−1, and have durations that are drawn from 
an exponential distribution with mean burst duration of λ burst

−1. The rate of EGFR production in each burst is 
cell-dependent and is computed as the product of a common intensity factor, Aburst, and a cell-specific factor,  
α cell, which is drawn from a log-normal distribution having mean of 1. The simulations are performed using an 
efficient variation of Gillespie’s direct method63 as implemented in BioNetGen60. A BioNetGen input file corre-
sponding to the simulations shown for cell 8 in Fig. 8B is provided in Supplementary Data 3.

PDE simulations. A single cell is considered. It is represented as a sphere of radius Rcell with volume Vcell. 
Values of these and others parameters specific to this model extension are summarized in Supplementary Table S4. 
Membrane and cytosolic proteins diffuse with diffusivities Dmem and Dcyt, respectively, with Dcyt =  10 ×  Dmem. 
Reaction–diffusion equations on the membrane and in the cytosol are coupled via Robin-type boundary 
conditions64. We assume that the flux Φ  of active RAF at the membrane results from its phosphorylation by 
membrane-tethered RAS-GTP:

Φ = = ∇
=

ˆa RAS RAF D n RAF ,
(1)r R2 GTP i cyt a

cell

where n̂ is an outer unit vector normal to the cell surface. The rate of SOS phosphorylation is taken to be propor-
tional to the boundary value of active cytoplasmic ERK. The point sources of EGF appear at random positions in 
the cell-concentric shell of outer radius REGF_shell_out at random time points throughout the simulation, on average 
every fEGF_sources

−1. EGF releases each have a duration drawn from an exponential distribution with mean duration 
of λ EGF_source

−1, and a time-independent intensity AEGF, which is drawn from a log-normal distribution. Released 
EGF diffuses with diffusivity DEGF in the extracellular 3-D space, which is assumed to be unbounded and devoid 
of obstacles. EGF undergoes degradation with rate constant γ EGF according to the diffusion–degradation 
equation:
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PDE-based simulations were performed using Comsol Multiphysics (see Supplementary Data 4). The spatio-
temporal evolution of EGF concentration was evaluated as described above, while reaction–diffusion equations 
for the cell surface and within the cytosol were solved numerically using a finite element method. For simplicity, 
a nuclear compartment or other intracellular obstacles were not considered.

Materials and experimental protocols. Time-lapse imaging of ERK reporter activity was performed 
as previously described32. Briefly, MCF-10A cells stably expressing EKAR3-nes (containing a nuclear export 
sequence to maintain cytosolic localization) and ERKTR-mCherry were plated on #1.5 glass-bottom multi-well 
plates coated with type I collagen (BD Biosciences). During imaging, cells were cultured in customized 
low-fluorescence DMEM/F-12 medium in absence of serum and insulin and the presence of the indicated con-
centrations of recombinant EGF (PeproTech). At the indicated times, 1 μ M gefitinib (Selleck) was added to the 
medium. Images were collected at 6-minute intervals, and custom MATLAB-based algorithms were used to seg-
ment images based on the cytosolic localization of EKAR3 in the YFP channel and extract fluorescence intensi-
ties; u-track65 was used for cell tracking. ERKTR activity is shown as the ratio of cytosolic to nuclear fluorescence 
in the mCherry channel.
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