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Flexible Bayesian Methods for Inference in Psychological Science

Abstract

This dissertation is a collection of three papers I wrote during my time in graduate school. Each

proposes a novel way in which a Bayesian statistical technique may be applied or conceptualized

for the purpose of better aligning statistical hypotheses and research aims, or improving upon the

status quo with respect to the application of statistical methods in psychological science. On a

personal note, these articles represent endeavors that pushed my intellectual limits and challenged

my grit and mettle. The articles are presented as chapters, and in the chronological order in which

they were written. I hope this reflects my thought process and growth throughout my time in

graduate school. The first chapter presents a framework for integrating exploratory and confir-

matory analyses in psychological network research. It is argued that while network analysis has

been proposed as a tool for hypothesis generation, there is untapped potential for confirmatory

hypothesis testing. We suggest using Bayesian Gaussian graphical models to first generate and

then test ordered hypotheses based on the conditional (in)dependence structure of psychological

networks. The second chapter proposes the use of the Bayesian bootstrap method to estimate var-

ious correlation coefficients commonly used in the social-behavioral sciences. We demonstrate how

the Bayesian bootstrap can be used to estimate Pearson’s, Spearman’s, Gaussian rank, Kendall’s τ ,

and polychoric correlations. We also describe a method for comparing correlations and evaluating

null associations among the estimated correlations. Finally, in an effort to provide a more nuanced

understanding of individual differences than standard approaches, the third chapter explores the

spike-and-slab prior distribution for random effect selection in mixed-effects models. Simulation

studies were conducted to evaluate the spike-and-slab prior in accurately distinguishing “average”

and “non-average” individuals. The results highlight the spike-and-slab prior’s ability to iden-

tify individual differences, even in situations with low between-person variance. This dissertation

concludes by offering some discussion on why Bayesian analyses are more flexible than standard

approaches, and how this flexibility can lead to higher-quality inferences in psychological science.

This dissertation is a collection of three papers I wrote during my time in graduate school. Each

proposes a novel way in which a Bayesian statistical technique may be applied or conceptualized
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CHAPTER 1

On Formalizing Expectations: Bayesian Testing of Central

Structures in Psychological Networks

1.1. Introduction

Network theory has emerged as a popular framework in the social-behavioral sciences for analyz-

ing psychological constructs (Cramer et al., 2012; Dalege et al., 2019; Epskamp, Maris, et al., 2018;

McNally, 2016). The underlying rationale is that a group of observed variables, say, self-reported

symptoms, form a dynamic system wherein they mutually influence and interact with one another

(Borsboom, 2017; McNally et al., 2015). In networks, observed variables are called “nodes” and

the featured connections between them are called “edges”. This work will focus on psychological

networks in which the edges are undirected and represent conditional dependence between nodes

representing symptoms of mental disorders, that is, pairwise relations between symptoms after

controlling for all other symptoms. This approach has led to powerful new insights into a range of

mental disorders including obsessive compulsive disorder (OCD; McNally et al., 2017), depression

(Boschloo et al., 2016; Fried et al., 2016; Hoorelbeke et al., 2016), anxiety (Beard et al., 2016), and

posttraumatic stress disorder (PTSD; Afzali et al., 2017; Armour et al., 2017; Fried et al., 2018;

McNally et al., 2015).

This surge of research stems from a shift away from the “common cause” perspective to the

“network” perspective of mental disorders (Cramer et al., 2010b; McNally, 2016). The key distinc-

tion lies in the assumptions of their respective statistical models. The latter uses network models

that account for the mutual interactions between psychopathological symptoms (Borsboom, 2017;

Borsboom & Cramer, 2013), whereas the former uses latent variable models that fail to capture

mutual relationships between symptoms due to the assumption of “local independence” (Cramer

et al., 2010a, but see Bringmann and Eronen, 2018). There are also notable differences relating

to their perceived purpose. For example, undirected networks are customarily estimated with a
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data-driven approach thought to be ideal for hypothesis generation (Epskamp & Fried, 2018; Ep-

skamp, van Borkulo, et al., 2018). On the other hand, latent variable models have a long tradition

of confirmatory hypothesis testing (e.g., Bentler, 1980). Although this distinction is commonplace,

network modeling has untapped potential for confirmatory testing of conditional (in)dependencies.

Confirmatory testing with networks remains uncommon in part because edges are often thought

to merely represent a causal skeleton (Borsboom, 2017; Borsboom & Cramer, 2013; Epskamp, van

Borkulo, et al., 2018). Typically causality is associated with directionality, that is, say, A → B,

which implies that A causes B (e.g., Pearl, 2009). Estimating such a graph would require abandon-

ing a partial correlation network. This is because the relations are inherently undirected. Hence, the

notion of using networks to generate causal hypotheses perhaps implies that an alternative model

is needed for confirmatory testing. This is not the case. Networks are an effective method to study

pairwise relationships and can be used for confirmatory hypothesis testing (Epskamp et al., 2017;

Ryan et al., 2019). In fact, approaches for estimating directed graphs of conditional dependencies

(e.g., DAGs) are also inherently data-driven (e.g., Kalisch & Bühlmann, 2007). This is distinct

from confirmatory testing, where the focus is on a priori expectations that allow for rich inference.

Testing expectations is analogous to predicting the observed data — an important signature of a

theory’s explanatory power.

A prerequisite for using networks in a confirmatory setting is having hypotheses to test. Here

there is also untapped potential. For example, although hypothesis generation is commonly pro-

posed as an advantage of network models (Cramer et al., 2012; Epskamp & Fried, 2018; Epskamp,

Waldorp, et al., 2018; Ryan et al., 2019), we are not aware of any examples in psychology that have

actually formulated hypotheses to then test. The unrealized idea is to use a network estimated in

an exploratory setting to generate hypotheses regarding, say, which nodes are most central in a

system (Epskamp, van Borkulo, et al., 2018; Jones et al., 2019; Robinaugh et al., 2016). The main

contribution of this work is bringing to fruition the idea of using networks to generate hypotheses

for testing in a confirmatory setting.

In this work, we focus on testing hypotheses related to central nodes and the conditional

(in)dependence structure therein. In psychopathology, special attention has been drawn to central

nodes due to the idea that intervening on them would affect the rest of the network (Beard et al.,
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2016; McNally et al., 2015; Robinaugh et al., 2016). This idea implies the notion of causality,

but in fact, centrality measures have been critiqued as poor indicators of causal influence (Dab-

lander & Hinne, 2019). However, because centrality scores are summary statistics that describe

an exploratory analysis they can be used to formulate confirmatory hypotheses. In particular,

strength-based metrics (Jones et al., 2019; Newman, 2010) are useful for developing hypotheses

related to the edge weights of central nodes. This is perhaps unsurprising, given that they can

be calculated using a population parameter with a known distribution (e.g., a partial correlation,

Fisher, 1924; Yule, 1897). Together, centrality indices provide untapped sources of information

that can be used to narrow the focus on to particular aspects of an estimated network.

To test hypotheses related to the edge weights, we use recently proposed Bayesian methodology

that readily allows for exploratory and confirmatory testing in partial correlation networks, or

Gaussian graphical models (GGMs; Williams & Mulder, 2020). This approach facilitates a workflow

wherein central nodes can be identified in an exploratory stage and hypotheses related to these nodes

can then be tested in a confirmatory setting. A particular advantage of the confirmatory aspect is

that hypotheses are expressed using (in)equality constraints on the parameters of interest and tested

against competing theoretical expectations. For instance, one could test H1 : ρ12 > ρ13 > ρ14 > 0

against H2 : ρ12 = ρ13 = ρ14 = 0 (Hoijtink, 2001; Hoijtink et al., 2019; Mulder, 2016). This

provides a formal comparison between H1, which states that there is an order to the edge weights,

or effect sizes, and they are all positive, versus H2, which expresses that they are all equal to

zero. A major contribution of this work is to extend the idea of informative Bayesian testing to

psychological networks, in addition to providing a comprehensive framework that can propel the

field toward developing formal models (e.g. Borsboom et al., 2020; Haslbeck et al., 2019).

This work is organized as follows. We first give a concise overview of Gaussian graphical models.

We then proceed to illustrate how hypotheses can be derived based on an exploratory network

analysis. Here we show that the information encoded by the conditional (in)dependence structures

can be used to formalize theoretical expectations. Next we provide an overview of the confirmatory

strategy in this work, where the advantage of adopting a Bayesian approach for confirmatory testing

is made clear. Specifically, the ability to directly compare theoretical models formulated through

an exploratory analysis. We then discuss in detail how the proposed testing framework can be used
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in an applied setting. We conclude with a discussion on the proposed methods including limitations

and recommendations.

1.2. The Gaussian Graphical Model

The Gaussian graphical model (GGM) encapsulates conditional relations among multivariate

normal data. These relations are customarily visualized to infer the underlying dependence struc-

ture (i.e., the partial correlation “network”; Højsgaard et al., 2012; Lauritzen, 1996). A GGM is

an undirected graph that can be denoted by G = (V,E), where V = {1, . . . , p} is a vertex set

and E ⊆ V × V is an edge set. V refers to the p “nodes”’ in the network, say, items on a de-

pression scale, and E defines the estimated network structure. Let y = (y1, ..., yp)
⊤ be a vector of

observed random variables that index the vertices in G, and assume it to be multivariate normal,

y ∼ Np (µ,Σ). Here µ is a p× 1 mean vector and Σ is a p× p positive definite covariance matrix.

Throughout the rest of this paper we will use Y to denote the n × p data matrix, where each

row corresponds to observations from an individuals. Without loss of generality, we assume the

data to be mean centered, that is, µ = 0. The undirected graph G is obtained by establishing the

non-zero off-diagonal elements in the precision matrix, Θ = Σ−1. That is, (i, j) ∈ E when nodes

i and j are determined to be conditionally dependent and set to zero otherwise. The edges in a

GGM correspond to partial correlations, ρij , that is, the correlation between variables i and j after

controlling for all other variables. These can be computed directly from the elements in Θ,

1.2.1. Formalizing Theoretical Models. Psychological theories can be expressed as hy-

potheses with constraints on the parameters of interest (Hoijtink, 2011). This translates into

thinking of theories in terms of constraints among conditional (in)dependencies. In a GGM, for

example, it may be expected that a set of partial correlations are approximately equal to each

other, larger or smaller than another set of partial correlations, or larger or smaller than a constant

(typically zero). These kinds of hypotheses can be derived from theory or an exploratory analysis.

This work focuses on the latter. Here the goal is not to determine the graph (e.g., McNally et al.,

2017), but rather the structure of interrelations among partial correlations.

A major hurdle to confirmatory testing in networks has been the lack of available methods.

Recently, however, a Bayes factor approach was introduced specifically for this purpose (Williams
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Figure 1.1. Example network with three communities: A, B, and C. Lines between
two nodes indicates conditional dependence. It can be seen that B1 is a central
node which bridges community B to communities A and C. Hypotheses can then
be gleaned from the graph. For example, H1 : ρB1−A1 > ρB1−A2 > ρB1−C1 >
ρB1−C2 > 0 or H2 : (ρB1−A1, ρB1−A2, ρB1−C1, ρB1−C2) = 0. The former tests the
order of bridge edges and constrains them to be positive. The latter tests whether
B1 is conditionally independent of nodes outside the B community. This captures
how network structures encode information that can be used to formalize and test
a model.

& Mulder, 2020; Williams, Rast, et al., 2020). This opens the door for testing hypotheses not

currently possible with classical statistics (i.e., p-values). For instance, there is theoretical inter-

est in characterizing central structures involving bridge nodes, or nodes that connect to multiple

communities (i.e., clusters) within a network (c.f., Castro et al., 2019; Cramer et al., 2010a, 2010b;

Jones et al., 2019). These nodes can be identified through visualizing a network (e.g., Beard et al.,
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2016) or bridge centrality metrics (Jones et al., 2019). For example, by inspecting Figure 1.1, it is

possible to formulate hypotheses relating to the order of edges or effect sizes within (or between)

clusters, that is,

H1 : ρB1−A1 > ρB1−A2 > ρB1−C1 > ρB1−C2 > 0(1.1)

H2 : (ρB1−A1, ρB1−A2, ρB1−C1, ρB1−C2) = 0

H3 : “not H1 or H2.”

In (1.1), H1 captures the order of edges in Figure 1.1. Substantively, this hypothesis can be in-

terpreted as capturing the order of importance (defined by effect size) for the bridging relations

that connect clusters of nodes in a network. Furthermore, there is an additional constraint that

all of the edges are positive. This reflects the expectation of a positive manifold that has a central

role in network theory (Borsboom et al., 2011). H2 then tests whether all the nodes are actu-

ally conditionally independent, which also implies that there is no inherent ordering. Finally, H3

captures some yet to be hypothesized structure of relations. These hypotheses are formal models

that can be evaluated. That is, one can directly quantify support for H1 versus H2 with a Bayes

factor, a measure of relative support between competing hypotheses (Kass & Raftery, 1995). This

demonstrative example captures the guiding idea of this work: network structures (e.g., Figure 1.1)

encode information that can be used to formalize and test models.

1.2.2. Testing Strategy. We use the testing strategy in Williams and Mulder (2020) for

confirmatory analyses. In this approach, hypotheses are expressed as (in)equality constraints on

partial correlations. For example, H1 and H2 in (1.1) were expressed using inequality and equality

constraints, respectively, on the edges in Figure 1.1. The evidence for such hypotheses can be

quantified with the Bayes factor — a measure of relative support between competing hypotheses

or models. In matrix notation, order constrained hypotheses can be written as

Ht : Rtρ > rt,(1.2)
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where t = 1, . . . , T denotes the competing hypotheses. In (1.2), [Rtρ|rt] is an augmented matrix

that specifies the constraints under Ht. In reference to (1.1), the system of inequalities under, say,

H1, are formulated as

RH1ρ =


1 −1 0 0

0 1 −1 0

0 0 1 −1




ρB1−A1

ρB1−A2

ρB1−C1

ρB1−C2


>


0

0

0

 ,(1.3)

where RH1 denotes a matrix containing the coefficients for the contrasts of interest. Bayes factors

can then be computed using the encompassing prior approach (Klugkist et al., 2005). The idea

is to first specify an unconstrained (or encompassing) distribution for a hypothesis, Hu, that does

not place constraints on the partial correlations. This corresponds to an unconstrained network

where theoretical expectations are not incorporated. The encompassing prior for GGMs is specified

for the precision matrix, Θ, as a matrix-F distribution (Mulder & Pericchi, 2018). The implied

marginal prior for the partial correlations is then

ρij ∼ beta(
δ

2
,
δ

2
) on (−1, 1),(1.4)

where δ is a prior hyperparameter that controls the standard deviation. The prior distribution

for different values of δ can be seen in Figure 1.2. Note that it is not possible to place a beta

prior on each ρij directly because the resulting joint prior distribution for the partial correlation

matrix would not be positive definite (for technical details see Mulder & Pericchi, 2018; Williams

& Mulder, 2020).

The prior distributions under the constrained hypotheses are then obtained by truncating the

encompassing prior according to the imposed constraints. Thus, instead of having to formulate

T separate priors, only the unconstrained prior needs to be formulated. Furthermore, due to

the encompassing prior approach, the Bayes factor of each constrained hypothesis against the

unconstrained hypothesis Hu is straight forward to obtain, that is,
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−1.0 −0.5 0.0 0.5 1.0

Implied Prior Distribution for ρi j

δ
99

15

3

Figure 1.2. The implied marginal distribution for the encompassing prior on the
partial correlations. The prior hyperparameter, δ, controls the standard deviation.
Values of 99, 15, and 3 correspond to standard deviations of 0.10, 0.25, and 0.50,
respectively.

BFtu =
Pr(ρ ∈ Ωt|Y,Hu)

Pr(ρ ∈ Ωt|Hu)
,(1.5)

where Ωt denotes the subspace under a constrained hypothesisHt that satisfies the constraints on ρ.

In (1.5), the posterior probability in the numerator and the prior probability in the denominator can

be understood as measures of ‘relative fit’ and ‘relative complexity’ ofHt relative toHu, respectively

(Mulder, 2014). Once (1.5) has been obtained for all constrained hypotheses of interest, the Bayes

factors between them can be computed using the transitivity property of the Bayes factor. For

example, BF12 = BF1u
BF2u

provides the relative evidence in favor of H1. If we had, say, BF12 = 5,

this would indicate the observed partial correlations are five times more likely under H1 than

H2. Importantly, Bayes factors can also be viewed as measuring the relative success at predicting

the observed data (Kass & Raftery, 1995). Once computed, Bayes factors can be used to obtain

posterior model probabilities, that is, the probability that a hypothesis t is true given the data

(Mulder, 2016). Assuming that all models have equal prior probabilities (i.e., 1
T ), the posterior

probabilities for the t = 1, . . . , T hypotheses under consideration are given by

Pr(Ht|Y) =
BFtu∑T

t′=1BFt′u

.(1.6)
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Whereas Bayes factors reflect the relative probability of the data under two hypotheses, posterior

probabilities reflect relative support for a set of hypotheses given the data.

1.2.3. Summary. In this section we described a framework wherein Gaussian graphical mod-

els are used for both exploratory and confirmatory analyses. There are two aspects of this approach

worth emphasizing. First, it allows for flexible testing of constraints in psychological networks. This

readily allows for comparing theoretical models. For example, even for the relatively simple hypoth-

esis in (1.1), testing whether the partial correlations are all greater than zero formally expressed

the theoretical expectation of a positive manifold. Second, we demonstrated that the underlying

network structure from an exploratory analysis encodes the necessary ingredients to generate hy-

potheses (e.g., Figure 1.1). This is a central idea of network analysis. The critical distinction is

that we are presenting a comprehensive approach for formalizing and testing hypotheses generated

from an exploratory analysis.

1.3. Empirical Applications

We now discuss in further detail how exploratory and confirmatory approaches can work in

tandem to test hypotheses related to central structures. Recall that one motivation for network

analysis was to generate hypotheses in an exploratory setting, and, in turn, a primary goal of

this work is to bring this idea to fruition. To this end, we take on the perspective of a network

researcher that formulates hypotheses based on an initial exploratory analysis and then tests them

in a confirmatory setting. Note that Bayesian testing provides both the conditional dependence

structure, ACD, and the conditional independence structure, ACI , which further opens the door

for novel insights.

As mentioned above, there is theoretical and clinical interest in characterizing central structures

involving bridge nodes (Castro et al., 2019; Cramer et al., 2010a, 2010b; Jones et al., 2019). This is

because bridge symptoms are thought to drive the co-occurence of symptoms between communities

and serve as targets for intervention (Beard et al., 2016; McNally et al., 2017). Thus, we focus on

testing hypotheses related to bridge symptoms. To identify bridge symptoms, we rely on bridge

strength rather than visual inspection. This is for two reasons. First, a node’s bridge strength

is defined as as the absolute sum of its inter-community edges, and therefore, highlights larger
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effects (Jones et al., 2019). This brings in to focus central structures (i.e., a subsystem) on which

hypotheses can be formulated. Second, the Bayesian framework we use places prior distributions

on the partial correlations (Equation 1.4). With the exception of bridge expected influence, bridge

strength is the only bridge statistic that accounts for these parameters1.

1.3.1. Single Disorder. In the following, we estimate a GGM of PTSD symptoms and demon-

strate how bridge strength can be used to identify central structures for which hypotheses can be

formulated. In several examples, we discuss how to test these hypotheses in an independent dataset.

We use data reported in Fried et al. (2018). Specifically, we use two samples of patients receiving

treatment for PTSD (n = 926 and n = 956; Samples 3 and 4 in Table 1 in Fried et al. (2018)).

The presence and severity of PTSD symptoms were assessed using the fourth edition of the Di-

agnostic and Statistical Manual of Mental Disorders (DSM-IV, American Psychiatric Association,

1994). Each of the 16 symptoms (p = 16) belonged to one of three communities (Re-experiencing,

Avoidance, and Arousal).

1.3.1.1. Exploratory Analysis. We began by estimating the network structures ACD and ACI

with the R package BGGM (Williams & Mulder, 2020) (panels A and B in Figure 1.3). Recall

that there is strong theory in the network literature that expects all relations to be positive (i.e., a

positive manifold, Borsboom et al., 2011; Horn & Cattell, 1966). This was formally incorporated

into the analysis with a one-sided hypothesis test, H0 : ρij = 0 versus H1 : ρij > 0, for each

partial correlation in the network (see The Gaussian Graphical Model). Hence, ACD includes only

positive relations. Because this analysis was used to formulate confirmatory hypotheses, we “erred

on the side of discovery” (Bem, 2004) and used a Bayes factor threshold of three (this is considered

“moderate” evidence, Lee & Wagenmakers, 2013) to determine the network structures.

With the network structures in hand, we proceeded to identify central nodes as indicated by

bridge strength with the R package networktools (Jones et al., 2019). This is also the customary

approach in network analysis, where, for example, the most central nodes are identified after esti-

mating the structure (e.g., Beard et al., 2016; McNally et al., 2017). The results indicated that D1

(“sleep problems”, bridge strength = 0.65) and B4 (“disinterest in activities”, bridge strength =

1Bridge expected influence is identical to bridge strength but does not take the absolute value of edges before summing
them (Jones et al., 2019)
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D1
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C D

Figure 1.3. Exploratory network structure of PTSD symptoms. D1 (“sleep prob-
lems” and B4 (“disinterest in activities”) emerged as bridge nodes. (A) The con-
ditional dependence structure. Lines between two nodes indicate an association
between them after controlling for all other nodes. This structure encodes informa-
tion for testing associations such as H1 : (ρD1−C2, ρD1−C6) > 0. (B) The conditional
independence structure. Dotted lines indicate that there is no association between
two nodes after controlling for all other nodes. This structure encodes information
for testing null associations such as H1 : (ρB4−C6, ρD1−B4, ρD1−C1) = 0. (C & D). A
magnified look at the neighborhood of bridge relations for D1 and B4. We extracted
the information encoded in these structures to formulate and test hypotheses (see
Equations 1.7, 1.8, and 1.9).
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0.53) were the most central nodes (see Table A.1 for full definitions). The neighborhood of bridge

relations for both nodes can be seen in Figure 1.3 (panel A).

1.3.1.2. Confirmatory Analysis. We emphasize that centrality indices summarize an inherently

exploratory analysis and only provide information from afar. For example, it is possible to have a

top ranking bridge symptom emerge in two datasets with completely different bridging structures.

Our approach extends the utility of bridge centrality metrics to confirmatory testing by using them

to formulate hypotheses on the most central symptoms in the network. We thus focus on node D1

(“sleep problems”) and node B4 (“disinterest in activities”). Figure 1.3 (panel C and D) zooms in

on these top ranking bridge symptoms and their respective neighborhoods of bridge relations. The

key idea is that honing into central symptoms allows researchers to easily formulate hypotheses of

substantive or theoretical importance.

Varying degrees of replication. The topic of replicability has recently captivated the network

literature (Forbes et al., 2017; Fried et al., 2018; Williams, 2020). To assess replicability, it is

common to focus on individual edges with either classical (van Borkulo et al., 2016) or Bayesian

testing (Williams, Rast, et al., 2020). Although the latter has the advantage of directly providing

evidence for equality of partial correlations, it is possible to ask even more fine-grained questions

about replication. For example, to what degree do central structures replicate? This can be

expressed with formal models.

We first focused on node B4 (Figure 1.3, panel D) and tested the following hypotheses

H1 : (ρB4−C1, ρB4−C7, ρB4−D3, ρB4−D4) > 0(1.7)

H2 : ρB4−C1 > (ρB4−C7, ρB4−D3, ρB4−D4) > 0

H3 : “not H1 or H2.”

In (1.7), H1 is testing for replication of all edges but is otherwise agnostic towards the interplay

among bridge relations. H2 then provides a refined view into the bridge neighborhood by testing

an additional constraint that the strongest edge replicated. That is, all of the bridge relations and

the strongest edge re-emerged in an independent dataset. Furthermore, H1 and H2 both reflect

a positive manifold. We also included H3 which accounts for structures that are not H1 or H2.
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We compared the first two hypotheses against H3, where there was strong evidence for both H1

(BF13 = 33.4) and H2 (BF23 = 120.4). Hence, the data were more likely under the replication

models than a model that did not include replication-based constraints. We then compared H1 to

H2. Although the evidence was not strong, the data were more likely under H2 (BF21 = 3.6). This

analysis indicates that (1) the bridge relations replicated in an independent dataset; and (2) the

relation between “sleep problems” (node B4) and “avoidance of thoughts” (node C1) could be the

strongest bridge between the Re-experiencing and Avoidance communities.

We then focused on node D1 (Figure 1.3, panel D) and tested the following hypotheses

H1 : (ρD1−C2, ρD1−C6) > 0(1.8)

H2 : (ρD1−C2, ρD1−C6) < 0

H3 : (ρD1−C2, ρD1−C6) = 0.

In (1.8), the hypotheses are in relation to the Avoidance community and they again reflect network

replication. For example, H1 expresses that both relations are positive, but does not impose an

order restriction among bridge edges, whereas H2 expresses that both relations are negative and

similarly does not impose an order restriction. Alternatively, H3 then captures the importance of

ruling out conditional independence or that the effects are actually zero. Although the data were

more likely under H1 than H2 (BF12 = 12.3), the evidence favored H3 over H1 (BF31 = 11). In

other words, of the formal, replication models, there was evidence for null associations, or that

these might not be bridge relations after all.

The same hypotheses in (1.8) were tested in relation to the Re-experiencing community. In this

case, there was overwhelming evidence for H1. The posterior hypothesis probability was essentially

1, which translates into an infinite Bayes factor. This indicates that the bridge relations replicated

for the Arousal and Re-experiencing communities, and demonstrates the utility of comparing formal

models for clinical applications in particular. Although network analyses are often thought to

identify target symptoms for interventions (e.g., Beard et al., 2016), we are not aware of any work
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that has followed up an initial, exploratory analysis, with the goal of confirming hypotheses related

to the potential targets. In this case, the results suggest that the symptom “sleep problems” may

be useful in guiding interventions.

Ruling Out Bridges. It is important to rule out bridge relations in establishing the structure

of inter-community relations. Here, the question of replication is concerned with null associations

re-emerging in an independent dataset. To show this, we included two null associations in both

panel C and D of Figure 1.3 (the dotted lines). We thus formulated the following hypotheses

H1 : (ρB4−C6, ρD1−B4, ρD1−C1) = 0(1.9)

H2 : (ρB4−C6, ρD1−B4, ρD1−C1) > 0

H3 : “not H1 or H2.”

which represent a null model (H1), a positive manifold model (H2), and a model accounting for

alternative structures (H3). The positive manifold model had a posterior hypothesis probability

of essentially zero, indicating that positive associations can be ruled out. Further, the data were

more likely under the conditional independence model, H1, than under H3 (BF13 = 4.7)2. This is

striking because these very same relations have large bivariate correlations, yet, after controlling

for the other symptoms in the network, there was evidence for conditional independence.

1.3.2. Multiple Disorders. Here we provide further examples our proposed framework using

a comorbidity network. We estimate a GGM containing anxiety and depression symptoms and use

bridge strength to identify central structures for which hypotheses can be formulated. In several

examples, we discuss how to test these hypotheses in an independent dataset. We use data from

Beard et al. (2016) that includes 16 symptoms gathered from 1029 patients receiving treatment

for depression and anxiety. Symptoms were assessed using the Patient Health Questionnaire-9

(Kroenke et al., 2001) and the 7-item Generalized Anxiety Disorder Scale (Spitzer et al., 2006).

Nine symptoms were in the “depression” community and seven symptoms were in the “anxiety”

community. Because only one dataset was available, we performed exploratory analyses on one

2Changing the prior distribution resulted in more support for H1. This suggests BF13 = 4.7 is a lower bound for the
evidence in favor of the null model.
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half of the data, and used the other half for confirmatory testing (i.e., “data splitting”; Dahl et al.,

2008; Faraway, 1995).

1.3.2.1. Exploratory Analysis. We followed the same procedure as above: (1) estimate the con-

ditional dependence and independence structures; (2) identify the top scoring bridge symptoms;

and (3) formulate hypotheses based on the results. The results indicated that node D8 (“motor”,

bridge strength = 0.40)3 and node D6 (“guilt”, bridge strength = 0.27) were the most central

according to bridge strength (see Table A.2 for full definitions). Figure 1.4 displays the resulting

(in)dependence structures (panels A and B) and the magnified neighborhood of bridge relations for

nodes D8 and D6 (panel C).

1.3.2.2. Confirmatory Analysis. We reiterate that our confirmatory testing approach builds

upon identifying bridge symptoms in an exploratory analysis to gain insights regarding central

structures of a network. This can be done by developing hypotheses targeting the most central

nodes as determined by centrality statistics (in this case bridge strength). Accordingly, we have

magnified the neighborhood of bridge relations for nodes D8 and D6 (panel C Figure 1.4). This

readily allows for devising hypotheses with substantive and theoretical relevance. Of course, an

important first step is to investigate the extent to which the relations replicate. Note that we are

not referring to simply detecting the effect, but testing the constrained models implied from the

exploratory analysis.

Intra- and Inter-Bridge Sets. In addition to testing whether the edges for a bridge symptom

simply re-emerge in a new dataset, it may be useful to test whether their exact order replicates. If

the order of edges is known, and assuming a useful focal point is the strongest relation, this would

imply an ordering among possible intervention targets. This notion is encoded in the exploratory

analysis (panel C in Figure 1.4) which leads to the following hypotheses

H1 : ρD8−A5 = ρD8−A7 > (ρD6−A3, ρD6−A6) > 0(1.10)

H2 : ρD8−A5 > ρD8−A7 > ρD6−A3 > ρD6−A6 > 0

H3 : “not H1 or H2.”

3“motor” refers to physical lethargy or restlesness (Kroenke et al., 2001)
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Figure 1.4. Exploratory network structure of depression and anxiety symptoms.
D6 (“guilt”) and D8 (“motor”) emerged as bridge nodes. (A) The conditional de-
pendence structure. Lines between two nodes indicate an association between them
after controlling for all other nodes. (B) The conditional independence structure.
Dotted lines indicate that there is no association between two nodes after controlling
for all other nodes. (C). A magnified look at the neighborhood of bridge relations
for D6 and D8. We extracted the information encoded in these structures to formu-
late and test hypotheses (see Equations 1.10, 1.11, and 1.12).
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In (1.10), the hypotheses focus on characterizing bridge sets, or the set of bridge edges belonging to

a given symptom. For example, H1 posits that the bridge set for node D8 (“motor”) is collectively

greater than the set for node D6 (“guilt”), with constraint that the edges for node D8 are equal to

each other. This effectively corresponds to testing whether node D8 has greater bridge strength than

node D6. H2 then refines H1 by testing an exact order both between and within bridge sets. The

data were more likely under both H1 (BF13 = 4.4) and H2 (BF23 = 107) than H3. Furthermore,

there was more evidence supporting the hypothesis testing solely inequality constraints, H2, than

the one including an equality constraint (BF21 = 24.1). This provides a clear characterization of

the the bridge relations at hand — not only did the order of bridge strength replicate, but so did the

order of the edges within the neighborhood of each bridge symptom. In this confirmatory test, the

relationship between the depression symptom “motor” and anxiety symptom “restless” emerged

as the top relation. This characterizes a central structure between anxiety and depression and can

inform theory development with respect to these disorders.

Bridge Set Separation. It may further be of interest to identify whether bridge sets include

common elements. That is, whether bridge symptoms connect to the same or different nodes. This

may be useful in understanding whether bridge symptoms represent distinct central structures. As

can be seen in panel C of Figure 1.4, the bridge sets for nodes D8 and D6 are mutually exclusive.

This implies that there are two subsystems. Keeping this in mind, we formulated the following set

of hypotheses

H1 : (ρD8−A3, ρD8−A6) = 0(1.11)

H2 : (ρD8−A3, ρD8−A6) > 0

H3 : “not H1 or H2.”

In (1.11), H1 tests conditionally independent associations between the symptom “motor” and the

bridge set for “guilt” (i.e., nodes A3 and A6) versus H2, a positive manifold model, and H3, a

model accounting for alternative structures. Although the data were more likely under H1 than

H3 (BF13 = 3.7), there was support in favor of H2 compared to H1 (BF21 = 2). This analysis
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suggests there is a small amount of evidence that “motor” has conditional dependent relations with

the same nodes as “guilt”.

We repeated the hypothesis tests in (1.11) for “guilt”. Here, the findings differed slightly — the

data were almost equally likely under H1 compared to H3 (BF13 = 1.6). Like above, however, the

data were more likely under H2 than either H1 (BF21 = 6.3) or H3 (BF23 = 10). These analyses

indicate that the null associations did not replicate, and instead support the idea that “motor” and

“guilt” connect to the same symptoms. This information suggests, for example, that the nodes in

panel C of Figure 1.4 make up a single central structure instead of two.

Bridge Node Separation. Thus far we have focused on testing multiple relationships simultane-

ously. While testing joint hypotheses is a key feature to our proposed testing strategy, it may be

that a single parameter is of particular interest, say, due to theoretical importance. In this case,

it is highly informative to test hypotheses focused on a single parameter. For example, panel C

(Figure 1.4) indicates that nodes D8 and D6 are conditionally independent. However, this is in

contrast to what might be expected from two symptoms in the same community. Accordingly, one

can test a hypothesis focused solely on this relationship, for example

H1 : ρD8−D6 = 0(1.12)

H2 : ρD8−D6 > 0

H3 : “not H1 or H2.”

In (1.12), H1 tests a null association and H2 expresses a positive relationship. Though the data

were more likely under H3 than H2 (BF32 = 5.4), there was more evidence in favor of H1 than H3

(BF13 = 2.2). Hence, there is some evidence in this confirmatory test that “motor” and “guilt” are

conditionally independent symptoms. Importantly, focused hypotheses, such as in (1.12), can be

used to draw powerful inferences with respect to relationships of particular interest.

1.4. Simulation Studies

Thus far we have provided a comprehensive framework for exploratory and confirmatory testing

of central structures in partial correlation networks. Our hope is that researchers will integrate the
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proposed methods into their own work. Therefore, it is important to understand how these methods

behave under certain conditions. To this end, we emphasize a few important points:

(1) Bayes factors tend to infinity and posterior model probabilities tend to one in favor of

the correct model with increasing sample size (O’Hagan, 1995). Although this property

assumes the true model is being considered, recall that Bayes factors can also be interpreted

as a measure for the relative success of predicting the observed data (Kass & Raftery,

1995). This perspective does not rely on the existence of a true model and is our preferred

interpretation.

(2) More specific hypotheses result in higher degrees of evidence, given that they are supported

by the data. This is due to being relatively less ‘complex’ and having relatively better ‘fit’

(e.g., Klugkist et al., 2005; Mulder, 2014). This was observed in (1.7), where the data were

most likely under two replication-based hypotheses, but of these two, the more specific

one yielded stronger evidence.

(3) The scale, or standard deviation, of the encompassing prior distribution influences the

outcome when testing equality constrained hypotheses, but not when testing inequality

constraints (i.e., the Jeffreys-Lindley paradox is not an issue, Mulder, 2014). This was

seen in (1.9), where changing the prior distribution changed the evidence in support for

H1, an equality constrained hypothesis. This is important to consider when testing confir-

matory analyses because the resulting evidence can be considered objective for inequality

constrained hypotheses4. That is, the Bayes factor is robust to the prior distribution.

We further examine these properties in two simulation studies. In each, data were generated

with four variables and the true precision matrix

Θ =


1 −0.10 −0.14 −0.18

−0.10 1 −0.22 −0.26

−0.14 −0.22 1 −0.3

−0.18 −0.26 −0.30 1


.(1.13)

4In the case of equality constrained hypotheses, sensitivity analyses can be performed to determine the influence of
the prior on the resulting Bayes factors (Hoijtink et al., 2019).
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Figure 1.5. Results from the Simulation Studies The y-axes denote posterior model
probabilities (PMPs). (A) In Study 1: Specific Hypotheses, three true and increas-
ingly specific hypotheses were tested against competing hypotheses, across two val-
ues for the prior variance (δ). Each line captures the PMP for a true hypothesis
and each color denotes its respective prior proportion in agreement with the uncon-
strained hypothesis. Though all PMPs tended to one with increasing sample size,
more specific hypotheses needed less samples to receive strong evidence. The results
support the notion that more specific hypotheses are preferred in the encompass-
ing prior approach given that they are supported by the data. (B). In Study 2:
Prior Specification, one true inequality constrained hypothesis was specified against
a competing hypothesis across five values of δ. All PMPs tended to one with in-
creasing sample size, and notably, overlap almost perfectly. This supports the notion
that the evidence when testing inequality constrained hypotheses is robust to the
prior specification.

The partial correlations then correspond to the off-diagonal elements of Θ with the sign reversed.

These values were based on the most common partial correlations we observed in our analyses. We

then tested hypotheses based Θ and computed posterior model probabilities. The first simulation

study examines the advantage of testing precise hypotheses and the second evaluates the influence

of the prior scale when testing inequality constrained hypotheses.

1.4.1. Study 1: Specific Hypotheses. In this study, we investigate posterior model prob-

abilities for true hypotheses that have a different number of constraints. The idea is that more

specific hypotheses (i.e, more constraints are placed) have smaller prior probabilities than less spe-

cific ones under the encompassing prior (see Equation 1.5). If a more specific model is supported
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by the data, this will result in a larger Bayes factor, and accordingly, a larger posterior probability.

Thus, there is a greater “reward” for formulating and testing specific hypotheses on central struc-

tures. We formulated s = 1, 2, 3 sets of hypotheses with t = 1, 2, 3 hypotheses in each. The true

hypotheses corresponded to

H1
1 : ρ23 > ρ14 > ρ13 > ρ12(1.14)

H2
1 : ρ24 > ρ23 > ρ14 > ρ13 > ρ12

H3
1 : ρ34 > ρ24 > ρ23 > ρ14 > ρ13 > ρ12.

In (1.14), Hs
t denotes hypothesis t in set s. Each ρij is the partial correlation corresponding to

the element in the ith row and jth column of Θ in (1.13). The number of constraints for the true

hypotheses imply different prior proportions in agreement with the unconstrained parameter space,

Ωt, such that more constraints result in smaller prior proportions. For the hypotheses in (1.14),

the proportions in agreement with Ωt are .04, .008, and .001, respectively. Each Hs
1 was compared

to a null and complement hypothesis. For example, H1
1 was compared to

H1
2 : (ρ23, ρ14, ρ13, ρ12) = 0(1.15)

H1
3 : “Not H1

1 or H1
2.”.

Within each set, we assumed equal prior probabilities (i.e., 1
3). Each hypothesis was first compared

to the unconstrained model, Hu, which resulted in BFs
tu for all hypotheses. These Bayes factors are

not of substantive interest, but they are needed for then computing BFs
12, BF

s
13, and the posterior

model probabilities. We considered sample sizes ranging from 100 to 1,500 (in increments of 100),

and two values for the scale, δ ∈ {3, 15}. The latter values correspond to prior standard deviations

of 0.5 and 0.25, respectively, and were chosen because we view them as the most likely to be used

in practice. The posterior hypothesis probabilities, p(H1|Y), were averaged across 500 simulation

trials.
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1.4.1.1. Results. The results are shown in panel A Figure 1.5. The lines capture the posterior

probability for the true hypotheses in (1.14) and each color denotes their respective prior complexity

(i.e., the prior proportion in agreement with Ωt). Across all conditions, the posterior probabilities

tended towards one as sample size increased. Importantly, the most specific hypothesis (light blue

line) received more support across all conditions. In fact, the posterior probability for H3
1 was over

0.9 with just 500 observations for both values of δ. However, note that the posterior probabilities

differ according to the prior scale. This is due to the inclusion of each Hs
2, an equality constrained

hypothesis. This is a natural property of the methodology because the prior reflects the expected

magnitude of the partial correlations when the equality does not hold. Together, these results show

that when conducting confirmatory analyses, more specific hypotheses are preferred, and indeed

result in greater posterior probabilities, given that they are supported by the data.

1.4.2. Study 2: Prior Specification. The use of Bayes factors has been critiqued for being

overly sensitive to the choice of prior distribution (e.g, C. C. Liu and Aitkin, 2008, but see J. Rouder

et al., 2016). However, a proposed advantage of the encompassing prior approach is that the result-

ing Bayes factors are robust to the prior variance when testing inequality constrained hypotheses

(Hoijtink, 2011; Klugkist et al., 2005). This is an important consideration in confirmatory testing

because the Bayes factor would be consistent regardless of how the scale for the encompassing prior

is specified. Thus, we investigated the extent to which the prior hyperparameter δ influences pos-

terior probabilities for inequality constrained hypotheses. We first formulated a single hypothesis

set

H1 : ρ34 > ρ24 > ρ23 > ρ13 > ρ12(1.16)

H2 : “not H1.”

with H1 as the true hypothesis. We then varied the prior hyperparameter δ ∈ {99, 15, 5.25, 3}.
These values correspond to prior standard deviations of 0.1, 0.25, 0.4, and 0.5, respectively. Prior

probabilities for each hypothesis were assumed to be equal, and BF12 was computed. We considered
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sample sizes ranging from 100 to 1,500 (in increments of 100), and posterior hypothesis probabilities,

p(H1|Y), were averaged across 500 simulation trials.

1.4.2.1. Results. The results are shown in Panel B Figure 1.5. Each line corresponds corre-

sponds to the posterior probability of H1 versus H2 in (1.16) for a given value of δ. Importantly,

the posterior hypothesis probabilities for each prior overlap almost perfectly across all sample sizes,

and tended towards one as sample size increased. Together, the results indicate that the resulting

Bayes factor is robust to different priors testing inequality constrained hypotheses.

1.5. Discussion

In this paper, we presented an innovative strategy for integrating exploratory analyses with

confirmatory hypothesis testing in partial correlation networks. In doing so, one of the primary

motivations for network analysis — hypothesis generation — has been fully realized. We began with

an illustrative example based on a customary exploratory approach wherein, by simply plotting

the network structure, we formulated several hypotheses regarding the most central node. This

highlighted how information encoded by the partial correlations and the conditional (in)dependence

structures can be employed to formalize clinical and theoretical expectations, that in turn, can be

tested in a confirmatory setting.

The core contribution of this work demonstrated how centrality metrics can be used to guide

hypothesis generation in exploratory network analyses. In extensive examples, bridge strength, a

measure of inter-community connectivity, served to identify central bridge symptoms in two net-

works. Once identified, we formulated hypotheses with the goal of understanding various aspects of

the bridging structures. For instance, whether the set of edges for one bridge symptom overlap with

the set of another or whether two bridge symptoms are conditionally independent (see Empirical

Applications). Together, these examples highlighted how inherently exploratory metrics can inform

hypotheses aimed at replicating aspects of the network structure.

Testing specific structures can shed a new light upon the issue of replicability in networks.

Indeed, formulating fine-grained hypotheses focused on characterizing central nodes is an active

issue in the network literature (Epskamp, Borsboom, et al., 2018; Forbes et al., 2017, 2019). In this

work, however, we successfully replicated multiple central structures across distinct datasets. Note
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that we chose to focus on aspects we deemed most important. Namely, edge weights for the most

central structures. Hence, it seems that network structures of interest can indeed be replicated.

1.5.1. Implications for Building Formal Models. The proposed testing strategy has sev-

eral desirable qualities for building formal models. There is now a wealth of network analyses for

several mental disorders (e.g., PTSD) and synthesizing this information to develop formal theo-

ries is a pressing challenge (for detailed discussions see Haslbeck et al. (2019) and Borsboom et al.

(2020)). In order to move towards formal theories, researchers must move away from the traditional

exploratory approach and begin testing confirmatory hypotheses. We argue that this is not only

necessary for building formal models, but also thinking about clinical interventions. This important

step is absent from the current literature, in that results from exploratory analyses are never con-

firmed. This is in contrast to other scientific disciplines that also use partial correlation networks.

In biological fields, for instance, exploratory results are actually used to generate hypotheses that

are then tested (Kelder et al., 2010; Krumsiek et al., 2012). These fields often conduct controlled

experiments — perhaps a bridge too far for the most common applications in the social-behavioral

sciences. However, as we demonstrated, it is certainly possible and quite useful to confirm findings

that emerged in an exploratory context.

Furthermore, the Bayesian aspect of our approach is well-suited for constructing theories. Be-

cause we use the Bayes factor for confirmatory testing, we are quantifying the relative success

of hypotheses at predicting the observed data (Kass & Raftery, 1995) — an important measure

of explanatory power. Moreover, developing formal theory is an iterative process which requires

updating as more data becomes available. Bayesian analyses naturally lend themselves to this

because prior information can be incorporated. Specifically, the results of a Bayesian analysis (i.e,

posterior odds) can be formally incorporated into subsequent analyses as prior odds. This allows

for monitoring the evidence a given theory has amassed.

Finally, our approach facilitates testing “risky predictions” (Mayo, 1991; Meehl, 1967). That is,

a prediction that extends beyond refuting a null hypothesis or simply testing a direction (e.g., the

effect is positive). The idea behind our approach is that hypotheses can express precise expectations

through (in)equality constraints. This was demonstrated in this work, for example, by testing

whether an exact ordering of effects replicated in a new dataset. This is useful in developing

24



theories. Further, our approach can be used for testing theories by allowing researchers to be even

more explicit about what should be observed. For instance, one could extend an exact ordering

of edges by stipulating an additional constraint that they are all bounded between two values, say

0.10 and 0.20. This is a key aspect of theory building, that is, formulating and testing theoretical

expectations.

1.5.2. Embracing the Gaussian Graphical Model. We urge researchers to embrace Gauss-

ian graphical modeling. In our opinion, the focus on causality in psychological networks has led to

an underappreciation of undirected networks as valuable tools for more than just exploratory data

analysis. As we demonstrated, formalizing theoretical models can be accomplished by thinking in

terms of constraints, on, say, the interactions between clinical symptoms. This allows researchers

to establish, describe, and characterize important relations. This can be accomplished by adopting

the powerful framework described in this work for exploratory and confirmatory testing. This is

an important first step towards moving beyond the notion that GGMs are merely a stepping stone

to directed networks.

1.5.3. Limitations. There are some notable limitations in this work. First, we only considered

bridge strength as a metric to identify the most central structures in a network. We viewed this as a

sensible choice because both the prior distributions for the confirmatory testing strategy and bridge

strength focus on the partial correlations. Though this choice made it straight-forward to formulate

hypotheses, it may not always be so clear what parameters to focus on when using alternative

exploratory metrics (Bringmann et al., 2019; Jones et al., 2019). Second, because only covariance

matrices were available we assumed multivariate normality when generating data. However, the

data were collected as ordinal. In practice, ordinal data results in more sampling variability, and

thus less statistical power to replicate effects5 (Williams, 2020). Third, Bayes factor estimates may

be unstable when testing overly specific hypotheses. This is is because the prior probability that the

constraints are in agreement with the unconstrained parameter subspace becomes quite small, and

thus, a prohibitively large number of samples are needed for accurate estimates (Mulder, 2016). In

our experience, this issue typically arises when overly specific hypotheses are specified in conjunction

with unordered groupings (e.g., (ρ12, ρ13)). Fourth, when comparing nested hypotheses such as H1

5Methods for dealing with ordinal data in GGMs are implemented in the R package BGGM
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and H2 in (1.7), the Bayes factor for the more specific hypothesis (e.g., BF21) is bounded. As a

result, the scale of the Bayes factor is difficult to interpret and the evidence for the true hypothesis

does not tend to infinity with increasing sample size (if the more specific hypothesis is true, Mulder

et al., 2010). Nested hypotheses can still be tested if there is a reason to do so, say, based on

theoretical reasoning, but this caveat should be kept in mind when interpreting the evidence.

Lastly, we did not conduct sensitivity analyses for any of our confirmatory hypothesis tests so it is

uncertain to what extent the prior distribution influenced our results. While sensitivity analyses

should be conducted in practice, we avoid doing so due to the demonstrative nature of this work.

1.5.4. Recommendations. We recommend that researchers make several considerations when

using the exploratory and confirmatory strategies described in this paper. To start, researchers

should carefully think about how exploratory metrics relate to the scientific question at hand when

using them to guide the formulation of hypotheses. In particular it is not clear what centrality

indices measure in psychological networks (Bringmann et al., 2019). For example, metrics using

measures of “betweeness” and “closeness” assume the existence of a shortest path. Because shortest

paths do not account for edge weight they may contradict how psychological variables are thought

to interact. As such, it is important that researchers determine how exploratory metrics relate to

their research prior to their use.

If independent samples are not available or if hypotheses cannot be derived from previous re-

search, we recommend researchers take advantage of data splitting methods (Anderson & Magruder,

2017; Dahl et al., 2008; Faraway, 1995). We believe data splitting is underutilized in psychological

research, and provides an accessible method for obtaining independent data on which to formu-

late and then test hypotheses. Indeed, data splitting could be called “one of the most seriously

neglected ideas in statistics” (comment in Stone, 1974). Although this procedure results in a loss

of statistical power, there are several ways to mitigate this. For example, power can be increased

by focusing on inequality constrained hypotheses (e.g., Mulder & Raftery, 2019), or by focusing on

the strongest edges. Additionally, a lower Bayes factor threshold can be used in determining the

graph. Though lowering the threshold results in greater power, it also increases the rate of false

positives. Thus, we recommend researchers focus on testing inequality constraints and large effects

when splitting their data.
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In fact, it may be useful to prioritize large effects in general. This is because there is an inherent

limit to what can and cannot be confirmed in a data set. Characterizing large effects first then

and smaller effects second can be thought of as a top-down approach that can guide exploratory

and confirmatory analyses over time. This idea is not new. In the genetics literature, it has been

suggested that focusing on large effects is a useful way to begin understanding a system. For

example, Altay and Emmert-Streib (2010) state that

“However, practically, no method can guarantee to [infer an entire network] for a

given data set, not even for simulated data when a very large number of samples

is available...For this reason, we lower the bar from the beginning by not aiming

to infer the entire network, instead, [inferring] the strongest interactions among

covariates only.” (p. 2)

In fact, we attribute part of our success in replicating bridge relations to focusing on the strongest

edges. Hence, we recommend that researchers focus on large effects when transitioning from ex-

ploratory to confirmatory analyses.

1.6. Conclusion

This work demonstrated that confirmatory testing can be woven into the very fabric of net-

work analysis and theory. The ideas presented in this paper provide the foundation from which to

begin comparing formalized expectations related to the (in)dependence structure of psychological

constructs and mental disorders. We hope this bridges the gap between between hypothesis gener-

ation and testing in psychological networks. The testing strategy is implemented in the R package

BGGM. A detailed tutorial is available on the Open Science Framework.
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CHAPTER 2

Painless Posterior Sampling: Bayesian Bootstrapped Correlation

Coefficients

2.1. Introduction

Correlation coefficients lie at the heart of research in the social–behavioral sciences (Chen et

al., 2002; Cohen et al., 2013). They quantify the degree of association between variables, where

hypotheses are often posited as correlational statements such as “there is a positive association

between IQ and educational attainment.” The most frequently used variant is the Pearson prod-

uct–moment correlation, or Pearson correlation, that quantifies the strength of the linear associa-

tion between two variables. Values of 1, -1, and 0, respectively, imply a perfectly positive, perfectly

negative, and no relationship.

Although they play a leading role in psychological research, there is surprisingly little work done

on estimating common correlation types in a Bayesian framework. To date, the Pearson correlation

has received the bulk of attention (e.g., Mulder, 2016; Wagenmakers, Verhagen, et al., 2016; Wetzels

& Wagenmakers, 2012), but research examining alternative types of correlations are scarce. This

is unsurprising because the Pearson correlation is the most frequently used measure of association

and it is also trivially estimated, say, by following the separation strategy of Barnard et al. (2000)

or using the natural conjugate prior for the covariance matrix in a Gaussian model (i.e., the inverse-

Wishart). Nevertheless, there are times when researchers would like to estimate a different type of

correlation that may be better suited for their data. For example, Kendall’s τ is a popular rank-

based correlation method, but was not possible to estimate in a Bayesian framework until only

recently (van Doorn et al., 2018; Yuan & Johnson, 2008). There are a variety of reasons for why

this is the case, for instance, due to the lack of an explicit likelihood function and sensible choices

for prior distributions (Yuan & Johnson, 2008). Furthermore, polychoric correlations, that are

commonly used for ordinal data, can be challenging to implement and computationally expensive
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to estimate (e.g., Lawrence et al., 2008). One such approach is the multivariate probit model (e.g.,

Albert, 1992; Chib & Greenberg, 1998), but this requires sampling latent (Gaussian) data and

thresholds, both of which are not straightforward. These methodological challenges have resulted

in a lack of software for estimating Bayesian correlations.

To overcome these hurdles, we propose the Bayesian bootstrap (BB, Rubin, 1981) as a simple

and flexible approach to obtain a posterior distribution for a correlation matrix. This method is

attractive in the sense that it avoids the direct specification of a prior and is straightforward to

implement because it is operationally equivalent to the classical bootstrap (Efron, 1979). The key

difference between them is that the BB attaches weights to the observed values from a uniform

Dirichlet distribution, as opposed to the classical bootstrap that resamples the data. The main

benefit of this weighting scheme is that the resulting samples can be used to approximate the

posterior distribution of interest under a noninformative prior (Lo, 1987, 1988; Lyddon et al., 2019;

Weng, 1989). The motivation behind the BB is nicely summarized in Kim and Lee (2003),

“To circumvent such complications of the full Bayesian analysis, we propose

Bayesian bootstrap (BB) procedures which, we believe, are easily accessible to

practitioners and at the same time are reliable inference procedures...the BB

procedures are conceptually parametric and conceptually simple but retain the

flexibility of nonparametric models. Another advantage of the BB procedures is

that it is unnecessary to elicit prior information...” (p. 1905)

Because the BB is flexible and does not require a prior to be explicitly specified by the analyst,

it can be used to seamlessly estimate virtually any correlation matrix, including Kendall’s τ and

polychoric correlations. However, the BB remains relatively unknown in psychological contexts

despite its simple form and utility with respect to simulating samples from the posterior distribution.

Naturally, a key attraction of the BB is that it shares important properties with traditional

Bayesian inference.The benefits of adopting Bayesian approaches have been written about exten-

sively in the psychological sciences (see e.g., Vandekerckhove et al., 2018, and other articles in that

special issue). For instance, analysts commonly want to make statements about which parameter

values are the most likely conditional on the observed data (Kruschke, 2018; Kruschke et al., 2012),

but this privilege is reserved for Bayesian methods as opposed to classical inferential techniques.
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Consequently, adopting a Bayesian approach necessarily results in a posterior distribution, and

thus, statements can be made about the probability of specific parameter values, or a range of

them (Wagenmakers et al., 2018; Wagenmakers, Morey, et al., 2016). Moreover, Bayesian inference

allows for quantifying evidence in favor of a null hypothesis as opposed to more classical methods

which typically only allow for (failing to) reject the null hypothesis.

Because the Bayesian bootstrap provides a valid posterior, it can be further employed to com-

pare correlations. The problem of comparing correlations from the same sample has received ample

attention in the literature (Dunn & Clark, 1969; X.-l. Meng et al., 1992; Mulder, 2016; Raghu-

nathan et al., 1996; Steiger, 1980; Zou, 2007), and there are three main cases where comparing

correlations is of interest (Krishnamoorthy & Xia, 2007): (1) overlapping dependent correlations,

(2) non-overlapping dependent correlations, and (3) independent correlations from independent

samples. Because the dependence structure is encoded in the posterior distribution, the BB can be

employed in all of these situations.

2.1.1. Major Contributions. This work includes three major contributions. First, the

Bayesian bootstrap is introduced as a method for approximating posterior distributions for several

correlation coefficients. Namely, we describe the Bayesian bootstrap for the Pearson correlation,

wherein the Spearman’s and Gaussian rank correlations naturally arise as special cases. We further

provide formulations to obtain Kendall’s and polychoric correlation coefficients. We emphasize

that these latter two coefficients, unlike the Spearman’s and Gaussian rank correlations, cannot

be trivially estimated in a Bayesian framework. Second, an approach is discussed for comparing

two or more correlations, possibly with the region of practical equivalence (ROPE) of Kruschke

(2018). This allows researchers to go beyond merely estimating correlations to making meaningful

comparisons among them (e.g., establishing null associations). Third, to increase the availability

of the proposed approach, Bayesian bootstrapped correlations have been implemented in the R

package BBcor. For users who are unfamiliar with R, we have implemented a Shiny app1 (Chang

et al., 2021). The totality of these contributions places the Bayesian bootstrap into the toolbox of

researcher psychologists.

1The Shiny app can be accessed at tinyurl.com/2nw33cu8
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2.1.2. Overview. The outline of this article is as follows. We begin by delineating the

Bayesian bootstrap procedure for different correlation types. Here it is shown how estimating corre-

lations with the BB essentially amounts to calculating weighted correlations. Next, we demonstrate

how two or more correlations can be compared with the resulting posterior distribution. We then

move on to empirical illustrations of the method using two psychological datasets. These examples

illustrate the utility of the proposed method in applied settings. We conclude with a brief discussion

on the Bayesian bootstrap.

2.2. The Bayesian Bootstrap

There are at least three ways to view the Bayesian bootstrap (Kim & Lee, 2003): 1) as an

extension of the classical bootstrap, 2) the limit of the full Bayesian posterior as the prior becomes

completely uninformative (Gasparini, 1995, Theorem 2), and 3) a distribution that is proportional

to the product of the empirical likelihood and an uninformative prior (Choudhuri, 1998; Lazar,

2003; Owen, 1990; Rubin, 1981). Because in psychology, most analysts are likely to have at least

some familiarity with the classical bootstrap, we briefly describe this perspective here. Suppose Y =

(y1, . . . , yn) is a random sample from an unknown distribution F and we are interested in estimating

a functional of F , T (F ), say, the expected value of Y . The classical bootstrap entails resampling

the data with replacement to obtain Y ∗
1 , . . . , Y

∗
B where B is the number of bootstrap samples.

Inferences are then drawn on the basis of T (F ∗
i ), where F ∗

i is the empirical distribution of the ith

resampled dataset. Notice that the empirical distribution can be expressed as F ∗
i =

∑n
j wjδYj where

n(w1, . . . , wn) ∼ Multinomial(n, 1/n, . . . , 1/n). The weights w are discrete, considered to be known,

and denote the proportion a distinct value of the original data, δYj , arises in the bootstrap sample.

By instead considering the weights for each sample to be unknown, continuous, and distributed as

Dirichlet(1, . . . , 1), the resulting empirical distribution F ∗
i takes on a smoother shape (see Figure 1

in Rubin, 1981). Technical details of the connection between the Bayesian bootstrap and the usual

posterior distribution are given in the appendix. For comprehensive mathematical treatments of

the BB, we refer readers to Lo (1987, 1988), Newton and Raftery (1994), and the references therein.

2.2.1. Illustration. To illustrate the process of obtaining a BB posterior, suppose that we

have n observations of a random variable Y . The BB generates a posterior probability for each
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observation y1, . . . , yn, where unobserved values have zero posterior probability. Specifically, one

BB sample is obtained by drawing n weights from a uniform Dirichlet distribution and attaching

them to the data. The generated weights can be interpreted as the probabilities that Y = yi in

each sample (Rubin, 1981). In practice, these weights are easily generated using draws from an

exponential distribution (see e.g., Devroye, 1986, p. 594). If this process is repeated S times, then

the distribution of all S samples is the BB distribution of Y . More often, however, we are interested

in estimating the parameter of a distribution, say, the mean. For each s sample (s = 1, . . . , S), the

steps for estimating the mean of Y are as follows:

(1) Draw n exponential variates

z
(s)
i ∼ Exp (1) , i = 1, . . . , n(2.1)

(2) Generate the weights

w
(s)
i =

z
(s)
i∑n

i=1 z
(s)
i

(2.2)

(3) Calculate the weighted sample mean

ȳ(s) =
n∑

i=1

w
(s)
i yi(2.3)

The empirical distribution of {ȳ(1), . . . , ȳ(S)} is the BB approximation to the posterior of the mean

of Y . A visual comparison between a BB distribution and an analytical posterior for this scenario

is shown in Figure 2.1. Note steps 1 and 2 can be merged if a uniform Dirichlet distribution

random number generator is directly available, as is the case in many programming platforms.

Further, a subscript can be added ȳ
(s)
g (g = 1, . . . , G) in each step to distinguish means between

groups. This opens up the possibility to obtain a posterior distribution for mean differences (e.g.,

δ(s) = ȳ
(s)
1 − ȳ

(s)
2 ). In what follows, we demonstrate how these ideas can be harnessed to estimate

and compare a variety of correlation coefficients.

2.2.2. Pearson, Spearman’s, and Gaussian Rank Correlation Coefficients.

2.2.2.1. Background. The most popular correlation is the Pearson product-moment correlation

coefficient, or Pearson correlation, which captures the linear relationship between two variables.
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Figure 2.1. Density histogram of 1000 Bayesian bootstrapped means using the
steps outlined in (2.1) – (2.3). The black line is the posterior density of the mean
resulting from a normal prior with mean equal to zero and standard deviation equal
to 10. The sample data (n = 500) was generated from a Normal distribution with
mean equal to 10 and standard deviation equal to 5.

When the data are ordinal, it is common to use the nonparametic Spearman’s correlation, which is

defined as the Pearson correlation between the ranks of two variables and describes their monotonic
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relationship. Although conceptually easy to understand and compute, using Spearman’s correlation

results in a small loss of statistical efficiency. A recently proposed alternative is the Gaussian rank

correlation (Boudt et al., 2012). The Gaussian rank correlation is defined as the Pearson correlation

of the normalized ranks (i.e., their Van der Waerden scores). The advantage of normalizing the

variables prior to computing their correlation is that there is a small gain in statistical efficiency

(for Gaussian data) when estimating the monotonic relationship between them. Interestingly, the

main difference between the Pearson’s, Spearman’s, and Gaussian rank correlations is whether the

raw, ranked, or normalized rank observations are being correlated. Hence, only a formulation for

the Pearson correlation is needed to obtain any of the three correlation types. Note that Rubin

(1981) described the BB for a single Pearson’s correlation, but did not consider the full correlation

matrix or other correlation types.

In a Bayesian framework, the Pearson correlation matrix is traditionally estimated by model-

ing the covariance matrix Σ. To this end, the legacy inverse-Wishart prior has been the de facto

standard. Due to its conjugacy, computation can be relatively efficient and thus it is widely im-

plemented in Bayesian software (e.g., Plummer, 2003). However, the inverse-Wishart prior has

been criticized for several reasons: the uncertainty for all variances is controlled by a single de-

grees of freedom parameter (Barnard et al., 2000), the marginal distribution for the variances have

low density near zero (Gelman, 2006), and there is an a priori dependence between the resulting

correlations and variances (Tokuda et al., 2011). Separation strategies exist to deal with the depen-

dence between the variances and correlations (e.g., Barnard et al., 2000), but suffer from similar

problems as the inverse-Wishart. Alternative distributions exist that circumvent these issues, such

as the LKJ (Lewandowski et al., 2009) or matrix-F (Mulder & Pericchi, 2018) prior distributions.

Although they are more flexible than the inverse-Wishart, the incurred expense is that they are

more computationally complex and, additionally, are not yet widely available in Bayesian software.

For instance, the LKJ prior is mostly restricted to programs that interface with Stan (Carpenter

et al., 2017) and do not readily provide the full correlation matrix. The matrix-F prior has been

implemented for a full correlation matrix, but first requires estimating the partial correlations and

thus the prior cannot be placed directly over the correlation matrix (Williams et al., 2019). By
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instead employing the Bayesian bootstrap, an approximate posterior for the full correlation matrix

can be obtained painlessly.

2.2.2.2. Bayesian Bootstrap Steps. We now describe the necessary ingredients for obtaining

Bayesian bootstrapped samples of Pearson, Spearman’s, and Gaussian rank correlations. Without

a loss of generality, assume Y to be a mean-centered n × p data matrix with sample covariance

matrix S. The Pearson correlation matrix for Y is given by

R = D−1
2SD−1

2(2.4)

S = (n− 1)−1
(
Y′Y

)
where D−1

2 is a diagonal matrix containing the inverse square roots of the diagonal elements of

S and each rij element of R indicates the correlation between the ith and jth column of Y. The

Spearman’s correlation matrix is obtained when each (i, j)th element in Y is replaced with its rank,

R(Yij). Similarly, if the elements are replaced with their Van der Waerden scores, Φ−1
(
R(Yij)
n+1

)
,

where Φ−1 denotes the quantile function for a standard normal curve, then R contains the Gaussian

rank correlations.

A simple modification of (2.4) yields a posterior sample of R. Mainly, for each s sample, the

values drawn from the uniform Dirichlet distribution are used to center the columns of Y at their

weighted mean, and then further to obtain a weighted covariance matrix Sw. With this modification,

a Bayesian bootstrapped sample for R is obtained by computing

R(s)
w =

(
D(s)

w

)−1
2
S(s)
w

(
D(s)

w

)−1
2

(2.5)

S(s)
w =

[
1−

n∑
i=1

(
w

(s)
i

)2]−1 (
Y(s)′

w Y(s)
w

)
(2.6)

Y(s)
w = Y ◦w(s)

∗ 1′p(2.7)

where R
(s)
w is a weighted correlation matrix,

(
D

(s)
w

)−1
2
is a diagonal matrix containing the inverse

square roots of the diagonal elements of S
(s)
w , and Y

(s)
w is a weighted version of the data matrix.
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The symbol “◦” denotes the Hadamard product, w
(s)
∗ is an n-dimensional vector with elements

w
(s)
∗,i =

√
w

(s)
i , and 1p is a p-dimensional vector containing 1’s. If R

(s)
w is computed S times, then

the distribution of {R(1)
w , . . . ,R

(S)
w } is the BB distribution of R. Similarly, the BB distribution of

each rij is the empirical distribution of {r(1)w,ij , . . . , r
(S)
w,ij}. Notice that computing a posterior sample

with the BB requires only a few steps and does not involve explicitly invoking a prior distribution.

In this way, the Bayesian bootstrap provides a seamless method for obtaining posterior distributions

for the Pearson, Spearman’s, and Gaussian rank correlation matrices.

2.2.3. Kendall’s Rank Correlation Coefficient.

2.2.3.1. Background. A similar approach can be taken to obtain posterior samples for Kendall’s

rank correlation coefficient (Kendall, 1938), or Kendall’s τ , a widely used measure of association

in nonparametric statistics. Like Spearman’s correlation, it is a robust measure that captures

monotonic relationships between two variables, but has some advantages. It is asymptotically more

efficient and has an appealing interpretation. Kendall’s τ can be interpreted as follows. Suppose

we have n observations for two random variables X and Y . A pair of differences (xi − xj) and

(yi−yj) is said to be concordant if they share the same sign and discordant if they do not. Kendall’s

τ is obtained by taking the difference between concordant and discordant pairs and dividing this

quantity by the number of all possible pairs. When τ = 1 (−1) all pairs of observations are

concordant (discordant).

Despite its popularity, there is a dearth of literature on Bayesian inference for Kendall’s rank

correlation. The main reason for this is that nonparametric tests in Bayesian settings have his-

torically been limited by a lack of prior distributions and an explicit likelihood function (Yuan &

Johnson, 2008) — without which a model cannot be formulated in a Bayesian framework. Recently,

van Doorn et al. (2018) developed a method for deriving a posterior distribution for Kendall’s τ

based on its standardized test statistic T ∗. However, this method only considers a single correlation

at a time. That is, the full correlation matrix is not readily estimated, which, in turn, prevents

easily comparing correlations. In contrast, a Bayesian bootstrap approach to estimating Kendall’s

τ circumvents this concern because it readily estimate the full correlation matrix.

2.2.3.2. Bayesian Bootstrap Steps. For the case of X and Y , Kendall’s τ is defined as
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τ =

∑n
1≤i<j≤n sgn (xi − xj) sgn (yi − yj)

k
,(2.8)

where k = n(n−1)
2 is the number of distinct pairs. The above is commonly referred to as τA and does

not account for ties. When ties are present, the denominator is adjusted to correct for this and is

defined as
√
(k − tx)(k − ty) where tx and ty denote the number of ties in X and Y , respectively.

This version is commonly known as τB and because this is the version we consider here, we simply

refer to it as τ .

A Bayesian bootstrapped sample for Kendall’s rank correlation between X and Y can be com-

puted by first drawing values from a uniform Dirichlet distribution and weighting the numerator

to obtain

τ (s)w =
n∑

1≤i<j≤n

w
(s)
i w

(s)
j sgn (xi − xj) sgn (yi − yj) .(2.9)

This expression is nice because the connection to the original formulation is clear, but it can be

generalized to obtain the full correlation matrix (Pozzi et al., 2012, pp. 15 – 17). Let Z be a k× p

matrix where each (l, v) element is associated to sgn(yvi − yvj ) where l = 1, . . . , k, v = 1, . . . , p,

i = 2, . . . , n, and j = 1, . . . , n − 1, or in words, a matrix where each element indicates the sign

for the difference of the observation pair (i, j) on variable v. With this definition of Z, a Bayesian

bootstrap sample for the Kendall’s τ correlation matrix can be obtained as follows

τ (s)
w =

(
D(s)

w

)−1/2
S(s)
w

(
D(s)

w

)−1/2
(2.10)

S(s)
w = Z(s)′Z(s)

w(2.11)

Z(s)
w = Z ◦w(s)

∗ 1′p(2.12)

where τ
(s)
w is the weighted correlation matrix,

(
D

(s)
w

)−1/2
is a diagonal matrix containing the inverse

square roots of the diagonal elements of S
(s)
w , and Z

(s)
w is a weighted version of Z. The k-dimensional

vector w
(s)
∗ contains the elements w

(s)
∗,l =

√
w

(s)
i w

(s)
j , and 1p is p-dimensional vector containing 1’s.

When written this way, Kendall’s rank correlation can be conceptualized as a Pearson correlation

computed with Z. If τ
(s)
w is computed S times, then the distribution of {τ (1)

w , . . . , τ
(S)
w } is the BB
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distribution of τ . Like each rw,ij , the BB distribution of each τw,ij is their empirical distribution

over all S samples.

2.2.4. Polychoric Correlation Coefficient.

2.2.4.1. Background. An important measure of association in the field of psychometrics is the

polychoric correlation coefficient (Jöreskog, 1994; Olsson, 1979). Like correlations that describe

monotonic relationships, the polychoric correlation is often used with ordinal data. The key differ-

ence here is that the ordinal data are considered to be the result of discretizing continuous variables.

Accordingly, the polychoric correlation captures the linear association between two latent continu-

ous variables underlying the observed ordinal data. Note that we assume that the joint distribution

of the two latent variables is Gaussian, but other distributions can be used (e.g., bivariate t, Albert,

1992).

Getting Bayesian estimates of polychoric correlations can be difficult due to their computational

expense. Computing the likelihood requires iteratively sampling from truncated Gaussian distribu-

tions and the covariance matrix is typically restricted to be a correlation matrix for identifiability

reasons (Albert, 1992; Chib & Greenberg, 1998). Further, nuisance parameters, termed thresholds,

must be estimated for each variable. More efficient MCMC algorithms have been developed, for

example, by using parameter expansion for data augmentation (Lawrence et al., 2008; Talhouk

et al., 2012) or parameterising the precision matrix of the latent variables in terms of the Cholesky

decomposition (Webb & Forster, 2008), but these techniques introduce computational complexities

of their own and remain unavailable in statistical software (to our knowledge). Thus, for polychoric

correlations, the Bayesian bootstrap again provides a relatively simple solution.

2.2.4.2. Bayesian Bootstrap Steps. For ease of exposition, we focus on estimating the polychoric

correlation between two variables, but the following can be applied for the entire correlation matrix.

Suppose that two ordinal variables X and Y are expressed in a two-way contingency table with R

rows and C columns. That is, there are R levels in X and C levels in Y . If the data is collected

on n individuals and classified with respect to the rows and columns, then the cell counts, nrc

(r = 1, . . . , R, c = 1, . . . , C) have respective probabilities πrc. The typical estimation approach is

then to assume that the ordinal variables correspond to continuous Gaussian variables ξ and η. The

n pairs (ξi, ηi) can likewise be placed in an R × C contingency table using row thresholds −∞ =

38



a0 < a1 < · · · < aR−1 < aR = ∞ and column thresholds −∞ = b0 < b1 < · · · < bC−1 < bC = ∞.

The relationship between X and ξ is

xi =



1 if ξi < a1

2 if a1 ≤ ξi < a2

...

R if aR−1 ≤ ξi

,(2.13)

and similarly for Y and η.

The polychoric correlation can then be estimated in two steps (Olsson, 1979). The thresholds

are first estimated as

ar = Φ−1

(∑n
i=1 I(xi ≤ r)

n

)
, r = 1, . . . , R− 1(2.14)

bc = Φ−1

(∑n
i=1 I(yi ≤ c)

n

)
, c = 1, . . . , C − 1,(2.15)

where Φ denotes the bivariate standard normal cumulative density function with correlation ρ and

the symbol I(·) denotes the indicator function. Then, the likelihood of the sample

R∑
r=1

C∑
c=1

nrc lnπrc(2.16)

is maximized with respect to ρ. Above, nrc is the number of observations in the (r, c)th cell of the

contingency table and πrc is the probability that (ξi, ηi) belongs to that cell

πrc =(2.17)

Φ(ar, bc)− Φ(ar−1, bc)−

Φ(ar, bc−1) + Φ(ar+1, bc+1).
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The value of ρ that maximizes the log-likelihood is the estimate for the polychoric correlation

between X and Y .

A Bayesian bootstrapped sample of the polychoric coefficient can be obtained through a reweight-

ing scheme applied to the R × C contingency table. To obtain the weighted cell probabilities, the

thresholds are first estimated based on the simulated Dirichlet weights (Bailey et al., 2018)

a(s)w,r = Φ−1

(
n∑

i=1

w
(s)
i I(xi ≤ r)

)
(2.18)

b(s)w,c = Φ−1

(
n∑

i=1

w
(s)
i I(yi ≤ c)

)
.(2.19)

Similarly, the term nrc in (2.16) is replaced with

n(s)
w,rc =

n∑
i=1

w
(s)
i I(xi = r)I(yi = c).(2.20)

The weighted probabilities for each sample π
(s)
w,rc are computed using the expression in (2.17), but

with the weighted thresholds so that the log-likelihood for each sample is given by

s∑
i=1

r∑
j=1

n(s)
w,rc lnπ

(s)
w,rc.(2.21)

Finally, the Bayesian bootstrapped sample for the polychoric correlation, ρ(s), is the one that max-

imizes (2.21). If this procedure is carried out S times, then {ρ(1), . . . , ρ(S)} is the BB distribution

of the polychoric correlation between X and Y .

2.2.5. Comparing Correlations. Once a set of correlations has been estimated, a common

next step is to make comparisons among them, say, to determine which association is the largest.

This can be done by computing the posterior distribution for comparisons of interest. The main

advantage of doing so is that standard deviations (analogous to standard errors) are available

in situations where they would otherwise be difficult to obtain (e.g., the difference between two
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polychoric correlations with the same matrix). Fortunately, the Bayesian bootstrapped posterior

distribution can be used to make such comparisons.

Using the Bayesian bootstrap, the posterior can be obtained for linear combinations of correla-

tions by manipulating the posterior samples of the individual correlations. Say we have estimated

a p× p correlation matrix and are interested in their pairwise differences. Let ρ(s) be a vector con-

taining the sth sample for the G = p(p−1)/2 distinct correlations and C be a matrix of coefficients

capturing the pairwise differences. Each element of C is either a 1, −1, or 0. A posterior sample

for these differences can be obtained by expressing them as a linear combination

δ(s) = Cρ(s)(2.22)

ρ(s) =


ρ
(s)
1

ρ
(s)
2

...

ρ
(s)
G


, C =


1 −1 0 . . . 0

1 0 −1 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 1 −1


.(2.23)

The distribution of all {δ(1), . . . , δ(S)} approximates the posterior distribution for the comparisons

between the correlations in ρ. Now, means, standard deviations, and credible intervals can be

computed directly for the posterior of δ. The subscripts of the G correlations can denote distinct

correlations within the same group, the same correlation for distinct groups, or distinct correlations

from distinct groups. Although we focused on pairwise differences here, this idea can be extended

to more general linear combinations.

An additional advantage of Bayesian analysis is the ability to “accept” parameter values that

provide support either for or against a null hypothesis. For instance, if one wants to conclude that

there is no difference between the magnitude of two correlations, then this can be done using a

formal procedure such as the region of practical equivalence (ROPE) approach (Kruschke, 2018).

The ROPE approach is similar in spirit to a frequentist approach wherein a prespecified parameter

value is rejected if it is not covered by a 100(1− α)% confidence interval. The difference is that a

range of parameter values (i.e., a ROPE) is stipulated where values in this range are treated as as

equivalent to a null value (e.g., 0). Once this region is established and the posterior distribution of
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δ has been computed, a 100(1−α)% credible interval (CrI) can be constructed for each comparison.

If the computed interval lies entirely inside the ROPE bounds, then the estimated parameter value

is treated as equivalent to the null value and conversely, if the interval completely excludes the

ROPE, then the null value is rejected. This is because a 100(1−α)% CrI contains the 100(1−α)%

most probable values (assuming a symmetric distribution). Thus, if the CrI is entirely inside of

the ROPE, then we can interpret the parameter value as being practically equivalent to the null

value and vice versa. A decision is withheld if there is overlap between the interval and the ROPE.

Adopting the framework described above permits researchers to utilize the BB to make meaningful

comparisons between associations using a variety of different correlation coefficients with the goals

of either parameter estimation, making decisions about a parameter value, or both.

2.2.6. Summary. In this section, we described how posterior distributions for several different

correlations can be obtained in a straightforward manner via the Bayesian bootstrap. The central

theme was that simulating posterior samples for correlations boils down to repeatedly calculating

weighted correlations where the weights are uniform Dirichlet distributed. In each iteration of the

bootstrap, the resulting weighted correlation constitutes a draw from the correlation’s posterior

distribution, and when done repeatedly, the distribution of the calculated statistics approximates

the posterior of interest. The main advantage of this method is that posterior inference for cor-

relations can be done “painlessly”. That is, obtaining BB estimates for the correlations does not

require specifying a prior distribution or complex sampling techniques. Altogether, the BB provides

a powerful tool for approximate Bayesian inference of popular correlation types in social-behavior

sciences.

2.3. Empirical Application

Below we discuss an empirical example where we illustrate how the BBcor2 package can be

applied to obtain and compare Bayesian bootstrapped correlations in practice. We utilize data that

were first analyzed in Šrol et al., 2021 to compare dependent correlations from the same sample.

The data were collected to study the negative social consequences of Covid-19 related conspiracy

beliefs. Slovakian participants (N = 501) completed survey items measuring their prejudiced

2The BBcor package can be downloaded from CRAN or from https://github.com/donaldRwilliams/BBcor.
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and discriminatory views against three social outgroups associated with the pandemic in Slovakia.

Specifically, data were collected on negative feelings, social distance, and discriminatory views

towards Chinese, Roma, and Italian people. Further, measurements were taken on the degree of

belief in general Covid-19 conspiracies (e.g., “Covid-19 is a biological weapon intended to eliminate

the overcrowded human population”) and Chinese-specific Covid-19 conspiracies (e.g., “the Chinese

created [SARS-CoV-2] as a biological weapon which then got out of hand”). As part of the analysis

in this study, the three measures of prejudice and discrimination were each correlated with the

measures of conspiracy belief, yielding six correlations per outgroup. The resulting correlations

were then compared using Steiger’s z-test (Steiger, 1980). For example, the correlation between

negative feelings towards Italians and general Covid-19 conspiracy beliefs was compared to the

correlation between negative feeling towards Italians and Chinese-specific Covid-19 conspiracies.

There are two details to note here. First, the z-test used to compare correlations makes the

assumption that the underlying data are Gaussian. Second, failing to reject the null hypothesis

does not provide support in favor of no difference (i.e., absence of evidence is not evidence of

absence). Thus, it may be desirable to use a method of comparison that accommodates a measure

of association more appropriate for Likert-type data such as the data collected (e.g., Kendall’s τ),

and that allows for statements in favor of the null hypothesis. This can easily be accomplished

with the Bayesian bootstrap methodology outlined in this article.

2.3.1. Calculating the correlations. We assume the reader to have some familiarity with

the R programming language (R Core Team, 2021). To begin, the BBcor package must be installed

and loaded, and the data must be read into R.

# install and load BBcor

install.packages("BBcor")

library(BBcor)

# read in data set

data("srol2021")

str(srol2021)

> ’data.frame’: 501 obs. of 11 variables:
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> $ neg_feelings_china : int 100 96 75 50 42 68 50 80 ...

> $ social_distance_china : num 7 7 5.33 2.67 1 ...

> $ discrimination_china : int 7 7 5 3 1 6 1 2 3 3 ...

> $ neg_feelings_italy : int 67 50 55 50 68 38 50 20 ...

> . . .

> $ discrimination_roma : int 7 5 3 3 1 7 1 2 2 3 ...

> $ china_Covid_conspiracy : num 2.5 4.25 3.25 2.25...

> $ generic_Covid_conspiracy: num 2.62 3.25 2.75 2.38 ...

The Bayesian bootstrapped Kendall’s τ correlation matrix for this data is trivially obtained via

the bbcor function:

bb_tau <- bbcor(srol2021, method = "kendall", iter = 1000, cores = 1)

bb_summary <- summary(bb_tau, ci = 0.9, decimals = 2)

Here, the bbcor function samples the posterior for the correlation matrix, and takes as argu-

ments the data, the desired correlation type, the number of samples to draw, and the number of

cores to use when parallel computing is employed. Printing the returned object outputs the mean

correlation matrix. Running summary on the returned object and specifying the desired credible in-

terval returns a data frame summarising the posterior with means, standard deviations, and bounds

for the credible intervals. For instance, previewing the summary object with head(bb_summary)

prints

> Relation Post.mean Post.sd Cred.lb Cred.ub

> 1 neg_feelings_china--social_distance_china 0.16 0.03 0.10 0.21

> 2 neg_feelings_china--discrimination_china 0.19 0.03 0.13 0.24

> 3 social_distance_china--discrimination_china 0.15 0.04 0.09 0.20

> 4 neg_feelings_china--neg_feelings_italy 0.43 0.03 0.38 0.49

> 5 social_distance_china--neg_feelings_italy 0.06 0.04 0.00 0.11

> 6 discrimination_china--neg_feelings_italy 0.17 0.03 0.11 0.22

Depending on the precision of of measurements being considered, it can be desirable to obtain more

than two decimal points (Cousineau, 2020). This can easily be done by adjusting the decimals

setting in the summary method. The posterior means for the correlations and respective intervals
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Figure 2.2. Output of the plot method for Bayesian bootstrapped (BB) correla-
tions obtained with the bbcor function. The red dots indicate BB posterior means
for the correlations and the bars denote their respective BB 90% credible intervals.

can easily be visualized using syntax from the ggplot2 library (Wickham, 2016). For example, if

we subset the data to only include the prejudice and discrimination measures for China and the two

conspiracy theory variables, then the following code returns a plot for the ten resulting correlations

which can be seen in Figure 2.2

library(ggplot2)

bb_tau_china <- bbcor(Covid_china_subset, method = "kendall")

plot(bb_tau_china) + theme_bw()

2.3.2. Analyzing comparisons. The Bayesian bootstrapped correlations can be compared

using the compare function. The correlations to be compared can be specified either using a

character string or by providing a contrast matrix as detailed in Comparing Correlations. For

example, if the focus is on comparing the correlation between negative feelings towards China and

belief in China-specific Covid-19 conspiracies to the correlation between negative feelings towards

China and belief in generic Covid-19 conspiracies, then one can specify the following,

comparison <- "neg_feelings_china--china_Covid_conspiracy > neg_feelings_china--

↪→ generic_Covid_conspiracy"

compare(comparison, obj = bb_tau_china)
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which yields a summary of the comparison when printed.

> Call:

> lin_comb.bbcor(lin_comb = lin_comb, obj = obj, ci = ci, rope = rope,

> contrast = contrast)

> ------

> Combinations:

> C1: neg_feelings_china--china_Covid_conspiracy > neg_feelings_china--

↪→ generic_Covid_conspiracy

> ------

> Posterior Summary:

>

> Post.mean Post.sd Cred.lb Cred.ub Pr.less Pr.greater

> C1 0.12 0.03 0.07 0.17 0 1

> ------

> Note:

> Pr.less: Posterior probability less than zero

> Pr.greater: Posterior probability greater than zero

Above, the comparison object is a string that states the comparison to be made is that

neg_feelings_china--china_Covid_conspiracy is greater than neg_feelings_china--generic

_Covid_conspiracy. This string is passed along to the compare function along with the name of

the object containing the correlations. The output displays several summary statistics for the pos-

terior of this comparison such as the mean difference, standard deviation, credible interval bounds,

and the proportion of posterior mass that is greater or less than zero. In this case, the difference

between the two correlations is 0.12, 90% CrI [0.07, 0.17], and the entirety of the posterior mass is

above zero.

Often, analysts are interested in making more than one comparison. For example, Šrol et al.

(2021) repeated the same comparison as above for each country (China, Roma, and Italy) and

for each measure of prejudice and discrimination. Thus, there were three comparisons made per
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country. To avoid tediously typing long character strings, it can be useful to specify a contrast

matrix to encode the comparisons of interest. For the subset of variables for China, we must specify

a 3× 10 matrix corresponding to the three comparisons and ten unique correlations. Additionally,

a region of practical equivalence (ROPE) may be stipulated as above, say [-0.10, 0.10]. In R, the

analogous code is written as follows

contrast_vec <- c(0, 0, 0, 1, 0, 0, -1, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, -1, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, -1, 0 )

contrast_mat <- matrix(constrast_vec, nrow = 3, ncol = 10, byrow = TRUE)

compare(obj = bb_tau_china, contrast = contrast_mat, ci = 0.9, rope = c(-0.10,

↪→ 0.10))

> ------

> Call:

> lin_comb.bbcor(lin_comb = lin_comb, obj = obj, ci = ci, rope = rope,

> contrast = contrast)

> ------

> Combinations:

> C1: C1

> C2: C2

> C3: C3

> ------

> Posterior Summary:

>

> ROPE: [ -0.1 , 0.1 ]

>

> Post.mean Post.sd Cred.lb Cred.ub Pr.in

> C1 0.12 0.03 0.07 0.17 0.2762
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Figure 2.3. Output from plotting comparisons with the compare function. The
histograms represent BB posterior samples for the comparisons, black dots indicate
the BB mean, and blue bars denote BB 90% CrIs. The dotted black lines capture
the bounds for the ROPE of [-0.1, 0.1].

> C2 0.06 0.03 0.02 0.11 0.9162

> C3 0.11 0.03 0.06 0.16 0.3544

> ------

> Note:

> Pr.in: Posterior probability in ROPE

In this output, there are three rows of summary statistics, corresponding to the three compar-

isons specified in contrast_mat. The column Pr.in contains the proportion of the posterior mass

contained in the ROPE. These combinations can also be visualized via a plotting method. If the

compare object is saved into an object named china_comparison, then calling

plot(china_comparison) produces the plot in Figure 2.3. As can be seen, the intervals for all

combinations overlap with the ROPE and thus the evidence is ambiguous as to whether these

correlations differ. This is a slightly different conclusion than the original analysis where the null
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hypothesis of no difference was rejected for all three combinations at an α = 0.05 level. The results

for these comparisons, along with the ones for Italy and Roma can be seen in Table 2.1.

China-specific covid-19 CTs Generic covid-19 CTs Mean Difference
Negative Feelings (China) 0.14 [0.09, 0.19] 0.02 [-0.03, 0.07] 0.12 [0.7, 0.17]
Social Distance (China) 0.25 [0.19, 0.30] 0.19 [0.14, 0.24] 0.06 [0.02, 0.11]
Discrimination (China) 0.15 [0.19, 0.20] 0.04 [-0.02, 0.09] 0.11 [0.06, 0.16]
Negative Feelings (Italy) 0.07 [0.02, 0.12] 0.06 [0.00, 0.11] 0.01 [-0.03, 0.06]
Social Distance (Italy) 0.22 [0.17, 0.28] 0.19 [0.14, 0.24] 0.04 [-0.01, 0.08]
Discrimination (Italy) 0.15 [0.10, 0.21] 0.13 [0.07, 0.18] 0.02 [-0.03, 0.07]
Negative Feelings (Roma) 0.06 [0.01, 0.12] 0.14 [0.08, 0.19] -0.07 [-0.12, -0.03]
Social Distance (Roma) 0.14 [0.08, 0.19] 0.14 [0.08, 0.19] 0.00 [-0.05, 0.04]
Discrimination (Roma) 0.16 [0.10, 0.22] 0.22 [0.16, 0.27] -0.06 [-0.11, -0.01]

Table 2.1. Bayesian bootstrapped posterior mean estimates and 90% credible in-
tervals (brackets) for Kendall’s τ correlations between measures of discrimination
and prejudice and belief in conspiracy theories.

Recall that the original analysis computed Pearson’s correlations, for which there are many

tests to probe the difference between two correlations (Diedenhofen & Musch, 2015). The data,

however, were measured using ordinal scales. As such, a measure of association like Kendall’s τ

may be more useful than a linear association, but this introduces a separate problem due to the

lack of a standard error for the difference between two Kendall’s τ ’s. In our example above, the BB

methodology was used overcome this issue as we trivially estimated and compared the Kendall’s τ

estimates.

Numerically, the computed correlations and their comparisons were similar to the original, but

the resulting interpretations differed. With respect to the magnitude of the associations, some

correlations were roughly the same as their Pearson’s counterparts, but the majority were slightly

weaker, with the differences between the Pearson’s and Kendall’s τ values ranging from 0.01 to 0.08.

Despite these discrepancies, the estimates for the magnitude of the differences were approximately

equal between the Pearson and Kendall’s correlations. On the other hand, the interpretation of

results between the z-test and the ROPE approach diverged. For example, the original analysis

failed to reject the null hypothesis for all three comparisons involving Italy. Again, this does not

allow statements to be made in support of equality between both correlations. In contrast, the

90% intervals for all three comparisons were trapped completely between [-0.1, 0.1] and under

this decision rule, we can conclude that there is evidence to support the respective correlations as
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practically equivalent. The credible intervals for the remaining comparisons all overlapped with

the ROPE and thus there is no decisive evidence for or against equality of the correlations. This

also differed from the original analysis in that the majority of these tests were rejected.

2.4. Discussion

In this article we aimed to show how the Bayesian bootstrap can be applied to obtain Bayesian

posteriors for correlation coefficients. We began with a concise introduction to the Bayesian boot-

strap and provided formulations to obtain Bayesian bootstrapped versions of the Pearson, Spear-

man’s, Gaussian rank, Kendall’s, and polychoric correlation coefficients. The main advantage of

the BB is that it considerably simplifies obtaining the posterior for the full correlation matrix. A

method for comparing correlations was then introduced based on the region of practical equivalence

(ROPE) approach (Kruschke & Liddell, 2018). In an empirical application, we demonstrate how

a typical analysis of correlations may be carried out using the BBcor package. We supplied R

code to 1) estimate and visualize posterior estimates for the correlations discussed in the paper

and 2) compare correlations using the ROPE approach and visualize the posterior for their differ-

ence. Consequently, this example also serves as a tutorial for readers who wish to implement the

methodology outlined in this article.

The methods we proposed in this paper contribute to two bodies of literature. The majority of

work in psychology examining correlations within a Bayesian framework has focused on hypothesis

testing with the Bayes factor and thus attention is typically restricted to estimating one or two

correlations at a time instead of the full correlation matrix. A complementary view in psychology

has called for an increased focus on parameter estimation (Kruschke & Liddell, 2018; J. N. Rouder

et al., 2018). Introducing the BB for correlations adds to the literature on Bayesian inference

of correlations with a focus on parameter estimation because it is a flexible method capable of

estimating the full correlation matrix for a variety of correlation types, and can easily be extended

beyond those examined in this paper. Second, a considerable amount of work has been done

examining methods for comparing correlations, but this work is focused almost exclusively on the

Pearson correlation. By providing a framework wherein a variety of correlations may be compared,
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the present article also adds to this literature. This is especially valuable for correlations involving

ordinal data because of their ubiquity in the social-behavioral sciences.

In our view, the BB is a valuable tool that is best applied when the goal at hand is explicitly

parameter estimation as opposed to Bayesian hypothesis testing. Much work at the intersection

of psychology and Bayesian statistics has held an eye towards the Bayes factor (BF) for the latter

purpose. Although BFs can be derived using the BB posterior (Newton & Raftery, 1994), it is

suboptimal because it depends upon the harmonic mean; a method long known to be problematic

(Diciccio et al., 1997; Lenk, 2009). If one wants to use the BB to make a decision with respect to a

null parameter value, then we view the ROPE approach as a reasonable way of doing so. Moreover,

one may want to use an alternative, informed prior when testing a hypothesis. This is challenging

with the the Bayesian bootstrap because many hyperparameters must be introduced in order to

accomplish this (e.g., Poirier, 2011). Thus, the BB shines in the exploratory stages of research

because it employs an uninformative prior and can be used to quickly estimate the posterior for

the full correlation matrix.

It is important to keep in mind certain aspects of the BB in practice. Practitioners should

be wary of applying the BB to small samples (e.g, n = 10), as the resulting credible intervals

may be more narrow than those obtained, say, with an MCMC Bayesian analysis. The width of

the intervals are crucial when using the ROPE approach as overly narrow intervals may result in

overconfident inferences. This may be due to the questionable assumption pointed out by Rubin

(1981) that values for unobserved data receive no prior, and hence, no posterior, support (but see

Hjort, 1991). Thus, if a sample does not include observations from the tails of the population under

study (as might often be the case in small samples), then the variance of the BB posterior may be

underestimated. However, as n increases, credible intervals based on the BB posterior will converge

on those obtained using traditional Bayesian techniques (assuming a uniform prior).

Further the BB diverges from traditional Bayesian methods in some important ways. Most

notably, no prior is explicitly elicited by the analyst. Although the subjective choice of specifying

a prior can be seen as a core component of Bayesian inference (Savage, 1954), it is often desirable

to eliminate this subjectivity in prior specification (Berger, 2006; Ghosh, 2011). It is interesting to

note that Bayesian methods are often favored because they are more consistent with the likelihood
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principle (Berger &Wolpert, 1988): all the evidence in a sample that is relevant to model parameters

is contained in the likelihood function. But the BB violates this principle because the estimation of

parameters relies on aggregating datasets which were not observed. An advantageous difference of

the BB lies in the computational speed. Many common methods for Bayesian inference are based on

MCMC sampling. Because these draws are serially dependent, many samples are typically required

for a consistent estimate of the posterior. On the other hand, samples drawn using the BB are

independent and thus fewer of them are required. Despite these differences, the BB is a reliable

procedure for obtaining a valid posterior distribution.

2.4.1. Conclusion. We discussed a generic and simple approach to obtaining posterior distri-

butions via the Bayesian bootstrap (BB) for a variety of correlation coefficients. It is generic because

it can be applied broadly to different measures of associations and simple because it amounts to

calculating weighted correlations. We further discussed a flexible approach to comparing correla-

tions, or linear combinations thereof. Altogether, the BB provides a powerful tool for approximate

Bayesian inference of popular correlation types in social-behavior sciences.
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CHAPTER 3

Who Is and Is Not “Average”? Random Effects Selection with

Spike-and-Slab Priors

Mixed-effects models are being increasingly used in the social-behavior sciences. Their use spans

many areas in psychology from observational inquiries that track individuals over an extended

period of time, to controlled settings that can include hundreds of experimental trials for each

person. Their rise in popularity is mainly due to their ability to partition and account for different

sources of variation, for instance, in the experimental effect (Aarts et al., 2014), stimulus type

(Wolsiefer et al., 2017), or group membership (Raudenbush & Bryk, 2001). Adequately accounting

for these sources of variability leads to the desired inference by ensuring that nominal error rates are

maintained (Aarts et al., 2014; Barr et al., 2013; Judd et al., 2012; Williams et al., 2017; Wolsiefer

et al., 2017). The idea is that variance components are often considered nuisance parameters that

must be controlled or corrected for in order to draw valid inferences. Consequently, the primary

inferential targets from mixed-effects models tend to be concerned with population averages, or

fixed effects, while variance components play a secondary role. For instance, in a review of papers

employing linear mixed-effects models, it was found that less than 10% reported the random effect

variances (Meteyard & Davies, 2020), and similarly, only 32% of papers using generalized mixed

models reported these variance components (Bono et al., 2021). On the other hand, however, these

same sources of variations can provide valuable insights into individual differences in psychological

processes (e.g., Haaf & Rouder, 2017; S. Liu et al., 2012; Williams & Mulder, 2019)

When individual differences are of central interest, it is customary to test the variance of the

random effects. For example, in determining whether there is variation between individuals in

a random intercepts model, one would fit two (nested) models — one with and one without the

random intercepts — and perform a likelihood ratio test. If the test is not rejected, one would

settle with the simpler model without the random intercept term (i.e., no individual differences).
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Conversely, if the test is rejected then the random effect term is retained in the model. In order

to explain the individual differences, the latter scenario may be followed up with the inclusion of

covariates. In this work, we find a common ground between these two options. Because some

individuals are best described by the fixed effect while others may differ drastically from it, we

propose a method wherein some individual effects are allowed to deviate from the average and

others are not. For example, it may be useful to describe which, if any, individuals depart from a

typical learning trajectory (Estrada et al., 2018). As such, we propose a method that offers a more

nuanced view of individual differences compared to the classical mixed effect vs fixed effect duality.

The need for more refined views of individual differences is reflected in recent efforts to ex-

tend methodological approaches for understanding individual differences. For example, Grice et al.

(2020) point out that even though study results, when taken in aggregate, reflect theoretical expec-

tations, it may be that only a few individuals actually behaved in the expected manner. One could

imagine that an intervention is shown to alleviate depression on average, but this does not necessar-

ily imply that the intervention is effective for a given individual. As a step towards understanding

whether individuals behaved in a hypothesized manner, they propose adopting person-centered

effect sizes, wherein effects are computed for each individual. These effects can in turn be used to

quantify the proportion of observed effects that were in line with the hypothesized outcome.

In a similar spirit, J. N. Rouder and Haaf (2020) advocate for a Bayesian model comparison

approach to distinguish situations where: all individuals have true effects in the same direction,

individuals have true effects in differing directions, or all individual effects are equal to an average

effect (also see Haaf & Rouder, 2017). This method involves fitting mixed-effects models that reflect

each of these settings and comparing them. The underlying aim is to determine if there is support

for individual differences in the data, and if so, which model best describes them

To date, however, no general approach has been provided to formally address the individual in

individual differences. For instance, the person-centered effect sizes are general in that they can be

applied across a wide variety of settings, but are computed in a somewhat ad-hoc manner with a

focus on description. The approach in J. N. Rouder and Haaf (2020) allows analysts to quantify

evidence for whether individual differences align with a particular pattern, but ultimately relies on
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global descriptions of individual differences in linear models. Thus, it is desirable to have a frame-

work that fulfills the desiderata of being applicable across the multitude of settings encountered

in psychological science while simultaneously allowing researchers to rigorously evaluate individual

effects.

3.0.1. Main Contribution. The main contribution of this work is the introduction of a

Bayesian mixed-effects framework that may allow novel inferences in individual differences research.

In mixed-effects models, there are fixed effects (averages across individuals), and there are random

effects (deviations away from those averages). The main advantage of our proposed methodology is

that it allows a more nuanced view of individual differences by quantifying evidence for or against

individual random effects. In addition, because it can be fit using standard statistical software, it

is flexible enough to be applied to a broad class of models (i.e., generalized linear mixed models).

With this framework we explicitly address the individual by providing a tool that is capable of

answering which individuals are “average” and which ones are not. Intuitively, if β is a fixed effect,

θj is the corresponding random effect for the jth individual, and βj = β + θj is the total effect for

the jth individual, then the problem we are interested in can be thought of as evaluating whether

βj = β or βj ̸= β. As for implementation, the models we describe in this paper can easily be fit in

the common programming languages R (R Core Team, 2021) and Python (Van Rossum & Drake,

2009), or by using the R package SSranef1.

To answer the question of who is “average”, we build upon spike-and-slab priors for Bayesian

variable selection (George & McCulloch, 1993; Kuo & Mallick, 1998; Mitchell & Beauchamp, 1988).

Traditionally used in the canonical regression setting to select predictors that are likely to have

a non-zero effect, our innovation is to apply the spike-and-slab to select which random effects

are likely non-zero in a mixed-effects model. A similar approach has been applied in psychological

settings (e.g., Williams et al., 2021), but was restricted to random intercepts in linear mixed models

whereas, in practice, the primary interest is often the random slopes. Further, it is common to

estimate models with non-Gaussian likelihoods (e.g., mixed-effects logistic regression). Thus, a

1The SSranef R package can be downloaded from GitHub at https://github.com/josue-rodriguez/SSranef. An
example illustrating how to use SSranef can be found in the Appendix.
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novel aspect of this work is the extension of the spike-and-slab to random effects on slopes and

generalized linear mixed models.

3.0.2. Overview. In what follows, we first present a motivating example where we introduce

the central ideas underlying the spike-and-slab prior in the context of a generalized mixed-effects

model. We show the value in using the spike-and-slab on random intercepts and that it is trivial

for this approach to be applied to a variety of model types. We then demonstrate how the idea

of random effect selection can be extended to random slopes. This allows researchers to, for

example, answer how many individuals differed from a common experimental effect. This approach

is illustrated in two empirical psychological data sets where we show how individual differences

in the random slopes can be comprehensively disentangled. In two simulation studies, we assess

the ability of our the proposed method to correctly identify (non)-average individuals without

compromising the mixed-effects estimates. We conclude with a discussion on the implications of

the current work and future directions.

3.1. Background

We employ the spike-and-slab approach for variable selection. In this approach, the selection

problem is formulated in terms of a two-component mixture: 1) a ‘spike’ that is either a distribution

centered narrowly around zero (George & McCulloch, 1993, 1997) or a Dirac measure at zero (Kuo

& Mallick, 1998; Mitchell & Beauchamp, 1988) and 2) a diffuse ‘slab’ component surrounding zero.

The former allows the shrinkage of small effects to zero and the latter prevents heavy shrinkage of

larger effects. A central aspect of this approach is the addition of an indicator variable (Kuo &

Mallick, 1998), which allows for switching between the spike and the slab throughout the MCMC

sampling process (i.e., transdimensional sampling; Heck et al., 2019). The proportion of MCMC

samples spent in each component can then be used to approximate the respective posterior model

probabilities or the marginal Bayes factor for whether an effect should be included. In the context

of random effects selection, this Bayes factor expresses the evidence for whether the random effect

for a given individual should be included in the model. Interested readers can find an excellent

introduction to the spike-and-slab prior for psychology in J. N. Rouder et al. (2018) and in-depth

overview of its various specifications in O’Hara and Sillanpää (2009).
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Importantly, much of the literature on spike-and-slab priors has been concerned with model

selection and comparison (George & McCulloch, 1997; O’Hara & Sillanpää, 2009). This is distinct

from our application in this paper as we do not focus on model selection in a traditional sense. Our

goal is not to make judgments with respect to quality of fit among models with different variables,

prior distributions, or functional forms, but rather we seek to use spike-and-slab priors as a means

of understanding which individuals’ effects deviate from a population-average estimate.

3.1.1. Illustrative Example. We begin our exposition by considering the work of Frühwirth-

Schnatter and Wagner (2011), who used spike-and-slab priors with the overarching goal of

[making] unit-specific selection of random effects in order to identify units which

are ‘average’ in the sense that they do not deviate from the overall mean. (p. 2)

Specifically, they provided examples of random effect selection with a focus on logistic models.

However, their approach relied on custom MCMC sampling schemes, rendering the techniques in-

accessible to all but those who are comfortable implementing the algorithms on their own. Williams

et al. (2021) introduced the idea of selecting unit-specific random effects to psychology with the

goal of determining individual reliability, but they did not consider models outside of a classical

random intercepts model. Because, to our knowledge, these are the only works to consider random

effect selection, we view this as a good place to begin our exposition of the spike-and-slab. Using

a random intercepts logistic regression model, we highlight key ideas relevant to our approach for

random effect selection.

3.1.1.1. Model Formulation. For our illustrative example we use data from a linguistics exper-

iment that were first reported in Caplan et al. (2021, Experiment 1). The participants (N = 128)

in this study were presented with acoustically ambiguous audio involving minimal pairs of words

(e.g., time/dime) along with disambiguating information that biased the audio to be interpreted

as /t/ or /d/. The outcome for the ith trial and jth person is coded as a 1 or a 0 and represents

whether participants heard a /t/ (1) or a /d/ (0) for a given word during the test phase (see orig-

inal text for full details). For illustrative purposes, we adopt a simpler version of the full analysis

in that we only consider a random intercept without covariates or additional random effects. To

facilitate spike-and-slab selection, we employ the non-centered parameterization (Papaspiliopoulos

et al., 2007), that is,
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yij ∼ Bernoulli (πj)(3.1)

logit (πj) = α+ τzj

α ∼ Normal(0, 1)

τ ∼ St+(ν = 3, 0, 1)

zj ∼ Normal(0, 1),

where yij is the outcome, α is the overall intercept, τ is the standard deviation of the random effects,

zj is a standardized effect size, and the product τzj constitutes the random effect. Here, we are not

modeling the random effects directly, but rather inferring them from a latent variable zj . There our

two main reasons for this: 1) it may lead to more efficient sampling of the posterior and 2) it allows

us to think about the random effects in terms of standardized effect sizes. Further, we set standard

normal priors for α and zj , and a half Student-t distribution with three degrees of freedom for τ .

Our choice for the half Student-t prior distribution stems from it having better properties than

common alternatives for variance parameters in hierarchical models (e.g., inverse-gamma Gelman,

2006). The model in (3.1) estimates the baseline log-odds of hearing a /t/ (intercept), but allows

for each individual to deviate away from it (random effect).

In such an analysis, it might be natural to ask whether each individual does indeed deviate from

the overall log-odds, α, in hearing a /t/. This question can be addressed by adding an indicator

variable γj ∈ {0, 1} to the above model that governs, for each individual, whether the random

effect is in the spike (γj = 0) or the slab (γj = 1) portion of the model in each MCMC iteration.

Introducing this variable only requires the following modifications to (3.1)

logit (πj) = α+ τ (zjγj)(3.2)

γj ∼ Bernoulli (δ)

while everything else remains the same. In (3.2), δ represents the prior inclusion probability, or

the a priori probability that the jth random effect is non-zero. Choosing δ = 0.5 expresses a lack of

a priori preference for whether a random effect should be included or excluded, and it is the choice

58



we make throughout this article. Notice that when γj = 0, the random effect for the jth individual

random effect drops out of the model, and when γj = 1, it is retained. If there is prior information

that indicates whether individuals are more or less likely to deviate away the average, then this

information can be included in the analysis by modifying δ to be greater than or less than 0.5.

The proportion of MCMC samples in which γj is equal to one is referred to as the posterior

inclusion probability (PIP) of the jth random effect,

Pr (γj = 1|Y) =
1

S

S∑
s=1

γ
(s)
j ,(3.3)

where s = 1, . . . , S indexes the MCMC samples and Y denotes the data. When there is strong

support for including the jth random effect, its PIP will be large, and when there is little support for

inclusion, its PIP will be small. PIPs of 0 and 1 indicate complete posterior support for excluding

and including the jth random effect, respectively. Additionally, Bayes factors (Kass & Raftery,

1995) can be computed based on the PIPs. Assuming equal prior odds, the Bayes factor in favor

of the random effect being non-zero rather than zero can be calculated as

BF10 =
Pr (γj = 1|Y)

1− Pr (γj = 1|Y)
.(3.4)

The ability to compute posterior inclusion probabilities and Bayes factors allows for the direct quan-

tification of evidence for whether an individual’s baseline log-odds are different than the “average”

baseline log-odds of hearing a /t/.

Although it is not the only way to formulate a spike-and-slab prior in a Bayesian model (O’Hara

& Sillanpää, 2009), our approach carries some distinct advantages. First, by using a point-mass at

zero for the spike instead of a continuous distribution with small variance, we explicitly consider

whether a given random effect is equal to zero instead of just nearly zero. Further, the prior

probability of drawing a one for γj (i.e., the prior inclusion probability) is fixed at 0.5. This

is equivalent to setting equal prior odds for whether a random effect is non-zero or zero, and

simplifies the expression for the Bayes factor. Note that allowing the prior probability δ to be a

random variable by endowing it with a prior (e.g., Beta) may result in superior selection for point-

mass spikes (Ley & Steel, 2009). For these reasons, the above formulation of the spike-and-slab is

the one we use throughout the paper.
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3.1.1.2. Software and Estimation. We fit the model using the JAGS language in R (Plummer,

2003) because of its ability to easily fit spike-and-slab models (Ntzoufras, 2002; O’Hara & Sillanpää,

2009)2. The fitted model used four chains of 25,000 iterations after a burn-in period of 5,000

iterations which resulted in a total of 100,000 samples from the posterior distribution. This number

of samples provided a good quality of the parameter estimates (all R̂s = 1; Brooks & Gelman, 1998).

3.1.1.3. Results. The results are displayed in Figure 3.1. Panel A shows the prior distribution

for the random effects and Panel B shows the posterior for the random effect of the 56th and 78th

participants, respectively. Note that the spike (black arrow) and slab (blue bars) both constitute

roughly half of the prior density. Panel C displays the point estimates of the random effects for all

128 participants and their respective 90% credible intervals (CrIs). The individuals from panel B

are represented by the green (participant 78) and orange (participant 56) dots.

Recall that the goal of fitting this model was to determine the evidence for whether a given

individual deviates from the overall log-odds, or intercept. If an individual does not differ from

the intercept, then most of the of posterior mass should be in the spike for the random effect. If

an individual does differ from the intercept, then there should be a lot of posterior mass in the

slab. This can be clearly seen in Figure 3.1 where most of the posterior mass is in the spike for

participant 56 and, conversely, none at all for participant 78. For the former, there was a 0.23

posterior inclusion probability, or a Bayes factor of roughly 3 in favor of the spike. This can be

considered moderate evidence in favor of the participant being “average” (Lee & Wagenmakers,

2013). For the latter, the posterior inclusion probability was 1 and is equivalent to a Bayes factor

of infinity that this individual differs from the “average”.

The shapes of these posteriors have a straightforward relationship with the size of the random

effect. This correspondence is shown in Figure 3.1 (panel C) where the orange dot (participant 56)

is near zero and the green dot (participant 78) is far away from zero. This makes sense intuitively;

if a random effect is near zero, then there will be little to no evidence that a participant differs

from the intercept, and conversely, there will be stronger evidence that a participant differs from

the intercept with larger random effects.

2All code to reproduce the analyses and figures in this paper are available on the Open Science Framework at
https://osf.io/n2z49/.
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Figure 3.1. A) The point-mass spike-and-slab prior distribution. The spike (ar-
row) and the slab (blue bars) each take up half the prior density. When a random
effect is sampled from the spike, it is zero and the effect for that individual is equal
to the fixed effect. When it is sampled from the slab, it will take a non-zero value
and the individual effect will deviate from the fixed effect. The proportion of MCMC
iterations that a random effect is sampled from the slab is called its posterior in-
clusion probability (PIP). B) The posterior distribution for the random effects of
the 56th and 78th participants. For the former, the majority of the posterior mass
is in the spike (PIP = 0.23) where there is little mass in the slab (orange bars).
For, the latter the entire posterior is in the slab (green bars, PIP = 1). Thus, par-
ticipant 56 can be considered “average”, and participant 78 can be considered not
“average”. C) Posterior means and respective 90% credible intervals for the random
effects. The orange point (participant 56) is centered near zero and the green point
(participant 87) is far from zero. This matches the corresponding posterior mass in
the spike for each of these random effects.

3.1.1.4. Summary. The purpose of this illustrative example was to build the foundation for the

following methodology. We highlighted the central idea behind the spike-and-slab prior, and in

particular, how it can be leveraged to select individual random effects. The results indicated that

this methodology can be profitably applied to determine which individuals differ from the overall
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intercept in a logistic regression setting. The remainder of this paper will extend this idea to include

random slopes to determine whether individuals differ from the average experimental effect.

3.2. Extension to Random Slopes

In psychology, it is more common for the random slopes to be of focal interest, not the random

intercepts. The reason for this is that the slopes often corresponds to the effect of condition or

manipulation in experimental settings. Accordingly, random effects in the slope encode individual

differences in experimental effects. Thus, we seek to extend the application of the spike-and-slab

prior to the random effects in slopes. Placing the spike-and-slab on the slopes allows evidence to

be obtained for which individuals differ from the average experimental effect and which do not. As

above, our exposition of this extension will be through applied examples.

It has recently been argued that there is low reliability in popular cognitive tasks for studying

individual differences (Hedge et al., 2018; J. N. Rouder et al., 2019). The main explanation for low

reliability among such tasks is that there exists little individual differences. In this context, indi-

vidual differences are defined in reference to the ratio of between-subject variance to total variance.

In what follows, we are not interested in individual differences in this sense, but whether there are

individual differences in these tasks with respect to who deviates from the overall experimental

effect, and then determining the kind of insights that may follow.

3.2.1. Empirical Application. We apply the proposed methodology to data from two clas-

sical inhibition tasks. These data were first analyzed in Hedge et al. (2018) and again in J. N.

Rouder et al. (2019).

3.2.1.1. Dataset 1: Stroop task. Participants (N = 47) responded to the color of a centrally

presented word which was red, blue, green or yellow. The word could be the same as the font color

(congruent condition), different from the font color (incongruent condition), or one of four non-

color words (neutral condition). Each participant completed 240 trials for each condition with the

primary outcome being reaction time. For illustrative purposes, we focus simply on the congruent

and incongruent conditions.

3.2.1.2. Dataset 2: Flanker task. The same 47 participants responded to the direction of a

centrally presented arrow (left or right). On each trial, the central arrow was flanked above and
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below by two other symbols. Flanking stimuli were arrows pointing in the same direction as

the central arrow (congruent condition), arrows in the opposite direction as the central arrow

(incongruent condition), or straight lines (neutral condition). Again, each participant completed

240 trials for each condition and the primary outcome was reaction time. As above, we only give

consideration to the congruent and incongruent conditions.

3.2.1.3. Model Formulation. Because these tasks are similar both in what they are thought to

measure and in their design, each dataset contains the same variables on which we focus: outcome

(reaction time) and condition (in/congruent). Accordingly, we define a single model formulation

that can be seamlessly applied to each dataset without modifying anything except for the data.

For the ith trial and the jth person, we can define the likelihood for the reaction time as

yij ∼ Normal
(
αj + xijβj , σ

2
)

(3.5)

αj = α+ θ1j

βj = β + θ2j ,

where for the jth person, αj is the random intercept and encodes the average response time for the

congruent condition, and βj is the random slope which captures the difference in response time in

the incongruent condition, relative to the congruent condition. The term xij encodes the condition

(0 = congruent; 1 = congruent), and σ2 is the residual variance. The terms θ1j and θ2j indicate

the random effects for the intercept and slope, respectively.

For the model parameters defined in (3.5), we set the priors as follows:

α, β ∼ Normal (0, 1)(3.6)

θj ∼ Normal(0,Σ)

Σ = τΩτ

Ω ∼ LKJ (η = 1)

σ, τ11, τ22 ∼ St+(ν = 3, 0, 1).
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Here, we place uninformative normal priors over the fixed effects and a multivariate normal prior

with covariance matrix Σ for the random effects. We model the covariance matrix using the

separation strategy discussed in Barnard et al. (2000) where Ω is a 2 × 2 correlation matrix of

the random effects and τ is a 2 × 2 diagonal matrix whose elements are the standard deviations

of the random effects. The prior for the correlation matrix is the LKJ distribution (Lewandowski

et al., 2009) and is governed by a single parameter η. Setting η = 1 places a uniform prior over

all correlation matrices. We set Half Student-t priors for all variance parameters for the reasons

discussed in the Illustrative Example.

Of central interest is the parameter βj , which corresponds to the experimental effect for the

jth person. Recall that we want to know whether each individual differs from the common effect,

β, and that we can use a spike-and-slab prior to answer this question. Thus, we can modify the

above to include a spike-and-slab prior on the random slopes

βj = β + θ2jγj(3.7)

γj ∼ Bernoulli (δ) ,

where δ = 0.5 and everything else remains the same.

3.2.1.4. Model Selection. Up to this point, we have not discussed a decision rule for actually

determining which individuals differ from the average effect. This is because Bayesian inference is

not focused on making discrete choices, but rather considering the weight of evidence (Morey et al.,

2016). In any case, there are times when it is desirable to do so. For instance, in addition to re-

porting random effect variances, one can report for example that 30% of the random effects differed

from the average effect. Reporting such a number is in the same spirit as the metrics described in

Grice et al. (2020), but supported by formal evidence (i.e., posterior inclusion probability). This

might be especially insightful in situations with low between-person variance, a scenario that typ-

ically implies a lack of individual differences. This type of information can also be useful in other

fields such as clinical or educational psychology, where one can identify a subset of individuals who

respond differently to an intervention compared to the average response. Identifying individuals

who display unusual behavior via random effects can be extended to models of variability as well
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(e.g., Rast & Ferrer, 2018). For example, in cognitive aging research, random effects in the residual

variance can be used to capture differences in behavioral “consistency” of cognitive ability (Rast

& Zimprich, 2011; Watts et al., 2016). Here, identifying individuals with above or below average

residual variance could serve as an early warning sign to the onset of Alzheimer’s Disease (Lövdén

et al., 2013; MacDonald et al., 2008).

Because in our above example we place the spike-and-slab prior on N = 47 random effects,

there are 247 distinct combinations of random effects that can be considered for inclusion in the

final model. That is, there are 247 possible models from which to choose. Thus, the issue that

presents itself is how to choose which model should be used to determine who is “average”. An

intuitive choice would be to select the highest probability model (HPM), or the model containing the

combination of random effects selected most frequently throughout the MCMC sampling process.

In fact, it is the median probability model (MPM, Barbieri & Berger, 2004; Barbieri et al., 2021)

that is more often considered. The MPM, which is used in the present paper, is defined to be

the one including only those random effects with posterior inclusion probabilities (Equation 3.3)

of at least 0.5. Several motivations underlie the MPM, including that it is the best single-model

approximation to Bayesian model averaging and it is optimally predictive for linear models with

respect to squared error loss under orthogonal designs. This does not mean the HPM should

never be used, however. Indeed, the HPM can be used when the goal is explicitly to compute a

Bayes factor of interest for hypothesis testing. That is, if one has a priori predictions about which

individuals differ from the fixed effect. Further, once individuals have been classified as “average”

or not, then it is straightforward to compute the proportion of the sample that differed from the

common effect.

3.2.2. Software and Estimation. We fit the model above to both the Stroop and Flanker

data using the pymc3 (Salvatier et al., 2016) package in the Python programming language (Van

Rossum & Drake, 2009). This was primarily because it allows the use of more efficient MCMC

sampling schemes (e.g., Hoffman & Gelman, 2011) while retaining the ability to accommodate the

point-mass spike-and-slab prior3. The fitted models used four chains of 10,000 iterations after a

3This model converged in JAGS without issues, but we fit it in pymc3 to demonstrate how to employ these models
when more efficient samplers are desired.
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tuning period of 2,000 iterations which resulted in a total of 40,000 samples from the posterior

distribution. This number of samples provided a good quality of the parameter estimates (all R̂s

= 1).

3.2.2.1. Results. The main results are displayed in Figure 3.2. Panel A shows the point esti-

mates of the slope random effects for all 47 participants and their respective 90% CrIs. Throughout

the rest of this section, we will simply use “random effects” as shorthand for the slope random ef-

fect. Panel B displays the posterior inclusion probabilities (PIPs) as a function of the magnitude of

the random effect. Upon visual inspection, it is easy to see which individuals have more evidence

supporting that they differ from the average experimental effect. The PIPs make a V-shape in that

they decrease as the magnitude of the effect approaches zero and increase again as they move away

from zero. This is again unsurprising. Individuals with larger random effects should have more

evidence to support that they differ from the average effect.

For the Stroop task, the mean posterior estimate for the overall experimental effect, β, was 0.07

and had a corresponding 90% CrI of [0.062, 0.076]. That is, on average, participants’ reaction time

was slower by 0.07 seconds in the presence of incongruent stimuli. Notably, the mean posterior

estimates for the random effects ranged from -0.02 to 0.07, and their corresponding PIPs ranged

from 0.22 to 0.99 (Bayes factors factors of 0.28 to over 13,000), in support of including the random

effect. This spread of PIPs indicates considerable fluctuations in the level of support for whether

individuals differ from the average experimental effect. They span from “moderate” evidence in

favor of belonging to the average experimental effect on one end to “extreme” evidence in favor

of different from it on the other (Lee & Wagenmakers, 2013). This spread was even wider in the

Flanker task, where the PIPs for covered values from 0.19 to 1.

As previously mentioned, it may sometimes be desirable to categorize individuals as being

“average” or not. When using the median probability model, individuals with PIPs over 0.5 can be

thought of as being different from the average effect. In Figure 3.2 (Panel B), these two groups are

separated by the dark dotted gray line. It is intriguing that for both tasks, quite a few points lie

above this line. Specifically, 12 and 13 participants are above this line for the Stroop and Flanker

tasks, respectively4. In other words, there is evidence that despite the belief that few individual

4We also examined PIP cut-offs of 0.75 and 0.9 (light gray dotted lines). For the former, this corresponds to 11% of
the sample differing from the average experimental affect and roughly 7% for the latter.
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Figure 3.2. A) Posterior means and corresponding 90% CrIs for the random effects
for the slopes (or experimental effects) in the Stroop and Flanker data, sorted in
ascending order. B) The corresponding posterior inclusion probabilities or each
random effect. The dark gray dotted line indicates a PIP of 0.5. The two light gray
lines denoted PIPs of 0.75 and 0.90. Random effects that are closer to zero have
whose posterior estimates have lower PIPs. If one were to use the median probability
model as a decision then everyone above the dotted gray line would be considered
as different than the “average”. For both the Stroop and Flanker tasks, over 25% of
the points lie above the dotted line. This clearly demonstrates individual differences
in these tasks. Across both panels, distinct colored points refer to the same random
effect.

differences exist in these kind of data, over a quarter of the sample diverged from the average

experimental effect in each task.

Taken together, these results not only attest to the existence of individual differences in these

two experiments, but speak to which individuals (and how many) differed from the average effect.

3.2.2.2. Individual Performance Across Tasks. The Stroop and Flanker tasks have long been

considered to be measures of inhibition (Friedman et al., 2004). It is consequently natural to
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think that individuals who differ from the average experimental effect in one task should also differ

from the average effect in the other. In contrast, recent work has suggested that the correlations

among inhibition tasks are low (Hedge et al., 2018; J. N. Rouder et al., 2019). That is to say, that

performance on a given task is not necessarily predictive of performance on another. Because we

examine individual differences in the sense of differing from a fixed effect and not in terms of the

amount of variance, we look at whether the PIPs were comparable for individuals across task. Note

that it would be possible to fit a multivariate model with the reaction times for both tasks as the

outcome, and directly apply the spike-and-slab formulation to the random slopes for each task. In

order to keep the exposition manageable, we opt for simple description.

Figure 3.3 displays a funnel plot containing the PIPs of the random slope effects for individuals

on both tasks, sorted in descending order of PIPs for the Stroop model. The idea here is that

if performance on these tasks are related, then we should see a funnel shape that starts wide at

the top (i.e., individuals who had large PIPs in both tasks) and becomes narrow at the bottom

(i.e., individuals who had small PIPs for both tasks). However, upon visual inspection, there is

no apparent relation between the PIPs. For instance, participant 24 had a PIP of 0.99 for their

random effect in the Stroop model, but a PIP of 0.31 in the Flanker model. On the other hand,

Participant 35 had PIPs of near 1 on both tasks. Hence, whether an individual differs from the

average experimental effect in one task may not be predictive of whether they differ from the

average experimental effect in another.

3.2.2.3. Posterior Predictive Check. Lastly, an important aspect of Bayesian inference is model

checking. This is typically done with the posterior predictive distribution (Gelman et al., 1996;

X.-L. Meng, 1994). The main idea behind a “posterior predictive check” is that data generated

from the model should resemble the observed data. The posterior predictive check thus entails

generating datasets from the predictive distribution of the fitted model and comparing them to the

observed dataset in order to evaluate the model’s goodness-of-fit. Importantly, posterior predictive

checks should capture aspects of the model which are of particular interest (Gelman & Hill, 2006,

p. 514).

A principal quantity here is the Bayesian p-value, which can be defined as the proportion

of times a quantity of interest calculated from the posterior predictive distribution exceeds the
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Figure 3.3. Funnel plot of the PIPs in the Stroop and Flanker tasks. For each
individual, the orange bar indicates the PIP for their random effect on slope in the
Stroop task. The opposite-side blue bar indicates that individual’s PIP for their
random effect on slope in the Flanker task. Because the plot does not produce a
funnel shape, this suggests that whether an individual deviated from the average
experimental effect in one task may not be predictive of whether they deviated in
the other. Hence, although there were individual differences insofar as who was
“average” in each task, it seems that reliability was low.

observed quantity. If the model is adequately capturing the data, then the p-values should be

relatively close to 0.5 (Gelman, 2013). Values near 0 or 1 would indicate systematic misfits of

the model to the data. Because the models we fit are focused on the mean differences in reaction

time between two experimental conditions, as opposed to, say, the shape of the reaction time

distributions, we perform a posterior predictive check on the subject-specific mean differences. If

the model adequately captures these mean differences, the p-values should be dispersed around 0.5.

For each of 2,000 draws from the predictive distribution, we calculated the mean difference

in reaction time between conditions for each of the 47 subjects. The resulting values were then

compared to the empirical mean differences. The results of the posterior predictive checks are

shown in Figure 3.4. The empirical mean differences are represented by red points and posterior

predictive mean differences are indicated by the black points. The numbers on the right-hand

side are the corresponding Bayesian p-values. Across both tasks, the p-values span from 0.16 to

0.84, with most of them between 0.25 and 0.75. These results can be viewed as evidence that the
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Figure 3.4. A posterior predictive check on the mean difference in reaction time
between the congruent and incongruent conditions for each individual in the Stroop
and Flanker tasks. The red points indicate the observed mean difference in reaction
time and the black dots are draws from the posterior predictive distribution. The
numbers on the right-hand side of each panel correspond to the Bayesian p-value for
these predictive checks. Bayesian p-values that are closer to 0.5 than 0 or 1 suggest
the model is successfully capturing the mean differences. As can be seen, the spike-
and-slab formulation for these models adequately captures the mean differences.

fitted model adequately captures mean differences between conditions in the data and “passes” this

posterior predictive check.

3.3. Simulation Studies

Up to this point, we have demonstrated how the spike-and-slab prior can be applied to gain

new insights into individual differences in psychology. We now focus on better understanding the

properties of the spike-and-slab prior when placed on random effects by way of two simulation

studies. The first aims to support our claim that the spike-and-slab prior on the random effects

is indeed capable of correctly identifying those who differ from the average and those who do not.
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In the second simulation study, we address a potential issue noted by reviewers. As shrinkage is

already an inherent part of mixed-effects models (Gelman & Hill, 2006; Raudenbush & Bryk, 2001),

the inclusion of a spike-and-slab prior could incur “double shrinkage”. That is, the random effects

may be biased due to shrinkage in both the slab (as in a typical mixed-effects model) and spike

components of the prior. The second simulation study investigates this possibility. To situate the

findings within a familiar context, we include a standard mixed-effects model (i.e., a normal prior

on the random effects) for comparison in both simulation studies.

3.3.1. Study 1. The goal of this study was to assess the classification performance of the spike-

and-slab prior with respect to average and non-average random effects. Accordingly, we simulated

data for a random intercepts model with n = 100 units of interest (e.g., people) and varied the

number of observations per unit nj = 5, 10, 25. For each j = 1, . . . , n unit, each i = 1, . . . , nj

observation, yij , was generated as

yij = αj + ϵij(3.8)

αj = α+ θj

ϵij ∼ Normal(0, 1),

where α = 1 and θj captures the random effect for the jth person. The θj were systematically

varied to be either 0, +1, or −1. The proportion of random effects that were exactly zero was set

to be either 0.94, 0.74, or 0.5. The remaining random effects were set to either +1 or −1 in equal

proportions.5 These proportions translate to between-unit variances τ2 of approximately 0.05, 0.2,

and 0.25. Further, by setting σ2 = 1, the resulting intraclass correlation coefficients (ICCs) are

approximately 0.05, 0.15, and 0.2, respectively, where the ICC is defined as (Raudenbush & Bryk,

2001)

ICC =
τ2

τ2 + σ2
.(3.9)

5These values were chosen so that approximately, 50%, 75%, and 95% of the random effects were exactly zero, but
an even number of non-zero random effects remained.
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The ICC plays a key role in mixed-effects models because it captures test-retest and inter-rater

reliability (Shrout & Fleiss, 1979; Weir, 2005), and is the proportion of total variance accounted for

by the between-group variance, τ2. As we will discuss below, the ICC is also of particular interest

because it determines, in part, the amount of shrinkage that occurs.

For each of 200 iterations, data were generated as previously described and two mixed-effects

model were fit: one employing the spike-and-slab prior on the random effects and another using

the customary normal prior on the random effects. For the spike, a point-mass at zero was used

whereas a diffuse normal distribution was used for the slab (as in Equations 3.1 and 3.2). The

latter distribution was also used as the prior for the random effects in the standard mixed-effects

model. For both models, the likelihood and remaining priors were specified as

yij ∼ Normal
(
α+ θj , σ

2
)

(3.10)

α ∼ Normal (0, 1)

σ, τ ∼ St+ (ν = 3, 0, 1) .

All models were fit in R using the JAGS language. The fitted models used four chains of 5,000

iterations after a burn-in period of the same length.

Once the models were fit, each random effect θj was classified as average or differing from the

average. A correct classification occurred when a non-zero random effect was included in the final

model or when a zero random effect was excluded. For the model with the spike-and-slab prior, we

considered two thresholds for inclusion: 1) a posterior inclusion probability (PIP) of 0.5 (i.e., the

median probability model) and 2) a PIP of 0.75 (i.e., a Bayes factor of 3). For the model with the

normal prior on the random effects, a 90% credible interval was used to classify the random effects.

If the interval for the jth random effect included 0, then it was excluded from the final model,

and included otherwise. Model performance was considered in terms of specificity6, the proportion

of truly zero random effects that were correctly classified, and sensitivity, the proportion of truly

non-zero random effects that were correctly classified.

6Note that (1− specificity) is the false positive rate.
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3.3.1.1. Results. The results are displayed in Figure 3.5. Panel A displays the average sensitivity

for the random effects across ICCs, observations per unit, and priors. Across ICCs, all priors tended

towards a sensitivity rate of 1, however, there were some discrepancies in conditions with few

observations per unit. When nj was either five or ten, the spike-and-slab prior using a PIP of 0.5

as the inclusion threshold (SS0.5) was superior to both the spike-and-slab model using a PIP of 0.75

(SS0.75) and the normal model using the 90% CrI. Interestingly, with relatively little between-unit

variance (ICC = 0.05) and few units per observation (nj = 5), the SS0.5 model was 3.5 and 11 times

more accurate in detecting non-average units than the SS0.75 and normal models, respectively. This

suggests that the spike-and-slab may be fruitfully applied to detect non-average individuals even

when between-person variance is low. In sum, with sufficient observations, all models performed

comparably well in detecting non-average units, but the SS0.5 model (i.e., median probability model)

was superior when either the ICC or number of observations was small. 7

The average specificity is similarly displayed in panel B. Across all conditions, the worst speci-

ficity was observed for the SS0.50 model with the ICC set to 0.05 and nj set to 5. Here, the specificity

for the SS0.50 model was 0.75, while it was 0.99 for both the SS0.75 and the normal model. As nj in-

creased, specificity for the normal model decreased and stabilized near a specificity of 0.9, or a false

positive rate of 0.1. This is unsurprising as the specificity for credible interval approaches should

be roughly equal to the width of the credible interval (Rubin, 1984). In contrast, the specificity for

both spike-and-slab models were stable near one or tended to one. This finding hints at the model

selection consistency property the spike-and-slab prior. Recall that, assuming prior equal odds, the

PIP for each random effect corresponds to the Bayes factor (see Equation 3.4). Bayes factors tend

to infinity and posterior model probabilities tend to one in favor of the “true” model as the sample

size increases (O’Hagan, 1995). Therefore, with a sufficiently large sample size, the spike-and-slab

approach will completely avoid false positives and false negatives, whereas the same cannot be said

for random effect selection under the credible interval strategy.

Further, the classification results help clarify the trade-off in choosing different values for the

PIP. Using a lower threshold, such as PIP ≥ 0.5, results in better sensitivity (i.e., detecting who

is not average) at the cost of lower specificity (detecting who is average). As the PIP threshold

7Because these results may have been due to the discrete nature of the random effects, an alternative simulation
study was conducted using continuous random effects, and its results can be found in the Appendix.
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increases (e.g., PIP ≥ 0.75), this relationship reverses. Although not included in our results above,

a similar relationship would be observed for the credible interval approach. Using a more narrow

credible interval would result in higher sensitivity, at the cost of lower specificity, and vice versa for

a wider interval. In studying variable selection, Li and Lin (2010) found that for a credible interval

approach, a 50% CrI provided the best balance between sensitivity and specificity. Though such

narrow intervals are not commonly used in psychological science, the Appendix contains the results

from Study 1 using 50% CrIs instead of a 90% CrIs, but they do not shift the main conclusions from

our results here. Taken together, our results here suggest that a strategy utilizing a spike-and-slab

prior on the random effects is preferable to one using a customary normal prior on the random

effects for detecting who is and is not “average”.

3.3.2. Study 2. We now tackle the issue of double shrinkage in the random effects. Recall

that the potential issue here is that the random effects may be biased towards zero due to shrinkage

occurring both within the slab, as is typical in an ordinary mixed-effects model, and in the spike.

In a customary random intercepts model with a normal prior on the random effects, the amount of

shrinkage that occurs can be precisely determined through the so-called shrinkage factor, ωj , which

is given by

λj =
τ2

τ2 + σ2/nj
(3.11)

ωj = 1− λj .(3.12)

Notice here that λj is calculated just as the ICC with the exception that the within-unit variance

σ2 is divided by nj . Thus, holding nj constant, larger ICCs imply smaller shrinkage factors and

vice versa. Further, units with more observations will have smaller shrinkage factors. When all j

units have equal observations (n1 = · · · = nj), then there is a constant amount of shrinkage applied

to all random effects (ω1 = · · · = ωj).

When a spike-and-slab prior is instead placed on the random effects, determining the shrinkage

involves an additional consideration. For every MCMC iteration, each random effect is either

included (slab) or excluded (spike). All else being equal, the slab portion of the prior has the
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Figure 3.5. Classification rates of random effects under normal and spike-and-slab
priors. For the normal prior, a 90% CrI was used to determine whether a random
effect was “average” or not. For the spike-and-slab, two thresholds were used: a
PIP of 0.50 and PIP of 0.75. A) Sensitivity between the three methods. Sensitivity
tended to one as nj increased for all methods, but the spike-and-slab combined with
a PIP of 0.5 generally had the best sensitivity. B) Specificity between the three
methods. Under the normal prior and 90% CrI, specificity was high with fewer nj ,
but decreased to 0.9 as nj increased. The spike-and-slab with a PIP of 0.75 had
specificity of 1 or near 1 across all conditions, whereas using a PIP of 0.50 resulted
in worse specificity. However, specificity still tended to 1 for the latter. This is a
benefit of using the spike-and-slab prior — it will converge on the “true” model as
the sample size grows.

effect of applying stronger shrinkage to larger random effects relative to smaller random effects.

Conversely, the spike has the effect of subjecting small random effects to more extreme shrinkage,

relative to larger random effects. Dropping the notational dependence on the iteration index s, λj

is calculated in each MCMC iteration as a piecewise function of the form
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λj =


0 if γj = 0

τ2

τ2+σ2/nj
if γj = 1

,(3.13)

where γj denotes whether the jth random effect is included in the model. The final estimate for each

λj can be calculated as the average of (3.13) across all MCMC iterations. Finally, the shrinkage

factor can then be computed as ωj = 1−λj . Because the posterior inclusion probability for the jth

random effect is defined as the proportion of MCMC iterations where γj = 1, then keeping all else

constant, using a spike-and-slab prior results in stronger shrinkage for estimates that have lower

posterior inclusion probabilities.

With the shrinkage factors in hand, the estimate of each unit-specific intercept, αj , can be

computed by

α̂j = ωj · ȳ. + (1− ωj) · ȳj ,(3.14)

where ȳ. indicates the grand mean of the outcome and ȳj denotes the unit-specific mean of y. A

shrinkage factor ωj of 1 indicates total shrinkage towards the grand mean (α̂j = ȳ.), and conversely,

a shrinkage factor of zero indicates no shrinkage towards the grand mean (α̂j = ȳj). By comparing

the estimated αj between mixed-effects models with normal and spike-and-slab priors, in addition

to the shrinkage factors they produce, we can thoroughly investigate the impact of double shrinkage

on the resulting random effects. To accomplish this, we followed the same set up as in Study 1.

However, rather than focusing on the classification rates, we recorded the posterior estimates for

the random intercept αj and the shrinkage factors ωj .

3.3.2.1. Results. The average estimates for the αj are displayed in Figure 3.6. Columns differ-

entiate between ICCs, rows differentiate between nj , color differentiates between prior, and shape

differentiates between (non-)zero random effects. The dashed line denotes α = 1. As expected,

the estimated αj are subject to less shrinkage towards α as the ICC increases, and similarly, as nj

increases, regardless of the prior. Further, for units where θj = 0, the estimated αj were estimated
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to be near the fixed effect α regardless of ICC, nj , or prior. On the other hand, there were discrep-

ancies in shrinkage between the spike-and-slab and normal priors when considering random effects

that were set to either −1 or +1. For these random effects, the spike-and-slab prior often resulted

in less shrinkage for the α̂j than the standard normal prior. For example, when the ICC was set

to 0.05 and nj = 25, the estimates α̂j for non-zero random effects were approximately 0.75 and

1.75 under the spike-and-slab prior. Meanwhile, the same estimates were roughly 0.5 and 1.5 under

the normal prior. That is, the spike-and-slab prior allowed non-zero estimates to be closer to their

actual values (0 and 2, respectively) than the normal prior. This result displays a nice property of

the spike-and-slab in that the shrinkage is adaptive; larger effects receive little shrinkage whereas

there is strong shrinkage for small effects (J. N. Rouder et al., 2018).

In order to better understand the differences in shrinkage between the priors, the average

shrinkage factors ωj for each condition are displayed in Table 3.1. As implied by the α̂j in Figure

3.6, the shrinkage factors decreased with increasing ICCs and nj regardless of the prior that was

used. Note, however, that the shrinkage factor under the normal prior is constant in each condition

regardless of whether the random effect was actually equal to zero or not. Because shrinkage under

the spike-and-slab prior is adaptive, the shrinkage factors were larger when θj = 0 than when

θj ̸= 0. Relatedly, under the spike-and-slab prior, there was relatively strong shrinkage for the

random effects equal to zero, regardless of ICC or nj , but for non-zero random effects, the shrinkage

dissipated with increasing ICC and nj . Generally speaking, the spike-and-slab prior applied more

shrinkage to random effects that were truly zero and less shrinkage for non-zero random effects,

relative to the normal prior.

Part of our results here are due to setting the prior inclusion probability for each random effect

to 0.5 (see Equation 3.2). In practice, this is the most common choice because it expresses equal

prior odds for whether a given random effect should be included or excluded from the model.

Choosing alternative values would alter the amount of shrinkage observed in Figure 3.6 and Table

3.1. In practice, researchers applying the spike-and-slab prior to random effects should bear this

in mind when setting the prior inclusion probabilities. To provide some intuition on the impact of

choosing alternative values for the prior inclusion probabilities, we conducted additional simulation

studies. The results are included in the Appendix.
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Figure 3.6. Estimates of the random intercepts αj for mixed-effects models un-
der normal and spike-and-slab priors, sorted in ascending order. The dashed lined
denotes α = 1. As expected, less shrinkage occurred as ICC and nj increased re-
gardless of prior, but there were differences in the amount of shrinkage. When the
random effects were zero, the α̂j were highly similar between the priors across all
conditions, but there were pronounced differences in the estimates for non-zero ran-
dom effects. When θj ̸= 0, the spike-and-slab prior typically applied less shrinkage
than the normal prior, such that estimates were closer to their true values. This is
especially noticeable with smaller ICCs.

In summary, we observed that the double shrinkage induced from the spike-and-slab did not

bias the random effects relative to a standard mixed-effects model by applying too much shrinkage.

Rather, in many cases, the shrinkage applied by the spike-and-slab prior was preferable in that it

applied weak shrinkage to non-zero effects and stronger shrinkage to truly zero random effects.
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3.4. Discussion

In this work, we provided a general spike-and-slab formulation for random effect selection in

mixed-effects models. The empirical application evidenced the utility of the proposed method-

ology for addressing individual differences in psychological science. Two simulation studies were

conducted that illustrated key properties of the approach. Although spike-and-slab priors are not

new in psychology research, their advantages were thought to be limited to exploratory variable

selection and big-data contexts, such as fMRI analyses (J. N. Rouder et al., 2018). As we illustrated

in this article, however, the spike-and-slab is also valuable in the context of “small-data” which is

common in the social-behavioral sciences.

In the empirical application, we performed posterior predictive checks on the models for the

cognitive tasks in order to inspect their adequacy in capturing important patterns in the data.

While model checking is indeed an important part of statistical modeling, an additional motivation

for performing the posterior predictive check was to address the concern of whether the spike-

and-slab, “taken globally, [can] provide a good description of the structure in the data” (Haaf &

Rouder, 2017, p. 794). As was shown in Figure 3.4, our formulation did a good job of describing

the experimental effects, or mean differences between conditions. This ability of the spike-and-slab

prior to provide trustworthy estimates was also observed in Study 2. Placing a spike-and-slab prior

on the random effects does not necessarily compromise the model estimates.

The data we used in this paper came from experiments in psycholinguistics and cognitive

psychology. We chose these data because: 1) they are typical representations of research that is

done in the realm of individual differences with an emphasis on mixed-effects methodology and 2)

data from cognitive tasks have been recently used in the context of reliability research. Mixed-

effects models are routinely employed to analyze individual differences in this context. Given

the history of individual differences in cognitive research, finding little individual differences in

these tasks is somewhat unexpected. This perhaps points to the rather restrictive nature of the

standard approach for probing individual differences in mixed-effects models. That is, if there is

little between-subject variability, then a researcher might conclude that there are no individual

differences. The spike-and-slab approach, in turn, offers a more nuanced view as it allows the

differentiation between those who are and are not “average”, even in low ICC settings. This was
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Table 3.1. Average Shrinkage Factors (ωj)

Normal Spike-and-Slab

ICC nj θj = 0 θj ̸= 0 θj = 0 θj ̸= 0

0.05 5 0.80 0.80 0.84 0.76
10 0.65 0.65 0.74 0.51
25 0.40 0.40 0.68 0.21

0.15 5 0.45 0.45 0.70 0.48
10 0.28 0.28 0.68 0.25
25 0.13 0.13 0.72 0.07

0.20 5 0.29 0.29 0.68 0.43
10 0.17 0.17 0.69 0.23
25 0.07 0.07 0.74 0.05

Note. Larger values indicate more shrinkage of
the random effects towards zero. The shrinkage
applied by the normal prior is constant regardless
of whether θj = 0 or θj ̸= 0, but the shrinkage
applied by the spike-and-slab prior is adaptive.

clearly seen in Study 1, where the spike-and-slab prior had good performance in detecting non-

average units even when the ICC was as low as 0.05 and in the empirical application, where over a

quarter of the experimental effects for individuals did not conform with the average experimental

effect.

3.4.1. Future Directions. An oft-overlooked aspect of mixed-effects models is that the resid-

ual variance (σ2) and between-subject variance (τ2) are considered to be constant across subjects.

This can result in an improper amount of shrinkage (Hoff, 2009, Ch. 8), in essence, distorting

the model estimates and their variability. This assumption can be relaxed so that the within- and

between-subject variances can be allowed to vary as a function of predictors. Such models have

been introduced to psychology under the name of mixed-effects location-scale models (Hedeker

et al., 2012; Rast & Ferrer, 2018; Williams & Mulder, 2019). By allowing non-constant variances,

individual differences may be more pronounced (Williams, Mulder, et al., 2020). Applying the

spike-and-slab prior to the random effects in these models remains an interesting direction for

future work because of the potential to tease apart individual differences in even finer detail.

The methodology we discuss in this paper also has promising potential in clinical fields. In

this domain, there has been increasing interest in idiographic methods, or methods focused on
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individuals (see for example, the models described in Piccirillo & Rodebaugh, 2019). The motivation

for their use is often to identify individuals for whom a treatment may have different levels of efficacy.

The use of mixed-effects models (and also mixed-effects location-scale models) in combination with

spike-and-slab prior may provide an interesting avenue of research in idiographic studies because

information is not lost by fitting separate models, but individuals who deviate from an average

treatment effect may still be identified.

3.5. Summary

In this work, we discussed a general strategy to apply the spike-and-slab prior to the random

effects in mixed-effects models for individual differences research. Importantly, this method allows

researchers to gain a more nuanced view of individual differences than traditional approaches. By

going beyond the testing of variance components to using the spike-and-slab for random effect

selection, researchers can determine which individuals differ from an average effect. The methods

discussed in article have been implemented in the R package SSranef.
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CHAPTER 4

Discussion

4.1. Overview

The preceding chapters discussed distinct applications of statistical methodology that can be

applied to elucidate rich and multifaceted inferences in psychological science. Importantly, the

methodologies discussed are rooted in the rich soil of the Bayesian framework. In a Bayesian frame-

work, a prior distribution, when combined with a likelihood function, yields a posterior distribution

1. It is the flexibility afforded by these features of Bayesian analysis that allows each method dis-

cussed in this dissertation to enable statistical inferences that would otherwise be impractical, if

not impossible, under traditional statistical methods. Below, each chapter is recapitulated and

then discussed.

4.1.1. Chapter 1. Chapter 1 presented a unique framework that marries exploratory analyses

with confirmatory hypothesis testing in partial correlation networks. The goal was to provide a

means for researchers to formalize and test the intricate hypotheses that can arise from studying

phenomena under a network approach. The first step in the proposed framework is an exploratory

stage, where GGMs are estimated on an initial dataset with the sole purpose of generating hy-

potheses. We argue that, although such models have been traditionally proposed to be used in

exploratory settings, they can and should also be considered in confirmatory settings. Thus, we

delineate the second step in the framework, wherein the set of hypotheses developed from step 1

are simultaneously expressed via a mix of equality and inequality constraints on the edges in a

GGM. Although hypotheses are often thought of in this way, there is a dearth of statistical meth-

ods that capture such constraints. Statistically, we capture ordered hypotheses via the so-called

encompassing prior approach, where the encompassing prior is specified as a matrix-F distribution

over the precision matrix of a multivariate normal distribution. By using the encompassing prior

1A normalizing constant is also needed in order for the posterior distribution to also be a proper probability distri-
bution. However, this constant is not usually needed to arrive at a valid inference.
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approach, it is possible to obtain Bayes Factors as measures of evidence for each hypothesis under

investigation.

To demonstrate the utility of this framework, we presented several illustrative examples using

psychopathology symptom networks. In each example, we begin with estimating a GGM that may

be conceptualized as representing symptoms that collectively represent one or more disorders. The

initial GGM’s may be inspected and summarized using indices that describe its central structures,

such as bridge nodes. We formulate various hypotheses, ranging from whether a given network

structure can replicate (and to what degree) to which symptoms in a network may serve as the best

targets in an intervention program. These examples provide support that the proposed approach

can result in generating comprehensive hypotheses that can then be rigorously tested in a way that

is infeasible outside of a Bayesian framework.

To better understand the behavior of the encompassing prior distribution, we conducted two

simulation studies that together examined: (a) the behavior of the Bayes factor in relation to sam-

ple size, (b) the behavior of the Bayes factor in relation to the complexity of sample size, and (c) the

sensitivity of the Bayes factor to the encompassing prior’s variance. In the first simulation study,

we formulated different sets of hypotheses, where hypotheses within a set varied in their complex-

ity. The results showed that the Bayes factors for the “true” hypotheses tended to infinity with

increasing sample size, and accordingly the encompassing prior will select the correct hypothesis in

the limit. Further, the results revealed that fewer samples are needed to obtain large Bayes factors

for a hypothesis when it is more complex, or specific, and it is supported by the data. In the second

simulation study, we formulated a single hypothesis set, but introduced different conditions for the

variance of the encompassing prior distribution used to test the hypotheses. The results indicated

that the Bayes factor in favor of the true hypothesis was not affected by the choice of prior variance.

This is a desirable quality for the prior because a main critique of using Bayes factors is that they

can be overly sensitive to the choice of prior distributions.

4.1.2. Chapter 2. Chapter 2 introduces the concept of the Bayesian bootstrap as non-parametric

method of sampling from the posterior distribution for various correlation coefficients commonly

used in the social-behavioral sciences. Here, we aimed to provide the benefits of Bayesian inference

— such as the probability of a parameter value, conditional on the data, or quantifying evidence in
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favor of the null hypotheses — while overcoming the challenges inherent to estimating certain kinds

of correlation coefficients. For example, there does not exist a suitable prior distribution for some

correlation coefficients, or computational expense for obtaining posterior distributions can become

prohibitively burdensome.

Due to the diversity of data types inherent to psychology, Pearson’s, Spearman’s, Gaussian rank,

Kendall’s τ , and polychoric correlations, and correlation matrices are often measures of associations

that researchers want to estimate. Of these correlation types, only Pearson’s correlation is easily

estimated with a “normal” Bayesian approach. However, the Bayesian bootstrap provides a simple

alternative to sampling the posterior of the remaining correlation types. Moreover, if the Bayesian

bootstrap is applied to obtain a posterior distribution for the entire correlation matrix, then this

facilitates making inferences on the differences between correlations. That is, not only can a point

estimate and credible interval for, say, a Spearman’s correlation be obtained, but a point estimate

and credible interval for the difference between two Spearman’s correlations can be obtained as well.

Historically, the comparison of correlations in non-Bayesian frameworks has been challenging due

to a lack of known sampling distributions for correlation differences. Further, it is possible to gain

evidence for the absence of the correlation (i.e., evidence in favor of the null) by utilizing the Region

of Practical Equivalence (ROPE) technique to the posterior of the difference of two correlations —

another possible inference under a Bayesian approach that is difficult under a frequentist one.

We illustrate the method by revisting a series of correlation comparisons conducted in a previous

study, but we instead use the Bayesian bootstrap approach to perform the comparisons. Here we

found that the Bayesian bootstrap provided several advantages over the original analyses. First, we

were able to use a more appropriate measure of association than the original study. Although the

data represented ordinal variables, the original analysis estimated Pearson’s correlations and conse-

quently tested the difference between various Pearson’s correlations. To our knowledge, Pearson’s

correlations are the only type of correlation for which tests of differences exist. With the Bayesian

bootstrap, however, we were able to use a more appropriate measure of association (Kendall’s τ)

and still test the difference between these correlations. Using a ROPE approach, we found evidence

for the equality of correlations — an inference that was not possible under the original analysis.
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4.1.3. Chapter 3. In Chapter 3, we advocate for the spike-and-slab prior distribution as an

effective prior for studying individual differences with mixed-effects models. By adopting this prior,

researchers can ask — and subsequently address — the question of “who is average?” in the sense

that they are represented by a population-average estimate. We consider that the typical approach

to studying individual differences can be rather coarse in that it can be broadly concluded that

individual differences either exist or they do not (with respect to a population-average estimate).

We argue that there are more nuanced approaches to be considered. Specifically, it may be that

some individuals are “average” while others are not.

Using data from two cognitive tasks, we study how the spike-and-slab prior can be used to

formally capture this notion. These data were chosen because it has been argued that few individual

differences exist in such data. We found that contrary to conventional opinion, there were many

individual differences in task performance. Remarkably, we found that 25% of the sample in each

dataset could be considered a “non-average” individual. In practice, this could allow researcher to

identify which, and how many, individuals may be considered different from the average effect in a

particular study. We concluded the empirical application of the method with a posterior predictive

check to ensure that the spike-and-slab model fit the data well, therefore validating the plausibility

of the individual differences we described.

We conducted two simulation studies to understand: (1) whether the spike-and-slab prior ac-

curately identifies average and non-average individuals and (2) whether using the spike-and-slab

prior could result in poor model parameter estimates due to “double shrinkage”. A Gaussian prior

distribution (as is used in a standard mixed-effects model) was used for comparison in both studies.

The results of study 1 indicated that with many observations per individual, the spike-and-slab

prior and a Gaussian prior distribution could be used to achieve similar levels of accuracy in iden-

tifying non-average individuals. However, in situations with few observations per individual or

with low-between person variance, using the spike-and-slab prior resulted in superior classification

accuracy. This simulation also showed that the spike-and-slab prior had the desirable property of

model selection consistency. The results of study two indicated that the “double shrinkage” did

not negatively impact the model estimates, and in some cases, was actually beneficial. That is, the

spike-and-slab prior resulted in more accurate parameter estimates for “non-average” individuals
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than the standard Gaussian prior. This result illustrated that the shrinkage under a spike-and-slab

prior is adaptive; larger effects receive little shrinkage whereas there is strong shrinkage for small

effects, which is desirable quality.

4.2. The Flexibility of a Bayesian Analysis

The methods described above were all predicated on a Bayesian approach to statistics. Although

the wide-ranging benefits of a Bayesian approach, especially as applied in psychology, have been

extensively discussed (e.g., Etz et al., 2018; Kruschke & Liddell, 2018; J. N. Rouder et al., 2018;

Wagenmakers et al., 2018), we did not develop the methods in this dissertation merely because they

are Bayesian and carry Bayesian advantages. Rather, we were driven by a belief that the Bayesian

machinery allows a level of flexibility that cannot be found using traditional methods, and that

this flexibility could be leveraged to craft methods with the explicit intent of helping psychology

researchers obtain inferences that transcend conventional boundaries. In my view, there are two

aspects of a Bayesian analysis that facilitate this flexibility in these methods. First and foremost is

the ability to specify a prior distribution that reflects a researcher’s knowledge, and the second is

the ability to perform inferences on arbitrary quantities of interest based on posterior distributions.

4.2.1. The Prior Distribution. The prior distribution is perhaps the greatest advantage of

a Bayesian analysis. The prior distribution reflects uncertainty, or a researcher’s beliefs, about a

model’s parameters, prior to observing data that will be analyzed. In practice, this often takes the

form of specifying a conventional parametric distribution (i.e., a Normal distribution), and perhaps

constraining what values would be deemed “plausible” under that distribution. For example, sup-

pose a researcher posits a Normal (0, 1) prior in an effort to estimate a population mean. This prior

places 95% of the prior density over [−1.96, 1.96], and reflects the researcher’s conviction that the

most likely value for the population mean is 0, but values up to ±1.96 are also reasonable, and a

population mean of 5 is virtually impossible. But a prior distribution offers more utility than this.

In Chapter 1, the scale of encompassing prior can be set to reflect a researcher’s beliefs about

plausible values for the edge weights in a Gaussian Graphical Model, but the encompassing prior

(in conjunction with a set of prior model probabilities) can also be used to reflect beliefs about the

ordering of edges in a GGM. This augments the conventional use of the prior in two ways. First, it

86



adds a layer of knowledge that can be incorporated into an analysis. Instead of only reflecting beliefs

about the values of edge weights, beliefs about the structure between edges can be incorporated,

and thus the prior reflects a more holistic view of the network to be estimated. Second, it may

simply be easier to reason at the level of order than at the level of specific parameter value. Even

if a researcher has difficulty incorporating prior knowledge about plausible edge weights, they may

still incorporate prior knowledge through the ordering of edge weights.

A similar rationale applies to our proposal of the spike-and-slab prior discussed in Chapter 3.

Recall that the spike-and-slab prior was a two-component mixture: a point-mass spike centered

at zero and a diffuse slab that captures non-zero values. This prior too reflects a belief beyond

those concerning parameter values. In this case, this prior explicitly instantiates the belief that

some individuals are average (the spike) and that some individuals are not average (the slab). The

flexibility to integrate such beliefs or problem-specific knowledge through the prior distinguishes

Bayesian inference from simply an analytical framework, but as a tool to foster richer and more

comprehensive inferences than those obtained via traditional statistical methods.

4.2.2. Inference on Arbitrary Quantities. A noteworthy feature of having a joint posterior

distribution for multiple variables is the capacity to perform inferences on quantities derived from

the posterior. To illustrate, suppose a researcher runs a multiple regression with two predictor

variables, and thus obtains two estimates of the (standardized) coefficients β1 and β2. It is common

to follow up by comparing the absolute values of the coefficients to determine which of the predictors

is more important. A more rigorous approach would be to subject the coefficients to a statistical test

to establish whether they significantly differ. In a Bayesian framework, testing this difference can

be accomplished by taking samples from the posterior distribution of β1 and subtracting from them

samples from the posterior distribution of β2 to obtain a posterior for δ = β1−β2. Information can

then be extracted from this new posterior as usual, including point estimates or credible intervals.

In Chapter 2, the posterior distributions obtained via the Bayesian bootstrap for different

correlation coefficients are used to make comparisons in precisely this manner. However, unlike the

example above for regression coefficients, sampling distributions for the difference of two correlation
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coefficients are severely limited 2. Thus, inferences can be achieved for quantities that cannot

otherwise be easily evaluated, but may anyhow be of interest to a researcher. This idea is not

limited to differences between parameter estimates. For instance, study 2 in Chapter 3 examined

the degree of shrinkage applied by both the spike-and-slab prior and a Normal prior. To do so, we

evaluated the posterior distribution for the shrinkage factor for a set of j random effects, ωj , which

required taking the posterior for different variance parameters and then calculating a posterior for

their ratio. Once again, obtaining inferences on such quantities that do not have readily available

sampling distributions is made easy by the flexibility of a Bayesian approach.

4.3. Conclusion

In conclusion, this dissertation has explored a range of statistical methodologies within a

Bayesian framework, each offering unique insights and advantages for advancing research in psy-

chological science. These methodologies have been designed to provide flexible tools for researchers

to address complex questions that may be impractical or impossible to tackle using traditional

statistical methods.

In Chapter 1, we introduced a novel framework for integrating exploratory and confirmatory

analyses in partial correlation networks. This approach allows researchers to formalize and test

intricate hypotheses arising from network-based phenomena. By utilizing an encompassing prior

distribution, we demonstrated the capability of generating comprehensive hypotheses and rigorously

testing them with Bayes factors. This methodology offers a valuable tool for researchers studying

complex interrelationships in various domains of psychology. Chapter 2 introduced the Bayesian

bootstrap as a powerful non-parametric method for estimating correlation coefficients commonly

used in psychological research. This approach allows for Bayesian estimation for correlations that

are difficult to estimate in a Bayesian setting, and further equips researchers with the tooling to

compare those correlations. In Chapter 3, we explored the spike-and-slab prior in the context of

2One can reasonably object that this is not necessarily a Bayesian feature and that a standard bootstrap can accom-
plish much of the same. However, the standard bootstrap does not bring with it the interpretational advantages of
a posterior distribution.
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mixed-effects models, providing a strategy to identify and analyze individual differences in psycho-

logical research. This method offers a nuanced approach to understanding who does and does not

deviate from the average as a way of adding nuance to the study of individual differences.

The methodologies presented in this dissertation illustrate the advantages of a Bayesian frame-

work in addressing complex challenges within psychological science. By harnessing the flexibility of

Bayesian analysis, researchers can advance their understanding of intricate phenomena with richer

inferences that may better suit their research needs. These tools empower researchers to extract

more out of their data, and ultimately enhance the quality and depth of knowledge psychological

science.
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APPENDIX A

Appendix A

Node Symptom Community

B1 Intrusive thoughts Re-Experiencing
B2 Nightmares Re-Experiencing
B3 Flashbacks Re-Experiencing
B4 Physiological/psychological reactivity Re-experiencing

C1 Avoidance of thoughts Avoidance
C2 Avoidance of situations Avoidance
C3 Amnesia Avoidance
C4 Disinterest in activities Avoidance
C5 Feeling detached Avoidance
C6 Emotional numbing Avoidance
C7 Foreshortened future Avoidance

D1 Sleep problems Arousal
D2 Irritability Arousal
D3 Concentration problems Arousal
D4 Hypervigilance Arousal
D5 Startle response Arousal

Table A.1. Definitions for nodes in Figure 1.3.
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Node Symptom Community

D1 Lower interest or pleasure Depression
D2 Feeling down, hopeless Depression
D3 Trouble sleeping Depression
D4 Tired or little energy Depression
D5 Poor appetite/overeating Depression
D6 Guilt Depression
D7 Trouble concentrating Depression
D8 Moving slowly/restless Depression
D9 Suicidal thoughts Depression

A1 Nervous, anxious, on edge Anxiety
A2 Uncontrollable worry Anxiety
A3 Worry about different things Anxiety
A4 Trouble relaxing Anxiety
A5 Restless Anxiety
A6 Irritable Anxiety
A7 Afraid something awful might happen Anxiety

Table A.2. Node definitions for Figure 1.4.
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APPENDIX B

Appendix B

Following Rubin (1981), let d = (d1, . . . , dK)′ be the vector of all K possible distinct values in

x = (x1, . . . , xn)
′ and let θ = (θ1, . . . , θK)′ be a vector of probabilities associated with d such that

p(xi = dk|θ) = θk, i = 1 . . . , n; k = 1, . . . ,K,(B.1)

and the sum of all probabilities equal one. If x is an i.i.d. sample from (B.1) and nk is the number

of values in x equal to dk, then the prior for θ under the Bayesian bootstrap is the so called Haldane

prior (Haldane, 1932)

p (θ) ∝
K∏
k=1

θ−1
k ,(B.2)

and corresponds to the improper prior Dirichlet distribution Dir(α) with α = (0, . . . , 0). When

this prior is combined with a multinomial likelihood, it yields a posterior for θ which follows the

Dirichlet distribution with α = (1, . . . , 1), that is,

p(θ|x) ∝ p(x|θ)p(θ)(B.3)

∝
K∏
k=1

θnk
k

K∏
k=1

θ−1
k

∝
K∏
k=1

θnk−1
k .

A BB prior distribution (using αi = 0.1) and a corresponding posterior distribution are plotted in

Figure B.1. As can be seen, the prior mass is mostly placed over probabilities near zero and one.
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Figure B.1. Ternary plots of the prior (left) and posterior (right) distributions for
the parameter θ under the Bayesian bootstrap for three observations.

In the limit, as all αi → 0, there is zero mass placed over θ’s for unobserved data. The posterior

distribution places mass uniformly on [0, 1] which indicates that any combination of θ’s for the

observed values is equally likely.

93



APPENDIX C

Appendix C

C.1. Normally Distributed Random Effects

In Study 1, the random effects were generated in a discrete manner to better assess their clas-

sification under a spike-and-slab prior. We repeated this simulation study such that all procedures

remained the same, but instead of assigning the non-zero random effects values of ±1, they were

drawn from a standard normal distribution so that very small non-zero random effects would be

introduced. Generating the random effects in this way reflects the commonly made assumption

about the normality of random effects in mixed-effects models. Since random effects near zero are

are likely to be absorbed by the spike component of the spike-and-slab prior, its classification per-

formance depends on how well the θj ’s can be distinguished from zero (George & McCulloch, 1997).

Therefore, a drop in sensitivity for the spike-and-slab may be expected with normally distributed

random effects because small non-zero values may be considered to be zero.

The results are shown in Figure C.1. We once again found the SS0.5 model to have the best

sensitivity with few nj and a small ICC, but it was the credible interval strategy under the normal

prior that had superior sensitivity in all other conditions. As nj increased, though, so did the the

sensitivity for all three strategies. Although the normal prior generally had the best sensitivity

with normally distributed random effects, it still fared poorly with respect to specificity. It was

the SS0.75 strategy that was the best in this regard. Of particular importance is that the model

selection consistency property of the spike-and-slab prior was retained whereas it was still not

applicable random effect selection with the credible interval approach. That is, both the sensitivity

and the specificity tended to 1 under the spike-and-slab prior as the observations per unit increased,

but specificity decreased with increasing nj under the credible interval approach. The results from

this simulation study suggest that if it the random effects are truly normally distributed and the

goal is explicitly to maximize sensitivity, then using a credible interval to select non-zero random
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Figure C.1. Results from repeating Study 1, but with the random effects generated
from a normal distribution.

effects may be used (at the cost of an increased false positive rate). If a balance of good sensitivity

and specificity is instead desired, then random effect selection with the spike-and-slab prior is

preferable.

C.2. Credible Interval Width

Figure C.2 displays the results from Study 1, but using 50% CrIs instead of 90% CrIs for the

standard mixed-effects model. As described in the main text, random effect selection with narrower

intervals leads to higher sensitivity in an exchange for lower specificity, and vice versa for wider

intervals. Because it has previously been argued that a 50% CrI provides the best balance between

sensitivity and specificity (Li & Lin, 2010), we compared the performance of a 50% CrI strategy

for random effects selection to the spike-and-slab prior with PIP cut-offs of 0.5 (SS0.5) and 0.75

(SS0.75). However, the core conclusions from Study 1 did not change. In terms of sensitivity, the

SS0.5 model had the best sensitivity for the lowest ICC condition (ICC = 0.05), but now the CrI
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Figure C.2. Results from Study 1 with 50% CrIs instead of 90% CrIs for the model
with the normal prior.

strategy had superior sensitivity as the ICC increased. In terms of specificity, though, the 50% CrI

strategy performed worse than both spike-and-slab models in all but one condition (when the ICC

was set to 0.05 and the observations per unit was set to 5). Importantly, the key difference remains

that the spike-and-slab models are model selection consistent and will converge on the “true” model

with increasing sample size while this does not hold for the credible interval strategy, regardless of

the width that is chosen.

C.3. Varying Prior Inclusion Probabilities

To provide further intuition on the role of the prior inclusion probability of the random effects

in classification and shrinkage of the random effects, we repeated Study 1 and Study 2 twice each.

Once with a prior inclusion probability of 0.2 for all random effects and once with a prior inclusion

probability of 0.8 for all random effects. The results for classification performance can be viewed

in Figures C.3 and C.4, and the shrinkage results can be viewed in in Figures C.5 and C.6.
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As shown in Figure C.3, reducing the prior inclusion probability had the effect of reducing

the sensitivity for both spike-and-slab strategies. This resulted in the credible interval selection

strategy having the highest sensitivity across all conditions. However, both models under the spike-

and-slab prior (SS0.5 and SS0.75) had a specificity near one. The reverse pattern was true when

the prior inclusion probability was 0.8 (Figure C.4). Here, the SS0.5 model had a sensitivity of

near 1 in all conditions, but a specificity of 0 in nearly all conditions. Again, the model selection

consistency property of the spike-and-slab prior was observed. Together, these results show that the

prior inclusion probability may be used to adjust the trade-off between sensitivity and specificity

in classifying the average and non-average random effects.

With respect to the amount of shrinkage incurred by spike-and-slab and normal priors, many

of the same general trends emerged occurred as in Study 2. Specifically, regardless of the prior,

shrinkage decreased as nj increased and as the ICC increased. Although there were again differences

in shrinkage between the normal and spike-and-slab priors, they showed a different pattern than

in Study 2. For instance, the top right panel in Figure C.5 shows that when the prior inclusion

probability was 0.2, there was much stronger shrinkage induced under the spike-and-slab prior

than the normal prior whereas in Study 2, there was not much difference in shrinkage between

the priors. The reason for this additional shrinkage concerns the incongruence between the prior

inclusion probability and the proportion of truly non-zeros. Setting the prior inclusion probability

to 0.2 reflects that the expected a priori proportion of non-zero random effects is 0.2, but the data

were generated such that the actual proportion of non-zero random effects was 0.5. The result of

this mismatch is that more zeros were drawn during MCMC sampling for the γj ’s — reflecting

the low inclusion probability — and in turn, this induced more shrinkage in the random effects

(see Equation 3.13). This can be contrasted with the top left panel of Figure C.5, where the prior

inclusion probability (0.2) was higher than the proportion of non-zero random effects (0.06). Here,

the amount shrinkage is less than normal prior (mirroring the result in Study 2).

Figure C.6 shows the case for prior inclusion probabilities of 0.8 and so the prior expected

proportion of non-zero random effects was higher than the actual proportion of non-zeros in all

conditions. Now, the top right panel shows that the shrinkage is almost identical between the

normal and spike-and-slab priors. Because the prior probability was relatively high, values of one
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Figure C.3. Sensitivity and specificity for prior inclusion probabilities of 0.2.

were sampled more often for the γj ’s, and thus the amount of shrinkage induced under the spike-

and-slab prior was nearly identical to that of the normal prior. These findings suggest that the

spike-and-slab produces more shrinkage on the random effects than the normal prior when the

prior inclusion probability is smaller than the true proportion of non-zero random effects, and

less shrinkage when the prior inclusion probability is greater than the true proportion of non-zero

random effects. Crucially, though, the influence of the prior inclusion probability vanished with

increasing sample size nj . This was especially pronounced in the lower right panels of Figures C.5

and C.6, where there was no shrinkage applied to the non-zero random effects, regardless of the

prior inclusion probability.

C.4. Example Code

Listing C.1. Example R code

# install package
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Figure C.4. Sensitivity and specificity for prior inclusion probabilities of 0.8.

remotes::install_github("josue-rodriguez/SSranef")

# fit mixed-effects model with spike-and-slab prior

# on random slopes

fit1 <- ss_ranef_beta(y = stroop$rt,

X = stroop$congruent,

unit = stroop$id)

# extract PIPs and calculate proportion

# of sample that differed from average

pips <- ranef_summary(fit1)$PIP

n_non_avg <- sum(pips > 0.5, na.rm = T)
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Figure C.5. Estimates of the random intercepts αj for mixed-effects models under
normal and spike-and-slab priors. The dashed lined denotes α = 1. The prior
inclusion probability for each random effect was set to 0.2.

n_total <- length(unique(stroop$id))

n_non_avg / n_total

# re-fit model with different prior inclusion

# probability for random effects

priors <- list(gamma = "gamma[j]␣~␣dbern(0.8)")

fit2 <- ss_ranef_beta(y = stroop$rt,
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Figure C.6. Estimates of the random intercepts αj for mixed-effects models under
normal and spike-and-slab priors. The dashed lined denotes α = 1. The prior
inclusion probability for each random effect was set to 0.8.

X = stroop$congruent,

unit = stroop$id,

prior = priors)
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