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Abstract. Human interaction is central to many computing systemsrttire
a high level of assurance. We term such systemsigis-confidence interactive
systemsExamples of such systems include aircraft control syst@mbsracting
with a pilot), automobiles with self-driving features @nacting with a driver),
medical devices (interacting with a doctor), and electromting machines (in-
teracting with a voter). A major challenge to verifying therect operation of
such systems is that it is difficult to formally specify thenman user’s view of
correct operation and perception of the input/output fatar. In this paper, we
describe a promising approach towards addressing thiteogal that combines
formal verification with systematic testing by humans. Wealie an illustrative
application of this approach to electronic voting in the LJa®d outline directions
for future work.

1 Introduction

High-confidenceomputer systems are those that require a high level of asserof
correct operation. Many of these systemsiateractive— they interact with a human
being — and the human operator’s role is central to the ojperaff the system. Ex-
amples of such systems include fly-by-wire aircraft congyatems (interacting with a
pilot), automobiles with driver assistance systems (adtng with a driver), medical
devices (interacting with a doctor, nurse, or patient), alettronic voting machines
(interacting with a voter). The costs of incorrect openatio all such systems can be
very severe. Given the central role of the human operat@ringhese systems, correct
operation necessarily involves the human-computer iatetfin fact, problems in this
interface are often the source of failures. For instance UtS. Federal Aviation Ad-
ministration has attributed several incidents, includetgl crashes, to problems in the
human-computer interface [3]. Similarly, human errors iadical device use account
for a large portion of medical errors, and many of these srane due to poor design
of the interface [5, 6]. It is therefore essential to deveteghniques to ensure correct
operation of such high-confidence interactive systems.

Formal methods appear to provide the perfect fit for this ndedhniques such
as model checking and automatic theorem proving have madeetrdous advances
over the past several years, with successful applicatmtisetverification of hardware,
software, and even biological systems. However, they ale applicable to systems
where all the parts are formally specifiable. This presept®blem for interactive sys-
tems, where it is difficult or even impossible to formally sifg the human user’s view



of correct operation and perception of the input/outp\ériiaice. For instance, given a
bitmap image on a touch-sensitive screen, automaticatlygeizing which portions of
the screen a human would expect to form a touchable regignifetton) might require
non-trivial image processing. Testing by humans is wellleslto checking that the sys-
tem performs according to their expectation, since it elmes the need to model the
human operator. However, a limitation of conventionalitesis that it is not exhaustive
and it therefore can only find bugs; it cannot guarantee Hizsence.

In this paper, we advocate for a new approach that enétidgsrincipled design of
high-confidence interactive systems where correctnessrigied through a combina-
tion of formal verification and testing by humafi$he approach has three main steps.
First, we need to identify design principles that ease tkk td verification and test-
ing. Second, given a set of verification tasks, we need skeatafporithmic methods to
tackle them. Third, a rigorous testing protocol must be gigecfor humans that also
uses a tractable number of tests (ideally, low-degree pofyal in the size of the de-
sign, since running each test involves possibly severalshaithuman effort). We have
performed an initial application of the approach to diresterding electronic voting
for U.S. elections [7].

Two key elements of the approach anéegrating design and verificatioand us-
ing formal verification to reduce the testing burdeffe propose that systems must
be designed in a component-based manner following the iptascof determinism
independenceand unambiguity of the I/O interfacdJnambiguity of the output, for
example, means that the system output is a 1-1 function obaeswf “core” state
variables defined by the designer (possibly along with ttstesy input), and nothing
else. Determinism ensures that these core state varialmégeas a function only of
their previous values and the system input. For modulahtycore state variables are
partitioned amongst different system components. Indégece ensures that updating
the state of one component does not change the state of atingonents.

The above design principles are not new in and of themselN@sever, the way
in which wecombinethem for design andgerify them on an implementation is novel.
We verify determinismindependenceandunambiguityon the system code using en-
codings to satisfiability modulo theories (SMT) formulagjigh are then proved au-
tomatically [2]. The results of the above verification is dise reduce the amount of
human-driven testing to a tractable number. Our approaeb tugorous test coverage
criteria to derive “test scripts” which humans can then wsevialuate the correctness
of the system through testing.

In the rest of this paper, we sketch out the approach usirgjret@c voting as an
illustrative application domain (Section 2), and outlirneedtions for future work (Sec-
tion 3).

2 Electronic Voting

We begin by describing one of our key motivating applicasiaglectronic voting. The
work described in this section is joint with several colleag and has been published
earlier [7].



2.1 Preliminaries

Electronic voting is increasingly coming into use in the Ua®d around the world.
It has brought with it concerns about reliability, accuraayd trustworthiness. Exist-
ing electronic voting systems can be complex systems, aftesisting of hundreds of
thousands of lines of code, and a single bug anywhere in tte could potentially
cause votes to be lost, misrecorded, or altered. As a résaldifficult for independent
evaluators to be confident that these systems will recordtandt the votes accurately.
Moreover, in order to completely verify the voting machiité necessary to also verify
the interface to human voters, i.e., that the operation®fitting machine is consistent
with the behavior expected by voters.

The kind of voting machine that we focus on here is known agectiecording
electronic (DRE) voting machine (although the principles use here are applicable
elsewhere). A DRE voting machine is one where voters intexitt the machine to
make their selections and then the votes are recorded@iézaily. The most familiar
example is a touchscreen voting machine, where the voteraictis with a graphical
user interface displayed on the screen by software runmrg@voting machine. The
voter presses at various locations on the screen to repistaelections, and the voting
software records the voter’s selections once she is readggbher ballot. DREs are
widely deployed throughout the US: for instance, in 2008200 DRESs were used by
approximately 33% of registered voters [1, 9]. While DREs aommonly thought to
be large, complex machines, in preliminary work [7] we haveven that a functional
DRE can be designed as a finite-state machine directly indag] in custom Verilog
code, so that there is no operating system or runtime sadteavironment to verify.

Before we get into the notion of correctness for a voting maghhere are some
voting-related terms that are used throughout the disoossi

Contest A single race, such as for President, that a voter will vate o

Ballot: The physical or electronic representation of all contésds a voter will be
deciding on election day.

Candidate: A choice in a particular contest. The voter will typicallyake one or
more selections from among two or more candidates for eactesbon the ballot.

\oting Session A voter’s interaction with the machine from the time theg given
a new ballot until the time their entire ballot is stored imnelatile memory, i.e., until
the time they cast the ballot. A session in U.S. electiongally comprises voting on
several contests.

Cast Casting a vote refers to the action taken at the end of a y@@ssion that
causes the selections made in all contests to be irrevoeaiitgn to non-volatile mem-
ory. Making a selection in a particular contest and movingaotie next contest isot
considered casting a vote.

Selection State The state representing the set of all candidates curreatbcted
in a particular contest.

Button: A (usually rectangular) region on the screen. Touchingndrgre within
this region activates a particular functionality of the imae. The corresponding part
of the screen image is often designed to provide the appeacia physical button.



Given the above terms, consider the notion of correctnessdimgle voting session:
given a series of inputs (button presses) from the humam,tbtemachine must record
votes in accordance with tlexpectation of the human voter

A human voter’s expectation is difficult ttompletelyspecify formally. However,
it is possible tospecify at least part of it formallyas a state machine describing how
the voting machine must update its internal state: for mstahow the set of candi-
dates currently selected should be updated when the vasses a button, or how the
current contest is updated when the voter presses a “nexgitevious” buttong to nav-
igate between contests, or that the ballot is irrevocaldy when the voter presses the
“cast” button. This state machine serves to formalize osmamptions about the “mental
model” of the user.

However, the specification machine does not specify all huexgpectations — for
instance, what kinds of screen images should be produceaebyoting machine. For
example, if there is a rectangular region on the screen thplays “Thomas Jefferson”
in some readable font, a human might expect that pressingtrdon of the screen
would select Jefferson, causing Jefferson’s name to bdigigbad and eventually caus-
ing a vote to be recorded for Jefferson if no other selecB@ubsequently made in this
contest. However, because it involves semantic interpoetaf the contents of a partic-
ular screen image by a human it is not clear how to specifyekyiected behavior in a
precise, mathematical fashion. For instance, given a Ipiimage, mechanically recog-
nizing which portions of the screen a human would expect toespond to a touchable
region might require non-trivial image processing; moerpwmechanically determin-
ing that the touchable region should be associated with Hsalafferson might require
computer vision algorithms and other complex computaft@nmalizing these kinds of
human expectations in a formal logic could be horribly measg probably error-prone
as well.

For this reason, one might consider using a representasimelf human “test
voters” in the validation process. In particular, we ask Aamoters to cast test votes on
the voting machine during pre-election testing. We ask tteeoheck that the machine
seems to be working correctly and recording their votes rately. We assume that if
the machine behaves in a way inconsistent with their expents they will notice and
complain. Consequently, if the voting machine passes dliede tests, then at least we
know that the voting machine has behaved in a way consistiéimtwman expectations
during those tests.

We propose thaguch human-driven testing can be supported by formal vaticdio.
For instance, we can formally verify that the voting machjag implemented in code
or in hardware) behavegeterministically This ensures that the voting machine will
behave the same way on election day as it did in pre-elea&timg.

However, this verification alone is not enough to provid€ulsguarantees in prac-
tice, because the number of tests needed to exhaustivelgigxall possible machine
behaviors is astronomically large. For instance, in antieleavith N contests and
choices in each contest, the number of different ways to fassuming voters are only
allowed to vote for a single candidate in each contesit}isan exponential function of
N. Taking into account the possibility to change one’s saastin a contest as many
times as one likes, the number of ways to interact with thangahachine becomes in-



finitely large. Clearly, we cannot exhaustively try all oé#fe possibilities in pre-election
testing: we need something more selective.

The burden of testing can be reduced by a combination of ipteat design and
formal verification. In the above scenario, we can ensuredhly O(kN) tests are
needed. Roughly speaking, if the state and behavior for eactest isndependenof
the state of all other contests, it suffices to choose a téstthat attains 100% transition
coverage in each individual contest and of navigation betweontests, rather than
100% coverage of the whole voting machine’s statespace. ddn be achieved with
O(k) tests per contest, since the state space in a single cositestyi of sizeO(k)
(whereas the statespace for the entire voting machine ba®$k” ) and thus would
require exponentially many tests to fully cover). Such peledence properties can be
verified using formal verification.

Each contest can be viewed as a sepdagfieal componenof the voting machine.
Ideally, the design should be structured into logical comgrds in a manner so as to
ease the formal verification aidependencef one logical component on another.

Finally, we also need to verify that the input/output inéee of the voting machine
is not ambiguous; e.g., that the machine cannot output tine saitput screen for two
different internal states (selection state and contestheunOne way of formalizing
this is to show that the output bitmap generated by the vatiaghine code is an injec-
tive (1-1) function of the selection state and contest nunfgch anjectivity property
can also be verified by formal verification.

To summarize, verifying that a voting machine meets humaeetations must in-
volve the following steps:

e Formalizing part of the human mental model as a finite-statehime;

e Designing the voting machine usihggical componentso that it satisfies the prop-
erties ofdeterminismindependenceandunambiguityof input/output;

e Formally verifying that the design actually satisfies thexabproperties, and

nent (contest) can be tested independently so that thelbrenaber of tests grows
polynomially with the number of such components.

For the first step, it is relatively easy to formalize correperation of the voting
machine (informally described above) as a finite-state mach. We term this state
machine thespecification voting machine- it is intended to capture the typical mental
model that a voter has for U.S. elections. Details of this ehaday be found in our
paper [7]; in essence, it specifies the initial state (stathé first contest with no se-
lections), how one can navigate between contests and ¢alettdeselect) candidates
within a contest, and what happens when the “cast” buttomdsged to finalize one’s
votes. The important point for the rest of the paper is thatoperation can be formal-
ized as a (finite) state machine.

2.2 Verifying Independence, Determinism, and Injectivity

We now describe how SMT solving can be used for verificatiothefthree key prop-
erties: independence, determinism, and injectivity. laeotto perform formal verifica-



tion, the implementation (code) of the voting machine i®enatically transformed into
a finite-state transducer model. For our Verilog implemioig 7], this is a trivial step.

Independence and determinism both involve checking thatreble v depends
only on some specified s& = {w, ..., w,} of variables, andhothing elseln other
words, we must verify that can be expressed as a deterministic function of the other
variablesw = f(ws,...,w,), for some functionf, or in shorthandy = f(WW). Put
another way, we want to check thatdeterministically depends o, and onlyW,
i.e., for every other variable ¢ W, v is conditionally independent af givenW. We
verify this kind of property by formulating it as a Booleartisfability (SAT) problem
(for completely bit-level designs) or as a satisfiabilityanto theories (SMT) problem
for designs specified at higher levels of abstraction.

The first step is to encode a step of the transducer as a Bomeanla. We begin
by introducing some notation. We assume there is & sdtstate variables, so that each
valuation of values to these variables corresponds to @ stahe system. Similarly, let
I be a set of input variables, aiigla set of output variables. For each state variable
let the variables’ denote the previous value gflet S’ denote the set of these variables.
Then we can write the transition relation as a functipwhich expresses the state as a
function of the previous state and the input via the relafioa 6(S’, I). (This is short-
hand fors; = 6;(s},...,s),i1,...,4¢) fori = 1,...,k, assumingS = {s1,..., sk}
andl = {iy,...,4,}.) Similarly, we assume the output function is modeled asnafu
tion p, via the relationD = p(.9). Thus, we can model a step of the transducer from
stateS’ to S by the formula

#(S, 8. 1,0)= S=6(S'I)NO = p(S).

P

v €S1UO0 i vy € So U Oy
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L
Fig. 1. Satisfiability problem for checking that deterministically depends oW and nothing
else

Now suppose we wish to check that state or output variatd@ deterministic func-
tion of a sefi of state or input variables. L&t , So be two copies of the state variables,
1, I be two copies of, andO1, O, be two copies 0. Consider the formula

w(Sla Sia Ila 017 521 Séa IQa 02) =
¢(S17 Sia Ilv 01) A QS(SQ? Séa 127 02)/\
1)13&’02/\\Vlwew.’w1:w2.



Effectively, we make two copies of our model of the system.th\én check whether
it is possible forv to take on two different values in the two copies, while aliables
in W take on the same value in both copies; the answer revealhametepends
deterministically upoV. In particular,y can be expressed as a deterministic function
of W (v = f(W)) if and only if ¢ is unsatisfiable. Figure 2.2 illustrates this idea. This
approach to checking dependence is similar to the techmifjuging self-composition
for checking information flow [8]. The key idea is to formwdaton-interference as a
2-safety property.

The property of injectivity can be easily formalized in login general, the outputs
O of the transducer is computed as a functigiy), where, as aboves is the state
of the system. However, for injectivity, we wish to show thas a1-1 function of a
subset of “relevant state variables”. We do this in two stépst, for a candidate set of
state variable$V’, we check (as shown above) thais a function only of variables in
W. Then to prove that is an injective function, we additionally need to prove ttiest
following formula is valid:

p(W1) = p(Wa) = (W1 = Wp)

In other words, if two output screens are identical, thevaaié state of the system is the
same in the two cases.

All of these checks have been performed for the voting machia designed [7]
using the Beaver SMT solver for finite-precision bit-veadthmetic [4].

2.3 Systematic Human-Driven Testing

A key component of the approach is a systematic protocoldstirtg the interactive
system by human “test users”. The main steps are:

1. Prove determinism, independence, and unambiguityctimjgy) properties on the
implementationas described above;

2. Define coverage criteria that a test suite must satisfy, an

3. Prove that the two items above taken together ensureatoess of the interactive
system.

We now briefly sketch the above approach using our voting inaatase study.

A test input(or justtes) is a sequence of button presses involving navigating be-
tween contests or selecting candidates that ends inahe button being pressed. Let
74 denote the input-output trace exhibited by the implem@nanachineA on test
inputT’, and letrp be the trace exhibited b onT. We ensure by design and formal
verification that4d andP are deterministic, meaning that for aythere exists exactly
oneT4 and exactly one». Denote byl aninput/output interpretation functiothat
formalizes (i) how a human voter might map regions on theestte input buttons,
and (ii) how the human voter might map the bitmap of an outprgen to their percep-
tion of the relevant state of the machine (i.e., the currentest and selection state). If
I(7.4) = Tp, we say thatd is correct on test” or that test” passes

Intuitively, at each step, the tester will check the outpmreen to make sure that
the voting machine appears to have responded correctlyrdiog to their expectations



about correct behavior (e.g., after selecting a candidlagecandidate should be high-
lighted or otherwise appear to be selected). After castiei thallot, the tester will
inspect the cast vote record produced by the voting mackige, ©On a paper readout)
and check that it appears to be correct (i.e., it is condistéh the selections the tester
has made during this test, according to their interpretaticthe test inputs). If any of
these checks fail, the human tester will judge the macline have failed; otherwise,
the human tester will pass the machine.

A test suite] is a set of complete tests. We say tfigbasses if every’ € 7 passes.

We assume that if any test fails, the voting system will notibed in an election.
Therefore, we wish to identify a condition gnso that if every test ifl” passes, then we
can be assured that is trace-equivalent t@ after application of the input-output in-
terpretation function. We identify such a sufficient coratiton7” below. The condition
relies upon the following formally verified properties:

PO: The output function of the voting machine is a injective ftioic of the contest
number and selection state of the current contest.

P1: The voting machine is a deterministic transducer.

P2: The state of a contest is updated independently of the stather contests.

P3: If a navigation button is pressed, the selection state nesnaichanged.

P4: If a selection button is pressed, the current contest nusthgs unchanged.

In addition, we require another property.df(to be formally verified on the imple-
mentation):

P5: The electronic cast vote record that is produced when wethasballot is an
accurate copy of the selection state for each contest.

All of these properties have been formally verified on thelenpentation used in our
paper [7].

Coverage CriteriaWe say that a test suifE satisfies our coverage criteria if the result-
ing set of traces oP satisfies the following conditions:

CO: (Initial State CoveraggThere is a test in which, from the initial output scregn
P receives theast input.
C1: (Transition Coverage
(a) (Selection transitionsFor every contest, every selection state within con-
testi, and every input buttohcorresponding to a selection, there is some trace
whereP received in a state(i, s) where theith component of is s;.
(b) (Navigation transitionsFor every contest and every input button correspond-
ing to navigation between contests, there is some traceaffhegceived in a
state of the forndi, s).
C2: (Output Screen Coveray&or every contest and every selection statg of P
within contesti, there is some trace @ wherethe last transitiorwithin contest
ended ak; and then at some point thereaffereceives theast input.

The main correctness theorem we obtain in our paper [7] fenvtiting machine
described therein is that the tests pass iff the machinadstequivalent w.r.t. the mental
modelP:



Theorem 1. Consider a test suit§ that satisfies coverage criteria CO—C2. Thén,
passes if and only ifl is correct (i.e.,Tr(P) = {I(7) : 7 € Tr(A)}).

2.4 Extensions

The basic approach outlined in the preceding sections issuékd for finite-state inter-
active systems, such as the voting machine. However, evitie idomain of electronic
voting machines, there is more to be done by including ack@rfieatures of voting,
such as a summary screen that lists selections made in faudtptests, straight-party
voting, where one can cast a vote for all candidates of the garty, instant runoff vot-
ing, where one can rank candidates rather than select thenae some of these, we
have already developed some initial ideas that can be useddnd the basic approach.

3 Conclusions and Future Work

Even as computing systems are increasingly integratedunt@veryday lives, human

interaction and operation remains central to their workingthis paper, we describe
how a combination of formal verification and systematicitesby humans can help in

improving the assurance of these systems. As an illustrattample, we described our
work on verification of an electronic voting machine for Ueections [7].

A particularly compelling next step is to consider inteheetcyber-physical sys-
tems— systems that tightly integrate computational procesststhe physical world,
possibly involving networking — that also have humans pigygentral roles in their
operation. Modern automotive, avionics and medical systara good examples. The
technical challenge in these systems vis-a-vis electrasting arises from the combi-
nation and close interaction of continuous and discrete stad dynamics. While the
essence of the approach described in this paper, inclumgroperties of indepen-
dence, determinism, and umabiguity, should remain reteeastensions are required
to deal with the complexity in the state space. Our ongoingkvi® developing new
techniques for such systems.

Another direction for future work involves systems that éianultiple humans in-
volved — i.e., teams of human operators or even multiple ating human agents
interacting with computing systems, possibly over a nekwAitogether, many more
advances are needed before we can achieve the goal of lighaase distributed cyber-
physical systems with multiple humans in the loop.
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