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ABSTRACT 
 

Assembly, function, and sensitivity of the skin microbiome of the Sierra Nevada 

yellow-legged frog (Rana sierrae) in the face of invasion by the fungal pathogen, 

Batrachochytrium dendrobatidis 
 

by 
 
 

Andrea Jutta Jani 
 

 
Symbiotic microbial communities (microbiomes) are ubiquitous inhabitants of 

multicellular organisms and are increasingly recognized to play roles in host health and 

development. The skin-associated microbiome of amphibians may affect resistance to the 

potentially lethal disease, chytridiomycosis, which is caused by the fungal pathogen 

Batrachochytrium dendrobatidis (Bd). The Sierra Nevada yellow-legged frog (Rana sierrae) 

is threatened with extinction, and Bd is a major driver of declines in these frogs. However, 

some R. sierrae populations are able to co-exist with the pathogen, persisting despite Bd 

infection. Understanding why some R. sierrae populations persist with Bd may provide clues 

for how to minimize the impact of Bd. However, while preliminary studies highlight the 

possibility that symbiotic bacteria affect disease resistance, very little is known about natural 

diversity, stability, or function of the amphibian skin microbiome.  

I tested the hypothesis that differences in skin-associated bacterial communities 

(referred to simply as the microbiome for brevity) can account for differences in the outcome 

of R. sierrae infection, i.e. population extinction versus persistence. I surveyed microbiomes 

from multiple R. sierrae populations and showed that populations that persisted or declined 

to extinction due to Bd indeed harbored different skin bacterial communities, consistent with 
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a protective effect of bacteria in persistent populations. At the same time I found evidence 

that Bd infection itself may drive variation in the microbiome, both at the local scale (among 

frogs within a given population), and landscape scale (among populations).  

Correlations between microbiome composition and Bd infection severity among wild 

frogs may be the result of either microbiome-mediated resistance to disease, in which 

bacterial assemblages control the degree of Bd infection, or, alternatively could result from 

Bd-induced disturbance causing changes in the microbiome. Using a laboratory experiment, I 

demonstrated that Bd infection alters the R. sierrae microbiome, while I found no direct 

evidence that the microbiome limits the severity of Bd infection, at least within the range of 

microbiome variability represented in this study. In addition, some of the bacterial taxa that 

were sensitive to Bd infection might have been predicted to inhibit the growth of Bd based on 

results in other study systems. These results highlight the importance of considering 

microbiome stability when assessing the potential for the microbiome to limit pathogen 

growth.  

Understanding why microbial communities vary among individuals or populations is 

an important step toward understanding the diversity and function of the microbiome. I 

present an experiment that tested the effects of natural variation in the aquatic environment 

and genetic variation among R. sierrae individuals in shaping the skin microbiome.  

By integrating controlled experiments with field surveys at multiple spatial scales, 

these studies reveal new insights into amphibian skin microbiome assembly, function, and 

sensitivity in the face of infection by an important fungal pathogen, and show the importance 

of these characteristics of the microbiome in wild amphibian populations. 
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Multi-cellular organisms are host to complex communities of symbiotic microbes, 

referred to as the microbiome. In recent years, microbiome research has sparked fundamental 

changes in our understanding of metabolism, development, and disease in metazoans 

(Dethlefsen et al., 2007; Grice and Segre, 2012; Heijtz et al., 2011; Honda and Littman, 

2012; Turnbaugh et al., 2006). Variation in the composition of symbiotic microbial 

communities is now thought to play a role in human health (Huang et al., 2011; Kong et al., 

2012; Ley et al., 2006; Naik et al., 2012), digestion in animals (Brulc et al., 2009; Liu et al., 

2011; Pope et al., 2010), and bleaching of coral reefs (Bourne et al., 2008; Rosenberg et al., 

2007; Thurber et al., 2009), but critical gaps in our understanding persist. The vast majority 

of microbiome research has focused on microbes inhabiting the gut, with much less known 

about the microflora of other organs or body regions, among them the skin. The skin is an 

important sensory organ and the first line of immune defense in most animals, and recent 

studies have begun to reveal surprising diversity in the microbes inhabiting human skin 

(Costello et al., 2009; Fierer et al., 2008; Grice and Segre, 2011), but we have barely begun 

to probe the skin microbiomes of other animals. Another knowledge gap exists in our 

understanding of how the microbiome interacts with infectious diseases. Studies working 

with laboratory models have shown that the microbiome can both affect resistance to 

infection and also itself be altered by pathogen infection (Lupp et al., 2007; Naik et al., 2012; 

Sekirov et al., 2008; Stecher et al., 2007). However, very few studies (Cariveau et al., 2014; 

Koch and Schmid-Hempel, 2012) have examined microbiome-pathogen interactions in 

nature. Microbial dynamics in nature may differ fundamentally from observations based on 

simplified laboratory models, requiring a concerted effort to draw connections between 

reductionist experiments in the laboratory and processes in the complex natural world. 
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Finally, we lack a solid understanding of what forces shape and regulate the microbiome and 

therefore ultimately determine its function. Addressing and integrating these question is 

important to a fundamental understanding of the assembly and function of symbiotic 

microbial communities. In the case of one group of animals, the amphibians, these answers 

may also be directly relevant to understanding and minimizing the loss of biodiversity due to 

an emerging infectious disease. 

The world is losing its amphibians at an alarming rate. Forty-three percent of 

amphibian species are in decline (Wake and Vredenburg, 2008). Habitat destruction and 

climate change are likely major drivers of amphibian declines (Wake and Vredenburg, 2008) 

but in the last 15 years the emergence of a recently described infectious disease has become 

one of the most serious recognized threats to amphibian biodiversity (Kilpatrick et al., 2010; 

Wake and Vredenburg, 2008). The disease, chytridiomycosis, is caused by a chytrid fungal 

pathogen, Batrachochytrium dendrobatidis (Bd). Bd infects the skin of frogs, toads, and 

salamanders, where it disrupts osmoregulation and can cause lethal osmotic imbalance 

(Voyles et al., 2009). Bd is now known to have a broad global distribution and, in the short 

time since its discovery in 1999, has been implicated in the declines of over 200 amphibian 

species (Kilpatrick et al., 2010). Because of the threat Bd poses to amphibians worldwide, 

understanding the skin microbiome of amphibians and how it interacts with Bd infection is a 

key area of conservation research. 

The Sierra Nevada yellow-legged frog (Rana sierrae) has been severely impacted by 

Bd. This frog species was once common in high elevation lakes throughout the Sierra 

Nevada, but has been extirpated from over 90% of historically inhabited sites (Vredenburg et 

al., 2007). The most serious known threats to R. sierrae are introduced trout and 



! 4!

chytridiomycosis. Non-native trout were stocked in Sierra Nevada lakes beginning in the 

1850s for recreational fishing. Trout prey on both tadpole and adult stages of R. sierrae and 

can drive R. sierrae populations to local extinction (Bradford et al., 1998; Knapp, 2005; 

Knapp and Matthews, 2000). Although stocking of trout ended in National Parks of the 

Sierra Nevada in the 1990’s, stocking continues in other region parts of the mountain range, 

and self-sustaining trout populations have become established in many localities. Removal of 

trout is labor intensive and expensive, but has been shown to lead to recovery of R. sierrae 

populations (Knapp and Matthews, 1998; Knapp et al., 2007). In contrast, there are no 

methods proven to prevent the impact of Bd on wild R. sierrae populations. The lack of tools 

to mitigate the impacts of Bd makes the pathogen arguably the gravest threat to the Sierra 

Nevada yellow-legged frog and its sister species, the mountain yellow-legged frog (Rana 

muscosa).  

As Bd has spread across the Sierra Nevada, many R. sierrae and R. muscosa 

populations have been extirpated by the disease (Rachowicz et al., 2006; Vredenburg et al., 

2010), and the few populations that currently remain unaffected by Bd are predicted to 

undergo catastrophic declines when the pathogen spreads to those localities. However, a key 

trait of R. sierrae is variability in the outcome of infection with Bd. While R. sierrae 

populations typically decline to extinction due to Bd, some populations have reached a state 

of co-existence with the pathogen (Briggs et al., 2010; Knapp et al., 2011). These co-existing 

populations are referred to as “persistent” populations because they persist and maintain 

stable population sizes despite the presence of the pathogen. That Bd infection does not 

necessarily lead to R. sierrae population extinction is encouraging from a conservation 

viewpoint. If we can understand what factors enable the persistence of some R. sierrae 



! 5!

populations in the presence of Bd, it may be possible to develop management strategies to 

help shift infection outcomes toward population persistence. 

Recently, the hypothesis that symbiotic bacteria might affect resistance to 

chytridiomycosis has gained attention. Certain bacteria isolated from amphibians can inhibit 

the growth of Bd in laboratory culture (Becker et al., 2009), and treatment of R. muscosa 

individuals with a strain of the bacterial species Janthinobacterium lividum conferred 

resistance to Bd infection (Harris et al., 2009). Another study counted a greater number of 

Bd-inhibitory bacterial isolates in a persisting R. sierrae population than in a declining 

population, consistent with a protective role for bacteria in persisting frog populations 

(Woodhams et al., 2007). These results highlight the potential for symbiotic bacteria to affect 

resistance to Bd infection or disease, but we are a long way from understanding whether 

symbiotic bacteria explain natural variation in disease outcomes, or whether probiotic 

(inoculation with desirable bacteria) or prebiotic (manipulation of the environment to 

encourage the growth of certain bacteria) treatments can be used to enhance the survival of R. 

sierrae faced with Bd in the wild.  

Although the potential for the microbiome to protect against chytridiomycosis has 

been proposed (Harris et al., 2009; Woodhams et al., 2007), most research has not considered 

the possibility that Bd infection itself alters the microbiome. Studies finding differences in 

the symbiotic bateria of persisting and declining populations are often interpreted to indicate 

that differences in bacterial symbionts lead to the different outcomes of infection: persistence 

or decline. However, it is also important to consider that infectious pathogens may disrupt the 

normal microbiome during the course of infection. If Bd alters the amphibian skin 

microbiome, then associations between Bd infection severity and differences in microbiome 
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composition in observational studies may be a result, rather than a cause, of differential 

resistance to pathogen infection. Additionally, the sensitivity of specific bacterial taxa to 

invasion by Bd may impact their effectiveness in slowing Bd growth: if a bacterial strain or 

species cannot persist on frogs when infected with Bd, it cannot contribute to slowing the 

growth of Bd once the pathogen is established. In addition to affecting susceptibility to 

pathogen infection, sensitivity of the microbiome to pathogen infection may also exacerbate 

disease symptoms. Dysbiosis, the emergence of disease symptoms due to “imbalances” in the 

microbiome, have been documented in other systems (Chow et al., 2011). Likewise, 

disturbance of the microbiome due to Bd infection could lead to secondary disease symptoms 

during chytridiomycosis, although this has not been tested. Knowledge of the sensitivity of 

the amphibian microbiome to Bd infection should lead to a clearer understanding of both 

susceptibility to Bd and disease symptoms caused by Bd infection. In Chapter 1, I test 

whether Bd infection alters the R. sierrae skin microbiome in a controlled experiment as well 

as during naturally occurring disease episodes in wild frog populations. I also examine 

characteristics of bacterial taxa that appear sensitive to Bd infection, and discuss implications 

for the development of bacterially-based strategies for the management of chytridiomycosis 

in wild amphibians. 

Comparing the microbiomes of R. sierrae populations that either persist or are driven 

extinct by Bd may provide insights into the links between the microbiome and disease 

resistance. A previous study compared one persisting and one declining population, and 

found that the two populations differed in the number of bacterial isolates that inhibited the 

growth of Bd in vitro, consistent with the hypothesis that differences in symbiotic bacteria 

affect the outcomes of Bd infection (Woodhams et al., 2007). However, any two populations 
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are likely to differ in their microbiomes (as shown in Chapter 2), and these differences are 

not necessarily linked to differences in disease resistance. Other differences between 

populations, such as environmental differences, host genetic differences, or even the timing 

of sample collection, may affect the microbiome in ways not necessarily linked to the 

outcome of infection (persistence or extinction). Therefore, for a more general test of the 

hypothesis that microbiome differences explain differences in infection outcomes, it is 

critical to examine more than one population of each type, and to sample all populations in as 

short a time frame as possible. In Chapter 2, I present a synoptic survey of multiple R. sierrae 

populations, including persisting, declining, and Bd-free populations, to examine landscape-

level relationships between Bd infection and microbiome composition. I test whether 

differences in the microbiome can consistently explain why some populations persist with Bd 

while others decline to extinction. I also examine the potential for Bd infection to drive 

variation in the microbiome among R. sierrae populations at the landscape level. I present 

analyses aimed at distinguishing effects of Bd infection on the microbiome from effects of 

microbiome variation on Bd infection severity using landscape level field data. 

Observational field studies can provide some evidence for or against the role of 

bacterial communities in affecting the outcome of Bd infection, but field observations cannot 

distinguish cause from correlation. Controlled experiments are needed to demonstrate cause, 

and clear knowledge of causal relationships forms a fundamental foundation for our 

understanding of the microbiome’s function with respect to disease resistance. A separate but 

tightly linked question is that of what factors shape the microbiome to begin with. If the 

microbiome does affect disease resistance, then understanding what factors control the 

microbiome takes on importance in the realm of applied conservation biology as well as 
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basic science. The dire outlook for R. sierrae and other amphibians threatened with Bd, 

together with the results of early studies indicating that bacteria can inhibit Bd growth, have 

led to preliminary trials of probiotic treatments to curb the effects of Bd in wild populations. 

At the same time, very little is known about the factors that shape the amphibian skin 

microbiome, making it difficult to predict how the microbiome will respond to probiotic 

treatments. So far, studies have shown that amphibian species maintain distinct skin 

microbiomes in the wild (Kueneman et al., 2014; McKenzie et al., 2012; Walke et al., 2014), 

indicating that innate differences between amphibian species contribute to microbiome 

composition. It has also been shown that populations of a given amphibian species exhibit 

differences in their skin-associated bacterial communities (Chapter 2; Kueneman et al., 2014; 

Walke et al., 2014). However, it is not possible from these results to clearly determine 

whether microbiome differences were driven by among-population genetic differences or 

environmental differences associated with different habitats. In Chapter 3, I present a fully 

crossed factorial experiment to disentangle the effects of within-species host genetic 

variation and the aquatic environment in shaping the amphibian skin microbiome. I then test 

how variation in the microbiome affects resistance to Bd infection and chytridiomycosis, 

directly addressing the question of cause and effect underlying associations between 

microbiome composition and Bd infection intensity. 

The research conducted as part of this dissertation aimed to advance understanding of 

natural patterns in the amphibian skin bacterial microbiome and causal relationships between 

the microbiome and severity of infection by Bd. The results show that both genetic variation 

within host species and differences in aquatic environments contribute to shaping the 

phylogenetic composition of the amphibian skin microbiome. I found that persisting and 
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declining R. sierrae populations consistently harbor different skin-associated bacterial 

communities, and that these differences may have the potential to explain differences in the 

population-level outcomes of disease, consistent with a protective function of the 

microbiome. At the same time, I demonstrate that the R. sierrae microbiome is itself 

sensitive to Bd infection. Bd infection altered the R. sierrae microbiome, and this may in part 

drive landscape-level patterns of microbiome variation among wild frogs. Furthermore, 

examination of the specific bacterial taxa affected by Bd infection suggests that sensitivity of 

bacterial taxa to Bd infection may affect their effectiveness in preventing or limiting the 

growth of Bd in vivo. By coordinating laboratory and field studies, and also considering 

multiple spatial scales ranging from individual frogs to multiple populations at the landscape 

level, this work advances an integrated understanding of the amphibian microbiome and its 

interactions with the pathogen Bd. Taken together, the work presented here advances our 

understanding of the assembly, function, and sensitivity of the amphibian microbiome when 

faced with infection by Bd. 
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TABLES AND FIGURES 

Figure 1. Skin bacterial community composition covaries with Bd load in wild frogs. (a) 
NMDS ordination of bacterial communities from the four frog population visits (stress = 
0.17; marker color and size indicate Bd load.). (b) NMDS ordination from panel (a) separated 
by frog population visit (left, labeled by population) and correlations between Bd load and 
NMDS axis 1 (right). Analyses were performed within a single sampling visit to each 
population to avoid temporal or spatial confounding. Lines of fit represent significant 
orthogonal regressions (P < 0.05) and are intended for visualization purposes only: formal 
hypothesis tests (all significant, P < 0.05) for multivariate community data were performed 
using multivariate statistical methods (Mantel tests, DISTLM) as reported in Methods. 
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Figure 2. Bacterial taxa show consistent associations with Bd load across frog 
populations. (a) Bacterial OTUs with negative (top) versus positive (bottom) associations 
with Bd fall into distinct taxonomic groups (listed at left, with OTU identifiers in 
parentheses). (b) Bacterial associations with Bd are consistent across four frog populations. 
Values are coefficients of correlation between Bd load and bacterial OTU relative 
abundances within one sampling visit for each frog population. Text color indicates direction 
of correlation or trend (red: positive, blue: negative); asterisks indicate statistical significance 
(* marginally significant trend with P<0.05; ** significant relationship with P<0.05 and 
Q<0.05). Shown are the 27 OTUs that are significantly correlated with Bd load in at least 1 
population. (c) Representative scatterplots of correlations between OTU relative abundance 
and Bd load for three common bacterial OTUs. For each OTU, the direction of the 
relationship is the same across frog populations. Scatterplots fit orthogonal regression lines to 
each population where a significant relationship or marginally significant trend was detected. 
Relative abundances are proportions of the total sampled community. Analyses were 
performed within a single sampling visit to each population to avoid temporal or spatial 
confounding. 
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Figure 3. Bd-bacterial relationships are consistent across the laboratory experiment 
and field surveys. Left panel: comparison of bacterial OTU mean relative abundance 
between Bd infected and uninfected frogs in laboratory experiment. Right panel: correlations 
between OTU relative abundances and Bd load in field survey. In all cases the direction of 
the relationship between bacterial OTU relative abundance and Bd is consistent between 
laboratory and field data. Except where noted (“NS”, not significant) all relationships are 
significant (P<0.05 and Q<0.05). For clarity, for each genus only one representative OTU 
from the lab and one field population visit (Marmot sampled on August 30) is shown; see 
Figure S2 for complete results. The eight genera shown are those from which OTUs were 
significantly associated with Bd infection in the lab experiment and at least one field 
population. Relative abundances are proportions of the total sampled community. Error bars 
are standard error. 
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Figure 4. Increased temporal change in the skin microbiome during a Bd outbreak 
relative to enzootic infection episodes. (a) Bd loads increased through time in the epizootic 
population experiencing Bd outbreak (Marmot, P<0.0001) but were stable in the enzootic 
populations (Mono, Unicorn, P>0.05). (b) NMDS ordination of bacterial communities in 
each frog population shows greater temporal distinction in the epizootic population compared 
with the two enzootic populations. Ordination stress: Marmot 0.08, Mono 0.14, Unicorn 
0.11. (c) Microbiome variation (mean pairwise weighted Unifrac distance among individuals) 
between the early and late samples (dark bars) was greater in the epizootic than in the 
enzootic populations. Variation in a given population within sampling dates (light bars) 
provides a baseline of variation not related to temporal change.  Early and late time points are 
15 days apart in each population, with all samples collected August 29 through September 
16, 2010. 
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SUPPLEMENTARY TABLES AND FIGURES 

Table S1. Field surveys conducted in the study populations, 2010-2011. Bd infection status 
was determined by quantitative PCR.  Disease dynamics (enzootic, epizootic) were 
determined by historic data (Briggs et al. 2010, Knapp et al. 2013) together with data 
presented here on Bd load trajectories and R. sierrae population stability (see Methods). 
Population visits analyzed individually for within-population visit association between Bd 
and bacterial communities are shown in bold text. 

* In the Marmot population, no post-metamorphic frogs were found in the 2011 census due 
to Bd-induced population crash, but presence of Bd at the site could be determined based on 
swab samples of R. sierrae tadpoles.  (Tadpoles can persist after extinction of post-
metamorphic R. sierrae because Bd does not cause lethal disease in tadpoles of this species.) 
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Population 
Nickname Survey Date 

Number of frog swabs 
analyzed for Bd load:     
total (adults,subadults) 

Number of frog 
swabs analyzed 

for bacterial 
communities 

Bd 
infection 

status 

Bd load 
(log10) for 

Adult frogs: 
mean (SD) 

Bd 
disease 

dynamics 

July 16, 2010 30 (30, 0)   uninfected 0.00 (0.00) 

August 8, 2010 30 (27, 3)  uninfected 0.06 (0.24) 

August 30, 2010 30 (22, 8) 20 infected 3.18 (0.88) 

September 14, 2010 14 (10, 4) 10 infected 4.58 (0.37) 

September 15, 2010 29 (27, 2)  infected 4.38 (0.38) 

Marmot 

September 6, 2011 Population crashed; no frogs encountered. infected * N/A 

epizootic 

July 7, 2010 6 (6, 0)  infected 0.63 (0.60) 

August 11, 2010 20 (17, 3)  infected 1.5 (0.77) 

September 1, 2010 33 (26, 7) 8 infected 1.49 (0.85) 

September 16, 2010 40 (31, 9) 18 infected 1.58 (0.80) 

Mono 

July 21, 2011 28 (27, 1)  infected 1.58 (0.83) 

enzootic 

July 28, 2010 19 (19, 0)  infected 0.45 (0.65) 

August 29, 2010 31 (22, 9) 7 infected 1.74 (0.80) 

September 13, 2010 37 (24, 13) 18 infected 1.47 (0.71) 

Unicorn 

August 5, 2011 31 (28, 3)  infected 1.08 (0.98) 

enzootic 

July 9, 2010 27 (20, 7)  infected 1.31 (0.88) 

August 18, 2010 30 (18, 12) 18 infected 1.85 (0.75) 

September 10, 2010 30 (19, 11)  infected 2.08 (0.63) 

Conness 

July 17, 2011 14 (13, 1)   infected 1.58 (0.96) 

enzootic 
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Table S2. Bacterial OTUs significantly affected by Bd infection in the laboratory 
experiment.  Experimental group (Bd-infected or uninfected) in which relative abundance of 
each OTU was higher is indicated. Least squares means are based on arcsine-square-root 
transformed data.  Criteria for statistical significance: P<0.05 and Q<0.05. 

Least Squares Mean 

 Bacterial OTU 

 

Group with 

Higher Relative 

Abundance 

 
Bd- Bd+ 

Actinobacteria-Nocardiaceae-Rhodococcus (E-24) uninfected 0.0650 0.0297 

Actinobacteria-Cellulomonadaceae-uncultured (E-47) uninfected 0.0123 0.0052 

Actinobacteria-Microbacteriaceae-Microbacterium (E-26) uninfected 0.0400 0.0179 

Actinobacteria-Sanguibacteraceae-Sanguibacter (E-9) uninfected 0.1205 0.0576 

Sphingobacteriia-Chitinophagaceae-Filimonas (E-55) uninfected 0.0202 0.0075 

Alphaproteobacteria-Brucellaceae-Ochrobactrum (E-41) uninfected 0.0362 0.0178 

Alphaproteobacteria-Rhizobiaceae-Rhizobium (E-49) infected 0.0153 0.0345 

Gammaproteobacteria-Enterobacteriaceae-Pantoea (E-20) uninfected 0.0739 0.0335 

Gammaproteobacteria-Pseudomonadaceae-Pseudomonas (E-2) uninfected 0.3078 0.1595 

Gammaproteobacteria-Xanthomonadaceae-Stenotrophomonas (E-7) uninfected 0.1650 0.0954 

Gammaproteobacteria-Xanthomonadaceae-Stenotrophomonas (E-105) uninfected 0.0096 0.0035 

Betaproteobacteria-Methylophilaceae-Methylotenera (E-57) uninfected 0.0131 0.0071 

Betaproteobacteria-Neisseriaceae-Aquitalea (E-6) uninfected 0.2609 0.0801 

Betaproteobacteria-Comamonadaceae-Acidovorax (E-11) infected 0.0546 0.1980 

Betaproteobacteria-Comamonadaceae-Curvibacter (E-5) infected 0.1701 0.3246 

Betaproteobacteria-Comamonadaceae-Rhodoferax (E-25) infected 0.0159 0.0540 

Betaproteobacteria-Comamonadaceae-Rubrivivax (E-4) infected 0.3203 0.4033 

Betaproteobacteria-Oxalobacteraceae-Janthinobacterium (E-34) infected 0.0129 0.0247 

Betaproteobacteria-Oxalobacteraceae-Undibacterium (E-1) infected 0.3605 0.4719 

!
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Table S3. Bacterial OTUs that changed in relative abundance between the early and late 
sampling points in the outbreak population. Of 17 OTUs that changed with time, 11 were 
also correlated with Bd load in the same population in previous analyses (shown in Figure 2). 
OTUs here are grouped by Relationship with Bd (independent of time), corresponding to 
groups in ANOVA (Figure S3), and sorted taxonomically within groups. “Time parameter” is 
the parameter estimate for the effect of Time (comparing early and late time points in 1-way 
ANOVA, where the response variable is relative abundance of a given OTU, arcsine-square-
root transformed) in the outbreak population after subtracting the corresponding Time effect 
in the reference populations (see Supplementary Methods for details). “Change with time” 
denotes the qualitative direction of the time parameter. “Relationship with Bd” refers to the 
OTU-Bd correlations, calculated on a single sampling date to avoid confounding with time, 
for each OTU in the outbreak population (as shown in Figure 2). 

!
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!

Bacterial OTU time 

parameter 

change with time Relationship with Bd 

(independent of time)  
Betaproteobacteria-Comamonadaceae-Rubrivivax (F-2) 0.1668 increase  positive 

Flavobacteria-Flavobacteriaceae-Soonwooa (F-4) 0.2986 increase  positive 

Actinobacteria-Microbacteriaceae-Microbacterium (F-12) -0.0909 decline  negative 

Actinobacteria-Microbacteriaceae-Microbacterium (F-30) -0.0730 decline  negative 

Actinobacteria-Nocardiaceae-Rhodococcus (F-15) -0.0691 decline  negative 

Actinobacteria-Sanguibacteraceae-Sanguibacter (F-11) -0.1521 decline  negative 

Actinobacteria-Sporichthyaceae-hgcI_clade (F-13) -0.0285 decline  negative 

Betaproteobacteria-Comamonadaceae-Variovorax (F-36) -0.0376 decline  negative 

Gammaproteobacteria-Pseudomonadaceae-Pseudomonas (F-1) -0.1172 decline  negative 

Gammaproteobacteria-Pseudomonadaceae-Pseudomonas (F-18) -0.1188 decline  negative 

Gammaproteobacteria-Pseudomonadaceae-Pseudomonas (F-5) -0.1967 decline  negative 

Actinobacteria-Cellulomonadaceae-uncultured (F-35) -0.0495 decline  no correlation 

Betaproteobacteria-Burkholderiaceae-Polynucleobacter (F-6) -0.0312 decline  no correlation 

Flavobacteria-Flavobacteriaceae-Flavobacterium (F-26) 0.0490 increase  no correlation 

Gammaproteobacteria-Aeromonadaceae-Aeromonas (F-57) 0.0308 increase  no correlation 

Gammaproteobacteria-Enterobacteriaceae-Enterobacter (F-98) 0.0022 increase  no correlation 

SubsectionIII-Pseudanabaena-unclassified Pseudanabaena (F-79) 0.0389 increase  no correlation 

!
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Figure S1. NMDS ordination of microbial communities from frog skin and 
environmental water in the laboratory and field studies. Phylotype relative abundance 
data from laboratory and field were combined and Bray Curtis distances calculated based on 
relative abundances of all phylotypes. To avoid pseudoreplication, only one sampling date 
from the lab and field is shown although results are qualitatively the same when all data are 
included. Ordination stress=0.17 
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Figure S2. OTUs classified to eight genera were associated with Bd infection in both the 
laboratory and field studies. Scatterplots show OTU relative abundances plotted against 
log10(Bd load). Data for the laboratory experiment and representative data for the Marmot 
field population on August 30 are shown in Fig. 3. Shown here are additional OTUs (genus 
Pseudomonas) correlated with Bd load in Marmot on August 30, as well as data for the 
remaining three frog population visits: Conness on August 18, Mono on September 16, and 
Unicorn on September 13. Blue lines indicate significant negative correlations, red lines 
indicate significant positive correlations, and gray lines indicate relationships that are not 
statistically significant.  
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Figure S3. Correlations between Bd and bacterial OTUs predict temporal change 
during a Bd outbreak. Shown are data from Marmot during a Bd epizootic that resulted in 
population collapse. OTUs that were positively correlated with Bd load increased with time, 
while OTUs that were negatively correlated with BD load declined. Vertical axis shows the 
effect of time (parameter estimate for Time) from 1-way ANOVA in the outbreak population 
after accounting for baseline seasonal change as estimated from the two reference (enzootic) 
populations (see Supplementary Methods for details). Only the 17 OTUs that changed 
significantly with time are included. OTUs are grouped based on their relationship to Bd 
(relative abundance positively correlated, negatively correlated, or uncorrelated with Bd 
load) based on analysis within a single survey date in the outbreak population, such that 
correlation results are not confounded with time. Groups annotated with different letters 
above the box plot are significantly different based on Tukey HSD post-hoc comparison of 
means. 
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CHAPTER TWO 

 

 

 

Landscape-level covariation in amphibian skin bacterial communities and pathogen infection 

is consistent with both bacterially-mediated disease resistance and pathogen-induced 

disturbance of the microbiome. 
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 ABSTRACT 

The fungal pathogen Batrachochytrium dendrobatidis (Bd) is a leading cause of amphibian 

declines, yet there is variation in amphibian host response to infection, and understanding 

why some amphibians are able to resist lethal disease may be critical to improving 

management of threatened species. The Sierra Nevada Yellow-Legged frog, Rana sierrae, 

exhibits variability in response to Bd infection: many R. sierrae populations have declined 

due to Bd, but some are able to persist despite Bd infection. Previous studies support a 

possible role for skin-associated bacteria in limiting Bd infection. However, a recent study 

found that Bd infection alters the amphibian microbiome, and this is important to consider 

when assessing the potential for skin-associated bacteria to confer protection against disease 

because correlations between Bd infection and microbiome composition may be the result of 

Bd-induced alterations of the microbiome, as opposed to bacterially-mediated resistance to 

the pathogen. The current study tested for associations between the amphibian skin 

microbiome and apparent disease resistance while taking into account the potential for the 

pathogen to alter the microbiome. Bd infection intensity and skin bacterial microbiome 

composition were sampled across ten R. sierrae frog populations that varied in Bd infection 

status and in the population-level outcome of infection (persisting or declining). Bd infection 

was associated with changes in bacterial communities among host populations, indicating 

that Bd may affect landscape-level patterns in skin microbiome variation among host 

populations. However, the skin microbiome also differed between host populations that 

declined due to Bd and those that persisted with the pathogen, and this difference appears to 

be partially independent of the effects of Bd on the microbiome. Specifically, multivariate 

microbiome composition differed between declining and persisting R. sierrae populations 
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even after accounting for the effect of Bd. In addition, some of the bacterial taxa that differed 

between declining and persisting host populations showed no association with Bd infection 

intensity, indicating that differences in their abundance between persisting and declining 

populations is probably not due to differences in the degree of Bd-induced alteration of the 

microbiome. The potential effects of Bd infection and host population type (persisting or 

declining) on microbiome composition were compared with potential environmental drivers 

of community assembly, including the environmental bacterial species pool and large scale 

spatial variables. Skin microbiome composition was most tightly correlated with Bd load, but 

was also associated with environmental species pool and latitude, which coincides with host 

population response to infection. Together, these data suggest that both bacterially-mediated 

disease resistance and pathogen-induced microbiome disturbance likely occur 

simultaneously, but somewhat independently. 
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INTRODUCTION 

Emerging infectious diseases pose a threat to global biodiversity (Daszak et al., 2000), and 

the unprecedented impact of the amphibian chytrid pathogen, Batrachochytrium 

dendrobatidis, is a well-documented example of disease-driven biodiversity loss (Kilpatrick 

et al., 2010; Wake and Vredenburg, 2008). First described in 1999 (Longcore et al., 1999), 

Batrachochytrium dendrobatidis (Bd) is a fungus that infects the skin of amphibians and 

causes chytridiomycosis, a disease characterized by skin-sloughing, weight loss, 

disorientation, and disruption of osmotic balance, which can be lethal (Voyles et al., 2009). 

In the 15 years since its discovery, Bd has been implicated in the decline of over 200 

amphibian species (Berger et al., 1998; Crawford et al., 2010; Kilpatrick et al., 2010; Lips et 

al., 2006; Rachowicz et al., 2006; Vredenburg et al., 2010). However, the effects of infection 

vary among host species, and even among individuals of the same species, with outcomes 

ranging from asymptomatic infection to lethal disease (Briggs et al., 2010; Kilpatrick et al., 

2010; Vredenburg et al., 2010). The factors underlying this variation in the outcomes of 

infection could inform management strategies for threatened amphibians, but are currently 

poorly understood.  

The Sierra Nevada yellow-legged Frog (Rana sierrae) has been severely impacted by Bd, but 

is also one of the few amphibian species that show natural within-species variation in 

response to Bd infection. R. sierrae and its sister species Rana muscosa were once common 

in alpine lakes of the Sierra Nevada, but have been reduced to less than 5% of their historic 

population numbers (Vredenburg et al., 2007). Introduced trout and Bd pose the greatest 

threats to these endangered frogs (Knapp, 2005; Knapp et al., 2007; Rachowicz et al., 2006; 

Vredenburg et al., 2010). Trout eradication is expensive, labor-intensive, and often 
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controversial due to conflicting interests between conservation and recreational fishing 

interests. Bd poses a still greater management problem because, regardless of cost or political 

will, no proven methods exist to prevent Bd-induced extirpations of amphibian populations 

in the wild. As Bd has spread across the Sierra Nevada, entire metapopulations of R. sierrae 

have collapsed due to chytridiomycosis. However, previous studies have identified two 

distinct types of population-level outcomes of Bd infection among R. sierrae populations: 

enzootic (with population persistence) and epizootic (resulting in population decline) (Briggs 

et al., 2005, 2010; Knapp et al., 2011; Rachowicz et al., 2006; Vredenburg et al., 2010). In 

populations experiencing epizootic disease dynamics, frogs develop high Bd loads (mean Bd 

loads reaching 10,000 to 100,000 Bd cells/frog) and population decline or extinction ensues 

within months to years after initial arrival of the pathogen (Vredenburg et al., 2010). In 

contrast, in populations experiencing enzootic disease dynamics, frogs maintain moderate Bd 

loads (generally << 10,000 Bd cells/adult frog), infected frogs survive for years with no 

obvious signs of disease, and population numbers remain stable over multiple years despite 

Bd infection (Briggs et al., 2010; Knapp et al., 2011). The factors that lead to either enzootic 

(population persistence) or epizootic disease dynamics (population decline) are not known. 

Furthermore, for most persisting populations the initial Bd invasion was not observed and 

probably occurred before the discovery of Bd in 1999 (Fellers et al., 2001; Longcore et al., 

1999; Ouellet et al., 2005). It is possible that many currently persisting populations 

experienced initial declines due to Bd, and that the important difference in response to 

infection lies in whether a given population can transition to the enzootic/persistent state after 

the initial decline rather than declining completely to extinction (Briggs et al., 2010). Disease 

models indicate that demographic traits such as frog population density can influence the rate 



! 75!

of increase in Bd loads and likelihood of catastrophic outbreaks leading to host population 

extinction (Briggs et al., 2010), although empirical support for this hypothesis is currently 

lacking. Similarly, pathogen population genetics do not clearly delineate between strains 

isolated from persistent and die-off frog populations (Morgan et al., 2007). The outcomes of 

infection do show geographic patterns, with enzootic populations generally found in 

Yosemite National Park and northward, while the vast majority of populations in Kings 

Canyon National Park and southward undergo epizootic dynamics and population declines 

when Bd invades. This geographic divide coincides with the timing of Bd invasion: 

populations in Yosemite have likely been infected for decades (Fellers et al., 2001; Ouellet et 

al., 2005), while invasion by Bd of populations in the southern range has been more recent 

(Rachowicz et al., 2006; Vredenburg et al., 2010). The geographic divide also coincides in 

part with genetic differences within R. sierrae: northern populations (Yosemite and 

northward) belong to R. sierrae clades 1 and 2, while southern populations belong to clade 3 

(Vredenburg et al., 2007). Thus, there is some association between geographic or genetic 

groups and population response to infection, although no causal link has been demonstrated. 

In addition, if host genetics were to affect disease response, the mechanisms underlying 

variable resistance would need to be examined, and could include acquired immunity, innate 

immunity, tolerance of infection, host-controlled selection of defensive microbial symbionts, 

or behavioral traits. A better understanding of the underlying causes of variation in infection 

outcomes is critical to a general understanding of disease dynamics and conservation 

management of R. sierrae as well as for other threatened amphibians. 

Recently, the possibility that symbiotic skin bacteria affect frog resistance to disease has 

gained attention, and augmentation of amphibian skin with high concentrations of certain 
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bacterial isolates (most notably isolates identified as Janthinobacterium lividum) conferred 

disease resistance under laboratory conditions in some cases (Harris et al., 2009; Muletz et 

al., 2012). However, in other studies bacterial augmentation failed to protect frogs from 

disease (Becker et al., 2011; Woodhams et al., 2012). In addition, skin-associated bacterial 

communities differ between wild and laboratory-held frogs (Jani and Briggs, in press), and it 

is not clear whether bacteria contribute to natural disease resistance in wild amphibians. 

Woodhams et al. (2014) found that the complete mucus of amphibians, which includes 

microbes, host-produced antimicrobial compounds, and possibly other factors, was correlated 

with the severity of Bd infection among frog species across Europe. Because R. sierrae 

exhibits variation in disease response among conspecific populations, it may provide an 

opportunity to understand the factors contributing to disease resistance or tolerance while 

minimizing confounding variables. Two previous studies have asked if bacterial symbionts 

differ between enzootic and epizootic, or infected and uninfected, R. sierrae or R. muscosa 

populations. Woodhams et al. (2007) used bacterial culture methods to test if the number of 

bacterial isolates with in vitro anti-Bd activity (determined by agarose plate co-culture tests) 

differed between an enzootic R. sierrae population and an epizootic R. muscosa population. 

The authors found more anti-Bd bacterial isolates in the enzootic population, consistent with 

bacteria playing a role in disease resistance. In a similar study, Lam et al. (2010) compared 

an uninfected R. muscosa population that was expected to undergo epizootic disease 

dynamics with an enzootic R. sierrae population, and found no difference among populations 

in the number of anti-Bd bacterial isolates. Based on these results and possible signs of 

population persistence in the R. muscosa population, the authors concluded that anti-Bd 

bacteria may contribute to population persistence.  
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In the current study, we further examine the potential for skin-associated bacteria to 

contribute to disease resistance with four advances: First, we employ culture-independent, 

Next-Generation marker sequencing methods, which provide a much more complete 

characterization of bacterial communities than bacterial culture approaches (Rappé and 

Giovannoni, 2003). Second, we reduce confounding variables by restricting our analysis to 

only one species, comparing populations of the same host species that differ in disease 

response. Third, and more importantly, we use multiple R. sierrae populations to obtain a 

more generalizable assessment of differences between enzootic and epizootic populations. 

This is important because it enables us to distinguish variation associated with population 

type (enzootic versus epizootic) from variation that exists between a given pair of 

populations that may not be specifically relevant to differences in response to Bd infection. 

Fourth, we account for possible effects of Bd on the skin microbiome. We previously showed 

that Bd infection alters the R. sierrae skin microbiome (Jani and Briggs, in press), and this is 

directly relevant to understanding differences between enzootic and epizootic R. sierrae 

populations because epizootic populations have higher Bd loads than enzootic populations 

(Briggs et al., 2010; Vredenburg et al., 2010). It is therefore important to consider the 

possibility that differences in the skin microflora of enzootic and epizootic R. sierrae 

populations could be caused by differences in Bd infection intensity, as opposed to 

differences in bacterial communities leading to differences in Bd infection intensity and 

concomitant host response to infection. We present coordinated analyses of skin-associated 

symbiotic bacterial communities (hereafter simply “microbiome” for brevity), Bd infection 

loads, and variation in host response to infection across ten R. sierrae populations to better 

understand the potential contribution of symbiotic bacteria to disease resistance.  
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Because previous work indicates that Bd affects the R. sierrae microbiome among frogs 

within a given population, we begin the current study by asking if this effect scales up to the 

landscape level.  In other words, can differences in Bd load potentially explain microbiome 

differences between frog populations? Second, we test if the skin microbiome differs 

consistently between enzootic and epizootic R. sierrae populations, and examine the extent to 

which those differences can be explained by Bd-induced disturbance. Third, we compare the 

potential effects of Bd infection and environmental factors in shaping the R. sierrae skin 

microbiome. We discuss the implications of our results for testing and refining the hypothesis 

that the skin microbiome contributes to the natural ability of some amphibian populations to 

persist in the face of Bd infection. 

METHODS 

Population surveys and determination of disease dynamic type. This study was conducted in 

ten R. sierrae populations spanning a large portion of the species’ range, including 

populations in Yosemite,  Kings Canyon National Park, and Sierra National Forest, 

California (Figure 1). R. sierrae has an aquatic life history, being completely restricted to the 

aquatic environment during the 2-3 year tadpole stage, and requiring regular contact with 

water for survival of the subadult and adult stages. This enables us to reasonably designate 

each lake inhabited by R. sierrae as a separate population, provided lakes are not closely 

connected by streams. To estimate population sizes, visual encounter surveys were 

conducted: trained research staff walked the lake perimeter and, where accessible, 100m of 

the inlet and outlet streams, while noting the number of adult, subadult, and tadpole R. 

sierrae observed, as described in Knapp et al. (2011). R. sierrae is a diurnal species and 

individuals spend most of their time within one to two meters of the shoreline (Bradford, 
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1984), making visual encounter surveys a reasonably accurate method for estimating 

population size, particularly when multiple surveys of each population are conducted. 

Previous work showed that visual encounter surveys yield reproducible results (Knapp and 

Matthews, 2000). 

During the 2010 field season, each R. sierrae population was classified with respect to Bd-

infection at each sampling time point (referred to as a survey visit) as operationally 

uninfected (which includes populations that are completely free of Bd as well as those with 

very low levels of infection, with maximum Bd load < 10 Bd cells detected per frog) or 

infected, based on qPCR data from skin swabs (Figure 1, Table 1). We chose to pool 

populations that were completely uninfected with those that showed low levels of infection 

because our goal is not to identify the exact transition point between 100% uninfected and 

early infection, but to distinguish uninfected/lightly-infected populations from those where 

enzootic or epizootic dynamics are clearly underway. We note that infection status 

(uninfected, infected) refers to a given population survey, taken at a given point in time: a 

population may be uninfected in one survey and infected at a later date.  

We used long-term population census and Bd infection data to categorize populations as 

enzootic or epizootic with respect to disease dynamics. All populations in this study have 

been censused regularly since 2002 or earlier. Beginning in 2005, when Bd-specific qPCR 

protocols became widely available (Boyle et al., 2004), surveys included collection of 

standardized skin swabs for quantification of Bd loads, as described previously (Briggs et al., 

2010). Populations that maintained stable Bd loads on adults and stable populations through 

time were categorized as enzootic. Populations that exhibited adult Bd load trajectories that 

increased through time, followed by population collapse (no post-metamorphic frogs 
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observed in surveys the following year) were categorized as epizootic (Table 1, Figure 1).  In 

addition, because this and previous studies have shown a consistent geographic pattern in the 

response of mountain yellow legged frogs (Rana sierrae and Rana muscosa) to Bd infection, 

we were able to make reasonable predictions (based on geographic region) about the disease-

resistance of populations that were still uninfected in 2010.  Populations in the southern 

habitat range have consistently responded to Bd infection with dramatic population declines 

and often extinction (R. A. Knapp personal communication, and Vredenburg 2010 PNAS), 

and those populations that are currently uninfected are predicted to undergo enzootic 

dynamics and population declines as well.  Thus, all northern populations in this study are 

documented enzootic populations, and all southern populations in this study are either 

documented or predicted to undergo epizootic dynamics and declines. Notably, surveying 

both uninfected and infected populations in the southern region enables analysis of changes 

in the microbiome that are likely to be due to change in infection status, and not associated 

with differences in disease resistance.  

Collection of skin-associated bacterial community samples. During the 2010 field season, we 

conducted surveys to simultaneously sample R. sierrae skin-associated microbial 

communities and Bd loads from individual frogs in the 10 populations. We also sampled 

planktonic microbial communities present in lake water to allow assessment of the bacterial 

species pool present in these frogs’ immediate environment. Detailed sample collection, 

preservation, and storage methods for bacterial community samples are provided in Jani and 

Briggs (in press). Briefly, in each survey visit to each population, a target of 30 post-

metamorphic (i.e. subadult and adult) R. sierrae were captured by dip net and swabbed for 

skin-associated microbes (bacteria and Bd) using sterile synthetic swabs and wearing new 
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nitrile gloves for each frog handled. Nets were rinsed thoroughly in lake water between each 

frog captured. Bacterial communities present in lake water were sampled at each survey visit 

to each lake by filtration of water through 0.22 micron filters.  We quantified Bd loads from 

all swabs collected. However, because bacterial communities were characterized using in-

depth pyrosequencing, it was not feasible to characterize bacterial communities from all 

swabs collected. Therefore, bacterial communities were characterized for a subset of samples 

selected to provide microbiome data from as many R. sierrae populations as possible, 

synoptically sampled (all within a period of less than 30 days) to enable among-population 

comparisons while minimizing effects due to seasonal variation. For each of the visits, one 

sample of the lake water bacterial community was also sequenced to provide information on 

the ambient bacterial communities experienced by these frogs. Sampling dates and sample 

sizes for 2010 field surveys are provided in Table 1. 

To prevent researcher-mediated spread of Bd, any equipment that contacted frogs or lake 

water (including shoes) was disinfected by immersion in 0.1% quaternary ammonium 

compound 128 for at least 5 minutes (Johnson et al., 2003), or, for small or sensitive 

equipment, disinfected with 70% ethanol.  

16S sequencing and bioinformatic processing. Bacterial communities present on frog skin 

and in lake water were characterized by 16S amplicon pyrosequencing as described 

previously (Jani and Briggs in press).  Briefly, the V1-V2 regions of the 16S gene were 

amplified using primers 8f and 338r with sample-specific barcodes and Roche FLX amplicon 

adapters. PCR products were quantitated and pooled in equimolar quantities for sequencing 

on a Roche/454 GS FLX using Titanium Chemistry. Sequences were bioinformatically 

processed using the program Mothur (v1.30) as described Jani and Briggs (in Press). Briefly, 
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sequences were quality-filtered (de-noised and screened for short, potentially low-quality, or 

chimeric sequences), aligned to a non-redundant representative subset of the SILVA v111 

SSU Ref 16S curated alignment database (Nelson et al., 2014), and clustered into operational 

taxonomic units (95% identity OTUs) and phylotypes. Sequences were classified using the 

Bayesian classifier of Wang et al. (2007) and each OTU was assigned a consensus taxonomy 

from SILVA v111. Pairwise phylogenetic community distances (weighted Unifrac, 

(Lozupone and Knight, 2005)) among all samples were calculated based on relative 

abundance of OTU relative abundances. Richness and diversity of each sample was 

estimated after randomly subsampling 500 sequences per sample to equalize detection effort 

among samples, using four metrics: observed OTU richness (SOBS), Chao’s richness estimate 

(Chao, 1984), Shannon diversity, and Shannon evenness.  

Statistical details: All statistical analyses were performed using JMP v. 10 (SAS Institute 

Inc., Cary, NC, USA, 1989-1212), with the following exceptions: Multivariate bacterial 

community data were analyzed using nonparametric, permutation-based methods (NMDS, 

ANOSIM, PERMANOVA, DistLM, and Mantel tests) in the software package Primer-E v6 

(Clarke and Gorley, 2006). Patterns in the relative abundances of individual OTUs were 

tested for only common OTUs, which we define as any OTU comprising at least 0.1% of the 

total sequence reads. Relative abundance data were arcsine square root transformed for 

parametric analyses. To prevent inflation of Type I statistical error due to testing multiple 

OTUs (i.e., multiple comparisons), statistical significance of tests was adjusted by calculating 

the false discovery rate, q, using the program Qvalue (Storey and Tibshirani, 2003). The Q-

value is an estimate of the proportion of tests that appear to reject the null hypothesis (P< !, 

in this case P<0.05) when in fact the null hypothesis is true (“false positives”). Bd load data 
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were log10 transformed as: log10(Bd load +1). (1 is added to each value before transformation 

because the base 10 logarithm is undefined for values less than 1. This adjustment should 

have negligible effects on our analyses, given that Bd loads ranged from 0 to more than 105.)  

Structure of statistical models for testing landscape-level hypotheses. Our data are sampled at 

the individual frog (skin swab) level, however many of our questions are focused on 

differences among frog populations, not individuals.  We therefore include population survey 

(“visit”) as a random factor in all analyses of population-level variation. Where relevant, 

population survey is nested in population type (enzootic/epizootic or infected/uninfected). 

This approach helps maintain low Type I statistical error by accounting for the fact that frogs 

from the same populations survey (sharing the same lake environment and sampling date) are 

less independent of each other (due to shared environment and probably closer genetic 

relatedness) than frogs from different populations. We chose visit (rather than population) as 

the random variable because we found significant differences in bacterial communities 

sampled on different dates from the same population (Table S1). This statistical model 

structure comes at the cost of statistical power, potentially overlooking some patterns that are 

biologically relevant but not statistically significant, but enables identification of consistent 

differences between enzootic and epizootic populations or landscape level associations 

between Bd load and bacterial communities. 

Testing effects of Bd infection on bacterial communities. We previously showed that Bd 

infection was associated with changes in the R. sierrae skin microbiome during experimental 

infection and within individual populations (Jani and Briggs, 2014). In the current study, we 

expand to the landscape scale and test if Bd infection or infection severity is associated with 

changes in the R. sierrae skin microbiome across multiple R. sierrae populations in the wild. 



! 84!

We first asked if bacterial communities differ between Bd-infected and uninfected host 

populations. We used PERMANOVA (permutation-based MANOVA), with population visit 

as a random factor (nested in population infection status) to test if multivariate bacterial 

community composition differs between Bd-infected and uninfected populations. To test for 

effects of infection status on diversity, we used mixed models (ANOVA, with visit as a 

random nested factor) to detect differences between infected and uninfected populations with 

respect to four metrics of bacterial diversity: observed number of bacterial OTUs (SOBS), 

Chao’s richness estimate, Shannon diversity index, and Shannon evenness. We also tested for 

a continuous relationship between Bd load and bacterial communities. We used mixed 

models, with Bd load as a continuous fixed factor and visit as a random factor, to test for 

linear relationships between Bd load and the four diversity metrics. We used a distance-based 

linear model (DistLM, [ref]) to test for a linear relationship between Bd load bacterial 

community composition. When testing for effects of Bd load on bacterial community 

composition, we pooled data across all frogs within a population visit and used population 

visit as the unit of replication. Bacterial community data were pooled across all frog swabs 

within a given population visit and used to calculate among visit Unifrac distances. Mean Bd 

load was calculated for each population visit, and used to test for a linear relationship among 

populations between Bd load and bacterial community composition. Our reasoning for 

pooling data within each population was that Bd load, being a continuous variable, varies 

both within and among populations and time points, such that a significant relationship 

between Bd load and bacterial communities at the individual frog level can be due to within-

visit effects, among-visit effects, or both.  Analysis with visit as the unit of replication allows 
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us to focus on whether Bd load is associated with differences among populations at the 

landscape scale.  

Testing for differences in bacterial communities of enzootic and epizootic populations. We 

used PERMANOVA, with visit as a random factor nested in population type (enzootic or 

epizootic), to test for differences in the overall composition of bacterial communities 

between enzootic and epizootic host populations.  Because Bd loads are generally higher 

during epizootic than enzootic disease episodes, and increasing Bd loads may lead to changes 

in the skin microbiome, it is important to test whether differences in the bacterial 

microbiomes of enzootic and epizootic frog populations could be due to differences in Bd 

loads.  To test this, we added Bd load (log10) to the model as a covariate. We used Type 

Three Sums of Squares (T3SS), such that effects of each variable are calculated after 

accounting for other factors in the model.  

Identifying bacterial taxa associated with disease severity or resistance. We tested all 

common OTUs to identify bacterial taxa for which relative abundance is linked to Bd load or 

differs between populations based on their response to Bd infection (enzootic or epizootic 

disease dynamics). To identify bacterial taxa that are correlated with Bd load, we used a 

mixed model to test for a relationship between bacterial relative abundance (response 

variable) and Bd load, with population visit included as a random factor. To identify bacterial 

taxa that differ between enzootic and epizootic populations, we used a mixed model to test 

for differences in OTU relative abundance between enzootic and epizootic populations, with 

visit included as a random factor, nested in population type (enzootic, epizootic). We then re-

ran these analyses with Bd load included as a covariate (ANCOVA, with T3SS). We used the 

False Discovery Rate (Q<0.05) to control Type I error due to multiple tests, as described in 
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Statistical details. We used two approaches to try to distinguish OTUs that differed between 

epizootic and enzootic populations due to differences in Bd from those that differed due to 

other causes (and therefore may still have the potential to contribute to variation in Bd 

resistance). First, we compared the identities of OTUs that differed between enzootic and 

epizootic populations (without Bd as a covariate), with OTUs that were correlated with Bd 

load (without population disease response included in the model).  For OTUs that differ 

between enzootic and epizootic populations but are also correlated with Bd load, the effect of 

Bd load is confounded with the effect of population type. However, when OTUs are not 

correlated with Bd load but differ between enzootic and epizootic populations, we infer that 

the difference between enzootic and epizootic populations is probably not due to differences 

in Bd load. As a complementary approach, we used a mixed model with Bd load included as 

a covariate to identify OTUs that differed between enzootic and epizootic populations after 

accounting for the effect of Bd load. For this analysis, only OTUs for which the interaction 

between Bd load and population type (enzootic, epizootic) was non-significant were 

considered. While it is not possible to definitively conclude cause from observational data, 

the statistical and comparative approaches described here provide a first assessment of 

bacterial taxa that might be indicators of different disease responses (enzootic, epizootic).  

Community assembly: comparison of environmental and amphibian-associated bacterial 

communities. We assessed the potential for planktonic aquatic bacterial communities to shape 

the R. sierrae microbiome. We first tested if bacterial communities on R. sierrae skin are 

different from bacterial communities present in the surrounding lake water, using ANOSIM. 

Next, we tested for covariation across R. sierrae populations in the bacterial communities 

present in water and on frogs. Because both aquatic and frog-associated bacterial community 
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composition are multivariate data, we used Mantel tests to test for correlations between them. 

This analysis requires a one-to-one correspondence between amphibian and lake water data, 

therefore we pooled data across R. sierrae swabs within each population survey. We 

conducted a Mantel test to assess the correlation between among-population distance 

matrices based on frog-associated bacterial communities compared with aquatic bacterial 

communities. To quantify the correlation between Bd load and the R. sierrae microbiome 

using a metric that can be compared with the effect of aquatic bacteria on the R. sierrae 

microbiome, we conducted a similar analysis for the relationship between Bd load and 

bacterial communities. For the latter analysis, we first converted population mean Bd load 

data to among-population Bd load distances (the difference in Bd load between two 

population surveys), and then compared the Bd-load distance matrix with the microbiome 

(Unifrac) distance matrix using a Mantel test. 

Community assembly: testing the relative contribution of Bd and environment on microbiome 

composition. To begin to understand the factors shaping the amphibian skin microbiome, we 

examined the relative importance of landscape-level environmental factors, the bacterial 

species pool present in lake water, and Bd load in shaping the R. sierrae microbiome. 

Environmental variables included elevation (m), latitude (North UTM), and lake size 

measured as log10(surface area). Elevation was chosen as a variable because it is correlated 

with temperature (Knapp et al., 2011). Latitude was included because R. sierrae genetic 

clades largely follow a latitudinal gradient. Lake size was included because it may indicate 

the relative importance of terrestrial inputs to the aquatic environment. We tested for linear 

relationships between each of these predictor variables and the multivariate bacterial 

community distance among samples (weighted Unifrac distance) using DistLM, (a 
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permutation-based multivariate linear regression analog) in the software package PRIMER 

v.6. For types of data collected at the individual frog level (Bd load, microbiome data), we 

pooled all swabs within a given population visit such that each pooled data point corresponds 

to exactly one value for each environmental variable. First, the statistical significance and 

proportion variance explained was calculated for each predictor variable separately. Next, we 

identified the combination of predictor variables that minimized the AICc criterion, 

maximizing the variance explained while penalizing for the number of variables added. 

Finally, starting with only the variables identified in the “best” model, we constructed a 

model by adding the variables one by one, ordered based on the proportion of variance 

explained in the absence of other factors, to obtain a final model.  

RESULTS 

Different Bd dynamics among Bd-uninfected, enzootic, and epizootic populations. We 

observed clearly distinguishable Bd load and census count trajectories between enzootic and 

epizootic populations (Figure 2a,c; long-term data in Figure 2c courtesy of Roland Knapp).  

Bd loads on adult frogs differed significantly among enzootic and epizootic populations 

(Figure 2b, P<0.0001). Among surveys conducted in 2010, six surveys across four 

populations were categorized as enzootic based on stable Bd loads and population numbers 

through time. Three surveys across two populations were categorized as epizootic based on 

(1) recent transition from uninfected to infected state, (2) rapid increases in Bd loads through 

time, and (3) no post-metamorphic frogs found during census surveys in 2011. In one 

population (Dusy-2), the Bd epizootic had already reached the state when no adult frogs 

remain by 2010, but Bd trajectories in subadults show a clear increase through time (Figure 

2a, inset). Five population surveys across four populations were categorized as operationally 
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uninfected with Bd in 2010. This includes surveys showing very low levels of infection 

(maximum Bd load < 10). Two of the uninfected populations can be seen to begin the 

transition to the infected state late in the 2010 field season (Figure 2a). Based on previous 

studies (Briggs et al., 2010; Knapp et al., 2011; Vredenburg et al., 2010), we had predicted 

that populations in the southern study region would experience epizootic disease dynamics. 

Consistent with this prediction, the two populations that began the transition from Bd-free to 

infected late in 2010 suffered population declines by the following year (Table 1).  

Bd load is correlated with landscape-scale skin-microbiome composition. R. sierrae skin 

microbiome composition did not differ by infection status (i.e., between infected and 

uninfected populations) when all populations were considered (PERMANOVA, P=0.1162). 

When only Southern populations were included in the analysis, infection status did have an 

effect on microbiome composition (P=0.0296, Figure 3), possibly due to reduced noise in the 

data since only one geographic region and host clade is included. The continuous variable Bd 

load had a more robust effect on bacterial communities than binary infection status, with Bd 

load significantly predicting community composition regardless of whether analyses included 

all enzootic and epizootic populations (DistLM P=0.0003), infected and uninfected 

populations (P=0.0001), only Southern populations (P=0.0030), or only Northern populations 

(P=0.0120). The relationship between Bd load and multivariate bacterial community 

composition is visualized using NMDS ordination, which shows Bd loads covarying with 

bacterial community change along axis 1 (Figure 4a-c). 

Enzootic and epizootic R. sierrae harbor different bacterial communities. Bacterial 

communities differed significantly between enzootic and epizootic frog populations 

(PERMANOVA P=0.0330), as visualized using NMDS ordination (Figure 4d-f). When Bd 
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load was added to the model as a covariate, the difference between enzootic and epizootic 

populations remained significant (P=0.0031), and Bd load was also highly significant 

(P=0.0001).  

Bacterial richness (SOBS and Chao’s richness), but not diversity (Shannon diversity and 

evenness) was higher in enzootic populations compared with epizootic populations 

(PSOBS=0.0232, PChao=0.0105, Figure 5). All richness and diversity metrics were negatively 

associated with Bd load when Bd load was tested alone (PSOBS<0.0002 PChao=0.0003, 

PShannon<0.0001, Pevenness=0.0001). When both population type (enzootic  vs. epizootic) and 

Bd load were included in the model, Bd load was still negatively associated with all richness 

and diversity metrics (PSOBS=0.0003, PChao=0.0050, PShannon<0.0001, Pevenness<0.0001), but the 

effect of population type (enzootic, epizootic) was no longer significant (P<0.05 for all 

metrics).  

Bacterial taxa that differ between Bd-susceptible and –resistant populations. The relative 

abundance of seven bacterial OTUs differed between enzootic and epizootic R. sierrae 

populations (Table 2). Three of these OTUs are assigned to the family Comamonadaceae, 

while the remaining four OTUs are from diverse families and orders. For two OTUs 

(classified as Flavobacterium and Ferruginibacter), relative abundances were not correlated 

with Bd load, indicating that the difference in abundance between enzootic and epizootic 

populations is not caused by differences in Bd load. An additional two OTUs (classified to 

the genus Rubrivivax and an unclassified Comamonad) differed between enzootic and 

epizootic populations in a statistical model that also accounted for the effect of Bd load (i.e., 

ANCOVA mixed model). Both of these OTUs were positively correlated with Bd load, such 

that an absolute relative abundance that is higher in enzootic populations relative to epizootic 
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populations is notable because one would expect a lower relative abundance in enzootic 

populations based on the effects of Bd load alone. The remaining three OTUs that differed in 

relative abundance between enzootic and epizootic populations when Bd load was not taken 

into account were also correlated with Bd load. For these three OTUs, differences among 

enzootic and epizootic populations was confounded with effects of Bd. In other words 

relative abundances of these OTUs were higher in epizootic populations, but relative 

abundance was also positively associated with Bd load, such that the high relative 

abundances in epizootic populations could be due to disturbance of the microbiome by Bd.  

Bacterial taxa that vary with Bd load. Twenty-four bacterial OTUs classified to 19 

phylotypes were correlated with Bd load (Table 2). In most cases the correlation between Bd 

and bacterial communities was not confounded with differences between enzootic and 

epizootic populations: Only three of the OTUs exhibited covariation between the effects of 

Bd load and population type (discussed above). The vast majority of OTUs that were 

correlated with Bd load belong to the Actinobacteria (7 OTUs), Betaproteobacteria (8 

OTUs), and Gammaproteobacteria (5 OTUs). Multiple OTUs within the Undibacterium (2 

OTUs), Microbacterium (3 OTUs), and Pseudomonas (3 OTUs) were correlated with Bd 

load, and in all cases the direction of the correlation was consistent across OTUs within a 

genus. A previous study identified bacterial OTUs that were causally affected by Bd during 

experimental infection, as well as OTUs that were correlated with Bd load within individual 

R. sierrae populations, in the absence of confounding spatial and temporal variables (Jani 

and Briggs, 2014). We compared the OTUs that were correlated with landscape-level 

variation in Bd load in the current study with the OTUs identified in the previous study, and 

found that the results were remarkably consistent. Of the 19 phylotypes correlated with Bd in 
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the current study, 13 were also correlated with Bd in the previous within-population analyses, 

and eight phylotypes were also affected by experimental Bd infection. In each of these cases, 

the direction of the relationship between bacterial relative abundance and Bd load was the 

same across studies (Table 2). 

Community assembly: comparing the contribution of aquatic bacteria, landscape level 

spatial variables, and Bd in shaping the microbiome. Bacterial communities present on R. 

sierrae skin were clearly distinct from bacterial communities present in the water column 

(ANOSIM, P=0.0001, Figures 6 and 7). However, despite the clear differences between 

them, amphibian-associated and aquatic bacterial communities covaried among population 

surveys, based on a Mantel test revealing a significant correlation between the Unifrac 

distance matrices based on frog-associated compared with aquatic bacterial communities 

(P=0.0229, "=0.342). A Mantel test comparing Bd-load distances with frog skin bacterial 

community distances (Unifrac distances) revealed that R. sierrae skin bacterial communities 

are more tightly correlated with Bd load (P=0.0002, "=0.532) than with aquatic bacterial 

communities. We used DistLM to quantify the amount of microbiome variation explained by 

spatial variables (elevation, lake area, latitude) or Bd load. When explanatory variables were 

tested individually, only Bd load explained a significant proportion of variation in 

microbiome composition (DistLM P=0.0003). One landscape variable (latitude) had a 

significant effect (P=0.0154) when added to the model sequentially after Bd load, indicating 

that latitude explains a portion of the variation not already accounted for by Bd load. The 

best model explained a total of 45.7% of the variation in bacterial communities and included 

Bd load (P=0.0008, explaining 35.2% of variation) and latitude (P=0.0154, explaining 15.2% 

of variation).  
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DISCUSSION 

Bd appears to affect landscape-level patterns in R. sierrae skin microbiome. We previously 

showed that Bd infection alters the R. sierrae microbiome during experimental infection, and 

that Bd load was correlated with bacterial community composition within R. sierrae 

populations (Jani and Briggs, 2014). In the current study, we scale up to the landscape level 

by examining relationships between Bd infection intensity and R. sierrae skin microbiome 

composition among host populations. We analyzed skin-associated bacterial communities 

and Bd loads from 14 surveys of 10 R. sierrae populations that varied in Bd infection status 

and intensity. When Bd infection was treated as a binary variable (infected/uninfected), R. 

sierrae skin microflora differed between infected and uninfected populations but only when 

analyses focused on a single geographic region: When all populations were considered, the 

difference between infected and uninfected populations was not significant, but when the 

analysis was constrained to only populations within the Southern region, microbiome 

composition differed significantly based on Bd infection status. (A similar analysis focused 

on only Northern populations was not possible because all known R. sierrae populations in 

the Northern region are infected with Bd.) We speculate that the larger geographic range 

introduces variation in skin bacterial communities that reduces the power to detect 

differences among population types. In addition, the relationship between Bd and the 

microbiome may be affected not simply by infection status but also by the intensity of 

infection. Indeed, when we considered Bd load rather than binary infection status, we found a 

significant linear relationship between Bd load and multivariate bacterial community 

composition, and this result was significant regardless of whether all populations or only 

Southern populations were included in the analysis.  
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Nineteen bacterial phylotypes were significantly correlated with Bd load at the landscape 

scale. Due to the observational nature and broad geographic range covered in the current 

study, it is not possible to determine whether associations between bacterial communities and 

Bd are causal (representing effects of Bd on bacteria or of bacteria on Bd), or are a result of 

other factors (e.g. environmental or host genetic factors that co-vary with Bd infection, 

particularly due to spatial or temporal auto-correlation). However, a previous study (Jani and 

Briggs in press) examined Bd–microbiome relationships within populations, in the absence 

of large-scale spatial and temporal covariation, to identify variation in microbial communities 

that is likely to be directly linked to Bd load, i.e., not due to spatial or temporal 

autocorrelation. In addition, the previous study used a controlled laboratory experiment to 

show a causal relationship in which Bd disturbed the R. sierrae skin microbiome. Notably, 

the OTUs that were found to correlate with Bd load at the landscape level in the current study 

largely match the results of the previous study: many of the same bacterial taxa were 

correlated with Bd load or infection status in the current (landscape-scale) study and previous 

(within-population and within-experiment) study. Furthermore, for bacterial taxa that were 

associated with Bd load in both studies, the direction of the Bd-bacteria association (negative 

or positive) was always the same across the landscape survey, within-population survey, and 

laboratory experiment. This consistency between the current landscape-level study and 

previous within-population survey and controlled infection experiment supports the 

hypothesis that the correlation between Bd and bacterial communities in the current 

landscape-level study is due, at least in part, to Bd disturbing bacterial communities.  

Skin bacterial communities differ between R. sierrae populations experiencing enzootic 

versus epizootic disease dynamics. Understanding natural variation in how amphibians 



! 95!

respond to infection by Bd may provide clues to the prevention of Bd-induced amphibian 

declines. R. sierrae populations vary in their response to Bd infection, with most populations 

suffering epizootic disease dynamics and eventual population extinction, while a few 

populations exhibit enzootic infection dynamics and population persistence. We tested the 

hypothesis that skin-associated bacterial communities differ between enzootic and epizootic 

populations. We found that overall bacterial community composition (based on Unifrac 

distance), as well as the relative abundance of particular bacterial taxa, differed between R. 

sierrae populations undergoing enzootic versus epizootic disease dynamics. This result is 

consistent with the hypothesis that bacterial communities contribute to the ability of frogs to 

survive Bd infection and populations to persist with Bd. However, Bd infection can alter the 

amphibian skin microbiome (Jani and Briggs in press), and Bd loads are higher during 

epizootic events than enzootic events. Thus, a plausible alternative hypothesis explaining 

microbiome differences between the two population types is that higher Bd loads lead to 

greater Bd-induced disturbance of the microbiome in epizootic populations, and this leads to 

differences in bacterial communities between epizootic and enzootic host populations. We 

therefore included Bd load as a covariate in the multivariate mixed PERMANOVA model, 

and found that microbiome differences between enzootic and epizootic populations are still 

significant after accounting for the potential effect of Bd load. The independence between the 

effects of Bd on bacteria and the differences between microbiomes in enzootic versus 

epizootic frog populations can be observed in the ordination of bacterial communities, which 

shows that correlation between microbiomes and Bd load is primarily along ordination axis 

1, while enzootic and epizootic populations separate along both axes (Figure 4). In addition, 

the bacterial taxa that differed between enzootic and epizootic host populations were largely 
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different from the taxa affected by Bd load (Table 2). Of the seven bacterial OTUs that 

differed in relative abundance between enzootic and epizootic host populations, two showed 

no association with Bd load. Another two OTUs were positively correlated with Bd load, but 

were more abundant in enzootic populations (which have lower Bd loads than epizootic 

populations). Thus, Bd disturbance alone does not explain all of the variation between the 

skin microbiomes of enzootic compared with epizootic populations, and the hypothesis that 

microbiome differences lead to variation in disease dynamics (enzootic vs. epizootic) is still 

viable. However, it is not possible based on survey data alone to conclude a causal 

relationship wherein bacteria confer infection resistance or tolerance. To clearly support this 

hypothesis, it will be necessary to distinguish between effects of microbial symbionts, 

environmental variation, and host genetic variation. Ideally, one would obtain data from 

experiments showing that frogs from enzootic and epizootic populations have different 

responses to Bd infection under the same environmental or laboratory conditions, and that 

those differences in infection response are due to symbiotic bacteria. To obtain this type of 

experimental data, a number of technical challenges, most notably, the need to alter or clear 

the skin-associated microbiome without introducing experimental artifacts, and the need to 

maintain ecologically relevant bacterial communities when frogs are held in the laboratory, 

must be overcome.  

Understanding microbiome assembly: Effects of Bd load and environmental variables on 

skin microbiome composition. Skin-associated bacteria have shown promise in mitigating the 

effects of Bd infection under laboratory conditions, and efforts are underway to develop 

bacterial augmentation methods to control Bd outbreaks in the wild. A better understanding 

of how the microbiome is assembled and stabilized will be critical to microbiome-
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augmentation approaches to disease control. We examined the potential for environmental 

and spatial factors to shape the microbiome. We first compared the composition of the R. 

sierrae skin microbiome with the bacterial communities found in the lake habitat.  Because 

R. sierrae require regular contact with water and spend most of their time either in or 

immediately adjacent to lakes (Bradford, 1984), we expected the bacterial species pool of 

lake water to provide an important source of bacterial colonists to amphibian skin.  However, 

we found that the bacterial communities present on R. sierrae skin and in lake water are 

highly distinct (Figure 6). Consistent with a recent study (Walke et al., 2014), our results 

suggest that bacterial communities on amphibian skin are actively selected rather than 

randomly assembled from the aquatic environment. However, we further examined the 

relationship between aquatic and amphibian-associated bacterial communities by using 

Mantel tests and found that the similarity in the skin microbiomes among host populations is 

correlated with similarity between the bacterial communities found in the lake water 

inhabited by those populations. Thus, although frog-associated and aquatic bacterial 

communities are distinct, they have somewhat parallel patterns in landscape scale variation. 

We speculate that environmental factors affect both the aquatic and amphibian-associated 

bacterial communities, but further research is needed to test this hypothesis and identify 

driving factors. Notably, the R. sierrae skin microbiome was more tightly correlated with Bd 

load ("=0.532) than with aquatic bacterial communities ("=0.342). To examine effects of 

large scale spatial variables on the R. sierrae skin microbiome, we conducted a model-

building exercise to test the effects of spatial factors (latitude, elevation, lake size) as well as 

Bd load in explaining microbiome variation. Bd load explained 35.2% of microbiome 

variation, which could be due to Bd disturbance of the microbiome, microbiome control of 
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Bd load, or both. Of the spatial factors tested, only latitude had a significant effect on 

bacterial communities, explaining 15.2% of variation. Notably, latitude covaries with 

transitions between genetic clades in R. sierrae, and the effect of latitude may indicate 

environmental effects, host genetic effects, or both. Together, these analyses of bacterial 

community assembly indicate that the R. sierrae skin microbiome is distinct from, but 

covaries with, the aquatic bacterial community, and is also affected by environmental factors 

linked to latitude. However, Bd load had a stronger correlation with the microbiome than any 

spatial or environmental factor measured. 

Identifying generalizable differences between enzootic and epizootic populations. In the 

current study, we examined bacterial communities from 14 surveys across 10 R. sierrae 

populations, with at least 7 individuals sampled per survey. In exploratory analyses, we 

tested for differences between every pair of surveys and found that 75 out of the 94 possible 

pairwise comparisons indicated differences in the bacterial communities of two population 

surveys, even when those populations exhibit the same disease dynamics, or when the two 

surveys compared are from the same population taken at different time points (Table S1). 

This result emphasizes the importance of considering multiple populations when trying to 

understand differences between enzootic and epizootic populations: Comparison of any two 

populations will likely indicate significant differences in skin-associated bacterial 

communities, but whether those differences are linked to differences in disease dynamics 

(enzootic, epizootic) cannot be determined from a single population pair. To examine 

differences in the microbiome between enzootic and epizootic populations, we analyzed 9 

population surveys (6 enzootic, 3 epizootic) sampled within one month, taking care to 

intersperse trips to the two population types to avoid temporal aggregation of surveys to 
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either enzootic or epizootic populations. In statistical analyses, we included population 

survey as a random factor, nested in population type (enzootic or epizootic), to avoid 

pseudoreplication. With these constraints to study design and statistical analyses, we still 

found differences between the skin-associated bacterial communities of enzootic and 

epizootic populations, indicating that indeed there are general differences in the microflora of 

frogs undergoing the two distinct types of disease dynamics. However, the current study is 

still limited to only a few surveys of epizootic populations, largely because few epizootic 

events co-occurred in the same time period. In particular, the window of time during an 

epizootic when post-metamorphic R. sierrae are present can be short (sometimes only a few 

months), making synoptic sampling of multiple epizootic events challenging. Ideally, many 

populations of each type (enzootic, epizootic) would be included, and this is an important 

goal for future studies. 
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Table 1. Populations surveys of R. sierrae skin bacterial communities and Bd infection during the 2010 field season.  

Population 
Name Region 

Date 
Collected 

N (Bd load) [total 
(adults,subadults)]a 

N (bacterial 
community)b 

Bd infection 
status at 
time of 
sampling 

2011 
population 
statusc 

response to Bd 
infection 

Mean Bd 
load (adults, 
log10) 

Maximum 
Bd load 
(adults, 
log10) 

Mean Bd 
load (adults 
& subadults, 
log10) 

7/9/10 27 (20,7)  infected persist (enzootic) 1.31 3.04 3.04 
8/18/10 30 (18,12) 18 infected persist (enzootic) 1.85 2.95 5.02 Conness North 

9/10/10 30 (19,11)  infected 

extant 

persist (enzootic) 2.08 3.36 4.22 
8/6/10 27 (16,10)  infected persist (enzootic) 0.69 2.46 2.46 Kuna North 
8/27/10 31 (13,17) 8 infected 

extant 
persist (enzootic) 0.94 2.12 3.99 

7/7/10 6 (6,0)  infected persist (enzootic) 0.63 1.74 1.74 
8/11/10 20 (17,3)  infected persist (enzootic) 1.50 2.53 4.30 
9/1/10 33 (26,7) 8 infected persist (enzootic) 1.49 3.19 5.37 

Mono North 

9/16/10 39 (31,9) 18 infected 

extant 

persist (enzootic) 1.58 3.47 4.91 
7/28/10 19 (19,0)  infected persist (enzootic) 0.45 1.69 1.69 
8/29/10 31 (22,9) 7 infected persist (enzootic) 1.74 2.76 3.72 Unicorn North 

9/13/10 37 (24,13) 18 infected 

extant 

persist (enzootic) 1.47 2.66 4.15 
7/24/10 11 (1,10)  uninfected  0.00 0.00 0.40 
8/22/10 22 (3,19) 8 uninfected  0.00 0.00 0.00 Dusy-1 South 

9/9/10 20 (2,18) 10 uninfected 

extinct 

 0.14 0.29 1.86 
Dusy-2 South 8/23/10 18 (0,18) 8 infected extinct decline (epizootic)   5.17 

8/14/10 42 (33,10)  uninfected  0.01 0.47 0.47 LeConte South 
9/4/10 29 (20,9) 8 uninfected 

extant 
 0.05 0.71 0.71 

7/16/10 30 (30,0)  uninfected  0.00 0.00 0.00 
8/8/10 30 (27,3) 9 uninfected*  0.06 1.13 1.13 
8/30/10 30 (22,8) 20 infected decline (epizootic) 3.18 4.98 5.16 
9/14/10 14 (9,5) 10 infected decline (epizootic) 4.58 5.19 5.19 

Marmot South 

9/15/10 29 (27,2)  infected 

extinct 

decline (epizootic) 4.38 5.08 5.08 
7/15/10 15 (15,0)  uninfected  0.00 0.00 0.00 Rambaud South 
9/6/10 30 (18,12) 8 uninfected 

extant 
 0.00 0.00 0.23 

8/9/10 1 (1,0)  uninfected  0.00 0.00 0.00 
8/31/10 24 (13,11) 8 uninfected  0.04 0.48 0.48 Snowpole South 

9/15/10 15 (6,8)  uninfected 

extinct 

 0.48 0.97 0.97 
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Table 1 footnotes: 

a. number of frog swabs that were analyzed for Bd load. 

b. number of frog swabs that were analyzed for bacterial communities. 

c. Populations were designated “extant” if any adult or subadult R. sierrae were observed during a 2011 census. Populations were 
designated “extinct” if no adult or subadult R. sierrae were observed. 

* The Marmot population survey dated 8/8/2010 was designated operationally uninfected, although the maximum Bd load was slightly 
above 10, because prevalence was still very low (2 Bd-positive swabs out of 30 total swabs) and the previous survey only 3 weeks 
prior had found no infected frogs. 
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Table 2. Bacterial taxa that differed between enzootic and epizootic populations, or were correlated with Bd load. Right three columns 
compare Bd-bacterial relationship in the current landscape-scale study and previous within-population survey and experimental study. 
“No test” indicates that a phylotype was not tested in a given study because it was absent or rare. 

Bacterial Taxon 

Type of population in 
which taxon was more 
abundant 

Landscape-level 
correlation with Bd 
load 

Within-population 
correlation with Bd 
loada 

Effect of 
experimental Bd 
infectiona 

Actinobacteria-Cellulomonadaceae ns negative ns negative 

Actinobacteria-Microbacteriaceae-Microbacterium ns negative negative negative 

Actinobacteria-Nocardiaceae-Rhodococcus ns negative negative negative 

Actinobacteria-Sanguibacteraceae-Sanguibacter ns negative negative negative 

Actinobacteria-Sporichthyaceae-hgcI_clade ns negative negative no test 

Alphaproteobacteria-Sphingomonadaceae-Sandarakinorhabdus enzootic negative ns no test 

Betaproteobacteria-Burkholderiaceae-Polynucleobacter ns negative negative no test 

Betaproteobacteria-Comamonadaceae enzootic* positive positive ns 

Betaproteobacteria-Comamonadaceae-Rhizobacter enzootic negative ns no test 

Betaproteobacteria-Comamonadaceae-Rubrivivax enzootic* positive positive positive 

Betaproteobacteria-Methylophilaceae-Methylotenera ns negative negative no test 

Betaproteobacteria-Neisseriaceae-Iodobacter ns positive ns no test 

Betaproteobacteria-Oxalobacteraceae-Undibacterium ns positive positive positive 

Flavobacteria-Flavobacteriaceae-Flavobacterium epizootic ns ns no test 

Flavobacteria-Flavobacteriaceae-Soonwooa ns positive positive no test 

Gammaproteobacteria-Enterobacteriaceae ns negative ns no test 

Gammaproteobacteria-Pseudomonadaceae-Pseudomonas ns negative negative negative 

Gammaproteobacteria-Xanthomonadaceae-Stenotrophomonas ns negative negative negative 

Sphingobacteriia-Chitinophagaceae-Ferruginibacter epizootic ns ns no test 

unclassified Cyanobacteria enzootic negative ns no test 

unclassified Opitutae ns positive positive no test 

* OTUs classified as Rubrivivax and unclassified Comamonadaceae differed between enzootic and epizootic populations after 
accounting for the effect of Bd load on bacterial relative abundance. a. reference: Jani and Briggs 2014 
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Figure 1. Map showing division between “northern” and “southern” R. sierrae 
populations in the current study. Northern populations are infected and exhibit enzootic 
dynamics (green markers). Southern locations include populations that were uninfected (blue 
markers) as of the 2010 surveys as well as populations that underwent epizootic disease 
dynamics and population declines (red markers). Note: red markers are partly obscured by 
blue markers because epizootic populations are very close to some uninfected populations.  
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Figure 2. Distinct Bd load trajectories distinguish populations undergoing enzootic and 
epizootic disease dynamics. (a) Bd load trajectories during the 2010 field season. Inset 
shows subadult Bd loads over several years prior to the current study in population Dusy-2. 
(b) Mean Bd loads are higher during epizootic than epizootic disease dynamics (P<0.0001). 
(c) Long-term Bd load and population census data in three populations. Top: An uninfected 
population showing stable population numbers until invasion by Bd that resulted in epizootic 
dynamics and population decline. Middle: An enzootic population exhibiting stable Bd loads 
and population numbers through time. Bottom: A population that remained free of Bd 
infection and maintained stable population numbers through time. Long-term Bd load data 
courtesy of Roland Knapp. 
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Figure 3.  Among southern populations, skin bacterial communities differ based on Bd-
infection status. 
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Figure 4. Difference between microbiomes of enzootic and epizootic frog populations 
appears partially independent of correlation with Bd load. (a) NMDS ordination of 
bacterial communities from frogs in enzootic and epizootic populations. Marker size and 
color indicate Bd load. Bd loads primarily increase from left to right along axis 1 and shown 
in orthogonal regression between log10(Bd load) and NMDS axes (b, c). (d) Same ordination 
as in left panel, now coded by frog population disease dynamics. Differences between 
enzootic and epizootic populations are apparent along both axis 1 and axis 2 (e, f). 
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Figure 5. Bacterial richness covaries with both Bd load and host response to infection. 
(a) Bacterial richness (number of OTUs observed) is correlated with Bd load. (b) Bacterial 
richness is higher in enzootic than epizootic R. sierrae populations. Note that the difference 
between enzootic and epizootic populations becomes non-significant when Bd load is added 
to the model. 
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Figure 6. Bacterial communities on frog skin are distinct from surrounding aquatic 
bacterial communities. NMDS ordination shows separation between bacterial communities 
of frog skin compared and bacterial communities sampled from lake water. ANOSIM: 
P=0.0001; Global R=0.98. Each data point represents one population survey.  Frog skin 
microbiome data are pooled within frog populations, such that each frog data point is a 
pooled sample for all frogs swabbed in a given lake on a given date. 
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Figure 7. Phylogenetic composition of bacterial communities from (a) frog skin and (b) lake 
water. Shown are taxa that make-up at least 1% of mean per-sample relative abundance. Taxa 
with less than 1% relative abundance, and unclassified taxa,  are pooled and shown a “other”.  
Plots constructed using the program Krona (Ondov et al., 2011). 
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SUPPLEMENTARY TABLE 

Table S1. Pairwise comparisons of skin bacterial communities among all population surveys.  

survey 1 survey 2 

population survey date population survey date 

!"#$%&'()
(*&+',()-&"#)
./')(%#')
$"$*0%.1"2)

30"4%0)5) $) 6)

LeConte September 4 Conness August 18   0.615 0.0001 7.92E-06 
Rambaud September 6 Conness August 18   0.47 0.0001 7.92E-06 
Dusy-1 September 9 Dusy-2 August 23   1 0.0001 7.92E-06 
Dusy-1 September 9 Marmot September 14   0.566 0.0001 7.92E-06 
Dusy-2 August 23 Marmot August 30   0.723 0.0001 7.92E-06 
Marmot September 14 Conness August 18   0.687 0.0001 7.92E-06 
Mono September 1 Dusy-1 September 9   0.63 0.0001 7.92E-06 
Mono September 1 Unicorn September 13   0.572 0.0001 7.92E-06 
Mono September 1 Conness August 18   0.538 0.0001 7.92E-06 
Mono September 16 Dusy-2 August 23   0.518 0.0001 7.92E-06 
Mono September 16 Marmot August 30   0.465 0.0001 7.92E-06 
Unicorn September 13 Dusy-2 August 23   0.961 0.0001 7.92E-06 
Unicorn September 13 Marmot August 30   0.601 0.0001 7.92E-06 
Unicorn September 13 Marmot September 14   0.588 0.0001 7.92E-06 
Conness August 18 Dusy-2 August 23   0.964 0.0001 7.92E-06 
Conness August 18 Marmot August 30   0.63 0.0001 7.92E-06 
LeConte September 4 Dusy-2 August 23   0.865 0.0002 9.74E-06 
LeConte September 4 Unicorn September 13   0.471 0.0002 9.74E-06 
Rambaud September 6 Dusy-2 August 23   0.878 0.0002 9.74E-06 
Dusy-1 August 22 Dusy-2 August 23   0.987 0.0002 9.74E-06 
Dusy-1 September 9 Dusy-1 August 22 X 0.324 0.0002 9.74E-06 
Dusy-2 August 23 Unicorn August 29   0.902 0.0002 9.74E-06 
Dusy-2 August 23 Kuna August 27   1 0.0002 9.74E-06 
Marmot September 14 Marmot August 30 X 0.55 0.0002 9.74E-06 
Mono September 1 Kuna August 27   0.516 0.0002 9.74E-06 
Mono September 16 Conness August 18   0.277 0.0002 9.74E-06 
LeConte September 4 Dusy-1 September 9   0.468 0.0003 1.23E-05 
Dusy-1 September 9 Marmot August 30   0.505 0.0003 1.23E-05 
Mono September 1 Dusy-1 August 22   0.454 0.0003 1.23E-05 
Kuna August 27 Marmot August 30   0.528 0.0003 1.23E-05 
Conness August 18 Snowpole August 31   0.411 0.0003 1.23E-05 
Marmot September 14 Dusy-1 August 22   0.572 0.0004 1.58E-05 
Rambaud September 6 Dusy-1 August 22   0.285 0.0005 1.86E-05 
Dusy-2 August 23 Snowpole August 31   0.686 0.0005 1.86E-05 
LeConte September 4 Kuna August 27   0.391 0.0006 2.00E-05 
Dusy-1 August 22 Marmot August 30   0.473 0.0006 2.00E-05 
Marmot September 14 Kuna August 27   0.532 0.0006 2.00E-05 
Mono September 1 Rambaud September 6   0.425 0.0006 2.00E-05 
Mono September 1 Dusy-2 August 23   0.545 0.0008 2.60E-05 
LeConte September 4 Dusy-1 August 22   0.325 0.0010 3.02E-05 
Rambaud September 6 Marmot September 14   0.507 0.0010 3.02E-05 
Dusy-1 September 9 Conness August 18   0.309 0.0010 3.02E-05 
LeConte September 4 Marmot September 14   0.533 0.0020 5.76E-05 
Rambaud September 6 Marmot August 30   0.422 0.0020 5.76E-05 
Dusy-1 September 9 Unicorn August 29   0.335 0.0030 7.92E-05 
Marmot September 14 Unicorn August 29   0.465 0.0030 7.92E-05 
Unicorn August 29 Marmot August 30   0.487 0.0030 7.92E-05 
Unicorn September 13 Mono September 16   0.182 0.0030 7.92E-05 
LeConte September 4 Mono September 16   0.305 0.0040 9.94E-05 
Dusy-1 September 9 Kuna August 27   0.247 0.0040 9.94E-05 
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survey 1 survey 2 

Conness August 18 Unicorn August 29   0.28 0.0040 9.94E-05 
Dusy-1 September 9 Snowpole August 31   0.255 0.0050 0.000119

512 Marmot September 14 Dusy-2 August 23   0.317 0.0050 0.000119
512 Marmot August 30 Snowpole August 31   0.344 0.0080 0.000180
975 Mono September 1 Unicorn August 29   0.349 0.0080 0.000180
975 Conness August 18 Kuna August 27   0.243 0.0080 0.000180
975 Unicorn September 13 Snowpole August 31   0.276 0.0100 0.000222

25 Marmot September 14 Mono September 16   0.192 0.0130 0.000283
944 Mono September 1 Marmot September 14   0.233 0.0140 0.000300
603 Unicorn September 13 Conness August 18   0.12 0.0160 0.000337

82 Marmot September 14 Snowpole August 31   0.257 0.0180 0.000373
818 Rambaud September 6 Dusy-1 September 9   0.18 0.0190 0.000388
221 LeConte September 4 Unicorn August 29   0.245 0.0200 0.000402
167 Mono September 1 Marmot August 30   0.269 0.0210 0.000409
283 Mono September 16 Dusy-1 August 22   0.222 0.0210 0.000409
283 Rambaud September 6 Mono September 16   0.22 0.0250 0.000479
859 Rambaud September 6 Kuna August 27   0.139 0.0260 0.000491
604 Dusy-1 August 22 Unicorn August 29   0.182 0.0270 0.000503
005 Mono September 1 Mono September 16 X 0.181 0.0330 0.000605
874 Dusy-1 August 22 Snowpole August 31   0.143 0.0370 0.000669
608 Mono September 1 LeConte September 4   0.173 0.0380 0.000678

02 Rambaud September 6 Unicorn September 13   0.202 0.0390 0.000686
198 Unicorn September 13 Unicorn August 29 X 0.192 0.0450 0.000770
368 Unicorn September 13 Kuna August 27   0.17 0.0450 0.000770
368 Dusy-1 August 22 Kuna August 27   0.124 0.0470 0.000793
878 Rambaud September 6 Unicorn August 29   0.12 0.0500 0.000833
439 Mono September 16 Snowpole August 31   0.154 0.0550 0.000904
876 Kuna August 27 Snowpole August 31   0.124 0.0620 0.001006
965 Mono September 16 Kuna August 27   0.146 0.0640 0.001026

29 Dusy-1 September 9 Mono September 16   0.118 0.0710 0.001124
309 Mono September 16 Unicorn August 29   0.148 0.0720 0.001126
068 Dusy-1 September 9 Unicorn September 13   0.117 0.0760 0.001174
132 LeConte September 4 Rambaud September 6   0.112 0.0810 0.001236
301 Rambaud September 6 Snowpole August 31   0.064 0.1320 0.001990
728 Conness August 18 Dusy-1 August 22   0.089 0.1510 0.002250

48 LeConte September 4 Marmot August 30   0.104 0.1660 0.002445
27 Mono September 1 Snowpole August 31   0.059 0.2170 0.003159

786 Unicorn September 13 Dusy-1 August 22   0.073 0.2210 0.003181
462 LeConte September 4 Snowpole August 31   0.034 0.2620 0.003729

31 Unicorn August 29 Snowpole August 31   0.027 0.2670 0.003758
252 Kuna August 27 Unicorn August 29   -0.005 0.4410 0.006139
237 LeConte September 4 Conness August 18   0.615 0.0001 7.92E-06 
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Innate host differences and environmental variation shape the frog skin microbiome and 

affect resistance to the fungal pathogen Batrachochytrium dendrobatidis 
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ABSTRACT 

Symbiotic microbial communities play key roles in the health and development of their 

multicellular hosts. Understanding why microbial communities vary among different host 

species or individuals is an important step toward understanding the diversity and function of 

the microbiome. The amphibian skin microbiome may play a role in limiting infection of the 

host by the fungal pathogen Batrachochytrium dendrobatidis (Bd), but the factors that 

determine the phylogenetic composition of the amphibian skin microbiome, and therefore 

may ultimately contribute to disease resistance, are not well understood. We designed a two-

phase laboratory experiment to quantify the contributions of host genetic background and the 

environment in shaping the microbiome of the Sierra Nevada yellow-legged frog, Rana 

sierrae. Two R. sierrae population sources, six types of natural lake water, and a sterile water 

habitat were tested for effects on the composition of frog skin bacterial communities using a 

fully crossed experimental design. Both frog source and aquatic habitat affected the R. 

sierrae skin microbiome. Notably, differences in the microbiomes of frogs housed in water 

collected from lakes in the Sierra Nevada mimicked patterns observed in wild populations: in 

nature, microbiomes differ between frog populations that persist with or decline due to Bd, 

and in the current experiment frog skin microbiomes differed depending on whether the frogs 

were housed in water from field sites inhabited by persisting or declining R. sierrae 

populations. We tested if the skin microbiomes established in the first phase of this 

experiment were linked to downstream resistance to infection by the pathogen Bd. 

Experimental treatments did not confer complete resistance to pathogen infection, but did 

affect infection trajectories. The rate of increase in pathogen loads differed between frogs 
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from the two source populations. The aquatic habitat also affected infection trajectories, with 

frogs housed in sterile water suffering more rapid increases in pathogen loads than frogs 

housed in natural lake water, although the specific geographic source of the natural lake 

water had no effect. Taken together, the data show that both host background and the 

environment affect the amphibian skin microbiome, and that some of these differences are 

associated with variation in the rate of increase in pathogen infection. We further analyzed 

associations between Bd infection severity and microbiome composition before and after Bd 

infection in order to distinguish effects of Bd on the microbiome from effects of the 

microbiome on Bd. Bd infection severity was significantly correlated with overall 

microbiome composition after Bd infection, but not before Bd infection, indicating that the 

effect of Bd on the microbiome was stronger than the effect of the microbiome on Bd.  
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INTRODUCTION 

Symbiotic bacterial communities are ubiquitous inhabitants of multicellular organisms and 

play important roles in the health and development of their hosts (Dethlefsen et al., 2007; 

Engel and Moran, 2013; Grice and Segre, 2012; Philippot et al., 2013). Much research has 

focused on the microbiome of the human gut, but recent studies have begun to explore the 

microbiome of the skin, which in many animals is the largest organ in the body and a primary 

line of defense against pathogens. Shifts in the complex skin microflora of humans are linked 

to psoriasis, atopic dermatitis, acne, and Dermodex-associated rosacea, although it is not yet 

known whether microbiome shifts are a cause or effect of these diseases (Grice, 2014). In a 

mouse model, skin-associated bacteria influenced skin-specific immune responses and 

severity of infection by the protozoan parasite Leishmania major (Naik et al., 2012). The 

links between microbiome composition and host health highlight the importance of 

understanding the factors that shape symbiotic communities: Understanding why bacterial 

communities differ can help identify the causes of imbalances (dysbioses) in the microbiome, 

and advance our ability to mediate disease susceptibility by facilitating the maintenance of 

healthy microbial communities.  

The majority of our knowledge of skin microbiome assembly draws on studies of humans 

and standard laboratory models (e.g. mice). In humans, differentiation of microflora of 

different body sites (e.g. mouth, gut, skin) develops in the first 15 days after birth (Costello et 

al., 2013), and at least initially the human microbiome may be influenced by delivery 

(birthing) mode (Dominguez-Bello et al., 2010). Skin microbiomes of humans show 

microsite-specific differentiation as well as variation among individuals and with time 
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(Costello et al., 2009). Hand-associated microbes differ between human populations (Blaser 

et al., 2013; Hospodsky et al., 2014), suggesting that ethnic, cultural, 

behavioral/occupational, or environmental differences may influence the skin microbiome. 

Comparisons of healthy and immune-compromised patients suggest that the skin microbiome 

is regulated in part by the host immune system (Smeekens et al., 2013). Much less research 

has focused on skin microbiome assembly in non-human animals, but recent research, fueled 

in part by the need to manage a serious amphibian skin disease, has begun to explore the 

amphibian skin microbiome.  

In amphibians, understanding the assembly and dynamics of the skin-associated microbiome 

has direct implications for management of Batrachochytrium dendrobatidis (Bd), a fungal 

pathogen that infects the skin of amphibians and causes the potentially lethal disease 

chytridiomycosis. Bd has been implicated in amphibian declines worldwide (Berger et al., 

1998; Briggs et al., 2010; Crawford et al., 2010; Kilpatrick et al., 2010; Lips et al., 2006; 

Vredenburg et al., 2010), and currently there are no widely available, proven methods to 

control the disease in wild populations. Recent research has raised the possibility that 

symbiotic bacteria present on amphibian skin might affect resistance to chytridiomycosis. 

Differences in the skin microflora of wild amphibians coincide with differences in apparent 

disease resistance (Chapter 2; Woodhams et al., 2007, 2014). Incubating amphibians with 

isolates of the bacterial species Janthinobacterium lividum conferred resistance to Bd 

infection in two laboratory experiments (Harris et al., 2009; Muletz et al., 2012). However, in 

two other studies, augmentation with J. lividum or an antifungal isolate of Pedobacter 

cryoconitis failed to protect frogs from Bd infection and resulting disease (Becker et al., 

2011; Woodhams et al., 2012). This variation in the efficacy of probiotic isolates is probably 
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the product of multiple factors, which may include ecological context (host condition, 

environmental parameters, microbial community composition, Bd inoculation dose) or 

genetic differences among hosts, bacterial isolates, or Bd isolates. Another likely important 

factor is the stability of the skin microbiome in the face of Bd infection. We previously 

showed that Bd infection alters the amphibian skin microbiome (Jani and Briggs, 2014), and 

it follows that the sensitivity of the microbiome to disturbance may affect its ability to limit 

Bd infection. Better understanding of the factors controlling the amphibian skin microbiome, 

in both the presence and absence of Bd, are critical to refining microbially-based approaches 

to mitigate the spread and impact of Bd.  

A few recent studies have begun to examine the factors shaping the amphibian skin 

microbiome. Species-specific microbiome differences among amphibians sharing a common 

lake or pond environment have been clearly demonstrated (Kueneman et al., 2014; McKenzie 

et al., 2012; Walke et al., 2014). Microbiome differences among populations of a given 

amphibian species have also been observed (Chapter 2; Kueneman et al., 2014; Walke et al., 

2014), although potential covariation between host genetic and environmental differences in 

these studies precludes firm conclusions regarding the cause (host or environmental) of 

among-population variation in the microbiome. The skin of amphibians appears to select for 

certain bacterial taxa (Jani and Briggs, 2014; Walke et al., 2014), but at the same time the 

microbiome is not entirely unaffected by environmental drivers. The skin microflora of 

salamanders differs between animals housed in sterile liquid medium compared with non-

sterile soil (Loudon et al., 2013), indicating that substrate structure or the presence of 

bacteria, or both, affect the amphibian skin microbiome. In addition, our previous work 

showed that the composition of bacterial communities on the skin of amphibians was 
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correlated with the composition of aquatic environmental bacterial communities (Chapter 2). 

We also know that Bd infection alters the microbiome (Jani and Briggs, 2014). In summary, 

we know that the microbiome differs among host species and is affected by dramatic changes 

in the environment (e.g. field soil versus sterile liquid medium) or infection by Bd. But 

important questions remain. For example, we know nothing about the cellular or molecular 

mechanisms of microbiome assembly in amphibians. Even more basic is the question of 

whether the microbiome is affected by genetic variation within a given host species. The 

latter question is critical in understanding within-species variation in the microbiome and, 

potentially, variation in disease resistance. In addition, while we know that wholesale 

changes in the environment (such as different lakes, or a habitat made of sterile water 

compared with living soil) affect the microbiome, we do not know what properties of the 

environment drive those changes. We also do not know if microbiome disturbance by Bd 

alters or overrides host or environmental control of the microbiome. Finally, we lack 

understanding of the links between microbiome assembly and function, specifically how host 

and environmental effects on the microbiome may in turn influence subsequent resistance to 

disease. 

In the current study, we use a fully crossed factorial experiment to simultaneously test the 

effects of host genetic background and the aquatic environment in shaping within-host-

species variation in the microbiome. We then examine how microbiome variation shaped by 

host and environmental factors affects resistance to Bd. We focus here on microbiome 

assembly and function in the Sierra Nevada yellow-legged frog (Rana sierrae), a species that 

is severely threatened by Bd (Chapter 2; Rachowicz et al., 2006; Vredenburg et al., 2007, 

2010). Notably, R. sierrae populations exhibit variation in their response to Bd infection: 
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many populations have rapidly been driven extinct by the pathogen (“declining 

populations”), but some populations appear to tolerate infection and have co-existed with the 

pathogen for years (“persisting populations”) (Briggs et al., 2010; Chapter 2; Knapp et al., 

2011; Vredenburg et al., 2010). Among wild populations of R. sierrae or its close relative 

Rana muscosa, differences in skin bacterial communities are correlated with differences in 

disease dynamics (host persistence or decline due to Bd, (Chapter 2; Woodhams et al., 

2007)), suggesting that symbiotic bacteria may play a role in these frogs’ response to 

infection. In the current study, we address several open questions regarding the assembly and 

function of the R. sierrae skin bacterial microbiome (hereafter simply “microbiome” for 

brevity). First, we tested if innate differences between R. sierrae populations shape 

differences in the microbiome. Second, we examined how differences in the aquatic 

environment drive variation in the microbiome. More specifically, we experimentally tested 

if differences in the lake water inhabited by frogs can explain why the microbiomes of R. 

sierrae differ between populations that persist with Bd and populations that are driven extinct 

by the pathogen.  We then tested if the variation in the microbiome that is shaped by 

differences in the host and aquatic environment leads to differences in resistance to Bd 

infection or chytridiomycosis.  

METHODS 

Collection of R. sierrae and lake water. All equipment, including nets and shoes, that was 

likely to come into contact with frogs or lake water was disinfected (incubated with 0.1% 

quaternary ammonium solution 128 for at least 5 minutes) before beginning work in any field 

site. Small or sensitive equipment was disinfected with 70% ethanol. R. sierrae were 

collected as eggs or tadpoles from two populations in the Sierra Nevada. One population was 
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located in a lake of Humphrey’s Basin (Sierra National Forest), and the other population was 

located in Dusy Basin (Kings Canyon National Park). All collections were made during the 

2010 field season under research permits from the National Park Service and U.S. Forest 

Service, and subsequently housed at the University of California, Santa Barbara (UCSB) in 

facilities certified by the UCSB Institutional Animal Care and Use Committee (IACUC). We 

targeted “stranded” eggs for collection, meaning that the eggs were found in microhabitats 

where they were unlikely to survive; for example, ephemeral water bodies that were 

separated from the main lake body and would very likely desiccate before tadpoles hatching 

from eggs could metamorphose and move out of water to reach the main lake. (R. sierrae 

tadpoles require two to three years to reach metamorphosis in the wild.) Eggs and tadpoles 

were reared in UCSB animal care facilities and were at the subadult stage at the time of this 

experiment. 

Lake water to be used as aquatic habitat treatments in the experiment was collected from six 

Sierra Nevada lakes, all of which are or were either inhabited by persisting R. sierrae 

populations at the time of this study or had been previously inhabited by R. sierrae 

populations that had declined due to Bd one to three years prior. Water was collected in 2.5-

gallon (approximately 10 liter) collapsible polyethylene jugs (Cubitainer), which were 

washed with 0.1% quaternary ammonium solution 128, triple-rinsed with tap water, soaked 

in tap water for at least 15 minutes, then rinsed again. Jugs were additionally triple-rinsed in 

lake water at the collection site before being used for lake water collection. Because most R. 

sierrae populations are located in back-country areas far from roads, frogs and water were 

transported from field sites on foot, with transport times ranging from approximately three to 

twelve hours. Lake water was stored at 4°C at the Sierra Nevada Aquatic Research 
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Laboratory for up to eight days, then transported, with water jugs held in insulated containers 

with ice, to UCSB where it was stored at 4°C until use. The experiment was initiated within 

four days after the arrival of the water at UCSB. Prior to being added to experimental frog 

tanks, all lake water was filtered (1.2 !m pore size) to remove larger particles, including any 

Bd cells that may naturally occur in lake water. Based on published size distributions of 

freshwater bacteria ("imek and Chrzanowski, 1992), we estimate that at least 80% of 

planktonic bacteria in lake water should pass through 1.2 micron pores and remain in the 

water after filtration. 

Preparation of Bd and sham inocula: Four Bd strains (TST75, CBJ4, CJB5, CJB7) were 

used in this experiment. Two of the Bd strains were isolated from persisting R. sierrae 

populations and the other two strains were isolated from declining populations. Bd cultures 

from frozen stocks were grown in 1% (w/v) tryptone liquid medium. Once viability was 

confirmed, cultures were passaged to agarose tryptone media in petri plates (10 g L-1 

tryptone, 10 g L-1 agar). Tryptone plates without Bd added were prepared in parallel with 

cultures as a sham inoculum. Cultures and sham plates were harvested after four to six days 

of growth by flooding plates with sterile water for 45 minutes to induce release of zoospores 

from sporangia and then collecting the zoospore suspension. To avoid introducing Bd culture 

medium to frog tanks along with Bd inoculum, zoospores and sham inocula were rinsed three 

times by gently pelleting (500 G, 5 min) in 50 mL conical tubes, drawing off the supernatant, 

and resuspending cells (or sham inoculum) in 35 mL sterile water.  After rinsing, cells were 

counted visually at 200X magnification on a compound light microscope using a 

hemocytometer. The four strains were pooled, with an equal concentration of each strain, and 

the cell suspension was diluted to 200,000 cells mL-1 and used immediately. 
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Experimental design. We conducted a two-phase experiment to simultaneously test 

determinants of microbiome composition and downstream effects on resistance to Bd 

infection:   

Experiment phase 1 – microbiome assembly: The first phase of the experiment tested effects 

of aquatic environments and host genetic background on the R. sierrae skin microbiome. To 

vary host population, forty-two frogs from each of the two R. sierrae populations were 

included in the study. To vary the aquatic habitat, each frog was housed in an individual tank 

with water from one of seven Water Sources, which included water collected from six 

different lakes and one sterile water treatment. We chose lake water as our focus because R. 

sierrae are aquatic amphibians most often found either in lake water or basking on adjacent 

rocks. The high elevation Sierra Nevada lakes where the species is found are rocky, 

oligotrophic habitats with little soil or vegetation. Sterile water was prepared by autoclaving 

bottled drinking water (Arrowhead), and sterility was confirmed by plating cooled 100 uL 

aliquots onto R2A and LB agar plates. Lake water was collected from six Sierra Nevada 

lakes, three of which were inhabited by R. sierrae populations that persist with Bd, while the 

other three were inhabited by populations that declined due to Bd. We used a fully crossed 

design with 14 treatments (2 Frog Sources x 7 Water Sources), and six replicate frogs 

assigned to each treatment. For two weeks prior to beginning the experiment, animals were 

co-housed in large common-garden tanks to standardize any pre-experiment environmental 

effects (Jani and Briggs, 2014). Non-sterile, bottled drinking water was used to provide an 

aquatic habitat in the pre-experiment, common-garden tanks. Immediately before beginning 

the experiment, each frog was treated with 3% hydrogen peroxide (50 ml in a 100 ml 

container) for 30 s, and then rinsed thoroughly with sterile water (two 100-ml sterile water 
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baths lasting two and eight minutes, respectively), in an attempt to reduce and standardize the 

bacterial community present on the skin of frogs (Harris et al., 2009). To initiate the 

experiment, twelve frogs (six from each population) were randomly assigned to each of the 

seven Water Sources. All frogs were housed in individual tanks, each containing water from 

one of the seven Water Sources, for the duration of the experiment. Each frog was offered 7 

crickets once per week, and tank water was changed after feeding to minimize the 

introduction of food-associated bacteria to experimental tanks. Tanks were randomly 

assigned positions in environmental chambers maintained at 17°C with a 12 hr photoperiod.  

Experiment phase 2 - Bd challenge: Three weeks (21 days) after beginning the experiment, 

42 of the frogs (3 frogs from each Frog Source x Water Source treatment) were challenged 

with Bd (200,000 zoospores per frog for three consecutive days). The remaining 42 frogs 

served as Bd-free controls and received a sham inoculum. Frogs were monitored daily 

throughout the experiment. At 60 days post-infection, the experiment was concluded and 

surviving frogs were cleared of Bd infection by treatment with Itraconazole. Infection status 

for all frogs was confirmed by quantitative PCR.  

R. sierrae is a Federally listed endangered species, and was listed as threatened at the time 

when this experiment was conducted, in 2011. To minimize the use of R. sierrae for 

experiments while maximizing research progress, we designed this experiment to address 

three research questions: (1) What factors control microbiome composition? This question is 

addressed in the first 3-week phase of the experiment. (2) How does variation in the skin 

microbiome affect resistance to Bd? This question is addressed by examining how variation 

in the microbiome present at the end of phase 1 (just prior to Bd challenge) is correlated with 

downstream severity of Bd infection. (3) Does Bd infection alter the microbiome? This 
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question is addressed by comparing the microbiomes of Bd-infected and Bd-free (control) 

frogs after Bd challenge. The first two research questions are the focus of the current work, 

while the third question is addressed elsewhere (Jani and Briggs, 2014).  

Data collection: Microbes present on frog skin (including bacteria and Bd) were sampled at 

least once weekly, (twice weekly during Phase 1, before Bd challenge).  New nitrile gloves 

were worn for each frog handled, and frogs were rinsed twice with 60 ml sterile water before 

swabbing the skin using a sterile synthetic swab (Medical Wire and Equipment Company) 

following standard protocols (Briggs et al., 2010; Jani and Briggs, 2014). Swab buds were 

immediately placed in sterile microcentrifuge tubes on ice and frozen within one hour of 

collection. We monitored symptoms of chytridiomycosis, including weight loss, inappetence, 

and excessive shedding of skin. We recorded snout-to-vent length and weight of all frogs 

before infection and at six and eight weeks post-infection. We counted the number of crickets 

eaten by each frog weekly and scored the amount of shed skin present in tank water using a 

qualitative 3-level rating system: no shed skin, moderate amount, or copious amount of shed 

skin observed in tank water. Prior to adding lake water to frog tanks, bacteria present in lake 

water were sampled by filtering 250 ml from each lake Water Source through a 0.22 !m pore 

polyethersulfone filter (Sterivex-GP; Millipore). Filters with samples of aquatic bacteria were 

frozen immediately. 

DNA extraction. Total DNA (including bacterial and Bd DNA) from frog skin swabs was 

prepared for PCR using Prepman Ultra as described previously (Jani and Briggs, 2014). 

DNA from aquatic bacterial samples was extracted following Nelson (2009).  
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Quantifying Bd load.  We quantified Bd loads from all swabs collected immediately prior to 

Bd challenge and weekly thereafter until the end of the experiment. Bd load (also referred to 

as Bd infection intensity) was measured by quantitative PCR (qPCR) applied to skin swab 

DNA samples as described previously (Boyle et al., 2004; Jani and Briggs, 2014), with Bd 

standards provided by the laboratory of Alex Hyatt (CSIRO, Australia).  

Selection of samples for bacterial 16S sequencing. Due to the labor requirements and cost of 

sequencing, it was not feasible to analyze bacterial communities of all samples (>1,000) 

collected in the experiment. Instead, we analyzed bacterial communities at three time points: 

(1) immediately before beginning the experiment; (these samples serve as a control to 

confirm that no differences exist between experimental water treatments before beginning the 

experiment); (2) after 3 weeks (21 days) of exposure to the various water treatments, but 

immediately before Bd challenge; (3) three weeks after Bd challenge (i.e. 21 days post-

infection, PI). The 21 days PI time point was chosen for two reasons. First, Bd loads at three 

weeks PI were representative of loads observed during epidemics in the wild (Jani and 

Briggs, 2014). Second, because all frogs in the experiment were still surviving at three weeks 

post-infection, analyses conducted at this time point maintain a balanced experimental 

design. Samples of aquatic bacteria in stored lake water were also analyzed on three dates 

roughly corresponding to the dates on which frog skin bacteria were analyzed.  

Bacterial community sequencing and bioinformatic processing. The bacterial communities 

present on frog skin and in lake water were characterized by sequencing of a portion of the 

16S gene, as described in detail in Jani and Briggs (2014). Briefly, the V1-V2 region of the 

16S gene was amplified using barcoded primers with sequencing adapters, and PCR products 

were purified, pooled in equimolar quantities, and sequenced on a Roche/454 GS FLX 
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instrument using Titanium chemistry. The program mothur v 1.30 (Schloss et al., 2009) was 

used to quality-filter sequences, align them to a non-redundant representative subset of the 

SILVA v111 SSU Ref 16S curated alignment database (Nelson et al., 2014), and cluster 

sequences into 95% sequence identity operational taxonomic units (OTUs) and phylotypes. 

Sequences were classified using the Bayesian classifier of Wang et al. (2007) and each OTU 

was assigned a consensus taxonomy from SILVA v111 (Pruesse et al., 2007; Quast et al., 

2013). Weighted Unifrac distance (Lozupone and Knight, 2005) was calculated from OTU 

relative abundance data to quantify the degree of phylogenetic difference among bacterial 

communities from different samples. To estimate bacterial community richness and diversity, 

the number of observed OTUs (SOBS), Chao’s richness estimate (Chao, 1984), Shannon 

diversity, and Shannon evenness were calculated after subsampling to 500 sequences per 

sample.  

Testing effects of frog source and aquatic environment on the microbiome. We tested for 

effects of Water Source and Frog Source on the R. sierrae microbiome in the absence of Bd 

by examining bacterial communities from frogs sampled immediately before Bd challenge. 

This time point is designated 0 days post-infection (0 days PI), and at this point each frog had 

been exposed to one of the 7 Water Source treatments for three weeks, providing ample time 

for the Water Source treatments to take effect. Our response variable was Unifrac distance, a 

measure of phylogenetic dissimilarity between bacterial communities. We used 

permutational multivariate ANOVA (PERMANOVA) with Frog Source (Dusy or 

Humphreys) and Water Source (7 sources listed in Table 1) as fixed factors. The Frog x 

Water interaction was not significant and was dropped from the model. In addition to testing 

effects of the seven Water Sources, we tested two specific hypotheses about how the aquatic 
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environment might affect the R. sierrae microbiome. Our primary hypothesis was that the 

aquatic habitat helps shape differences in the microbiome between R. sierrae populations that 

persist or decline due to Bd. Based on this hypothesis, we predicted that frogs housed in 

water from lakes inhabited by persistent populations would harbor different bacterial 

communities than frogs housed in water from lakes inhabited by declining populations. We 

used PERMANOVA with Frog Source and Site Persistence (water from a persistent or 

declining population) as main effects and Water Source nested in Habitat Persistence to 

account for the fact that each class of water (persistent or declining) encompasses three 

different lake Water Sources. We also tested if the frog skin microbiome differed between 

frogs housed in sterile water and frogs housed in non-sterile lake water. For this test we used 

PERMANOVA with Frog Source and Water Sterility (“sterile” or “live”) as main effects and 

Water Source nested in Water Sterility to account for the fact that the live water treatment 

encompasses six distinct Water Sources. 

We repeated all analyses (tests of effects of Frog Source, Water Source, Water Sterility, and 

Site Persistence on the microbiome) using data collected 21 days PI to test if host and aquatic 

environment effects are detectable among frogs once Bd is introduced. Bd infection affected 

bacterial communities in this experiment, as presented in (Jani and Briggs, 2014), therefore, 

for analyses of bacterial communities 21 days PI, Bd infection (Bd+, Bd-) was also included 

in ANOVA models to account for the effect of Bd on microbiome composition. 

To confirm that no effect of water treatments existed before the water treatments were 

applied, ANOVA to test the effects of Water Source and Frog Source on the microbiome 

were also conducted at the beginning of the experiment (21 days pre-infection, immediately 

before placing frogs in their respective experimental tanks with lake water).  
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Testing effects of Frog Source and Water Source on Bd infection severity. Bd load data 

collected from swabs before Bd challenge and weekly thereafter were used to examine 

infection trajectories through time. All frogs in the Bd- treatment remained free of Bd, with 

the exception of one frog, which became contaminated with Bd and was excluded from 

analyses. Only Bd load data from the 42 frogs in the Bd+ treatment were analyzed for Bd 

infection trajectories because we were interested in effects of experimental treatments on 

variation in Bd trajectories given that frogs were exposed to Bd. We used repeated measures 

ANOVA (RM-ANOVA) to test for differences among experimental treatments in the rate of 

increase of Bd load through time. Data for RM-ANOVA were restricted to swabs collected 

between 0 and 21 days PI because 21 days PI was the latest time point for which all frogs 

were still alive. As with tests for treatment effects on the microbiome described above, we 

tested effects of Frog Source and Water Source and then followed up with specific 

hypothesis tests for effects of Water Sterility and Site Persistence.  

Testing direct links between bacterial communities and Bd infection severity. An objective of 

this study was to tease apart the effects of Bd on the microbiome from effects of the 

microbiome on Bd infection. For this analysis we included only frogs in the Bd+ treatment, 

since we are interested in how the microbiome affects the severity of infection given that a 

frog is exposed to the pathogen. We used Mantel tests to calculate Spearman rank correlation 

coefficients between the distance matrices based on the microbiome (before Bd challenge 

and 3 weeks PI) and the distance matrix based on Bd load (3 weeks PI). The strength of the 

two effects (Bd effect on microbiome and vice versa) was examined by comparing the Bd-

microbiome correlation coefficients. 
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Statistical details. Parametric statistical analyses (ANOVA, RM-ANOVA) were performed 

in JMP v.10 (SAS Institute Inc., Cary, NC, USA, 1989-1212). Non-metric multidimensional 

scaling (NMDS) ordination and permutation-based analyses of bacterial community 

composition, including PERMANOVA and permutational Mantel tests, were conducted in 

Primer-e v6 (Clarke and Gorley, 2006). Bd load data were log10(X+1) transformed for all 

analyses. 

Pooling of data for graphical display. We used NMDS ordination to visualize 

multidimensional data (e.g. Unifrac distances). In NMDS, the stress associated with an 

ordination provides a measure of the distortion of the data incurred when multidimensional 

data are represented in fewer (usually 2) dimensions. In this study, NMDS stress for most 

ordinations was unacceptably high, generally between 0.15 and 0.22. This may be due to 

very high variability in the data. To reduce stress in the ordinations, we pooled data across 

replicates within each treatment and day. Ordination plots therefore display data pooled 

within treatment and day, while all statistical analyses were conducted on the unpooled data, 

as specified in descriptions of the statistical models. Ordinations are for data visualization 

only and do not affect statistical results. 

RESULTS 

Frog Source and Water Source contribute to microbiome composition. For clarity, an outline 

of the variables tested is provided in Table 2. At 0 days PI (before Bd challenge, but 21 days 

after initiation of Water Source and Frog Source experimental treatments), microbiome 

composition was significantly affected by both Water Source and Frog Source. Frogs from 

the two source populations harbored significantly different bacterial communities, and this 
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was true regardless whether all treatments or only lake water treatments were considered 

(PERMANOVA: P=0.0166, P=0.0040 for all treatments or only lake water treatments, 

respectively, Figure 1a). Bacterial diversity did not differ between the two frog populations 

(P>0.05 for all richness and diversity metrics examined). R. sierrae microbiome composition 

differed based on Site Persistence (population persistence or decline of the field site from 

which water was collected, P=0.0002, Figure 1b). In addition to differing in microbiome 

composition, frogs housed in water from persistent field sites also harbored slightly but 

significantly greater bacterial diversity than frogs housed in water from field sites associated 

with epidemic declines (SOBS P=0.0083, Chao’s richness P=0.0021, Shannon diversity 

P=0.0054, Shannon evenness P=0.0243; Figure 2). In analyses focused on water sterility, 

frogs housed in sterile water harbored different bacterial communities than frogs housed in 

live water (P=0.0009, Figure 3a), but there was no difference in bacterial diversity between 

the two groups. 

Microbiome composition of samples collected at the start of the experiment (immediately 

before placing frogs in their respective water treatments) showed no effect of Water Source 

(P>0.05), confirming that the effects of Water Source observed after application of 

experimental treatments was indeed due to the treatments. In contrast, the composition of 

microbial communities did differ between the two Frog Sources at the start of the experiment 

(P=0.0035), indicating that effects of Frog Source on the microbiome are at least partially 

robust to normalizing forces such as shared aquatic environments created by the common-

garden pre-experiment tanks or the pre-experiment hydrogen peroxide treatments employed 

in this study. 
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Three weeks after Bd infection, skin bacterial communities still differed based on Frog 

Source and Water Source. Bacterial community composition differed between frogs from the 

two source populations (P=0.0007, Figure 1c) as well as between frogs housed in water from 

field sites with different disease dynamics, i.e., population persistence or decline (P=0.0001, 

Figure 1d). Microbiomes also differed between sterile and live water treatments (P=0.0007, 

Figure 3b). 

Bd infection trajectories and frog survival are affected by Water Source and Frog Source. 

Frogs from Humphreys Basin showed more rapid rates of Bd load increase than frogs from 

Dusy Basin (repeated measures ANOVA: PFrog=0.0006, PFrogxTime=0.0150, Figure 4a). Water 

Source also affected Bd load trajectories (PWaterSource=0.0010, PWaterSource x Time=0.0120). 

However, the disease dynamics of field sites (persistent or declining) from which water was 

collected had no affect on Bd load trajectories (P>0.05, Figure 4b). Instead, the effect of 

Water Source appeared to be primarily due to differences between Bd load trajectories of 

frogs housed in sterile water compared with frogs housed in live lake water 

(PWaterSterility=0.0010, PWaterSterility x Time=0.0120, Figure 4c). Patterns in frog survival were 

consistent with Bd load trajectories: Kaplan Meier survival curves differed based on Frog 

Source (Chi-square: log rank test, P=0.0461; Wilcoxon test, P=0.0108, Figure 4d) but not 

Site Persistence (P>0.05, Figure 4e). Water Sterility affected survival curves (log rank, 

P<0.0001; Wilcoxon, P<0.0001, Figure 4f). 

Limited direct evidence for microbiome effects on Bd infection. Differences in skin bacterial 

communities prior to Bd challenge were not correlated with Bd infection intensity at 21 days 

PI (Mantel test: P<0.05). However, differences in frog skin microbiomes at 21 days PI were 

correlated with Bd infection intensity measured on the same day (21 days PI, P=0.0037, 
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Spearman’s rank correlation coefficient=0.15), consistent with Bd disturbing bacterial 

communities.  

Symptoms caused by Bd infection. All frogs in the Bd+ treatment became infected with Bd, 

and Bd loads increased rapidly with time (Figure S1a). Increases in Bd load were 

accompanied by weight loss: Frogs in the Bd- group appeared to gain weight over the course 

of the experiment, while frogs in the Bd+ group lost weight (repeated measures ANOVA 

with Bd treatment, Frog Source, and Water Source as explanatory variables; PBdxTime<0.0001, 

Figure S1b). All frogs in the Bd- group survived the experiment, but the Bd+ group 

experienced considerable mortality (Figure S1c). We used ANOVA models to formally test 

effects of Bd infection on frog appetite (number of crickets eaten per week) and skin 

shedding measured (based on an ordinal 3-level rating system) at 6 and 8 weeks post 

infection. Frog Source and Water Source were included as additional explanatory variables in 

the model. Bd infection led to reduced appetite (P<0.0001 at 6 and 8 weeks PI, Figure S2a) 

and increased skin sloughing (P<0.0001 at both 6 and 8 weeks PI, Figure S2b).  

DISCUSSION 

Summary. Wild R. sierrae populations exhibit distinct disease dynamics, either persisting or 

declining in response to Bd infection.  These differences in disease dynamics in wild 

populations coincide with differences in the composition of skin-associated bacterial 

communities (Chapter 2), suggesting that the R. sierrae microbiome may play a role in 

response to Bd infection. Here, we aimed to identify factors that shape the R. sierrae skin 

microbiome. Our second objective was to clarify causal Bd-bacteria relationships by directly 

testing if microbial community composition affects Bd loads. Our results demonstrate that 
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both host background and the aquatic environment affect the skin microbiome. We found that 

innate differences between conspecific populations led to differences in the skin microbiome. 

We also found that lake water to which frogs are exposed can shape differences in the skin 

microbiome, even in the absence of additional environmental factors such as sediment, 

vegetation, or contact with other amphibians. Bd infection trajectories also differed between 

experimental treatments, covarying with both host and environmental treatments. However, 

because experimental treatments such as varying host population source or water source 

likely affect factors other than the microbiome, further research is required to definitively test 

a direct chain of events linking host and environmentally-induced differences in the 

microbiome with downstream resistance to disease. 

Frog population affects skin microbiome and Bd infection trajectory. Previous work showed 

differences between amphibian species sharing a common lake environment (Kueneman et 

al., 2014; McKenzie et al., 2012; Walke et al., 2014). Here, we show that within-species 

variation in the microbiome is at least partly controlled by innate differences between host 

populations. Furthermore, the effect of Frog Source was significant both in the absence of Bd 

and after Bd infection, indicating that the disturbance to the microbiome caused by Bd 

infection does not completely override host effects on the microbiome. We also showed that 

the rate of increase in Bd loads in the experiment differed between frogs from the two 

populations, demonstrating that host-controlled microbiome variation is associated with 

variation in host response to pathogen infection. Thus there is potential for a cascade of 

effects in which host background influences the microbiome, which in turn affects infection 

dynamics. However, it is also possible that frog population background affects disease 

dynamics through unknown mechanisms independent of the skin microbiome. Further 
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research is needed to clearly determine whether the association we observed between frog 

population, frog skin microbiome, and infection dynamics indicates a causal link between 

symbiotic bacteria and rates of pathogen growth on the host. 

In this study, rates of Bd load increase varied, but no frogs fully resisted or cleared Bd 

infection, and all frogs challenged with Bd eventually developed high Bd loads. Thus, none 

of the experimental treatments conferred true resistance to infection or disease. It is not 

surprising that neither the Dusy Basin nor Humphreys Basin frog populations exhibited 

resistance to disease, since wild populations in both of these locales have collapsed due to 

Bd. (This study used frogs in existing laboratory colonies to avoid unnecessary collection of 

wild R. sierrae. No existing colonies from populations persisting with Bd were available.) 

However, the Bd epidemic and resulting population decline were extremely rapid in 

Humphreys Basin compared with Dusy Basin. In Humphreys Basin, Bd was detected late in 

the 2010 field season, and by the time field sites became accessible after snow-melt the 

following spring, the entire metapopulation had declined to near extinction. In Dusy Basin, 

Bd was first detected in 2008, but the resulting decline was more gradual, with 

postmetamorphic R. sierrae observed through the 2010 field season (R.A. Knapp, personal 

communication). There are reports of R. sierrae observed in Dusy Basin even later than 

2010, but because intervention treatments were applied in 2010 it is possible that survival 

beyond 2010 is due to those interventions in addition to or instead of innate population 

differences. However, regardless of dynamics after 2010, the metapopulation decline in Dusy 

basin spanned at least two full years, whereas the metapopulation crash in Humphreys basin 

spanned less than one year. Increased metapopulation connectivity in Humphreys Basin may 

have contributed to the increased rate of Bd spread in that region. Our results suggest innate 
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differences between host populations may also have played a role, although we present this 

possibility as a hypothesis rather than a conclusion since we tested only one population from 

each basin and frogs were not matched for age or size.  

Differences in rates of Bd load increase may have practical importance even when no true 

disease resistance exists. For example, the slower Bd-induced declines in Dusy Basin enabled 

researchers to mobilize intervention efforts (treatment of frogs with the antifungal drug 

Itraconazole as well as a bacterial isolate identified as Janthinobacterium; coordinated by 

R.A. Knapp, V.T. Vredenburg, C.J. Briggs). In contrast the rapidity of the R. sierrae decline 

in Humphreys basin precluded any attempt at intervention. Thus, even without complete 

resistance, variation in the rate of increase in Bd infection intensity can have practical 

conservation implications. In the current study we found that even in captivity, frogs from 

Dusy and Humphreys populations harbor different bacterial communities, and also exhibit 

different rates of increase in Bd loads and host survival that mirror disease dynamics in the 

field. These results highlight the importance of further research to understand host population 

level differences, both in terms of host genetics and associated symbiotic microbes. That we 

observed differences even among closely related R. sierrae populations indicates that future 

studies comparing R. sierrae populations with qualitative differences in response to infection 

(persistence versus decline) will likely be even more revealing. 

Aquatic environment affects skin microbiome and Bd infection trajectory. A key finding of 

our study is that housing frogs in water from different lakes was sufficient to mimic 

microbiome patterns in the field: namely, differences between persisting and declining R. 

sierrae populations. In the field, R. sierrae populations that persist with Bd harbor different 

bacterial communities than populations that declined due to Bd (Chapter 2). Similarly, in the 
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current laboratory experiment, frogs developed different bacterial communities depending on 

whether they were housed in water collected from field sites inhabited by persisting 

populations or declining populations. This result is remarkable given the limitations of our 

mesocosms, which consisted simply of tanks with water from different lakes. No vegetation 

or sediment from field sites was added to the mesocosms. Lake water in bottles and tanks 

differs from water in the lake from which it was collected, and we previously showed that 

wild R. sierrae have different microbiomes from captive R. sierrae (Jani and Briggs, 2014). 

However, even our limited mesocosms composed of different types of lake water conferred 

differences in the bacterial communities on R. sierrae skin. Further analyses will be required 

to determine the extent to which the specific bacterial taxa that differed between lake water 

treatments in the current laboratory experiment are related to the taxa that differed between 

persistent and declining populations in the field (Chapter 2). Notably, all frogs in this 

experiment were from declining populations, which is important because frog source and 

water source are not confounded and we can conclude that the differences observed between 

different water treatments are indeed due to those water treatments. In contrast, in field 

surveys we cannot conclude whether differences in the microbiomes of persisting and 

declining populations is due to the environment or frog genetic background, or both. Notably, 

the difference between microflora of persisting and declining populations was more dramatic 

in field surveys (Chapter 2) than in the current experiment, indicating that not all of the 

variation observed in the field is captured by our experiment. We think it is most likely that, 

in addition to the aquatic environment, host genetic background contributes to differences 

between declining and persisting populations in the field, although additional environmental 

variables not tested in our experiment (such as lake sediment) may also play a role. Also of 
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note is the fact that Water Source (as well as Water Sterility and Habitat Persistence) affected 

the R. sierrae microbiome in both the presence and absence of Bd. Together, these results 

demonstrate that water is an important environmental driver of variation in the microbiome, 

and differences in water sources alone can explain some of the variation in microbiomes 

between persisting and declining R. sierrae populations in the field. However, these 

differences in skin microflora did not translate to any difference in the rate of Bd load 

increases. Thus, to the extent that our mesocosms represent environmental variation, we 

found no evidence supporting the hypothesis that environmentally-mediated differences in 

the microbiome determine R. sierrae populations persistence or decline due to 

chytridiomycosis.  We speculate that host genetic differences may be more important than 

environmental drivers in determining R. sierrae population response to Bd infection. 

This experiment also revealed differences in the overall composition of microbiomes of frogs 

housed in sterile compared with non-sterile aquatic environments. These results are 

consistent with a study of terrestrial salamanders (Loudon et al., 2013), in which maintaining 

salamanders in non-sterile soil compared with sterile liquid medium led to differences in skin 

bacterial communities. However, while Loudon et al. observed higher bacterial diversity on 

animals kept in non-sterile soil than those kept in sterile liquid medium, we found no 

difference in diversity between sterile and non-sterile aquatic environments.  This divergence 

of our results from those of Loudon may reflect host species differences. It is also possible 

that differences in the Loudon et al. study reflect effects of both environment sterility and 

substrate structure (liquid medium compared with soil). In addition, in our experience 

microbiome diversity exhibits less consistent patterns than microbiome composition. For 

example, we found an effect of Bd infection on diversity during a controlled laboratory Bd 
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challenge experiment, but no correlation between diversity and Bd load among frogs in a 

given lake in the field (Jani and Briggs, 2014). Furthermore, the choice of diversity index can 

affect results: We found that the observed number of OTUs is affected by Bd infection, but 

other metrics of richness and diversity were unaffected. It is therefore difficult to draw clear 

conclusions from the difference in results regarding bacterial diversity in the current study 

compared with work in other systems. 

In addition to affecting the R. sierrae microbiome, the experimental aquatic environment 

affected Bd infection trajectories. Increases in Bd loads were more rapid in frogs housed in 

sterile water than frogs housed in live lake water. Thus, the species pool present in the 

aquatic environment is linked to differences in the frog skin microbiome as well as 

downstream disease dynamics. None of the Water Source treatments conferred complete 

resistance to infection, but it is possible that under some conditions factors delaying the rate 

of increase of infection burdens may provide time for the host immune system to respond to 

the pathogen. Adaptive immune responses to Bd have been observed in Cuban treefrogs 

(Osteopilus septentrionalis, (McMahon et al., 2014), and current studies are examining 

adaptive immunity in R. sierrae (Toothman and Briggs in prep). As with differences in frog 

genetic background, the tentative conclusion of a cascade of effects from aquatic 

environment to skin microbiome to disease dynamics is only one possible interpretation of 

the data, and it is important to consider alternative explanations. For example, in addition to 

harboring different bacterial communities, water sources may vary in water chemistry, which 

may affect the R. sierrae microbiome. Another possible explanation for why Bd dynamics 

differed between live and sterile water treatments is that Bd survival in the aquatic habitat is 

directly affected by Water Sterility, which could lead to differences in the density of infective 
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zoospores in the aquatic environment, affecting the rate of Bd load increase on frogs. In the 

latter case, Water Sterility affects the frog microbiome and also independently affects disease 

dynamics, without there necessarily being a causal link between the frog microbiome and 

disease dynamics. Studies have found that grazing by aquatic crustaceans affects Bd 

zoospore densities (Hamilton et al., 2012; Kagami et al., 2014; Searle et al., 2013). In the 

current study, we filtered all macro-organisms from lake water, but bacteria present in the 

water may interact with Bd, and presence of organic matter, albeit minimal in these 

oligotrophic lakes, may provide resources for Bd growth or survival. Thus we cannot 

conclude with certainty that the differences in disease trajectories between live and sterile 

water treatments were caused by a cascade of effects from aquatic bacteria to frog 

microbiome to disease dynamics.  Additional studies examining growth and survival of Bd in 

different aquatic environments in the absence of macrofauna may help clarify interpretation 

of our results. 

Teasing apart cause and effect in correlations between Bd and the microbiome. Surveys of 

wild populations of R. sierrae and its close relative Rana muscosa have found correlations 

between population response to Bd (persistence or decline) and skin-associated bacterial 

communities (Chapter 2; Woodhams et al., 2007). However, Bd has also been shown to 

disturb the microbiome (Jani and Briggs, 2014). It is therefore impossible to determine from 

field surveys of infected populations whether correlations between bacteria and Bd load are 

due to variation in protective effects of bacteria or Bd-induced disturbance of the 

microbiome. In the current study, we used a controlled experiment to tease apart cause and 

effect. We found that the severity of Bd infection is significantly correlated with overall 

composition of the microbiome after Bd infection, but not before Bd infection. These results 
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indicate that in this experiment the effect of Bd infection on the microbiome was stronger 

than the effect of the microbiome on Bd infection. This result is consistent with the fact that, 

despite variation in rates of disease progression, all frogs in this study were susceptible to 

chytridiomycosis. Similar analyses comparing populations or species that show greater 

distinction in resistance to Bd would provide valuable additional insight to the role of the 

amphibian microbiome in disease resistance. 
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TABLES AND FIGURES 

Table 1. Sources of water used as treatments in the experiment. “Population response to Bd” 
indicates whether the R. sierrae population inhabiting each lake declined due to Bd or 
persists by co-existing with the pathogen. 

Water Source Location Population response to Bd 

Ebbetts Pass Alpine County, CA persisting 

Mono Pass Yosemite National Park, CA persisting 

Unicorn Pond Yosemite National Park, CA persisting 

Barrett Lakes Basin Kings Canyon National Park, CA declined 

Dusy Basin Kings Canyon National Park, CA declined 

Humphreys Basin Sierra National Forest, CA declined 

Sterile Water NA NA 
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Table 2. Description of variables included in statistical models. A given model included Frog 
Source and either Site Persistence or Water Sterility. Water Source was nested in Site 
Persistence or Water Sterility. Bd Treatment (Bd-infected or unexposed) was included in 
analyses of data collected after Bd infection. 

Variable 
Name 

Number 
of Levels Description 

Frog 
Source 2 Source population from which frogs in the experiment 

originated. 

Water 
Source 7 Sterile water or one of six Sierra Nevada lakes from which 

water for experimental treatments was collected. 

Site 
Persistence 2 

Response to Bd (decline or persist) of the population that 
inhabited the lake from which water for this experiment was 
collected. The two levels each encompass three Water 
Sources (3 persisting lakes and 3 declining lakes). 

Water 
Sterility 2 

Sterile water or Lake Water. (Sterile Water is a single 
Water Source and Lake water encompasses 6 Water 
Sources) 
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Figure 1. Skin bacterial communities were significantly different between frogs from the two 
source populations prior to Bd infection (a) and differences persistend after Bd infection (b). 
Housing frogs in water collected from lakes inhabited by persisting or declining frog 
populations also led to differences in the microbiome, (c) and these differences persisted after 
bd infection (d). Plots are NMDS ordination of R. sierrae skin-associated bacterial 
communities sampled after 3 weeks exposure to experimental water treatments (left), and 3 
weeks after Bd infection (right). Marker colors indicate Frog Source (top) or Site Persistence 
(bottom). NMDS stress: (a,b) 0.12; (c,d) 0.16. 
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Figure 2. After 3 weeks of exposure to water treatments, bacterial diversity was slightly 
higher on R. sierrae housed in water that had been collected from lakes inhabited by 
persisting frog populations, compared with frogs housed in water collected from lakes 
inhabited by declining populations. P<0.05 for all four richness or diversity metrics. 
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Figure 3. Skin bacterial communities differed between frogs housed in sterile water 
compared with frogs housed in live lake water after three weeks exposure to experimental 
water treatments (a). Differences persisted after Bd infection (b). Marker color indicates 
water treatmente (sterile or lake water). NMDS stress: (a) 0.09; (b) 0.16. 
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Figure 4. Bd load trajectories and survival of frogs, grouped by Frog Source (top), Site 
Persistence (middle), or Water Sterility (bottom). Rates of Bd load increase and survival 
curves were affected by Frog Source (a,d) and Water Sterility (c,f) but not Site Persistence 
(b,c). However, all frogs eventually developed high Bd loads. 
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SUPPLEMENTARY FIGURES 

Figure S1. (a) Bd infection trajectories averaged across all Bd-exposed frogs compared with 
Bd-free control group. (b) Weight loss caused by Bd infection. (c) Survival curve for all Bd-
exposed frogs compared with Bd-free control group. 
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Figure S2. (a) Bd infection trajectories averaged across all Bd-exposed frogs compared with 
Bd-free control group. (b) Weight loss caused by Bd infection. (c) Survival curve for all Bd-
exposed frogs compared with Bd-free control group. 

 

 

 

 

 

 




