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Abstract

Hybrid Machine Learning Algorithms for Solving Forward and Inverse Problems in

Physical Sciences

by

Samira Pakravan

Machine learning (ML) techniques have emerged as powerful tools for solving dif-

ferential equations, particularly in the context of partial differential equations (PDEs),

enabling accelerated forward simulations and parameter discovery from limited data.

However, challenges persist in maintaining numerical accuracy, especially in scenarios

requiring real-time inference and inverse problem-solving. This dissertation investigates

innovative hybrid strategies that blend classical finite discretization methods with mod-

ern ML techniques to enhance accuracy while maintaining computational efficiency. Our

research focuses on addressing key challenges at the intersection of scientific computing,

machine learning, and applied mathematics, including performance, accuracy, and data

efficiency.
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Chapter 1

Introduction

Machine learning (ML) techniques have shown promising potential in solving differen-

tial equations, a fundamental tool in modeling and understanding various phenomena

in science and engineering. Particularly, incorporating machine learning approaches in

solving partial differential equations (PDEs), opens new frontiers for accelerating for-

ward simulations and discovering hidden parameters that characterize physical systems

from limited data. The standard procedure for simulating systems of PDEs involves

iteratively solving linear systems that arise from finite discretization methods. Beyond

forward simulations, solving inverse PDE problems requires the extra step of solving the

adjoint equations which adds to the computational costs and challenges the limit of tra-

ditional methods. Furthermore, in many areas of physical sciences long-time processes

and large-scale interactions are the determining phenomena that need to be computa-

tionally resolved, these extended spatiotemporal scales often exacerbate their limitations

on currently available computational resources, therefore leaving many problems unfea-

sible to address. In recent years an important example is mitigating instabilities of

high-concentration biotherapeutics (such as developing antibody drugs) in the biotech-

nology industry where direct numerical simulations of macromolecules over sufficiently

1



Introduction Chapter 1

ℱ : un → un+1
(a)

(b)

Figure 1.1: Real-time digital twins can be achieved through neural operators, F , that
update the simulation state at unprecedented efficiency. The top panel displays snap-
shots adapted from [8], while the bottom panel presents throughput measurements
from [9], illustrating neural network inference performance on contemporary acceler-
ators.

large spatiotemporal scales have been impossible. Another example is the direct numer-

ical simulation of the Earth’s atmosphere for real-time weather prediction1. Therefore,

algorithmic innovations for accelerating forward and inverse PDE solvers is a significant

area of research with immediate impact across many industries. Figure 1.1 illustrates the

potential of “neural operators”, i.e. a class of machine learning techniques for solving

PDEs, on achieving real-time digital twins of complex systems.

1See the NVIDIA Earth-2 initiative.
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• Spatial derivatives using finite discretization (FD), AD for model parameters.


• Trained models benefit numerical accuracy & inherent solution properties (symmetries, jump, etc).


• Leads to first order AD, hence it is scalable to high order PDEs.

• All derivatives using automatic differentiation (AD) 

• Trained models lack numerical accuracy.

• Leads to high order AD, hence not scalable to higher order PDEs.

(a)

(b)

Figure 1.2: Two main strategies for constrained optimization of neural networks to
represent PDE solutions.

Since 2017, a class of physics-informed machine learning algorithms emerged with the

potential to address these computational challenges, although at the expense of degraded

numerical accuracies which is paramount to simulating the physical processes of interest;

top panel of figure 1.2. Therefore, in this dissertation, we explored innovative avenues

to improve the accuracy problem by inventing hybrid optimization strategies of finite

discretizations and deep learning methods; see bottom panel of figure 1.2. As illustrated

in figure 1.2, the constrained optimization framework for solving PDEs with neural net-

works comes in two flavors: (a) computing all derivatives with automatic differentiation,

or (b) computing spatiotemporal gradients with numerical derivatives and model param-

3
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U(t, x; θ) = NNθ(x) → ℒ(t, x; θ) = |Dt,x[U(x; θ)] |

θk+1 = θk − α∇θℒ(t, x; θk)
AD

FD

FD adds extra backpropagation paths  
to the local neighborhoods established by the FD scheme

Figure 1.3: FD loss acts as a regularization mechanism that enforces underlying sym-
metries and conservation laws.

eter gradients with automatic differentiation. We demonstrated that finite discretization

loss improves accuracy and performance of training. Moreover, at a given accuracy level,

the trained neural network model has significantly less number of parameters which leads

to higher inference performance.

We emphasize that this line of research is based on our hypothesis that the origin

of such inaccuracies lies, primarily, in the evaluation of the loss function rather than a

consequence of insufficient expressibility of the neural network architecture that is used

to represent the solution fields. Figure 1.3 demonstrates the mechanisms by which finite

difference (FD) methods enhance the accuracy of trained neural network models. The

FD loss function introduces additional backpropagation pathways during the training

process, which regularizes the encoded solutions. Furthermore, FD enforces the conser-

vation laws and symmetries intrinsic to the partial differential equation (PDE) system in

local neighborhoods around the training points. These analytical principles have histor-

ically underpinned the development of various finite discretization schemes and should

be similarly applied to the training of neural network encodings.

4
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Although many innovations by the broader community focused on building larger

and more complex neural network architectures, we demonstrate comparable levels of

accuracy can be achieved by hybrid discretizations while maintaining a surprisingly sim-

ple and shallow neural network model. Arguably, larger and more complex models are

counter-productive at enabling real-time digital twins due to their huge computational

burden, which is one of the main motivations for developing machine learning simula-

tion algorithms in the first place. Therefore, we believe our contributions in the form of

developing innovative hybridization algorithms as well as releasing an open source and

high-performance implementation of these algorithms have been significant contributions

that complement the mostly model-centric hypothesis pursued in the research commu-

nity, and pave the way for additional research to further realize the potential of machine

learning for physical simulations.

In chapter 2 we present “BiPDE”, that is one of the first frameworks for blending nu-

merical solvers with deep neural networks in the context of solving inverse PDE problems.

Notably, we developed one of the earliest frameworks for training neural operators (i.e.,

mappings between function spaces) of PDE problems, and we illustrated the high accu-

racy and data efficiency of our framework. In chapter 3 we generalized this hybridization

strategy to encompass any finite discretization scheme and addressed several algorith-

mic and software-centric computational efficiency challenges that arise in three spatial

dimensions over irregular interfaces with jump conditions. We presented the “neural

bootstrapping method (NBM)” as a generic method to hybridize neural network-based

PDE solvers. Moreover, in collaboration with NVIDIA engineers, we implemented and

open sourced JAX-DIPS which is a high-performance multi-GPU/TPU/CPU and end-to-

end differentiable software that leverages NBM to train complex neural network models

of solutions to 3D PDE problems with jump conditions across irregular interfaces. No-

tably, JAX-DIPS is the first, and to the best of our knowledge the only, high-performance

5



Introduction Chapter 1

open-source ML framework for solving this important class of PDE problems. Finally, in

chapter 4, analogous to the BiPDE framework, we developed a hybrid inverse stochastic

differential equation solver for the discovery of effective pharmacokinetics (PK, concen-

tration with time) and pharmacodynamics (PD, effect with time) models (i.e., widely

known as PK/PD modeling) from real-world, limited, and noisy patients data. We de-

veloped the “pharmacology-informed neural networks” in collaboration with scientists at

the clinical pharmacology division at the Genentech Research and Early Development

(gRED). This work exemplifies the impact of hybridization algorithms at the frontiers of

biotechnology research in industry.

1.1 Permissions and Attributions

1. The content of chapter 2 is the result of a collaboration with Pouria A. Mistani,

Miguel A. Aragon-Calvo, and Frederic Gibou, and has previously appeared in the

Journal of Computational Physics [2]. It is reproduced here with the permis-

sion of Elsevier: https://www.sciencedirect.com/science/article/abs/pii/

S0021999121003090.

2. The content of chapter 3 is the result of a collaboration with Pouria A. Mistani, Ra-

jesh Ilango, and Frederic Gibou, and has previously appeared in the Journal of Com-

putational Physics [1]. It is reproduced here with the permission of Elsevier: https:

//www.sciencedirect.com/science/article/abs/pii/S0021999123005752.

3. The content of chapter 4 is the result of a collaboration with Nikolaos Evangelou,

Maxime Usdin, Logan Brooks, and James Lu, and has previously appeared on

arXiv. It is reproduced here with the permission of arXiv [4]: https://arxiv.

org/pdf/2403.03274.
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Chapter 2

Solving Inverse-PDE Problems with

Physics-Aware Neural Networks

2.1 abstract

We propose a novel composite framework to find unknown fields in the context of in-

verse problems for partial differential equations (PDEs). We blend the high expressibility

of deep neural networks as universal function estimators with the accuracy and reliabil-

ity of existing numerical algorithms for partial differential equations as custom layers in

semantic autoencoders. Our design brings together techniques of computational math-

ematics, machine learning and pattern recognition under one umbrella to incorporate

domain-specific knowledge and physical constraints to discover the underlying hidden

fields. The network is explicitly aware of the governing physics through a hard-coded

PDE solver layer in contrast to most existing methods that incorporate the governing

equations in the loss function or rely on trainable convolutional layers to discover proper

discretizations from data. This subsequently focuses the computational load to only the

discovery of the hidden fields and therefore is more data efficient. We call this architec-

7



Solving Inverse-PDE Problems with Physics-Aware Neural Networks Chapter 2

ture Blended inverse-PDE networks (hereby dubbed BiPDE networks) and demonstrate

its applicability for recovering the variable diffusion coefficient in Poisson problems in

one and two spatial dimensions, as well as the diffusion coefficient in the time-dependent

and nonlinear Burgers’ equation in one dimension. We also show that this approach is

robust to noise.

2.2 Introduction

Inverse differential problems, where given a set of measurements one seeks a set of

optimal parameters in a governing differential equation, arise in numerous scientific and

technological domains. Some well-known applications include X-ray tomography [10, 11],

ultrasound [12], MRI imaging [13], and transport in porous media [14]. Moreover, model-

ing and control of dynamic complex systems is a common problem in a broad range of sci-

entific and engineering domains, with examples ranging from understanding the motion of

bacteria colonies in low Reynolds number flows [15], to the control of spinning rotorcrafts

in high speed flights [16, 17]. Other applications in medicine, navigation, manufacturing,

etc. need estimation of the unknown parameters in real-time, e.g. in electroporation

[18, 19] the pulse optimizer has to be informed about tissue parameters in microsecond

time. On the other hand, high resolution data-sets describing spatiotemporal evolution of

complex systems are becoming increasingly available by advanced multi-scale numerical

simulations (see e.g. [19, 20]). These advances have become possible partly due to recent

developments in discretization techniques for nonlinear partial differential equations with

sharp boundaries (see e.g. the reviews [21, 22]). However, solving these inverse problems

poses substantial computational and mathematical challenges that makes it difficult to

infer reliable parameters from limited data and in real-time.

The problem can be mathematically formulated as follows. Let the values of u =

8



Solving Inverse-PDE Problems with Physics-Aware Neural Networks Chapter 2

u(t, x1, . . . , xn) be given by a set of measurements, which may include noise. Knowing

that u satisfies the partial differential equation:

∂u

∂t
= f

(
t, x1, . . . , xn;u,

∂u

∂x1
, . . .

∂u

∂xn
;

∂2u

∂x1∂x1
, . . .

∂2u

∂x1∂xn
; . . . ; c

)
,

find the hidden fields stored in c, where the hidden fields can be constant or variable

coefficients (scalars, vectors or tensors).

Deep neural networks have, rather recently, attracted considerable attention for data

modeling in a vast range of scientific domains, in part due to freely available modern deep

learning libraries (in particular TensorFlow [23]). For example, deep neural networks

have shown astonishing success in emulating sophisticated simulations [24, 25, 26, 27, 28],

discovering governing differential equations from data [29, 30, 31, 32], as well as poten-

tial applications to study and improve simulations of multiphase flows [21]. We refer the

reader to [33, 34] for a comprehensive survey of interplays between numerical approx-

imation, statistical inference and learning. However, these architectures require mas-

sive datasets and extensive computations to train numerous hidden weights and biases.

Therefore, reducing complexity of deep neural network architectures for inverse prob-

lems poses a significant practical challenge for many applications in physical sciences,

especially when the collection of large datasets is a prohibitive task [35]. One remedy to

reduce the network size is to embed the knowledge from existing mathematical models

[36] or known physical laws within a neural network architecture [37, 38]. Along these

lines, semantic autoencoders were recently proposed by Aragon-Calvo [39], where they

replaced the decoder stage of an autoencoder architecture with a given physical law that

can reproduce the provided input data given a physically meaningful set of parameters.

The encoder is then constrained to discover optimal values for these parameters, which

can be extracted from the bottleneck of the network after training. We shall emphasize

9
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that this approach reduces the size of the unknown model parameters, and that the en-

coder can be used independently to infer hidden parameters in real time, while adding

interpretability to deep learning frameworks. Inspired by their work, we propose to blend

traditional numerical solver algorithms with custom deep neural network architectures

to solve inverse PDE problems more efficiently, and with higher accuracy.

2.2.1 Existing works

Recently, the most widely used approach for solving forward and inverse partial differ-

ential equations using neural networks has been the constrained optimization technique.

These algorithms augment the cost function with terms that describe the PDE, its bound-

ary and its initial conditions, while the neural network acts as a surrogate for the solution

field. Depending on how the derivatives in the PDEs are computed, there may be two

general classes of methods that we review in the next paragraph.

In the first class, spatial differentiations in the PDE are performed exclusively using

automatic differentiation, while temporal differentiation may be handled using the tradi-

tional Runge-Kutta schemes (called discrete time models) or using automatic differenti-

ations (called continuous time models) [40]. In these methods, automatic differentiation

computes gradients of the output of a neural network with respect to its input variables.

Hence, the input must always be the independent variables, i.e. the input coordinates

x, time and the free parameters. In this regard, network optimization aims to calibrate

the weights and biases such that the neural network outputs the closest approximation

of the solution of a PDE; this is enforced through a regularized loss function. An old idea

that was first proposed by Lagaris et al. (1998) [41]. In 2015, the general framework of

solving differential equations as a learning problem was proposed by Owhadi [42, 43, 44]

which revived interest in using neural networks for solving differential equations in recent

10
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years. Raissi et al. (2017) [40, 45] presented the regularized loss function framework under

the name physics informed neural networks or PINNs and applied it to time-dependent

PDEs. Ever since, other authors have mostly adopted PINNs, see e.g. [46, 47]. The

second class of constrained optimization methods was proposed by Xu and Darve [48]

who examined the possibility of directly using pre-existing finite discretization schemes

within the loss function.

An alternative approach for solving PDE systems is through explicit embedding of

the governing equations inside the architecture of deep neural networks via convolutional

layers, activation functions or augmented neural networks. Below we review some of

these methods:

• A famous approach is PDE-Net [31, 49] which relies on the idea of numerical ap-

proximation of differential operators by convolutions. Therefore, PDE-Nets use

convolution layers with trainable and constrained kernels that mimic differential

operators (such as Ux,Uy,Uxx, · · · ) whose outputs are fed to a (symbolic) multilayer

neural network that models the nonlinear response function in the PDE system, i.e.

the right hand side in Ut = F(U,Ux,Uy,Uxx, · · · ). Importantly, PDE-Nets can only

support explicit time integration methods, such as the forward Euler method [31].

Moreover, because the differential operators are being learned from data samples,

these methods have hundreds of thousands of trainable parameters that demand

hundreds of data samples; e.g. see section 3.1 in [31] that uses 20 δt-blocks with

17, 000 parameters in each block, and use 560 data samples for training.

• Berg and Nyström [50] (hereby BN17) proposed an augmented design by using

neural networks to estimate PDE parameters whose output is fed into a forward

finite element PDE solver, while the adjoint PDE problem is employed to compute

gradients of the loss function with respect to weights and biases of the network

11
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using automatic differentiation. Even though their loss function is a simple L2-

norm functional, the physics is not localized in the structure of the neural network

as the adjoint PDE problem is also employed for the optimization process. It is

important to recognize that in their approach the numerical solver is a separate

computational object than the neural network, therefore computing gradients of

error functional with respect to the network parameters has to be done explicitly

through the adjoint PDE problem. Moreover, their design can not naturally handle

trainable parameters in the numerical discretization itself, a feature that is useful for

some meshless numerical schemes. In contrast, in BiPDEs the numerical solver is a

computational layer added in the neural network architecture and naturally supports

trainable parameters in the numerical scheme. For example in the meshless method

developed in section 2.5 we leverage this unique feature of BiPDEs to also train for

shape parameters and interpolation seed locations of the numerical scheme besides

the unknown diffusion coefficient.

• Dal Santos et al. [51] proposed an embedding of a reduced basis solver as activation

function in the last layer of a neural network. Their architecture resembles an

autoencoder in which the decoder is the reduced basis solver and the parameters at

the bottleneck “are the values of the physical parameters themselves or the affine

decomposition coefficients of the differential operators” [51].

• Lu et al. [52] proposed an unsupervised learning technique using variational au-

toencoders to extract physical parameters (not inhomogeneous spatial fields) from

noisy spatiotemporal data. Again the encoder extracts physical parameters and

the decoder propagates an initial condition forward in time given the extracted

parameters. These authors use convolutional layers both in the encoder to extract

features as well as in the decoder with recurrent loops to propagate solutions in

12



Solving Inverse-PDE Problems with Physics-Aware Neural Networks Chapter 2

time; i.e. the decoder leverages the idea of estimating differential operators with

convolutions. Similar to PDE-Nets, this architecture is also a “PDE-integrator

with explicit time stepping”, and also they need as few as 10 samples in the case

of Kuramoto-Sivashinsky problem.

In these methods, a recurring idea is treating latent space variables of autoencoders

as physical parameters passed to a physical model decoder. This basic idea pre-dates

the literature on solving PDE problems and has been used in many different domains.

Examples include Aragon-Calvo [39] who developed a galaxy model fitting algorithm

using semantic autoencoders, or Google Tensorflow Graphics [53] which is a well-known

application of this idea for scene reconstruction.

2.2.2 Present work

Basic criteria of developing numerical schemes for solving partial differential equa-

tions are consistency and convergence of the method, i.e. increasing resolution of data

should yield better results. Not only there is no guarantee that approximating differential

operators through learning convolution kernels or performing automatic differentiations

provide a consistent or even stable numerical method, but also the learning of convolu-

tion kernels to approximate differential operators requires more data and therefore yield

less data-efficient methods. Therefore it seems reasonable to explore the idea of blending

classic numerical discretization methods in neural network architectures, hence informing

the neural network about proper discretization methods. This is the focus of the present

manuscript.

In the present work, we discard the framework of constrained optimization altogether

and instead choose to explicitly blend fully traditional finite discretization schemes as the

decoder layer in semantic autoencoder architectures. In our approach, the loss function is

13
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only composed of the difference between the actual data and the predictions of the solver

layer, but contrary to BN17 [50] we do not consider the adjoint PDE problem to compute

gradients of the error functional with respect to network parameters. This is due to the

fact that in our design the numerical solver is a custom layer inside the neural network

through which backpropagation occurs naturally. This is also in contrast to PINNs where

the entire PDE, its boundary and its initial conditions are reproduced by the output of

a neural network by adding them to the loss function. Importantly, the encoder learns

an approximation of the inverse transform in a self-supervised fashion that can be used

to evaluate the hidden fields underlying unseen data without any further optimization.

Moreover, the proposed framework is versatile as it allows for straightforward considera-

tion of other domain-specific knowledge such as symmetries or constraints on the hidden

field. In this work, we develop this idea for stationary and time-dependent PDEs on

structured and unstructured grids and on noisy data using mesh-based and mesh-less

numerical discretization methods.

2.2.3 Novelties and features of BiPDEs

A full PDE solver is implemented as a custom layer inside the architecture of semantic

autoencoders to solve inverse-PDE problems in a self-supervised fashion. Technically

this is different than other works that implement a propagator decoder by manipulating

activation functions or kernels/biases of convolutional layers, or those that feed the output

of a neural network to a separate numerical solver such as in BN17 which requires the

burden of considering the adjoint problem in order to compute partial differentiations.

The novelties and features of this framework are summarized below:

1. General discretizations. We do not limit numerical discretization of differential

equations to only finite differences that are emulated by convolution operations,
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our approach is more general and permits employing more sophisticated numerical

schemes such as meshless discretizations. It is a more general framework that

admits any existing discretization method directly in a decoder stage.

2. Introducing solver layers. All the information about the PDE system is only

localized in a solver layer; i.e. we do not inform the optimizer or the loss function

with the adjoint PDE problem, or engineer regularizers or impose extra constraints

on the kernels of convolutions, or define exotic activation functions as reviewed

above. In other words, PDE solvers are treated as custom layers similar to con-

volution operations that are implemented in convolutional layers. An important

aspect is the ability to employ any of the usual loss functions used in deep learning,

for example we arbitrarily used mean absolute error or mean squared error in our

examples.

3. Blending meshless methods with trainable parameters. Another unique

proposal made in this work is the use of Radial Basis Function (RBF) based PDE

solver layers as a natural choice to blend with deep neural networks. Contrary to

other works, the neural network is not only used as an estimator for the unknown

field but also it is tasked to optimize the shape parameters and interpolation points

of the RBF scheme. In fact, our meshless decoder is not free of trainable param-

eters similar to reviewed works, instead shape parameters and seed locations are

trainable parameters that define the RBF discretization, this is analogous to con-

volutional layers with trainable weights/biases that are used in machine learning

domain. In fact this presents an example of neural networks complementing numer-

ical discretization schemes. Choosing optimal shape parameters or seed locations

is an open question in the field of RBF-based PDE solvers and here we show neural

networks can be used to optimally define these discretization parameters.
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4. Explicit/implicit schemes. Most of the existing frameworks only accept explicit

numerical discretizations in time, however our design naturally admits implicit

methods as well. Using implicit methods allows taking bigger timesteps for stiff

problems such as the diffusion problem, hence not only providing faster inverse-

PDE solvers, but also present more robust/stable inverse PDE solvers.

5. Data efficient. Our design lowers the computational cost as a result of reusing

classical numerical algorithms for PDEs during the learning process, which focuses

provided data to infer the actual unknowns in the problem, i.e. reduces the load

of learning a discretization scheme from scratch.

6. Physics informed. Domain-specific knowledge about the unknown fields, such

as symmetries or specialized basis functions, can be directly employed within our

design.

7. Inverse transform. After training, the encoder can be used independently as a

real-time estimator for unknown fields, i.e. without further optimization. In other

words, the network can be pre-trained and then used to infer unknown fields in

real-time applications.

2.3 Blended inverse-PDE network (BiPDE-Net)

The basic idea is to embed a numerical solver into a deep learning architecture to

recover unknown functions in inverse-PDE problems, and all the information about the

governing PDE system is only encoded inside the DNN architecture as a solver layer. In

this section we describe our proposed architectures for inverse problems in one and two

spatial dimensions.
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2.3.1 Deep neural networks (DNN)

The simplest neural network is a single layer of perceptron that mathematically per-

forms a linear operation followed by a nonlinear composition applied to its input space,

N = σ
(
Wx+ b

)
, (2.1)

where σ is called the activation function. Deep neural networks are multiple layers stacked

together within some architecture. The simplest example is a set of layers connected in

series without any recurrent loops, known as feedforward neural networks (FNN). In a

densely connected FNN, the action of the network is simply the successive compositions

of previous layer outputs with the next layers, i.e.,

Nl = σ
(
WlNl−1(x) + bl

)
, (2.2)

where l indicates the index of a layer. This compositional nature of NNs is the basis

of their vast potential as universal function estimators of any arbitrary function on the

input space x, see e.g. [54, 55, 56]. Another important feature of NNs is that they can

effectively express certain high dimensional problems with only a few layers, for example

Darbon et al. [57] have used NNs to overcome the curse of dimensionality for some

Hamilton-Jacobi PDE problems (also see [58, 46]).

Most machine learning models are reducible to composition of simpler layers which

allows for more abstract operations at a higher level. Common layers include dense

layers as described above, convolutional layers in convolutional neural networks (CNNs)

[59, 60], Long-short term memory networks (LSTM) [61], Dropout layers [62] and many

more. In the present work, we pay particular attention to CNNs owing to their ability to

extract complicated spatial features from high dimensional input datasets. Furthermore,
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we define custom PDE solver layers as new member of the family of pre-existing layers

by directly implementing numerical discretization schemes inside the architecture of deep

neural networks.

2.3.2 Custom solver layers

A layer is a high level abstraction that plays a central role in existing deep learning

frameworks such as TensorFlow1 [23], Keras API [63], PyTorch [64], etc. Each Layer

encapsulates a state, i.e. trainable parameters such as weights/biases, and a transfor-

mation of inputs to outputs. States in a layer could also be non-trainable parameters in

which case they will be excluded from backpropagation during training.

We implement different explicit or implicit numerical discretization methods as cus-

tom layers that transform an unknown field, initial data and boundary conditions to

outputs in the solution space. Solver layers encapsulate numerical discretization schemes

with trainable (e.g. shape parameters and seeds in meshless methods) or non-trainable

(e.g. the finite difference methods) state parameters. Interestingly, solver layers with

trainable parameters are new computational objects analogous to pre-existing convolu-

tional layers with trainable kernel parameters.

An important aspect of layer objects is that they can be composed with other layers

in any order. Particularly, this offers an interesting approach for solving inverse problems

given by systems of partial differential equations with several unknown fields that can be

modeled with neural layers. We will explore this avenue in future work. In the remainder

of this manuscript we will only focus on different inverse-PDE examples given by a single

PDE equation and one unknown field.

1For example see TensorFlow manual page at https : //www.tensorflow.org/guide/keras/custom layers and models
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Figure 2.1: Architecture of the BiPDE to infer unknown parameters of hidden fields.
Here the loss function is the mean squared error between data and output of the
autoencoder, however other choices for loss function may be used depending on the
nature of data.

2.3.3 Blended neural network architectures

BiPDE is a two-stage architecture, with the first stage responsible for learning the

unknown coefficients and the second stage performing numerical operations as in tradi-

tional numerical solvers (see figure 2.1). To achieve higher performance, it is essential

to use GPU-parallelism. We leverage the capability provided by the publicly available

library TensorFlow [23] by implementing our PDE-solver as a custom layer into our

network using the Keras API [63]. Details of this includes vectorized operations to build

the linear system associated by the PDE discretization.

We propose a semantic autoencoder architecture as proposed by Aragon-Calvo (2019)

[39] with hidden parameters being represented at the bottleneck of the autoencoder.

Figure 2.1 illustrates the architecture for the proposed semantic autoencoder. Depending

on static or time dependent nature of the governing PDE, one may train this network

over pairs of input-output solutions that are shifted p steps in time, such that for a static

PDE we have p = 0 while dynamic PDEs correspond to p ≥ 1. We call this parameter

the shift parameter, which will control the accuracy of the method (cf. see section 2.5).
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An important aspect is that the input to BiPDE is the solution data itself. In other

words the neural network in a BiPDE is learning the inverse transform,

NN : {u} → hidden field, (2.3)

where {u} indicates an ensemble of solutions, e.g. solutions obtained with different

boundary conditions or with different hidden fields. Note that in other competing meth-

ods such as PINNs the input is sanctioned to be the coordinates in order for automatic

differentiation to compute spatial and temporal derivatives; as a consequence PINNs can

only be viewed as surrogates for the solution of the differential problem defined on the

space of coordinates. However, we emphasize that semantic autoencoders are capable

to approximate the inverse transformation from the space of solutions to the space of

hidden fields, a feature that we exploit in section 2.4.1.

Essentially different numerical schemes can be implemented in the decoder stage.

We will blend examples of both mesh-based and mesh-less numerical discretizations and

present numerical results and comparisons with PINNs. We will show how BiPDEs can

handle data on unstructured grids and data with added noise. In section 2.4, we demon-

strate performance of mesh-based BiPDEs on inverse problems in two spatial dimensions

by using a finite difference discretization and Zernike expansion of the non-homogeneous

hidden field, we will consider both stationary and dynamic PDE problems in this section.

Then in section 2.5, we develop a mesh-less BiPDE and consider a dynamic nonlinear

inverse partial differential problem.
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2.4 Mesh-based BiPDE: Finite Differences

We consider a variable coefficient Poisson problem in one and two spatial dimensions

as well as the one dimensional nonlinear Burger’s equation as an example of a nonlinear

dynamic PDE problem with a scalar unknown parameter.

2.4.1 Stationary Poisson problem

We consider the governing equation for diffusion dominated processes in heteroge-

neous media:

∇ ·
(
D(x)∇u

)
= −f(x), x ∈ Ω (2.4)

u(x) = u0(x), x ∈ ∂Ω (2.5)

Here we consider a rectangular domain with Dirichlet boundary conditions.

Discretization. In our architecture, we use the standard 5-point stencil finite dif-

ference discretization of the Poisson equation in the solver layer, i.e.

Di−1/2,jui−1,j − (Di−1/2,j +Di+1/2,j)ui,j +Di+1/2,jui+1,j

∆x2
+

Di,j−1/2ui,j−1 − (Di,j−1/2 +Di,j+1/2)ui,j +Di,j+1/2ui,j+1

∆y2
+ fi,j = 0,

and we use the linear algebra solver implemented in TensorFlow to solve for the solution

field, i.e. we used tf.linalg.solve method that is a dense linear system solver. Of

course, this can be improved by implementing a sparse linear solver.

Hidden Model. We decompose the hidden field into a finite number of eigenfunc-

tions and search for their optimal coefficients. This is also advantageous from a physics

point of view, because domain’s knowledge of hidden fields can be naturally formulated
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in terms of basis functions into this framework. One such family of series expansions

are the moment-based methods that have been largely exploited in image reconstruction

[65, 66, 67, 68]. In particular, Zernike moments [69] provide a linearly independent set of

polynomials defined on the unit circle/sphere in two/three spatial dimensions. Zernike

moments are well-suited for such a task and are commonly used for representing optical

aberration in astronomy and atmospheric sciences [70], for image reconstruction and for

enhanced ultrasound focusing in biomedical imaging [71, 72, 73].

Zernike moments are advantageous over regular moments in that they intrinsically

provide rotational invariance, higher accuracy for irregular patterns, and are orthogonal,

which reduces information redundancy in the different coefficients. Zernike polynomials

capture deviations from zero mean as a function of radius and azimuthal angle. Further-

more, the complete set of orthogonal bases provided by Zernike moments can be obtained

with lower computational precision from input data, which enhances the robustness of

the reconstruction procedure.

Odd and even Zernike polynomials are given as a function of the azimuthal angle θ

and the radial distance ρ between 0 and 1 measured from the center of image,

Zo
nm(ρ, θ)

Ze
nm(ρ, θ)

 = Rnm(ρ)

sin(mθ)
cos(mθ)

 ,
with

Rnm(ρ) =


∑(n−|m|)/2

l=0
(−1)l(n−l)!

l![(n+|m|)/2−l]![(n−|m|)/2−l]!
ρn−2l for n−m even,

0 for n−m odd,

where n and m are integers with n ≥ |m|. A list of radial components is given in table

2.1 (from [74]). For an extensive list of Zernike polynomials in both two and three spatial
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n |m| Rnm Zo
nm Ze

nm Aberration/Pattern

0 0 1 0 1 Piston

1 1 ρ ρ sin(θ) ρ cos(θ) Tilt

2 0 2ρ2 − 1 0 2ρ2 − 1 Defocus
2 ρ2 ρ2 sin(2θ) ρ2 cos(2θ) Oblique/Vertical Astigmatism

3 1 3ρ3 − 2ρ (3ρ3 − 2ρ) sin(θ) (3ρ3 − 2ρ) cos(θ) Vertical/Horizontal Coma
3 ρ3 ρ3 sin(3θ) ρ3 cos(3θ) Vertical/Oblique Trefoil

4 0 6ρ4 − 6ρ2 + 1 0 6ρ4 − 6ρ2 + 1 Primary Spherical
2 4ρ4 − 3ρ2 (4ρ4 − 3ρ2) sin(2θ) (4ρ4 − 3ρ2) cos(2θ) Oblique/Vertical Secondary Astigmatism
4 ρ4 ρ4 sin(4θ) ρ4 cos(4θ) Oblique/Vertical Quadrafoil

Table 2.1: First 15 odd and even Zernike polynomials according to Noll’s nomencla-
ture. Here, the ordering is determined by ordering polynomial with lower radial order
first, cf. [76].

dimensions, we refer the interested reader to [75].

Furthermore, each Zernike moment is defined by projection of the hidden field f(x, y)

on the orthogonal basis,

Anm

Bnm

 =
n+ 1

ϵ2mnπ

∫
x

∫
y

f(x, y)

Zo
nm(x, y)

Ze
nm(x, y)

 dxdy, x2 + y2 ≤ 1,

where for m = 0, n ̸= 0 we defined ϵ0n = 1/
√
2 and ϵmn = 1 otherwise. Finally,

superposition of these moments expands the hidden field in terms of Zernike moments:

f̂(x, y) =
Nmax∑
n=0

n∑
|m|=0

[
AnmZ

o
nm(r, θ) +BnmZ

e
nm(r, θ)

]
. (2.6)

In order to identify the coefficients in the Zernike expansion (2.6) for hidden fields,

we use a semantic autoencoder architecture with Zernike moments being represented by

the code at the bottleneck of the autoencoder. Figure 2.2 illustrates the architecture for

the proposed semantic autoencoder.

Architecture. Even though a shallow neural network with as few neurons as the

number of considered Zernike terms suffices to estimate values of the unknown Zernike
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Figure 2.2: Architecture of the semantic autoencoder to infer hidden fields. Zernike
moments are discovered at the bottleneck of the architecture.

moments in each of the problems considered in this section, however we will use a deep

convolutional neural network (detailed below) in order to achieve our ultimate goal of

approximating the inverse transform for the Poisson problem in a broad range of diffusion

coefficient fields. Therefore we design one deep neural network and uniformly apply it to

several problems in this section.

In the training process of a CNN, the kernels are trained at each layer such that

several feature maps are extracted at each layer from input data. The CNN is composed

of 3 convolutional blocks with 32, 64, 128 channels respectively and kernel size 3 × 3.

Moreover, we use the MaxPooling filter with kernel size (2, 2) after each convolutional

block to downsample the feature maps by calculating the maximum values of each patch

within these maps. We use the ReLU activation function [77], i.e. a piecewise linear

function that only outputs positive values: ReLU(x) = max(0, x), in the convolutional

layers followed by a Sigmoid activation in dense layers and a scaled Sigmoid activation
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at the final layer,

σ̃(x) = Dmin + (Dmax −Dmin)σ(x), (2.7)

such that the actual values of the diffusion coefficient are within the range (Dmin, Dmax),

known from domain specific knowledge. After each dense layer, we apply Dropout layers

with a rate of 0.2 to prevent overfitting [78, 62] (a feature that is most useful in estimating

the inverse transform operator) and avoid low quality local minima during training.

Test cases.

Case I. A tilted plane. In the first example we consider a linear diffusion model

given by

D(x, y) =
√
2 + 0.1(y − x)

where the boundary condition function uBC and the source field f are given by

uBC(x, y) = 0.01 cos(πx) cos(πy) and f(x, y) = sin(πx) cos(πy)

In this experiment we only use a single solution field for training. Even though in our

experiments the method succeeded to approximate the hidden field even with a single

grid point to compute the loss function, here we consider all the grid points in the domain

to obtain improved accuracy in the results. We trained the network for 30 epochs using

an Adam optimizer [79] that takes 170 seconds on a Tesla T4 GPU available on a free

Google Colaboratory account2. Figure 2.3 depicts the results obtained by the proposed

scheme. The diffusion map is discovered with a maximum relative error of only 2%, while

2https://colab.research.google.com/
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(a) Comparison of learned (left) versus true diffusion coefficient (right).

(b) Learned solution. (c) True solution.

(d) Error in learned solution u− û. (e) Error in learned diffusion coefficient.

Figure 2.3: Results for the two dimensional tilted plane (case I).
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Figure 2.4: Mean absolute error in solution vs. epochs for the two dimensional tilted
plane (case I).

the error in the solution field is 1%. It is noteworthy to mention that the accuracy of the

results in this architecture are influenced by the accuracy of the discretizations used in

the solver layer. While we used a second-order accurate finite difference discretization,

it is possible to improve these results by using higher order discretizations instead. We

leave such optimizations to future work.

Influence of architecture. Table 2.2 tabulates the mean absolute error in the

discovered tilted plane diffusion coefficient for different architectures of the encoder stage.

No significant improvement is observed for deeper or shallower encoder network for the

example considered here.

Case II. superimposed Zernike polynomials. We consider a more complicated

hidden diffusion field given by

D(x, y) = 4 + a0 + 2a1x+ 2a2y +
√
3a3(2x

2 + 2y2 − 1).
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T # params C(32) C(32) C(64) C(64) C(128) C(128) D(64) D(32) MAED L∞
D

1 1, 468, 323 Y Y Y Y Y Y Y Y 0.0144207 0.0294252
2 1, 459, 075 Y - Y Y Y Y Y Y 0.0193128 0.0267854
3 1, 422, 147 Y - Y - Y Y Y Y 0.0226252 0.0527432
4 1, 274, 563 Y - Y - Y - Y Y 0.0199361 0.0272122
5 682, 627 Y - Y - Y - - Y 0.0141946 0.0243868
6 313, 859 Y - Y - - - - Y 0.0301841 0.0544990
7 46, 467 Y - Y - - - - - 0.0190432 0.0264254
8 6, 915 - - - - - - - - 0.0183808 0.0267156

Table 2.2: Influence of architecture of the decoder stage on mean absolute error
MAED ≡

∑
|D(x)−D̂(x)|/N and maximum error L∞

D in the discovered hidden field in
case I. Double vertical lines correspond to MaxPooling2D() layers and triple vertical
lines correspond to Flatten() layer. C(o) and D(o) stand for conv2D(filters) and
Dense(neurons) layers respectively. There are 3 neurons at the bottleneck not shown
in the table.

The boundary condition function uBC and the source field f are given by

uBC(x, y) = cos(πx) cos(πy) and f(x, y) = x+ y.

Figure 2.5 illustrates the performance of the proposed Zernike-based network using a

mean absolute error measure for the loss function. We trained the network for 100

epochs using an Adam optimizer [79].

Resilience to noise. We also assess the performance of our scheme on noisy datasets.

We consider a zero-mean Gaussian noise with standard deviation 0.025 superimposed on

the solution field. Figure 2.6 depicts the solution learned from a noisy input image. The

network succeeds in discovering the diffusion field with comparable accuracy as in the

noise-free case. Note that this architecture naturally removes the added noise from the

learned solution, a feature that is similar to applying a low-pass filter on noisy images.

Learning the inverse transform

In the previous sections, we have applied BiPDE to find the variable diffusion coef-

ficient from a single input image. Another interesting feature of the proposed semantic
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(a) Learned diffusion. (b) True diffusion.

(c) Learned solution. (d) True solution.

(e) Error in learned solution u− û. (f) Error in learned diffusion coefficient.

Figure 2.5: Results in the two dimensional parabolic case.
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(a) Learned diffusion. (b) True diffusion.

(c) Learned solution. (d) Noisy input solution.

(e) Error in learned solution u− û. (f) Error in learned diffusion coefficient.

Figure 2.6: Results in the two dimensional case with added noise. After 300 epochs
the network discovers the hidden diffusion field with a maximum relative error of
5%. Interestingly the learned solution is resilient to added noise and the network
approximates a noise-free solution.
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(a) L1 loss vs. epoch for case II without added
noise.

(b) L2 loss vs. epoch for case II with added
noise.

(c) L2 loss vs. epoch for 1D inverse transform. (d) L2 loss vs. epoch for 2D inverse transform.

Figure 2.7: Mean absolute/square error vs. epochs for (top panel) the two dimensional
parabolic experiment (case II) with and without added Gaussian noise of section 2.4.1,
and (bottom panel) the inverse transform for 1D and 2D experiments of section 2.4.1.
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autoencoder architecture is its ability to train neural networks in order to discover the

inverse transform for the underlying hidden fields in a self-supervised fashion. In this

scenario, the trained encoder learns the inverse transform function that approximates

the hidden parameters given a solution field to its input. Note that even though the

same task could be accomplished by supervised learning of the hidden fields, i.e. by

explicitly defining loss on the hidden fields without considering the governing equations,

BiPDEs substitute the data labels with a governing PDE and offer comparable prediction

accuracy. In this section we train BiPDEs over ensembles of solution fields to estimate

hidden Zernike moments of diffusion coefficients underlying unseen data.

One dimensional inverse transform

We build a one dimensional semantic autoencoder using 3 layers with 100, 40, and 2

neurons respectively. We used the ReLU activation function for the first two layers and

a Sigmoid activation function for the last layer representing the hidden parameters. A

linear solver is then stacked with this encoder that uses the second order accurate finite

difference discretization, i.e.

Di−1/2ui−1 − (Di−1/2 +Di+1/2)ui +Di+1/2ui+1

∆x2
+ fi = 0, Di+1/2 =

Di +Di+1

2

However, the diffusion map is internally reconstructed using the hidden parameters before

feeding the output of the encoder to the solver. As a test problem, we consider the one

dimensional Poisson problem with a generic linear form for the diffusion coefficient,

D(x) = 1 + a0 + a1x.

We consider identical left and right Dirichlet boundary conditions of 0.2 for all images

and let the source term be f(x) = sin(πx). We consider random diffusion coefficients
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(a) Regression quality is R2 = 0.9906891. (b) Regression quality is R2 = 0.9953392.

(c) Regression quality is R2 = 0.9796781. (d) Regression quality is R2 = 0.9834912.

Figure 2.8: (Top, bottom) panel shows performance of BiPDE over 1000 ran-
domly chosen one-dimensional images with Nx = 160 grid points after 1000 epochs
(with,without) added zero-mean Gaussian noise with standard deviation 0.025 to the
test sample. The hidden diffusion coefficient is D(x) = 1 + a0 + a1x. In each case
the R2 coefficient is reported for the blue data points, where unknown parameters
fall within the training range [0.25, 0.75]. Red data points show predictions outside of
training range. Network has 20, 222 trainable parameters, and training takes ∼ 2 sec-
onds per epoch on a Tesla T4 GPU available on a free Google Colaboratory account.
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a0 and a1 with a uniform distribution in [0.25, 0.75] and we generate 1000 solutions over

the domain x ∈ [−1, 1]. We train BiPDE over 900 images from this dataset and validate

its performance over the remaining 100 images using a mean squared error loss function

for 1000 epochs. Each image is generated on a uniform grid with Nx = 160 grid points.

We used a batch size of 100 in these experiments using the Adam optimizer. Figure

2.7(c) shows loss versus epochs in this experiment. Figure 2.8 compares learned and

true coefficients over two independent test samples containing 1000 solutions, with and

without a zero-mean Gaussian noise with standard deviation 0.025, i.e. amounting to

∼ 13% added noise over the images.

In figure 2.8, we expanded the range of unknown parameters a0, a1 ∈ [0.15, 0.85]

in our test sample to assess performance of trained encoder over unseen data that are

outside the range of training data (as a measure of generalizability of BiPDEs). In this

figure blue points correspond to new images whose true unknown parameters fall inside

the training range, and red data points correspond to those outside the training range.

We observe that the encoder is able to predict the unknown parameters even outside of

its training range, although its accuracy gradually diminishes far away from the training

range. Note that the predicted values for a0 and a1 exhibit a systematic error towards the

lower and upper bounds of the Sigmoid activation function, indicative of the influence of

the Sigmoid activation function used in the last layer. This emphasizes the significance

of properly designing activation functions at the bottleneck.

Using the R2 statistical coefficient as a measure of accuracy for the trained encoder,

we assess effects of sample size and grid points on the performance of BiPDEs and report

the results in table 2.3.

1. Effect of sample size: First, we fix number of grid points and vary sample size. We

find that increasing sample size improves accuracy of the predictions in the case of
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1D inverse transform Noiseless Noisy (13% relative noise)
Sample Size, Nx = 100 a0 a1 a0 a1

Ndata = 250 0.9953634 0.9977753 0.9609166 0.9570264
Ndata = 500 0.9979478 0.9988417 0.9644154 0.9640230
Ndata = 1000 0.9990417 0.9992921 0.9600430 0.9586783
Ndata = 2000 0.9995410 0.9997107 0.9599427 0.9652383
Ndata = 4000 0.9994279 0.9994974 0.9603496 0.9661519
Ndata = 8000 0.9998054 0.9998115 0.9614795 0.9619859

Grid Points, Ndata = 1000 a0 a1 a0 a1
Nx = 20 0.9900532 0.9987560 0.8623348 0.8822680
Nx = 40 0.9932568 0.9975166 0.9161125 0.9081806
Nx = 80 0.9986574 0.9993274 0.9509870 0.9511483
Nx = 160 0.9991550 0.9990234 0.9747287 0.9762977
Nx = 320 0.9985649 0.9987451 0.9861375 0.9860783
Nx = 640 0.9991842 0.9991606 0.9920950 0.9922520

Table 2.3: R2 coefficient for predicted Zernike coefficients of the one dimensional
Poisson problem at different training sample size and number of grid points.

clean data, however in the case of noisy data the accuracy does not show significant

improvement by enlarging sample size.

2. Effect of grid points: Second, we fix the sample size and gradually increase number

of grid points. We find that accuracy of predictions on noisy data is strongly

correlated with number of grid points, however this dependence is weaker for clean

data.

Two dimensional inverse transform

We consider an example of variable diffusion coefficients parameterized as D(x, y) =

4 + 2a2y +
√
3a3(2x

2 + 2y2 − 1), with unknown coefficients randomly chosen in range

a2, a3 ∈ [0.25, 0.75]. The equations are solved on a square domain Ω ∈ [− 1√
2
, 1√

2
]2
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governed by the Poisson equation:

∇ ·
(
[4 + 2a2y +

√
3a3(2x

2 + 2y2 − 1)]∇u
)
+ x+ y = 0, (x, y) ∈ Ω,

uBC = cos(πx) cos(πy), (x, y) ∈ ∂Ω.

The encoder is composed of two convolutional layers with 32 and 64 channels followed

by a 2 × 2 average pooling layer and a dense layer with 128 neurons, at the bottleneck

there are 2 neurons representing the two unknowns. All activation functions are ReLU

except at the bottleneck that has Sigmoid functions. An Adam optimizer is used on a

mean squared error loss function.

We trained BiPDE over 900 generated solutions with randomly chosen parameters

a2, a3 and validated its performance on 100 independent solution fields for 300 epochs,

evolution of loss function is shown in figure 2.7(d). Then we tested the trained model

over another set of 1000 images with randomly generated diffusion maps independent

of the training dataset. Furthermore, we repeated this exercise over 1000 images with

added zero-mean Gaussian noise with standard deviation 0.025. In each case, the learned

parameters are in good agreement with the true values, as illustrated in figure 2.9. More-

over, we performed a sensitivity analysis on the accuracy of the predictions with respect

to sample size. We measured quality of fit by the R2 statistical coefficient. Results are

tabulated in table 2.4 and indicate training over more samples leads to more accurate pre-

dictions when applied to clean data, while noisy data do not show a strong improvement

by increasing sample size.

2.4.2 Dynamic Burger’s problem

In this section, we demonstrate the applicability of BiPDEs on time-dependent non-

linear partial differential equations, and we use those results to illustrate the consistency
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(a) Regression quality is R2 = 0.9915683. (b) Regression quality is R2 = 0.9986852.

(c) Regression quality is R2 = 0.9896654. (d) Regression quality is R2 = 0.9915149.

Figure 2.9: Top row shows performance of BiPDE over 1000 randomly chosen clean
2D images after 1000 epochs, and the bottom panel shows performance of the same
network on noisy images given a zero-mean Gaussian noise with standard deviation
0.025. Network has 1, 852, 000 trainable parameters and training takes ∼ 11 seconds
on a Tesla T4 GPU available on a free Google Colaboratory account.
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2D inverse transform Noiseless Noisy (13% relative noise)
Sample Size a2 a3 a2 a3
Ndata = 250 0.9897018 0.9958963 0.9872887 0.9892064
Ndata = 500 0.9917211 0.9977917 0.9910183 0.9900091
Ndata = 1000 0.9915683 0.9986852 0.9896654 0.9915149
Ndata = 2000 0.9940470 0.9993891 0.9909640 0.9883151
Ndata = 4000 0.9938268 0.9997119 0.9919061 0.9898697

Table 2.4: R2 coefficient for predicted Zernike coefficients of the two dimensional
Poisson problem by increasing training sample size. Number of grid points are fixed
at 30× 30.

and accuracy of the proposed framework. Similar to previous works [45], we consider the

nonlinear Burgers’ equation in one spatial dimension,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
x ∈ [−1, 1], t ∈ [0, 1) (2.8)

u(−1, t) = u(1, t) = 0 u(x, 0) = − sin(πx) (2.9)

where ν = 1/Re with Re being the Reynolds number. Notably, Burgers’ equation is

of great practical significance for understanding evolution equations as it is nonlinear.

Burgers’ equation has been used as a model equation for the Navier-Stokes equation and

by itself can be used to describe shallow water waves [80], turbulence [81], traffic flow

[82], and many more.

• Discretization. In our design we adopted the 6th-order compact finite difference

scheme proposed by Sari and Gurarslan (2009) [83] for its simplicity of imple-

mentation, its high accuracy and because it leads to a linear system with narrow

band and subsequently ensures computational efficiency. This scheme combines a

tridiagonal3 sixth-order compact finite difference scheme (CFD6) in space with a

low-storage third-order accurate total variation diminishing Runge-Kutta scheme

3Tridiagonal systems of equations can be obtained in O(N) operations.
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(TVD-RK3) for its time evolution ([84]). In particular, the high-order accuracy

associated with this discretization provides highly accurate results on coarse grids.

This is an important aspect of BiPDEs as a data-efficient inverse solver, which

stems from their capacity to seamlessly blend highly accurate and sophisticated

discretization methods with deep neural networks.

The first-order spatial derivatives are given at intermediate points by

αu′i−1 + u′i + αu′i+1 = b
ui+2 − ui−2

4h
+ a

ui+1 − ui−1

2h
, i = 3, · · · , N − 2 (2.10)

where

a =
2

3
(α + 2), b =

1

3
(4α− 1), (2.11)

and h = xi+1 − xi is the mesh size, with grid points identified by the index i =

1, 2, · · · , N . For α = 1/3 we obtain a sixth order accurate tridiagonal scheme. The

boundary points (for non-periodic boundaries) are treated by using the formulas

[85, 83],

u′1 + 5u′2 =
1

h

[
− 197

60
u1 −

5

12
u2 + 5u3 −

5

3
u4 +

5

12
u5 −

1

20
u6

]
2

11
u′1 + u′2 +

2

11
u′3 =

1

h

[
− 20

33
u1 −

35

132
u2 +

34

33
u3 −

7

33
u4 +

2

33
u5 −

1

132
u6

]
2

11
u′N−2 + u′N−1 +

2

11
u′N =

1

h

[
20

33
uN +

35

132
uN−1 −

34

33
uN−2 +

7

33
uN−3 −

2

33
uN−4 +

1

132
uN−5

]
5u′N−1 + u′N =

1

h

[
197

60
uN +

5

12
uN−1 − 5uN−2 +

5

3
uN−3 −

5

12
uN−4 +

1

20
uN−5

]

39



Solving Inverse-PDE Problems with Physics-Aware Neural Networks Chapter 2

This can be easily cast in the matrix form

BU ′ = AU (2.12)

where U = [u1, u2, · · · , uN ]T is the vector of solution values at grid points. Further-

more, second order derivatives are computed by applying the first-order derivatives

twice4,

BU ′′ = AU ′ (2.13)

Burgers’ equation are thus discretized as:

dU

dt
= LU, LU = ν U ′′ − U ⊗ U ′, (2.14)

where ⊗ is the element-wise multiplication operator and L is a nonlinear operator.

We use a low storage TVD-RK3 method to update the solution field from time-step

k to k + 1,

U (1) = Uk +∆tLUk (2.15)

U (2) =
3

4
Uk +

1

4
U (1) +

1

4
∆tLU (1) (2.16)

Uk+1 =
1

3
Uk +

2

3
U (2) +

2

3
∆tLU (2) (2.17)

with a CFL coefficient of 1. Note that this method only requires two storage

units per grid point, which is useful for large scale scientific simulations in higher

4From implementation point of view this is a very useful feature of this scheme, because A and B are
constant matrices that do not change through training it is possible to pre-compute them using numpy’s
[86] basic data structures, and then simply import the derivative operators into TensorFlow’s custom
solver layer using tf.convert to tensor() command.
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dimensions.

• Training protocol. For training, we first solve Burgers’ equation for M time-

steps, then we construct two shifted solution matrices that are separated by a

single time-step, i.e.,

U−1 =

[
U1 U2 · · · UM−1

]
U+1 =

[
U2 U3 · · · UM

]
(2.18)

Basically, one step of TVD-RK3 maps a column of U−1 to its corresponding column

in U+1 given an accurate prediction for the hidden parameter. Hence, a semantic

BiPDE is trained with U−1 and U+1 as its input and output respectively. The

unknown diffusion coefficient is discovered by the code at the bottleneck of the

architecture.

• Numerical setup. To enable direct comparison with PINNs, we also consider a

second parameter γ in Burger’s equation. In these current experiments we train

for 2 unknown parameters (ν, γ) in the Burger’s equation given by

ut + γuux − νuxx = 0, t ∈ [0, 1], x ∈ [−1, 1]

Similar to Raissi et al. [45] we consider ν = 0.01/π and γ = 1.0. For completeness

we also recall the loss function used in PINN that encodes Burger’s equation as a

regularization,

MSE =
1

N

N∑
i=1

∣∣∣∣u(tiu, xiu)− ui
∣∣∣∣2 + 1

N

N∑
i=1

∣∣∣∣ut(tiu, xiu) + γu(tiu, x
i
u)ux(t

i
u, x

i
u)− νuxx(t

i
u, x

i
u)

∣∣∣∣2

where (tiu, x
i
u, u

i) constitute training data with N = 2000 observation points in the

spatio-temporal domain. In this experiment PINN is composed of 9 layers with
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20 neurons per hidden layer. It is worth mentioning that we are reporting BiPDE

results by considering solutions in a narrower time span t ∈ [0, 0.2].

• Architecture. Obviously, one can choose a single neuron to represent an unknown

parameter ν or γ and in a few iterations an approximate value can be achieved.

However, our goal is to train a general purpose encoder that is capable of predicting

the unknown value from an input solution pair with arbitrary values of ν and γ and

without training on new observations (cf. see part 2.5.1). Therefore, we consider a

BiPDE that is composed of a conv1D layer with 128 filters and a kernel size of 10

with tanh activation function, followed by AveragePooling1D with a pool size of 2

that after flattening is fed to two Dense layers with 20 and 2 neurons respectively

that apply Sigmoid activation function. We used the Adam optimizer to minimize

the mean absolute error measure for the loss function.

• Accuracy test. First, we train for two unknowns in Burger’s equation, namely

ν and γ. We perform a sensitivity analysis for 200 epochs with different numbers

of spatial grid points, as well as different time-steps. In each case, we measure the

error between the learned values of ν and γ with their true value νtrue = 0.01/π

and γtrue = 1.0. Convergence results of this experiment are tabulated in table 2.5

and shown in figure 2.10. We find that increasing the number of grid points (i.e.

the resolution) improves the accuracy up to almost 700 grid points before accuracy

in ν (but not γ) starts to deteriorate. Note the decrease in time-step size does not

have a significant effect on accuracy unless large number of grid points Nx > 160

are considered where decreasing time-step clearly improves results.

For comparison purposes we report numerical results from table 1 of Raissi et al.

(2017) [45] in our figures 2.10(c)–2.10(d). Here we only presented noise-less results

of BiPDE, therefore only the 0% added noise case of PINN is comparable, i.e.
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(a) Error in ν - BiPDE with finite difference
method.

(b) Error in γ - BiPDE with finite difference
method.

(c) Error in ν - PINN. (d) Error in γ - PINN.

Figure 2.10: Sensitivity analysis in training both parameters γ and ν with BiPDE
(a,b), also results from table 1 of Raissi et al. (2017) [45] are shown for comparison
(c,d) - note only the solid red line may be compared to BiPDE results where no noise
is considered on the solution data. True values are νtrue = 0.01/π and γ = 1.0. In
figure (a) the data points at the right end of Nx axis correspond to Nx = 700 grid
points where the accuracy in the discovered ν value deteriorates.
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# epochs = 200 ∆t = 0.001 ∆t = 0.0005 ∆t = 0.00025
grid size ν γ ν γ ν γ
Nx = 20 0.0028751 0.9500087 0.0028731 0.9500685 0.0028828 0.9499334
Nx = 40 0.0030294 0.9750050 0.0030341 0.9750042 0.0030391 0.9750047
Nx = 80 0.0031067 0.9875077 0.0031101 0.9875285 0.0031167 0.9875455
Nx = 160 0.0031455 0.9937580 0.0031443 0.9937674 0.0031519 0.9937985
Nx = 320 0.0031659 0.9968843 0.0031679 0.9968919 0.0031738 0.9969027
Nx = 640 0.0031775 0.9984500 0.0031797 0.9984597 0.0031841 0.9984711
Nx = 700 0.0031773 0.9985866 0.0031779 0.9985945 0.0031865 0.9986123

Table 2.5: Discovering two unknown values of ν and γ in Burger’s equation. These
values are plotted in figure 2.10.

< ν̂ > ∆t = 0.001 ∆t = 0.0005 ∆t = 0.00025

Nx = 20 0.0064739 0.0065189 0.0065514
Nx = 40 0.0048452 0.0048200 0.0047086
Nx = 80 0.0040260 0.0040324 0.0039963
Nx = 160 0.0036042 0.0036011 0.0036310
Nx = 320 0.0033958 0.0034144 0.0033827
Nx = 640 0.0032919 0.0032895 0.0032916
Nx = 700 0.0032829 0.0032816 0.0032906

Table 2.6: Discovering one unknown parameter in Burger’s equation, values for ν.

the solid red line in figures 2.10(c)–2.10(d). Even though the two test cases have

significant differences and much care should be taken to directly compare the two

methods, however BiPDEs have a clear advantage by exhibiting convergence in the

unknown values, i.e. more data means better results.

In a second experiment, we fix the value of γ = 1.0 and only train for the unknown

diffusion coefficient ν. Similar to previous test we trained the network for 200

epochs and figure 2.11 shows the error in the discovered value of ν at different

levels of resolution. In this case decreasing time-step size does not seem to have a

significant effect on accuracy. A curious observation is the absolute value of error

for ν is two orders of magnitude more precise when the network is trained for both

parameters ν and γ than when only tuning for ν. Again, convergence in unknown
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parameter is retained in this experiment.

Figure 2.11: Sensitivity analysis in training only one parameter ν. True value of
νtrue = 0.01/π is sought in Burgers’ equation at different levels of resolution. Right-
most data points correspond to Nx = 700 grid points.

2.5 Mesh-less BiPDE: Multi-Quadratic Radial Basis

Functions

Not only are direct computations of partial derivatives from noisy data extremely chal-

lenging, in many real world applications, measurements can only be made on scattered

point clouds. Tikhonov regularization type approaches have been devised to avoid diffi-

culties arising from high sensitivity of differencing operations on noisy data [87, 88, 89]; for

neural network based approaches, see [90, 91]. Recently, Trask et al. [92] have proposed

an efficient framework for learning from unstructured data that is based on the General-
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ized Moving Least Squares (GMLS) technique. They show performance of GMLS-Nets

to identify differential operators and to regress quantities of interest from unstructured

data fields. Another interesting approach had been put forth in the late 80s by [93, 94]

that designed neural networks based on Radial Basis Functions (RBF) to perform func-

tional interpolation tasks. In these networks, the activation function is defined as the

radial basis function of interest and the training aims to discover the weights of this net-

work, which interestingly coincide with the coefficients in the corresponding radial basis

expansion.

Since the early 70s, RBFs have been used for highly accurate interpolation from

scattered data. In particular, Hardy [95] introduced a special kind of RBF called the

multiquadratic series expansion, that provides superior performance in terms of accuracy,

stability, efficiency, simplicity and memory usage [96]. Kansa (1990) [97, 98] pioneered

the use of radial basis functions to solve time dependent partial differential equations

through deriving a modified multi-quadratic scheme. In 1998, Hon and Mao [99] applied

multiquadratics as a spatial discretization method for the nonlinear Burgers’ equation and

solved it for a wide range of Reynolds numbers (from 0.1 to 10,000). Their scheme was

later enhanced to second-order accuracy in time by Xie and Li (2013) [100] via introducing

a compact second-order accurate time discretization. Interestingly, the accuracy of these

mesh-free methods can be improved by fine-tuning distributions of collocation points or

their shape parameters. For example, Hon and Mao devised an adaptive point to chase

the peak of shock waves, which improved their results. Fortunately, such fine-tuning of

parameters can be automated using BiPDE networks; we demonstrate this in this section.

• Discretization. We chose to blend the second-order accurate method of Xie and

Li, briefly described next and we leave further details to their original paper [100].

Initially, one can represent a distribution u(x) in terms of a linear combination of
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radial basis functions,

u(x) ≈
Ns∑
j=0

λjϕj(x) + ψ(x), x ∈ Ω ⊂ Rdim, (2.19)

where ϕ(x) is the radial basis function that we adopt,

ϕj(x) =
√
r2j + c2j , r2j = ||x− xj||22, (2.20)

and cj is the shape parameter that has been experimentally shown to follow cj =

Mj+ b with j = 0, 1, · · · , Ns (Ns is number of seed points). Moreover M and b are

tuning parameters. In equation (2.19), ψ(x) is a polynomial to ensure solvability

of the resulting system when ϕj is only conditionally positive definite. To solve

PDEs, one only needs to represent the solution field with an appropriate form of

equation (2.19). In the case of Burgers’ equation the solution at any time-step n

can be represented by

un(x) ≈
Ns∑
j=0

λnj ϕj(x) + λnNs+1x+ λnNs+2 (2.21)

over a set of reference points for the basis functions that are given by xj = j/Ns,

j = 0, 1, · · · , Ns. Xie and Li derived the following compact second-order accurate

system of equations

[
1 +

∆t

2
unx(x̂j)

]
un+1(x̂j) +

∆t

2
un(x̂j)u

n+1
x (x̂j)−

ν∆t

2
un+1
xx (x̂j) = un(x̂j) +

ν∆t

2
unxx(x̂j)

(2.22)

over a set of Nd + 1 distinct collocation points x̂j = (1 + j)/(Nd + 2) with j =

0, 1, · · · , Nd. Two more equations are obtained by considering the left and right
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boundary conditions un+1(xL) = un+1(xR) = 0. Note that spatial derivatives are

directly computed by applying derivative operator over equation (2.21). At every

time-step, one solves for the N + 3 coefficients λn0 , · · · , λnN+2, while the spatial

components of the equations remain intact (as long as points are not moving). The

solution is obtained over the initial conditions given by u0(x̂j).

For implementation purposes, we represent the system of equations (2.22) in a

matrix notation that is suitable for tensorial operations in TensorFlow. To this

end, we first write equation (2.21) as

Un(x̂) = A(x̂)Λn, (2.23)

where

Un
(Nd+1)×1 =



un(x̂0)

un(x̂1)

...

un(x̂Nd
)


, Λn

(Ns+1)×1 =



λn0

λn1
...

λnNs


, (2.24)

[
Aij(x̂)

]
(Nd+1)×(Ns+1)

=

[
ϕj(x̂i)− ϕj(xL)−

ϕj(xR)− ϕj(xL)

xR − xL
(x̂i − xL)

]
, (2.25)

with i = 0, 1, · · · , Nd and j = 0, 1, · · · , Ns. Note that we already injected the

homogeneous boundary conditions into equation (2.23). Therefore, equation (2.22)

can be written as,

[
A+ (gx 1T )⊗ A+ (g 1T )⊗ Ax −

ν∆t

2
Axx

]
Λn+1 =

[
A+

ν∆t

2
Axx

]
Λn, (2.26)
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where 1T = [1, 1, · · · , 1]1×(Ns+1), ⊗ is component-wise multiplication, and

g =
∆t

2
AΛn, gx =

∆t

2
AxΛ

n, (2.27)

(Ax)ij = ϕ′
j(x̂i)−

ϕj(xR)− ϕj(xL)

xR − xL
, (Axx)ij = ϕ′′

j (x̂i). (2.28)

Note that in case of training for two parameters (ν, γ), expression for g in equation

2.26 needs to be modified by letting g = γ∆t
2
AΛn.

• Architecture. Note that both the collocation points and the interpolation seed

points can be any random set of points within the domain and not necessarily a

uniform set of points as we chose above. In fact, during training we allow BiPDE to

find a suitable set of interpolation points as well as the shape parameters on its own.

The input data is calculated using aforementioned finite difference method over

uniform grids and later interpolated on a random point cloud to produce another

sample of solutions on unstructured grids for training. Thus, in our architecture

the last layer of the encoder has 2Ns+1 neurons with sigmoid activation functions

representing the 2Ns shape parameters and seed points, as well as another neuron

for the unknown diffusion coefficient. Note that for points to the left of origin, in

the range x ∈ [−1, 0], we simply multiplied the output of Ns activation functions

by “ − 1′′ within the solver layer (because output of Sigmoid function is always

positive). We use the mean squared error between data and predicted solution at

time-step n + p as the loss function. We used the Adam optimizer to minimize the

loss function.

• Training protocol. As in the previous case, we apply successive steps of MQ-RBF

scheme to march the input data forward to a future time-step. Not surprisingly, we

observed that taking higher number of steps improves the results because erroneous
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guess of the diffusion coefficient leads to more pronounced discrepancy after longer

periods of time. Hence, we map the data U−p to U+p, which is p time-steps shifted

in time,

U−p =

[
U1, U2, · · · , UM−p

]
U+p =

[
U1+p, U2+p, · · · , UM

]
(2.29)

In our experiments a value of p = 10 was sufficient to get satisfactory results at the

absence of noise. However, at the presence of Gaussian noise and for smaller values

of the diffusion coefficient (such as for νtrue = 0.01/π) we had to increase the shift

parameter to p = 100.

• Numerical setup. Once again, we let νtrue = 0.01/π ≈ 0.00318 and integrate

Burgers’ equation up to tf = 0.2 with a fixed time-step of ∆t = 0.001. We use

the finite difference method of the previous section to generate the datasets. We

then interpolate the solution on 80 data points, uniformly distributed in the range

(−1, 1) with 20 interpolation seed points. For this experiment, we set the batch size

to 1. We trained the network using Adam optimizer. The results after 50 epochs

are given in figure 2.12.

Interestingly, for every pair of input-output, the network discovers a distinct value

for the diffusion coefficient that provides a measure of uncertainty for the unknown

value. We report the average value of all diffusion coefficients as well as the proba-

bility density of these values. We observe that for all pairs of solutions, the predicted

value for the diffusion coefficient is distributed in the range 0.00305 ≤ ν̂ ≤ 0.00340

with an average value of < ν̂ >= 0.00320, which is in great agreement with the true

value, indeed with 0.6% relative error. Interestingly, we observe that the BiPDE

network has learned to concentrate its interpolation seed points around the origin

50



Solving Inverse-PDE Problems with Physics-Aware Neural Networks Chapter 2

(a) True solution generated by finite differ-
ences (input data).

(b) Learned solution generated by MQ-RBF
BiPDE (output data).

(c) Error in solution. (d) Discovered seeds and shape pa-
rameters.

(e) Distribution of diffusion coeffi-
cients.

(f) Evolution of mean squared error
during training.

Figure 2.12: Results of applying the RBF-BiPDE to Burgers’ equation with a true
diffusion coefficient of νtrue = 0.003183. The average value of the predicted diffusion
coefficients is ν̂ = 0.00320.
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where the solution field varies more rapidly. Furthermore, around x = ±0.5, the

interpolation points are more sparse, which is in agreement with the smooth behav-

ior of the solution field at these coordinates. Therefore, this network may be used

as an automatic shock tracing method to improve numerical solutions of hyperbolic

problems with shocks and discontinuities as was shown by Hon and Mao.

• Resilience to noise on unstructured grids. We consider several cases to assess

robustness to noise. In each case, we pick 80 randomly distributed points along the

x-axis and linearly interpolate the solution field on this set of points. Then, we add

a Gaussian noise with a given standard deviation. This noisy and unstructured data

field is then fed into the MQ-RBF based BiPDE of this section. We use a batch

size of 10, with 10% of each sample for validation during training. A summary of

our results follows:

1. Let νtrue = 0.1/π, p = 10, Nd = 80, Ns = 20, ∆t = 0.001, and consider a

Gaussian noise with a standard deviation of 1%. After 100 epochs, we obtain

the results in figure 2.13.

2. Let νtrue = 0.1/π, p = 100, Nd = 200, Ns = 20, ∆t = 0.001, and consider a

Gaussian noise with a standard deviation of 5%. After 150 epochs, we obtain

the results in figure 2.14.

3. Let νtrue = 0.01/π, p = 100, Nd = 80, Ns = 20, ∆t = 0.001, and consider a

Gaussian noise with a standard deviation of 1%. After 200 epochs, we obtain

the results in figure 2.15.

4. Let νtrue = 0.01/π, p = 100, Nd = 200, Ns = 20, ∆t = 0.001, and consider a

Gaussian noise with a standard deviation of 5%. After 150 epochs, we obtain

the results in figure 2.16.
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(a) True solution generated by finite dif-
ferences and with added noise. Solution is
interpolated on a random grid.

(b) Learned solution generated by MQ-
RBF BiPDE (output data).

(c) Error in solution. (d) Discovered seeds and shape
parameters. Error bars indicate
one standard deviation.

(e) Probability density of diffusion
coefficients.

(f) Evolution of mean squared er-
ror versus number of epochs.

Figure 2.13: Results of applying the RBF-BiPDE to Burgers’ equation with a true
diffusion coefficient of νtrue = 0.03183. The average value of the predicted diffusion
coefficients is ν̂ = 0.0331. The data is provided on a scattered point cloud with added
Gaussian noise with 1% standard deviation.
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(a) True solution generated by finite dif-
ferences and with added noise. Solution is
interpolated on a random grid.

(b) Learned solution generated by MQ-
RBF BiPDE (output data).

(c) Error in solution. (d) Discovered seeds and shape
parameters. Error bars indicate
one standard deviation.

(e) Probability density of diffusion
coefficients.

(f) Evolution of mean squared er-
ror versus number of epochs.

Figure 2.14: Results of applying the RBF-BiPDE to Burgers’ equation with a true
diffusion coefficient of νtrue = 0.03183. The average value of the predicted diffusion
coefficients is ν̂ = 0.03160. The data is provided on a scattered point cloud with
added Gaussian noise with 5% standard deviation.
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(a) True solution generated by finite dif-
ferences and with added noise. Solution is
interpolated on a random grid.

(b) Learned solution generated by MQ-
RBF BiPDE (output data).

(c) Error in solution. (d) Discovered seeds and shape
parameters. Error bars indicate
one standard deviation.

(e) Probability density of diffusion
coefficients.

(f) Probability density of diffusion
coefficients.

Figure 2.15: Results of applying the RBF-BiPDE to Burgers’ equation with a true
diffusion coefficient of νtrue = 0.003183. The average value of the predicted diffusion
coefficients is ν̂ = 0.00352. The data is provided on a scattered point cloud with
added Gaussian noise with 1% standard deviation.
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(a) True solution generated by finite dif-
ferences and with added noise. Solution is
interpolated on a random grid.

(b) Learned solution generated by MQ-
RBF BiPDE (output data).

(c) Error in solution. (d) Discovered seeds and shape
parameters. Error bars indicate
one standard deviation.

(e) Probability density of diffusion
coefficients.

(f) Probability density of diffusion
coefficients.

Figure 2.16: Results of applying the RBF-BiPDE to Burgers’ equation with a true
diffusion coefficient of νtrue = 0.003183. The average value of the predicted diffusion
coefficients is ν̂ = 0.003677. The data is provided on a scattered point cloud with
added Gaussian noise with 5% standard deviation.
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We observe that this architecture is generally robust to noise. However, at higher

noise values require more tuning of hyperparameters, as well as longer training.

• Accuracy tests. We report the values of the discovered diffusion coefficients in

the Burgers’ equation for different grid sizes and different time-steps. We use the

same setting as that detailed in the numerical setup part in this section. Par-

ticularly, the interpolation seeds are determined by the network and the train-

ing data is on a uniformly distributed set of points computed by the finite dif-

ference method of the previous section. We consider three different time-steps,

∆t = 0.001, 0.0005, 0.00025, and two diffusion coefficients of νtrue = 0.01/π, 0.1/π

over grids of size Nx = 80, 160. At each time-step, for all experiments with different

grid sizes, we stop the training when the mean squared error in the solution field

converges to a constant value and does not improve by more epochs; this roughly

corresponds to 50, 25, 12 epochs for each of the training time-steps, respectively.

This indicates that by choosing smaller time steps less number of epochs are needed

to obtain the same level of accuracy in the unknown parameter. Furthermore, we

use an Adam optimizer with a learning rate of 0.001.

The results of the accuracy tests are tabulated in tables 2.7–2.8. We observe,

for all experiments, that the discovered coefficient is in great agreement with the

true values. Due to adaptivity of the interpolation seed points and their shape

parameters for different experiments, the observed error values do not seem to

follow the trend of traditional finite difference methods, as depicted in previous

sections. This could also be due to lower order of accuracy of the MQ-RBF method,

i.e. being a second-order accurate method, compared to the higher-order accurate

finite difference method used in the previous section.
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< ν̂ > ∆t = 0.001 ∆t = 0.0005 ∆t = 0.00025
# epochs 50 25 12
Nx = 80 0.03173± 3.4× 10−4 0.03196± 4.2× 10−4 0.03188± 2.8× 10−4

Nx = 160 0.03186± 5.8× 10−5 0.03191± 3.6× 10−4 0.03137± 1.2× 10−4

Table 2.7: Discovered values of the diffusion coefficient for νtrue = 0.03183 at different
time-steps and grid sizes.

< ν̂ > ∆t = 0.001 ∆t = 0.0005 ∆t = 0.00025
# epochs 50 25 12
Nx = 80 0.003326± 5.1× 10−5 0.003162± 2.2× 10−4 0.003155± 1.2× 10−4

Nx = 160 0.003264± 1.0× 10−4 0.003151± 1.3× 10−4 0.003192± 1.2× 10−4

Table 2.8: Discovered values of the diffusion coefficient for νtrue = 0.003183 obtained
with different time-steps and grid sizes.

2.5.1 Learning the inverse transform

As we emphasized before, a feature of BiPDE is to produce self-supervised pre-trained

encoder models for inverse differential problems that are applicable in numerous appli-

cations where hidden values should be estimated in real-time. We train an encoder over

a range of values ν ∈ [0.1/π, 1/π] and assess the performance of the trained model on

new data with arbitrarily chosen ν values. We choose 50 diffusion coefficients that are

distributed uniformly in this range, then integrate the corresponding Burgers’ equation

up to tf = 0.2 with a constant time-step of ∆t = 0.0005 on a grid with Nx = 100 grid

points using the aforementioned finite difference method. There are 4000 time-steps in

each of the 50 different realizations of Burgers’ equation. For a fixed value of p = 20, we

draw 10 solution pairs for each value of ν at uniformly distributed time instances and

discard the first two instances to improve convergence of the network. Hence, the training

data uniformly samples the space of solutions over a 8 × 50 grid of (t, ν), as illustrated

in figure 2.17. We use the resulting 400 pairs in training of a semantic BiPDE, with 320

pairs used for training and 80 pairs for validation.
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Figure 2.17: Topology of data points for training and testing of the semantic BiPDE.
Along the ν dimension, we depict 10 (out of 50) of the selected data points, while
along the time dimension we illustrate the actual 8 data points. Training pairs of
U−p and U+p are color coded by black and orange dots, respectively; testing pairs
are depicted by blue and red crosses. On the right panel, we illustrate the training
data for three nominal values of the diffusion coefficient, highlighted by green shades.
Green arrows indicate the direction of time.
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Architecture. Given an arbitrary input, the signature of the hidden physical pa-

rameters will be imprinted on the data in terms of complex patterns spread in space and

time. We use a CNN layer as a front end unit to transform the input pixels to internal

image representations. The CNN unit has 32 filters with kernel size of 5. The CNN is

followed by max pooling with pool size of 2, which is then stacked with another CNN

layer of 16 filters and kernel size of 5 along with another max pooling layer. The CNN

block is stacked with two dense layers with 100 and 41 neurons, respectively. CNN and

dense layers have ReLU and Sigmoid activation functions, respectively. Overall, there are

42, 209 trainable parameters in the network. Conceptually, the CNN extracts features on

every snapshot that characterizes the evolution of the solution field through time-steps

with a proper physical parameter. This parameter is enforced to be the diffusion coeffi-

cient through the PDE solver decoder stage. We train this network for 500 epochs using

an Adam optimizer.

Resilience to noise. Even though the encoder is trained on ideal datasets, we

demonstrate a semantic BiPDE still provides accurate results on noisy datasets. In

contrast to other methods, we pre-train the network in a self-supervised fashion on clean

data and later we apply the trained encoder on unseen noisy data5.

In figure 2.18, we provide the performance of this network on training as well as

on unseen clean/noisy data-sets. Furthermore, the network determines optimal param-

eters of the MQ-RBF method by evaluating interpolation seed points as well as their

corresponding shape parameters to obtain the best approximation over all input data.

5Note that the network could also be trained on noisy data as we showed before; however training
would take longer in that case.
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(a) Performance of encoder on training data set. (b) Distribution of interpolation points and
shape parameters discovered by the network.

(c) Performance of the encoder on unseen data. (d) Performance of the encoder on unseen data
with Gaussian noise with standard deviation
0.01.

Figure 2.18: Semantic autoencoder learns how to discover hidden variables from pairs
of solutions. These results are obtained after 500 epochs on 50 data points along the
ν-axis.
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2.6 Conclusion

We introduced BiPDE networks, a natural architecture to infer hidden parameters

in partial differential equations given a limited number of observations. We showed that

this approach is versatile as it can be easily applied to arbitrary static or nonlinear

time-dependent inverse-PDE problems. We showed the performance of this design on

multiple inverse Poisson problems in one and two spatial dimensions as well as on the

non-linear time-dependent Burgers’ equation in one spatial dimension. Moreover, our

results indicate BiPDEs are robust to noise and can be adapted for data collected on

unstructured grids by resorting to traditional mesh-free numerical methods for solving

partial differential equations. We also showed the applicability of this framework to the

discovery of inverse transforms for different inverse-PDE problems.

There are many areas of research that could be further investigated, such as consid-

ering diffusion maps with discontinuities across subdomains, using more sophisticated

neural network architectures for more complex problems, using higher-order numerical

solvers and finally tackle more complicated governing PDE problems with a larger num-

ber of unknown fields or in higher dimensions.
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Chapter 3

JAX-DIPS:

3.1 abstract

We present a scalable strategy for development of mesh-free hybrid neuro-symbolic

partial differential equation solvers based on existing mesh-based numerical discretization

methods. Particularly, this strategy can be used to efficiently train neural network sur-

rogate models of partial differential equations by (i) leveraging the accuracy and conver-

gence properties of advanced numerical methods, solvers, and preconditioners, as well as

(ii) better scalability to higher order PDEs by strictly limiting optimization to first order

automatic differentiation. The presented neural bootstrapping method (hereby dubbed

NBM) is based on evaluation of the finite discretization residuals of the PDE system

obtained on implicit Cartesian cells centered on a set of random collocation points with

respect to trainable parameters of the neural network. Importantly, the conservation laws

and symmetries present in the bootstrapped finite discretization equations inform the

neural network about solution regularities within local neighborhoods of training points.

We apply NBM to the important class of elliptic problems with jump conditions across

irregular interfaces in three spatial dimensions. We show the method is convergent such
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that model accuracy improves by increasing number of collocation points in the domain

and predonditioning the residuals. We show NBM is competitive in terms of memory and

training speed with other PINN-type frameworks. The algorithms presented here are im-

plemented using JAX in a software package named JAX-DIPS (https://github.com/JAX-

DIPS/JAX-DIPS), standing for differentiable interfacial PDE solver. We open sourced

JAX-DIPS to facilitate research into use of differentiable algorithms for developing hybrid

PDE solvers.

3.2 Introduction

3.2.1 Problem statement

Consider a closed irregular interface (Γ) that partitions the computational domain

(Ω) into interior (Ω−) and exterior (Ω+) subdomains; i.e., Ω = Ω− ∪ Γ ∪ Ω+. We are

interested in the solutions u± ∈ Ω± to the following class of linear elliptic problems in

x ∈ Ω±:

k±u± −∇ · (µ±∇u±) = f±, x ∈ Ω±

[u] = α, x ∈ Γ

[µ∂nu] = β, x ∈ Γ

Here f± = f(x ∈ Ω±) is the spatially varying source term, µ± = µ(x ∈ Ω±) are

the diffusion coefficients, and k± are the reaction coefficients in the two domains. We

consider Dirichlet boundary conditions in a cubic domain Ω = [−L/2,L/2]3.

This class of problems arise ubiquitously in describing diffusion dominated processes

in physical systems and life sciences where sharp and irregular interfaces regulate trans-
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port across regions with different properties. Examples include Poisson-Boltzmann equa-

tion for describing electrostatic properties of membranes, colloids and solvated biomolecules

with jump in dielectric permittivities [101, 102], electroporation of cell aggregates with

nonlinear membrane jump conditions [19], epitaxial growth in fabrication of opto-electronic

devices where atomic islands grow by surface diffusion of adatoms across freely moving

interfaces [103], solidification of multicomponent alloys used for manufacturing processes

with free interfaces separating different phases of matter [104, 105], directed self-assembly

of diblock copolymers for next generation lithography [106, 107, 108], multiphase flows

with and without phase change, and Poisson-Nernst-Planck equations for electrokinet-

ics. Much of these processes are multiscale and the changes across interfaces must be

mathematically modeled and numerically solved as sharp surfaces. Smoothing strategies

introduce unphysical characteristics in the solution and lead to systemic errors.

3.2.2 Literature on relevant finite discretization methods

Several numerical methods have been proposed for accurate solution of this class of

problems based on explicit or implicit representation of the interface. Finite element

methods rely on explicit meshing of the surface that poses severe challenges [109, 110].

Implicit methods include the Immersed Interface Method (IIM) [111] and its variants

[112, 113, 114, 115] that rely on Taylor expansions of the solution on both sides of

the interface and modifying the local stencils to impose the jump conditions. The main

challenge is evaluating high order jump conditions and surface derivatives along interface.

Another method is the Ghost Fluid Method (GFM) [116] that was originally introduced

to approximate two-phase compressible flows and later applied to the Poisson problem

with jump conditions [117]. The basic idea is to define fictitious fluid regions across the

discontinuities by adding jump conditions to the true fluid. While GFM captures the
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normal jump in solution accurately, the tangential jump is smeared. This was solved by

the Voronoi Interface Method (VIM) [118] by applying the GFM treatment on a local

Voronoi mesh by adapting a local Cartesian mesh which introduces numerical challenges.

Several other approaches include the cut-cell method [119], discontinuous Galerkin and

eXtended Finite Element Method (XFEM) [120, 121, 122] among others.

In this work we bootstrap the level-set based finite volume method on Cartesian grids

proposed by Bochkov & Gibou (2020) [123]. This method is based on the idea of Taylor

expansions in the normal direction and employing one-sided least-square interpolations

for imposing jump conditions. In particular, this method offers second order accurate

numerical solutions with first order accurate gradients in the L∞-norm.

3.2.3 Literature on solving PDEs with neural networks

Since early 1990s, artificial neural networks have been used for solving partial differ-

ential equations by (i) mapping the algebraic operations of the discretized PDE systems

onto specialized neural network architectures and minimizing the network energy, or (ii)

treating the whole neural network as the basic approximation unit whose parameters are

adjusted to minimize a specialized error function that includes the differential equation

itself with its boundary/initial conditions.

In the first category, neurons output the discretized solution values over a set number

of grid points and minimizing the network energy drives the neuronal values towards

the solution of the linear system at the mesh points. In this case, the neural network

energy is the residual of the finite discretization method summed over all neurons of the

network [124]. Although the convergence properties of the finite discretization methods

gaurantee and control quality of the obtained solutions, the computational costs grow

by increasing resolution and dimensionality. Interestingly, due to regular and sparse
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structure of the finite discretizations, such locally connected neural network PDE solvers

have been implemented on VLSI analog CMOS circuits [125, 126, 127].

The second strategy proposed by Lagaris et al. [41] relies on the function approx-

imation capabilities of the neural networks. Encoding the solution everywhere in the

domain within a neural network offers a mesh-free, compact, and memory efficient sur-

rogate model for the solution function that can be utilized in subsequent inference tasks.

This method has recently re-emerged as the physics-informed neural networks (PINNs)

[128] and is widely used.

Despite their implementation simplicity and offering fast inference on accelerated

hardware, these methods suffer from several shortcomings:

1. lack controllable accuracy and convergence properties of finite discretization meth-

ods [129],

2. computing the loss and optimizing it involves evaluation of second order (and higher

order) gradients using automatic differentiation (AD) through deep neural net-

works which leads to evaluating exponentially large computational graphs that is

extremely memory-intensive, slow, and impractical to scale,

3. the basic assumption that automatic differentiation capabilities of current machine

learning frameworks can evaluate “exact” derivatives across complex surrogate

models is fundamentally flawed [130],

4. automatic differentiation of an un-optimized neural network during training to com-

pute the spatial gradients does not offer exact gradients for the PDE. Although

these derivatives are “exact” (see [130] for a discussion) within the parameters of

the neural network , it is important to note that these derivatives do not represent

the true spatial derivatives of the solution but exact derivatives of an approximate

67



JAX-DIPS: Chapter 3

function.

These shortcomings motivate pursuit of hybrid solvers to combine the performance

advantages of neural network inference on modern accelerated hardware with the accu-

racy of finite discretization methods while reducing the computational costs and errors

associated with excessive use of AD.

Hybridization efforts are algorithmic or architectural. One important algorithmic

method is the deep Galerkin method (DGM) [131] that is a neural network extension of

the mesh-free Galerkin method where the solution is represented as a deep neural network

rather than a linear combination of basis functions. The mesh-free nature of DGM, that

stems from the underlying mesh-free Galerkin method, enables solving problems in higher

dimensions by training the neural network model to satisfy the PDE operator and its

initial and boundary conditions on a randomly sampled set of points rather than on an

exponentially large grid. Although the number of points is huge in higher dimensions, the

algorithm can process training on smaller batches of data points sequentially. Besides,

second order derivatives in PDEs are calculated by a Monte Carlo method that retain

scaling to higher dimensions. Another important algorithmic method is the deep Ritz

method for solving variational problems [132] that implements a deep neural network

approximation of the trial function that is constrained by numerical quadrature rule for

the variational functional, followed by stochastic gradient descent.

Architectural hybridization methods are based on differentiable numerical linear alge-

bra. One emerging class involves implementing differentiable finite discretization solvers

and embedding them in the neural network architectures that enable application of

end-to-end differentiable gradient based optimization methods. Recently, differentiable

solvers have been developed in JAX [133] for fluid dynamic problems, such as Phi-Flow

[134], JAX-CFD [135], and JAX-FLUIDS [136]. These methods are suitable for inverse prob-
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lems where an unknown field is modeled by the neural network, while the model influence

is propagated by the differentiable solver into a measurable residual [2, 51, 52]. We also

note the classic strategy for solving inverse problems is the adjoint method to obtain

the gradient of the loss without differentiation across the solver [50]; however, deriving

analytic expression for the adjoint equations is tedious, should be repeated after modifi-

cation of the problem or its loss function, and can become impractical for multiphysics

problems. Other important utilities of differentiable solvers are to model and correct for

the solution errors of finite discretization methods [137], learning and controling PDE

systems [138, 139].

Neural networks are not only universal approximators of continuous functions, but

also of nonlinear operators [140]. Although this fact has been leveraged using data-driven

strategies for learning differential operators by many authors [141, 142, 143, 144], current

authors have demonstrated utility of differentiable solvers to effectively train nonlinear

operators without any data in a completely physics-driven fashion, see section on learning

the inverse transforms in [2]. In subsequent work we will demonstrate how NBM can be

used to train neural operators in a purely physics-driven fashion.

In this work we propose a novel algorithm for solving PDEs based on deep neural

networks by lifting any existing mesh-based finite discretization method off of its under-

lying grid and extend it into a mesh-free method that can be applied to high dimensional

problems on unstructured random points in an embarrasingly parallel fashion. In section

3.3 we present the neural bootstrapping method, next we apply it to an advanced finite

volume discretization scheme for elliptic problems with jump conditions across irregu-

lar geometries in section 3.4. We show numerical results of the proposed framework on

interfacial PDE problems in section 3.5 and conclude with section 3.7.
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3.3 Neural Bootstrapping Method (NBM)

3.3.1 Algorithm

Figure 3.1 illustrates schematic of the proposed algorithm. Neural networks are used

as surrogates for the solution function that are iteratively adjusted to minimize discretiza-

tion residuals at a set of randomly sampled points and at arbitrary resolutions. The key

idea is that neural networks can be evaluated over vertices of any discretization stencil

centered at any point in the domain to emulate the effect of an structured mesh without

ever materializing the mesh. Therefore, we use neural networks to bootstrap mesh based

finite discretization (FD) methods to compile mesh free numerical methods. Operations

in differentiable NBM kernels are:

1. A compute cell is implicitly constructed at any input coordinate and at a speci-

fied resolution. At the presence of discontinuities a coarse mesh encapsulates an

interpolant for the level-set function whose intersection with the implicit cell is

calculated to obtain necessary geometric information for the FD kernel and pre-

conditioner.

2. FD kernel is applied on the compute cell where the solution values are evaluated by

the neural network. Each kernel contributes a local linear system L2-norm residual

rp = ||Aup − b|| at a point p.

3. Residuals are preconditioned using common preconditioners to balance relative

magnitude of contributions from different points and set them on equal level of

importance before summing to produce a global loss value.

4. Gradient based optimization methods used in machine learning are applied to adjust

neural network parameters. The automatic differentiation loop passes across the
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(a) NBM kernels compute residual contribution by each collocation point per thread.
Kernel operations involve considering implicit cells at different resolutions according to
the bootstrapped finite discretization method. The point-wise evaluations at each im-
plicit cell is locally preconditioned based on the geometry of the interfaces crossing the
implicit cells.

(b) JAX-DIPS software architecture layout. Geometric information is managed by a
mesh oracle that is a structured mesh at much lower resolution that stores the level-set
function. The training loop involves automatic differentiation across the assembly of the
linear system performed by the NBM kernels. Data distribution is achieved by composing
the point-wise loss kernel with jax.pmap and jax.vmap.

Figure 3.1: Neural Bootstrapping Method (NBM) and the JAX-DIPS software architecture.
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NBM kernels, see figure 3.3.1.

NBM training of neural network surrogate models for PDEs offers several benefits:

• FD methods offer gauranteed accuracy and controllable convergence properties for

the training of neural network surrogate models. These are critical features for

solving real-world complex physical systems using neural networks.

• NBM offers a straightforward path for applying mesh-based FD methods on un-

structured random points. This is an important ability for augmenting observa-

tional data in the training pipelines.

• The algorithm is highly parallelizable and is ideally suited for GPU-accelerated

computing paradigm.

• Multi-GPU parallel solution of PDE systems is reduced to the much simpler prob-

lem of data-parallel training using existing machine learning frameworks. Data

parallelism involves distributing collocation points across multiple processors to

compute gradient updates and then aggregating these locally computed updates

[145].

• Only first order automatic differentiation is required for training PDE systems.

This dramatically reduces memory requirements and computational costs associ-

ated with higher order AD computations across neural network models in other

methods.

• Use of first order optimizers, enabled by differentiable finite discretizations, could

improve scaling of traditional PDE solvers that use second order optimization tech-

niques.
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3.3.2 Neural network approximators for the solution

In 1987, Hecht and Nielson [146] applied an improved version of Kolmogorov’s 1957

superposition theorem [147], due to Sprecher [148], to the field of neurocomputing and

demonstrated that a 3-layer feedforward neural network (one input layer with n inputs,

one hidden layer with 2n + 1 neurons, one output layer) are universal approximators

for all continuous functions from the n-dimensional cube to a finite m-dimensional real

vector space; i.e., f : [0, 1]n → Rm. Recently, Ismailov (2022) [149] demonstrated exis-

tence of neural networks implementing discontinuous functions, however efficient learning

algorithms for such networks are not still available.

The solutions of interfacial PDE problems are discontinuous, with jumps appearing

not only in the solution but also in the solution gradient. In light of above considerations,

we define two separate neural networks to represent solution in Ω− and Ω+ regions:

u+ = N+(x) : R3 ∩ Ω+ → R u− = N−(x) : R3 ∩ Ω− → R

We use SIREN neural networks, where we implement fully connected feedforward

architecture with sin activation function and the output layer is a single linear neuron.

Note that piecewise differentiable nonlinearities such as the ReLU function are inappro-

priate choices for representing solutions to differential equations. Weights and biases are

initialized from a truncated normal distribution with zero mean and unit variance.

Solution networks are evaluated on sampled points in the domain while the parameters

of these networks are optimized using the loss function. We define the loss function by the

mean-squared-error (MSE) of the residual of the discretized partial differential equation
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Figure 3.2: Two neural networks are defined for the two regions of the computational
domain.

with jump conditions derived in section 3.4.1 that is evaluated on the grid points:

L(u) = ||Aûθ(xijk ∈ Ω)− b||22

However, other choices such as Huber [150] or log-cosh [151] loss functions may improve

results by automatically suppressing L1 norm for larger residual values while minimizing

L2 norm for smaller values of the residual. JAX-DIPS allows for computation of the

gradient of the loss function using automatic differentiation, i.e. ∇θL(u) where θ’s are

network parameters. Therefore, our strategy is to leverage this capability and use first

order optimizers developed in the deep learning community (such as Adam [79], etc) to

minimize the aforementioned loss function. We emphasize the main benefit of using first

order gradient based optimization algorithms is better memory efficiency that is suitable

for large scale optimization problems with very large number of parameters in the neural
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network model.

In the remainder of this manuscript we present details of applying NBM to solving

elliptic problems with discontinuities across irregular interfaces.

3.4 JAX-DIPS: Differentiable Interfacial PDE Solver

We developed an end-to-end differentiable library for solving the elliptic problems

with discontinuities in solution and solution gradient across irregular geometries. In

JAX-DIPS, we bootstrap a sophisticated and modern finite volume discretization method

[123]. The geometries are represented implicitly using the level-set function on a coarse

mesh. We have implemented a uniform grid that supports operations such as interpola-

tions, interface advection, integrations over interfaces as well as in domains. We describe

the numerical algorithms for the level-set module and the elliptic solver in this section.

Figure 3.3.1 illustrates a high-level overview of the JAX-DIPS software architecture.

Below we present and compare two possible approaches for treating the jump con-

ditions in the interfacial PDE solver: (i) regression-based extrapolation, and (ii) neural

extrapolation. The main difference between the two approaches is that approach (i) only

requires first order AD for optimizing the loss, while (ii) effectively requires second order

AD computations due to first evaluation of the loss and a second AD during optimiza-

tion of the loss. Approach (i) offers better computational properties thanks to a complete

bootstrapping of the underlying finite volume discretization method.
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3.4.1 Approach I. Finite discretization method fused with regression-

based extrapolation

For spatial discretizations at the presence of jump conditions we employ the numerical

algorithm proposed by Bochkov and Gibou (2020) [152]. This method produces second-

order accurate solutions and first-order accuracte gradients in the L∞-norm, while having

a compact stencil that makes it a good candidate for parallelization. Moreover, treatment

of the interface jump conditions do not introduce any augmented variables, this preserves

the homogeneous structure of the linear system. Most importantly, jump conditions only

appear on the right-hand-side of the discretization and do not pollute the matrix term,

this is beneficial for accelerating the solver. Here we use a background uniform 2D grid

only for presentation of the finite volume discretization equations; we will not use this

grid in the actual implementation but instead assume a local 3D cell around random

points spanning in the domain during optimization.

At points where the finite volumes are crossed by Γ we have

∑
s=−,+

∫
Ωs∩Vi,j

ksusdΩ−
∑

s=−,+

∫
Ωs∩∂Vi,j

µs∂nsusdΓ =
∑

s=−,+

∫
Ωs∩Vi,j

f sdΩ +

∫
Γ∩Vi,j

[µ∂nu]dΓ

following standard treatment of volumetric integrals and using central differencing for

derivatives we obtain in 2D (with trivial 3D extension)

∑
s=−,+

ksi,ju
s
i,j|Vs

i,j| −
∑

s=−,+

(
µs
i− 1

2
,j
As

i− 1
2
,j

usi−1,j − usi,j
∆x

+ µs
i+ 1

2
,j
As

i+ 1
2
,j

usi+1,j − usi,j
∆x

+

µs
i,j− 1

2
As

i,j− 1
2

usi,j−1 − usi,j
∆y

+ µs
i,j+ 1

2
As

i,j+ 1
2

usi,j+1 − usi,j
∆y

)
=

∑
s=−,+

f s
i,j|Vs

i,j|+
∫
Γ∩Vi,j

βdΓ +O(max(∆x,∆y)D)
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Figure 3.3: Notation used in this paper. Close to the interface where finite volumes
are crossed by the interface, there are extra degrees of freedom (open circles) that are
extrapolations of solutions from each domain to the opposite domain. Jump conditions
are implicitly encoded in these extrapolated values.

where D is the problem dimensionality. Note that far from interface either s = − (for

x ∈ Ω−) or s = + (for x ∈ Ω+) is retained. This is automatically considered through

zero values for sub-volumes |V+
i,j| and |V−

i,j| as well as their face areas. Note that µ−
i−1/2,j

(or µ+
i−1/2,j) corresponds to the value of diffusion coefficient at the middle of segment

A−
i−1/2,j (or A+

i−1/2,j) respectively, same is true for other edges as well. However, there

are extra degrees of freedom on grid points whose finite volumes are crossed by the

interface; i.e., see double circles in figure 3.3. [152] derived analytical expressions for

the extra degrees of freedom (u+ in Ω− and u− in Ω+) in terms of the original degrees

of freedom (u− in Ω− and u+ in Ω+) as well as the jump conditions, this preserves the

original Nx × Ny system size. The basic idea is to extrapolate the jump at grid point

from jump condition at the projected point onto the interface using a Taylor expansion:

u+i,j − u−i,j = [u]rpri,j + δi,j(∂nu
+(rpri,j) − ∂nu

−(rpri,j)). The unknown value (u−i,j or u+i,j) is

obtained based on approximation of the normal derivatives (i.e. ∂nu
±(rpri,j)) which are

computed using a least squares calculation on neighboring grid points that are in the
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fast-diffusion region (referred to as “Bias Fast”) or in the slow diffusion region (referred

to as “Bias Slow”). This makes two sets of rules for unknown values u±i,j.

In two dimensions and on uniform grids, the gradient operator at the grid cell (i, j)

that is crossed by an interface is estimated by a least squares solution given by

(∇u±)i,j = D±
i,j



ui−1,j−1 − u±i,j

ui,j−1 − u±i,j
...

ui+1,j+1 − u±i,j


D±

i,j =
(
XT

i,jW
±
i,jXi,j

)−1(
W±

i,jXi,j

)T

and

W±
i,j =



ω±
i,j(−1,−1)

ω±
i,j(0,−1)

. . .

ω±
i,j(1, 1)


Xi,j =



−hx −hy

0 −hy

hx −hy

−hx 0

0 0

hx 0

−hx hy

0 hy

hx hy


and

ω±
i,j(p, q) =


1 (p, q) ∈ N±

i,j

0 else

(3.1)
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In this case, D±
i,j is a 2× 9 matrix and we denote each of its 2× 1 columns with d±i,j,p,q

D±
i,j =

[
d±i,j,−1,−1 d±i,j,0,−1 d±i,j,1,−1 d±i,j,−1,0 d±i,j,0,0 d±i,j,1,0 d±i,j,−1,1 d±i,j,0,1 d±i,j,1,1

]

The least square coefficients are then obtained by dot product of normal vector with

these columns

c±i,j,p,q = nT
i,jd

±
i,j,p,q

and normal derivative can be computed (noting that c±i,j = −
∑

(p,q)∈N±
i,j
c±i,j,p,q)

∂nu
±(rproji,j ) = c±i,ju

±
i,j +

∑
(p,q)∈N±

i,j

c±i,j,p,qu
±
i+p,j+q +O(h)

At this point we can define a few intermediate variables at each grid point to simplify

the presentation of the method,

ζ±i,j,p,q := δi,j
[µ]

µ∓ c
±
i,j,p,q ζ±i,j := −

∑
(p,q)∈N±

i,j

ζ±i,j,p,q

γ±i,j,p,q :=
ζ±i,j,p,q
1± ζ±i,j

γ±i,j := −
∑

(p,q)∈N±
i,j

γ±i,j,p,q

where the set of neighboring grid points are

N±
i,j = {(p, q) : p = −1, 0, 1, q = −1, 0, 1, (p, q) ̸= (0, 0), xi+p,j+q ∈ Ω±}

and δi,j is the signed distance from xi,j that is computed from the level-set function ϕ(x)

δi,j =
ϕ(xi,j)

|∇ϕ(xi,j)|
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• Rules based on approximating ∂nu
+(rpri,j):

u−i,j =


ui,j xi,j ∈ Ω−

ui,j(1− γ−i,j)−
∑

(p,q)∈N−
i,j
γ−i,j,p,qui+p,j+q − (α +

δi,jβ

µ+ )(1− γ−i,j) xi,j ∈ Ω+

(3.2)

u+i,j =


ui,j(1− ζ−i,j)−

∑
(p,q)∈N−

i,j
ζ−i,j,p,qui+p,j+q + α + δi,j

β
µ+ xi,j ∈ Ω−

ui,j xi,j ∈ Ω+

(3.3)

It is useful to cast this in the form of matrix kernel operations through defining interme-

diate tensors:

Γi,j :=


γ−i−1,j+1 γ−i,j+1 γ−i+1,j+1

γ−i−1,j γ−i,j γ−i+1,j

γ−i−1,j−1 γ−i,j−1 γ−i+1,j−1

 , ζi,j :=


ζ−i−1,j+1 ζ−i,j+1 ζ−i+1,j+1

ζ−i−1,j ζ−i,j ζ−i+1,j

ζ−i−1,j−1 ζ−i,j−1 ζ−i+1,j−1



Ui,j :=


ui−1,j+1 ui,j+1 ui+1,j+1

ui−1,j ui,j ui+1,j

ui−1,j−1 ui,j−1 ui+1,j−1

 , N±
i,j :=


ω±
i,j(−1, 1) ω±

i,j(0, 1) ω±
i,j(1, 1)

ω±
i,j(−1, 0) 0 ω±

i,j(1, 0)

ω±
i,j(−1,−1) ω±

i,j(0,−1) ω±
i,j(1,−1)


where N− is a masking filter that passes the values in the negative neighborhood of node

(i, j).

We also introduce the Hadamard product ⊙ between two identical matrices that

creates another identical matrix with each entry being elementwise products. Moreover,

double contraction of two tensors A and B is defined by A : B =
∑
A ⊙ B which is a

scalar value and equals the sum of all entries of the Hadamard product of the tensors;

i.e., note A : A is square of Frobenius norm of A. Using these notations, the substitution
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rules read

u−i,j =


ui,j xi,j ∈ Ω−

(
1 + Γ−

i,j : N
−
i,j

)
ui,j −

(
Γ−

i,j ⊙N−
i,j

)
: Ui,j − (α + δi,j

β
µ+ )

(
1 + Γ−

i,j : N
−
i,j

)
xi,j ∈ Ω+

(3.4)

u+i,j =


(
1 + ζ−

i,j : N
−
i,j

)
ui,j −

(
ζ−
i,j ⊙N−

i,j

)
: Ui,j + α + δi,j

β
µ+ xi,j ∈ Ω−

ui,j xi,j ∈ Ω+

(3.5)

• Rules based on approximating ∂nu
−(rpri,j):

u−i,j =


ui,j xi,j ∈ Ω−

ui,j(1− ζ+i,j)−
∑

(p,q)∈N+
i,j
ζ+i,j,p,qui+p,j+q − α− δi,j

β
µ− xi,j ∈ Ω+

(3.6)

u+i,j =


ui,j(1− γ+i,j)−

∑
(p,q)∈N+

i,j
γ+i,j,p,qui+p,j+q + (α + δi,j

β
µ− )(1− γ+i,j) xi,j ∈ Ω−

ui,j xi,j ∈ Ω+

(3.7)

in matrix notation we have

u−i,j =


ui,j xi,j ∈ Ω−

(
1 + ζ+

i,j : N
+
i,j

)
ui,j −

(
ζ+
i,j ⊙N+

i,j

)
: Ui,j − α− δi,j

β
µ− xi,j ∈ Ω+

(3.8)

u+i,j =


(
1 + Γ+

i,j : N
+
i,j

)
ui,j −

(
Γ+

i,j ⊙N+
i,j

)
: Ui,j + (α + δi,j

β
µ− )

(
1 + Γ+

i,j : N
+
i,j

)
xi,j ∈ Ω−

ui,j xi,j ∈ Ω+

(3.9)

The overall algorithm is summarized in Algorithm 1.
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Algorithm 1 Bias Slow approximation of the non-existing solution value on a grid
point based on existing solution values in its neighborhood. The notation is used for
u±i,j = B±

i,j : Ui,j + r±i,j.

1: procedure Bias Slow
2: if Γ ∩ Ci,j = ∅ then

3: B±
i,j =

0 0 0
0 1 0
0 0 0

 ; r±i,j = 0

4: else
5: if µ−

i,j > µ+
i,j then

6: if ϕi,j ≥ 0 then

7: B+
i,j =

0 0 0
0 1 0
0 0 0

 ; r+i,j = 0

8: B−
i,j =

 −γ−i,j,−1,1 −γ−i,j,0,1 −γ−i,j,1,1
−γ−i,j,−1,0 1− γ−i,j −γ−i,j,1,0
−γ−i,j,−1,−1 −γ−i,j,0,−1 −γ−i,j,1,−1

 ; r−i,j = −(αproj
i,j +

δi,j
βproj
i,j

µ+
proj

)(1− γ−i,j)

9: else

10: B+
i,j =

 −ζ−i,j,−1,1 −ζ−i,j,0,1 −ζ−i,j,1,1
−ζ−i,j,−1,0 1− ζ−i,j −ζ−i,j,1,0
−ζ−i,j,−1,−1 −ζ−i,j,0,−1 −ζ−i,j,1,−1

 ; r+i,j = αproj
i,j + δi,j

βproj
i,j

µ+
proj

11: B−
i,j =

0 0 0
0 1 0
0 0 0

 ; r−i,j = 0

12: else
13: if ϕi,j ≥ 0 then

14: B+
i,j =

0 0 0
0 1 0
0 0 0

 ; r+i,j = 0

15: B−
i,j =

 −ζ+i,j,−1,1 −ζ+i,j,0,1 −ζ+i,j,1,1
−ζ+i,j,−1,0 1− ζ+i,j −ζ+i,j,1,0
−ζ+i,j,−1,−1 −ζ+i,j,0,−1 −ζ+i,j,1,−1

 ; r−i,j = αproj
i,j + δi,j

βproj
i,j

µ−
proj

16: else

17: B+
i,j =

 −γ+i,j,−1,1 −γ+i,j,0,1 −γ+i,j,1,1
−γ+i,j,−1,0 1− γ+i,j −γ+i,j,1,0
−γ+i,j,−1,−1 −γ+i,j,0,−1 −γ+i,j,1,−1

 ; r+i,j = (αproj
i,j + δi,j

βproj
i,j

µ−
proj

)(1−

γ+i,j)

18: B−
i,j =

0 0 0
0 1 0
0 0 0

 ; r−i,j = 0
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3.4.2 Approach II. Finite discretization method fused with neu-

ral extrapolation

We point out that although in approach I we used a regression-based method to

impose the jump conditions on the grid points around the interface, it is possible to

evaluate the neural network models as interpolation and extrapolation functions within

the finite discretization scheme. Using the neural network models for solutions, we are

able to evaluate extrapolations of the solution functions in a banded region around the

interface as illustrated in figure 3.2. Starting from the jump conditions, for points on the

interface, x ∈ Γ, we have

u+ − u− = α

µ+∂nu
+ − µ−∂nu

− = β

and after Taylor expansion in the normal direction we obtain on the adjacent grid points

(i, j)

u+i,j − u−i,j = [u]rpri,j + δi,j(∂nu
+(rpri,j)− ∂nu

−(rpri,j)) (3.10)

which explicitly incorporates the jump condition in the solutions. To incorporate the

jump condition in fluxes we can rewrite either of the normal gradients in terms of the

other

∂nu
+(rpri,j) =

µ−

µ+
∂nu

−(rpri,j) +
β

µ+

∂nu
−(rpri,j) =

µ+

µ−∂nu
+(rpri,j)−

β

µ−
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which leads to two relationships among predictions of the two neural networks at each

grid point in the banded extrapolation region

u+i,j − u−i,j = α(rpri,j) + δi,j

((µ−

µ+
− 1

)
∂nu

−(rpri,j) +
β(rpri,j)

µ+

)
(3.11)

u+i,j − u−i,j = α(rpri,j) + δi,j

((
1− µ+

µ−

)
∂nu

+(rpri,j) +
β(rpri,j)

µ−

)
(3.12)

Note that we are representing solution functions, û±(r), with neural networks where

computing the normal derivatives is trivial using automatic differentiation of the network

along the normal directions. In contrast to finite discretization methods, solutions at off-

grid points is readily available by simply evaluating the neural network function at any

desired points. Note that we can compute the projected location on the interface starting

from each grid point (i, j) using the level-set function:

rprojij = rij − δi,jni,j

In the second approach, the loss function remains as before, except the unknown u±

values are derived using equations 3.11–3.12, instead of computing a regression-based

extrapolation function based on the points in the neighborhood of interface cells:

L =

∣∣∣∣∣∣∣∣ ∑
s=−,+

ksi,ju
s
i,j|Vs

i,j| −
∑

s=−,+

(
µs
i− 1

2
,j
As

i− 1
2
,j

usi−1,j − usi,j
∆x

+ µs
i+ 1

2
,j
As

i+ 1
2
,j

usi+1,j − usi,j
∆x

+

µs
i,j− 1

2
As

i,j− 1
2

usi,j−1 − usi,j
∆y

+ µs
i,j+ 1

2
As

i,j+ 1
2

usi,j+1 − usi,j
∆y

)
−

∑
s=−,+

f s
i,j|Vs

i,j| −
∫
Γ∩Vi,j

βdΓ

∣∣∣∣∣∣∣∣2
2

However, there is a major downside with this approach for training because the auto-

matic differentiation has to be applied on the network once more that effectively amounts

to compute second-order derivatives of the network. This slows down convergence, and
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the time-to-solution increases with square of depth of the neural network while in the

regression-based method the cost grows linearly in the network depth by restricting to

only first order automatic differentiation.

3.4.3 Optimization scheme

One of the main benefits of NBM is enabling the application of techniques from the

vast literature on preconditioning linear systems to accelerate training of neural network

models for the solution of PDEs. We note that in NBM these preconditioners do not

need to be differentiable as long as their operations only depend on the geometry and

physical properties of the domains, and not explicitly on the solution values of the PDE.

Therefore existing software libraries for preconditioning could be used in JAX-DIPS. In

this section we introduce the optimization techniques for training neural network models

in JAX-DIPS.

Preconditioners are ideal network regularizers for solving PDEs

Finite discretization methods lead to solving a linear algebraic system with gaurantees

on convergence and accuracy. The geometric irregularities and fine-grain details of the

system around interfaces often lead to bad condition number for the linear system, which

can be remedied by applying preconditioners. Intuitively, condition number is caused by

a separation of scales for geometric lengthscales or material properties that underly the

solution patterns. One of the strengths of the presented approach is to readily enable

usage of preconditioners for training neural network surrogate models.

Preconditioners are a powerful technique to accelerate convergence of tradional nu-

merical linear algebraic solvers. Given a poorly conditioned linear system Ax = b one can

obtain an equivalent system Âx̂ = b̂ with accelerated convergence rate when using iter-
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ative gradient based methods. For the conjugate gradient method convergence iteration

is proportional to
√
κ(A) where κ(A) is the condition number of matrix A. Precondi-

tioning is achieved by mapping the linear system with a nonsingular matrix M into a

new space M−1Ax = M−1b where M−1A has more regular spread of eigenvalues, hence

a better condition number. The precondition matrix M should approximate A−1 such

that |I −M−1A| < 1. The simplest choice is the Jacobi prconditioner which amounts to

using the diagonal part of A as the preconditioner,M = diag(A). Note that the diagonal

term is locally available at each point and it is straightforward to parallelize.

In this work we use the Jacobi pre-conditioner. Basically, every element of the left-

hand-side (Au) and right-hand-side (b) vectors are divided by the coefficient of the diag-

onal term of the matrix given by:

aii =
∑

s=−,+

(
ksi,i|Vs

i,i|+ (µs
i− 1

2
,i
As

i− 1
2
,i
+ µs

i+ 1
2
,i
As

i+ 1
2
,i
)/∆x+ (µs

i,i− 1
2
As

i,i− 1
2
+ µs

i,i+ 1
2
As

i,i+ 1
2
)/∆y

)

Note that for memory efficiency we never explicitly compute the matrix, instead we

compute the effect of matrix product of Au.

Learning rate scheduling

First order methods have longer time-to-solution but require less memory, while sec-

ond order methods are faster to converge but require massive memory footprint. In

JAX-DIPS we primarily utilize first order optimization methods such as Adam [79]. Sec-

ond order methods such as Newton or BFGS certainly offer convergence in less iterations

but require much more memory. Traditionally used GMRES or Conjugate Gradient

methods for sparse linear systems are somewhere between first order and second order

optimization methods that are based on building basis vectors by computing gradients

that are conjugate to each other pT
j Api = 0 and will converge to the solution in at most
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n steps; i.e., at most the solution vector is spanned in the full basis. We found that

starting from a zero guess for the solution it is important to start from a large learning

rate and gradually decay the learning rate in a process of exponential annealing. For this

purpose, we use the exponential decay scheduler provided by Optax [153] to control the

learning rate in the Adam optimizer:

rk = r0α
k/T

where rk is the learning rate at step k of optimization, α < 1 is the decay rate, and T

is the decay count-scale. By default, we set T = 100, α = 0.975, starting from an initial

value of r0 = 10−2 and clip gradients by maximum global gradient norm (to a value

1) [154] before applying the Adam updates in each step. We note a larger decay rate,

e.g. α = 0.98, leads to small oscillations after 10000 steps and although similar levels of

accuracy can be achieved at much less iterations, here we report results with the more

robust decay rate.

Domain switching optimization scheme

The linear system suffers from worse condition number in the domain with more

variability in diffusion coefficient, or where diffusion coefficient is larger; i.e., the fast

region. This leads to regionally unbalanced solution error where the overall error is

systematically lopsided by the faster diffusion region. We found this problem can be

improved by interleaving region-specific optimization epochs in the training pipeline,

where only one of the networks is updated based on the loss computed in its region.

See Algorithm 2 for details of the algorithm. We note that an alternative strategy for

addressing this issue is scaling the gradients for the fast region with respect to the slow

region during training.
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Algorithm 2 Domain switching method. Switching interval is τ .

1: procedure Domain Switching Optimization
2: for epoch in 0 · · · N do
3: region = Region(epoch)
4: if region > 0 then
5: if µ− > µ+ then
6: optimize u−NN in Ω− given fixed u+NN

7: else
8: optimize u+NN in Ω+ given fixed u−NN

9:

10: if region == 0 then
11: optimize both networks in Ω− ∪ Ω+

12:

13: if region < 0 then
14: if µ− < µ+ then
15: optimize u−NN in Ω− given fixed u+NN

16: else
17: optimize u+NN in Ω+ given fixed u−NN

18:

19: procedure Region(epoch)
20: if mode == whole region → fast region then
21: region = epoch % τ

22: if mode == fast region → whole region → slow region then
23: region = τ//2− epoch % τ
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Multi-GPU parallelization with data parallel training

The NBM is embarrasingly parallel and residual evaluation at each point is indepen-

dent from other points. Therefore, multi-GPU parallelization does not involve inter-GPU

communication for evaluating the residuals per point. We partition the training points

and distribute them along with copies of neural network parameters among multiple

GPUs to compute gradient updates per batch. Then we aggregate these updates by

averaging the values on different GPUs. The updates are then broadcasted and model

parameters are updated on each device [145].

The ability to batch over grid points is one of the key enabling factors for reaching

higher resolutions and higher dimensions, as it allows to set a limit on the required GPU

memory. With NBM it is straightforward to scale finite discretization methods on GPU

clusters.

3.5 Numerical Results

We consider examples for solution to elliptic problems of the form

k±u± −∇ · (µ±∇u±) = f±, x ∈ Ω±

[u] = α, x ∈ Γ

[µ∂nu] = β, x ∈ Γ

Using different features of JAX-DIPS one can compose solvers with different training

configurations; i.e., single/multi-resolution, single/multi-batch, and single/multi-GPU,

and domain alternating training. Moreover, the neural extrapolation method discussed in

section 3.4.2 provides an alternative solver. Below we implement and compare numerical

accuracy and performance of these strategies.

89



JAX-DIPS: Chapter 3

For each accuracy metric we report order of convergence. Order of convergence,

denoted by p, is computed by doubling the number of grid points in every dimension

and measuring the L∞ error of solution and its gradient over all the grid points in the

domain:

err(2h)

err(h)
= 2p → p = log2

(
err(2h)

err(h)

)
h = min(hx, hy, hz)

3.5.1 Accuracy in the bulk: no interface

As baseline we consider the solution in the bulk at the absence of interfaces. Computa-

tional domain is Ω ∈ [−1, 1]3 with the exact solution given by u(x, y, z) = cos(x) sin(y) cos(z),

coefficients µ = 1 and k = 0 and the source term is f(x, y, z) = 3 cos(x) sin(y) cos(z).

The accuracy results are reported in Table 3.1. The neural network consists of 5 hidden

layers with 10 neurons with CeLU activation function, consisting of 491 total trainable

parameters. In each case the batch size is equal to the number of training grid points in

order to ensure only a single batch training. We note this setting identifies the maximum

memory usage and the minimum time per epoch. Decreasing the batch size reduces the

amount of GPU memory that is required by folding the training data into several passes

of the optimizer at the expense of increasing the time needed per epoch. This degree of

freedom accomodates for adjusting to the available hardware specifications.

To quantify the solution error we construct a high resolution evaluation grid with

256 × 256 × 256 grid points to account for spatial regions outside of the training grid.

After training the network with specified training resolution we evaluate the network

over the evaluation grid and compute RMSE, L∞, and relative L2 errors. We also report

the GPU utilization during our experiments. It is also important to note the number of

epochs determines the level of accuracy in our experiments, here we wait 10, 000 epochs
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before measuring the errors.

Table 3.1: Convergence test of example 3.5.1. Timings include the initial compilation
time. Measurements are on a single NVIDIA A6000 GPU. The model has 5 hidden
layers with 10 neurons each, overall 491 trainable parameters.

RMSE L∞ Rel. L2 GPU Statistics

Nx,y,z Solution Order Solution Order Solution Order t (sec/epoch) VRAM (GB)

23 1.07× 10−1 − 2.13× 10−2 − 2.42× 10−2 − 0.012 0.81
24 8.04× 10−3 3.73 1.67× 10−2 0.35 1.80× 10−2 0.43 0.024 2.22
25 1.83× 10−3 2.13 5.24× 10−3 1.67 4.09× 10−3 2.13 0.091 5.77

3.5.2 Accuracy on spherical interface: single-resolution, single

batch, single GPU

We use a single uniform grid and train on all the points in a single batch. We consider

a sphere ϕ(x) =
√
x2 + y2 + z2−0.5 centered in a box Ω : [−1, 1]3 with the exact solution

u−(x, y, z) = ez, ϕ(x) < 0

u+(x, y, z) = cos(x) sin(y), ϕ(x) ≥ 0

and variable diffusion coefficients

µ−(x, y, z) = y2 ln(x+ 2) + 4 ϕ(x) < 0

µ+(x, y, z) = e−z ϕ(x) ≥ 0

that imply variable source terms

f−(x, y, z) = −[y2 ln(x+ 2) + 4]ez ϕ(x) < 0

f+(x, y, z) = 2 cos(x) sin(y)e−z ϕ(x) ≥ 0
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The network has 5 hidden layers with 10 neurons in each layer using sine activation

functions. Table 3.2 reports convergence results for the solution in the L∞-norm and

root-mean-squared-error of the solution.

Figure 3.4: Loss evolution with epochs for the sphere of 16 × 16 × 16 grid (left) and
different accuracy measures, RMSE and L∞, at 5 different resolutions (right).

3.5.3 Accuracy on star interface: single GPU, domain switch-

ing, neural extrapolation, and batching

We consider a more irregular interface in this section where the less favorable condition

number of the discretized linear system is known to degrade the accuracy of results in

traditional solvers. Figures 5 and 6 in [152] characterize degradation of solution errors

due to worse condition number in the method bootstrapped in our work. We note this

is a main challenge facing all finite discretization schemes for interfacial PDE problems.

For the star example we use a pair of fully connected feedforward neural networks,

each composed of 1 hidden layer and 100 neurons with sine activation function, followed

by an output layer with 1 linear neuron. There are a total of 1, 002 trainable parameters
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(a) Illustration of numerical solution and absolute error on a cross section of the domain.

(b) Streamlines of solution gradient for (left) the surrogate neural model colored by model solution value,
(right) exact streamlines colored by exact solution values.

Figure 3.5: The neural network surrogate model trained on a 1283 grid using a single
NVIDIA A6000 GPU.
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Table 3.2: Convergence and timings for the sphere example averaged over 10, 000
epochs. Timings include the initial compilation time. Measurements are on a single
NVIDIA A6000 GPU. The regression-based method has 5 hidden layers with 10 neu-
rons each, overall 982 trainable parameters.

RMSE L∞ GPU Statistics

Nx,y,z Solution Order Solution Order t (sec/epoch) VRAM (GB)

23 3.7× 10−2 - 3.25× 10−1 - 0.0306 1.05
24 7.1× 10−3 2.38 1.10× 10−1 1.56 0.056 1.72
25 5.9× 10−3 0.27 8.36× 10−2 0.4 0.053 2.15
26 4.1× 10−3 0.53 6.44× 10−2 0.38 0.287 5.57
27 2.64× 10−3 0.64 3.53× 10−2 0.87 2.125 32.1

in the model. We consider a star-shaped interface with inner and outer radii ri = 0.151

and re = 0.911 that is immersed in a box Ω : [−1, 1]3 described by the level-set function

ϕ(x) =
√
x2 + y2 + z2 − r0

(
1 +

( x2 + y2

x2 + y2 + z2
)2 3∑

k=1

βk cos
(
nk

(
arctan

(y
x

)
− θk

)))

with the parameters

r0 = 0.483,


n1

β1

θ1

 =


3

0.1

0.5

 ,


n2

β2

θ2

 =


4

−0.1

1.8

 ,


n3

β3

θ3

 =


7

0.15

0


Considering an exact solution

u−(x, y, z) = sin(2x) cos(2y)ez, ϕ(x) < 0

u+(x, y, z) =

[
16
(y − x

3

)5 − 20
(y − x

3

)3
+ 5

(y − x

3

)]
ln(x+ y + 3) cos(z), ϕ(x) ≥ 0
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and the diffusion coefficient

µ−(x, y, z) = 10

[
1 + 0.2 cos(2π(x+ y)) sin(2π(x− y)) cos(z)

]
ϕ(x) < 0

µ+(x, y, z) = 1 ϕ(x) ≥ 0

Table 3.3 compares approaches I and II for treating the jump conditions using do-

main switching optimization strategy, these results are illustrated in figure 3.6. Table 3.4

demonstrates the effect of batching and a multi-resolution training policy on the conver-

gence. We observe convergence is still retained although at a lower rate, and batching

can degrade the accuracy at finest resolution (demonstrated by the last row of table

3.4 highlighted in red). Although the results generally demonstrate convergence, they

are clearly less accurate than what is currently possible by using traditional numerical

solvers. In section 3.6.3 we describe strategies that may improve these results, importanly

using better preconditioners on par with algebraic multigrid methods used in traditional

solvers. However, we emphasize that in the case of neural network models considered

here the number of degrees of freedom (∼ 1000 trainable parameters) is significantly less

than the number of degrees of freedom in traditional solvers (for example a grid of 1283

has over 2 million unknown values), besides it is challenging to separate the effect of

expressivity of the network (architecure) from the loss composition and the optimization

method.

3.5.4 Time complexity and parallel scaling on GPU clusters

We adopt the problem setup presented in 3.5.3, however with a considerably more

challenging geometry of the Dragon presented in [155]. In this case we used the signed-
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(a) Illustration of three dimensional interface used (b) µ± on the 32× 32× 32 grid

(c) Loss evolution with epochs for the star of 64×
64× 64 grid using domain switching training

(d) decrease in error by increasing resolutions

Figure 3.6: The neural network model trained with different configurations and resolutions.
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Figure 3.7: Illustration of exact and numerical solutions (top row) and gradient
streamlines (bottom row) on a 64× 64× 64 grid.
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distance function produced by SDFGen, and initiated an interpolant based on its values.

The results are shown in figure 3.8, with a L∞-error of 0.5 and RMSE of 0.06 af-

ter 1000 epochs on a base resolution of 643 and implicitly refined onto multi-resolutions

1283, 2563, 5123. The neural network pair have only 1 hidden layer with 100 sine-activated

neurons, although investigating more complex networks (transformers, symmetry pre-

serving, etc.) would likely improve accuracy.

In table 3.5 we report scaling results on NVIDIA A100 GPUs at four base resolu-

tions with three levels of implicit refinement. We used a batchsize of 32 × 32 × 16 in

all cases. At fixed number of GPUs, training time scales linearly (i.e., optimal scal-

ing) with the number of grid points. At a fixed resolution, increasing the number of

GPUs accelerates training roughly with epoch time ∼ 1/
√
# GPUs, although the ad-

vantage is more effective at higher resolutions. Compile time increases with resolution

and decreases with number of GPUs. A maximum grid size of 10243 at multi-resolutions

10243, 20483, 40963, 81923 was simulated on one NVIDIA DGX with 8 A100 GPUs. The

results are shown in figure 3.8.

3.5.5 Comparison with other methods

Recently other methods have been proposed in the framework of PINNs for solving

interfacial PDEs with jump conditions in two [156] and three spatial dimensions [157]. In

this section we compare our method with the recently proposed interfaced neural networks

(INN) algorithm of Wu et al. (2022) [157]. INN uses AD for computing gradients similar

to other PINN-like algorithms. INN uses two neural networks for the two computational

subdomains and applies an extended multiple-gradient descent (MGD) method in the

training phase. This method utilizes information from multiple gradients to adjust and

optimize the balance between different terms in the loss function. Intuitively, balancing
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(a) Geometry of the dragon and gradient streamlines, colored by solution values.

(b) Jump in solution and its gradient are accurately captured by the surrogate neural network
model.

Figure 3.8: The NBM approach enables a 10243 effective resolution on a single
NVIDIA A6000 GPU. Once trained, it takes sub-milliseconds for the network to eval-
uate such a simulation that enables near-real-time digital twins for physical systems
[9].
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the weights of different loss terms from different subdomains in the INN method achieves

a similar objective as the application of preconditioners in NBM, although NBM pre-

conditions residual contributions from each grid point. Below we compare with example

problem 4 of [157].

Linear Poisson-Boltzmann equation (LPBE) over a sphere

LPBE describes electrostatic potential around biomolecules solvated in low concentra-

tion ionic solvents. Here the computational domain is Ω ∈ [−2.5, 2.5]3 in dimensionless

units. The solution contains a regular component and a singular component due to

existence of a unit positive charge, +ec, centered at xc = (0, 0, 0). To solve LPBE de-

composition techniques are usually employed, here we are only interested in the regular

component that constitutes an interfacial problem given by

−∇ · (µ±∇u) + k±u = 0, x ∈ Ω±,

[u] = g(x), x ∈ Γ,

[µ∂nu] = µ−∂ng(x), x ∈ Γ,

u =
ω

4πµ+

exp
(
κ(σ − r)

)
(1 + κσ)r

, x ∈ ∂Ω,

g(x) =
ω

4πµ−||x− xc||2

where σ = 1 is the radius of the sphere, µ− = 2 and µ+ = 80 while k− = 0 and k+ = µ+κ2

with κ = 1.0299× 10−3 and ω = 7.0465× 103. The exact solution is then given by

u− =
ω

4πσ

(
1

µ+(1 + κσ)
− 1

µ−

)
, u+ =

ω

4πµ+

exp
(
κ(σ − r)

)
(1 + κσ)r

Noting that all equations are scaled by ω, we normalize the solution values to the range
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[−1.0, 1.0] by scaling ω by ω̂ = 293.6, this is equivalent to setting ω = 24.0 in the solver

and solving for û± = u±/ω̂ instead. This is to avoid the issues with scaling activation

functions and having plausible numerical values close to unit value during training. Note

that this trick does not impact the relative L2 errors for comparison with results reported

for INN. For fair comparison with INN we use exactly the same grid point generation

code as in INN to generate N+ = 2000, N− = 100, Nb = 1000, and NΓ = 200. We build

small voxels centered on these grid points with side length of 0.00244 corresponding to

2048 resolution. We report error estimates in table 3.6 using mostly shallow multilayer

perceptron (MLP) architectures as well as the ResNet architecture.

Analysis

Based on table 4 of [157], the smallest network architecture for INN is a pair of

one-block ResNet networks with 20 hidden neurons per layer in Ω− and 40 neurons in

Ω+, this model produces a relative L2 error of 4.1 × 10−2 which is on par with the

shallow MLP in our experiments, yet NBM trains to this level of accuracy at a much

smaller computational cost (see table 3.6 for size of our network parameters, timings,

and memory requirement).

On the other hand, tables 4 and 8 of [157] report the best relative L2 value achieved

by INN being 3.675× 10−4 using a pair of ResNets with 3 blocks each (i.e., each ResNet

block contains 2 hidden layers) with 40 neurons per hidden layer to learn the solution in

Ω− as well as 80 neurons per hidden layer for the solution in Ω+, with a total of 41, 202

trainable parameters. Regarding validity of these values, we note that the errors reported

by [157] are estimated on a relatively coarse grid of size 41×41×41 that sparsely samples

the error in the domain, in contrast our results are measured over a fine resolution of

256× 256× 256 grid points to reliably quantify model accuracy in the space between the

points that were used for training. For comparison, we implemented the exact settings
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described here for the ResNet architecture and used the L-BFGS-B algorithm from the

excellent jaxopt package [158], we also removed the ω̂ scaling, JAX-DIPS only takes 89

seconds to achieve a relative error of 2.22 × 10−2 using 3.69 GB of memory. Although

the error is still lower than the ones achieved by INN, we emphasize this can improve by

using state-of-the-art preconditioners, and also timings prove the efficiency of NBM that

is on-par with and even superior to automatic differentiation based algorithms.

3.6 Discussion and future work

3.6.1 Spatial gradient calculation using finite discretization im-

proves neural network regularity

NBM minimizes the sum of discretization residuals calculated over a set of grid voxels

centered on unstructured grid points using any arbitrary finite discretization scheme.

Essentially, the finite discretization scheme imposes specific spatial regularities to the

neural network predictions inside the spatial volume enclosed by each grid voxel centered

at each grid point. This adds an extra spatial regularization on the neural network

predictions. In contrast to PINNs, computing loss using finite discretizations imposes a

spatial regularity on the neural network predictions inside each finite volume; i.e., neural

network predictions at vertices and faces of the grid voxel are related to the voxel center

according to finite discretization equations. This adds more spatial regularity to the

trained neural network compared to automatic differentiation that computes gradients

in completely local manner.

One important advantage of this extended spatial support for computing gradients is

realized when using conservative finite discretizations such as the one in section 3.4.1.

These explicit conservation laws help to constrain the neural network within each finite
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volume. We believe this spatial regularization is an important mechanism to encode

physical and mathematical priors into the training of neural networks. During training

on a set of grid points the neural network not only learns the solution at each point,

but also is informed about local symmetries within its neighborhood. As a result of

spreading the residual probe according to finite discretization equations, the regularity

of the network in the regions between training points follows mathematical regularities

and symmetries that are encoded in the bootstrapped finite discretization scheme. In the

case of interfacial PDEs with jump conditions considered here, these conservation laws

are explicitly considered in section 3.4.1 that govern the solution flux across the interface

given the jump conditions. We believe thismathematically-informed spatial regularization

is responsible for explaining the improved regularity in errors and convergence rates

observed in our numerical experiments of section 3.5.

Interestingly, the numerical results in section 3.5.5 demonstrate that even shallow

multilayer perceptrons with a few hundreds of trainable parameters can in practice reach

levels of accuracy that otherwise require complex architectures such as ResNets with

tens of thousands of parameters using PINNs. A network’s ability to converge more

accurately depends on the optimization strategy, because a simple MLP is a universal

function approximator and therefore can in theory represent any function to any level of

accuracy. Here we have proposed a new way for optimizing neural networks for PDEs

that encodes solutions more efficiently. This is a result of more constrained training that

underlies NBM residuals.
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3.6.2 Training with only first order automatic differentiation

improves taining performance

Additionally, NBM distinguishes between spatial gradients of the neural network with

respect to its inputs (needed for the PDE evaluation) from gradients of the neural net-

work with respect to its internal parameters (needed for optimization). NBM computes

spatial gradients using finite discretization schemes, while optimization of its internal

parameters are handled by the AD-based first order optimizers. This removes the need

for higher order AD computations over the computational graph of the neural network

during training, therefore increasing scalability and decreasing memory requirements for

training deeper and more complex neural network models with higher number of trainable

parameters.

The numerical results presented in section 3.5 and comparisons of section 3.5.5 demon-

strate the superior computational efficiency of NBM implemented in JAX-DIPS compared

to PINN-like frameworks such as INN. Our results demonstrate that by removing the ex-

pensive higher order AD calculations we gain ∼ 10x speedup while maintaining minimal

memory requirements (1− 2 GB) for training neural network models.

3.6.3 Current shortcomings and future improvements

There are several algorithmic improvements and applications for the current work that

we did not explore in this manuscript. The most important algorithmic improvement is

application of more advanced preconditioners that can effectively improve the condition

number of linear systems arising in interfacial PDE problems such as the ones considered

here. Preconditioning the discretization residuals before applying optimization step is an

essential requirement for enhancing accuracy of interfacial PDEs in finite discretization

methods. The irregular geometries of interfaces as well as the jump conditions and dis-
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continuous parameters of the environment lead to ill-conditioned linear systems. In the

current work we only considered the Jacobi preconditioner which is the most basic pre-

conditioner due to ease of implementation. We believe the most important improvement

to the current work is application of more advanced preconditioners such as the algebraic

multigrid preconditioner [159, 160]. The numerical methods considered in section 3.4.1

can in principle reach several orders of magnitudes better numerical accuracies when pre-

conditioned properly, see [152, 118] for results of using algebraic preconditioners. These

reported results also indicate the obtained convergence results in section 3.5 are not sim-

ply reflective of the accuracy limitation of the bootstrapped finite discretization method,

but they are limited by the improper condition number of the residuals and suboptimal

neural network models.

Adaptive mesh refinement is another important algorithmic upgrade to the current

work. Adaptive grids with enhanced resolutions closer to the interface and coarser grid

cells in the bulk play a significant role in both reducing the computational load as well

as improving accuracy of fluxes across interfaces by increasing contributions to the total

loss from points closer to the interface. Additionally, more expressive neural network

architectures should be considered in JAX-DIPS by adding to the model class of the

library. We only considered MLPs, however in recent years there have been a plethora of

deep neural network models that have shown great promise such as FNO [144], DeepONet

[141], and their numerous variants.

In terms of applications, our ultimate goal is training neural operators that can map

from different geometries for discontinuities to the solution field. This is critical for

developing near real-time simulations of time-evolving systems in digital twins for physical

systems. NBM is applicable for physics-driven training of neural operators for elliptic

problems with freely moving boundaries, we will present this work in a future time.

Additionally, benefiting from differentiablity of the solver we will explore utility of NBM
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for solving inverse-PDE problems as well as parameterized PDEs.

3.7 Conclusion

We developed a differentiable multi-GPU framework for solving partial differential

equations with jump conditions across irregular interfaces in three spatial dimensions.

We developed the neural bootstrapping method to leverage existing finite discretization

methods for optimization of neural network internal parameters, while explicitly cal-

culating the spatial gradients using advanced finite discretization methods that encode

symmetries and conservation laws governing the PDE solution and its flux across in-

terfaces. Importantly, our framework only uses first order automatic differentiation for

optimizing internal state of the neural networks, this technique provides an efficient al-

ternative for training higher order PDE systems by avoiding computational challenges

posed by higher order AD over deep neural networks. Moreover, NBM paves the path

for obtaining more accurate neural network models of PDEs by leveraging numerical

preconditioners by, intuitively, regularizing residuals computed on individual grid points,

thus improving optimization gradients.
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Table 3.3: Convergence in solution of the star geometry using the single-resolution
regression-based solver with domain switching. We report L∞-norm error as well as
root-mean-squared-error (RMSE) of the solution field evaluated everywhere in the
domain. Timings are averaged over 10, 000 epochs in each case and include the initial
compilation time for jaxpressions. The neural network pair have 1 hidden layer each
with 100 neurons, overall 1, 002 trainable parameteres. Domain switching scheme
follows the whole region → fast region → fast region sequence.

RMSE L∞ GPU Statistics

Nx,y,z Solution Order Solution Order t (sec/epoch) VRAM (GB)

regress ∂n
23 1.36× 10−1 - 1.27 - 0.019 0.98
24 7.98× 10−2 0.77 8.23× 10−1 0.63 0.022 1.01
25 4.36× 10−2 0.87 3.85× 10−1 1.10 0.032 1.30
26 2.43× 10−2 0.84 2.28× 10−1 0.76 0.200 3.7

neural ∂n
23 2.17× 10−1 - 2.89 - 0.0259 0.93
24 1.34× 10−1 0.70 1.66 0.80 0.0408 1.19
25 5.68× 10−2 1.24 8.17× 10−1 1.02 0.0712 2.96
26 2.77× 10−2 1.03 3.94× 10−1 1.05 0.334 13.6

Table 3.4: Convergence in solution of the star geometry using the multi-resolution
regression-based solver with batching. We use a multi-resolution training protocol that
refines to 4 levels at each collocation point, this slightly improves accuracies although
in the current version of JAX-DIPS (v0.0.1) the memory requirement increases. Batch
size is the minimum of 64× 64× 32 and number of collocation points, which ensures
memory saturation at 30 GB.

regress ∂n RMSE L∞ GPU Statistics

Nx,y,z Solution Order Solution Order t (sec/epoch) VRAM (GB)

23 1.05× 10−1 - 1.29 - 0.0225 1.27
24 5.52× 10−2 0.93 6.22× 10−1 1.05 0.0411 1.27
25 2.44× 10−2 1.18 2.66× 10−1 1.23 0.1814 8.3
26 2.33× 10−2 0.07 2.24× 10−1 0.25 1.889 29.6
27 8.62× 10−2 −1.88 3.80× 10−1 −0.76 9.649 29.7
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Table 3.5: Scaling test. Time per epoch (sec) and JAX compile time for different
configurations.

base resolution: 643 1283 2563 5123

A100 GPUs epoch compile epoch compile epoch compile epoch compile

1 0.908 9.027 6.960 9.288 55.287 12.164 438.45 49.020
2 0.657 7.575 5.893 7.823 47.360 10.045 378.98 39.815
4 0.405 7.480 3.629 7.863 28.261 9.129 226.73 27.405
8 0.384 7.983 3.340 7.901 26.799 9.154 204.88 20.632

Table 3.6: Convergence test of example 3.5.5, positive region uses CeLU activations
while negative region uses tanh activations. Note that in all cases there exists an
output linear layer. Measurements are on a single NVIDIA A6000 GPU. Errors are
measured on a 256 × 256 × 256 grid to sample the space far from training points.
These results are obtained using the Jacobi preconditioner, Adam and L-BFGS-B
optimizers, and the discretization of 3.4.1.

model −|+ Accuracy Training Statistics

type #hidden layer:#hidden unit #params RMSE L∞ Rel. L2 epochs time (sec) Mem. (GB) optimizer

using INN grid with N+ = 2000, N− = 100, Nb = 1000, NΓ = 200
MLP 1 : 1 |2 : 10 167 3.27× 10−3 1.22× 10−2 1.92× 10−2 50, 000 693 1.7 Adam@optax
MLP 1 : 1 |2 : 10 167 3.50× 10−3 1.28× 10−2 2.15× 10−2 50, 000 95 1.1 L-BFGS-B@jaxopt

MLP 1 : 10|2 : 10 212 3.98× 10−3 2.13× 10−2 2.34× 10−2 50, 000 738 1.8 Adam@optax
MLP 1 : 10|2 : 10 212 3.43× 10−3 1.29× 10−2 2.10× 10−2 50, 000 120 1.17 L-BFGS-B@jaxopt

MLP 2 : 10 |2 : 10 322 3.83× 10−3 1.55× 10−2 2.25× 10−2 50, 000 784 1.9 Adam@optax
MLP 2 : 10 |2 : 10 322 3.52× 10−3 1.31× 10−2 2.16× 10−2 50, 000 96 1.2 L-BFGS-B@jaxopt

using INN grid with N+ = 2000, N− = 100, Nb = 1000, NΓ = 1000
MLP 0 : 1 |2 : 10 165 4.65× 10−3 1.53× 10−2 2.73× 10−2 50, 000 923 1.78 Adam@optax
MLP 0 : 1 |2 : 10 165 3.52× 10−3 1.29× 10−2 2.16× 10−2 50, 000 92 1.15 L-BFGS-B@jaxopt

MLP 1 : 1 |2 : 10 167 1.63× 10−3 4.20× 10−3 9.62× 10−3 50, 000 946 1.80 Adam@optax
MLP 1 : 1 |2 : 10 167 3.53× 10−3 1.28× 10−3 2.17× 10−2 50, 000 99 1.18 L-BFGS-B@jaxopt

MLP 1 : 10 |2 : 10 212 3.80× 10−3 1.47× 10−2 2.22× 10−2 50, 000 977 1.85 Adam@optax
MLP 1 : 10 |2 : 10 212 3.51× 10−3 1.31× 10−2 2.14× 10−2 50, 000 111 1.18 L-BFGS-B@jaxopt

MLP 2 : 10 |2 : 10 322 3.72× 10−3 1.37× 10−2 2.19× 10−2 50, 000 1031 1.93 Adam@optax
MLP 2 : 10 |2 : 10 322 3.49× 10−3 1.29× 10−2 2.14× 10−2 50, 000 126 1.22 L-BFGS-B@jaxopt

MLP 5 : 40 |5 : 40 13, 522 3.54× 10−3 1.30× 10−2 2.17× 10−2 50, 000 80 3.34 L-BFGS-B@jaxopt

ResNet 3 : 80 |3 : 40 41, 202 − − 2.22× 10−2 50, 000 89∗ 3.69 L-BFGS-B@jaxopt
uniform 32× 32× 32 grid

MLP 1 : 1|2 : 10 167 3.15× 10−3 1.3× 10−2 1.85× 10−2 10, 000 794 3.15 Adam@optax
MLP 2 : 10|2 : 10 322 2.99× 10−3 1.25× 10−2 1.83× 10−2 50, 000 160 2.96 L-BFGS-B@jaxopt
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Chapter 4

Pharmacology-Informed Neural-SDE

4.1 abstract

Digital health technologies (DHT), such as wearable devices, provide personalized,

continuous, and real-time monitoring of patient. These technologies are contributing

to the development of novel therapies and personalized medicine. Gaining insight from

these technologies requires appropriate modeling techniques to capture clinically-relevant

changes in disease state. The data generated from these devices is characterized by

being stochastic in nature, may have missing elements, and exhibits considerable inter-

individual variability - thereby making it difficult to analyze using traditional longitudinal

modeling techniques. We present a novel pharmacology-informed neural stochastic dif-

ferential equation (SDE) model capable of addressing these challenges. Using synthetic

data, we demonstrate that our approach is effective in identifying treatment effects and

learning causal relationships from stochastic data, thereby enabling counterfactual sim-

ulation.
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4.2 Introduction

The rise of digital health technologies (DHT) including wearable devices such as smart

watch and patch based physiological sensors has opened new possibilities for continuous

patient monitoring [161] and enables generation of time-series data at an unprecedented

temporal resolution and duration, thereby offering the potential to generate new clinical

measures and insights [162]. Furthermore, recent examples have shown the clinical value

in modeling both the longitudinal trends as well as the stochastistity in digital health

(DH) data [163].

Stochastic differential equations (SDEs) have been developed to describe various phe-

nomena that exhibits random fluctuations [164], including in biological and biomedical

applications [165, 166]. In the context of DH, the interplay between physiology and the

measurement device is likely far too complex for one to theoretically derive the equations

underlying the link between disease status and DH data from first principles. Instead,

we propose to learn the underlying dynamical system directly from data, with the help

of neural-SDE [167, 168].

Here, we develop a pharmacology-informed [169, 170] neural-SDE that:

• learns the underlying dynamical system from a patient population, while introduc-

ing patient-dependent parameters that enables the characterization of patient-to-

patient variability;

• incorporates the causality between pharmacokinetics (PK) and pharmacodynamics

(PD);

• enables counterfactual simulations to describe drug effects at the individual patient

level.

We demonstrate the effectiveness of the proposed model using synthetic data.
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4.3 Methods

4.3.1 Neural-SDE Model

We assume that the longitudinal data are modelled by a system of equations of the

form,

dct = f(ct)dt (4.1)

dxt = ν(xt, ct,p)dt+ σ(xt, ct,p)dWt (4.2)

where Equation 4.1 represents a known Ordinary Differential Equation (ODE) model

with f(·) being the vector field for PK that governs the drug concentration, ct ∈ R

, and where the drift and diffusion terms (i.e., ν(xt, ct,p) and σ(xt, ct,p) respectively)

are described by neural networks. We work under the hypothesis that the drift and

diffusivity terms of the effective SDE, are dependent on the state (xt ∈ R) as well as

the drug concentration ct. Additionally, while the underlying equations are the same

for all patients, the model includes a latent patient-dependent parameter vector p that

describes the patient-to-patient variability. This latent parameter p is discovered in a

data-driven way based on the work of [169], which we elaborate below.

While the available data are in the form of trajectories, we transform them to snap-

shots D in a manner analogous to that done in [168]. In particular, each snapshot Di,

uniquely identified by the index i, takes the form Di = {xi1, xi0,∆t, ci1,pi,j}, where xi1

is the evolution of the state variable xt after a time step ∆t given the initial condition

xi0; p
i,j is the latent parameter for the jth patient. Note that we utilize the concentra-

tion at c1 and not at c0 following the (symplectic) Euler-Maryama scheme discussed in

[168]. The concentration ct and the patient dependent parameter p enter into the overall

architecture as inputs based on [168, 167].
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The construction of the loss function (based on [168]) is derived from the numeri-

cal integration scheme (symplectic) Euler-Maruyama. The numerical approximation of

Equations 4.1 and 4.2 results in:

ci1 = ci0 + f(ci0)∆t (4.3)

xi1 = xi0 + ν(xi0, c
i
1,p

i,j)∆t+ σ(xi0, c
i
1,p

i,j)δW0, (4.4)

where δW0 is normally distributed around zero and ∆t is a variable timestep. The drift

and diffusivity terms are approximated by two networks νθ and σθ, under the assumption

that x1 is drawn from a normal distribution of the form,

xi1 ∼ N (xi0 + νθ(x
i
0, c

i
1,p

i,j)∆t, σθ(x
i
0, c

i
1,p

i,j)2∆t). (4.5)

With the assumed mean and variance in Equation 4.5 for the drift and diffusivity, we

can compute the logarithm of the resulting normal distribution and derive the following

loss function that maximizes the likelihood:

L(θ|xi0, xi1,∆t) :=
(xi1 − xi0 − νθ(x

i
0, c

i
1,p

i,j))2

∆tσθ(xi0, c
i
1,p

i,j)2
+ log|∆tσ(xi0, ci1,pi,j)2|. (4.6)

It should be noted that the Neural-SDE framework by [168] is also capable of handling

varying time steps ∆t.

The Neural-SDE architecture consists of two network components for the drift and

diffusion models. In our work, the drift network consists of 4 layers where each layer

has 64 neurons each followed by ELU activation function. The diffusion network consists

of 3 layers with 32 neurons, the first two layers are followed by ELU activation function

and the output layer is followed by softplus activation function. A schematic of the

Neural-SDE architecture is shown in Figure 4.1.
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Figure 4.1: The Neural-SDE architecture including the GRU encoder.

4.3.2 Latent Patient Descriptors - GRU Encoder

Our approach to learning the Neural-SDE from data across the patient population is

to identify a set of dynamical equations that holds across all patients, as well as patient-

specific descriptors (or embedding) that characterize patient-to-patient variability [170].

In our approach, those patient-specific descriptors are discovered in a data-driven manner,

based on the work of [169]: a Gated Recurrent Unit (GRU) encoder was used to discover

the latent parameter p, with longitudinal data provided in a tabular form as an input.

More specifically, the input data entering the encoder consist of variable number of rows

for each patient and the following four columns: (1) the absolute time; (2) the time after

dose; (3) the stochastic PD data (4) the deterministic PK data.

Each tabular input was padded and masking was applied in order to handle the

variable time points. The GRU encoder has 128 hidden states and is connected to a

Multilayer Perceptron (MLP) consisting of 2 layers, each with 128 neurons, both followed

by ELU activation function. The output of MLP is the latent parameter p that enters

the Neural-SDE architecture. An end-to-end training was implemented by using the loss

function given by Equation 4.6.
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4.3.3 Dataset

To mimic clinical digital health measurements, synthetic data was simulated in which

the PK serves as a deterministic driving input that causally influences a stochastically

evolving PD. Patient specific parameters were sampled from a log-normal distribution:

50 individual patient trajectories were sampled across 3 different dose levels (50 mg, 100

mg, 400 mg) for a total of 150 patient trajectories and 70:30 train-test split was used.

Synthetic training data was generated to represent a indirect response PK-PD model

[171] by which PK acts causally to change the PD, with the additional modification that

the observable PD variable is stochastic in nature. This system follows the general form

of Equations 4.1 and 4.2,

with the following system of ODEs being specified for the term f(ct,p)dt:

du1
dt

= −KA× u1(t) (4.7)

du2
dt

= KA× u1(t)− u2(t)× (KE +K12) + u3(t)×K21 (4.8)

du3
dt

= K12× u2(t)−K21× u3(t) (4.9)

where ct = u2(t)/V2 with V2 representing the volume of distribution for drug in

plasma circulation. The drift term in the relationship between ct and PD is represented

by the following:

du4
dt

= KIN − (KOUT ∗ (1− (Imax× ct/IC50 + ct)))× u4(t). (4.10)

Example trajectories of this system are shown in Figure 4.2. The diffusion term in

Equation 4.2 is described by the following βu4dWt, where β was sampled from a log-

normal distribution. Examples of stochastic trajectories for ct are shown in Figure 4.3.

In the current set of experiments, an equal number of patients were simulation for
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a range of doses (50, 100, 400 mg). Dosing was set to begin at day 5 for all synthetic

subjects with daily dosing; the PD sampling frequency is once per hour, over a period of

30 days.

Figure 4.2: Synthetic data trajectories without the diffusivity component under dif-
ferent simulated doses.

Figure 4.3: Synthetic data trajectories under different doses.

4.3.4 Training methodology and optimization strategy

The current model, including the numerical integration scheme which employs a

Euler-Maruyama solver, have been implemented in PyTorch. While a higher-order meth-
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ods were not used in this current work, it remains open for future development based on

specific needs.

In model training, we leveraged vectorization rather than operating on a single value

at a time whereby the model processes each time-step for each patient sequentially. In

this way, the model operates at a patient level, concurrently processing all data points as-

sociated with a specific patient. This is feasible based on the observation that evaluating

the loss function given in Equation 4.6 at each time-step is independent from other time

instances. The vectorization strategy significantly enhances the training and inference

performance.

We trained the network for 100 epochs using the ADAM optimizer with learning rate

0.001 and batch size of 1. The overall training process takes around 140 seconds using

one NVIDIA V100 GPU.

4.4 Results

Figure 4.4 demonstrates the model’s ability to learn the underlying system’s dynamics

by comparing “true” (i.e., the underlying ground truth) SDE trajectories from the test

dataset against the model predicted trajectories. For each patient in the test set, we

sampled 250 trajectories to provide a robust representation of the predictive variability

associated with the model. This result demonstrates the model’s ability in replicating

the complex dynamics of PD trajectories at the population level.

4.4.1 Dosing regimen analysis

To analyze the impact of different dosing regimens on PD, we consider three distinct

simulated doses at 50 mg, 100 mg, and 400 mg. For each patient from the test dataset,

we sampled 250 SDE trajectories. Figure 4.5 shows the the model is qualitatively able
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Figure 4.4: Comparison of the true and predicted SDE trajectories in the test dataset.
Left panel: the colored lines represent the observed stochastic trajectories in the test
data. Right panel: blue line and shaded region represent the median and the 10th to
90th percentile respectively of the ground truth trajectories; similarly, the orange lines
and shade region represent those from the model.

to capture the true underlying dose response relationship.

4.4.2 Patient-specific responses and counterfactual analysis

Figure 4.6 demonstrates the proposed methodology’s ability to perform counterfactual

analysis and identify individual treatment effects. To accomplish this, for each patient the

drift and diffusivity terms were inferred from the trained model and 250 SDE trajectories

were generated. The results demonstrate the model’s ability to capture the underlying

dynamics of the stochastic process for individual patients. This suggests that the GRU

encoding strategy not only captures the population behaviors, but also successfully learns

to differentiate amongst patients. Moreover, we demonstrate a what-if scenario: in the

absence of PK, the model correctly predicts a lack of dynamical change in the modeled

PD endpoint. This suggests our model is able to correctly identify the causal relationship

between PK and PD.
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Figure 4.5: Comparison of the true and predicted SDE trajectories in the test datase
for 50, 100 and 400 mg doses. Blue lines represent the median of the ground truth
trajectories; orange dashed lines and shaded regions represent median and the 10th to
90th percentile of trajectories from the model.
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Figure 4.6: Patient-specific trajectories and counterfactual simulations. Each subplot
represents a random patient from the respective dosages. The solid blue line represents
the true drift; the orange dashed line and shaded region represent the mean and mean
± standard deviation (std) of 250 posterior samples; the green dashed lines represent
counterfactual simulations assuming no dosing (i.e., PK = 0).
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4.5 Conclusion

We proposed a pharmacology-informed neural-SDE architecture that is able learn the

relationship between a deterministic PK and stochastic PD. Using synthetic data, the

model correctly reproduces the underlying PK-PD relationship at the population level.

Furthermore, the model enables the counterfactual simulation of PD in the absence of

the hypothetical drug - and in doing so, quantify the individual treatment effect.
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