
UC Berkeley
UC Berkeley Previously Published Works

Title
Verifying High-Confidence Interactive Systems: Electronic Voting and Beyond

Permalink
https://escholarship.org/uc/item/8ck5c50s

ISBN
9783642356674

Author
Seshia, Sanjit A

Publication Date
2013

DOI
10.1007/978-3-642-35668-1_1
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8ck5c50s
https://escholarship.org
http://www.cdlib.org/


Verifying High-Confidence Interactive Systems:
Electronic Voting and Beyond

Sanjit A. Seshia

EECS Department, UC Berkeley
sseshia@eecs.berkeley.edu

Abstract. Human interaction is central to many computing systems thatrequire
a high level of assurance. We term such systems ashigh-confidence interactive
systems. Examples of such systems include aircraft control systems(interacting
with a pilot), automobiles with self-driving features (interacting with a driver),
medical devices (interacting with a doctor), and electronic voting machines (in-
teracting with a voter). A major challenge to verifying the correct operation of
such systems is that it is difficult to formally specify the human user’s view of
correct operation and perception of the input/output interface. In this paper, we
describe a promising approach towards addressing this challenge that combines
formal verification with systematic testing by humans. We describe an illustrative
application of this approach to electronic voting in the U.S., and outline directions
for future work.

1 Introduction

High-confidencecomputer systems are those that require a high level of assurance of
correct operation. Many of these systems areinteractive— they interact with a human
being — and the human operator’s role is central to the operation of the system. Ex-
amples of such systems include fly-by-wire aircraft controlsystems (interacting with a
pilot), automobiles with driver assistance systems (interacting with a driver), medical
devices (interacting with a doctor, nurse, or patient), andelectronic voting machines
(interacting with a voter). The costs of incorrect operation in all such systems can be
very severe. Given the central role of the human operator/user in these systems, correct
operation necessarily involves the human-computer interface; in fact, problems in this
interface are often the source of failures. For instance, the U.S. Federal Aviation Ad-
ministration has attributed several incidents, includingfatal crashes, to problems in the
human-computer interface [3]. Similarly, human errors in medical device use account
for a large portion of medical errors, and many of these errors are due to poor design
of the interface [5, 6]. It is therefore essential to developtechniques to ensure correct
operation of such high-confidence interactive systems.

Formal methods appear to provide the perfect fit for this need. Techniques such
as model checking and automatic theorem proving have made tremendous advances
over the past several years, with successful applications to the verification of hardware,
software, and even biological systems. However, they are only applicable to systems
where all the parts are formally specifiable. This presents aproblem for interactive sys-
tems, where it is difficult or even impossible to formally specify the human user’s view



of correct operation and perception of the input/output interface. For instance, given a
bitmap image on a touch-sensitive screen, automatically recognizing which portions of
the screen a human would expect to form a touchable region (e.g. button) might require
non-trivial image processing. Testing by humans is well-suited to checking that the sys-
tem performs according to their expectation, since it eliminates the need to model the
human operator. However, a limitation of conventional testing is that it is not exhaustive
and it therefore can only find bugs; it cannot guarantee theirabsence.

In this paper, we advocate for a new approach that enablesthe principled design of
high-confidence interactive systems where correctness is certified through a combina-
tion of formal verification and testing by humans. The approach has three main steps.
First, we need to identify design principles that ease the task of verification and test-
ing. Second, given a set of verification tasks, we need scalable algorithmic methods to
tackle them. Third, a rigorous testing protocol must be specified for humans that also
uses a tractable number of tests (ideally, low-degree polynomial in the size of the de-
sign, since running each test involves possibly several hours of human effort). We have
performed an initial application of the approach to direct-recording electronic voting
for U.S. elections [7].

Two key elements of the approach areintegrating design and verificationand us-
ing formal verification to reduce the testing burden. We propose that systems must
be designed in a component-based manner following the principles of determinism,
independence, andunambiguity of the I/O interface. Unambiguity of the output, for
example, means that the system output is a 1-1 function of a subset of “core” state
variables defined by the designer (possibly along with the system input), and nothing
else. Determinism ensures that these core state variables evolve as a function only of
their previous values and the system input. For modularity,the core state variables are
partitioned amongst different system components. Independence ensures that updating
the state of one component does not change the state of other components.

The above design principles are not new in and of themselves.However, the way
in which wecombinethem for design andverify them on an implementation is novel.
We verify determinism, independence, andunambiguityon the system code using en-
codings to satisfiability modulo theories (SMT) formulas, which are then proved au-
tomatically [2]. The results of the above verification is used to reduce the amount of
human-driven testing to a tractable number. Our approach uses rigorous test coverage
criteria to derive “test scripts” which humans can then use to evaluate the correctness
of the system through testing.

In the rest of this paper, we sketch out the approach using electronic voting as an
illustrative application domain (Section 2), and outline directions for future work (Sec-
tion 3).

2 Electronic Voting

We begin by describing one of our key motivating applications: electronic voting. The
work described in this section is joint with several colleagues and has been published
earlier [7].



2.1 Preliminaries

Electronic voting is increasingly coming into use in the U.S. and around the world.
It has brought with it concerns about reliability, accuracy, and trustworthiness. Exist-
ing electronic voting systems can be complex systems, oftenconsisting of hundreds of
thousands of lines of code, and a single bug anywhere in the code could potentially
cause votes to be lost, misrecorded, or altered. As a result,it is difficult for independent
evaluators to be confident that these systems will record andcount the votes accurately.
Moreover, in order to completely verify the voting machine,it is necessary to also verify
the interface to human voters, i.e., that the operation of the voting machine is consistent
with the behavior expected by voters.

The kind of voting machine that we focus on here is known as a direct-recording
electronic (DRE) voting machine (although the principles we use here are applicable
elsewhere). A DRE voting machine is one where voters interact with the machine to
make their selections and then the votes are recorded electronically. The most familiar
example is a touchscreen voting machine, where the voter interacts with a graphical
user interface displayed on the screen by software running on the voting machine. The
voter presses at various locations on the screen to registerher selections, and the voting
software records the voter’s selections once she is ready tocast her ballot. DREs are
widely deployed throughout the US: for instance, in 2008 and2010 DREs were used by
approximately 33% of registered voters [1, 9]. While DRE’s are commonly thought to
be large, complex machines, in preliminary work [7] we have shown that a functional
DRE can be designed as a finite-state machine directly in hardware, in custom Verilog
code, so that there is no operating system or runtime software environment to verify.

Before we get into the notion of correctness for a voting machine, here are some
voting-related terms that are used throughout the discussion.

Contest: A single race, such as for President, that a voter will vote on.

Ballot: The physical or electronic representation of all conteststhat a voter will be
deciding on election day.

Candidate: A choice in a particular contest. The voter will typically make one or
more selections from among two or more candidates for each contest on the ballot.

Voting Session: A voter’s interaction with the machine from the time they are given
a new ballot until the time their entire ballot is stored in non-volatile memory, i.e., until
the time they cast the ballot. A session in U.S. elections typically comprises voting on
several contests.

Cast: Casting a vote refers to the action taken at the end of a voting session that
causes the selections made in all contests to be irrevocablywritten to non-volatile mem-
ory. Making a selection in a particular contest and moving onto the next contest isnot
considered casting a vote.

Selection State: The state representing the set of all candidates currentlyselected
in a particular contest.

Button: A (usually rectangular) region on the screen. Touching anywhere within
this region activates a particular functionality of the machine. The corresponding part
of the screen image is often designed to provide the appearance of a physical button.



Given the above terms, consider the notion of correctness for a single voting session:
given a series of inputs (button presses) from the human voter, the machine must record
votes in accordance with theexpectation of the human voter.

A human voter’s expectation is difficult tocompletelyspecify formally. However,
it is possible tospecify at least part of it formally, as a state machine describing how
the voting machine must update its internal state: for instance, how the set of candi-
dates currently selected should be updated when the voter presses a button, or how the
current contest is updated when the voter presses a “next” or“previous” buttong to nav-
igate between contests, or that the ballot is irrevocably cast when the voter presses the
“cast” button. This state machine serves to formalize our assumptions about the “mental
model” of the user.

However, the specification machine does not specify all human expectations – for
instance, what kinds of screen images should be produced by the voting machine. For
example, if there is a rectangular region on the screen that displays “Thomas Jefferson”
in some readable font, a human might expect that pressing that portion of the screen
would select Jefferson, causing Jefferson’s name to be highlighted and eventually caus-
ing a vote to be recorded for Jefferson if no other selection is subsequently made in this
contest. However, because it involves semantic interpretation of the contents of a partic-
ular screen image by a human it is not clear how to specify thisexpected behavior in a
precise, mathematical fashion. For instance, given a bitmap image, mechanically recog-
nizing which portions of the screen a human would expect to correspond to a touchable
region might require non-trivial image processing; moreover, mechanically determin-
ing that the touchable region should be associated with Thomas Jefferson might require
computer vision algorithms and other complex computation.Formalizing these kinds of
human expectations in a formal logic could be horribly messy, and probably error-prone
as well.

For this reason, one might consider using a representative panel of human “test
voters” in the validation process. In particular, we ask human voters to cast test votes on
the voting machine during pre-election testing. We ask themto check that the machine
seems to be working correctly and recording their votes accurately. We assume that if
the machine behaves in a way inconsistent with their expectations, they will notice and
complain. Consequently, if the voting machine passes all ofthese tests, then at least we
know that the voting machine has behaved in a way consistent with human expectations
during those tests.

We propose thatsuch human-driven testing can be supported by formal verification.
For instance, we can formally verify that the voting machine(as implemented in code
or in hardware) behavesdeterministically. This ensures that the voting machine will
behave the same way on election day as it did in pre-election testing.

However, this verification alone is not enough to provide useful guarantees in prac-
tice, because the number of tests needed to exhaustively exercise all possible machine
behaviors is astronomically large. For instance, in an election with N contests andk
choices in each contest, the number of different ways to vote(assuming voters are only
allowed to vote for a single candidate in each contest) iskN , an exponential function of
N . Taking into account the possibility to change one’s selections in a contest as many
times as one likes, the number of ways to interact with the voting machine becomes in-



finitely large. Clearly, we cannot exhaustively try all of these possibilities in pre-election
testing: we need something more selective.

The burden of testing can be reduced by a combination of principled design and
formal verification. In the above scenario, we can ensure that only O(kN) tests are
needed. Roughly speaking, if the state and behavior for eachcontest isindependentof
the state of all other contests, it suffices to choose a test suite that attains 100% transition
coverage in each individual contest and of navigation between contests, rather than
100% coverage of the whole voting machine’s statespace. This can be achieved with
O(k) tests per contest, since the state space in a single contest is only of sizeO(k)
(whereas the statespace for the entire voting machine has sizeO(kN ) and thus would
require exponentially many tests to fully cover). Such independence properties can be
verified using formal verification.

Each contest can be viewed as a separatelogical componentof the voting machine.
Ideally, the design should be structured into logical components in a manner so as to
ease the formal verification ofindependenceof one logical component on another.

Finally, we also need to verify that the input/output interface of the voting machine
is not ambiguous; e.g., that the machine cannot output the same output screen for two
different internal states (selection state and contest number). One way of formalizing
this is to show that the output bitmap generated by the votingmachine code is an injec-
tive (1-1) function of the selection state and contest number. Such ainjectivityproperty
can also be verified by formal verification.

To summarize, verifying that a voting machine meets human expectations must in-
volve the following steps:

• Formalizing part of the human mental model as a finite-state machine;
• Designing the voting machine usinglogical componentsso that it satisfies the prop-

erties ofdeterminism, independence, andunambiguityof input/output;
• Formally verifying that the design actually satisfies the above properties, and
• Testing of the input/output interface by humans, where ideally each logical compo-

nent (contest) can be tested independently so that the overall number of tests grows
polynomially with the number of such components.

For the first step, it is relatively easy to formalize correctoperation of the voting
machine (informally described above) as a finite-state machineP . We term this state
machine thespecification voting machine— it is intended to capture the typical mental
model that a voter has for U.S. elections. Details of this model may be found in our
paper [7]; in essence, it specifies the initial state (start in the first contest with no se-
lections), how one can navigate between contests and select(and deselect) candidates
within a contest, and what happens when the “cast” button is pressed to finalize one’s
votes. The important point for the rest of the paper is that the operation can be formal-
ized as a (finite) state machine.

2.2 Verifying Independence, Determinism, and Injectivity

We now describe how SMT solving can be used for verification ofthe three key prop-
erties: independence, determinism, and injectivity. In order to perform formal verifica-



tion, the implementation (code) of the voting machine is automatically transformed into
a finite-state transducer model. For our Verilog implementation [7], this is a trivial step.

Independence and determinism both involve checking that a variablev depends
only on some specified setW = {w1, . . . , wn} of variables, andnothing else. In other
words, we must verify thatv can be expressed as a deterministic function of the other
variables:v = f(w1, . . . , wn), for some functionf , or in shorthand,v = f(W ). Put
another way, we want to check thatv deterministically depends onW , and onlyW ,
i.e., for every other variablex /∈ W , v is conditionally independent ofx givenW . We
verify this kind of property by formulating it as a Boolean satisfiability (SAT) problem
(for completely bit-level designs) or as a satisfiability modulo theories (SMT) problem
for designs specified at higher levels of abstraction.

The first step is to encode a step of the transducer as a Booleanformula. We begin
by introducing some notation. We assume there is a setS of state variables, so that each
valuation of values to these variables corresponds to a state of the system. Similarly, let
I be a set of input variables, andO a set of output variables. For each state variables,
let the variables′ denote the previous value ofs; letS′ denote the set of these variables.
Then we can write the transition relation as a functionδ, which expresses the state as a
function of the previous state and the input via the relationS = δ(S′, I). (This is short-
hand forsi = δi(s

′
1
, . . . , s′

k
, i1, . . . , iℓ) for i = 1, . . . , k, assumingS = {s1, . . . , sk}

andI = {i1, . . . , iℓ}.) Similarly, we assume the output function is modeled as a func-
tion ρ, via the relationO = ρ(S). Thus, we can model a step of the transducer from
stateS′ to S by the formula

φ(S, S′, I, O) ≡ S = δ(S′, I) ∧O = ρ(S).

W1

S1 O1 O2

ψ

φ1 φ2

v1 6= v2

S2

v2 ∈ S2 ∪O2v1 ∈ S1 ∪O1

W1 =W2

S′

1
\W1 I1 \W1 S′

2
\W2 I2 \W2

W2

Fig. 1. Satisfiability problem for checking thatv deterministically depends onW and nothing
else

Now suppose we wish to check that state or output variablev is a deterministic func-
tion of a setW of state or input variables. LetS1, S2 be two copies of the state variables,
I1, I2 be two copies ofI, andO1, O2 be two copies ofO. Consider the formula

ψ(S1, S
′
1
, I1, O1, S2, S

′
2
, I2, O2) ≡

φ(S1, S
′
1
, I1, O1) ∧ φ(S2, S

′
2
, I2, O2)∧

v1 6= v2 ∧ ∀w ∈ W . w1 = w2.



Effectively, we make two copies of our model of the system. Wethen check whether
it is possible forv to take on two different values in the two copies, while all variables
in W take on the same value in both copies; the answer reveals whether v depends
deterministically uponW . In particular,v can be expressed as a deterministic function
of W (v = f(W )) if and only if ψ is unsatisfiable. Figure 2.2 illustrates this idea. This
approach to checking dependence is similar to the techniqueof using self-composition
for checking information flow [8]. The key idea is to formulate non-interference as a
2-safety property.

The property of injectivity can be easily formalized in logic. In general, the outputs
O of the transducer is computed as a functionρ(S), where, as above,S is the state
of the system. However, for injectivity, we wish to show thatρ is a 1-1 function of a
subset of “relevant state variables”. We do this in two steps. First, for a candidate set of
state variablesW , we check (as shown above) thatρ is a function only of variables in
W . Then to prove thatρ is an injective function, we additionally need to prove thatthe
following formula is valid:

ρ(W1) = ρ(W2) =⇒ (W1 =W2)

In other words, if two output screens are identical, the relevant state of the system is the
same in the two cases.

All of these checks have been performed for the voting machine we designed [7]
using the Beaver SMT solver for finite-precision bit-vectorarithmetic [4].

2.3 Systematic Human-Driven Testing

A key component of the approach is a systematic protocol for testing the interactive
system by human “test users”. The main steps are:

1. Prove determinism, independence, and unambiguity (injectivity) properties on the
implementation, as described above;

2. Define coverage criteria that a test suite must satisfy, and
3. Prove that the two items above taken together ensure correctness of the interactive

system.

We now briefly sketch the above approach using our voting machine case study.
A test input(or just test) is a sequence of button presses involving navigating be-

tween contests or selecting candidates that ends in thecast button being pressed. Let
τA denote the input-output trace exhibited by the implementation machineA on test
inputT , and letτP be the trace exhibited byP onT . We ensure by design and formal
verification thatA andP are deterministic, meaning that for anyT , there exists exactly
oneτA and exactly oneτP . Denote byI an input/output interpretation functionthat
formalizes (i) how a human voter might map regions on the screen to input buttons,
and (ii) how the human voter might map the bitmap of an output screen to their percep-
tion of the relevant state of the machine (i.e., the current contest and selection state). If
I(τA) = τP , we say thatA is correct on testT or that testT passes.

Intuitively, at each step, the tester will check the output screen to make sure that
the voting machine appears to have responded correctly, according to their expectations



about correct behavior (e.g., after selecting a candidate,the candidate should be high-
lighted or otherwise appear to be selected). After casting their ballot, the tester will
inspect the cast vote record produced by the voting machine (e.g., on a paper readout)
and check that it appears to be correct (i.e., it is consistent with the selections the tester
has made during this test, according to their interpretation of the test inputs). If any of
these checks fail, the human tester will judge the machineA to have failed; otherwise,
the human tester will pass the machine.

A test suiteT is a set of complete tests. We say thatT passes if everyT ∈ T passes.
We assume that if any test fails, the voting system will not beused in an election.

Therefore, we wish to identify a condition onT so that if every test inT passes, then we
can be assured thatA is trace-equivalent toP after application of the input-output in-
terpretation function. We identify such a sufficient condition onT below. The condition
relies upon the following formally verified properties:

P0: The output function of the voting machine is a injective function of the contest
number and selection state of the current contest.

P1: The voting machine is a deterministic transducer.
P2: The state of a contest is updated independently of the state of other contests.
P3: If a navigation button is pressed, the selection state remains unchanged.
P4: If a selection button is pressed, the current contest numberstays unchanged.

In addition, we require another property ofA (to be formally verified on the imple-
mentation):

P5: The electronic cast vote record that is produced when we castthe ballot is an
accurate copy of the selection state for each contest.

All of these properties have been formally verified on the implementation used in our
paper [7].

Coverage CriteriaWe say that a test suiteT satisfies our coverage criteria if the result-
ing set of traces ofP satisfies the following conditions:

C0: (Initial State Coverage) There is a test in which, from the initial output screenz0,
P receives thecast input.

C1: (Transition Coverage)
(a) (Selection transitions) For every contesti, every selection statesi within con-

testi, and every input buttonb corresponding to a selection, there is some trace
whereP receivesb in a state(i, s) where theith component ofs is si.

(b) (Navigation transitions) For every contesti, and every input button correspond-
ing to navigation between contests, there is some trace whereP receivesb in a
state of the form(i, s).

C2: (Output Screen Coverage) For every contesti and every selection statesi of P
within contesti, there is some trace ofP wherethe last transitionwithin contesti
ended atsi and then at some point thereafterP receives thecast input.

The main correctness theorem we obtain in our paper [7] for the voting machine
described therein is that the tests pass iff the machine is trace-equivalent w.r.t. the mental
modelP :



Theorem 1. Consider a test suiteT that satisfies coverage criteria C0–C2. Then,T
passes if and only ifA is correct (i.e.,Tr(P) = {I(τ) : τ ∈ Tr(A)}).

2.4 Extensions

The basic approach outlined in the preceding sections is well-suited for finite-state inter-
active systems, such as the voting machine. However, even inthe domain of electronic
voting machines, there is more to be done by including advanced features of voting,
such as a summary screen that lists selections made in multiple contests, straight-party
voting, where one can cast a vote for all candidates of the same party, instant runoff vot-
ing, where one can rank candidates rather than select them, etc. For some of these, we
have already developed some initial ideas that can be used toextend the basic approach.

3 Conclusions and Future Work

Even as computing systems are increasingly integrated intoour everyday lives, human
interaction and operation remains central to their working. In this paper, we describe
how a combination of formal verification and systematic testing by humans can help in
improving the assurance of these systems. As an illustrative example, we described our
work on verification of an electronic voting machine for U.S.elections [7].

A particularly compelling next step is to consider interactive cyber-physical sys-
tems— systems that tightly integrate computational processes with the physical world,
possibly involving networking — that also have humans playing central roles in their
operation. Modern automotive, avionics and medical systems are good examples. The
technical challenge in these systems vis-a-vis electronicvoting arises from the combi-
nation and close interaction of continuous and discrete state and dynamics. While the
essence of the approach described in this paper, including the properties of indepen-
dence, determinism, and umabiguity, should remain relevant, extensions are required
to deal with the complexity in the state space. Our ongoing work is developing new
techniques for such systems.

Another direction for future work involves systems that have multiple humans in-
volved — i.e., teams of human operators or even multiple competing human agents
interacting with computing systems, possibly over a network. Altogether, many more
advances are needed before we can achieve the goal of high-assurance distributed cyber-
physical systems with multiple humans in the loop.

Acknowledgements
This paper describes work conducted jointly with Susmit Jha, Cynthia Sturton, and
David Wagner. The author gratefully acknowledges the support of an Alfred P. Sloan
Research Fellowship and the National Science Foundation through grants CNS-0644436
and CCF-1116993.



References

1. K. Alexander and P. Smith. Verifying the vote in 2008 presidential election battle-
ground states, Nov. 2008.http://www.calvoter.org/issues/votingtech/
pub/pres2008_ev.html.

2. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories. In
A. Biere, H. van Maaren, and T. Walsh, editors,Handbook of Satisfiability, volume 4, chap-
ter 8. IOS Press, 2009.

3. Federal Aviation Administration (FAA). The interfaces between flight crews and modern
flight systems.http://www.faa.gov/avr/afs/interfac.pdf, 1995.

4. S. Jha, R. Limaye, and S. A. Seshia. Beaver: Engineering anefficient SMT solver for bit-
vector arithmetic. InProc. Computer-Aided Verification (CAV), LNCS 5643. Springer, 2009.

5. L. T. Kohn and J. M. Corrigan and M. S. Donaldson, editors. To err is human: Building a
safer health system. Technical report, A report of the Committee on Quality of Health Care in
America, Institute of Medicine, Washington, DC, 2000. National Academy Press.

6. J. H. Obradovich and D. D. Woods. Users as designers: How people cope with poor HCI
design in computer-based medical devices.Human Factors, 38(4):574–592, 1996.

7. C. Sturton, S. Jha, S. A. Seshia, and D. Wagner. On voting machine design for verification
and testability. InProceedings of the ACM Conference on Computer and Communications
Security (CCS), Nov. 2009.

8. T. Terauchi and A. Aiken. Secure information flow as a safety problem. Technical Report
UCB/CSD-05-1396, EECS Department, University of California, Berkeley, Jun 2005.

9. Verified Voting Foundation. America’s voting systems in 2010. http://
verifiedvoting.org.




