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Diurnal patterns of sedentary behavior and

changes in physical function over time
among older women: a prospective cohort
study

Chase Reuter1, John Bellettiere1,2, Sandy Liles1,2, Chongzhi Di3, Dorothy D. Sears1,4,5, Michael J. LaMonte6,
Marcia L. Stefanick7, Andrea Z. LaCroix1 and Loki Natarajan1,5*
Abstract

Background: Sedentary behavior (SB) is linked to negative health outcomes in older adults. Most studies
use summary values, e.g., total sedentary minutes/day. Diurnal timing of SB accumulation may further
elucidate SB-health associations.

Methods: Six thousand two hundred four US women (mean age = 79 ± 7; 50% White, 34% African-American) wore
accelerometers for 7-days at baseline, yielding 41,356 person-days with > 600min/day of data. Annual follow-up
assessments of health, including physical functioning, were collected from participants for 6 years. A novel two-phase
clustering procedure discriminated participants’ diurnal SB patterns: phase I grouped day-level SB trajectories using
longitudinal k-means; phase II determined diurnal SB patterns based on proportion of phase I trajectories using hierarchical
clustering. Mixed models tested associations between SB patterns and longitudinal physical functioning, adjusted for
covariates including total sedentary time. Effect modification by moderate-vigorous-physical activity (MVPA) was tested.

Results: Four diurnal SB patterns were identified: p1 = high-SB-throughout-the-day; p2 =moderate-SB-with-lower-morning-
SB; p3 =moderate-SB-with-higher-morning-SB; p4 = low-SB-throughout-the-day. High MVPA mitigated physical functioning
decline and correlated with better baseline and 6-year trajectory of physical functioning across patterns. In low MVPA, p2
had worse 6-year physical functioning decline compared to p1 and p4. In high MVPA, p2 had similar 6-year physical
functioning decline compared to p1, p3, and p4.

Conclusions: In a large cohort of older women, diurnal SB patterns were associated with rates of physical
functioning decline, independent of total sedentary time. In particular, we identified a specific diurnal SB
subtype defined by less SB earlier and more SB later in the day, which had the steepest decline in physical
functioning among participants with low baseline MVPA. Thus, diurnal timing of SB, complementary to total
sedentary time and MVPA, may offer additional insights into associations between SB and physical health, and
provide physicians with early warning of patients at high-risk of physical function decline.
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Background
With accelerated growth of the older adult population
[1], identifying ways to prevent disease and promote
healthy aging is becoming a major public health focus.
Older women have proportionately higher morbidity
and disability than older men [2], despite having a
longevity advantage. Because of this, women have more
hospitalizations and outpatient visits, longer utilization
of long-term care services, and greater health care
spending [3–5]. These disparities make the identification
of modifiable risk factors for declining health especially
important for older women.
A growing body of recent research suggests that a

promising risk factor to target is sedentary behavior
(SB). In the United States, older adults are estimated to
spend an average of 8 to 9.5 h per day in SB [6–8]. Older
adults accumulate the greatest volume of sedentary time
of any age group [9–12], and older age is associated with
more sedentary time even among older adults [13]. In
older adults, SB has been linked with higher risk of
cardiovascular disease, metabolic syndrome, diabetes,
and all-cause mortality [14–16].
Accelerometers have been increasing our understanding

of SB and how it relates to health. Early studies used self-
reported measurements of SB, which can be unreliable or
inaccurate, especially in older age groups [17–19]. Accel-
erometer data are subject to less measurement error, and
analyses of these data have revealed stronger associations
between SB and health than were previously observed
using self-reports [20–22].
Accelerometers also enable researchers to study

diurnal patterns of sedentary time [23]. Studies analyzing
objectively measured sedentary time data usually reduce
them to a single measure—total minutes per day spent
sedentary—overlooking diurnal accumulation patterns
that may yield important information about health
outcomes. While it is recognized that high levels of SB
are negatively related to health, the association may vary
depending on when sedentary time is accumulated
during the waking day.
While there is a paucity of evidence relating diur-

nal patterns of SB with health, emerging evidence
suggests that diurnal patterns of physical activity
(PA) are associated with fatigability [24]; early-stage
Alzheimer’s disease [25]; insulin and C-reactive pro-
tein levels, and quality of life [26]; sleep efficiency,
cognition, and all-cause mortality [27]. There have
also been reports that diurnal patterns of SB vary by
sociodemographic variables; for example, older adults
accumulate more SB during the day than younger
adults, with smaller age group differences in evening
SB accumulation [28]. These data support the need
to study diurnal patterns of SB to determine possible
associations with health-related outcomes.
Using a novel, two-stage clustering procedure, we
investigated diurnal patterns of SB and how these were
related to trajectories of physical functioning. Data were
drawn from a study in which 6489 women wore
ActiGraph accelerometers on their waist for up to 7 days
at baseline, and then were followed for up to 6 years
with annual assessments of physical functioning [8]. We
expected diurnal patterns of SB to be associated with
trajectories of physical functioning among this cohort of
community-living older women.

Methods
Sample and design
Data were used from participants in the Objective
Physical Activity and Cardiovascular Health Study
(OPACH), a subset of Women’s Health Initiative
participants who had enrolled in the Long Life Study.
Women’s Health Initiative women in the Long Life
Study consented to periodic in-home examinations to
provide blood samples, updated health information,
and physical measurements. More details of the ancil-
lary OPACH study, which was designed specifically for
collection of objective measures of physical behavior,
have been previously published [8]. In brief, the 7048
ambulatory, community-dwelling women who con-
sented to participate in OPACH were given ActiGraph
GT3X+ accelerometers on a waist belt and asked to
wear them 24 h per day (except when bathing or
swimming) for 7 consecutive days. They concurrently
recorded in-bed and out-of-bed times each day in
sleep logs. Accelerometers were returned by 95.4%
(6721) of participating women and 92.1% (6489) contained
evidence of human wear [29]. Each participant was
followed for up to 6 years with annual medical updates
collecting information on physical functioning.

Outcome: physical functioning
Physical functioning was assessed yearly using the
RAND 36 Health Survey physical function subscale, a
10-item, well-validated self-report measure [30, 31]. The
physical functioning scale assesses current health limita-
tions on physical functioning during daily activities. Item
scores are averaged, producing a score from 0 to 100,
with higher values indicating superior physical function-
ing. Median number of physical functioning assessments
available (25th %, 75th %) was 5 (4, 5) time points.

Accelerometer measurement
Raw accelerometer data (30 hertz) were converted using
ActiLife software (Version 6) to vector magnitude counts
per 15-s epochs. To remove accelerometer non-wear
time, we applied the Choi algorithm (90-min window,
30-min stream frame, and 2-min tolerance) to the
minute-level vector magnitude counts [32] and identified
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in-bed time using data reported in the sleep logs.
Missing bed times were imputed using the mean in-bed
and out-of-bed time of each person when available; for
the 434 participants who had in-bed and/or out-of-bed
data missing in all days, the mean in-bed (10:45 pm) and/
or out-of-bed (7:22 am) time for the population was used.
We defined adherent days as calendar days with 10 h or
more of awake wear time [33], and only analyzed adherent
days. Because our metrics of sedentary time and sedentary
accumulation patterns were intended to estimate typical
behavior during a week, at least 4 adherent days were re-
quired for inclusion of a participant’s data in analyses [33].
Out of the 6489 women with wear time, 95.6% (6204) had
at least 4 adherent days.
Accelerometer data were processed using intensity-

specific cutpoints that had been developed specifically
for the OPACH cohort in a laboratory calibration study
of 200 women aged 60–91 years who wore ActiGraph
GT3X+ accelerometers on their hip [34]. Sedentary time
was classified as any 15-s epoch at or below 18 vector
magnitude counts and MVPA was any 15-s epoch above
519 vector magnitude counts.

Covariates
Questionnaire data collected at Women’s Health Initia-
tive baseline included age, race/ethnicity (Black, White,
or Hispanic) and education (high school graduate/gen-
eral education development (GED) or less, some college,
college graduate/advanced degree). Participants com-
pleted questionnaires at OPACH baseline that included
measures of self-reported health (excellent/very good,
good, fair/poor), frequency of alcohol consumption
(non-drinker, less than one drink/week, one or more
drinks/week, unknown), and current smoking status
(smoker vs nonsmoker). Measures of weight and height
were taken during Long Life Study in-home visits using
a calibrated analog scale and a tape measure, and used
to compute body mass index (BMI) as weight (kilo-
grams)/height (meters2). Morbidity was measured at
OPACH baseline as the number of the following chronic
health conditions: cardiovascular disease; cancer; osteo-
arthritis; cognitive impairment; depression; history of
falls over the previous 12months; cerebrovascular dis-
ease; chronic obstructive pulmonary disease; diabetes; vi-
sion impairment; hearing loss [35].

Statistical methods
Clustering procedure
Sedentary minutes were summed for each one-hour
interval of the day (e.g., 6:00 am-6:59 am, 7:00 am – 7:59
am) to describe hourly behavior. Inclusive of the first
hour that participants were awake and wore the acceler-
ometer for 60 min, daily trajectories of sedentary behav-
ior were obtained using data from 14 consecutive hours.
This consistent duration across days was required to
implement the longitudinal clustering, and 14 h was
selected based on the degree of missingness (i.e., 23.6%
of data from the 14th hour was missing while 49.5% of
data from the 15th hour was missing). For hours with
missing data, sedentary time was imputed based on lin-
ear interpolation with added stochastic variation based
on population trajectories within missing time points (a
method known as “Copy Mean”) [36]. An alternative
method for computing trajectories would be to use a
fixed range of clock time (e.g. 8 am to 10 pm) instead of
beginning with participants’ wake time. That alternative
method, while a reasonable approach to obtaining SB
diurnal patterns, does not conform with our understand-
ing that participants’ diurnal patterns commence with
their highly variable time of awakening rather than at a
fixed hour of the day. For our primary analyses, we
adopted the method of beginning the day at the partici-
pant’s hour of awakening, but conducted a concordance
analysis using the alternative method (i.e., using clock-
time to define start-of-day).
A novel two-phase clustering procedure was then used

to group OPACH participants according to their diurnal
and day-to-day variability in SB patterns. In Phase I, k-
means for longitudinal data (kml) was conducted on all
available days of data from the entire sample (ndays = 41,
356) to determine clusters of days that optimally differ-
entiated diurnal trajectories. To select the number of
clusters in Phase I, we used the Calinski-Harabasz criter-
ion [37]. To address cluster stability, the kml algorithm
was repeated five times with different starting condi-
tions, and the partition that led to the highest Calinski-
Harabasz criterion was selected. In Phase II, hierarchical
clustering with complete linkage [38] was conducted on
the proportion of a participant’s measurement days
assigned to each of the identified day clusters, to deter-
mine the diurnal SB patterns of participants. The pro-
portion of days was used because the number of days
available for each participant varied from 4 to 7 days. To
determine the number of SB pattern clusters, we
selected the solution that maximized average silhouette
width across observations [39]. Thus, Phase I clustered
days based on similarities in within-day timing of SB
accumulations, whereas Phase II clustered individuals
based on similarities in their between-day SB patterns,
e.g., how they distribute days within a week into various
SB accumulation clusters.

Descriptive statistics
Socio-demographic, health-related, and activity-related
variables were summarized for each of the groups of
participants clustered according to their diurnal SB
patterns, using means and standard deviations (SD) for
continuous variables and percentages for categorical
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variables with differences tested using F-tests and chi-
square tests, respectively.

Mixed-effects regression
Multivariable linear mixed-effects regression tested
whether diurnal SB patterns were associated with trajec-
tories of physical functioning. This enabled investigation
of differences in baseline physical functioning by diurnal
SB pattern (aka, the y-intercept of the trajectory), and
how the slopes of the physical functioning trajectories
changed over time in relation to these patterns. The gen-
eral model was physical functioningit = patterni + timeit +
patterni*timeit + covariatesi, with subjects i = 1,…,N, and
year of follow-up t = 1,…,T. A person-level random
intercept was also included in the model to account for
within-person correlations. Model covariates included
age, race-ethnicity, BMI, education, smoking status, alco-
hol use, number of morbidities, and self-rated health. To
test whether associations of diurnal SB patterns with
trajectories of physical functioning reflected daily seden-
tary time, we additionally adjusted for total sedentary
time. Based on previous literature, we examined whether
associations of diurnal SB patterns and physical func-
tioning varied by MVPA (which, as in our previous stud-
ies [15, 40], has been modeled as a binary variable using
a median split to increase statistical power within each
MVPA subgroup and because there is no older-adult-
specific threshold that has been established using accel-
erometer data) [40]. This was accomplished by adding a
pattern*time*MVPA interaction and using a likelihood
ratio test to assess statistical significance. The potential
influence of using complete case analysis was assessed
by using multivariate imputation by chained equations
[41] with predictive mean matching and Bayesian
polytomous regression for continuous and categorical
variables, respectively.
All analyses were conducted in R (version 3.5.3), includ-

ing the use of packages kml [42], cluster [39], nlme [43],
and mice. All tests were two-tailed with alpha = 0.05
unless otherwise specified. Sample R code for our cluster
analysis is available at https://github.com/Aging-and-Be
havioral-Epidemiology/two_stage_clustering.

Results
Study sample and baseline descriptive characteristics
Our analytic sample comprised 6204 OPACH partici-
pants, with mean (SD) age of 79 (7) years at study entry,
49.6% White, 33.6% Black, 41.0% completed college or
higher. Mean (SD) BMI at baseline was 28.1 (5.7). 2.6%
of participants were current smokers, and 25.8% had 1
or more alcoholic drinks per week in past 3 months
before baseline. 89.2% of participants rated their general
health as excellent, very good, or good. 17.5, 34, 26.8,
and 21.6% had no, 1, 2, or 3 or more morbidities at
baseline, respectively. Participants wore accelerometers
for a mean (SD) 6.9 (0.3) days, yielding 41,356 days with
mean (SD) 14.9 (1.3) hours/day of data. At study entry,
mean (SD) daily sedentary time and MVPA were
respectively 597 (103), and 50 (34) minutes. Mean (SD)
physical functioning scores at baseline were 69 (26).

Diurnal SB patterns defined by the two-phase clustering
procedure
In Phase I, k-means for longitudinal data (kml) was
conducted on all available days of data (ndays = 41,356)
to select the optimal clusters of days. We found a solu-
tion of four clusters that had a sufficiently high Calinski-
Harabasz criterion [37], yet with enough variability
among clusters to clearly differentiate diurnal trajector-
ies; the chosen partition also had the lowest AIC and
BIC. Based on visual inspection, the four day clusters
can be described as: (A) an overall high level of SB
throughout the day, (B) a moderate level of SB, with a
lower level of SB at start of day, relative to the end of
day, (C) a moderate level of SB, with a higher level of SB
at the start of day, relative to the end of day, and (D) an
overall low level of SB throughout the day (Fig. 1a). Of
note, clusters A, B, and D showed increasing SB trends
over the course of the day, whereas cluster C had higher
SB earlier followed by ~ 6 h of a decreasing trend, and
then increasing for the rest of the day.
Then in Phase II, hierarchical clustering was conducted

on the proportion of each participant’s days that fell
within each of the four Phase I day clusters. We found
that a 4-cluster solution maximized average silhouette
width across observations [39]. Diurnal SB patterns 1, 2, 3,
and 4 can be described according to which day cluster A,
B, C, and D, respectively, their days predominantly fell
into (see Fig. 1 b, c). For example, for individuals in diur-
nal SB pattern 1 the median (25th%, 75th%) proportions
of cluster A (high SB) days were 66.7% (50, 85.7%) vs 0%
(0, 0%) proportion of cluster D (low SB) days. Conversely,
for SB pattern 4 the median (25th%, 75th%) proportions
were 0% (0, 0%) vs 60.0% (50.0, 85.7%) for cluster A and
cluster D days, respectively. SB patterns 2 and 3 had simi-
lar distributions of high SB (cluster A) and low SB (cluster
D) days, but differed according to the proportions of clus-
ter B vs C days: for SB pattern 2 the median (25th%,
75th%) proportions for cluster B vs C days were 57.1%
(42.9, 71.4%) vs 28.6% (14.3, 33.3%), respectively, whereas
SB pattern 3 had 14.3% (0, 28.6%) vs 57.1% (50.0, 71.4%),
respectively. Thus, on average, SB patterns 1–4 were
distinguished by the corresponding day clusters A–D, of
which each pattern was primarily composed.

Concordance analysis for the clustering procedure
Of two alternative accelerometer processing procedures
on which to base our clustering analyses, we chose the

https://github.com/Aging-and-Behavioral-Epidemiology/two_stage_clustering
https://github.com/Aging-and-Behavioral-Epidemiology/two_stage_clustering


Fig. 1 Derivation of the diurnal SB pattern exposure variable. This panel displays day clusters of diurnal trajectories and their distribution at the individual
participant level and the diurnal SB pattern level. Panel (a) displays the diurnal trajectory of each day cluster as defined by the average sedentary time
across days within respective clusters. Panel (b) shows the distribution of day clusters for each participant, i.e. each point on the x-axis represents a
participant. Diurnal SB pattern boundaries are also marked. Panel (c) shows boxplot distributions of day cluster proportions within diurnal SB patterns
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procedure using data aligned to the per subject start of
day rather than data aligned to clock time of day.
Reassuringly, when we conducted a concordance analysis
to compare the procedures, findings were similar: the
two procedures resulted in 81.4% of the days being
classified in the same day cluster, and 73.2% of the par-
ticipants being classified in the same diurnal SB pattern.

Descriptive statistics by diurnal SB pattern
Baseline participant characteristics by SB pattern are in
Table 1. The low SB pattern [4] and high SB pattern (1)
had characteristics that correlated with better and worse
health, respectively. For example, those with the high SB
pattern had on average higher age, BMI, proportion of
current smokers, number of morbidities, total sedentary
time; they also had lower self-rated health, MVPA time,
and physical functioning. Both moderate SB patterns (2
and 3) were on average similar on most characteristics,
with values closer to the sample averages.

Mixed-effects regression: associations between physical
functioning and diurnal SB patterns
In the study sample, mean physical functioning decline
was 2.2 points/year (standard error = 0.07). MVPA was a
significant modifier of the association between diurnal
SB pattern and physical functioning (likelihood ratio p <
0.0001), and therefore results are presented stratified by
high and low MVPA (Fig. 2). Baseline physical function-
ing levels were significantly higher for women with high
MVPA (ranging from 78.6 to 81.5) than for women with
low MVPA (range from 70.6 to 75.1). Women in all SB
patterns experienced decline in physical functioning over
time. The decline in physical functioning over time was
significantly slower in SB pattern 2 and 3 women with
high MVPA (1.9 and 1.6 points/year, respectively) than
the physical functioning decline among women in the
same SB pattern with low MVPA (3.0 and 2.5 points/
year, respectively).
Among women with low MVPA, those in the high SB

pattern [1] had lower baseline physical functioning
(70.6 ± 1.0) than all other patterns, which was signifi-
cantly lower than both of the moderate SB patterns
(pattern 2 physical functioning score = 75.1 ± 1.2; pattern
3 physical functioning score = 74.4 ± 1.3). The pattern
having lower SB at the start of the day relative to the
end of day (pattern 2) had the steepest negative slope of
physical functioning decline (− 3.0 ± 0.2), which was
significantly steeper than that of the consistently low SB
pattern [4] and consistently high SB pattern [1]. There
were no significant differences in baseline physical func-
tioning levels or changes in physical functioning over
time between the two moderate diurnal SB patterns.
Among women with high MVPA, the women in SB

pattern 2 had significantly higher baseline physical func-
tioning (81.5 ± 1.0) than those in SB patterns 1 and 3
(78.9 ± 1.3, and 78.6 ± 1.1, respectively). The women in
the consistently high SB pattern [1] had the most rapid
decline in physical functioning over time, though not
significantly different than that of the other diurnal SB
pattern groups. The rate of physical functioning decline
among women with low morning and high evening SB
pattern [2] was not significantly different than that in
the most rapidly declining group (pattern 1; p = 0.25).
Women with a consistently low diurnal SB pattern [4]
and women with a high morning and low evening SB
pattern [3] had slightly slower declines in physical func-
tioning (1.7 ± 0.1 and 1.6 ± 0.2 physical functioning
points per year) than those in the persistently high SB



Table 1 Baseline demographic, lifestyle, health indicators and physical functioning by diurnal SB pattern

Variable Diurnal SB Pattern p-value

1 (n = 2239) 2 (n = 1536) 3 (n = 1137) 4 (n = 1292)

Age (years), mean (SD) 80.6 (6.5) 78.4 (6.4) 78.1 (6.8) 76.3 (6.3) < 0.001

Ethnicity, n (%) < 0.001

White 1316 (58.8) 752 (49) 502 (44.2) 506 (39.2)

Black 699 (31.2) 478 (31.1) 459 (40.4) 449 (34.8)

Hispanic 224 (10.0) 306 (19.9) 176 (15.5) 337 (26.1)

Education, n (%) < 0.001

HS/GED or less 434 (19.5) 337 (22.1) 199 (17.7) 281 (21.8)

Some college 936 (42.1) 567 (37.2) 407 (36.2) 477 (37.0)

College grad or more 853 (38.4) 622 (40.8) 519 (46.1) 531 (41.2)

BMI (kg/m2), mean (SD) 29.7 (6.1) 27.5 (5.3) 27.7 (5.4) 26.5 (5.1) < 0.001

Current smoker (Yes), n (%) 73 (3.3) 37 (2.4) 32 (2.8) 20 (1.5) 0.02

Alcohol in past 3 months, n (%) < 0.001

0 drinks per week 858 (38.3) 471 (30.7) 382 (33.6) 415 (32.1)

< 1 drinks per week 690 (30.8) 538 (35.0) 331 (29.1) 371 (28.7)

≥ 1 drinks per week 460 (20.5) 424 (27.6) 309 (27.2) 408 (31.6)

Unknown 231 (10.3) 103 (6.7) 115 (10.1) 98 (7.6)

Number of morbiditiesa, n (%) < 0.001

0 298 (13.4) 293 (19.2) 197 (17.4) 295 (22.9)

1 671 (30.1) 567 (37.1) 380 (33.6) 482 (37.4)

2 623 (27.9) 401 (26.3) 318 (28.1) 315 (24.5)

≥ 3 637 (28.6) 266 (17.4) 237 (20.9) 196 (15.2)

Arthritis (Yes), n (%) 1262 (56.4) 822 (53.5) 638 (56.1) 683 (52.9) 0.11

Diabetes (Yes), n (%) 546 (24.4) 285 (18.6) 245 (21.5) 198 (15.3) < 0.001

Stroke (Yes), n (%) 134 (6.0) 63 (4.1) 49 (4.3) 39 (3.0) < 0.001

Self-rated general health, n (%) < 0.001

Excellent or very good 909 (40.7) 842 (55.0) 588 (51.9) 777 (60.4)

Good 1017 (45.6) 576 (37.6) 441 (38.9) 424 (33.0)

Fair or poor 306 (13.7) 114 (7.4) 104 (9.2) 85 (6.6)

Sedentary time (minutes/day),
mean (SD)

668.8 (85.0) 577.5 (75.7) 592.7 (78.0) 501.2 (86.9) < 0.001

MVPA (minutes/day), mean (SD) 28.6 (19.2) 54.2 (28.8) 50.7 (28.0) 82.1 (38.9) < 0.001

Wear time (hours/day), mean (SD) 14.7 (1.4) 14.8 (1.3) 15.1 (1.3) 15.0 (1.3) < 0.001

Wear days, mean (SD) 6.4 (0.9) 6.5 (0.8) 6.5 (0.9) 6.5 (0.8) 0.03

Physical functioning, mean (SD) 58.2 (27.5) 73.7 (22.8) 71 (24.1) 79.3 (21.5) < 0.001

Group differences are tested using ANOVA for continuous variables and chi-squared tests for discrete variables
Abbreviations: SD standard deviation, HS high school, GED general educational development, BMI body mass index, MVPA moderate-to-vigorous physical activity
acardiovascular disease, cancer, osteoarthritis, cognitive impairment, depression, history of falls over the last 12 months, cerebrovascular disease, chronic
obstructive pulmonary disease, diabetes, vision impairment, hearing loss
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pattern (1; 2.1 ± 0.2 physical functioning points per year;
respective p-values = 0.10 and 0.08). Results were similar
with and without adjustment for total sedentary time
(Additional File 1).
Similar results were obtained with and without mul-

tiple imputation, likely due to the relatively small
amount of missingness (records removed due to listwise
deletion = 1796/27717, or 6.5%). As a result, all analyses
were conducted using complete cases.

Discussion
Summary measures of sedentary behavior, e.g., daily
sedentary minutes, are linked to negative health in older
adults. By leveraging minute-level accelerometry, we



Fig. 2 Baseline and slope of physical functioning by diurnal SB pattern and high and low MVPA. The multivariable model is adjusted for age,
race-ethnicity, body mass index (BMI), education, smoking status, alcohol use, number of morbidities, self-rated health, and accelerometer-
measured total sedentary time. BL and slope estimates (standard error) of PF are derived from 3-way interaction model described above. MVPA is
dichotomized into “high” and “low” according to the median value (43.21 min/day). Abbreviations: BL = baseline; MVPA =moderate-to-vigorous
physical activity. *All patterns had significant differences, p < 0.01 between their respective high and low MVPA baseline values. **Patterns 2 and 3
had significant differences, p < 0.01, between their respective high and low MVPA slopes. abcdLowercase a,b,c,d indicate a significant difference,
p < 0.05, with the BL or slope of pattern 1,2,3,4, respectively. ABCDUppercase A,B,C,D indicate a significant difference, p < 0.01, with the BL or slope
of pattern 1,2,3,4, respectively
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derived clusters of diurnal timing of sedentary behavior
to further elucidate associations with health. We used a
two-phase clustering approach that first elicited daily
(hour-by-hour) trajectories of SB time accumulation,
and then clustered individuals based on their daily
patterns across multiple days. This approach allowed us
to group participants according to the amount of daily
SB, as well as the timing of their SB accumulation. E.g.,
we identified two clusters that had similar (moderate)
total daily SB yet differed in the phase of the day (morn-
ing vs evening) wherein most sedentary time was
accumulated. Such delineation is not possible if only
total daily SB is used to characterize an individual’s SB.
We next investigated whether the derived diurnal SB

patterns were associated with cross-sectional and longi-
tudinal markers of health. Unsurprisingly, we found that
higher sedentary behavior throughout the day was
generally associated with poorer health indicators (high
BMI, lower physical functioning, more morbidities)
compared to moderate or lower sedentary behavior.
However, a novel and intriguing finding was that among
participants who had below median MVPA with moder-
ate daily sedentary behavior, those who were less
sedentary earlier in their day (vs later) had significantly
higher physical functioning scores at study entry but also
steeper decline in longitudinal physical health compared
to those who had high levels of sedentary behavior
throughout the day. Thus, we seem to have identified a
latent subgroup that is at high risk of physical function-
ing decline, a finding that would have been masked had
we only used total daily SB as the exposure of interest.
Interestingly, these effects were not as apparent in
women who had above-median levels of MVPA. In
particular, although patterns 1 and 2 exhibited higher
rates of decline than patterns 3 and 4, the effect-sizes
were smaller, suggesting that MVPA may partially miti-
gate the negative effects of diurnal sedentary behavior
patterns. This finding is similar to recently-published
results showing that self-reported sitting time is more
strongly related to all-cause mortality among adults with
low levels of MVPA compared to adults with higher
levels of MVPA [44, 45].
While to our knowledge this is the first study to evalu-

ate diurnal patterns of SB in relation to physical func-
tion, Schrack et al. observed trends in physical activity
accumulation across the day, showing that morning PA
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was on average similar across age groups for the 611
adults (aged 32–93) they studied, but that older adults
had significantly less activity as the day progressed than
younger adults [46]. They hypothesized that, “Older
adults tended to reach their peak activity level much
earlier in the day, which may indicate that daily tasks
such as bathing, dressing, running errands, and volitional
physical exercise are performed in the morning hours
with little activity later in the day.” Our data expand on
this work by showing that even among a population con-
sisting solely of older adults and after accounting for
their chronological age, there is noticeable diurnal vari-
ation in accumulation of SB. Furthermore, compared to
consistently high SB throughout the day (i.e., cluster p1),
we found that a pattern with lower SB earlier and higher
SB later in the day (i.e., cluster p2) is related to acceler-
ated functional decline, among participants who engaged
in low MVPA. The extent to which this novel observa-
tion represents a causal relationship that evening accu-
mulation of SB is more deleterious to physical function
than morning SB, requires further study. It is possible
that there is an underlying biological ageing process that
affects both diurnal SB patterns and trajectories of phys-
ical function. Or, sedentary behavior later in the day
may disrupt or change circadian rhythms of biological
processes linked to ageing and chronic disease. It is im-
portant to note that the high-risk cluster (p2) in fact
generally had better health (i.e., fewer morbidities, lower
BMI) at baseline relative to the high-SB (p1) group. If
confirmed in other studies, knowing that specific diurnal
activity patterns are associated with increased risk for
accelerated decline might identify high-risk patients,
who might not otherwise be considered high risk, and
alert clinicians early to these patients. In the future, this
might trigger a suite of interventions to prevent such
decline.
In our older adult population, multiple health conditions

are prevalent, which could confound the observed associa-
tions. We attempted to adjust for these health conditions
by including a “number of morbidities” covariate. How-
ever, it is possible that specific morbidities may exert
stronger confounding effects. To this end, we conducted a
sensitivity analysis in which we controlled for specific
conditions, such as stroke, diabetes, and arthritis, which
would be strongly related to SB and physical function.
The results of this sensitivity analysis were similar to our
original findings (Additional File 2). Another important
confounding factor is vision loss and the likely higher fear
of falling among participants with vision loss [47]. We
emphasize that while our analysis adjusted for a host of
measured confounders, we cannot rule out residual
confounding and acknowledge this as a limitation.
We used physical functioning trajectories across 6

years as a measure of overall functioning and health in
our population of older women. The validated RAND-36
physical functioning subscale is reported to be a
comprehensive marker of mobility-disability among
older adults [48]. It is recognized that aging-related
decline in health is a multidimensional phenomenon
[49, 50], and the physical functioning score used herein
may be regarded as an overarching health indicator that
captures multiple facets and morbidities of health
decline in older adults. A natural next step would be to
identfy associations between diurnal SB patterns and
specific biological and self-reported outcomes that may
underlie the current finding. We leave this to future
research.
Many investigators have developed new analytic ap-

proaches for accelerometer data in an effort to not just
measure total accumulation of PA/SB time but to detect
patterns in the data. Several studies have investigated
patterns based on lengths of uninterrupted intervals
(“bouts”) and/or degree of fragmentation of PA/SB [15,
22, 51–57]. More relevant to the current investigation,
studies have also described variations in the timing of
sedentary time and PA time accumulation with respect
to hour of the day and/or day of the week, including
differences in timing by sociodemographic factors [23,
28, 58–62]. None of these studies about the timing of
PA/SB attempted to determine whether the identified
patterns were associated with health status. We identi-
fied a few studies that examined diurnal patterns of PA/
SB, (i.e., patterns based on the time of day that active/
sedentary time was accumulated) and health. Using
functional principal components analysis, Xu et al.
reported that higher evening (vs mid-day) activity was
associated with worse mental quality-of-life [26]. Zeitzer
et al. found principal components-derived patterns that
were predictive of changes in sleep and cognition, as
well as cardiovascular-related mortality and all-cause
mortality [63]. However, both studies modeled acceler-
ometer/ActiGraph counts as the exposure measure of
activity and did not examine SB directly. Also, the study
design used by Xu et al. was cross-sectional, and they
did not investigate longitudinal trajectories of quality-of-
life. In another study, using k-means analysis of METs
data (metabolic equivalent of tasks), Fukuoka et al.
discriminated three groups of participants according to
the times of day at which their peak levels of MVPA
occurred [63]. The MVPA evening peak group had
significantly higher BMI, waist circumference, and hip
circumference than the MVPA noon peak group. An x-
means cluster analysis study of diurnal patterns, similar
to our own, identified 4 distinct PA clusters on the basis
of intensity and temporal patterns of activity, and found
that risk of cardiovascular disease varied across clusters
in both males and females [64]. The functional principal
components analysis approach discerns the major modes
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of variation in PA/SB patterns, while our and other
clustering methods identify distinct homogeneous
subgroups of participants. Fukuoka et al. and Niemala
et al. derived clusters using diurnal patterns of overall
activity measured via METs, whereas our approach
focuses specifically on SB. For behavioral intervention
studies, eliciting timing of specific behaviors (such as SB
or MVPA) may be most useful for tailoring interventions
to the needs of the individual. For instance, given find-
ings from our study, a behavioral intervention aiming to
reduce SB would offer different strategies to individuals
who have one versus the other of the two moderate SB
patterns.
Our study has many strengths. Our sample comprised

a large diverse and well-characterized cohort of > 6000
older participants from the Women’s Health Initiative.
The rich Women’s Health Initiative database contains
detailed data on a large number of variables, allowing us
to develop robust models and adjust for a number of
potential confounders. We used objective accelerometers
to measure SB and PA, and leveraged minute-level
assessments to ascertain diurnal variation in SB patterns.
Our 2-stage clustering approach uncovered latent
subgroups based on within-day and between-day similar-
ity in SB patterns, which could be useful for developing
targeted interventions to reduce SB, e.g., when during
the day to intervene (morning vs afternoon) and which
day (e.g., a high SB-day). Due to the availability of mul-
tiple longitudinal measures of physical functioning, we
were able to examine how SB pattern impacts not only
current physical functioning but also future rate of
decline. There are also limitations. Clustering analysis is
an unsupervised, inherently exploratory technique.
While we conducted a variety of sensitivity analyses to
assess the stability of our results, additional independent
studies are needed to replicate (or refute) our findings.
Also, the derived clusters in our study provide broad
groupings of similar SB patterns. Although finer-grained
groupings are possible, we elected to maintain a coarser
classification, so as not to overfit the data at hand. If our
findings are replicated, further subdivisions of clusters
may offer additional insights. In our study, we treated
weekday and weekend days equally. While studies
among similarly aged older adults indicate that total
sedentary time does not significantly vary by weekday vs
weekend day [65, 66], there is evidence that diurnal
accumulation patterns may differ and future studies
should further explore this to guide development of
personalized interventions. Our physical functioning
measure, albeit validated and used extensively in “aging”
research, is self-reported. Replicating our results using
longitudinal objective outcomes of physical health would
strengthen our findings. Even though we were able to
adjust for a large number of covariates, unmeasured
confounding could still be present (e.g., by variables such
as occupation that were not measured in OPACH), and
must be acknowledged when interpreting our results.
E.g., the finding that the moderate-SB-with-lower-morn-
ing-SB pattern [2] had steeper physical functioning
decline could signify a latent subgroup at high risk of
decline, but could also be due to an unmeasured base-
line factor. Similarly, in our observational study it is not
possible to infer the direction of associations between
MVPA (or other baseline factors) and baseline physical
functioning. Even so, availability of longitudinal mea-
sures of physical functioning allows us to infer effects of
baseline MVPA on future physical functioning decline,
thus partially addressing this concern. Further investiga-
tion of the sequence of cause and effects is warranted.

Conclusions
In summary, in a large cohort of older, ambulatory,
community-living women, we found that diurnal SB
patterns were associated with differential rates of physical
functioning decline. Diurnal timing of SB, complementary
to total sedentary time and MVPA, may offer additional
insights into associations between SB and physical health.
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