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Abstract	

	

Gene	regulation	and	the	genomic	basis	of	speciation	and	adaptation	in	house	mice	

(Mus	musculus)	
	

by	

	

Katya	Mack	

	

Doctor	of	Philosophy	in	Integrative	Biology		

	

University	of	California,	Berkeley		

	

Professor	Michael	W.	Nachman,	Chair	

	

Gene	expression	is	a	molecular	phenotype	that	is	essential	to	organismal	form	and	

fitness.	However,	how	gene	regulation	evolves	over	evolutionary	time	and	

contributes	to	phenotypic	differences	within	and	between	species	is	still	not	well	

understood.	In	my	dissertation,	I	examined	the	role	of	gene	regulation	in	adaptation	

and	speciation	in	house	mice	(Mus	musculus).		
	

In	chapter	1,	I	reviewed	theoretical	models	and	empirical	data	on	the	role	of	gene	

regulation	in	the	origin	of	new	species.	I	discuss	how	regulatory	divergence	between	

species	can	result	in	hybrid	dysfunction	and	point	to	areas	that	could	benefit	from	

future	research.		

	

In	chapter	2,	I	characterized	regulatory	divergence	between	M.	m.	domesticus	and	M.	
m.	musculus	associated	with	male	hybrid	sterility.	The	major	model	for	the	evolution	
of	post-zygotic	isolation	proposes	that	hybrid	sterility	or	inviability	will	evolve	as	a	

product	of	deleterious	interactions	(i.e.,	negative	epistasis)	between	alleles	at	

different	loci	when	joined	together	in	hybrids.	As	the	regulation	of	gene	expression	

is	inherently	based	on	interactions	between	loci,	disruption	of	gene	regulation	in	

hybrids	may	be	a	common	mechanism	for	post-zygotic	isolation.	To	test	this	

question,	I	compared	expression	differences	between	house	mouse	subspecies	with	

expression	patterns	in	sterile	and	fertile	male	F1	hybrids.	I	identified	extensive	

regulatory	divergence	between	the	subspecies	in	the	testis	and	found	that	

compensatory	cis-and	trans-	changes	were	non-randomly	associated	with	genes	that	
were	misexpressed	in	sterile	hybrids,	but	not	in	fertile	hybrids.	These	results	

support	the	idea	that	such	regulatory	interactions	may	contribute	to	hybrid	

incompatibilities	and	may	be	major	drivers	of	speciation.		

	

In	my	third	chapter,	I	used	expression	quantitative	trait	locus	(eQTL)	mapping	in	

tandem	with	a	genome	scan	for	selection	to	identify	adaptive	regulatory	variation	in	

house	mice	(M.	m.	domesticus)	on	the	east	coast	of	North	America.	Mice	on	the	east	
coast	of	North	America	show	adaptive	differences	in	body	mass	in	response	to	

latitudinal	variation	in	temperature.	I	identified	genes	with	clinally	varying	cis-eQTL	
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for	which	expression	level	is	correlated	with	latitude.	Among	these	clinal	outliers,	I	

identified	two	genes	(Adam17	and	Bcat2)	with	cis-eQTL	of	large	effect	that	are	
associated	with	adaptive	body	mass	variation	and	for	which	expression	is	correlated	

with	body	mass	both	within	and	between	populations.	Adam17	and	Bcat2	deletions	
affect	body	mass	in	mice	and	these	genes	have	also	been	linked	to	obesity	in	

humans.	These	findings	provide	strong	evidence	for	cis-	regulatory	elements	as	
essential	loci	of	environmental	adaptation	in	natural	populations.	

	

In	chapter	4,	I	used	low-coverage	whole	genome	sequencing	data	from	the	same	

individuals	to	identify	and	characterize	copy	number	variation	in	natural	

populations	of	house	mice	on	the	east	coast	of	North	America.	Consistent	with	a	role	
for	copy	number	variation	in	local	adaptation,	I	identified	two	regions	where	copy	

number	is	significantly	correlated	with	latitude.	One	of	these	regions	contains	the	

gene	Trpm8,	which	has	previously	been	shown	to	affect	physiological	responses	to	
environmental	cold	in	other	species.	These	results	suggest	that	copy	number	

variation	significantly	contributes	to	genetic	variation	in	North	American	house	

mice	and	that	copy	number	variation	may	play	an	important	role	in	local	adaptation.	

	

Finally,	in	my	fifth	chapter,	I	examined	the	relationship	between	gene	co-expression	

networks	and	molecular	evolution	in	natural	populations	of	M.	m.	domesticus.	I	
found	that	genes	that	are	more	central	to	their	co-expression	networks	(i.e.,	have	

more	and	greater	associations	with	other	genes)	and	genes	whose	co-expression	

relationships	are	conserved	across	tissues	show	lower	rates	of	protein	evolution,	

have	fewer	polymorphisms,	and	are	less	likely	show	regulatory	variation.	Together,	

these	results	are	consistent	with	gene	co-expression	network	structure	being	a	

source	of	evolutionary	constraint.		
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Chapter	1		

Gene	Regulation	and	Speciation	
	
This	chapter	has	been	previously	published	and	is	reproduced	here	in	accordance	
with	the	journal’s	article	sharing	policy:		

Mack	KL,	Nachman	MW.	2017.	Gene	regulation	and	speciation.	Trends	in	
Genet	33:	68-80.	

	 DOI:	10.1016/j.tig.2016.11.003	
	

	
Abstract	

Understanding	the	genetic	architecture	of	speciation	is	a	major	goal	in	evolutionary	
biology.	Hybrid	dysfunction	is	thought	to	arise	most	commonly	through	negative	
interactions	between	alleles	at	two	or	more	loci.	Divergence	between	interacting	
regulatory	elements	that	affect	gene	expression	(i.e.,	regulatory	divergence)	may	be	
a	common	route	for	these	negative	interactions	to	arise.	Here	we	review	how	
regulatory	divergence	between	species	can	result	in	hybrid	dysfunction,	including	
recent	theoretical	support	for	this	model.	We	then	discuss	the	empirical	evidence	
for	regulatory	divergence	between	species	and	evaluate	evidence	for	mis-regulation	
as	a	source	of	hybrid	dysfunction.	Finally,	we	review	unresolved	questions	in	gene	
regulation	as	it	pertains	to	speciation	and	point	to	areas	that	could	benefit	from	
future	research.			

	
	

1.1. A	role	for	gene	regulation	in	hybrid	sterility	and	inviability	
		 Understanding	the	genetic	basis	of	speciation	is	a	longstanding	problem	in	
evolutionary	biology.	The	major	model	for	the	evolution	of	intrinsic	post-zygotic	
isolation	postulates	that	hybrid	sterility	or	inviability	arises	from	negative	
interactions	between	alleles	at	different	loci	when	joined	together	in	hybrids.	The	
regulation	of	gene	expression	is	inherently	based	on	interactions	between	loci,	
raising	the	possibility	that	disruption	of	gene	regulation	in	hybrids	is	a	common	
mechanism	for	post-zygotic	isolation.	Although	there	is	accumulating	evidence	that	
changes	in	gene	regulation	play	a	prominent	role	in	adaptation	(e.g.,	Chan	et	al.	
2010;	Jones	et	al.	2012),	the	role	of	regulatory	evolution	in	speciation	has	received	
less	attention.	Here,	we	evaluate	the	role	of	regulatory	evolution	in	speciation,	and	
we	suggest,	both	from	recent	theoretical	and	empirical	studies,	that	changes	in	gene	
regulation	play	a	major	role	in	intrinsic	post-zygotic	isolation.	While	our	focus	is	on	
post-zygotic	isolation,	regulatory	divergence	may	also	play	an	important	role	in	
establishing	other	reproductive	barriers	as	a	by-product	of	adaptive	divergence	(i.e.,	
ecological	speciation).		
	
1.2. Conceptual	framework		
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Single-locus	models	of	hybrid	dysfunction	all	suffer	from	the	problem	that	
mutations	that	lower	the	fitness	of	heterozygotes	(and	thus	cause	reproductive	
isolation)	are	unlikely	to	become	established	in	a	new	population	(e.g.,	Lande	1979;	
Hedrick	1981;	Walsh	1982).	This	problem	was	recognized	by	Bateson	(Bateson	
1909),	Dobzhansky	(Dobzhansky	1937),	and	Muller	(Muller	1940;	Muller	1942),	
who	suggested	instead	that	hybrid	dysfunction	could	arise	from	negative	
interactions	between	alleles	at	two	or	more	loci.	In	the	Bateson-Dobzhansky-Muller	
(BDM)	model,	alleles	that	are	adaptive	or	neutral	in	their	own	genetic	background	
are	incompatible	with	alleles	at	one	or	more	loci	on	the	alternative	genetic	
background	(Figure	1).	Thus,	diverging	lineages	can	accumulate	substitutions	
without	any	loss	of	fitness.	There	is	now	strong	empirical	support	for	this	model	of	
intrinsic	post-zygotic	isolation	(Coyne	and	Orr	2004).	
	 Gene	regulation	is	the	process	by	which	cells	control	the	specific	amount	of	
gene	product	(i.e.,	RNA	or	protein)	produced.	Gene	regulation	is	a	complex	process	
involving	the	interaction	of	DNA	sequences,	RNA	molecules,	and	proteins,	as	well	as	
epigenetic	modifications.	As	the	interaction	of	regulatory	elements	is	required	for	
organismal	function,	interacting	regulatory	elements	are	assumed	to	be	co-adapted	
(e.g.,	Dover	and	Flavel	1984).	When	co-adapted	interactions	between	regulatory	
elements	are	disrupted,	downstream	targets	of	these	elements	may	be	mis-
regulated.	While	disrupted	interactions	between	any	of	pair	of	regulatory	elements	
or	sequences	could	result	in	hybrid	incompatibilities,	the	process	of	transcription	
initiation	has	received	the	most	attention.	While	we	focus	mainly	on	transcriptional	
control,	divergence	between	regulatory	elements	affecting	other	levels	of	gene	
regulation	(e.g.,	translation)	may	also	play	a	role	in	speciation.		

Transcription	is	regulated	by	the	interaction	of	cis-	regulatory	elements	and	
trans-	acting	factors.	Cis-regulatory	elements	are	stretches	of	non-coding	DNA	(i.e.,	
promoters,	enhancers)	that	act	as	binding	sites	for	trans-	acting	factors	to	regulate	
mRNA	abundance.	In	the	simplest	case,	the	trans-	acting	factors	are	transcription	
factor	proteins,	though	other	proteins	have	also	been	known	to	act	in	trans	to	
regulate	gene	expression	(Yvert	et	al.	2003).	Mutations	in	cis-	regulatory	regions	or	
in	transcription	factors	can	affect	mRNA	abundance.	Transcription	factors	
frequently	interact	with	multiple	downstream	target	sequences	and	thus	may	be	
pleiotropic.	In	contrast,	a	single	gene	may	have	multiple	cis-	regulatory	regions	that	
regulate	it	in	a	tissue-	and	context-	specific	manner.	As	a	consequence,	changes	in	
cis-	regulatory	regions	are	thought	to	be	less	pleiotropic	than	changes	to	the	
transcription	factors	they	bind.	The	modularity	of	cis-	regulatory	regions	has	given	
rise	to	the	idea	that	changes	to	these	regions	may	play	a	large	role	in	phenotypic	
evolution,	an	idea	that	is	now	well	supported	by	empirical	research	(Wray	2007;	
Wittkopp	and	Kalay	2012).	However,	while	transcription	factors	are	assumed	to	
evolve	more	slowly	than	cis-	regulatory	regions,	they	can	evolve	quickly	compared	
to	other	gene	classes	(Castillo-Davis	et	al.	2012).	Changes	to	transcription	factor	
proteins	have	also	been	implicated	in	the	evolution	of	novel	phenotypes	(e.g.,	Lynch	
et	al.	2008).	
	 Despite	the	role	of	transcriptional	variation	in	phenotypic	evolution,	mRNA	
levels	are	often	constrained	on	long	time	scales	(Bedford	and	Hartl	2009).	Genome-
wide	comparisons	of	mRNA	levels	between	species	show	widespread	reductions	in	
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divergence	compared	to	neutral	expectations	(Rifkin	et	al.	2008;	Lemos	et	al.	2005;	
Gilad	2006),	suggesting	that	changes	in	transcript	levels	are	frequently	deleterious.	
Despite	the	existing	constraint	on	transcript	levels,	gene	regulatory	networks	
themselves	are	not	necessarily	well-conserved	between	species	(True	and	Haag	
2001).	Interestingly,	data	on	mRNA	abundance	from	yeast,	worms,	and	flies	suggest	
that	expression	evolution	best	fits	a	House-of-Cards	model	of	stabilizing	selection	
(Hodgins-Davis	et	al.	2015)	in	which	mutations	generally	have	large	effects	that	
exceed	the	standing	genetic	variation	(Kingman	1978;	Turelli	1984).	As	a	
consequence,	mutations	that	affect	mRNA	abundance	can	bring	down	the	
evolutionary	“house	of	cards”	and	cause	a	cascade	of	changes	between	co-evolved	
cis	and	trans	factors	within	a	gene	regulatory	network.		

Given	these	theoretical	and	empirical	considerations,	the	epistatic	
interactions	that	underlie	gene	regulatory	networks	may	lead	to	dysfunction	in	
hybrids.	In	the	simplest	case,	regulatory	incompatibilities	may	arise	either	as	a	
result	of	(1)	the	independent	divergence	of	interacting	elements	between	lineages	
(Figure	2a)	or	(2)	lineage	specific	co-evolution	between	elements	(Figure	2b).	In	the	
first	model,	populations	respond	differently	to	drift	or	parallel	or	opposing	
directional	selection.	One	population	fixes	a	cis-	regulatory	change,	the	other	fixes	a	
trans	change.	In	the	second	model,	a	cis	change	that	affects	expression	is	
compensated	for	by	changes	to	an	interacting	trans-	acting	factor,	or	vise	versa.	In	
either	model,	negative	interactions	between	divergent	regulatory	elements	in	
hybrids	may	result	in	the	mis-regulation	of	downstream	targets.	More	complicated	
models	are	possible,	including	cis	and	trans	changes	in	both	lineages	or	interactions	
between	more	than	two	loci.	

Recent	simulations	and	mathematical	models	indicate	that	these	kinds	of	
regulatory	incompatibilities	can	evolve	quickly	if	selection	is	acting	(Johnson	and	
Porter	2000;	Johnson	and	Porter	2007;	Palmer	and	Feldman	2009;	Tulchinsky	et	al.	
2014;	Khatri	and	Goldstein	2015).	In	particular,	regulatory	incompatibilities	will	
evolve	most	quickly	as	a	byproduct	of	adaptation	when	cis	and	trans	regulatory	
elements	diverge	under	positive	selection	(Johnson	and	Porter	2000;	Tulchinsky	et	
al.	2014).	Incompatibilities	will	evolve	more	slowly	under	a	model	of	stabilizing	
selection,	where	compensatory	changes	follow	genetic	drift	(Tulchinsky	et	al.	2014).	
As	transcription	factors	often	regulate	the	expression	of	many	genes,	opposing	
selective	pressures	may	constrain	functional	divergence	and	slow	the	evolution	of	
regulatory	incompatibilities.	However,	it	was	recently	shown	that	it	is	possible	for	
substantial	hybrid	mis-regulation	to	arise	even	when	transcription	factors	are	under	
moderate	pleiotropic	constraint	(Tulchinsky	et	al.	2014b).		
	
1.3. Regulatory	divergence	between	species	is	widespread		

Recent	genomic	surveys	have	found	abundant	evidence	for	transcriptional	
regulatory	divergence	between	species.	Divergence	in	putative	cis-	regulatory	
regions	can	be	inferred	through	comparisons	of	transcription	factor	binding	sites	
between	species.	While	the	loss	and	gain	of	transcription	factor	binding	sites	has	
generally	been	rapid	over	evolutionary	time	(Villar	et	al.	2014),	examination	of	
individual	cis-	regulatory	elements	has	demonstrated	that	regulatory	function	can	
be	maintained	despite	significant	sequence	divergence	(Ludwig	et	al.	2000;	Fisher	et	
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al.	2006;	Hare	et	al.	2008).	This	observation	may	be	explained	by	the	fixation	of	
functionally	compensatory	mutations.		

Regulatory	divergence	affecting	the	expression	of	individual	genes	can	also	
be	inferred	through	interspecific	crosses.	In	F1	hybrids,	differences	in	transcript	
abundance	between	two	alleles	indicates	that	differences	between	the	parents	at	
this	locus	are	due	to	changes	in	cis,	since	the	two	alleles	in	the	F1	are	in	a	common	
trans-acting	environment	(Cowles	et	al.	2002)	(Figure	3a).	In	contrast,	if	the	two	
alleles	in	the	F1	show	the	same	level	of	transcript	abundance,	this	indicates	that	
differences	between	the	parents	are	due	to	changes	in	trans	(Wittkopp	et	al.	2004)	
(Figure	3b),	although	interpretation	can	be	complicated	by	dominance	in	regulatory	
pathways	(Porter	et	al.	2016).	This	approach	has	now	been	used	to	study	genome-
wide	regulatory	divergence	between	species	of	mice,	birds,	flies,	yeast	and	plants	
(e.g.,	Goncalves	et	al.	2012;	Davidson	JH	and	Balakrishnan	2016;	McManus	et	al.	
2010;	Tirosh	et	al.	2009,	Shi	2012).	Interspecific	divergence	in	cis	and	trans	is	
common,	with	cis	regulatory	variants	generally	contributing	more	to	divergence	
between	species	than	variation	within	species	(Tirosh	et	al.	2009;	Emerson	et	al.	
2010;	Coolon	et	al.	2014).	However,	a	significant	proportion	of	regulatory	
divergence	can	be	attributed	to	a	combination	of	cis	and	trans-	acting	variants.	

When	cis	and	trans	changes	are	found	together,	interactions	between	them	
can	increase	or	decrease	gene	expression	divergence	between	species.	When	cis	and	
trans	variants	act	in	opposition,	their	effects	may	buffer	one	another	in	a	
compensatory	fashion.	Consistent	with	stabilizing	selection,	such	cis-trans	
compensation	appears	to	play	a	prominent	role	in	regulatory	evolution	(Goncalves	
et	al.	2012;	Tirosh	et	al.	2009;	Shi	et	al.	2012;	Takahasi	et	al.	2011;	Mack	et	al.	2016).		

The	proportion	of	genes	with	cis-trans	divergence	has	also	been	shown	to	
accumulate	with	phylogenetic	distance.	Transgenic	assays	called	“enhancer	swaps”,	
where	orthologous	regulatory	regions	are	tested	in	the	same	trans	acting-
environment,	have	found	that	lineage-specific	cis-trans	evolution	is	more	common	
in	comparisons	between	distant	than	closely	related	taxa	(Gordon	and	Ruvinsky	
2012).	Similarly,	pairwise	comparisons	between	species	of	Drosophila	found	that	
while	the	number	of	genes	with	cis-	regulatory	divergence	increased	linearly	with	
divergence	time,	the	number	of	genes	with	total	expression	divergence	does	not	
(Coolon	et	al.	2014).	This	suggests	that	cis	changes	are	often	compensated	for	by	
changes	in	trans	variants,	or	by	other	trans	regulatory	feedback	mechanisms	(Denby	
et	al.	2012;	Bader	et	al.	2015;	Fear	et	al.	2016).	

A	few	clear	cases	of	such	cis-trans	compensatory	evolution	have	now	been	
reported	(Kuo	et	al.	2010;	Barrière	et	al.	2012).	In	the	nematodes	Caenorhabditis	
elegans	and	C.	briggsae,	the	expression	of	the	gene	unc-47	is	conserved	between	
species	even	as	its	regulation	has	changed.	Reciprocal	swaps	of	C.	briggsae	and	C.	
elegans	regulatory	elements	identified	lineage-specific	changes	consistent	with	
compensatory	cis-trans	evolution.	Regions	in	the	C.	briggsae	unc-47	promoter	have	
co-evolved	with	lineage-specific	changes	in	the	C.	briggsae	trans-regulatory	
environment.	Compensatory	modifications	in	regulatory	elements	associated	with	
unc-47	represent	an	example	of	how	gene	expression	can	be	maintained	despite	
underlying	regulatory	divergence	(Barrière	et	al.	2012).	
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1.4. Mis-regulation	as	a	mechanism	for	hybrid	dysfunction	
Mis-regulation	of	genes	in	hybrids	can	lead	to	misexpression,	defined	as	gene	

expression	that	falls	outside	of	the	range	of	the	parental	species.	Novel	interactions	
between	divergent	cis-	and	trans-	variants	are	one	way	misexpression	can	arise	in	
hybrids.	Consistent	with	this	prediction,	a	number	of	studies	have	associated	
misexpression	with	cis-trans	compensatory	evolution	(McManus	et	al.	2010;	Tirosh	
et	al.	2009;	Mack	et	al.	2016;	Landry	et	al.	2005;	Schaefke	et	al.	2013,	but	see	also	
Coolon	et	al.	2014;	Bell	et	al.	2013).	Misexpression	is	commonly	seen	in	sterile	
interspecific	hybrids	(Michalak	and	Noor	2003;	Ranz	et	al.	2004;	Haerty	and	Singh	
2006;	Moehring	et	al.	2007;	Malone	et	al.	2007;	Good	et	al.	2010)	and	has	been	
shown	to	accumulate	with	phylogenetic	distance	in	Drosophila	(Coolon	et	al.	2014).		

In	some	interspecific	hybrids,	abnormal	expression	is	disproportionately	
observed	in	male-biased	genes	(Michalak	and	Noor	2003;	Ranz	2004)	and	genes	
involved	in	spermatogenesis	(Good	et	al.	2010;	Sundararajan	and	Civetta	2011),	
suggesting	that	regulatory	divergence	might	underlie	some	cases	of	hybrid	male	
sterility.	Comparisons	between	sterile	and	fertile	hybrids	of	Drosophila	species	
(Gomes	and	Civetta	2015)	and	house	mouse	subspecies	(Mack	et	al.	2016;	Good	et	
al.	2010)	have	found	that	a	greater	number	of	genes	are	misexpressed	in	sterile	
hybrids	than	in	fertile	hybrids.	Moreover,	in	house	mice,	some	expression	
quantitative	trait	loci	(QTL)	co-localize	with	sterility	QTL	in	hybrids,	suggesting	a	
causal	role	for	regulatory	changes	in	hybrid	male	sterility	(Turner	et	al.	2014).	Also	
in	mice,	misexpression	in	sterile	hybrids	is	associated	with	compensatory	cis-trans	
changes,	consistent	with	a	model	where	disrupted	interactions	between	these	types	
of	loci	contribute	to	hybrid	sterility	(Mack	et	al.	2016).		

The	X	chromosome	often	plays	a	central	role	in	post-zygotic	isolation	(Coyne	
and	Orr	2004;	Coyne	and	Orr	1989).	If	regulatory	divergence	underlies	hybrid	
dysfunction,	evolutionarily	diverged	regulation	of	sex-linked	genes	may	be	expected	
(Johnson	and	Lachance	2012).	Several	recent	studies	have	found	that	expression	
diverges	faster	for	some	genes	on	the	X	(in	XY	taxa)	and	Z	(in	ZW	taxa)	
chromosomes	than	on	the	autosomes	between	species	(Brawand	et	al.	2011;	Llopart	
2012;	Meisel	et	al.	2012;	Dean	2015;	Kayserili	et	al.	2012;	Coolon	et	al.	2015).	Faster	
divergence	of	sex-linked	gene	expression	is	especially	strong	for	genes	with	sex-
biased	effects	(male-biased	effects	in	XY	taxa	and	female-biased	effects	in	ZW	taxa)	
(Llopart	2012;	Meisel	et	al.	2012;	Dean	et	al.	2015;	Oka	and	Shiroishi	2014).	
However,	comparisons	of	expression	patterns	in	whole	tissues	may	obscure	
differences	in	individual	cell	types.	For	example,	it	was	recently	shown	that	
expression	evolution	for	X-linked	genes	depends	on	the	developmental	stage	of	
spermatogenesis,	with	genes	that	are	expressed	late	in	spermatogenesis	showing	
slower	divergence	on	the	X	(Larson	et	al.	2016).	Disproportionate	misexpression	of	
X-linked	genes	has	also	been	reported	for	sterile	hybrids	(Good	et	al.	2010;	Turner	
et	al.	2014;	Oka	and	Shiroishi	2014;	Bhattacharyya	et	al.	2013).	

There	are	several	caveats	to	bear	in	mind	when	considering	whether	
misexpression	is	causing	hybrid	sterilty	or	inviability.	First,	the	widespread	
misexpression	seen	in	many	interspecific	crosses	can	be	the	result	of	one	or	a	few	
upstream	changes	that	cause	a	cascading	effect	on	genes	downstream	in	a	
regulatory	network	(Ortíz-Barrientos	et	al.	2007).	This	has	been	seen	in	hybrids	
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between	Saccharomyces	cerevisiae	and	S.	paradoxus,	where	misexpression	is	
primarily	due	to	a	shift	in	the	timing	of	meiosis	(Lenz	et	al.	2014).	Second,	while	
misexpression	in	interspecific	hybrids	has	been	the	subject	of	intense	scrutiny,	
misexpression	has	also	been	observed	in	intraspecific	hybrids	where	dysfunction	is	
absent	(Coolon	et	al.	2014;	Gibson	et	al.	2004).	Third,	changes	in	cellular	
composition	can	also	conflate	associations	between	hybrid	dysfunction	and	
misexpression.	Sterile	and	inviable	animals	often	have	gonads	of	differing	cellular	
composition	or	suffer	from	atrophied	tissue	relative	to	their	fertile	counterparts.	As	
many	studies	isolate	mRNA	from	whole	animals	or	whole	tissues,	differences	in	
tissue	or	cellular	composition	between	sterile	or	inviabile	hybrids	and	parental	
species	can	produce	misexpression.	As	a	result,	hybrid	misexpression	that	is	a	direct	
result	of	regulatory	divergence	is	likely	to	be	overestimated	(Wei	et	al.	2014).	In	the	
future,	studies	that	make	use	of	sorted	cell	populations	may	mitigate	this	problem	
somewhat	by	comparing	gene	expression	only	in	equivalent	cell	types	(Larson	et	al.	
2016;	Campbell	et	al.	2016;	Bhattacharyya	et	al.	2014).		

	
1.5. Evidence	from	speciation	genes	
Misexpression	identified	in	sterile	hybrids	provides	only	indirect	evidence	of	the	
role	of	mis-regulation	in	hybrid	dysfunction.	“Speciation	genes”	–	defined	here	as	
genes	that	contribute	to	reproductive	isolation	–	provide	the	best	direct	evidence	for	
the	role	of	regulatory	divergence	in	reproductive	isolation.	Unfortunately,	relatively	
few	speciation	genes	have	been	identified	and	molecularly	characterized	
(Presgraves	2010;	Maheshwari	and	Barbash	2011).	Despite	this	limitation,	some	
broad	scale	patterns	have	started	to	emerge.	Of	the	speciation	genes	identified	so	
far,	many	have	either	a	putative	role	in	transcriptional	or	translational	regulation,	or	
are	themselves	misexpressed	in	hybrids	(Table	1).	While	this	pattern	is	intriguing,	it	
is	necessary	to	characterize	the	molecular	and	physiological	basis	of	hybrid	
dysfunction	in	each	case	to	determine	whether	regulatory	divergence	is	causal.	
Below	we	discuss	a	few	speciation	genes	that	have	been	particularly	well	
characterized	in	Drosophila	and	house	mice,	highlighting	some	of	the	challenges	in	
linking	specific	mutations	to	mis-regulation.	
	
1.5.1.	Hmr	and	Lhr.	Hybrid	male	lethality	in	crosses	between	D.	melanogaster	and	
D.	simulans	can	be	explained	in	part	by	the	genes	Hybrid	male	rescue	(Hmr)	and	
Lethal	hybrid	rescue	(Lhr).	The	protein	products	of	Hmr	and	Lhr	form	a	complex	that	
localizes	to	heterochromatic	regions	of	the	genome	(Brideau	et	al.	2006;	Thomae	et	
al.	2013)	where	they	transcriptionally	repress	transposable	elements	and	repetitive	
sequences	(Thomae	et	al.	2013;	Satyaki	et	al.	2014)	and	play	a	critical	role	in	mitotic	
chromosome	segregation	(Thomae	et	al.	2013).		

Loss-of-function	mutations	at	Lhr	in	D.	simulans	or	at	Hmr	in	D.	melanogaster	
restore	hybrid	male	viability	(Brideau	et	al.	2006,	Watanabe	1979;	Hutter	and	
Ashburner	1987).	The	D.	simulans	and	D.	melanogaster	orthologs	of	both	genes	have	
diverged	extensively	under	positive	selection	(Brideau	et	al.	2006).	These	
observations	led	to	the	prediction	that	adaptive	functional	divergence	between	Hmr	
and	Lhr	and	species-specific	heterochromatin	sequences	causes	hybrid	dysfunction.	
However,	orthologs	of	Lhr	appear	to	be	functionally	equivalent:	sequence	
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divergence	between	Lhr	orthologs	does	not	affect	the	localization	of	the	Lhr	protein,	
and	overexpression	of	either	the	D.	simulans	or	D.	melanogaster	ortholog	has	hybrid	
lethal	effects	(Brideau	and	Barbash	2011).		

Hybrid	lethality	is	instead	a	consequence	of	species-specific	changes	in	the	
abundance	of	Hmr	and	Lhr	protein	product.	HMR	expression	is	higher	in	D.	
melanogaster,	and	LHR	expression	is	higher	in	D.	simulans.	Increased	expression	of	
HMR	in	D.	melanogaster	and	LHR	in	D.	simulans	results	in	an	elevated	amount	of	the	
HMR-LHR	complex	in	hybrids.	The	activity	of	the	HMR-LHR	complex	is	dosage	
dependent,	and	overexpression	leads	to	mislocation	of	the	complex	(Thomae	et	al.	
2013).	

As	hybrid	lethality	is	a	consequence	of	HMR-LHR	overexpression,	the	
observed	asymmetrical	lethal	effects	of	D.	melanogaster-Hmr	and	D.	simulans-Lhr	
are	likely	the	result	of	divergence	in	regulatory	pathways	between	D.	melanogaster	
and	D.	simulans	rather	than	functional	divergence	between	orthologs	(Thomae	et	al.	
2013;	Maheshwari	and	Barbash	2012).	Supporting	this	hypothesis,	transcriptional	
differences	between	Lhr	orthologs	in	hybrids	has	been	linked	to	compensatory	cis-
by-trans	divergence	between	species	in	allele-specific	expression	(Maheshwari	and	
Barbash	2012;	Shirata	et	al.	2014).	

	
1.5.2.	Prdm9.	Crosses	between	Mus	musculus	domesticus	and	M.	m.	musculus	
produce	sterile	hybrid	males	(Forejt	and	Iványi	1974).	A	series	of	laboratory	
mapping	experiments	by	Forejt	and	colleagues	(Gregorova	et	al.	1996;	Trachtulec	et	
al.	1997;	Trachtulec	et	al.	2005;	Trachtulec	et	al.	2008)	led	to	the	positional	cloning	
and	identification	of	Prdm9	(Mihola	et	al.	2009),	the	only	known	hybrid	sterility	
gene	in	vertebrates.	Prdm9	is	believed	to	interact	with	yet	uncharacterized	loci	on	
the	X	chromosome	and	autosomes	to	cause	spermatogenic	failure	in	hybrids	
(Storchová	et	al.	2004,	Dzur-Gejdosova	et	al.	2012).	Sterile	hybrid	males	show	sex-
specific	failure	to	pair	chromosomes	during	meiosis	as	well	as	misexpression	of	
genes	on	the	X	and	Y	chromosomes	(Bhattacharyya	et	al.	2013).	While	Prdm9	
contains	conserved	domains	associated	with	transcriptional	regulation	(Lim	1998;	
Margolin	et	al.	1994),	the	effect	of	Prdm9	on	misexpression	may	be	a	secondary	
consequence	of	the	role	of	Prdm9	in	meiotic	recombination.		
	 Prdm9	has	been	implicated	in	recombination	rate	variation	in	both	humans	
and	mice	(Baudat	et	al.	2010;	Myers	et	al.	2010;	Parvanov	et	al.	2010).	During	
meiosis	in	mammals,	double-stranded	breaks	are	created	throughout	the	genome	
and	then	repaired,	leading	to	homologous	recombination.	These	breaks	are	
concentrated	in	regions	called	recombination	hotspots.	In	mice,	PRDM9	appears	to	
mediate	the	process	of	recombination	at	hotspots	by	binding	to	DNA-sequences	
(Baudat	et	al.	2010).	Intriguingly,	another	QTL	implicated	in	recombination	rate	
variation	was	recently	found	to	overlap	with	a	hybrid	male	sterility	QTL	on	the	X	
chromosome	(Balcova	et	al.	2016).	Altogether,	these	results	suggest	a	genetic	
connection	between	recombination	and	hybrid	sterility	(Payseur	2016).	

Variation	in	the	number	of	PRDM9	zinc-finger	tandem	repeats	has	been	
implicated	in	house	mouse	sterility	(Mihola	et	al.	2009).	The	PRDM9	zinc-finger	
array	co-evolves	with	species-specific	binding	sites.	Meiotic	drive	against	
recombination	hotspots	is	thought	to	result	in	the	rapid	turnover	of	these	binding	
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sites.	Species-specific	erosion	of	PRDM9	binding	sites	may	explain	asymmetric	
binding	of	PRDM9	in	F1	hybrids	that	is	associated	with	hybrid	sterility.	Supporting	
this	prediction,	hybrid	fertility	can	be	rescued	by	replacing	the	sterility	associated	
zinc-finger	array	with	an	orthologous	region	from	humans	(Davies	et	al.	2016).		
While	it	is	clear	that	sterile	hybrid	males	show	misexpression	of	genes	on	the	X	and	
Y	chromosomes,	the	direct	role,	if	any,	of	Prdm9	in	this	misexpression	remains	
unclear.	
	
1.6. Open	questions	and	future	directions	

While	the	evidence	so	far	suggests	that	changes	in	gene	regulation	may	
contribute	to	the	origin	of	new	species,	there	are	also	cases	where	hybrid	
incompatibility	appears	to	be	independent	of	regulatory	changes.	For	example,	the	
speciation	genes	Nup160	and	Nup96	cause	hybrid	inviability	in	crosses	between	
Drosophila	simulans	and	D.	melanogaster.		The	protein	products	of	both	genes	form	
architectural	components	of	the	nuclear	pore	complex	and	show	evidence	of	
adaptive	protein	evolution	(Presgraves	2003;	Tang	and	Presgraves	2009).	We	do	
not	wish	to	provoke	a	debate	on	the	relative	importance	of	coding	versus	regulatory	
mutations	to	speciation;	both	surely	occur	and	both	are	likely	to	be	important	in	
some	instances.	Instead,	we	offer	several	research	directions	that	are	likely	to	be	
particularly	useful	in	understanding	the	connection	between	regulatory	divergence	
and	speciation.	

First,	the	study	of	speciation	has	benefited	from	studies	of	natural	
populations	and	from	studies	that	utilize	laboratory	crosses.	However,	most	of	what	
is	known	about	the	role	of	regulatory	divergence	in	speciation	comes	from	
laboratory	studies.	These	studies	represent	a	small	sliver	of	phylogenetic	diversity	
and	they	rely	mainly	on	model	systems	(Table	1).	If	we	are	interested	in	
understanding	generalities	of	the	speciation	process,	greater	taxonomic	sampling	is	
necessary.	It	would	also	be	useful	to	compare	patterns	of	gene	expression	in	
naturally	occurring	hybrid	individuals	that	contain	mixed	genetic	backgrounds	to	
those	seen	in	laboratory	crosses.		

Second,	there	are	two	aspects	of	many	natural	populations	that	merit	further	
study:	the	presence	of	later	generation	hybrids	and	the	fact	that	alleles	contributing	
to	reproductive	isolation	may	be	polymorphic	rather	than	fixed	(Cutter	2012).		
Studying	both	of	these	issues	in	the	context	of	the	role	of	regulatory	divergence	and	
reproductive	isolation	is	important.	For	example,	while	great	progress	has	been	
made	studying	F1	hybrids,	using	F2	or	later	generation	hybrids	makes	it	possible	to	
identify	disrupted	gene	expression	caused	by	recessive	alleles	(Turner	et	al.	2014).	

Third,	most	of	the	focus	has	been	on	the	role	of	regulatory	divergence	in	
intrinsic	post-zygotic	isolation.	The	role	of	regulatory	divergence	in	other	forms	of	
reproductive	isolation	(i.e.,	ecological,	mating,	and	gametic)	is	still	largely	
unexplored.	Regulatory	divergence	may	commonly	lead	to	phenotypic	differences	
between	populations	that	result	in	different	kinds	of	reproductive	barriers.	In	
particular,	to	the	extent	that	changes	in	gene	regulation	underlie	adaptive	evolution,	
such	changes	may	be	quite	common	in	ecological	speciation,	but	this	remains	to	be	
shown.	
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	 Fourth,	there	is	a	need	to	better	integrate	speciation	theory	with	empirical	
evidence	from	gene	expression	studies.	For	example,	the	exposure	of	recessive	
mutations	on	the	X	(or	Z)	chromosome	in	heterogametic	hybrids	(i.e.	XY	males	or	
ZW	females)	has	been	invoked	to	explain	observations	such	as	Haldane’s	Rule	and	
the	large	X	effect	(Coyne	and	Orr	2004;	Haldane	1922;	Coyne	1992).	According	to	
this	hypothesis,	many	of	the	alleles	that	decrease	hybrid	fitness	are	at	least	partially	
recessive.	It	is	possible	to	test	the	dominance	of	expression	inheritance	using	
crosses	or	chromosome	substitution	lines	(Gibson	et	al.	2004;	Bhattacharyya	et	al.	
2014;	Lemos	et	al.	2008),	and	this	would	help	link	theoretical	predictions	with	
empirical	observations	of	gene	expression.	Similarly,	BDM	incompatibilities	are	
predicted	to	accumulate	at	a	non-linear	rate	over	evolutionary	time	resulting	in	a	
“snowball”	effect	(Orr	1995).	Controlled	gene	expression	studies	may	be	able	to	
determine	whether	regulatory	incompatibilities	conform	to	this	prediction	and	
increase	nonlinearly	with	phylogenetic	distance.	

Fifth,	the	evolutionary	forces	that	drive	regulatory	divergence	and	contribute	
to	hybrid	incompatibilities	remain	largely	unknown.	Many	of	the	known	speciation	
genes	show	a	signature	of	positive	selection	(Presgraves	2010).	While	this	
observation	is	consistent	with	a	model	of	adaptive	divergence	driving	the	evolution	
of	hybrid	incompatibilities,	a	model	of	compensatory	evolution	is	equally	possible.	
Compensatory	evolution	requires	positive	selection	to	fix	compensatory	changes	to	
mask	the	deleterious	effects	of	an	earlier	mutation.		

Finally,	while	there	is	significant	interest	in	the	role	of	regulatory	divergence	
in	speciation,	transcriptional	control	has	received	nearly	all	the	attention.	The	
regulation	of	gene	expression	is	a	complex	process	that	may	be	modulated	at	many	
stages,	including	transcription,	translation,	and	post-translation	(Battle	et	al.	2015).	
The	yeast	speciation	genes	AEP2	and	OLI1	provide	one	example	of	how	translational	
mis-regulation	can	result	in	hybrid	sterility.	AEP2	encodes	a	mitochondrial	protein	
that	translationally	regulates	OLI1.	In	interspecific	hybrids	of	S.	cerevisiae	and	S.	
bayanus,	the	Aep2	protein	is	unable	to	bind	to	OLI1	transcripts.	The	inability	of	Aep2	
to	mediate	the	translation	of	OLI1	is	thought	to	result	in	hybrid	sterility	(Lee	et	al.	
2008).	Methodological	advances	have	made	the	study	of	post-transcriptional	
regulation	more	feasible	(Ingolia	et	al.	2009).	Allele-specific	analyses	of	translational	
efficiency	can	now	be	used	to	infer	cis	and	trans	regulatory	divergence	acting	on	
translation	rate	(Artieri	and	Fraser	2014;	McManus	et	al.	2014;	Hou	et	al.	2015).	
QTL	mapping	techniques	have	been	employed	to	study	intraspecific	variation	in	
translation	and	protein	abundance	(Battle	et	al.	2015,	Ghazalpour	et	al.	2011;	Skelly	
et	al.	124;	Wu	et	al.	2013).	Studies	that	combine	each	of	these	levels	will	provide	a	
more	complete	picture	of	the	role	of	regulatory	divergence	in	speciation.	
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1.8.	Chapter	1	Figures	
	

	
	
	
Figure	1.	The	Bateson-Dobzhansky-Muller	model	of	hybrid	incompatibility.	In	the	
ancestral	population,	the	genotype	is	AABB.	After	the	two	populations	are	isolated,	
new	mutations	arise	independently	on	each	lineage	as	indicated	by	the	asterisks.	In	
one	population,	A	evolves	into	a,	in	the	other	population	B	evolves	into	b.	In	hybrids,	
negative	interactions	between	the	a	and	b	allele	can	result	in	sterility	or	inviability.	
The	a	and	b	alleles	are	found	together	for	the	first	time	in	hybrids,	explaining	how	
this	incompatibility	could	evolve	without	either	lineage	experiencing	an	
intermediate	state	of	reduced	fitness.	
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Figure	2.	Regulatory	divergence	as	a	source	of	hybrid	incompatibilities.	Figures	A	
and	B	are	schematics	of	a	2-locus	model	for	hybrid	incompatibilities.	Each	hybrid	
incompatibility	arises	as	a	consequence	of	the	molecular	interactions	between	a	cis-	
regulatory	region	and	a	trans-	acting	factor.	Changes	in	binding	between	interacting	
regulatory	elements	affect	the	expression	of	a	downstream	gene.	Asterisks	
represent	mutations	that	become	fixed	along	a	lineage.	A)	A	change	to	a	cis-	
regulatory	region	in	one	species	and	the	interacting	trans-	acting	factor	in	the	other	
result	in	hybrid	dysfunction.	Divergence	in	this	example	may	be	the	result	of	drift	or	
selection.	In	hybrids,	the	binding	configuration	represented	by	(iii)	results	in	mis-
regulation,	while	(i),	(ii),	and	(iv)	produce	normal	transcriptional	output.	B)	Lineage	
specific	co-evolution	between	cis	and	trans	regulatory	elements	result	in	a	hybrid	
dysfunction.	In	this	example,	a	change	in	cis	is	followed	by	a	compensatory	change	in	
trans	to	mask	the	deleterious	effect	of	the	first	mutation.	In	hybrids,	the	binding	
configuration	represented	by	(iii)	results	in	mis-regulation.	The	binding	
configuration	represented	by	(ii)	results	in	reduced	expression	compared	to	the	
parents,	while	the	binding	configurations	represented	by	(i)	and	(iv)	result	in	the	
same	expression	as	in	the	parents.		
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Figure	3.	Using	allele-specific	expression	to	infer	regulatory	divergence	between	
species.	Differences	in	the	expression	of	alleles	in	an	F1	can	be	used	to	determine	
whether	expression	divergence	between	the	parents	is	due	to	changes	in	cis	or	to	
changes	in	trans.	A)	Species	1	carries	the	A	allele	while	Species	2	carries	the	a	allele.	
In	the	parental	species,	the	transcript	abundance	of	A	is	2	and	the	transcript	
abundance	of	a	is	3.	Differences	in	the	expression	of	the	A	and	a	alleles	in	the	F1	
hybrid	suggests	cis-	regulatory	divergence	between	Species	1	and	2,	since	these	two	
alleles	are	in	the	same	trans-acting	environment	in	the	F1.	B)	A	and	a	have	equal	
transcript	abundances	in	the	F1	hybrid	despite	the	difference	in	expression	seen	
between	the	parents.	This	suggests	that	differences	between	the	parents	are	due	to	
changes	in	trans.		
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Chapter	2	

Gene	regulation	and	speciation	in	house	mice	
This	chapter	has	been	previously	published	and	is	reproduced	here	in	accordance	
with	the	journal’s	article	sharing	policy:		

Mack	KL,	Campbell	P,	Nachman	MW.	2016.	Gene	regulation	and	speciation	in	
house	mice.	Genome	res	26:	451-461.	
DOI:	10.1101/gr.195743.115	

	
	

Abstract	
One	approach	to	understanding	the	process	of	speciation	is	to	characterize	the	
genetic	architecture	of	postzygotic	isolation.	While	the	majority	of	work	in	this	area	
has	focused	on	identifying	incompatibilities	between	protein	coding	genes,	negative	
epistatic	interactions	between	divergent	regulatory	elements	might	also	contribute	
to	reproductive	isolation.	Here	we	take	advantage	of	a	cross	between	house	mouse	
subspecies,	where	hybrid	dysfunction	is	largely	unidirectional,	to	test	several	key	
predictions	about	regulatory	divergence	and	reproductive	isolation.	Regulatory	
divergence	between	M.	m.	musculus	and	M.	m.	domesticus	was	characterized	by	
studying	allele-specific	expression	in	fertile	hybrid	males	using	mRNA-sequencing	
of	whole	testes.	We	found	extensive	regulatory	divergence	between	M.	m.	musculus	
and	M.	m.	domesticus,	largely	attributable	to	cis-	regulatory	changes.	When	both	cis-	
and	trans-	changes	occurred,	they	were	observed	in	opposition	much	more	often	
than	expected	under	a	neutral	model,	providing	strong	evidence	of	widespread	
compensatory	evolution.	We	also	found	evidence	for	lineage-specific	positive	
selection	on	a	subset	of	genes	related	to	transcriptional	regulation.		Comparisons	of	
fertile	and	sterile	hybrid	males	identified	a	set	of	genes	that	were	uniquely	mis-
expressed	in	sterile	individuals.	Lastly,	we	discovered	a	nonrandom	association	
between	these	genes	and	genes	showing	evidence	of	compensatory	evolution,	
consistent	with	the	idea	that	regulatory	interactions	might	contribute	to	
Dobzhansky-Muller	incompatibilities	and	be	important	in	speciation.		
	
2.1.	Introduction	

Forty	years	ago,	King	and	Wilson	argued	that	differences	between	
chimpanzees	and	humans	could	not	be	explained	by	changes	in	protein	sequences	
alone	(King	and	Wilson	1975).	Since	then,	there	has	been	a	lively	debate	about	the	
relative	importance	of	changes	in	gene	regulation	versus	changes	in	gene	structure	
in	adaptive	evolution	(e.g.	Hoekstra	and	Coyne	2007;	Carroll	2008),	and	some	recent	
studies	have	revealed	a	major	role	for	regulatory	changes	in	adaptation	(e.g.	Jones	et	
al.	2012).	

The	role	of	gene	regulation	in	speciation	has	received	less	attention.	This	is	
somewhat	surprising	since	gene	regulation	requires	interactions	between	loci,	and	
disrupted	interactions	between	loci	in	hybrids	(Dobzhansky-Muller	
incompatibilities)	are	thought	to	underlie	many	examples	of	post-zygotic	
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reproductive	isolation.	At	the	transcriptional	level,	gene	expression	is	a	
consequence	of	the	interaction	of	cis-	regulatory	elements	and	trans-	acting	factors.	
Cis-	regulatory	regions	are	stretches	of	noncoding	DNA	that	bind	trans	acting	factors	
to	regulate	mRNA	abundance.	Thus,	negative	epistatic	interactions	between	cis-	and	
trans-	regulatory	elements	in	hybrids	might	be	important	in	reproductive	isolation.	

One	powerful	way	to	identify	cis-	and	trans-	changes	is	to	compare	
expression	differences	between	species	with	expression	differences	between	alleles	
in	interspecific	hybrids	(Fig.	1)	(Cowles	et	al.	2002;	Wittkopp	et	al.	2004).	This	
approach	has	now	been	used	in	a	number	of	crosses	in	flies,	yeast,	mice,	and	plants	
(Table	1).	These	studies	have	led	to	an	emerging	understanding	of	regulatory	
divergence	within	and	between	species	as	well	as	some	understanding	of	the	causes	
of	mis-expression	in	hybrids.	

Lacking	in	these	studies	is	a	direct	association	with	reproductive	isolation	
through	a	hybrid	sterility	or	inviability	phenotype.	House	mice	(Mus	musculus)	
provide	a	good	opportunity	for	making	links	between	hybrid	sterility	phenotypes,	
mis-expression	in	hybrids,	and	regulatory	divergence	between	lineages.	House	mice	
consist	of	three	main	subspecies	that	diverged	recently	and	are	isolated	to	varying	
degrees	by	hybrid	male	sterility.	Over	the	past	four	decades,	house	mice	have	been	
developed	as	a	model	system	for	the	study	of	mammalian	hybrid	sterility	(e.g.	Forejt	
and	Iványi	1974;	Forejt	1985,1996;	Oka	et	al.	2004,	2007,	2010,	2014;	Britton-
Davidian	et	al.	2005;	Good	et	al.	2008a,	2010;	Mihola	et	al.	2009;	Bhattacharyya	et	
al.	2013,	2014).	Sterility	is	highly	polymorphic	between	different	laboratory	strains	
and	in	natural	populations	(Forejt	and	Iványi	1974;	Good	et	al.	2008a;	Vyskocilova	
et	al.	2009;	Bhattacharyya	et	al.	2014).	Importantly,	crosses	between	a	wild-derived	
inbred	line	of	M.	m.	musculus	(PWK/PhJ)	and	a	wild-derived	inbred	line	of	M.	m.	
domesticus	(LEWES/EiJ)	result	in	infertile	hybrid	males	in	one	direction	and	fertile	
hybrid	males	in	the	reciprocal	direction.	Infertile	hybrid	males	in	this	cross	have	
significantly	reduced	testis	weight	and	sperm	count	compared	to	pure	subspecies	
(Good	et	al.	2008a).	For	simplicity,	hereafter	we	refer	to	these	hybrid	males	with	
lowered	fertility	as	“sterile”	though	sterility	is	not	complete	in	all	individuals.	By	
comparing	sterile	and	fertile	hybrid	males,	it	is	possible	to	disentangle	mis-
expression	that	is	associated	with	sterility	from	mis-expression	that	is	simply	a	
consequence	of	hybridization.			

In	a	previous	study	using	genome-wide	microarray	data,	hybrid	male	sterility	
in	this	cross	was	associated	with	widespread	over-expression	of	the	M.	m.	musculus	
X	Chromosome	during	spermatogenesis	and	mis-expression	at	a	number	of	
autosomal	genes	(Good	et	al.	2010).	This	work	suggested	that	differences	in	gene	
regulation	might	be	important	in	reproductive	isolation.	More	recently,	Turner	et	al.	
(2014)	mapped	sterility	quantitative	trait	loci	(QTL)	and	expression	QTL	(eQTL)	in	
an	F2	cross	using	different	strains	of	M.	m.	musculus	and	M.	m.	domesticus.	They	
identified	a	large	role	for	trans-eQTL	as	well	as	a	number	of	complex	regulatory	
network	interactions	related	to	sterility	(Turner	et	al.	2014).		However,	the	mapping	
approach	was	not	designed	to	identify	allele-specific	expression	patterns	in	F1’s	and	
did	not	address	the	relative	importance	of	cis-	and	trans-	changes	to	regulatory	
divergence	between	these	subspecies.	
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Here	we	compare	expression	differences	between	house	mouse	subspecies	
with	expression	patterns	in	sterile	and	fertile	F1	hybrids.	This	allows	us	to	address	a	
number	of	related	issues.		First,	we	describe	the	proportion	of	changes	between	
subspecies	that	are	due	to	changes	in	cis,	trans,	or	both.	Second,	when	both	kinds	of	
changes	occur,	they	may	occur	in	the	same	direction	or	in	the	opposite	direction.	If	
gene	expression	is	largely	under	stabilizing	selection,	as	experimental	work	
suggests	(Denver	et	al.	2005;	Lemos	et	al.	2005;	Gilad	et	al.	2006),	cis-	and	trans-	
variants	that	act	in	opposite	directions	may	be	more	common	than	expected	by	
chance.	We	test	this	prediction.	Third,	the	identification	of	cis-eQTL	allows	us	to	ask	
whether	differences	in	expression	are	driven	by	positive	selection	(Bullard	et	al.	
2010;	Fraser	et	al.	2010,	2011)	and,	if	so,	to	identify	classes	of	genes	that	are	under	
selection.	Fourth,	we	identify	mis-expression	(i.e.,	changes	greater	than	1.25-fold	on	
a	log2	scale	between	the	hybrid	and	both	parents)	in	sterile	and	fertile	hybrids.	
Comparing	sterile	and	fertile	hybrids	allows	us	to	identify	those	genes	that	are	mis-
expressed	only	in	sterile	mice	and	thereby	associate	mis-expression	with	hybrid	
sterility.	While	this	approach	does	not	distinguish	between	the	specific	genes	
causing	sterility	from	those	that	are	mis-expressed	as	a	downstream	consequence	of	
causative	genes,	it	does	identify	a	set	of	candidate	genes	for	reproductive	isolation	
and	it	makes	specific	testable	predictions.		In	particular,	we	test	the	hypothesis	that	
these	candidate	genes	are	disproportionately	governed	by	compensatory	evolution,	
as	expected	if	regulatory	interactions	contribute	to	Dobzhansky-Muller	
incompatibilities.	

	
	
	

2.2.	Results	
	
2.2.1.	Extensive	cis	regulatory	divergence	between	M.	m.	musculus	and	M.	m.	
domesticus		

To	characterize	the	contribution	of	cis-	and	trans-acting	variants	to	
divergence	between	M.	m.	musculus	and	M.	m.	domesticus,	we	compared	expression	
differences	in	whole	testis	between	subspecies	with	allele-specific	expression	in	
their	fertile	hybrid	using	three	replicates	per	genotype	(Fig.	1a).		Since	hybrids	
inherit	alleles	from	both	parents	that	meet	in	the	same	trans-	acting	environment,	
differences	in	expression	between	parents	that	are	also	seen	between	alleles	in	
hybrids	can	be	inferred	to	be	the	result	of	one	or	more	cis-	regulatory	variants	
(Cowles	et	al.	2004).	Alternatively,	when	a	gene	is	differentially	expressed	between	
subspecies	but	not	between	alleles	in	the	hybrid,	we	can	infer	divergence	in	one	or	
more	trans	variants	(Wittkopp	et	al.	2004).		

Only	reads	that	could	be	assigned	preferentially	to	either	M.	m.	musculus	or	
M.	m.	domesticus		were	retained	for	analysis	(see	Table	S1	for	read	counts).	This	
allowed	us	to	measure	allele-specific	expression	in	hybrids	by	comparing	the	
relative	number	of	reads	mapping	to	the	genome	of	each	subspecies.	After	excluding	
genes	with	low	read	counts	from	the	analysis,	9,851	autosomal	genes	could	be	
tested	for	regulatory	divergence	(see	supplemental	methods).		Of	genes	that	could	
be	tested,	approximately	24%	(2,349	genes)	showed	evidence	of	divergence	due	to	
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one	or	more	variant	acting	in	cis	alone,	9%	(883	genes)	showed	evidence	of	
divergence	due	to	one	more	variants	acting	in	trans	alone,	and	44%	(4,349	genes)	
showed	evidence	of	divergence	in	both	cis	and	trans	(Fig.	1b).		

The	median	regulatory	divergence	between	subspecies	in	trans	alone	(0.58	
log2	fold	change)	was	significantly	lower	than	the	median	divergence	in	cis	alone	
(0.65	log2	fold	change)	(Wilcoxon	rank-sum	test,	p=0.00019).	Genes	with	an	upper-
quartile	log2	fold	change	between	subspecies	(|log2	fold	change|>0.96)	were	also	
enriched	for	variants	acting	in	cis	alone	relative	to	those	in	trans	alone	(40%	cis	
alone,	9%	trans	alone;	Fisher’s	exact	test	p=0.0003).		

	
2.2.2.Widespread	compensatory	evolution	

Genes	with	evidence	of	divergence	in	cis	and	trans	can	be	further	subdivided	
into	categories	based	on	their	contribution	to	expression	differences	between	
subspecies	and	their	direction	of	action.	Genes	with	evidence	of	divergence	in	both	
cis	and	trans	were	divided	into	three	subgroups	(Landry	et	al.	2005;	McManus	et	al.	
2010)(see	supplemental	methods	and	Fig.	1):	1)	cis	x	trans,	where	there	was	
significant	differential	expression	between	subspecies,	significant	differential	
expression	between	alleles	in	the	hybrid,	and	where	the	subspecies	with	higher	
expression	contributed	the	lower	expressed	allele	in	the	hybrid;	2)	compensatory,	
where	the	subspecies	did	not	show	differences	in	expression,	but	alleles	in	hybrids	
were	significantly	different;	and	3)	cis	+	trans,	where	there	was	significant	
differential	expression	between	subspecies,	significant	differential	expression	
between	alleles	in	the	hybrid,	and	where	the	subspecies	with	the	higher	expression	
level	contributed	the	higher	expressed	allele	in	the	hybrid.	We	further	subdivided	
genes	in	this	last	category,	cis	+	trans,	into	cases	where	cis	and	trans	variants	act	in	
the	same	direction	and	cases	where	these	variants	act	in	opposition	(Fig.	S1).	Of	
genes	with	evidence	of	both	cis	and	trans	divergence,	the	majority	were	categorized	
as	cis	+	trans	(24%,	or	2,392	genes);	in	the	majority	of	these,	cis	and	trans	variants	
act	in	opposition	(1,626	genes)	rather	than	in	the	same	direction	(766	genes)	(Fig	
1B).	Thirteen	percent	of	genes	were	categorized	as	compensatory	(1,309	genes).	A	
minority	of	genes	showed	evidence	of	cis	x	trans	divergence	(7%,	648	genes)	(Table	
S2).			

Under	a	neutral	model,	we	expect	an	equal	number	of	genes	to	show	
divergence	due	to	cis	and	trans	variants	acting	in	opposition	and	cis	and	trans	
variants	acting	in	the	same	direction.	An	excess	of	cis	and	trans	changes	acting	to	
reinforce	one	another	would	be	consistent	with	directional	selection	to	alter	
expression	level.	Alternatively,	an	excess	of	cis	and	trans	variants	acting	in	
opposition	would	be	evidence	for	compensatory	evolution	and	widespread	
stabilizing	selection	to	maintain	expression	level.	Genes	categorized	as	cis	x	trans,	
compensatory,	and	a	subset	of	cis	+	trans	(where	variants	act	in	opposition),	show	
evidence	of	cis	and	trans	changes	acting	in	opposite	directions	(Fig.	1b).	In	contrast,	
a	subset	of	genes	categorized	as	cis	+	trans	show	evidence	of	cis	and	trans	changes	
that	are	acting	in	the	same	direction.	By	deriving	neutral	expectations	from	the	
number	of	independent	cis	and	trans	changes	acting	in	the	same	and	opposite	
directions,	we	tested	for	bias	in	directionality	(see	methods).	The	proportion	of	cis-	
and	trans-	changes	that	act	in	opposition	was	extremely	inflated	compared	to	the	
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neutral	expectation	(Table	2,	p<0.0001)	providing	evidence	for	widespread	
compensatory	evolution.	

	
2.2.3.	Adaptive	evolution	of	cis-regulatory	elements		

Changes	in	cis-	variants	are	potentially	targets	for	selection	on	gene	
expression	level	as	cis-regulatory	regions	act	as	context-dependent	regulators	on	
which	selection	may	act	efficiently	(reviewed	by	Wray	2007).	To	test	for	lineage-
specific	selection	on	genes	with	divergent	cis-acting	variants	between	the	
subspecies,	a	gene	set	approach	was	employed	(Bullard	et	al.	2010;	Fraser	et	al.	
2010,	2011).	Under	a	neutral	model,	an	equal	number	of	genes	will	be	up-	and	
down-	regulated	by	cis	variants.	If	a	gene	set	associated	with	a	biological	function	
deviates	from	the	null	expectation	by	presenting	a	significant	directional	bias,	we	
can	infer	lineage-specific	selection.	We	tested	this	by	grouping	genes	with	only	cis-
acting	variants	by	Gene	Ontology	(GO)	terms	(see	supplemental	methods).	Three	
non-independent	biological	process	GO	terms	were	identified	with	significant	
enrichment	for	biased	directionality:	1)	Transcription,	DNA-templated	
(GO:0006351,	p=0.0004),	2)	Positive	regulation	of	transcription	from	RNA	
polymerase	II	promoter	(GO:0045944,	p=0.02),	and	3)	Regulation	of	transcription,	
DNA-templated	(GO:0006355,	p=0.02).	These	interrelated	gene	sets	collectively	
include	410	genes	with	putative	evidence	of	selection,	and	show	biased	
directionality	towards	upregulation	in	M.	m.	musculus	(or	down-regulation	in	M.	m.	
domesticus).			
	
2.2.4.	Mis-expression	in	hybrids	

Crosses	between	M.	m.	domesticus	(LEWES/EiJ)	and	M.	m.	musculus	
(PWK/PhJ)	result	in	fertile	hybrid	males	when	the	mother	is	M.	m.	domesticus	and	
sterile	hybrid	males	when	the	mother	is	M.	m.	musculus.	To	identify	differences	in	
expression	between	fertile	and	sterile	hybrids	and	to	identify	mis-expression,	we	
summed	reads	mapping	to	both	the	M.	m.	domesticus	and	M.	m.	musculus	allele	for	
each	sample	and	then	for	each	genotype	(see	supplemental	material).	Total	read	
counts	for	fertile	and	sterile	hybrids	are	strongly	correlated	with	the	read	counts	of	
both	subspecies	(Fig.	S2).		

First,	we	compared	expression	patterns	on	the	X	Chromosome	between	
sterile	and	fertile	mice.	Previous	work	suggests	a	large	role	for	the	M.	m.	musculus	X	
Chromosome	in	hybrid	male	sterility	(Good	et	al.	2010;	Storchová	et	al.	2004;	Good	
et	al.	2008a;	Oka	et	al.	2004,	2014;	Bhattacharyya	et	al.	2013,	2014).	Genes	
remaining	in	the	analysis	after	filtering	for	low	read	counts	were	distributed	across	
the	X	Chromosome.	In	fertile	hybrids,	the	number	of	genes	expressed	above	and	
below	the	level	seen	in	M.	m.	domesticus	was	nearly	equal,	while	in	sterile	hybrids	
the	majority	of	genes	were	expressed	above	the	level	seen	in	M.	m.	musculus	(Fig.	
2)(Fisher’s	exact	test,	p<0.0001;	Table	S3).	We	next	compared	fold	changes	on	the	X	
to	fold	changes	on	the	autosomes.	Fold	changes	were	calculated	between	both	
subspecies	and	between	the	sterile	and	fertile	hybrids	for	10,264	genes.	The	ratio	of	
genes	over-expressed	on	the	X	versus	the	autosomes	in	the	sterile	hybrid	was	
significant	(Fisher’s	exact	test,	p<0.0001;	Table	S4),	while	there	was	no	significant	
difference	between	these	ratios	in	the	fertile	hybrid	(Fisher’s	exact	test,	p=1.0;	Table	
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S4).	Together,	these	results	suggest	that	the	X	Chromosome	in	the	sterile	hybrid	is	
uniquely	overexpressed	compared	to	the	fertile	hybrid	and	to	the	autosomes.	Over-
expression	of	genes	on	the	X	Chromosome	in	sterile	hybrids	is	consistent	with	
previous	work	based	on	microarrays	(Good	et	al.	2010).	It	is	also	consistent	with	
expression	studies	of	germ	cells	that	were	sorted	by	developmental	stage	(Campbell	
et	al.	2013),	indicating	that	overexpression	of	genes	on	the	X	is	not	an	artifact	of	
differences	in	the	cellular	composition	of	the	testes	of	sterile	and	fertile	mice	(see	
Discussion).	

Next,	we	focused	on	patterns	of	expression	of	autosomal	genes.		Comparing	
the	number	of	reads	mapping	to	a	gene	in	the	hybrid	and	in	the	pure	subspecies	
allowed	us	to	identify	mis-expressed	genes	and	to	infer	the	mode	of	inheritance	for	
expression	for	each	gene	(Fig	S2).	Genes	that	showed	less	than	a	1.25-log2	fold	
change	between	the	hybrid	and	both	subspecies	were	considered	“similar”	
regardless	of	significance	(Gibson	et	al.	2004;	McManus	et	al.	2010).	Since	this	is	a	
conservative	cut-off,	we	found	that	most	genes	showed	similar	levels	of	expression	
in	hybrids	and	in	pure	subspecies	(86%,	or	8,834	genes,	and	90%,	or	9,300	genes,	of	
genes	in	the	sterile	and	fertile	hybrid,	respectively;	Table	S5).	While	the	number	of	
genes	categorized	as	similar	in	this	analysis	is	higher	than	in	previous	studies,	this	is	
unsurprising	given	the	short	divergence	time	between	M.	m.	musculus	and	M.	m.	
domesticus.	Genes	that	did	not	demonstrate	conserved	expression	patterns	were	
divided	into	dominant,	additive,	and	mis-expressed	(see	supplemental	methods	and	
Table	S5).	Where	28	genes	were	mis-expressed	in	the	fertile	hybrid,	63	genes	were	
mis-expressed	in	the	sterile	hybrid	(Table	S5).	In	the	fertile	hybrid	an	equal	number	
of	genes	were	mis-expressed	above	and	below	the	level	of	both	subspecies,	while	in	
the	sterile	hybrid	significantly	more	genes	were	over-expressed	(Fisher’s	exact	test,	
p=0.0006;	Table	S6).	Eleven	mis-expressed	genes	were	shared	between	the	sterile	
and	fertile	hybrid,	all	of	which	were	over-expressed.		
	 Genes	that	are	over-	or	under-expressed	in	the	sterile	hybrid	to	the	exclusion	
of	the	fertile	hybrid	are	of	interest	as	potential	candidates	for	hybrid	
incompatibilities.	First,	we	identified	genes	for	which	the	number	of	reads	mapping	
to	the	fertile	and	sterile	hybrid	was	significantly	different.	Then	we	eliminated	genes	
with	less	than	a	1-log2	fold	difference	between	the	sterile	hybrid	and	both	
subspecies.	A	1-log2	fold	change	corresponds	to	an	expression	difference	that	is	two-
fold	higher	or	lower,	so	differences	between	the	sterile	hybrid	and	each	subspecies	
at	this	threshold	may	be	biologically	meaningful.	We	identified	202	genes	at	a	5%	
FDR	with	these	criteria,	hereafter	referred	to	as	genes	with	“aberrant	expression”	
for	simplicity.	These	202	genes	were	enriched	for	39	non-independent	GO	terms	at	a	
5%	false	discovery	rate,	the	most	highly	significant	of	which	were:	1)	positive	
regulation	of	gene	expression	(FDR	q-value=0.0115),	2)	positive	regulation	of	RNA	
metabolic	process	(FDR	q-value=0.0139),	and,	3)	regulation	of	cell	migration	(FDR	
q-value=	0.0236)	(Eden	et	al.	2009).	Of	these	aberrantly	expressed	genes,	17	were	
associated	with	only	a	cis	regulatory	change	and	thus	could	be	included	in	the	test	
for	positive	selection.	Remarkably,	12	of	these	17	genes	were	identified	as	targets	of	
positive	selection	in	the	analysis	above,	representing	a	highly	significant	over-
enrichment	of	positively	selected	genes	among	those	associated	with	hybrid	sterility	
(Fisher’s	Exact	Test,	p<0.0001;	Table	S7).		
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	 A	subset	of	the	genes	that	are	aberrantly	expressed	uniquely	in	the	sterile	
hybrid	are	associated	with	male	reproductive	phenotypes	or	cell	cycle	control	in	
laboratory	mice,	or	are	highly	expressed	in	the	testis	relative	to	other	tissues,	
making	them	potential	candidates	for	reproductive	incompatibilities	between	the	
subspecies	(Table	3)(phenotype	and	expression	data	collected	from	Eppig	et	al.	
2015;	Su	et	al.	2004;	Wu	et	al.	2009).	Notably,	five	genes	(Adgrg1,	Itpka,	Mtcl1,	
Myl10,	and	Micall2)	have	been	identified	in	regions	of	overlap	between	the	results	of	
a	genome-wide	differentiation	study	between	the	subspecies	(Phifer-Rixey	et	al.	
2014),	a	QTL	mapping	study	on	measures	of	hybrid	male	sterility	(White	et	al.	
2011),	and	in	regions	of	low	introgression	across	the	M.	m.	musculus	and	M.	m.	
domesticus	hybrid	zone	(Janoušek	et	al.	2012).		
	
2.2.5.	Compensatory	evolution	is	associated	with	mis-expression	in	sterile	
hybrids	

If	cis-	and	trans-	changes	interact	epistatically	to	result	in	hybrid	
incompatibilities,	we	expect	divergence	between	subspecies	that	involves	both	cis	
and	trans	changes	to	be	associated	with	novel	expression	patterns	in	the	sterile	
hybrid.	Genes	with	both	cis	and	trans-	changes	in	opposing	directions	should	be	
particularly	enriched	if	the	breakdown	of	co-adapted	regulatory	machinery	
contributes	to	mis-expression	in	sterile	hybrids.	To	test	this	hypothesis,	we	
examined	the	regulatory	categories	associated	with	genes	that	were	mis-expressed	
in	sterile	hybrids	(genes	with	a	greater	than	1.25-log2	fold	change	between	the	
sterile	hybrid	and	both	subspecies)	(Table	S8).	A	number	of	the	mis-expressed	
genes	could	not	be	analyzed	for	regulatory	divergence	due	to	low	read	counts.	Of	the	
genes	that	remained	in	the	analysis,	there	was	a	non-random	association	between	
cis	and	trans	variants	acting	in	opposing	directions	and	mis-expression	in	the	sterile	
hybrid	compared	to	genes	where	cis	or	trans	variants	acted	alone	or	in	the	same	
direction	(Fisher’s	exact	test,	p<0.0001;	Table	4).	Genes	categorized	as	strictly	
compensatory,	where	there	was	no	significant	difference	in	expression	between	
subspecies	despite	significant	differences	between	alleles	in	the	hybrid,	were	the	
most	enriched	in	the	mis-expressed	gene	set	(Fisher’s	exact	test,	p=0.0004;	Table	
S9).	Far	fewer	mis-expressed	genes	were	retained	for	analysis	from	the	fertile	
hybrid	(17	genes	total).	No	regulatory	category	was	enriched	in	the	mis-expressed	
gene	set	of	the	fertile	hybrid,	although	this	may	be	due	to	lack	of	power	given	the	
low	number	of	genes	tested	(Fisher’s	exact	test,	p=1.0;	Table	S10).		
	 Next,	we	repeated	this	analysis	using	the	previously	described	“aberrantly	
expressed”	genes	(Table	S11)	(i.e.	a	more	relaxed	cut-off	in	which	expression	was	at	
least	1-log2	fold	different	between	the	sterile	hybrid	and	both	subspecies).	As	above,	
genes	for	which	cis-	and	trans-	variants	acted	in	opposition	were	enriched	compared	
to	genes	for	which	cis-	and	trans-	variants	acted	independently	or	in	the	same	
direction	(Fisher’s	exact	test,	p<0.0001;	Table	S12).	Likewise,	strictly	compensatory	
changes	again	were	especially	enriched	in	this	differentiated	gene	set	(Fisher’s	exact	
test,	p<0.0001;	Table	S13).	Finally,	to	further	investigate	the	relationship	between	
compensatory	evolution	and	mis-expression	in	the	sterile	hybrid,	genes	were	
binned	based	on	log2	fold	changes	between	the	sterile	hybrid	and	both	subspecies.	
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As	fold	change	increased,	the	proportion	of	genes	where	cis	and	trans	variants	act	in	
opposition	increased	(Fig.	3).			
	
2.2.6.	Expression	comparisons	between	multiple	subspecies	lines	

The	findings	described	above	were	based	on	a	small	number	of	wild-derived	
inbred	lines.	This	limits	the	extent	to	which	our	conclusions	speak	to	regulatory	
divergence	between	M.	m.	musculus	and	M.	m.	domesticus	in	general	as	opposed	to	
regulatory	divergence	between	these	particular	lines.	To	expand	this	analysis	and	
look	more	generally	at	expression	divergence	between	the	subspecies,	we	took	
advantage	of	data	from	a	recent	study	that	analyzed	the	testis	transcriptomes	from	
7	lines	of	M.	m.	domesticus	and	8	lines	of	M.	m.	musculus	(Phifer-Rixey	et	al.	2014).	
While	Phifer-Rixey	et	al.	(2014)	included	more	lines,	coverage	per	line	was	lower	
than	in	our	analysis.	Still,	overlap	between	the	two	datasets	is	high:	77%	of	the	
genes	in	Phifer-Rixey	et	al.	(2014)	were	represented	in	our	data.	We	re-analyzed	the	
data	of	Phifer-Rixey	et	al.	(2014)	for	this	subset	of	9,779	genes	that	were	shared	
between	the	two	studies.	

Importantly,	genes	that	were	differentially	expressed	in	the	data	of	Phifer-
Rixey	et	al.	(2014)	overlap	significantly	with	genes	that	have	significant	parental	
ratios	in	our	analysis	(hypergeometric	test,	p=1.749e-16).	Genes	categorized	as	cis	
and	cis	+	trans	where	variants	act	in	the	same	direction	were	particularly	enriched	
in	this	overlap,	making	up	57%	of	the	genes	found	to	be	differentially	expressed	
between	M.	m.	musculus	and	M.	m.	domesticus	in	both	analyses	(p<0.0001).	
Conversely,	genes	where	cis	and	trans	variants	act	in	opposing	directions	(cis	x	trans	
and	subset	of	cis	+	trans	categories)	showed	the	lowest	proportion	of	overlap.		

We	also	reanalyzed	the	data	from	Phifer-Rixey	et	al.	(2014)	to	see	if	our	
conclusions	about	cis-	changes	subject	to	positive	selection	were	general.		Genes	
with	significantly	different	expression	between	M.	m.	musculus	and	M.	m.	domesticus	
in	Phifer-Rixey	et	al.	(2014)	that	overlapped	with	genes	identified	in	our	analysis	as	
divergent	in	cis	alone	were	categorized	based	on	directionally.	Genes	in	the	three	
sets	we	identified	as	targets	of	selection	(biological	process	GO	terms	GO:006351,	
GO:0045944,	and	GO:0006355;	see	results	above)	were	then	subjected	to	a	
hypergeometric	test	as	in	the	previous	analysis.	Despite	the	reduction	in	genes	
represented	in	each	gene	set,	all	three	sets	maintained	biased	directionality	at	a	
10%	false	discovery	rate	in	this	new	analysis	based	on	a	larger	number	of	inbred	
lines.	

The	general	concordance	between	these	datasets	suggests	that	many	of	the	
conclusions	described	above	do	not	simply	represent	line	effects	but	instead	
characterize	regulatory	divergence	between	these	two	subspecies	more	generally.	
	
2.3.	Discussion	
	

We	characterized	regulatory	divergence	in	testis	between	Mus	musculus	
domesticus	and	Mus	musculus	musculus	as	well	as	aberrant	expression	associated	
with	sterility	in	hybrids.	We	identified	evidence	of	widespread	compensatory	
evolution	consistent	with	stabilizing	selection	as	well	as	evidence	for	lineage-
specific	positive	selection	on	a	subset	of	genes	related	to	transcriptional	regulation.	
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Lastly,	we	identified	genes	with	aberrant	expression	unique	to	sterile	hybrids.	These	
sterility-associated	genes	were	non-randomly	associated	with	cis-	and	trans-	
changes	that	act	in	opposition	to	one	another,	consistent	with	the	idea	that	
regulatory	changes	might	underlie	Dobzhansky-Muller	incompatibilities	and	be	
important	in	speciation.	
	
2.3.1.	Regulatory	divergence	between	M.	m.	domesticus	and	M.	m.	musculus	

A	large	number	of	genes	in	this	study	showed	evidence	of	gene	expression	
divergence	between	M.	m.	domesticus	and	M.	m.	musculus.	To	mitigate	the	potential	
effects	of	inbreeding,	we	crossed	two	different	inbred	lines	within	each	subspecies	
to	create	heterozygous	individuals	against	which	inter-subspecific	hybrids	could	be	
compared.	This	approach,	which	is	rarely	used	in	studies	of	expression	evolution,	
eliminates	differences	in	gene	expression	that	arise	between	subspecies	as	a	result	
of	differences	in	inbreeding	depression	and	it	eliminates	expression	differences	
between	the	subspecies	and	hybrids	as	a	result	of	heterosis.	We	also	compared	our	
results	to	an	independent	expression	study	that	included	more	inbred	lines	(Phifer-
Rixey	et	al.	2014).	Without	population	level	sampling,	it	is	impossible	to	distinguish	
between	line-specific	effects	and	subspecific	differences.	However,	by	characterizing	
the	intersection	between	these	two	datasets,	we	identified	patterns	that	are	more	
likely	to	be	representative	of	subspecific	differences.	The	high	correspondence	
between	the	two	studies	despite	their	differences	in	depth	and	breath	suggests	that	
we	have	captured	a	large	proportion	of	subspecific	divergence.	
	 The	majority	of	the	regulatory	divergence	between	M.	m.	musculus	and	M.	m.	
domesticus	was	the	consequence	of	cis	variants,	either	alone	or	together	with	one	or	
more	trans	variants.	Conversely,	regulatory	divergence	due	to	trans	variants	alone	
was	relatively	rare,	accounting	for	only	a	small	proportion	of	genes	tested.	
Comparisons	between	the	median	expression	differences	associated	with	variants	
acting	in	cis	or	trans	alone	revealed	that	cis	variants	were	of	greater	magnitude.	
Consistent	with	the	results	presented	here,	divergence	in	cis	has	been	demonstrated	
to	be	more	common	than	divergence	in	trans	in	insects	and	nematodes	(Gordon	and	
Ruvinsky	2012),	and	was	previously	shown	to	contribute	to	a	larger	proportion	of	
differentially	expressed	genes	in	the	liver	between	the	house	mouse	subspecies	M.	
m.	castaneus	(CAST/EiJ)	and	M.	m.	domesticus	(C57BL/67)	(Goncalves	et	al.	2012).	
Similarly,	Crowley	et	al.	(2015)	found	allelic	imbalance	consistent	with	cis	
regulatory	effects	in	85%	of	testable	genes	in	comparisons	between	mouse	
subspecies.	These	results	stand	in	contrast	to	those	of	McManus	et	al.	(2010)	and	
Coolon	et	al.	(2014),	both	of	whom	found	a	large	proportion	of	expression	
divergence	to	be	the	result	of	trans-	differences	in	Drosophila	crosses.	Elevated	
trans-	divergence	in	these	two	studies	may	be	due	to	demographic	or	biological	
differences	between	species	or	to	differences	in	the	experimental	methods	(e.g.,	the	
use	of	whole	files	versus	specialized	tissue	types,	number	of	replicates,	etc.).	

Studies	in	yeast	and	flies	suggest	that	cis-regulatory	divergence	typically	
contributes	more	to	differences	between	species	than	to	differences	within	species	
(Tirosh	et	al.	2009;	Emerson	et	al.	2010)	and	increases	consistently	and	
proportionately	with	divergence	time	(Coolon	et	al.	2014).	While	cis-regulatory	
variation	is	substantial	in	natural	populations	(Osada	et	al.	2006;	Genissel	et	al.	
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2007;	Campbell	et	al.	2008;	Gruber	and	Long	2009;	Lemmon	et	al.	2014),	trans-
acting	variation	contributes	more	to	polymorphic	expression	variation	within	
species	(Wittkopp	et	al.	2008;	Lemos	et	al.	2008;	Coolon	et	al.	2014).		M.	m.	
domesticus	and	M.	m.	musculus	diverged	roughly	350,000	years	ago	and	still	share	
some	ancestral	variation.		Thus,	some	of	the	regulatory	differences	observed	
between	inbred	strains	could	still	be	polymorphic	in	one	or	both	subspecies.	Finally,	
overlap	between	our	data	and	those	of	Phifer-Rixey	et	al.	(2014)	is	greatest	for	
genes	associated	with	cis-	changes	and	cis	+	trans	changes	(where	variants	act	in	the	
same	direction),	suggesting	that	these	two	regulatory	categories	may	contribute	
disproportionately	to	regulatory	divergence	between	subspecies	compared	to	
within-subspecies	variation.		

Stabilizing	selection	has	been	identified	as	a	dominant	force	underlying	gene	
expression	evolution	(Gilad	et	al.	2006).	A	widespread	reduction	in	gene	expression	
variation	compared	to	neutral	expectations	based	on	intra-	and	interspecific	
comparisons	(Lemos	et	al.	2005;	Rifkin	et	al.	2003)	and	mutation	accumulation	lines	
(Denver	et	al.	2005)	suggests	that	changes	in	expression	are	frequently	deleterious.	
The	apparent	reduction	in	expression	divergence	in	these	studies	compared	to	
neutral	expectations	could	be	the	outcome	of	two	separate	processes:	the	
elimination	of	cis-	and	trans-	acting	variants	through	purifying	selection	or	
compensatory	evolution	between	regulatory	elements	that	conserves	expression	
levels.		Our	results	favor	the	latter	explanation.	We	identified	a	significantly	greater	
proportion	of	instances	where	cis	and	trans	variants	acted	in	opposition	than	
expected	under	neutrality,	consistent	with	widespread	lineage-specific	
compensatory	evolution.		

What	drives	this	compensatory	evolution?	One	possibility	is	that	selection	
initially	favors	a	mutation	acting	in	trans,	perhaps	because	selection	favors	a	change	
in	expression	of	some	downstream	gene.		If	the	initial	trans-	change	is	highly	
pleiotropic,	it	may	alter	the	expression	of	other	downstream	genes	in	a	suboptimal	
way.	Selection	would	then	favor	the	restoration	of	optimal	expression	levels	at	these	
genes	through	compensatory	cis-	changes	(Goncalves	et	al.	2012;	Coolon	et	al.	
2014).			

Against	this	background	of	widespread	compensatory	evolution	involving	
changes	in	both	cis-	and	trans-,	we	also	found	evidence	for	lineage-specific	positive	
selection	on	a	subset	of	cis-	only	changes.	Selection	is	predicted	to	act	efficiently	on	
cis-regulatory	variants	(Wray	2007)	and	simulations	suggest	that	natural	selection	
is	more	likely	to	drive	cis-regulatory	divergence	than	trans-regulatory	divergence	
(Emerson	et	al.	2010).	In	our	study,	hundreds	of	genes	related	to	transcriptional	
regulation	with	cis-	changes	showed	biased	directionality.	It	is	clear	from	this	result	
that	positive,	directional	selection	is	contributing	to	a	non-negligible	proportion	of	
regulatory	divergence.	
	
2.3.2.	Mis-expression	in	sterile	hybrids	

In	crosses	between	M.	m.	musculus	(PWK/PhJ)	females	and	M.	m.	domesticus	
(LEWES/EiJ)	males,	hybrid	males	have	significantly	smaller	testes	and	lower	sperm	
counts	compared	to	hybrid	males	in	the	reciprocal	cross	(Good	et	al.	2008a)	(see	
Table	S16	for	phenotypes	of	the	mice	in	this	study).		We	took	advantage	of	the	
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asymmetrical	nature	of	hybrid	male	sterility	in	this	cross	to	identify	genes	that	were	
uniquely	mis-expressed	in	sterile	hybrids.		This	approach	allowed	us	to	separate	
mis-expression	that	was	associated	with	hybridization	from	mis-expression	that	
was	associated	with	sterility.	For	example,	the	28	genes	that	were	mis-expressed	in	
fertile	hybrids	(Table	S5)	can	be	excluded	as	contributing	to	reproductive	isolation.				

Despite	the	power	of	this	approach,	it	is	important	to	recognize	that	it	does	
not	allow	us	to	directly	identify	genes	causing	sterility.		The	set	of	genes	that	are	
mis-expressed	only	in	sterile	hybrids	is	expected	to	include	causative	genes,	but	it	
may	also	include	genes	that	are	mis-expressed	as	downstream	effects	of	genes	
causing	sterility.		The	latter	category	is	likely	inflated	by	differences	in	the	cellular	
composition	of	testes	in	fertile	and	sterile	animals.	Testes	contain	a	heterogeneous	
mixture	of	cell	types;	sterile	and	fertile	hybrids	contain	different	proportions	of	
somatic,	mitotic,	early	meiotic	and	postmeiotic	cells.	For	example,	in	the	well-
studied	cross	between	M.	m.	domesticusC57BL/6J	and	M.	m.	musculusPWD	in	which	
Prdm9	is	implicated	in	hybrid	male	sterility,	essentially	complete	meiotic	arrest	
occurs	in	pachytene	with	spermatocytes	undergoing	apoptosis	(Mihola	et	al.	2009).		
Nonetheless,	several	lines	of	evidence	suggest	that	differences	in	cellular	
composition	are	not	the	main	cause	of	the	expression	differences	we	have	identified	
here.		First,	in	contrast	to	the	cross	between	M.	m.	domesticusC57BL/6J	and	M.	m.	
musculusPWD,	meiotic	arrest	is	incomplete	in	the	cross	performed	here:	cells	from	all	
stages	of	spermatogenesis	can	be	found	in	the	testes	of	sterile	males	although	the	
proportions	differ	in	sterile	and	fertile	animals.	Second,	we	would	expect	to	see	a	
greater	effect	of	cellular	composition	on	X-linked	gene	expression	than	autosomal	
expression	in	whole	testis,	since	transcription	on	the	X	Chromosome	is	largely	
silenced	from	pachytene	through	the	later	stages	of	spermatogenesis	(Turner	2007).	
Despite	this	expectation,	there	is	close	agreement	between	our	finding	of	X-linked	
overexpression	and	the	results	of	Campbell	et	al.	(2013),	who	studied	X-linked	
expression	in	flow-sorted	germ	cells	for	the	same	genotypes.		Campbell	et	al.	(2013)	
showed	that	the	over-expression	of	the	X	Chromosome	in	sterile	hybrid	males	from	
this	cross	is	not	an	artifact	of	changes	in	cellular	composition	but	reflects	major	
shifts	in	gene	expression	in	sterile	animals	that	occur	in	individual	cell	types.		Third,	
all	patterns	of	allele-specific	expression	documented	here	are	robust	to	cellular	
composition	since	they	were	determined	only	in	fertile	F1	males,	which	have	the	
same	cellular	composition	as	the	parents.	Finally,	the	strong	association	between	
cis-trans	compensatory	evolution	and	mis-expression	(Table	4)	would	not	be	
expected	if	cellular	composition	is	the	primary	driver	of	differences	in	gene	
expression	between	fertile	and	sterile	hybrids	(unless	different	cell	types	showed	
differences	in	the	amount	of	compensatory	regulatory	evolution,	a	pattern	that	is	
not	seen;	supplementary	methods	and	Tables	S17	and	S18).			
	 Numerous	studies	have	established	a	central	role	for	the	X	Chromosome	in	
hybrid	male	sterility	in	house	mice.	Quantitative	trait	locus	mapping	of	sterility	
phenotypes	(White	et	al.	2011;	Bhattacharyya	et	al.	2014),	phenotyping	of	
introgression	lines	(Oka	et	al.	2004;	Good	et	al.	2008b;	Campbell	et	al.	2013;	Oka	et	
al.	2014),	and	studies	of	introgression	across	the	hybrid	zone	(e.g.	Tucker	et	al.	
1992;	Dod	et	al.	1993),	have	all	suggested	that	loci	on	the	M.	m.	musculus	X	
Chromosome	contribute	to	postzygotic	isolation	between	the	subspecies.	Mis-
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expression	of	M.	m.	musculus	X-linked	genes	in	sterile	hybrids	is	associated	with	
disruption	of	meiotic	sex	chromosome	inactivation	(MSCI),	the	process	of	
transcriptional	silencing	of	X	and	Y	chromosomes	during	spermatogenesis	(Good	et	
al.	2010;	Campbell	et	al.	2013;	Bhattacharyya	et	al.	2013,	2014).	The	upregulation	of	
X-linked	genes	in	sterile	hybrids	seen	here	is	consistent	with	this	earlier	work.		

Previous	studies	have	also	implicated	numerous	autosomal	loci	in	in	
reproductive	isolation	in	mice	(e.g.,	Forejt	and	Ivanyi	1974;	Mihola	et	al.	2009;	
White	et	al.	2011;	Janoušek	et	al.	2012;	Forejt	et	al.	2012;	Phifer-Rixey	et	al.	2014).	
In	particular,	Mihola	et	al.	(2009)	characterized	a	gene	on	chromosome	17,	Prdm9,	
which	interacts	with	the	M.	m.	musculus	X	Chromosome	to	drive	hybrid	sterility;	
however,	sterility	in	the	cross	studied	here	is	not	associated	with	known	variants	of	
this	locus	(Good	et	al.	2008b,	Good	et	al.	2010).	Nonetheless,	we	identified	202	
autosomal	genes	with	aberrant	expression	only	in	the	sterile	hybrid,	consistent	with	
the	idea	that	autosomal	genes	contribute	to	hybrid	male	sterility.		Interestingly,	
these	were	enriched	for	GO	categories	associated	with	gene	regulation.	Several	of	
the	aberrantly	expressed	genes	where	cis	and	trans	variants	act	in	opposition	are	
known	from	previous	work	to	play	a	role	in	spermatogenesis,	cell	cycle	control,	or	to	
be	expressed	mainly	in	the	testis	(Table	3).	Candidates	of	particular	interest	which	
deserve	follow-up	in	future	studies	are	Myl10	and	Mtcl1,	both	of	which	were	
identified	in	regions	of	overlap	between	our	study,	a	study	identifying	peaks	of	
differentiation	between	the	subspecies,	a	QTL	mapping	study	on	markers	of	hybrid	
sterility,	and	regions	of	low	introgression	across	the	hybrid	zone	(Phifer-Rixey	et	al.	
2014;	White	et	al.	2011;	Janoušek	et	al.	2012).	More	detailed	characterization	of	the	
phenotype	of	hybrid	sterility	in	this	cross	will	be	useful	for	elucidating	the	role	of	
particular	genes.		

We	also	found	a	highly	significant	over-representation	of	genes	showing	
positive	selection	among	those	that	were	aberrantly	expressed	only	in	sterile	
hybrids.	Because	the	test	we	used	was	restricted	to	those	genes	showing	cis	changes	
alone,	the	nature	and	identity	of	the	interacting	loci,	if	any,	are	unknown.	
Nonetheless,	an	emerging	pattern	from	studies	of	the	genetics	of	postzygotic	
isolation	is	that	most	of	the	identified	genes	show	signatures	of	positive	selection	
(Presgraves	2010).	Our	results	are	certainly	consistent	with	this	emerging	picture	
and	further	suggest	that	selection	on	regulatory	changes	contributes	to	the	
evolution	of	reproductive	isolation.		
	 Previous	studies	have	identified	an	association	between	cis-	and	trans-	
changes	favoring	the	expression	of	the	opposite	allele	and	mis-expression	in	hybrids	
(Landry	et	al.	2005;	Tirosh	et	al.	2009;	McManus	et	al.	2010;	Schaefke	et	al.	2013).	
Landry	et	al.	(2005)	first	identified	an	association	between	compensatory	
coevolution	between	cis	and	trans	elements	and	mis-expression	in	hybrids.	While	
this	initial	study	made	powerful	predictions	as	to	how	regulatory	divergence	could	
result	in	reproductive	incompatibilities	between	species,	a	phenotypic	association	
with	this	pattern	that	is	separable	from	expression	differences	associated	with	
hybridization	has	been	lacking	until	now.		
	 The	Dobzhansky-Muller	model	of	postzygotic	isolation	is	one	of	the	
cornerstones	in	our	understanding	of	the	genetics	of	speciation	(Coyne	and	Orr	
2004).	Despite	the	fact	that	gene	regulation	necessarily	involves	interactions	
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between	loci,	there	have	been	few	systematic	attempts	to	link	disruptions	in	gene	
regulation	across	the	genome	to	phenotypes	underlying	reproductive	isolation	
(Turner	et	al.	2014).	Here	we	showed	that	genes	that	are	mis-expressed	uniquely	in	
sterile	hybrid	males	are	associated	with	opposing	changes	in	cis	and	trans.	Strictly	
compensatory	changes	(i.e.,	where	expression	levels	in	both	subspecies	are	the	
same)	were	particularly	enriched	in	genes	with	aberrant	or	mis-expression.	These	
results	provide	strong	evidence	that	compensatory	regulatory	evolution	may	
underlie	Dobzhansky-Muller	incompatibilities	and	contribute	to	reproductive	
isolation	between	M.	m.	musculus	and	M.	m.	domesticus.		
	
2.4.	Materials	and	Methods	
	
2.4.1.	Samples	

M.	m.	musculus		was	represented	by	whole	testis	from	the	wild-derived	
inbred	strains	PWK/PhJ	and	CZECHII/EiJ	(hereafter,	M.	m.	musculusPWK	and	M.	m.	
musculusCZII),	and	M.	m.	domesticus	was	represented	by	whole	testis	from	the	
LEWES/EiJ	and	WSB/EiJ	strains	(hereafter,	M.	m.	domesticusLEWES	and	M.	m.	
domesticusWSB).		

Hybrids	were	generated	from	reciprocal	crosses	between	M.	m.	musculusPWK	
and	M.	m.	domesticusLEWES.	Male	hybrids	in	this	cross	are	sterile	when	the	mother	is	
M.	m.	musculusPWK	and	fertile	when	the	mother	is	M.	m.	domesticusLEWES.	To	
circumvent	the	problem	of	inbreeding	depression	in	pure	species,	we	crossed	M.	m.	
musculusPWK	females	to	M.	m.	musculusCZII	males,	and	M.	m.	domesticusLEWES	females	
to	M.	m.	domesticusWSB	males.		

	
2.4.2.	Sequencing	and	mapping	

For	each	sample,	100	base-pair	paired-end	reads	were	sequenced	from	
mRNA	on	the	Illumina	HiSeq2000	platform.	A	mean	of	7.5	Gb	of	sequence	was	
obtained	for	each	sample.		

Subspecies	were	mapped	with	the	program	Tophat	(Kim	et	al.	2013)	to	the	
appropriate	pair	of	reference	genomes	(either	M.	m.	musculusPWK	and	M.	m.	
musculusCZII	or	M.	m.	domesticusLEWES	and	M.	m.	domesticusWSB)	as	well	as	to	the	
opposite	maternal	reference	(M.	m.	domesticusLEWES	or	M.	m.	musculusPWK).	Hybrids	
were	mapped	to	M.	m.	musculusPWK	and	M.	m.	domesticusLEWES.	Only	reads	that	
mapped	preferentially	to	one	subspecies	were	retained	for	further	analysis.	See	
supplemental	methods	for	information	on	the	reference	genomes	used	for	mapping.	

On	average,	a	greater	proportion	of	reads	mapped	to	M.	m.	musculusPWK	per	
sample	than	to	M.	m.	domesticusLEWES	(see	Table	S1).	This	difference	may	be	due	to	
real	differences	in	allelic	expression	or	due	to	a	mapping	bias;	to	account	for	the	
difference	in	the	number	of	allele-specific	reads	across	samples,	reads	were	later	
randomly	downsampled	across	samples	(see	below).		

	
2.4.3.	Regulatory	divergence	
An	equal	number	of	reads	from	each	parental	sample	were	combined	to	create	a	
mixed	parental	pool	comparable	to	allele-specific	counts	in	fertile	hybrids.	
Downsampling	was	chosen	to	equalize	power	across	comparisons	as	described	in	
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Coolon	et	al.	(2014).	Reads	were	then	pooled	for	the	following	categories:	1)	M.	m.	
musculus	subspecies	reads,	2)	M.	m.	domesticus	subspecies	reads,	3)	Fertile	hybrid	
M.	m.	musculus	allelic	reads,	and	4)	Fertile	hybrid	M.	m.	domesticus	allelic	reads.	
Genes	with	fewer	than	20	reads	for	any	sample	or	allele	were	excluded.	Genes	were	
sorted	into	regulatory	categories	based	on	a	binomial	test	between	reads	mapping	
to	each	parent,	a	binomial	test	between	reads	mapping	to	each	allele	in	the	fertile	
hybrid,	and	a	Fisher’s	exact	test	comparing	these	values	(see	supplemental	methods	
for	details	on	regulatory	divisions)	(Wittkopp	et	al.	2004;	McManus	et	al.	2010).	As	
described	by	Goncalves	et	al.	(2014),	cis	+	trans	can	further	be	subdivided	into	genes	
where	cis	and	trans	are	acting	in	the	same	direction	(hybrid	ratio	<	pure	species	
ratio)	or	opposite	directions	(hybrid	ratio	>	pure	species	ratio).		
	
2.4.4.	Inheritance	patterns	
After	reads	were	mapped	and	counted,	reads	mapping	to	M.	m.	domesticusLEWES	and	
M.	m.	musculusPWK	were	combined	for	each	sample	for	total	hybrid	counts.	Mapped	
reads	from	pure	species	and	hybrids	were	downsampled	to	an	equivalent	number	
per	sample	and	then	pooled	by	genotype	(metaseqR;	Moulos	and	Hatzis	2014).		
	
2.4.5.	Testing	for	enrichment	of	opposing	or	reinforcing	cis-	and	trans-	changes	
The	expected	numbers	of	cis-	and	trans-	changes	acting	in	the	same	or	opposing	
directions	were	calculated	based	on	the	proportion	of	negative	and	positive	cis-	and	
trans-	changes	(Table	S15).	Expected	numbers	were	calculated	by	multiplying	the	
proportion	of	directional	independent	cis-	and	trans-	changes	together	and	then	in	
opposition	by	the	total	number	of	genes	with	divergence	in	both	cis	and	trans.		
	
2.5.	Data	Access	
The	sequencing	data	generated	for	this	study	have	been	submitted	to	the	NCBI	
BioProject	(http://www.ncbi.nlm.nih.gov/bioproject/)	under	BioProject	ID	
PRJNA286765.	
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2.6.	Chapter	2	Tables		
Table	1.	Studies	that	have	identified	regulatory	divergence	due	to	changes	in	cis-	and	trans-	betw
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Table	2.	An	enrichment	of	cis-	and	trans-	changes	that	act	in	opposition	compared	
to	changes	that	act	in	the	same	direction	
	

		 Negative	fold	change	 Positive	fold	change	
Direction	 Expected3	 Observed	 Expected3	 Observed	
Opposing1	 1256	 2257	 931	 1326	

Same2	 1069	 352	 1093	 414	
1Opposing	refers	to	instances	where	cis	and	trans	variants	act	in	opposing	directions.	This	includes	
genes	categorized	as	cis	x	trans,	compensatory,	and	a	subset	of	cis	+	trans	(where	variants	act	in	
opposition)	
2Same	refers	to	instances	where	cis	and	trans	variants	act	in	the	same	direction.	This	includes	genes	
categorized	cis	+	trans	where	variants	act	in	the	same	direction	
3Expected	values	are	based	on	the	proportion	observed	when	cis	or	trans	changes	occur	by	
themselves	(see	Methods).	
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Table	3.	Aberrantly	expressed	genes	in	the	sterile	hybrid	with	phenotypes	of	
interest	for	hybrid	incompatibilities.	
	

Gene	name	 Associated	
function/Expression1	

Directio
n2	

Regulatory	
category	

Arl8a	 Cell	cycle;	chromosome	
segregation;	mitotic	nuclear	

division;	cell	division	

+	 cis	+	trans,	
opposing	

Brd4	 Positive	regulation	of	G2/M	
transition	of	mitotic	cell	cycle	

+	 cis	+	trans,	
opposing	

Cherp	 Negative	regulation	of	cell	
proliferation;	RNA	processing	

+	 Compensatory	

Cib4	 Highly	expressed	in	testis	 -	 cis	+	trans,	
opposing	

Cited2	 Male	gonad	development	 +	 cis	+	trans,	
opposing	

Crisp2	 Testis-specific	expression	 +	 cis	by	trans	
Ctdsp1	 Negative	regulation	of	G1/S	

transition	of	mitotic	cell	cycle	
+	 Compensatory	

Cul7	 Mitotic	cytokinesis;	regulation	
of	mitotic	nuclear	division	

+	 Compensatory	

Gm5617	 Testis-specific	expression	 +	 Compensatory	
Hspa8	 Heat	shock	protein;	regulation	

of	cell	cycle	
+	 cis	by	trans	

Hspb1	 Heat	shock	protein;	negative	
regulation	of	apoptotic	

signaling	pathway	

+	 Compensatory	

Kat2a	 Cell	proliferation;	chromatin	
binding	

+	 Compensatory	

Mad1l1	 Mitotic	nuclear	division,	
mitotic	spindle	assembly	

checkpoint	

+	 cis	+	trans,	
opposing	

Map3k9	 Apoptotic	process;	cell	death	 +	 Compensatory	
Morc2b	 Testis-specific	expression	 -	 cis	by	trans	
Mtcl1*	 Microtubule	crosslinking	

factor	
+	 cis	by	trans	

Myl10*	 Testis-specific	expression	 -	 cis	+	trans,	
opposing	

Phactr4	 Regulation	of	cell	cycle	 +	 cis	+	trans,	
opposing	

Plcz1	 Testis-specific	expression	 -	 Compensatory	
Ppp1r42	 Highly	expressed	in	testis;	

microtubule	organizing	center	
+	 cis	by	trans	

Prm1	 Spermatogenesis;	mutants	
associated	with	deformed	

+	 Compensatory	
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sperm	
Prm2	 Spermatogenesis;	mutants	

associated	with	deformed	
sperm	

+	 cis	by	trans	

Sh3bp4	 Negative	regulation	of	cell	
proliferation;	positive	

regulation	of	autophagy;	
negative	regulation	of	cell	

growth	

+	 Compensatory	

Usf2	 Homozygous	null	mutants	
males	are	usually	infertile	

+	 Compensatory	

Zbtb16	 Male	germ-line	stem	cell	
asymmetric	division;	

homozygous	mutants	develop	
infertility	

+	 Compensatory	

1Phenotype	and	expression	data	from	Mouse	Genome	Informatics	(Eppig	et	al.	2015)	and	Su	
et	al.	(2004),	available	through	BioGPS	(Wu	et	al.	2009)	
2The	direction	of	change	between	pure	species	and	the	sterile	hybrid	(i.e.,	genes	designated	
with	a	“+”	are	expressed	above	the	level	of	both	pure	species)	
*Gene	names	have	been	identified	in	regions	of	overlap	between	a	hybrid	zone	study,	a	
differentiation	study,	and	a	QTL	mapping	study	between	M.	m.	musculus	and	M.	m.	
domesticus	
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2.7.	Chapter	2	Figures	
	

	
	
	
Figure	1.	A)	Categories	of	regulatory	divergence	between	M.	m.	musculus	and	M.	m.	
domesticus	inferred	from	gene	expression	levels	in	pure	subspecies	and	hybrids,	where	P	
and	H	are	the	ratio	of	reads	mapping	to	M.	m.	domesticus	versus	M.	m.	musculus	in	the	pure	
species	and	hybrids,	respectively.	B)	The	relative	distribution	of	regulatory	categories	in	
this	dataset.	Each	point	represents	one	gene.		Points	represent	log2	fold	changes	between	
reads	mapping	to	each	allele	in	the	hybrid	(M.	m.	domesticus/M.	m.	musculus)	and	the	reads	
mapping	to	each	subspecies	(M.	m.	domesticus/M.	m.	musculus).	Genes	are	color-coded	
based	on	their	inferred	regulatory	category.	
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Figure	2.	Expression	on	the	X	Chromosome	in	reciprocal	hybrids.	Each	point	represents	
one	gene.	
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Figure	3.	The	relationship	between	the	magnitude	of	expression	differences	and	the	
number	of	genes	in	different	regulatory	categories.	Larger	fold	changes	between	both	
subspecies	and	the	sterile	hybrid	are	associated	with	a	greater	proportion	of	genes	where	
cis	and	trans	variants	act	in	opposition	to	one	another.		
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2.8.	Chapter	2	Supplemental	material	
	
2.8.1.	Sampling	and	mouse	husbandry	

The	wild-derived	inbred	strains	used	in	this	study	were	purchased	from	The	
Jackson	Laboratory	(http://jaxmice.jax.org),	and	maintained	at	the	University	of	Arizona	in	
accordance	with	Institutional	Animal	Care	and	Use	Committee	(IACUC)	protocols.		M.	m.	
musculus		was	represented	by	the	PWK/PhJ	and	CZECHII/EiJ	strains	(hereafter,	M.	m.	
musculusPWK	and	M.	m.	musculusCZII),	and	M.	m.	domesticus	was	represented	by	the	
LEWES/EiJ	and	WSB/EiJ	strains	(hereafter,	M.	m.	domesticusLEWES	and	M.	m.	domesticusWSB).		

Hybrids	were	generated	from	reciprocal	crosses	between	M.	m.	musculus	PWK	and	M.	
m.	domesticusLEWES.	This	cross	results	in	infertile	hybrid	males	in	one	direction	and	fertile	
hybrid	males	in	the	reciprocal	direction.	Infertile	hybrid	males	in	this	cross	have	
significantly	reduced	testis	weight	and	sperm	count	compared	to	pure	subspecies	(Good	et	
al.	2008).	For	simplicity,	hereafter	we	refer	to	these	hybrid	males	with	lowered	fertility	as	
“sterile”	though	sterility	is	not	complete	in	all	individuals.	Individuals	for	this	experiment	
where	chosen	at	random,	without	regard	for	testes	weight,	sperm	count,	or	other	
reproductive	phenotypes.	Phenotypes	for	these	mice	are	listed	in	Table	S16.	Sterile	hybrid	
samples	have	a	lower	mean	testes	weight	and	sperm	count	than	the	fertile	hybrid	samples	
or	the	pure	subspecies	samples.		

Since	the	parents	in	this	cross	are	fully	inbred	while	the	hybrids	are	not,	differences	
in	expression	between	the	parents	and	hybrids	could	be	due	to	inbreeding	depression.		To	
circumvent	this	problem,	we	crossed	M.	m.	musculusPWK	females	to	M.	m.	musculusCZII	males,	
and	M.	m.	domesticusLEWES	females	to	M.	m.	domesticusWSB	males.	The	heterozygous	progeny	
of	these	intrasubspecific	crosses	will	henceforth	be	referred	to	simply	as	M.	m.	musculus	
and	M.	m.	domesticus.		
	 All	animals	were	70	days	old,	unmated,	and	singly	housed	at	time	of	euthanasia.	
Testes	were	dissected	under	RNAse	free	conditions	and	placed	in	RNAlater	at	4°C	
overnight	and	then	moved	to	-80°C.	RNA	was	then	extracted	with	Qiagen’s	RNAeasy	Plus	
Mini	Kit.	Three	biological	replicates	were	collected	for	each	genotype.			
	
2.8.2.	Sequencing	and	Mapping	

For	each	sample,	100	base-pair	paired-end	reads	were	sequenced	from	mRNA	on	
the	Illumina	HiSeq2000	platform.	A	mean	of	7.5	Gb	of	sequence	was	obtained	for	each	
sample.	Illumina	adaptors	and	the	trailing	3	bases	were	clipped	with	Trimomatic	(Bolger	et	
al.	2014).		

Tophat	(v2.1,	settings:	--b2-sensitive)	was	used	to	map	reads	from	each	sample	to	
the	appropriate	reference	genomes	(Kim	et	al.	2013).	References	for	PWK	and	WSB,	based	
on	the	Wellcome	Trust’s	SNP	and	indel	calls	on	C57bl/6,	are	publically	available	(Turro	et	
al.	2011);	consubspecific	CZECHII	and	LEWES	references	were	constructed	by	inserting	
SNPs	called	with	SAMTOOLS	mpileup	into	the	PWK	and	WSB	reference	genomes,	
respectively.	SNPs	were	called	based	on	a	pileup	against	the	PWK	and	WSB	genomes	with	
these	samples	as	well	as	transcriptome	data	from	a	recent	study	(see	Phifer-Rixey	et	al.	
2014	for	SNP	calling).	
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Subspecies	were	mapped	to	the	appropriate	pair	of	reference	genomes	(either	M.	m.	
musculusPWK	and	M.	m.	musculusCZII	or	M.	m.	domesticusLEWES	and	M.	m.	domesticusWSB)	as	
well	as	to	the	opposite	maternal	reference	(M.	m.	domesticusLEWES	or	M.	m.	musculusPWK).	
Reads	that	mapped	preferentially	or	equally	well	to	the	incorrect	subspecies	were	
discarded	at	the	0,	1,	and	2	mismatch	thresholds.	For	example,	if	a	read	from	a	M.	m.	
musculus	sample	mapped	equally	well	to	both	subspecies	reference	genomes	with	zero	
mismatches,	the	read	was	discarded.	Alternatively,	if	the	read	mapped	to	the	M.	m.	
musculus	reference	with	0	mismatches	and	to	the	M.	m.	domesticus	reference	with	1	
mismatch,	it	was	retained	for	further	analysis.		

Hybrids	were	mapped	to	M.	m.	musculusPWK	and	M.	m.	domesticusLEWES.	Only	reads	
that	mapped	preferentially	to	M.	m.	musculusPWK	or	M.	m.	domesticusLEWES	were	retained	for	
further	analysis.		Reads	that	mapped	equally	well	to	both	M.	m.	musculusPWK	and	M.	m.	
domesticusLEWES	at	0,	1,	and	2	mismatch	thresholds	were	discarded	so	as	to	retain	only	
reads	for	which	an	allele	specific	to	M.	m.	musculus	or	M.	m.	domesticus	could	be	assigned.	
On	average,	a	greater	proportion	of	reads	mapped	to	M.	m.	musculusPWK	per	sample	than	to	
M.	m.	domesticusLEWES	(Table	S1).	This	difference	may	be	due	to	real	differences	in	allelic	
expression	or	due	to	a	mapping	bias;	to	account	for	the	difference	in	the	number	of	allele	
specific	reads	across	samples,	reads	were	later	randomly	downsampled	across	samples	
(see	below).		

Gene	annotations	were	converted	by	creating	LiftOver	chains	between	reference	
genomes	and	the	C57BL/6J	mouse	reference	genome	using	BLAT	and	liftover	command	
line	programs	(personal	script,	available	on	request).	Chains	files	were	then	used	with	the	
UCSC	command	line	LiftOver	tool	to	convert	annotations	for	C57BL/6J	(downloaded	from	
Ensembl,	v68)	between	assemblies	(Kuhn	et	al.	2007).	The	HTSeq-count	package	was	used	
to	count	reads	mapped	to	features	(settings:	--stranded=no	–mode=union)		(Anders	et	al.	
2015).		
	
2.8.3.	Preprocessing	of	mapped	reads	

A	principle	components	(PC)	analysis	separated	M.	m.	musculus	samples	from	M.	m.	
domesticus	samples	along	PC1,	explaining	nearly	70%	of	the	variation	between	samples.	
Spearman's	Rank-Order	Correlation	was	calculated	between	samples	(p	<	2.2e-16;	Table	
S14).	As	expected	based	on	the	PC	analysis,	correlations	between	replicates	within	
subspecies	were	considerably	higher	than	comparisons	between	subspecies	(0.95-0.99	for	
intrasubspecific	comparisons,	0.77-0.83	for	intersubspecific	comparisons).	Correlations	
between	expression	levels	in	the	sterile	and	fertile	hybrid	and	each	parent	were	also	high	
(Fig.	S1).	
	
2.8.4.	Characterizing	regulatory	divergence	
	 An	equal	number	of	reads	from	each	parental	sample	were	combined	to	create	a	
mixed	parental	pool	comparable	to	allele-specific	counts	in	hybrids.	Downsampling	was	
chosen	to	equalize	power	across	comparisons	as	described	in	Coolon	et	al.	(2014).	A	
similar	method	was	also	recently	employed	for	downsampling	allele-specific	reads	in	
humans	(Lappalainen	et	al.	2013).	Using	simulations,	Coolon	et	al.	2014	found	that	such	a	
downsampling	approach	produces	data	sets	with	the	same	power	to	detect	significant	
expression	differences	with	Fisher’s	exact	tests	as	data	sets	collected	at	smaller	sample	
sizes.		
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	Reads	were	then	pooled	for	the	following	categories:	1)	M.	m.	musculus	subspecies	
reads,	2)	M.	m.	domesticus	subspecies	reads,	3)	Hybrid	M.	m.	musculus	allelic	reads,	and	4)	
Hybrid	M.	m.	domesticus	allelic	reads.		After	excluding	genes	with	fewer	than	20	reads	for	
any	sample	or	allele	(McManus	et	al.	2010),	9,851	autosomal	genes	could	be	compared.	For	
each	gene,	we	performed	binomial	tests	between	reads	mapping	to	M.	m.	domesticus	and	M.	
m.	musculus,	and	between	reads	mapping	to	the	M.	m.	domesticus	allele	and	M.	m.	musculus	
allele	in	hybrids.	A	Fisher’s	exact	test	was	performed	comparing	the	ratio	of	M.	m.	
domesticus	to	M.	m.	musculus	reads	between	subspecies	and	within	hybrids.	Binomial	and	
Fisher’s	exact	tests	were	implemented	in	R	(v	3.1.1,	CRAN)	using	the	binom.test	and	
fisher.test,	respectively.	P-values	were	corrected	for	a	false	discovery	rate	(FDR)	of	0.05	
with	the	R’s	p.adjust.	More	conservative	cutoffs	(0.01	p-value	for	the	binomial	and	Fisher’s	
exact	test,	0.01	FDR	correction)	had	minimal	effects	on	the	overall	results	of	our	analysis	
and	are	provided	in	Table	S2.		

To	identify	regulatory	categories	for	each	gene,	we	first	calculated	H,	the	ratio	of	the	
number	of	reads	mapping	to	the	M.	m.	domesticus	allele	compared	to	the	number	of	reads	
mapping	to	the	M.	m.	musculus	allele	in	hybrids,	and	P,	the	ratio	of	the	number	of	reads	in	
the	M.	m.	domesticus	parent	compared	to	the	number	of	reads	in	the	M.	m.	musculus	parent.		
The	significance	for	individual	values	of	P	and	H	was	assessed	using	binomial	tests.		The	
significance	of	P/H	values	was	assessed	using	Fisher’s	exact	tests.			Regulatory	categories	
were	then	defined	as	follows	(Fig.	1)	(McManus	et	al.	2010):	1)	cis	only:	H	is	significant,	P,	is	
significant,	and	P/H	is	not	significant;	2)	trans	only:	H	is	not	significant,	P	is	significant,	and	
P/H	is	significant;	3)	cis	+	trans:	H	is	significant,	P	is	significant,	P/H	is	significant,	and	P	and	
H	have	the	same	sign;	4)	cis	x	trans:	H	is	significant,	P	is	significant,	P/H	is	significant,	and	P	
and	H	have	opposing	signs;	and	5)	compensatory:	H	is	significant,	P	is	not	significant,	P/H	is	
significant	(Wittkopp	et	al.	2004;	McManus	et	al.	2010).	As	described	by	Goncalves	et	al.	
(2014),	cis	+	trans	can	further	be	subdivided	into	genes	where	cis	and	trans	are	acting	in	
the	same	direction	(H<P)	or	opposite	directions	(H>P).	The	latter	reflects	compensatory	
evolution	that	is	not	complete.	

We	note	that	differences	in	experimental	methods	(e.g.,	depth	of	sequencing,	
number	of	replicates)	can	affect	measures	of	allelic	imbalance	with	a	single	species.	The	
power	to	detect	allele-specific	expression	is	largely	based	the	number	of	informative	
transcripts	sequenced.	Mathematical	modeling	and	computer	simulations	have	
demonstrated	that	at	least	5-10	million	reads	are	necessary	to	assess	allele-specific	
expression	in	a	genome	where	approximately	10,000	genes	are	expressed	(Fontanillas	et	
al.	2010),	a	threshold	we	surpass	(see	Table	S1).	Additionally,	inter-individual	variation	
due	to	polymorphisms,	environmental	factors	(e.g.,	facility,	method	of	euthanasia,	presence	
of	other	individuals),	and	mRNA	quality	can	affect	gene	expression	(Buckland	2004).	We	
attempted	to	mitigate	these	risks	in	our	study	by	using	wild-derived	inbred	lines,	age	
matching	individuals,	and	raising	all	animals	under	the	same	environmental	conditions	
(facility,	diet,	singly	housed	at	time	of	euthanasia,	etc.).	
	
2.8.5.	Polygenic	test	for	selection	
	 Genes	categorized	as	divergent	in	cis	alone	were	subjected	to	a	test	for	polygenic	
selection	as	proposed	by	Bullard	et	al.	(2010)	and	Fraser	et	al.	(2010,	2011).		This	approach	
is	a	modification	of	a	sign	test	originally	proposed	by	Orr	(1998)	for	detecting	selection	on	
quantitative	traits.		Gene	Ontology	(GO)	Consortium	terms	were	chosen	as	grouping	terms.	
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The	null	expectation	of	this	test	makes	no	assumptions	about	a	given	gene	regulatory	
network	other	than	that	the	cis	changes	in	a	gene	set	are	independent.	A	total	of	4,852	GO	
categories	were	represented	by	at	least	one	gene.	Each	cis-regulated	variant	was	assigned	
either	a	“+”	or	“-”	depending	on	the	direction	of	the	log2-fold	change.	This	designation	is	
partially	arbitrary	as	a	“+”	can	either	indicate	upregulation	in	M.	m.	domesticus	or	
downregulation	in	M.	m.	musculus.	However,	under	neutrality	we	expect	a	1:1	ratio	of	genes	
designated	as	“+”	and	“-“	in	each	gene	set.	As	directionality	of	genes	categorized	as	
divergent	in	cis	was	not	exactly	1:1	(1,093	upregulated	and	1,251	downregulated	relative	
to	M.	m.	domesticus),	we	adjusted	our	null	expectation	to	accommodate	this	difference.	
When	genes	in	the	same	GO	category	were	within	100,000	base	pairs	of	one	another,	the	
gene	with	the	lower	fold	change	was	eliminated	from	the	set.	This	was	done	so	as	to	
exclude	non-independent	loci;	linkage	disequilibrium	in	mice	decays	well	within	this	
distance	(Laurie	et	al.	2007)	so	loci	separated	by	more	than	100	kb	typically	have	
independent	evolutionary	histories.		This	had	no	effect	on	the	gene-sets	we	identified	with	
biased	directionality.	A	hypergeometric	test	was	applied	to	each	gene	set	and	p-values	
were	adjusted	to	a	5%	false	discovery	rate.		
	
2.8.6.	Characterizing	inheritance	patterns	and	mis-expression	

After	reads	were	mapped	and	counted	with	HTSeq-count	as	described	above,	reads	
mapping	to	M.	m.	domesticusLEWES	and	M.	m.	musculusPWK	were	combined	for	each	sample	
for	total	hybrid	counts.	Mapped	reads	from	pure	species	and	hybrids	were	downsampled	to	
an	equivalent	number	per	sample	to	equalize	between	library	sizes	(metaseqR;	Moulos	and	
Hatzis	2014).	After	downsampling,	we	retain	17,535,821	reads	for	each	genotype.	Genes	
with	fewer	than	20	reads	(for	autosomes)	or	10	reads	(for	the	heterogametic	X	
chromosome)	per	sample	were	eliminated,	and	remaining	reads	were	pooled	for	each	
genotype.	As	this	cutoff	is	less	restrictive	than	that	for	allele-specific	reads,	more	genes	
could	be	compared.	Inheritance	patterns	were	determined	with	a	1.25-log2	fold	difference	
cut-off	between	parents	and	sterile	and	fertile	hybrids	(Gibson	et	al.	2004,	McManus	et	al.	
2010).	Inheritance	patterns	were	inferred	as	follows:	1)	additive:	different	from	both	
subspecies	but	intermediate	to	their	expression	levels,	2)	dominant:	different	from	one	
subspecies	but	similar	to	the	other,	3)	mis-expressed:	different	from	both	subspecies,	
expressed	over	or	under	both,	and	4)	similar:	similar	to	expression	in	both	subspecies.		

Testes	contain	a	heterogeneous	mixture	of	cell	types.		Therefore,	differences	in	
expression	between	sterile	and	fertile	animals	could	reflect	differences	in	cellular	
composition	(Good	et	al.	2010).	However,	several	observations	suggest	that	this	is	not	the	
main	determinant	of	observed	differences	in	expression	between	sterile	and	fertile	mice.		
First,	in	contrast	to	the	cross	with	C57bl/6	where	germ	cells	undergo	meiotic	arrest	and	
apoptose,	meiotic	arrest	in	the	PWKxLEWES	cross	is	incomplete	and	germs	cells	do	
progress	through	meiosis	II	and	spermiogenesis,	although	there	is	still	germ	cell	loss	after	
mid-pachytene.	Second,	the	close	agreement	between	our	results	for	the	X	chromosome	
(see	Results)	and	those	of	Campbell	et	al.	(2013)	who	studied	X-linked	expression	in	flow-
sorted	cells	for	the	same	genotypes	suggests	that	differences	in	cellular	composition	are	
not	driving	the	main	patterns	reported	here.		Third,	allele-specific	patterns	of	expression	
are	robust	to	differences	in	cellular	composition,	so	inferences	about	regulatory	
divergence,	compensatory	evolution,	and	positively-selected	cis-regulatory	changes	cannot	
arise	from	changes	in	cellular	composition.		Finally,	the	strong	association	between	cis-
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trans	compensatory	evolution	and	mis-expression	(see	Results	and	section	entitled	
“Testing	for	associations	between	compensatory	changes	and	cell	type”	below)	is	not	
expected	if	cellular	composition	is	the	primary	driver	of	differences	in	gene	expression	
between	fertile	and	sterile	hybrids.	

	
2.8.7.	Characterizing	expression	on	the	X	chromosome	
	 The	expression	levels	of	X-linked	genes	in	the	sterile	and	fertile	hybrid	were	
compared.	As	the	X	chromosome	is	hemizygous	in	males,	we	tried	lowering	the	minimum	
number	of	reads	per	sample	required	for	comparison	to	10	(total	>30	reads	after	pooling	
for	both	the	fertile	and	sterile	hybrid)	as	well	as	testing	with	the	20	read	threshold	(total	
>60	reads	after	pooling)	used	for	autosomes.	While	fewer	genes	could	be	analyzed	with	the	
more	stringent	cutoff		(75	vs.	93),	it	did	not	affect	the	expression	patterns	we	identified.	To	
characterize	expression	on	the	X	chromosome,	fold	changes	were	calculated	between	the	
hybrid	and	the	maternal	parent	(i.e.,	M.	m.	musculus	for	the	sterile	hybrid	and	M.	m.	
domesticus	for	the	fertile	hybrid).	As	each	hybrid	is	only	compared	to	the	appropriate	
parent	(i.e.,	the	one	with	which	it	shares	an	X-chromosome),	the	differences	seen	in	X	
chromosome	expression	between	fertile	and	sterile	males	will	not	be	affected	by	any	
mapping	bias.	Using	a	log2	fold-change	between	the	hybrid	and	the	appropriate	parent	
circumvents	the	issue	of	mapping	bias	to	X-linked	genes.		
	
2.8.8.	Testing	for	enrichment	of	opposing	or	reinforcing	cis-	and	trans-	changes	

Under	neutrality,	an	equal	number	of	changes	in	cis-	and	trans-	should	act	in	
opposing	and	reinforcing	directions.	Genes	categorized	as	compensatory,	cis	x	trans,	and	cis	
+	trans	(in	opposition)	show	evidence	of	variants	acting	in	opposition.	Genes	categorized	as	
cis	+	trans	(same	direction)	show	evidence	of	variants	acting	in	the	same	direction.		We	
tested	for	deviations	from	this	neutral	expectation.	The	expected	numbers	of	cis-	and	trans-	
changes	acting	in	the	same	or	opposing	directions	were	calculated	based	on	the	proportion	
of	negative	and	positive	cis-	and	trans-	changes	(Table	S15).	Expected	numbers	were	
calculated	by	multiplying	the	proportion	of	independent	cis-	and	trans-	changes	together	
and	then	in	opposition	by	the	total	number	of	genes	with	divergence	in	both	cis	and	trans.		

	
2.8.9.	Testing	for	associations	between	compensatory	changes	and	cell	type	
	

Whole	testes	of	sterile	hybrids	and	pure	species	contain	different	proportions	of	
particular	cell	types.		We	tested	whether	the	observed	association	between	mis-expression	
and	compensatory	evolution	could	be	the	result	of	these	differences	in	cellular	
composition.	For	the	observed	association	between	mis-expression	and	cis:trans	
compensatory	evolution	to	be	driven	by	differences	in	cellular	composition,	there	would	
have	to	be	a	greater	amount	of	compensatory	evolution	in	some	cell	populations	than	in	
others.	Specifically,	mitotic	and	somatic	cells,	which	presumably	represent	a	greater	
proportion	of	the	cells	in	the	testes	of	sterile	hybrid	males,	would	have	to	show	more	
compensatory	evolution	(as	inferred	from	allele-specific	expression	in	the	fertile	F1	males)	
than	meiotic	or	post-meiotic	cells.	To	determine	whether	this	was	the	case,	the	GermOnline	
database	(Gattiker	et	al.	2007)	was	used	to	associate	genes	with	expression	in	particular	
testis	cell	types.	Cell	type	annotations	were	derived	from	microarray	experiments	on	
enriched	cell	populations	(Chalmel	et	al.	2007).	Testis	expression	clusters	were	defined	as	



	 40	

follows:	somatic	(Sertoli	cells),	mitotic	(spermatogonia),	meiotic	(spermatocytes),	and	
post-meiotic	(round	spermatids).	Genes	with	multiple	annotations	were	eliminated	from	
this	analysis.	After	associating	genes	with	particular	cell	types,	we	found	that	the	
proportion	of	opposing	changes	in	somatic	and	mitotic	cells	was	not	higher	than	in	the	
other	cell	types	(Tables	S17	and	S18).	The	same	result	holds	when	only	mis-expressed	or	
aberrantly	expressed	genes	were	considered	(data	not	shown).	This	analysis	shows	that	
differences	in	cellular	composition	are	not	driving	the	observed	association	between	mis-
expression	and	cis:trans	compensatory	evolution.	

	
2.8.10.	Identification	of	Imprinted	Genes	
	 Genomic	imprinting	is	an	epigenetic	phenomenon	where	the	expression	of	an	allele	
is	based	on	the	sex	of	the	parent	from	which	it	is	inherited.	Genomic	imprinting	is	believed	
to	arise	as	a	result	of	differential	methylation	during	male	and	female	gametogenesis	and	is	
maintained	through	development	and	adult	life	(Li	and	Sasaki	2011).	We	tested	for	
imprinting	in	the	testes	by	comparing	allele-specific	autosomal	expression	in	reciprocal	
crosses.	As	above,	binomial	tests	were	employed	to	test	for	allele-specific	expression;	
resulting	p-values	were	corrected	for	a	5%	false	discovery	rate.	To	identify	preferential	
expression	of	maternal	alleles,	we	looked	for	cases	where	the	maternally	expressed	allele	
was	expressed	significantly	higher	than	the	paternal	allele	in	reciprocal	crosses.	We	
repeated	this	analysis	with	paternal	alleles	to	identify	preferential	paternal	expression.	We	
identified	29	genes	whose	expression	in	our	study	is	consistent	with	imprinting.	Twenty-
seven	genes	show	preferential	paternal	(maternally	imprinted)	expression.	Five	of	these	29	
genes	have	been	established	as	imprinted	in	previous	analyses:	Peg3	(Kuroiwa	et	al.	1996),	
Peg10	(Wertz	and	Herrmann	2000;	Ono	et	al.	2003),	Impact	(Hagiwara	et	al.	1997),	Sgce	
(Ono	et	al.	2003),	and	Zrsr1	(Hatada	et	al.	1993).			
	 We	identified	fewer	putative	imprinted	loci	than	recent	studies	on	the	liver	
(Goncalves	et	al.	2014,	Pinter	et	al.	2015),	embryonic	fibroblasts	(Pinter	et	al.	2015),	
tropoblast	stem	cells	(Calabrese	et	al.	2015),	and	brain	tissue	(Crowley	et	al.	2015)	in	
mouse	crosses.	These	analyses	identified	on	the	order	of	50	to	100s	of	genes	with	parent-
of-origin	effects.	As	imprinting	can	be	highly	tissue	specific	(Prickett	and	Oakey	2012),	this	
difference	may	reflect	differences	in	the	number	of	imprinted	genes	expressed	in	the	testes	
versus	other	somatic	tissues.	Alternatively,	this	difference	could	be	the	result	of	reduced	
power	in	our	analysis	as	a	consequence	of	fewer	biological	replicates;	the	number	of	
biological	replicates	has	been	shown	to	affect	estimates	of	allelic	balance	in	previous	
analyses	(Goncalves	et	al.	2014).	The	presence	of	the	imprinted	genes	in	our	study	has	no	
effect	on	any	of	the	conclusions	regarding	expression	evolution	and	hybrid	sterility.	
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2.9.	Chapter	2	Supplemental	Tables	
	
Table	S1.	The	raw	total	number	of	reads	mapping	uniquely	to	each	genotype	for	each	
sample	(M.	musculusPWK,	M.	m.	musculusCZII,	M.	m.	musculusWSB,	M.	m.	musculusLEWES).		
	

Species/Cross	 ID	

Total	
mapped	
reads	 M.	m.	d.LEWES	 M.	m.	m.PWK	 M.	m.	d.CZII	 M.m.	d.WSB	

M.	m.	
domesticus	 148	 18325938	 16801289	

	 	

1524649	

	
149	 30951560	 28815359	

	 	
2136201	

	
150	 28439873	 26450066	

	 	
1989807	

M.	m.	
musculus	 151	 15737834	

	

14312773	 1425061	

	
	

152	 33072259	
	

30968238	 2104021	
	

	
170	 26362361	

	
24687598	 1674763	

	Sterile	hybrids	 52	 19116520	 8347531	 10768989	
	 	

	
278	 37107215	 19942234	 17164981	

	 	
	

131	 13004868	 5545928	 7458940	
	 	Fertile	hybrids	 93	 13589435	 6133434	 7456001	
	 	

	
290	 17402955	 7603068	 9799887	

	 	
	
272	 43177412	 18697568	 24479844	
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Table	S2.	The	number	of	genes	inferred	to	fall	into	each	regulatory	category.	
	
Category	 0.01	FDR1	 0.05	FDR2	

cis	only	 2377	 2349	
			cis	+	trans	 1720	 2392	

Compensatory	 1239	 1309	
cis	x	trans	 450	 648	
trans	only	 795	 883	
Conserved	 3270	 2270	

Total	 9851	 9851	
1The	number	of	genes	inferred	to	fall	into	each	category	at	a	1%	false	discovery	rate	
2The	number	of	genes	inferred	to	fall	into	each	category	at	a	5%	false	discovery	rate	
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Table	S3.	Comparisons	of	log2	fold	changes	between	pure	subspecies	and	hybrid	genes	on	
the	X	chromosome.	
	

		 Number	of	genes	on	the	X	chromosome	
		 Positive	fold	change	 Negative	fold	change	

Sterile	hybrid		 78	 15	
Fertile	hybrid	 	43	 49	
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Table	S4.	Comparisons	of	log2	fold	changes	between	pure	species	and	hybrid	genes	on	the	
X	chromosome	and	pooled	autosomes.	
	
		 Number	of	genes	(sterile	hybrid)	
Chromosomes	 Positive	fold	change	 Negative	fold	change	
X	 78	 15	
Pooled	autosomes	 4332	 2387	
	
		 Number	of	genes	(fertile	hybrid)	
Chromosomes	 Positive	fold	change	 Negative	fold	change	
X	 43	 49	
Pooled	autosomes	 2754	 3093	
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Table	S5.	Inferred	inheritance	patterns	for	autosomal	genes	based	on	a	1.25-log2	fold	
change	cut-off	between	pure	species	and	hybrids.		
	
		 Number	of	genes	

Inheritance	pattern	 Sterile	hybrid	 Fertile	hybrid	
Mis-expressed	

	 				Over-expressed	 55	 14	
			Under-expressed	 9	 14	

Dominant	 	 	
	M.	m.	musculus	dominant	 932	 583	

		M.	m.	domesticus	dominant	 404	 327	
Similar	 8834	 9300	
Additive	 37	 32	
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Table	S6.	Comparisons	of	over-	and	under-expressed	genes	in	the	fertile	and	sterile	hybrid	
on	the	X	chromosome.	
	

		 Over-expressed1	 Under-expressed2	
Sterile	hybrid	 55	 14	
Fertile	hybrid	 9	 14	

1Expressed	above	the	level	of	the	appropriate	pure	species	
2Expressed	below	the	level	of	the	appropriate	pure	species	
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Table	S7.	Genes	identified	as	under	positive	selection	are	non-randomly	associated	with	
aberrant	expression	in	sterile	hybrids.	
	

		 Selection1	 No	selection2	
Aberrant	expression	 12	 5	

Not	aberrantly	expressed	 398	 1951	
1Cis	only	eQTLs	identified	as	under	selection	in	a	sign	test	
2Cis	only	eQTLs	not	identified	as	under	selection	in	a	sign	test	
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Table	S8.	Distribution	of	mis-expressed	genes	in	regulatory	categories.		
	

		 Number	of	mis-expressed	genes1	
Regulatory	category	 Sterile	hybrid	 Fertile	hybrid	

cis	only	 3	 3	
trans	only	 0	 0	

cis	+	trans,	same	 3	 0	
cis	+	trans,	opposing	 10	 3	

Compensatory	 15	 3	
cis	x	trans	 4	 2	

11.25	log2	difference	in	the	same	direction	between	the	sterile	F1	and	both	subspecies	
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Table	S9.	Mis-expression	in	the	sterile	hybrid	is	non-randomly	associated	with	
compensatory	evolution.	
	

	

1Includes	the	following	regulatory	categories:	cis	only,	trans	only,	cis	x	trans,	cis+trans	
21.25	log2	difference	in	the	same	direction	between	the	sterile	F1	and	both	subspecies		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

		 Number	of	genes	(Sterile	F1)	
Regulatory	categories	 Mis-expressed2	 Total	

Compensatory	 15	 1294	
All	other	regulatory	categories1	 20	 6252	
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Table	S10.	Distribution	of	mis-expressed	genes	in	regulatory	categories	in	the	fertile	
hybrid.		
	

		 Number	of	genes	(Fertile	F1)	
Regulatory	categories	 Mis-expressed1	 Total	

cis	and	trans,	independent	or	same	
direction	 3	 3995	

cis	and	trans	together,	opposing	 8	 3575	
11.25	log2	difference	in	the	same	direction	between	the	fertile	F1	and	both	subspecies		
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Table	S11.	Regulatory	categories	associated	with	aberrantly	expressed	genes	in	the	sterile	
hybrid.		
	

Aberrantly	expressed	genes1	
Regulatory	categories	 Number	of	genes	

cis	only	 17	
trans	only	 7	

cis	+	trans,	same	direction	 6	
cis	+	trans,	opposing	 29	

Compensatory	 51	
cis	x	trans	 11	

1Aberrantly	expressed	genes	were	defined	as	genes	in	the	sterile	hybrid	with	read	counts	greater	
than	1-log2	fold	different	from	both	subspecies	and	significantly	different	from	the	fertile	hybrid	
based	on	a	binomial	test	
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Table	S12.	Distribution	of	aberrantly	expressed	genes	in	the	sterile	hybrid	across	
regulatory	categories.	
	

		 Number	of	genes	
Regulatory	categories	 Aberrantly	expressed1	 Total	

cis	and	trans,	independent	or	same	
direction	 30	 3968	

cis	and	trans	together,	opposing	 91	 3492	
1Aberrantly	expressed	genes	were	defined	as	genes	in	the	sterile	hybrid	with	read	counts	greater	
than	1-log2	fold	different	from	both	subspecies	and	significantly	different	from	the	fertile	hybrid	
based	on	a	binomial	test	
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Table	S13.	Aberrantly	expressed	genes	non-randomly	associated	with	compensatory	
evolution.	
	

		 Number	of	genes	
Regulatory	categories	 Aberrantly	expressed1	 Total	

Compensatory	 51	 1258	
All	other	regulatory	categories2	 70	 6202	

1Aberrantly	expressed	genes	were	defined	as	genes	in	the	sterile	hybrid	with	read	counts	greater	
than	1-log2	fold	different	from	both	subspecies	and	significantly	different	from	the	fertile	hybrid	
based	on	a	binomial	test	
2Includes	the	following	regulatory	categories:	cis	only,	trans	only,	cis	x	trans,	cis+trans	
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Table	S14.	Spearman's	Rank-Order	Correlations	between	intra-	and	intersubspecific	
replicates	of	M.	m.	musculus	(designated	M.	m.	m.)	and	M.	m.	domesticus	(designated	M.	m.	
d.).	
	
		 M.	m.	m.151	 M.	m.	m.152	 M.	m.	m.170	 M.	m.	d.148	 M.	m.	d.149	 M.	m.	d.150	
M.	m.	m.151	 		 0.96	 0.96	 0.79	 0.8	 0.8	
M.	m.	m.152	 		 		 0.99	 0.77	 0.83	 0.83	
M.	m.	m.170	 		 		 		 0.78	 0.83	 0.83	
M.	m.	d.148	 		 		 		 		 0.95	 0.95	
M.	m.	d.149	 		 		 		 		 		 0.99	
M.	m.	d.150	 		 		 		 		 		 		
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Table	S15.	The	number	of	genes	with	positive	and	negative	fold	changes	in	each	regulatory	
category.		
	

Categories	 Negative1		 Positive2	
	cis	x	trans	 372	 276	

	cis	+	trans,	opposing	 1020	 606	
Compensatory	 865	 444	

cis	+	trans,	same	direction	 352	 414	
cis	alone	 1256	 1093	

trans	alone	 406	 477	
1Negative	fold	changes	are	associated	with	upregulation	in	M.	m.	musculus	or	downregulation	in	M.	
m.	domesticus	
2Positive	fold	changes	are	associated	with	down	regulation	in	M.	m.	musculus	or	upregulation	in	M.	
m.	domesticus.	
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Table	S16.	Reproductive	phenotypes	of	animals	used	in	this	study.	
	

Male	#	 Genotype1	

Body	
mass	
(g)	

Mean	
testes	
(mg)	

RTW	
(mg/g)2	 SV	(g)3	

RSVW	
(mg/g)4	

Mean	%	
motility5	 Count6	

93	 LP	 19.73	 88.8	 4.501	 0.094	 4.79	 95.48	 22.4	
272	 LP	 16.56	 76.4	 4.61	 N/A	 N/A	 N/A	 19.6	
290	 LP	 17.17	 63	 3.67	 N/A	 N/A	 84.56	 13.2	
148	 LW	 16.99	 86.9	 5.11	 0.067	 3.93	 90.48	 35.6	
149	 LW	 15.06	 83.4	 5.54	 0.061	 4.04	 96.83	 18.6	
150	 LW	 15.88	 92.1	 5.8	 0.095	 5.96	 94.11	 31.4	
151	 PC	 18.4	 88.8	 4.83	 0.10	 5.56	 93.81	 14.4	
152	 PC	 13.09	 77	 5.88	 0.056	 4.31	 94.16	 23	
170	 PC	 14.67	 75	 5.11	 0.052	 3.54	 95.63	 17.6	
52	 PL	 13.78	 54.1	 3.93	 0.071	 5.18	 74.18	 3.8	
131	 PL	 13.71	 48	 3.50	 0.044	 3.18	 83.61	 4.2	
278	 PL	 17.07	 61.1	 3.58	 N/A	 N/A	 57.78	 3	

1Genotypes	of	each	sample:	LP	=	LEWESxPWK	(fertile	hybrid),	LW	=	LEWESxWSB	(M.	m.	
domesticus),	PC	=	PWKxCZECHII	(M.	m.	domesticus),	PL	=	PWKxLEWES	(sterile	hybrid)	
2Relative	testis	weight	
3Seminal	vesicle	weight	
4Relative	seminal	vesicle	weight	
5Refers	to	the	percentage	of	live	sperm	
6Number	of	sperm	x106	
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Table	S17.	Opposing	cis	and	trans	changes	with	expression	in	a	particular	cell	type.	
	

Expression	cluster	 Opposing	cis	and	
trans	

Total	number	of	
genes		 Proportion	

Somatic	and	mitotic	 606	 3428	 0.18	
Meiotic	and	post-

meiotic	 876	 2808	 0.31	
1The	total	number	of	genes	associated	with	expression	in	a	particular	testis	cell	type	
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Table	S18.		Strictly	compensatory	changes	with	expression	in	a	particular	cell	type.	
	

Expression	cluster	 Compensatory	 Total	number	of	genes		 Proportion	
Somatic	and	mitotic	 256	 3428	 0.07	
Meiotic	and	post-

meiotic	 250	 2808	 0.09	
	1The	total	number	of	genes	associated	with	expression	in	a	particular	testis	cell	type	
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Figure	S1.	A	simplified	schematic	of	the	division	between	the	cis	+	trans	categories.		
	
	
	
	
	
	
	
	
	
	
	
	

!
"#$

"#%
&$

'(
)*
+(
!!

"#$
"#$

+(
*+
,+
(##

"#
$%
"&
&'(

)*
%+
,(

*

-*

*.*****/* *.*****/*

*-(#.#/012(0**
&+1"*2'%"3,()*

*-(#.#/012(0**
($$(&')4*



	 60	

	
	
	
Figure	S2.	A)	Correlation	between	gene	expression	levels	in	sterile	hybrid	and	the	M.	m.	
musculus	parent	(designated	M.	mus)	(corr=0.90).	B)	Correlation	between	gene	expression	
in	the	sterile	hybrid	and	the	M.	m.	domesticus	parent	(designated	M.	dom)	(corr=0.91).	C)	
Correlation	between	gene	expression	in	the	fertile	hybrid	and	the	M.	m.	musculus	parent	
(corr=0.93).	D)	Correlation	between	gene	expression	in	the	fertile	hybrid	and	the	M.	m.	
domesticus	parent	(corr=0.92).	
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Figure	S3.	The	inferred	inheritance	patterns	for	genes	in	fertile	(A)	and	sterile	(B)	hybrids.	
Each	point	corresponds	to	a	gene’s	log2	fold	change	between	the	hybrid	and	each	pure	
species.	Each	point	is	colored	according	to	its	inferred	expression	pattern	(Red:	Mis-
expression;	Green:	Additive;	Purple:	M.	m.	musculus	dominant;	Blue:	M.	m.	domesticus	
dominant;	Gray:	Similar)	
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Chapter	3	

Gene	regulation	underlies	environmental	
adaptation	in	house	mice		
This	chapter	has	been	previously	published	and	is	reproduced	here	in	accordance	with	the	
journal’s	article	sharing	policy:		

Mack	KL,	Ballinger	MA,	Phifer-Rixey	M,	Nachman	MW.	2018.	Gene	regulation	
underlies	environmental	adaptation	in	house	mice.	Genome	Res.	28:1636-1645.	

	
	

Abstract	
Changes	in	cis-	regulatory	regions	are	thought	to	play	a	major	role	in	the	genetic	basis	of	
adaptation.	However,	few	studies	have	linked	cis-	regulatory	variation	with	adaptation	in	
natural	populations.	Here,	using	a	combination	of	exome	and	RNA-seq	data,	we	performed	
expression	quantitative	trait	locus	(eQTL)	mapping	and	allele-specific	expression	analyses	
to	study	the	genetic	architecture	of	regulatory	variation	in	wild	house	mice	(Mus	musculus	
domesticus)	using	individuals	from	5	populations	collected	along	a	latitudinal	cline	in	
eastern	North	America.	Mice	in	this	transect	showed	clinal	patterns	of	variation	in	several	
traits,	including	body	mass.	Mice	were	larger	in	more	northern	latitudes,	in	accordance	
with	Bergmann’s	rule.	We	identified	17	genes	where	cis-eQTL	were	clinal	outliers	and	for	
which	expression	level	was	correlated	with	latitude.	Among	these	clinal	outliers,	we	
identified	two	genes	(Adam17	and	Bcat2)	with	cis-eQTL	that	were	associated	with	adaptive	
body	mass	variation	and	for	which	expression	is	correlated	with	body	mass	both	within	
and	between	populations.	Finally,	we	performed	a	gene	co-expression	network	analysis	to	
identify	expression	modules	associated	with	measures	of	body	size	variation	in	these	mice.	
These	findings	demonstrate	the	power	of	combining	gene	expression	data	with	scans	for	
selection	to	identify	genes	involved	in	adaptive	phenotypic	evolution	and	also	provide	
strong	evidence	for	cis-	regulatory	elements	as	essential	loci	of	environmental	adaptation	
in	natural	populations.		
	
3.1.	Introduction	

Understanding	the	genetic	basis	of	adaptation	is	a	major	goal	in	evolutionary	
biology.	Cis-	regulatory	mutations,	which	can	change	the	expression	of	proximal	genes,	
have	long	been	predicted	to	be	important	targets	for	adaptive	phenotypic	evolution	(King	
and	Wilson	1975,	Wray	2007,	Stern	and	Orgogozo	2008,	Wittkopp	and	Kalay	2012).	One	
reason	for	this	is	that	cis-	regulatory	mutations	may	have	fewer	deleterious	pleiotropic	
effects	than	protein-coding	changes.	While	protein-	coding	mutations	may	affect	protein	
products	across	tissues	and	developmental	stages,	cis-	regulatory	mutations	can	affect	the	
expression	of	genes	in	spatially	and	temporally	specific	ways.	In	apparent	support	of	this	
idea,	several	studies	have	identified	positive	selection	on	non-coding	regions	(e.g.,	Jenkins	
et	al.	1995,	Crawford	et	al.	1999,	Kohn	et	al.	2004;	Andolfatto	2005;	MacDonald	and	Long	
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2005;	Holloway	et	al.	2007;	Jeong	et	al.	2008;	Torgerson	et	al.	2009)	and	an	important	role	
for	non-coding	variation	in	local	adaptation	(e.g.,	Jones	et	al.	2012,	Fraser	2013).	

Despite	the	accumulating	evidence	that	regulatory	loci	play	an	important	role	in	
adaptive	evolution,	there	are	still	only	a	handful	of	cases	where	cis-	regulatory	mutations	
have	been	linked	to	ecologically	important	traits.	Among	the	best	examples	are	adaptive	
coat	color	differences	in	deer	mice	(Linnen	et	al.	2013),	the	ability	to	digest	lactose	in	
humans	(Tishkoff	et	al.	2007),	and	pelvic	reduction	in	sticklebacks	(Chan	et	al.	2010).	Most	
examples	of	adaptive	gene	expression	have	been	identified	through	candidate	gene	
approaches,	which	typically	favor	traits	for	which	components	of	a	pathway	are	already	
known	and	the	genetic	basis	of	the	trait	is	relatively	simple.	However,	most	traits	are	
influenced	by	many	loci	of	small	to	modest	effect.	Thus,	identifying	genetic	variants	
associated	with	adaptation	at	complex	traits	is	key	to	understanding	the	genetic	basis	of	
adaptation.	

One	avenue	for	linking	adaptive	non-coding	variation	to	either	molecular	or	
organismal	phenotypes	is	through	gene	expression.	In	expression	quantitative	trait	loci	
(eQTL)	mapping,	gene	expression	levels	are	tested	for	associations	with	genetic	markers	to	
identify	variants	that	contribute	to	expression	phenotypes.	Expression	quantitative	trait	
mapping	is	an	effective	method	for	identifying	regulatory	variants	because	gene	expression	
is	frequently	influenced	by	nearby	cis-eQTL	(Nica	and	Dermitzakis	2013).	Cis-eQTL	have	
been	successfully	detected	with	small	sample	sizes	(Montgomery	and	Dermitzakis	2011,	
Tung	et	al.	2015)	and	in	wild	individuals	from	natural	populations	(Tung	et	al.	2015).	
Combining	eQTL	mapping	with	genomic	scans	for	selection	can	be	a	powerful	method	for	
identifying	the	gene	targets	of	adaptive	genetic	variation	(Fraser	2013,	Ye	et	al.	2013)	and	
potentially	linking	this	variation	to	adaptive	organismal	phenotypes.		

House	mice	(Mus	musculus	domesticus)	provide	a	useful	model	for	studying	the	
genetic	basis	of	adaptation.	House	mice	are	an	important	biomedical	model	and	have	a	
distribution	that	mirrors	that	of	human	populations	(Phifer-Rixey	and	Nachman	2015).	In	
the	eastern	United	States,	house	mice	show	latitudinal	variation	consistent	with	local	
adaptation.	Mice	collected	at	northern	latitudes	are	heavier	than	mice	at	southern	latitudes	
and	their	progeny	also	show	differences	in	a	common	laboratory	environment,	indicating	
that	this	difference	is	genetic	(Lynch	1992,	Phifer-Rixey	et	al.	2018).	This	observation	
conforms	to	the	classic	ecogeographic	observation	known	as	Bergmann's	rule	that	animals	
in	colder	climates	have	larger	mass	to	reduce	heat	loss	(Bergmann	1847).	While	
Bergmann’s	rule	has	been	observed	in	many	groups,	including	humans	(Ashton	et	al.	2000,	
Ruff	2002,	Foster	and	Collard	2013),	no	study	so	far	has	linked	this	pattern	to	variation	at	
specific	genes.	Consistent	with	energetic	adaptation	of	mice	from	eastern	North	America,	
laboratory	strains	founded	from	northern	and	southern	locations	also	show	differences	in	
aspects	of	blood	chemistry,	including	leptin,	glucose,	and	triglyceride	levels	(Phifer-Rixey	et	
al.	2018).		

Recent	work	with	these	populations	identified	hundreds	of	genes	with	
environmental	associations	in	North	American	(Phifer-Rixey	et	al.	2018).	Here	we	combine	
a	genomic	scan	for	selection	with	expression	quantitative	trait	(eQTL)	mapping	to	identify	
regulatory	variants	that	contribute	to	gene	expression	differences	and	show	signals	of	
selection	in	these	populations,	identifying	two	strong	candidate	genes	for	adaptive	
phenotypic	variation.	To	our	knowledge,	this	study	represents	the	first	case	where	genomic	
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scans	have	been	combined	with	eQTL	mapping	to	identify	regulatory	variants	in	natural	
populations	that	underlie	an	adaptive	organismal	phenotype.			
	
3.2.	Results	
3.2.1.	Cis-	regulatory	variation	in	wild	house	mice	

To	characterize	regulatory	variation	in	wild	mice,	we	sequenced	liver	
transcriptomes	from	50	mice	collected	from	five	populations	along	a	latitudinal	transect	on	
the	east	coast	of	North	America	(Figure	1)(Table	S1,	File	S1).	Mice	were	collected	from	29-
44°N	degrees	in	latitude.	Liver	was	collected	in	RNAlater	and	body	mass	and	length	were	
recorded	for	each	individual.	From	these	individuals,	we	produced	a	total	of	~1.2	billion	
RNA-seq	reads	with	an	average	of	15,473,949	uniquely	mapped	exonic	reads	per	sample,	
which	were	used	to	quantify	gene-wise	mRNA	abundance	(hereafter,	gene	expression).	We	
also	analyzed	DNA	sequence	data	generated	from	exome-capture	of	the	same	individuals	
(Phifer-Rixey	et	al.	2018).	Exome	and	RNA-seq	data	were	used	to	identify	variants	
segregating	in	M.	m.	domesticus	(see	Methods).	

We	identified	cis-	regulatory	variation	using	two	complementary	approaches,	
expression	quantitative	trait	loci	(eQTL)	mapping	and	allele-specific	expression	(ASE).	To	
identify	cis-eQTLs,	we	tested	for	associations	between	variants	within	200-kb	of	a	gene	and	
expression	level	using	a	linear	mixed	model.	Variants	near	a	gene	are	more	likely	to	act	in	
cis	to	affect	gene	expression.	Cis-eQTL	typically	have	larger	effect	sizes	than	trans-eQTL,	
making	then	easier	to	detect	in	small	sample	sizes	(Montgomery	and	Dermitzakis	2011).	
After	filtering,	a	total	of	406,999	variants	were	identified	using	exome	data	and	tested	for	
associations	with	expression	at	13,080	genes.	We	identified	cis-eQTL	for	849	of	these	genes	
(6.5%	of	genes	surveyed).	Reflecting	the	probe	set,	the	majority	of	cis-eQTL	were	identified	
in	gene	bodies	(57%)	and	introns	(18%)(Figure	S1).	

Allele-specific	expression	(i.e.	differences	in	expression	between	parental	alleles)	
can	also	be	used	to	infer	epigenetic	or	genetic	variation	acting	in	cis	(Cowles	et	al.	2002).	As	
the	two	parental	alleles	are	exposed	to	the	same	trans-	acting	environment	within	an	
individual,	differences	in	expression	at	heterozygous	sites	can	be	used	to	infer	cis-	
regulatory	variation.	A	total	of	28,234	exonic	heterozygous	sites,	corresponding	to	6,738	
genes,	could	be	tested	for	ASE.	Across	all	individuals,	we	found	evidence	for	ASE	for	442	
genes	at	a	false	discovery	rate	of	5%	(6.7%	of	genes	surveyed)(Table	S2).		

In	investigating	the	power	to	detect	cis-	regulatory	variation,	we	found	that	cis-eQTL	
were	more	likely	to	be	detected	when	SNP	density	is	higher	near	and	within	the	gene	of	
interest	(Mann-Whitney	U	test,	p<2.2	×	10-16)(Figure	S2).	We	were	more	likely	to	detect	
ASE	for	genes	with	higher	expression	and	higher	SNP	density	(Mann-Whitney	U	test,	p=3.1	
×	10-11	and	p<2.2	×	10-16,	respectively)(Figures	S2,S3).	While	differences	in	the	power	to	
detect	ASE	and	cis-eQTL	can	lead	to	the	identification	of	different	gene	sets,	we	found	
significant	overlap	between	the	gene	sets	identified	with	these	analyses	(hypergeometric	
test,	p=5	×	10-6,	Table	S2).	
	
3.2.2.	Evidence	for	adaptive	regulatory	variation	

To	assess	whether	the	regulatory	variation	documented	above	underlies	adaptive	
difference	among	populations,	we	studied	sequence	and	gene	expression	variation	along	a	
latitudinal	cline	(Figure	1a).	Clinal	patterns	of	variation	can	reflect	local	adaptation	as	a	
response	to	spatially	varying	selection	(Endler	1977).	Regulatory	variants	with	clinal	
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frequencies	that	mediate	clinal	patterns	of	gene	expression	would	be	strong	candidates	for	
adaptive	regulatory	evolution.	To	identify	such	variants,	we	searched	for	cases	where	(1)	
gene	expression	is	clinal,	(2)	gene	expression	is	associated	with	a	cis-eQTL,	and	(3)	allele	
frequencies	of	the	cis-eQTL	vary	clinally	(Figure	2).	While	geographic	clines	may	
alternatively	be	explained	by	isolation	by	distance,	there	is	no	evidence	for	isolation	by	
distance	for	these	populations	(see	Supplemental	material	and	methods).	

To	identify	clinal	patterns	of	gene	expression,	we	tested	for	correlations	between	
latitude	and	expression	levels	in	the	liver	transcriptomes	of	the	50	wild	individuals.	We	
identified	1,488	genes	for	which	expression	was	significantly	correlated	with	latitude	
(P<0.05),	132	of	which	were	associated	with	a	cis-eQTL	(Figure	2).	We	also	tested	for	
differential	expression	between	the	most	northern	population	(New	Hampshire/Vermont)	
and	the	most	southern	population	(Florida)	and	identified	458	genes	with	differential	
expression	between	the	ends	of	the	cline	(Figure	S4),	48	of	which	were	associated	with	a	
cis-eQTL	(at	q<0.1)(Table	S3).	

To	connect	these	patterns	to	clinal	sequence	variation,	a	genome	scan	using	the	
program	Latent	Factor	Mixed	Models	(LFMM)	was	performed	to	test	for	correlations	
between	latitude	and	genetic	variation	while	accounting	for	population	structure	(Frichot	
et	al.	2013)(see	methods).	For	this	study,	LFMM	has	an	advantage	over	other	methods	
because	it	does	not	assume	a	specific	demographic	model,	but	still	accounts	for	
demographic	history	by	estimating	genome-wide	co-variance	among	allele	frequencies.		
We	focused	on	SNPs	in	the	5%	tail	of	the	distribution	and	considered	these	clinal	outliers	
(|z-scores|>2)(Figure	2a).	Blocks	of	linkage	disequilibrium	(LD)(Gabriel	et	al.	2002)(Figure	
S5)	were	then	inferred	to	identify	co-localization	between	outlier	SNPs	and	cis-eQTL.	Of	cis-
eQTL	that	fell	within	the	same	LD	block	as	an	outlier,	17	were	associated	with	genes	that	
also	show	significant	clinal	patterns	of	gene	expression	(Tables	1,S4)(Figure	2).	When	
comparing	the	latitudinal	extremes,	average	estimates	of	Fst	for	these	candidate	loci	were	
significantly	higher	than	that	of	the	full	list	of	loci	(Full	list	average	Fst=0.10,	candidate	
average	Fst=0.34;	Permutation	test,	p=0.0014).	Eight	of	these	genes	were	also	significantly	
differentially	expressed	between	the	ends	of	the	cline	(Table	S5).	These	17	genes	represent	
cases	where	cis-eQTL	contribute	to	expression	differences	between	populations	and	show	
signals	of	local	adaptation,	making	them	strong	candidates	for	adaptive	regulatory	
variation.	
	
3.2.3.	Linking	adaptive	regulatory	variation	to	specific	traits	

The	liver	plays	a	central	role	in	metabolic	processes	in	the	body,	and	regulatory	
changes	in	this	tissue	may	contribute	to	latitudinal	variation	in	traits	related	to	
metabolism.	Body	mass	varies	clinally	(Figure	1a)	and	lab	born	progeny	from	populations	
at	the	ends	of	the	transect	also	show	differences	in	blood	glucose,	triglyceride,	adiponectin,	
and	leptin	levels	(Lynch	1992,	Phifer-Rixey	et	al.	2018).	Four	of	the	17	candidate	genes	
identified	as	strong	candidates	also	have	mutant	phenotypes	related	to	body	weight	and	
metabolism.	Laboratory	mutants	for	Cox7c,	and	Hmgb1	are	associated	with	changes	in	
glucose	levels	(Blake	et	al.	2017)	and	mutants	for	Adam17	and	Bcat2	are	also	associated	
with	changes	in	body	mass	(She	et	al.	2007,	Wu	et	al.	2004,	Gelling	et	al.	2008,	Blake	et	al.	
2017),	glucose	(She	et	al.	2007,	Blake	et	al.	2017,	Serino	et	al.	2007),	leptin	(She	et	al.	2007,	
Gelling	et	al.	2008),	and	adiponectin	levels	(Blake	et	al.	2017,	Serino	et	al.	2007).	Another	
gene	identified	in	this	analysis,	Iah1,	transcriptionally	regulates	genes	with	important	roles	
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in	lipid	metabolism	and	triglyceride	synthesis	and	falls	under	a	QTL	for	fatty	liver	in	mice	
(Kobayashi	et	al.	2016,	Suzuki	et	al.	2016).	

	
3.2.4.	Adam17	and	Bcat2	are	candidates	for	adaptive	differences	in	body	mass		

While	knockout	models	can	provide	a	link	between	genotypes	and	putative	
phenotypes,	these	models	may	not	reflect	the	phenotypic	consequences	of	mutations	found	
in	natural	populations	(Palopoli	and	Patel	1996).	Changes	in	body	weight	are	also	among	
the	most	common	effects	of	gene	knockouts	in	mice,	and	may	often	reflect	downstream	
consequences	of	other	phenotypic	changes	(Reed	et	al.	2008,	White	et	al.	2013).	While	
identifying	the	genetic	basis	of	complex	adaptive	traits	is	challenging,	gene	expression	
provides	an	intermediate	phenotype	that	may	link	sequence	variants	to	organismal	traits.	
To	connect	adaptive	variation	in	body	mass	in	these	populations	to	genetic	variation,	we	
asked	whether	body	mass	differences	were	associated	with	gene	expression	differences	in	
the	set	of	candidate	genes	(Table	1).	Since	latitude	and	body	mass	co-vary	in	this	sample	
(Figure	1b),	we	controlled	for	latitude	by	regressing	it	out	as	a	variable.	We	identified	two	
genes,	A	disintegrin	and	metallopeptidase	domain	17(Adam17)(Figure	3A-F)	and	branched	
chain	amino	acid	transaminase	2	(Bcat2),	for	which	expression	was	significantly	correlated	
with	body	mass,	after	accounting	for	latitude	as	a	co-variable	(Adam17:	Pearson’s	
correlation,	p=4.6	×	10-4,	R2=0.22;	Bcat2:	p=4.5	×	10-3,	R2=0.17;	see	also	Table	S6,	Figure	
S6).	To	further	account	for	the	possible	confounding	effects	of	population	structure,	we	also	
looked	at	the	correlation	between	expression	level	and	body	mass	within	each	of	the	five	
populations.	Replicating	the	pattern	seen	across	populations,	Adam17	expression	was	
negatively	associated	with	body	mass	in	4	of	the	5	populations,	and	Bcat2	expression	was	
positively	associated	with	body	mass	in	4	of	the	5	populations	(Figure	S7,S8).	Despite	a	lack	
of	power	for	within-population	comparisons,	the	association	between	Adam17	expression	
and	body	mass	was	significant	in	New	Hampshire/Vermont	(Pearson’s	correlation,	p=3.5	×	
10-3)	and	the	association	between	Bcat2	expression	and	body	mass	was	significant	in	
Pennsylvania	(Pearson’s	correlation,	p=0.03)	and	Georgia	(Pearson’s	correlation,	p=1.8	×	
10-3).	

The	cis-eQTL	for	Adam17	and	Bcat2	explain	34%	and	29.7%	of	the	variance	in	
expression	for	theses	genes,	respectively.	Genotypes	at	these	sites	were	also	associated	
with	differences	in	body	mass	(Mann-Whitney	U	test,	Bcat2,	TT>CC,	p=0.024;	Adam17,	
CC>TT,	p=0.036)(Figure	S9).	Again,	co-variation	between	latitude	and	body	mass	can	
confound	relationships	between	body	mass	and	candidate	genes.	After	regressing	latitude	
from	body	mass	to	control	for	co-variation	between	these	variables,	the	Adam17	cis-eQTL	
was	significantly	associated	with	body	mass	(Figure	3G)(Cochran-Armitage	trend	test,	
p=0.034),	although	the	Bcat2	cis-eQTL	was	not	(Cochran-Armitage	trend	test,	p=0.14).	The	
Adam17	and	Bcat2	cis-eQTLs	explain	an	estimated	8.35%	and	1.51%	of	the	variation	in	
body	mass,	respectively.	These	estimates	should	be	treated	as	approximations	since	they	
may	be	influenced	by	(1)	unmeasured	environmental	differences	between	populations,	(2)	
population	structure	(even	when	population	structure	is	accounted	for	using	principle	
components,	as	was	done	here;	see	Browning	and	Browning	2011;	Dandine-Roulland	et	al.	
2011),	(3)	imperfect	linkage	disequilibrium	between	the	surveyed	SNPs	and	causal	
variants	(Wray	et	al.	2013),	and	small	sample	size	(Xu	2003).	

Nonetheless,	it	is	likely	that	the	effect	size	for	the	Adam17	cis-eQTL	is	large	
compared	to	what	is	seen	in	most	human	GWAS	for	complex	traits	(Stranger	et	al.	2011).	
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Large-effect	mutations	may	be	favored	in	situations	where	populations	are	initially	far	
from	an	optimum	(Orr	1998,	Dittmar	et	al.	2016).	For	example,	variation	at	one	gene	
accounts	for	a	>2	kg	weight	difference	between	Europeans	and	Inuits	(Fumagalli	et	al.	
2015),	and	a	single	IGF1	allele	in	dogs	accounts	for	15%	of	variance	in	dog	skeletal	size	
(Sutter	et	al.	2007).	House	mice	in	this	transect	descended	from	mice	in	Western	Europe	
adapted	to	a	Mediterranean	climate,	and	thus	likely	experienced	strong	selection	pressures	
in	a	novel	environment,	potentially	favoring	some	mutations	of	large	effect.		

To	investigate	regulatory	variation	at	Adam17	in	Western	Europe,	we	retrieved	
available	liver	RNA-seq	and	genomic	data	from	European	mice	(Harr	et	al.	2016).	We	found	
that	the	Adam17	cis-eQTL	is	segregating	within	European	populations	(Figure	S10A)	and	is	
significantly	associated	with	liver	expression	in	European	individuals	(Figure	S10B,	P=3.2	×	
10-6;	see	Supplemental	material	and	methods).	This	suggests	that	adaptation	by	the	large-
effect	regulatory	variation	at	Adam17	in	the	United	States	is	a	product	of	selection	on	
standing	genetic	variation.	

Notably,	Adam17	and	Bcat2	are	the	two	candidate	genes	from	Table	1	with	known	
lab	mouse	mutants	that	affect	body	mass	(Wu	et	al.	2004;	She	et	al.	2007;	Gelling	et	al.	
2008;	Blake	et	al.	2017).	Bcat2	encodes	a	protein	that	catalyzes	the	first	step	of	branched-
chain	amino	acid	(BCAA)	metabolism,	which	affects	metabolism	and	body	mass	in	humans	
and	rodents	(Newgard	et	al.	2009).	Adam17	encodes	a	protein	that	regulates	several	
signaling	pathways.	Adult	Adam17	heterozygous	and	null	mutants	show	differences	in	
metabolic	phenotypes	including	body	mass,	susceptibility	to	diet	induced	obesity,	and	
energy	homeostasis	(Serino	et	al.	2007;	Gelling	et	al.	2008).	ADAM17	and	its	physiological	
inhibitor,	TIMP3,	have	also	been	reported	to	be	involved	in	the	glucose	homeostasis	and	
adipose,	hepatic,	and	vascular	inflammation	in	both	genetic	and	nutritional	models	of	
obesity	in	mice	(Fiorentino	et	al.	2010;	Menghini	et	al.	2012;	Matsui	et	al.	2014).	In	addition	
to	its	association	with	body	mass	and	metabolism	in	mice,	in	humans	variation	at	ADAM17	
has	been	linked	to	differences	in	body	weight,	BMI,	waist	circumference,	and	obesity	risk	
(Junyent	et	al.	2010)	and	shows	signatures	of	selection	(Pickrell	et	al.	2009;	Parnell	et	al.	
2010;	Fumagalli	et	al.	2011).		

One	target	of	ADAM17	activity	is	the	epidermal	growth	factor	receptor	(EGFR)	
signaling	pathway	(Lee	et	al.	2003).	Phenotypes	observed	in	mice	with	mutant	EGF	
receptors	(including	changes	in	body	weight	[Blake	et	al.	2017])	suggest	that	changes	in	
EGFR	signaling	as	a	consequence	of	deficit	ADAM17	activity	may	contribute	to	the	
metabolic	phenotypes	seen	in	Adam17	mutants	(Gelling	et	al.	2008).	We	tested	for	an	
overrepresentation	of	genes	in	the	EGFR	signaling	pathway	in	the	set	of	genes	with	clinal	
expression	by	annotating	genes	to	pathways	using	the	PANTHER	database	(Thomas	et	al.	
2003).	We	saw	a	1.57-fold	enrichment	of	genes	in	this	pathway	compared	to	a	background	
set	of	genes	expressed	in	the	liver	(hypergeometric	test,	p=0.018).	We	also	find	that	the	
gene	that	encodes	the	only	known	physiological	inhibitor	of	Adam17,	Timp3	(Le	Gall	et	al.	
2010),	is	differentially	expressed	between	the	northern	and	southern	populations	(Figure	
S11,	q=0.09)	and	has	expression	that	is	correlated	with	that	of	Adam17	(Figure	S11,	
Pearson’s	correlation,	p=0.02,	R2=0.09).	Unlike	Adam17,	Timp3	expression	is	not	associated	
with	body	mass	(Pearson’s	correlation,	p=0.054),	although	our	sample	size	may	not	be	
sufficient	to	detect	an	association.		

The	data	above	clearly	suggest	that	regulatory	variation	at	Adam17	and	Bcat2	
underlies	adaptive	differences	in	body	mass,	but	they	do	not	identify	the	specific	causal	
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mutations.	To	identify	candidate	casual	mutations,	we	used	annotations	from	the	mouse	
ENCODE	project	(Mouse	ENCODE	Consortium	et	al.	2012)	to	search	for	putative	regulatory	
elements	near	the	Adam17	and	Bcat2	cis-eQTLs.	The	Adam17	cis-eQTL	is	in	LD	with	SNPs	
through	a	proximal	enhancer	and	in	the	Adam17	promoter,	both	of	which	are	active	in	the	
livers	of	adult	mice.	Low-coverage	whole	genome	data	show	that	there	are	variants	
segregating	within	this	enhancer	in	these	populations	(Figures	S12,S13)(whole	genome	
data	from	[(Phifer-Rixey	et	al.	2018]).	Two	of	the	Adam17	promoter	variants	are	also	clinal	
outliers	(Figure	S14).	The	Bcat2	cis-eQTL	is	within	an	intronic	region	and	is	not	in	LD	with	
annotated	regulatory	elements	that	are	active	in	liver	tissue.		
	
3.2.5.	Expression	modules	are	correlated	with	body	size	variation	in	natural	
populations	of	house	mice	

Next,	we	used	a	gene	co-expression	network	approach	to	identify	biologically	
related	gene	sets	associated	with	phenotypic	variation	in	these	populations.	Weighted	Gene	
Co-expression	Network	Analysis	(WGCNA)	was	used	to	identify	groups	of	genes	with	highly	
correlated	expression,	called	co-expression	modules	(Langfelder	and	Horvath	2008)(see	
Methods).	Expression	modules	were	assigned	for	male	and	female	mice	separately,	and	
then	male-female	consensus	modules	were	created	to	identify	co-expression	patterns	
shared	across	sexes.	

Co-expression	modules	were	then	tested	for	correlations	with	measures	of	body	
size	(Figures	S15,S16,S17).	Five	expression	modules	in	males	and	five	expression	modules	
in	females	were	correlated	with	trait	variation	(Figure	S18).	Trait-associated	modules	were	
enriched	for	a	number	of	Gene	Ontology	(GO)	categories	compared	to	the	background	set	
of	genes	expressed	in	the	liver,	including	growth	factor	binding	(q=5.3	×	10-8)	and	lipid	
metabolic	process	(q=1.2	×	10-2).	None	of	the	male-female	consensus	modules	were	
significantly	correlated	with	organismal	traits,	indicating	that	associations	between	co-
expression	modules	and	traits	are	sex-specific	(Figure	S17).		

Focusing	on	the	modules	with	the	highest	trait	correlations	(royalblue	module	in	
females,	corr=0.92,	p=2	×	10-8	and	black	module	in	males,	corr=0.8,	p=5	×	10-8,		for	body	
mass	index),	we	annotated	genes	with	mutant	phenotypes	collected	from	Mouse	Genome	
Informatics	(MGI)(	Blake	et	al.	2017).	Supporting	the	association	between	these	expression	
modules	and	phenotypic	variation,	we	found	that	many	of	the	genes	with	high	connectivity	
in	these	modules	have	mutant	phenotypes	related	to	body	size	or	metabolism	(Figure	4).	
For	example,	the	most	connected	gene	in	the	female	royalblue	module	is	Nr2c2.	Mutant	
phenotypes	for	Nr2c2	include	changes	in	eating	behavior,	energy	homeostasis,	body	mass,	
size,	and	blood	chemistry.	Similarly,	highly	connected	genes	in	the	male	black	module	(e.g.,	
Col3a1,	Col1a1,	Col1a2,	Col5a2,	Sparc,	Bcam,	Fstl1,	Igfbp5,	Cpe,	Cav1,	Lamc1,	Ltbp3,	Krt7)	
show	mutant	phenotypes	related	to	body	mass	and	body	size.	Four	of	these	genes	
(Adamts2,	Col1a1,	Col1a2,	Sparc)	were	also	identified	as	hub	genes	in	the	module	most	
highly	correlated	with	mouse	body	weight	in	another	study	utilizing	an	F2	laboratory	cross	
(Ghazalpour	et	al.	2006).	

Finally,	we	used	the	co-expression	dataset	to	identify	regulatory	variation	within	
modules	associated	with	body	size.	Within	the	body	size	associated	modules	(Figure	S18),	
we	associated	189	genes	with	a	cis-eQTL,	including	several	highly	connected	genes	in	the	
sex-specific	modules	with	the	highest	trait	correlations	(Figure	4).	As	in	the	previous	
analysis,	we	then	searched	for	genes	with	a	cis-eQTL	that	co-localized	with	a	clinal	
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sequence	variant.	We	identified	15	genes	with	clinally	varying	cis-eQTL	in	the	body	size	
associated	modules	(Table	S7).	We	found	that	gene	expression	for	4	of	these	15	genes	was	
significantly	correlated	with	BMI	in	one	sex	(Females:	Ube2q2,	p=0.0002;	3110082I17Rik,	
p=0.0027;	Cep85,	p=0.017;	Males:	Pygb	p=0.035).	Cis-eQTL	associated	with	these	genes	
were	not	significantly	associated	with	BMI,	however,	our	study	is	also	underpowered	for	
identifying	sex-specific	associations.	The	correlation	between	gene	expression	and	BMI	and	
the	presence	of	clinal	cis-eQTL	make	these	genes	of	interest	for	future	study.	
	
3.3.	Discussion	

Identifying	loci	and	genes	that	underlie	adaptive	variation	within	and	between	
populations	is	a	major	goal	in	evolutionary	biology.	One	method	used	to	identify	such	
variants	are	genomic	scans	for	selection.	While	many	genomic	scans	attempt	to	link	
sequence	variants	to	phenotypes	through	gene	annotations	and	knockout	models,	most	fail	
to	connect	genotypes	to	phenotypes	in	natural	populations.	Here,	we	used	expression	data	
from	natural	populations	of	house	mice	collected	along	an	environmental	gradient	to	link	
regulatory	variation	at	two	genes	(Adam17	and	Bcat2)	with	body	mass	variation.		We	have	
linked	these	genes	to	body	mass	variation	by	1)	associating	cis-eQTL	with	the	expression	of	
Adam17	and	Bcat2,	2)	associating	the	Adam17	and	Bcat2	cis-eQTL	with	body	mass	
variation,	and	3)	the	associating	the	expression	of	these	two	genes	with	body	mass	
variation.	Supporting	the	association	we	see	between	these	genes	and	body	mass,	mutant	
alleles	for	Adam17	and	Bcat2	in	laboratory	mice	are	associated	with	changes	in	body	mass	
and	metabolism	(Wu	et	al.	2004;	She	et	al.	2007;	Serino	et	al.	2007;	Gelling	et	al.	2008;	
Blake	et	al.	2017).	Interestingly,	these	two	genes	account	for	a	substantial	proportion	of	
phenotypic	variation	in	body	mass	among	the	mice	studied	here,	with	large	effect	sizes	
compared	to	those	measured	in	GWAS	for	most	complex	traits.	For	traits	under	stabilizing	
selection	within	populations	(as	in	virtually	all	human	GWAS)	effect	sizes	are	expected	to	
be	much	smaller	than	in	comparisons	between	populations	experiencing	strong	divergent	
selection,	as	is	the	case	here.	The	effect	size	of	mutations	underlying	traits	under	stabilizing	
selection	within	populations	is	expected	to	be	smaller	than	the	effect	sizes	of	mutations	in	
the	early	stages	of	an	adaptive	walk	(Orr	1998;	Remington	2015).	

In	addition	to	identifying	regulatory	variation	at	specific	genes	associated	with	body	
mass,	we	also	used	a	systems	biology	approach	to	identify	co-expression	patterns	
associated	with	body	size	variation	in	wild	mice.	Gene	co-expression	networks	capture	
biologically	relevant	relationships	between	genes	that	can	be	useful	for	understanding	
gene	functions	and	interactions.	Here	we	have	used	this	information	to	characterize	co-
expression	modules	that	were	associated	with	body	size	and	identified	regulatory	variation	
within	these	co-expressed	gene	sets	that	may	play	a	role	in	body	size	variation.	

The	tendency	for	body	size	to	increase	with	latitude	(i.e.,	Bergmann’s	Rule)	has	been	
documented	in	many	species,	including	humans	(Ashton	et	al.	2000;	Ruff	2002;	Foster	and	
Collard	2013),	and	reflects	an	evolved	response	to	differences	in	temperature	(Bergmann	
1847).	In	humans,	many	candidate	genes	for	metabolic	disorders,	such	as	obesity,	also	
show	evidence	of	climatic	adaptation	(Hancock	et	al.	2008).	Intriguingly,	in	humans,	both	
ADAM17	and	BCAT2	have	been	implicated	in	metabolic	disease	(Arribas	and	Esselens	2009,	
Newgard	et	al.	2009;	Junyent	et	al.	2010;	Menghini	et	al.	2013),	and	variation	at	Adam17	
has	been	identified	in	genome	scans	for	selection	(Pickrell	et	al.	2009;	Parnell	et	al.	2010;	
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Fumagalli	et	al.	2011)	in	addition	to	its	association	with	body	weight	and	obesity	risk	
(Junyent	et	al.	2010).		

Finally,	this	study	provides	evidence	for	the	role	of	cis-	regulatory	variation	in	
environmental	adaptation	in	natural	populations.	While	cis-	regulatory	variation	has	long	
been	hypothesized	to	play	a	major	role	in	adaptive	phenotypic	evolution,	connecting	
regulatory	variation	with	adaptive	organismal	phenotypes	remains	tricky.	Combining	eQTL	
mapping	with	genomic	scans,	as	was	done	here,	may	be	a	fruitful	approach	for	identifying	
adaptive	regulatory	variation	in	other	natural	systems.			
	
3.4.	Methods	
3.4.1.	Sampling	

Mice	used	in	this	study	were	collected	from	5	sampling	locations	(Table	S1,	File	S1)	
along	a	latitudinal	gradient	in	the	eastern	United	States.	Mice	were	sacrificed	in	the	field	
and	measurements	(body	weight,	total	body	length,	tail	length)	were	taken	at	time	of	
collection.	Body	mass	index	(BMI)	was	calculated	as	body	weight/length2	(g/mm2).	Liver	
tissue	was	collected	in	RNAlater	and	stored	at	4oC	overnight	and	then	frozen	to	-80oC	until	
RNA	extraction	with	the	Qiagen’s	RNeasy	Mini	Kit.	
	
3.4.2.	mRNA-sequencing	and	mapping	

For	each	sample,	100	base-pair	paired-end	reads	were	sequenced	on	the	Illumina	
HiSeq	4000	platform.	RNA-seq	reads	were	mapped	with	TopHat2	(Kim	et	al.	2013)	to	
personal	reference	genomes,	created	by	inserting	variants	into	the	mouse	reference	
(GRCm38)	and	masking	indels	(see	Supplemental	material	and	methods).	We	removed	
genes	with	fewer	than	500	reads	across	samples	(i.e.,	an	average	of	10	reads	per	sample).	
Gene	expression	was	then	quantile	normalized	and	corrected	for	hidden	factors	and	known	
co-variates	(individual	sex	and	the	first	6	principle	components	from	genotype	data	to	
account	for	population	structure)	using	a	Bayesian	approach	(Stegle	et	al.	2010,	Stegle	et	al.	
2012)(Figure	S19,S20).		
	
3.4.3.	Exome	capture	sequencing	and	identification	of	clinal	outliers	

The	exome-sequence	data	was	used	to	identify	clinal	outliers	(Phifer-Rixey	et	al.	
2018)(see	also	Supplemental	material	and	methods).	Libraries	were	enriched	for	exonic	
target	regions	and	subsequently	100-bp	paired	end	reads	were	sequenced	on	the	Illumina	
HiSeq	2000	platform,	resulting	in	2	GB	of	raw	sequence	data	per	individual.	Forty-one	of	
the	50	individuals	for	which	there	is	exome-	sequence	data	have	matched	RNA-seq	libraries	
(see	Table	S1).	Reads	were	mapped	with	Bowtie	2	(Langmead	and	Salzberg		2012)	and	
allele	frequencies	were	estimated	with	ANGSD	(Korneliussen	et	al.	2014).	LFMM	(Frichot	et	
al.	2013)	was	used	to	identify	covariance	between	environmental	and	genetic	variation	
(see	Supplemental	material	and	methods).	
	
3.4.4.	cis-eQTL	discovery	

We	performed	cis-eQTL	mapping	using	variant	calls	from	RNA-seq	and	exome	data	
(see	Supplemental	material	and	methods).	One	limitation	of	this	method	is	that	the	
genotyping	dataset	is	limited	to	sites	represented	by	these	data	(i.e.,	variant	calls	are	
largely	limited	to	exomic	regions	of	the	genome).	Consequently,	many	causal	sites	may	not	
be	typed	and	variants	associated	with	expression	may	be	tagging	causal	sites	in	LD.	For	the	
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exome	dataset,	depth	per	site	of	the	targeted	exome	was	~15×.	For	genes	represented	in	
the	analysis,	on	average	per	individual	we	had	sufficient	coverage	for	~32%	of	bases	within	
gene	boundaries	and	~15%	of	bases	in	the	200-kb	boundary	used	as	the	cut-off	for	cis-
eQTL	mapping	(Table	S8).		

To	identify	cis-acting	eQTLs,	we	used	a	linear	mixed	model	applied	in	the	program	
GEMMA	(Zhou	and	Stephens	2012)	on	expression	residuals	to	associate	expression	with	
sequence	variants	(see	Supplemental	material	and	methods).	A	relatedness	matrix	was	
computed	and	included	as	a	covariate.	We	retained	the	variant	with	the	lowest	p-value	for	
each	gene	and	then	performed	a	Bonferroni’s	correction.	Variants	with	Bonferroni	
corrected	p-values	of	<	0.05	were	considered	significant.	
	
3.4.5.	Weighted	gene	co-expression	analysis	

	We	carried	out	a	weighted	gene	co-expression	network	analysis	(WGCNA)	on	
expression	residuals	following	WGCNA	protocols	(Langfelder	and	Horvath	2008)	to	create	
expression	modules.	Each	module	is	summarized	by	a	representative	eigengene,	the	first	
principle	component	of	a	given	module.	Each	gene’s	expression	was	correlated	with	the	
module	eigengene	as	a	measure	of	the	gene’s	centrality	to	the	module,	called	module	
membership.		
	
3.5.	Data	access	

Illumina	sequencing	data	from	this	project	has	been	submitted	to	the	NCBI	
BioProject	(https://www.ncbi.nlm.nih.gov/bioproject)	under	the	accession	number	
PRJNA407812.		
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3.6.	Chapter	3	Table	
Table	1.	cis-eQTL	that	co-localize	or	are	within	the	same	LD	block	as	a	clinal	outlier	that	
also	show	expression	changes	correlated	with	latitude.	

Symbol	
Expression	correlation		

co-efficient	with	latitude	 p-value	 Phenotypes1	
Tcea1	 0.6	 3.66E-06	 cardiovascular,	embryo,	

growth/size/body,	
hematopoietic,	homeostasis,	

limbs/digits/tail,	liver/biliary,	
mortality/aging	

Iah1	 -0.43	 0.0018	 cardiovascular,	limbs/digits/tail,	
skeleton	

Lnx1	 -0.41	 0.0035	 hematopoietic,	immune	
2810402E24Rik	 0.38	 0.0073	 	

Arl6ip4		 0.36	 0.0096	 	
Nsa2	 -0.36	 0.011	
Rpl3	 0.35	 0.014	 	
Bcat2	 0.34	 0.016	 adipose,	behavior,	

growth/size/body,	homeostasis,	
renal/urinary	

1810024B03Rik	 -0.32	 0.023	 	
Rplp0	 0.32	 0.023	 hematopoietic,	immune	
Rpap2	 -0.32	 0.023	 	
F11	 0.31	 0.027	 hematopoietic,	homeostasis,	

nervous	system	
Hmgb1	 0.31	 0.031	 endocrine/exocrine,	

homeostasis,	immune,		cellular,	
hematopoietic,	mortality/aging,	
behavior,	growth/size/body,		
mortality/aging,	respiratory,	

vision/eye	
Adam17	 -0.3	 0.032	 cardiovascular,	cellular,	

digestive/alimentary,	embryo,	
growth/size/body,	

hematopoietic,	homeostasis,	
immune,	integument,	

mortality/aging,	muscle,	
nervous	system,	pigmentation,	

respiratory,	vision/eye	
Cox7c	 -0.3	 0.035	 homeostasis,	mortality/aging	

Ccdc137		 0.29	 0.041	 	
Nsfl1c	 0.28	 0.0496	 		

	1Abnormal	phenotypes	in	targeted	gene	mutants,	collected	from	Mouse	Genome	Informatics	
database	(MGI)		
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3.7.	Chapter	3	Figures	
	

Figure	1.	A.	Sampling	locations	along	the	east	coast	of	North	America	(climate	map	
obtained	from	NOAA,	National	Weather	Service).	B.	Consistent	with	Bergmann’s	Rule,	body	
mass	in	mice	increases	with	increasing	latitude	(Pearson’s	correlation=0.34,	p=0.018)(see	
Table	S9)(See	Supplemental	material	and	methods).	
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Figure	2.	Overlap	between	genomic	scans	identifies	regulatory	variants	that	are	candidates	
for	clinal	adaptation.	A.	The	LFMM	|z-scores|	for	each	SNP	vs.	chromosome	position.	SNPs	
with	|z-scores|>2	were	considered	clinal	outliers.	B.	Manhattan	plot	of	cis-eQTL.	Shown	in	
red	are	significant	SNPs.	C.	Manhattan	plot	of	gene	starting	position	vs.	the	correlation	
between	gene	expression	and	latitude.	Points	labeled	in	orange	are	genes	for	which	
expression	is	significantly	correlated	with	latitude	(p<0.05).	On	the	outside	are	ideograms	
with	the	location	of	genes	for	which	these	three	signals	(A,B,C)	overlap.	Figure	created	with	
Circos	(Krzywinski	et	al.	2009).	
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Figure	3.	Adam17	is	a	candidate	for	adaptive	differences	in	body	mass	among	mice	in	
eastern	North	America.	A.	Expression	of	Adam17	is	correlated	with	latitude	(p=0.032,	
Pearson’s	correlation=-0.30).	Sex	was	not	a	significant	predictor	of	Adam17	expression.	B.	
A	SNP	at	Chr12:21332631	was	identified	as	a	cis-eQTL	for	Adam17.	C.	Allele	frequencies	of	
Chr12:21332631	in	five	populations.	D.	The	LFMM	|z-scores|	for	sites	on	Chromosome	12	
versus	position.	Points	above	the	red	line	were	considered	clinal	outliers	in	this	study.	The	
red	box	represents	the	peak	in	which	Chr12:21332631	is	found.	E.	Nearby	outlier	SNPs	in	
LD	with	Chr12:21332631.	Correlations	(r2,	%)	are	given	in	each	block.	The	z-scores	for	
each	site’s	association	with	latitude	are	given	in	parentheses.	F.	Adam17	expression	is	
significantly	associated	with	body	mass	when	controlling	for	latitude	(Pearson’s	
correlation,	p=4.6	×	10-4,	R2=0.22).	G.	Genotype	at	Chr12:21332631,	the	cis-eQTL	for	
Adam17,	significantly	trends	with	body	size	when	latitude	is	controlled	for	(Cochran-
Armitage	trend	test,	p=0.034).		
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Figure	4.	Visualization	of	the	most	connected	genes	in	the	female	“royalblue”	(A)	and	the	
male	“black”	with	co-expression	modules	with	VisANT	(Hu	et	al.	2008)	(B).	The	royalblue	
module	is	associated	with	BMI	(p=2	×	10-8)	and	body	length	variation	(p=6	×10-6).	The	
black	module	is	associated	with	BMI	(p=5	×	10-8),	body	mass	(p=0.001),	and	body	length	
variation	(p=3	×	10-10).	Blue	circles	represent	genes	for	which	we	identified	a	cis-eQTL	that	
explains	a	component	of	expression	variation.	Circles	with	black	borders	are	genes	with	
mutant	phenotypes	related	to	body	size	or	metabolism.	Phenotype	information	was	
collected	from	MGI	(Blake	at	al.	2017).	
	
	
	
	
	
	
	
	
	
	 	

Male	black	module	Female	royalblue	module	 B	A	
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3.8.	Chapter	3	Supplemental	material	
	
3.8.1	Sampling	

Mice	were	collected	from	5	sampling	localities	in	the	eastern	United	States	(see	File	
S1	for	individual	localities).	Museum	specimens	were	prepared	(skin	and	skull)	and	have	
been	deposited	in	the	U.C.	Berkeley	Museum	of	Vertebrate	Zoology	(Phifer-Rixey	et	al.	
2018)(see	File	S1).	At	least	10	individuals	were	collected	at	each	location.	Individuals	were	
collected	at	a	minimum	of	500	meters	apart	from	one	another	to	avoid	collecting	closely	
related	individuals.	Sex	and	reproductive	status	were	assessed	and	recorded	at	the	time	of	
collection.	Body	weight,	total	body	length,	tail	length,	hindfoot	length,	and	ear	length	were	
measured	and	recorded	for	each	individual.	Animals	were	sacrificed	in	accordance	with	
IACUC	protocols	and	tissues	(liver,	kidney,	heart	and	spleen)	were	collected	and	stored	at	-
80°C.	Liver	tissue	was	also	collected	in	RNAlater	and	stored	at	4oC	overnight	and	then	
frozen	to	-80oC	until	subsequent	RNA	extraction.	
	
3.8.2	mRNA-sequencing	and	library	preparation	

RNA	was	extracted	with	Qiagen’s	RNeasy	Mini	Kit,	and	the	extracted	RNA	from	each	
sample	was	quantified	with	a	Qubit	spectrophotometer.	RNA	libraries	were	built	with	
KAPA’s	stranded	mRNA-Seq	kit	and	were	sequenced	at	UC	Berkeley’s	Vincent	J.	Coates	
Genomics	Sequencing	Laboratory.	For	each	sample,	100	base-pair	paired-end	reads	were	
sequenced	on	the	Illumina	HiSeq4000	platform	across	3	lanes.		
	
3.8.3	Quantifying	gene	expression	

RNA-seq	reads	were	trimmed	with	Trimmomatic	(Bolger	et	al.	2014)	and	mapped	
with	TopHat2	(Kim	et	al.	2013)	to	personal	reference	genomes	(see	“Variant	calling	on	
exome	and	RNA-seq	data”	for	methods	of	constructing	personalized	references),	allowing	
two	mismatches.	Mapping	bias	toward	the	reference	allele	can	reduce	the	accuracy	of	
allele-specific	expression	measurements.	We	attempted	to	mitigate	the	effects	of	mapping	
bias	by	(1)	allowing	mismatches	during	mapping,	which	has	been	shown	to	reduce	
reference	bias	(Stevenson	et	al.	2013),	and	(2)	creating	and	mapping	RNA-seq	reads	to	
personal	reference	genomes	for	each	individual.	While	only	heterozygous	sites	were	tested	
for	allele-specific	expression,	indels	were	masked	in	our	personal	reference	genomes,	as	
these	have	been	shown	to	cause	biased	allele-specific	assignment	(Stevenson	et	al.	2013).	
We	found	that	creating	personalized	reference	genome	also	increased	the	number	of	reads	
mapped	overall.	Additionally,	when	looking	at	sites	for	which	we	find	significant	allele-
specific	expression,	we	found	no	bias	in	the	number	of	reads	mapped	towards	the	
reference	for	these	sites.		

We	achieved	an	average	of	1.7G	mapped	reads	per	sample.	Reads	that	did	not	map	
uniquely	were	discarded.	We	used	HTseq-count	(Anders	et	al.	2015)	to	count	reads	
overlapping	exons	to	estimate	mRNA	abundance	per	gene.	Read	counts	were	subsequently	
quantile	normalized	to	account	for	differences	in	sequencing	depth	between	libraries.	
Information	on	the	read	depth	per	sample	is	available	in	File	S1.		
	
3.8.4	Exome	capture	sequencing	and	identification	of	clinal	outliers	
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DNA	was	extracted	from	tissues	from	50	individuals	using	the	Qiagen	Gentra	
Puregene	Kit.	Forty-one	of	these	individuals	have	matched	RNA-seq	libraries	(see	Table	
S1).	Libraries	were	prepared	with	unique	barcodes	for	each	individual	and	a	NimbleGen	in-
solution	capture	kit	(SeqCap	EZ	Mouse)	was	used	to	enrich	libraries	for	exonic	target	
regions.	Individuals	were	pooled	in	groups	of	16-17	and	each	100-bp	paired-end	reads	
were	sequenced	for	each	pool	on	one	lane	of	Illumina	HiSeq2000.	Sequence	data	were	
cleaned	to	remove	adaptor	sequences,	filter	out	low-complexity	reads,	bacterial	
contamination,	and	PCR	duplicates.	Overlapping	reads	were	merged.	Reads	were	
subsequently	mapped	with	Bowtie	2	(Langmead	and	Salzberg	2012)	to	the	
C57BL/6J	(GRCm38)	mouse	reference	genome.	Average	coverage	per	site	was	
approximately	~15×.	

Allele	frequencies	at	variable	sites	were	estimated	with	the	program	ANGSD	
(Korneliussen	et	al.	2014).	Individual	sites	were	filtered	based	on	(1)	the	posterior	
probability	of	an	individual’s	genotype	(>=0.50),	(2)	the	p-value	for	the	likelihood	ratio	test	
for	the	SNP	being	variable	(<=0.001),	and	(3)	minor	allele	frequency	(>5%),	resulting	in	a	
total	of	281,361	sites	that	could	be	tested	for	clinal	associations.	

Clinal	outliers	were	identified	using	the	program	LFMM	(Frichot	et	al.	2013)	using	
latitude	as	an	environmental	correlate.	LFMM	implements	a	Bayesian	PCA	to	
simultaneously	infer	background	population	structure	and	identify	covariance	between	
environmental	and	genetic	variation.		

Fifty	runs	of	LFMM	with	2	latent	factors	(-K	2)	and	50,000	burnin	cycles	in	the	Gibbs	
sampler	algorithm	(-b	50000)	were	performed	to	obtain	z-scores	for	each	SNP.	The	median	
z-score	for	a	variant	was	taken	across	all	runs.	

While	isolation	by	distance	can	alternatively	explain	clinal	patterns	of	variation,	
there	is	no	evidence	for	isolation	by	distance	for	these	populations.	Principle	component	
analyses	on	genotypes	(Figure	S19)	and	on	expression	(Figure	S20)	also	do	not	cluster	
individuals	based	on	latitude.	Thus,	clinal	patterns	are	not	a	consequence	of	isolation	by	
distance.		
	
3.8.5	Variant	calling	on	exome	and	RNA-seq	data	

Variant	calling	was	performed	with	Genome	Analysis	Toolkit	v3.6	(GATK)	
HaplotypeCaller	(McKenna	et	al.	2010).	After	marking	duplicate	reads,	we	performed	the	
Base	Quality	Recalibration	using	high	quality	variant	calls	for	Mus	musculus	downloaded	
from	the	Wellcome	Trust	(ftp://ftp-mouse.	sanger.ac.uk/current_snps).	We	then	
performed	joint	genotyping	on	exome	data	with	HaplotypeCaller	followed	by	Variant	
Quality	Score	Recalibration	using	the	Wellcome	Trust	variant	calls	and	a	recently	published	
variant	call	set	from	natural	populations	of	Mus	musculus	(Harr	et	al.	2016).	As	joint	
genotyping	is	not	recommended	for	RNA-seq	reads,	we	performed	variant	calling	
separately	on	each	of	these	samples	with	HaplotypeCaller.	We	then	filtered	variants	based	
on	variant	confidence	(if	QD	<	2.0),	strand	bias	(if	FS	>	30.0),	mapping	quality,	(if	
MQRankSum	<	-12.5	and	if	MQ	<	35.0),	and	bias	in	read	position	(ReadPosRankSum	<	-8.0).	
Additionally,	we	excluded	sites	where	fewer	than	5	reads	supported	the	genotype	call.	
These	genotype	and	indel	calls	were	used	to	create	personal	reference	genomes	for	each	
sample.	Variant	calls	were	inserted	into	the	mouse	reference	(GRCm38)	and	indels	were	
masked	using	bedtools	(Quinlan	and	Hall	2010).			
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3.8.6	cis-eQTL	discovery	with	GEMMA	
To	control	for	population	structure,	hidden	factors,	and	sex,	expression	levels	were	

corrected	with	the	program	PEER	(Stegle	et	al.	2010;	Stegle	et	al.	2012),	which	uses	a	
Baysian	approach	to	infer	determinants	using	a	factor	analysis	method.	Population	
structure	was	accounted	for	by	including	the	first	6	principle	components	from	the	
genotype	data,	which	accounted	for	a	combined	24.18%	of	variation.	Principal	component	
analysis	was	performed	using	the	package	SNPRelate	(Zheng	et	al.	2012).		

The	program	GEMMA	(Zhou	and	Stephens	2012)	was	used	to	identify	putative	cis-	
regulatory	variation	for	autosomal	genes.	Sex	chromosomes	were	excluded	from	the	
analysis.	Linear	mixed	model	approaches	have	demonstrated	success	in	controlling	for	
relatedness	among	samples	and	controlling	for	population	stratification	(e.g.,	Kang	et	al.	
2008;	Listgarten	et	al.	2010;		Price	et	al.	2010;	Zhang	et	al.	2010).	While	mice	were	
collected	for	this	study	in	a	way	to	minimize	the	sampling	of	closely	related	individuals,	
individuals	show	different	levels	of	relatedness.	To	account	for	this,	a	centered	relatedness	
matrix	was	computed	by	GEMMA	based	on	the	input	genotypes	and	included	as	a	covariant.	
	
GEMMA	fits	a	linear	mixed	model	in	the	following	form:	
	

! =!" + !" +  ! +  !;   ! ~ !"#! 0, !!!!! , ! ~!"!!(0, !!!!!)	
	
where	y	represents	a	n-vector	of	qualitative	traits	for	n	individuals,	W	is	a	n	×	c	matrix	of	
covariates,	α	is	a	c-vector	of	the	corresponding	coefficients	including	the	intercept,	x	is	an	
n-vector	of	genotypes,	β	is	the	effect	size,	u	is	a	vector	of	random	effects,	!	is	an	n-vector	of	
errors	and	τ-1	is	the	variance	of	residual	errors,	λ	represents	is	the	ratio	between	the	two	
variance	components,	K	represents	the	n	×	n	relatedness	matrix,	In	is	a	n	×	n	identity	matrix,	
and	finally	MVN	is	multivariate	normal	distribution.	In	this	case,	y	is	an	n	by	1	vector	of	
gene	expression	residuals	for	n	individuals,	x	is	the	n	by	1	vector	of	genotypes,	and	u	is	an	n	
by	1	vector	to	control	for	relatedness	and	population	structure,	and	!	represents	residual	
errors	as	an	n	×	1	vector.	We	test	the	alternative	hypothesis	H1	:	β	≠	0	against	H0	:	β	=	0	for	
each	variant	within	200-kb	of	the	gene	of	interest.	The	200-kb	distance	was	based	on	
thresholds	used	in	other	studies	to	identify	cis-eQTL	(Pickrell	et	al.	2010,	Sun	2012,	Sun	
and	Wu	2013;	Tung	et	al.	2015).	Sites	with	1)	a	minor	allele	frequencies	less	than	0.01,	2)	
Hardy-Weinberg	p-values	below	0.001,	or	3)	Missing	genotype	calls	for	10	or	more	
individuals,	were	excluded	from	the	cis-eQTL	analysis.		

Missing	genotypes	were	imputed	with	BEAGLE	(Browning	and	Browning	2009).	The	
9	individuals	for	which	we	had	no	exome	data	and	only	RNA-seq	reads	show	a	high	rate	of	
missing	genotypes	compared	to	other	samples	because	of	reduced	coverage	in	some	
regions.	Consequently,	when	missing	genotypes	were	imputed	using	BEAGLE	for	these	
samples,	we	found	that	they	clustered	together	in	a	group	in	a	PCA	(where	these	samples	
cluster	with	their	source	population	when	genotypes	are	not	imputed;	Figure	S19).	As	a	
result,	we	only	performed	imputation	for	the	41	individuals	for	which	we	had	exome-
sequence	in	the	cis-eQTL	mapping	analysis,	and	not	for	the	individuals	without	matched	
exome	libraries,	and	then	subsequently	mapped	cis-eQTL	using	this	set	of	variants.	
	
3.8.7	Identifying	allele-specific	expression	
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To	identify	allele-specific	expression,	we	focused	on	exonic	heterozygous	sites	
where	both	the	reference	and	alternative	allele	were	supported	by	more	than	10	reads.	To	
test	for	allele-specific	expression,	we	considered	a	beta-binomial	distribution	to	model	
allelic	counts.	We	estimate	dispersion	by	setting	the	likelihood	at	p=0.5	(assuming	no	allelic	
imbalance)	and	varying	the	dispersion	parameter	from	0	and	1	to	minimize	the	likelihood	
function.	This	dispersion	parameter	was	then	used	to	estimate	the	beta	binomial	maximum	
likelihood.	For	each	gene	in	a	given	individual,	we	took	the	site	with	the	lowest	p-value	and	
performed	a	false	discovery	rate	correction.	
	
3.8.8.	Associations	between	body	mass	and	candidate	genes	
	 All	statistical	analyses	of	body	mass	associations	were	performed	in	R	(v3.3.2)	
using	individuals	of	both	sexes.	To	account	for	co-variation	between	latitude	and	body	
mass,	body	mass	was	first	adjusted	for	latitude	with	linear	regression	and	subsequently	
tested	for	correlations	with	the	expression	of	genes	in	Table	1.	Sex	is	not	a	significant	
predictor	for	body	mass	in	these	data	(Table	S9)	and	the	relationship	between	Adam17	and	
Bcat2	expression	and	body	mass	was	significant	whether	or	not	individuals	were	excluded	
based	on	reproductive	status	(see	Table	S6).	Associations	between	Bcat2	and	Adam17	
expression	and	body	mass	without	adjustments	for	latitude	are	available	in	Figure	S6.	SNP	
contributions	to	the	phenotypic	variance	were	estimated	using	an	ANOVA	model	after	
adjusting	body	mass	for	latitude,	the	first	eigenvector	of	SNPs	to	control	for	population	
structure,	their	interaction,	and	sex	using	a	linear	regression.		
	
3.8.9.	Differential	expression	
	 We	used	the	R	package	DESeq2	(Love	et	al.	2014)	to	identify	differential	
expression	between	populations	at	the	latitudinal	extremes.	We	tested	13,635	genes	for	
differential	expression	between	8	individuals	from	Florida	and	12	individuals	from	New	
Hampshire	and	Vermont.	We	used	DESeq2	to	normalize	raw	gene	read	counts,	estimate	
dispersion	factors	for	each	gene,	and	then	test	for	differential	expression	based	on	a	
negative	binomial	distribution	(Figure	S4).	The	resulting	p-values	were	then	false	discovery	
rate	corrected.	
	
3.8.10.	Characterizing	linkage	disequilibrium		

To	characterize	linkage	disequilibrium	(LD)	in	this	dataset,	we	used	PLINK	v1.9	
(Chang	et	al.	2015)	to	calculate	squared	inter-variant	allele	count	correlations	(r2),	
normalized	measure	of	allelic	association	(D’),	and	to	create	LD	blocks	(following	the	
definition	of	haplotype	block	from	[Gabriel	et	al.	2002]).	We	restricted	the	LD	analysis	to	
SNPs	with	a	minor	allele	frequency	greater	than	0.01	(see	Figure	S5).		
	
3.8.11.	Weighted	gene	co-expression	analysis	
	 We	performed	weighted	gene	co-expression	analysis	(WGCNA)	following	
WGCNA	protocols	(Langfelder	and	Horvath	2008)	on	non-pregnant	females	(n=19)	and	
males	(n=21).	One	male	outlier	was	filtered	based	on	sample	clustering.	Pearson’s	
correlations	for	all	gene	pairs	across	samples	were	calculated	to	create	similarity	matrices.		
Soft	thresholding	power	was	selected	based	on	scale-free	topology.	The	minimum	module	
size	was	set	to	30	genes.	We	assigned	13,636	genes	to	47	expression	modules	in	male	mice	
and	13,635	genes	to	40	expression	modules	in	female	mice.	Male-female	consensus	
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modules	were	also	created	to	identify	co-expression	patterns	shared	across	sexes.	Across	
males	and	females,	we	identified	44	expression	modules	comprising	9,359	genes.	We	tested	
for	associations	between	a	summary	profile	(called	an	eigengene)	and	external	traits	(BMI,	
tail	length,	body	mass,	and	latitude)	to	identify	modules	associated	with	these	external	
traits	(Figure	S15,S16,S17).		
	
3.8.12.	Replication	of	the	Adam17	cis-eQTL	in	European	populations	
	 SNP	calls	and	liver	RNA-seq	reads	(mapped	to	mm10)	from	Harr	et	al.	2016	
were	retrieved	(http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/)	for	mice	from	
Germany	(n=8)	and	France	(n=8)	(Harr	et	al.	2016).	To	quantify	gene	expression,	we	used	
HTseq-count	(Anders	et	al.	2015)	to	count	reads	overlapping	exons.	Reads	overlapping	
exonic	regions	were	subsequently	quantile	normalized.	The	SNP	identified	as	a	cis-eQTL	for	
Adam17	(Chr12:21332631)	in	Eastern	North	America	was	found	to	be	significantly	
correlated	with	Adam17	expression	in	European	mice.	We	were	unable	to	validate	the	
Bcat2	cis-eQTL	in	European	individuals	as	11/16	individuals	were	fixed	for	the	reference	
allele.	
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3.9.	Chapter	3	Supplemental	Tables	
	
Table	S1.	Summary	of	samples	used	in	this	study	(further	metadata	is	available	in	File	S1)	
RNA-seq	library	

ID	
Exome	

available		 Exome	name	 Population	 Sex	
MNKM01-19	 x	 MWNMVP001_108B	 FL	 F	
MNKM01-40	 x	 MWNMVP001_115B	 FL	 F	
MNKM01-38	 x	 MWNMVP003_113B	 FL	 F	
MNKM01-39	 x	 MWNMVP003_114B	 FL	 F	
MNKM01-37	 o	 N/A	 FL	 F	
MNKM01-41	 o	 N/A	 FL	 F	
MNKM01-20	 x	 MWNMVP001_110B	 FL	 M	
MNKM01-21	 x	 MWNMVP003_112B	 FL	 M	
MNKM01-22	 x	 MWNMVP001_124B	 GA	 F	
MNKM01-26	 x	 MWNMVP001_131B	 GA	 F	
MNKM01-44	 x	 MWNMVP001_132B	 GA	 F	
MNKM01-45	 x	 MWNMVP001_133B	 GA	 F	
MNKM01-1	 x	 MWNMVP002_130B	 GA	 F	
MNKM01-24	 o	 N/A	 GA	 F	
MNKM01-42	 x	 MWNMVP002_128B	 GA	 M	
MNKM01-23	 x	 MWNMVP003_125B	 GA	 M	
MNKM01-25	 x	 MWNMVP003_129B	 GA	 M	
MNKM01-35	 x	 MWNMVP002_137B	 NH	 F	
MNKM01-46	 x	 MWNMVP003_134B	 NH	 F	
MNKM01-47	 x	 MWNMVP003_135B	 NH	 F	
MNKM01-27	 o	 N/A	 NH	 F	
MNKM01-28	 x	 MWNMVP001_138B	 NH	 M	
MNKM01-29	 x	 MWNMVP003_140B	 NH	 M	
MNKM01-2	 o	 N/A	 NH	 M	
MNKM01-5	 x	 MWNMVP001_150B	 PA	 F	
MNKM01-34	 x	 MWNMVP001_156B	 PA	 F	
MNKM01-32	 x	 MWNMVP002_153B	 PA	 F	
MNKM01-30	 x	 MWNMVP003_146B	 PA	 F	
MNKM01-43	 o	 N/A	 PA	 F	
MNKM01-6	 x	 MWNMVP001_148B	 PA	 M	
MNKM01-31	 x	 MWNMVP001_151B	 PA	 M	
MNKM01-7	 x	 MWNMVP001_152B	 PA	 M	
MNKM01-33	 x	 MWNMVP002_155B	 PA	 M	
MNKM01-8	 o	 N/A	 PA	 M	
MNKM01-50	 x	 MWNMVP002_159B	 VA	 F	
MNKM01-11	 x	 MWNMVP002_161B	 VA	 F	
MNKM01-16	 x	 MWNMVP002_167B	 VA	 F	
MNKM01-18	 x	 MWNMVP002_169B	 VA	 F	
MNKM01-10	 o	 N/A	 VA	 F	
MNKM01-12	 x	 MWNMVP002_162B	 VA	 M	
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MNKM01-13	 x	 MWNMVP002_163B	 VA	 M	
MNKM01-14	 x	 MWNMVP002_164B	 VA	 M	
MNKM01-15	 x	 MWNMVP002_165B	 VA	 M	
MNKM01-17	 x	 MWNMVP002_166B	 VA	 M	
MNKM01-9	 o	 N/A	 VA	 M	
MNKM01-49	 x	 MWNMVP003_142B	 VT	 F	
MNKM01-4	 x	 MWNMVP003_145B	 VT	 F	
MNKM01-36	 x	 MWNMVP001_143B	 VT	 M	
MNKM01-3	 x	 MWNMVP001_144B	 VT	 M	
MNKM01-48	 x	 MWNMVP003_141B	 VT	 M	
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Table	S2.	Testing	for	allele-specific	expression	in	wild	mice	
		 Number	

Heterozygous	sites1	 28,234	
Genes	tested	 6,738	

Genes	with	ASE	 442	
Genes	with	ASE	in	>1	individual	
Genes	with	ASE	and	a	cis-eQTL	

258	
40	

1Heterozygous	sites	within	exons	with	sufficient	read	depth	to	test	for	ASE	
2q-value	<	0.05
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Table	S3.	Differential	expression	between	latitudinal	extremes	(FL	vs.	NH/VT)	
		 Number	of	genes	

Genes	with	differential	expression	 458	
Genes	with	differential	expression		

and	a	cis-eQTL1	
48	

Genes	with	differential	expression	and	allele-specific	
expression1	

14	

1q-value	<	0.05		
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Table	S4.	Candidate	gene	cis-eQTL	(Table	1)	states	and	allele	frequencies	
Gene	 Reference1	 Alternative	 Ancestral2	 Major	 Minor	 Minor	allele	

frequency	
Tcea1	 T	 A	 N/A	 A	 T	 0.49	
Iah1	 T	 C	 C	 C	 T	 0.48	
Lnx1	 T	 C	 C	 T	 C	 0.31	

2810402E24Rik	 A	 C	 C	 A	 C	 0.26	
Arl6ip4		 G	 A	 G	 G	 A	 0.32	
Nsa2	 T	 C	 T	 C	 T	 0.38	
Rpl3	 G	 G	 A	 G	 A	 0.26	
Bcat2	 T	 C	 C	 C	 T	 0.17	

1810024B03Rik	 A	 G	 N/A	 A	 G	 0.49	
Rplp0	 A	 G	 N/A	 A	 G	 0.42	
Rpap2	 T	 C	 T	 T	 C	 0.43	
F11	 A	 G	 G	 G	 A	 0.45	

Hmgb1	 G	 A	 N/A	 G	 A	 0.33	
Adam17	 T	 C	 C	 T	 C	 0.49	
Cox7c	 G	 A	 G	 G	 A	 0.28	

Ccdc137		 T	 C	 C	 T	 C	 0.43	
Nsfl1c	 A	 G	 G	 A	 G	 0.31	

1Reference	allele	based	on	mm10	
2Ancestral	allele	based	on	Mus	spretus	(SPRET/EiJ)	alignment	
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Table	S5.	cis-eQTL	that	within	an	LD	block	of	a	clinal	outlier	that	are	also	differentially	
expressed	between	Florida	and	New	York	

Symbol	 Log2	Fold	
Change	

q-value	 Phenotypes	

Hmgb1	 0.65	 0.0026	 behavior,	cellular,	growth/size/body,	
homeostasis,	mortality/aging,	respiratory,	

vision/eye,	endocrine/exocrine	
Lnx1	 -1.39	 0.0037	 hematopoietic,	immune	

Ccdc137		 0.73	 0.0097	 hematopoietic,	immune	
Bcat2	 0.69	 0.015	 adipose,	behavior,	growth/size/body,	

homeostasis,	renal/urinary	
2810402E24R

ik	
0.91	 0.021	 	

Cox19	 -0.76	 0.048	 	
AA465934	 -0.92	 0.048	 	

F11	 0.62	 0.0084	 hematopoietic,	homeostasis,	nervous	
system	

Iah1	 -0.76	 0.062	 cardiovascular,	limbs/digits/tail,	skeleton	
Oasl1	 -0.95	 0.032	 homeostasis,	immune,	mortality/aging	
Tcea1	 0.63	 0.095	 cardiovascular,	embryo,	

growth/size/body,	hematopoietic,	
homeostasis,	limbs/digits/tail,	
liver/biliary,	mortality/aging		
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Table	S6.	Association	between	Adam17	and	Bcat2	expression	and	body	mass	ware	
significant	whether	or	not	females	assessed	as	pregnant	were	excluded.		
	

		
Adam17	expression	vs.	
body	mass	residuals	

Bcat2	expression	vs.	
body	mass	residuals	

Sample	 p-value	 p-value	
All	Individuals		 4.6E-04	 0.0041	

Non-pregnant	individuals	 8.3E-04	 0.041	
	
	 	



	 89	

Table	S7.	Genes	within	body	size	associated	co-expression	modules	that	are	associated	
with	a	cis-eQTL	that	co-localizes	with	a	LFMM	outlier.		

Gene	name	 |	Z	Score	|1	
Females	

	Ube2q2	 3.04	
3110082I17Rik	 2.28	

Cep85		 3.01	
Bcat2	 2.19	

F830016B08Rik	 2.02	
Rpl3	 2.98	
Iah1	 2.13	
Dhdh	 2.47	
Cib1	 2.15	

2810402E24Rik	 2.03	
Zc3h6	 2.07	
Males	

	Pygb		 2.42	
Ccdc137	 2.93	
Nsun3	 2.01	
Pgghg	 2.15	

1LFMM	|Z	Score|	 	
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Table	S8.	The	average	proportion	of	bases	with	coverage	within	an	individual		

		
Average	proportion	of	bases	with	coverage	in	one	

individual	
Genes	surveyed			 0.32	

200-kb	surrounding	genes	
surveyed	 0.15	
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Table	S9.	Analysis	of	body	size.	A	linear	model	was	fit	in	the	following	form:	Body	mass	(g)	
~	Sex	+	Latitude	(N=50).	
	
Response	 Predictor	 P	value	
Body	Mass	 Sex	 0.46	
		 Latitude	 0.018	
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3.10.	Chapter	3	supplemental	Figures	
	
	

	
Figure	S1.	The	locations	of	SNPs	identified	as	cis-eQTL.	RefSeq	exon	annotations	were	used	
to	annotate	the	locations	of	cis-eQTL.	Some	genes	are	annotated	to	multiple	elements	(e.g.,	
within	an	exon	and	intron)	and	are	represented	in	multiple	categories.	

Intron	
18%	

Gene	body	
57%	

3'	UTR	
3%	

5'	UTR	
11%	

Upstream	
4%	

Downstream	
4%	

Intergenic	
3%	

Annotated	loca+ons	of	cis-eQTL	
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Figure	S2.	Allele-specific	expression	and	cis-eQTL	detection	is	more	likely	in	genes	when	
SNP	density	is	higher	(Wilcoxon	test,	p=3.1e-11	and	p<	2.2e-16,	respectively).
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Figure	S3.	Allele-specific	expression	detection	is	more	likely	in	genes	with	higher	
expression	(Wilcoxon	test,	p-value	<	2.2e-16).	
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Figure	S4.	Differential	expression	between	latitudinal	extremes.	We	compared	gene	
expression	between	wild	collected	mice	in	Florida	and	mice	collected	from	New	Hampshire	
and	Vermont.		
	
	

padj<0.05	

Both	

log2FC>1	
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Figure	S5.	Average	correlation	(r2)	between	variants	against	physical	distance	(in	kb)	for	
SNPs	with	a	minor	allele	frequency	greater	than	0.01.	
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Figure	S6.	A.	Correlation	between	Adam17	expression	and	body	mass	without	adjustment	
for	latitude.	B.	Correlation	between	Bcat2	expression	and	body	mass	without	adjustment	
for	latitude.		
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Figure	S7.	Correlations	between	Adam17	and	body	mass	in	5	populations.	Adam17	is	
significantly	associated	with	body	mass	in	one	population	(New	Hampshire/Vermont,	
p=0.0035)	and	trends	in	the	right	direction	in	4	of	the	5	populations.	
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Figure	S8.	Correlations	between	Bcat2	and	body	mass	in	5	populations.	Bcat2	is	
significantly	associated	with	body	mass	in	two	population	(Pennsylvania	and	Georgia,	
p=0.03	and	p=	0.0018,	respectively)	and	trends	in	the	right	direction	in	4	of	the	5	
populations.		
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Figure	S9.	Cis-eQTL	for	(A)	Adam17	and	(B)	Bcat2	are	associated	with	differences	in	body	
mass.	
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Figure	S10.	A.	The	Adam17	cis-eQTL	(Chr12:21332631)	in	Europe.	B.	The	Adam17	cis-
eQTL	is	correlated	with	the	expression	of	Adam17	in	European	individuals.		
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Figure	S11.	A.	ADAM17	is	a	sheddase	that	is	physiologically	inhibited	by	TIMP3.	B.	Timp3	
expression	is	correlated	with	Adam17	expression.	C.	Timp3	is	differentially	expressed	
between	the	Florida	and	New	Hampshire/Vermont	populations.	
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Figure	S12.	The	Adam17	cis-eQTL	is	in	LD	with	sites	in	a	proximal	promoter	region.	A.	
Average	number	of	reads	across	individuals	per	site	in	exome	data.	B.	r2	between	the	
Adam17	cis-eQTL	(in	red)	and	proximal	sites.	
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Figure	S13.	A.	Average	number	of	reads	across	individuals	per	site	in	low	coverage	whole	
genome	data.	B.	r2	between	the	Adam17	cis-eQTL	(in	red)	and	proximal	sites.	
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Figure	S14.	A.	Two	SNPs	(Chr12:21373219	and	Chr12:21373218)	in	the	Adam17	
promoter	(highlighted	in	grey)	are	clinal	outliers.	B.	Clinal	variation	in	allele	frequencies	at	
Chr12:21373218.	C.	Clinal	variation	in	allele	frequencies	at	Chr12:21373219.	
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Figure	S15.	Relationship	between	co-expression	modules	and	external	traits	in	male	mice.	
Each	number	represents	the	correlation	between	the	module	eigengene	and	the	external	
trait	and	in	parentheses	is	the	associated	p-value.		
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Figure	S16.	Relationship	between	co-expression	modules	and	external	traits	in	female	
mice.	Each	number	represents	the	correlation	between	the	module	eigengene	and	the	
external	trait	and	in	parentheses	is	the	associated	p-value.
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Figure	S17.	Relationship	between	consensus	co-expression	modules	between	males	and	
female	mice	and	external	traits.	Each	number	represents	the	correlation	between	the	
module	eigengene	and	the	external	trait	and	in	parentheses	is	the	associated	p-value.		
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Figure	S18.	Co-expression	modules	with	the	top	trait	associations	for	female	(A)	and	male	
(B)	mice.		
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Figure	S19.	Principle-component	analysis	of	genotype	data	from	50	individuals.	Colors	
denote	the	population	of	origin.	
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Figure	S20.	Principle-component	analysis	of	expression	data	from	50	individuals.	Colors	
denote	the	population	of	origin.		
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Abstract	

Copy	number	variants	(CNVs)	are	thought	to	account	for	a	substantial	proportion	of	
total	genetic	variation	and	have	been	associated	with	phenotypic	differences	
between	individuals	that	can	impact	fitness.	Despite	this,	there	are	still	few	
examples	of	copy	number	variants	that	contribute	to	local	adaptation.	We	apply	a	
read-depth	based	approach	to	characterize	copy	number	variation	using	low-
coverage	whole	genome	data	in	wild-caught	individuals	of	house	mice	(Mus	
musculus	domesticus)	collected	from	five	populations	along	a	latitudinal	cline	in	the	
eastern	United	States.	Consistent	with	a	role	for	CNVs	in	local	adaptation,	we	
identified	two	regions	where	copy	number	is	significantly	correlated	with	latitude.	
These	two	regions	overlap	with	7	genes,	whose	functions	include	immunity	and	cold	
reception.	One	of	these	genes,	Trpm8,	has	previously	been	shown	to	affect	
physiological	responses	to	environmental	cold	in	mice,	ground	squirrels,	and	
hamsters.	These	results	suggest	that	copy	number	variation	is	a	significant	
contributor	to	genetic	variation	in	North	American	populations	and	plays	an	
important	role	in	environmental	adaptation.	
	
4.1.	Introduction	

A	major	goal	in	evolutionary	biology	is	characterizing	the	genetic	variation	
that	underlies	adaptation.	Copy	number	variants	(CNVs)	are	a	type	of	structural	
variation	where	segments	of	DNA	vary	in	number	between	individuals.	This	class	of	
structural	variation	is	known	to	represent	a	major	source	of	genetic	diversity	in	
mammals	(Graubert	et	al.	2007,	Perry	et	al.	2008).	CNVs	can	also	have	phenotypic	
consequences	and	affect	organismal	fitness	by	altering	the	coding	sequences	or	the	
expression	of	genes.	In	humans,	CNVs	have	been	linked	to	complex	diseases	
including	autism	(Pagnamenta	et	al.	2009),	schizophrenia	(International	
Schizophrenia	Consortium	2008),	and	diabetes	(Jeon	et	al.	2010),	among	others	
(Consortium	TWTCC	2010,	Girirajan	et	al.	2011).	Copy	number	variation	may	also	
provide	an	important	source	of	genetic	variation	that	selection	can	act	on	to	
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promote	adaptation.	However,	there	are	still	relatively	few	examples	of	copy	
number	variants	that	have	been	demonstrated	to	be	locally	adaptive	(Iskow	et	al.	
2012).	

House	mice	(Mus	musculus	domesticus)	are	a	useful	model	for	studying	the	
role	of	structural	variation	in	adaptation.	House	mice	are	the	premier	mammalian	
biomedical	model	system	and	have	recently	expanded	into	novel	habitats	
worldwide	in	association	with	humans	(Phifer-Rixey	and	Nachman	2015).	Studies	of	
CNVs	within	house	mice	have	found	that	these	variants	are	a	major	source	of	genetic	
diversity	and	are	often	differentiated	between	inbred	lines	and	between	populations	
(Locke	et	al.	2015,	Bryk	and	Tauz	2014,	Pezer	et	al.	2015).	

In	the	eastern	United	States,	house	mice	show	clines	in	body	size	and	
behavioral	variation	consistent	with	thermoregulatory	adaptations.	Mice	at	higher	
latitudes	are	larger	than	mice	at	more	southern	latitudes,	and	this	difference	
persists	in	the	lab	indicating	that	these	differences	are	genetic	(Lynch	1992,	Phifer-
Rixey	et	al.	2018).	Laboratory	strains	founded	from	the	northern	and	southern	
locations	also	show	differences	in	aspects	of	blood	chemistry,	including	leptin,	
glucose,	and	triglyceride	levels	(Phifer-Rixey	et	al.	2018),	as	well	as	behavioral	
differences	(Lynch	1992,	Phifer-Rixey	et	al.	2018).		

Recent	work	with	these	populations	identified	clinal	sequence	variation	
associated	with	gene	expression	and	phenotypic	differences	(Phifer-Rixey	et	al.	
2018,	Mack	et	al.	2018).	Here	we	use	whole-genome	data	from	individuals	in	these	
populations	to	characterize	copy	number	variation	and	search	for	copy	number	
variation	that	varies	clinally	with	latitude.	Divergence	in	copy	number	among	
populations	along	this	cline	may	be	evidence	of	a	role	for	these	structural	variants	in	
environmental	adaptation	in	house	mice.	
	
4.2.	Results	and	Discussion	

4.2.1.	Distribution	of	shared	copy	number	variants	
Low	coverage	whole-genome	data	were	used	to	characterize	copy	number	

variation	in	wild	populations	of	Mus	musculus	domesticus.	Fifty	wild	individuals	
were	collected	from	5	populations	(New	Hampshire/Vermont,	Pennsylvania,	
Virginia,	Georgia,	Florida)	along	a	~15°	latitudinal	gradient	in	Eastern	North	
America	(Figure	1A;	Phifer-Rixey	et	al.	2018).		

To	identify	CNVs,	reads	were	mapped	to	the	mouse	reference	genome	
(mm10/GRCm38)	and	copy	number	variant	deviations	were	identified	in	20-kb	
windows	using	a	read-depth	based	approach	implemented	in	the	program	FREEC	
(Boeva	et	al.	2011,	Boeva	et	al.	2012)(see	methods	for	discussion	of	this	approach).	
In	order	to	study	population-level	variation	and	reduce	false	positive	calls,	we	
focused	on	windows	with	copy	number	calls	in	at	least	8	of	the	50	individuals	
included	in	this	study	(~16.3%	of	individuals).	After	this	filtering,	we	identified	117	
shared	copy	number	variants	distributed	throughout	the	genome	(Figure	1B).	A	
dendrogram	generated	by	clustering	individuals	based	on	the	presence	or	absence	
of	CNV	calls	does	not	group	individuals	by	population	(Figure	1C),	indicating	that	
much	of	the	variation	is	shared	between	among	populations.	We	also	found	that	
genetic	distance	between	individuals	based	on	CNVs	alone	is	not	associated	with	
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geographic	distance	(Mantel	test,	p=0.51,	999	permutations).	The	median	tract	
length	of	these	regions	was	100kb	(mean=289.28kb,	Figure	S1).	These	regions	
overlapped	280	genes,	and	36%	of	these	genes	were	partially	or	fully	deleted	in	at	
least	one	individual.	We	found	that	genes	that	intersect	copy	number	variants	in	this	
analysis	also	strongly	overlap	genic	copy	number	variants	identified	in	a	study	of	
wild	European	mice	(hypergeometric	test,	p	=	9.57	x	10-60)	(Pezer	et	al.	2015),	
suggesting	much	of	the	variation	we	observed	is	also	present	in	European	
populations.	

In	comparing	average	genic	copy	number	between	populations,	we	identified	
43	genes	with	differences	in	copy	number	between	at	least	two	populations	
(Kruskal-wallis,	P<0.05)(File	S1),	but	did	not	identify	any	cases	of	population-
specific	amplifications	or	deletions.	Genes	with	high	differentiation	between	
populations	were	enriched	for	Gene	Ontology	(GO)	terms	including	G-protein	
coupled	receptor	activity	(q	=	9.83	x	10-4),	signal	transducer	activity		(q	=	2.36	x	10-
5),	and	transferase	activity	(q	=	2.88	x	10-3).	
	
4.2.2.	Copy	number	variation	and	gene	expression	in	liver	tissue	

One	mechanism	through	which	CNV	can	result	in	phenotypic	variation	is	
through	changes	in	gene	dosage.	For	example,	gene	duplications	may	result	in	
increased	expression	of	a	gene’s	product,	which	can	directly	impact	organismal	
fitness.		

To	assess	whether	copy	number	influenced	expression	in	these	populations,	
we	used	liver	RNAseq	data	collected	from	the	same	individuals	to	survey	the	
expression	of	genes	overlapping	copy	number	calls	(see	methods).	If	increased	copy	
number	results	in	increased	expression	increased	expression	of	a	gene	in	this	tissue,	
we	expect	a	positive	correlation	between	the	number	of	copies	in	an	individual	and	
the	expression	of	that	gene.	Of	the	108	genes	overlapping	copy	number	variants	that	
also	were	expressed	in	the	liver,	24	(22.22%)	showed	significant	positive	
correlations	between	copy	number	and	gene	expression	(Spearman’s	rank	
correlation,	p<0.05)(Table	S1).	Two	of	these	genes	fall	within	a	CNV	on	chromosome	
17	(Glo1	and	Dnah8)	and	also	show	differences	in	average	copy	number	between	
populations	(Figure	S2),	suggesting	that	this	copy	number	deviation	results	in	
expression	differences	between	populations.	Variation	in	Glo1	copy	number	has	
previously	been	linked	to	anxiety-like	behavior	in	inbred	and	outbred	mice	(Hovatta	
et	al.	2005,	Williams	et	al.	2009),	as	well	as	disease	phenotypes	in	humans,	including	
panic	disorder	and	autism	(Junaid	et	al.	2004,	Sacco	et	al.	2007,	Politi	et	al.	2006).	
	
4.2.3.	Clinal	variation	in	copy	number	
A	classic	approach	to	identifying	genetic	variation	that	reflects	local	adaptation	is	to	
search	for	allele	frequency	changes	that	co-vary	with	an	environmental	gradient.	
Differences	in	average	copy	number	between	populations	of	house	mice	in	eastern	
North	America	may	reflect	adaptations	to	environments	that	differ	in	temperature	
and	other	aspects	of	climate.	Although	geographic	clines	may	also	be	explained	by	
isolation	by	distance,	there	is	no	evidence	of	isolation	by	distance	in	these	
populations	(Phifer-Rixey	et	al.	2018)	nor	do	CNVs	cluster	based	on	geographic	
distance	between	populations	(see	above).	
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To	search	for	CNVs	that	vary	clinally	in	eastern	North	America,	Pearson’s	
correlation	was	used	to	test	20kb	windows	of	variable	copy	number	for	correlations	
with	latitude.	P-values	were	then	subjected	to	a	false	discovery	rate	correction	and	
widows	with	a	q-value	<	0.10	were	considered	significant.	To	prevent	copy	number	
expansions	or	contractions	in	any	one	population	from	creating	a	spurious	clinal	
signal,	each	population	was	dropped	in	turn	and	the	significant	regions	were	re-
tested	for	correlations	with	latitude.	Two	regions,	one	on	Chromosome	1	and	one	on	
chromosome	4,	remained	significant	after	this	re-testing	procedure	(Figure	2C)(File	
S1).	The	region	on	Chromosome	1	encompasses	the	full	transcriptional	units	for	the	
genes	Mroh2a	and	Hjurp	and	one	complete	transcript	and	the	promoter	region	for	
the	gene	Trpm8.	The	region	on	Chromosome	4	encompasses	the	full	transcriptional	
units	for	the	genes	Skint9	and	Skint3	and	partial	transcripts	of	Skint4	and	Skint2.		

All	genes	within	these	two	clinally	varying	regions	have	been	identified	as	
CNVs	in	previous	studies	surveying	wild	mice	from	other	populations	(Locke	et	al.	
2015,	Pezer	et	al.	2015).	To	compare	average	copy	number	for	these	regions	in	the	
mice	surveyed	here	to	other	wild	mice,	we	downloaded	whole	genome	data	from	
French,	German	and	Iranian	populations	of	M.	m.	domesticus	(Harr	et	al.	2015).	We	
found	that	the	average	copy	number	in	the	Eurasia	populations	is	more	similar	to	
that	of	FL	than	the	NH/VT	populations	for	both	regions	(File	S1).		

Genes	within	these	regions	are	candidates	for	environmental	adaptation.	
Latitude	on	the	east	coast	of	North	America	is	highly	associated	with	several	
climatic	variables,	including	mean	annual	temperature	(Phifer-Rixey	et	al.	2018).	
Given	the	latitudinal	variation	in	temperature	and	the	metabolic	differences	
between	populations,	a	gene	of	particular	interest	is	Trpm8.	Trpm8	is	the	primary	
molecular	transducer	of	cold	somatosensation	and	plays	an	essential	role	in	
physiological	thermoregulation	(Bautista	et	al.	2007,	Dhaka	et	al.	2007,	Milenkovic	
et	al.	2014,	Peier	et	al.	2002,	Voets	et	al.	2004,	McKemy	et	al.	2002).	The	TRPM8	
protein	is	primarily	expressed	in	sensory	neurons	where	it	is	activated	by	cold	
temperatures	(Peier	et	al.	2002,	Bautista	et	al.	2007).	Trpm8	deficient	mice	exhibit	
no	preference	for	optimum	ambient	temperature	and	impaired	cold	avoidance	
(Bautista	et	al.	2007,	Dhaka	et	al.	2007,	Colburn	et	al.	2007).	A	recent	study	from	
Matos-Cruz	et	al.	(2017)	demonstrated	that	activity-reducing	substitutions	within	
the	Trpm8	gene	in	thirteen-lined	ground	squirrels	and	Syrian	hamsters	increase	
cold	tolerance.	Trpm8	sequence	variation	has	also	been	implicated	in	cold	
adaptation	in	humans	(Key	et	al.	2018)	and	woolly	mammoths	(Lynch	et	al.	2015,	
Smith	et	al.	2017,	Chigurapati	et	al.	2018).	While	the	tissue-specificity	of	Trpm8	
expression	means	we	are	unable	to	connect	the	variation	at	this	gene	with	
phenotypic	differences	between	individuals	in	these	populations,	the	clinal	variation	
at	this	gene,	in	combination	with	its	molecular	function,	makes	it	an	exciting	
candidate	for	thermoregulatory	adaptation	in	house	mice.		
	
4.3.	Conclusion	
In	this	study,	we	(1)	identified	copy	number	variation	in	natural	populations	of	
house	mice,	(2)	identified	copy	number	variants	associated	with	differentiation	
between	populations,	(3)	identified	copy	number	variants	associated	with	
expression	variation,	and	(4)	identified	clines	in	copy	number	variants	consistent	
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with	local	adaptation,	including	a	cline	at	Trpm8,	the	gene	encoding	a	cold	receptor	
that	has	been	previously	implicated	in	adaptive	physiological	response	to	cold	in	
other	systems	(Key	et	al.	2018,	Matos-Cruz	et	al.	2017,	Lynch	et	al.	2015,	Smith	et	al.	
2017,	Chigurapati	et	al.	2018).		The	work	described	here	adds	to	a	growing	number	
of	studies	that	have	used	whole	genome	approaches	to	identify	population	level	
copy	number	divergence	(e.g.,	Pezer	et	al.	2015)	and	copy	number	variation	
consistent	with	local	adaptation	(Schrider	et	al.	2013,	Schrider	et	al.	2016,	Bryk	and	
Tauz	2014).	These	studies	highlight	the	importance	of	CNVs	to	genetic	variation	and	
population	divergence,	as	well	as	a	possible	role	for	these	elements	as	substrates	for	
adaptive	evolution.	
	
4.4.	Methods	
4.4.1.	Samples	and	sequencing	

Mice were sampled from five localities along a latitudinal cline as described in 
Phifer-Rixey et al. (2018). In brief, mice were sacrificed in the field and tissue was 
collected for 10 individuals from each population. Libraries from two or three individuals 
were sequenced	on	one	lane	of	an	Illumina	HiSeq2000	(100bp	paired-end	reads),	
resulting	in	~9-10Gb	of	raw	sequence	data.	Reads	were	mapped	to	the	
mm10/GRCm38	reference	with	Bowtie2	(Langmead	and	Salzberg	2012).	Average	
coverage	across	the	whole	genome	was	approximately	2.5X.	For	sites	where	each	
individual	had	a	least	one	mapped	read,	coverage	was	3.3X.		These	data	were	
previously	published	and	additional	details	can	be	found	in	Phifer-Rixey	et	al.	
(2018).	
	
4.4.2.	CNV	detection	

The	program	FREEC	was	used	to	detect	copy	number	variation	relative	to	the	
mm10	(GRCm38)	reference	genome	in	20kb	windows.	FREEC	employs	a	read-depth	
based	approach	to	estimate	copy	number	using	next-generation	sequencing	data.	
This	method	was	chosen	because	it	has	been	demonstrated	to	detect	copy	number	
variants	with	high	reliability	(Duan	et	al.	2013).		

Read	depth	based	approaches	can	be	biased	by	GC	content	and	region	
mappability	(Magi	et	al.	2011).	GC	content	varies	across	the	genome	and	affects	read	
coverage.	To	correct	for	GC-bias,	we	used	FREEC	to	normalize	read	counts	based	on	
a	GC-content	profile	of	the	mouse	reference	genome.	Mappability,	or	how	well	reads	
map	to	a	region,	can	be	influenced	by	the	presence	of	repetitive	regions	in	the	
reference	genome.	Aligning	reads	to	repetitive	regions	results	in	ambiguous	
mapping,	which	can	skew	estimates	of	coverage.	To	account	for	biases	introduced	
by	mappability,	a	mappability	profile	for	the	mm10	reference	was	created	with	GEM	
(Derrien	et	al.	2012)	and	used	to	correct	read	counts	in	FREEC.	The	resulting	CNV	
predictions	were	tested	for	significance	using	a	Wilcoxon	test	implemented	in	
FREEC.	One	individual	was	determined	to	be	an	outlier	based	on	sample	clustering	
and	excluded	from	further	analyses.	CNVs	were	summarized	between	individuals	
using	the	Bedtools	(Quinlan	et	al.	2010)	intersect	command,	requiring	at	least	one	
20-kb	window	of	overlap.	Notably,	this	strategy	of	using	large	fixed	windows	to	
infer	copy	number	variation	can	result	in	higher	confidence	for	CNV	calls	but	can	
bias	against	the	detection	of	small	copy	number	variants	(Pirooznia	et	al.	2015).	
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4.4.3.	Assessing	call	accuracy	in	low	coverage	data	

To	assess	our	ability	to	detect	copy	number	variation	in	our	low	coverage	
data	with	this	method,	we	downloaded	high	coverage	whole	genome	data	from	5	
European	Mus	musculus	domesticus	from	Harr	et	al.	(2016).	We	called	CNV	variation	
in	20kb	windows	at	high	coverage	and	then	subsequently	downsampled	the	read	
depth	to	match	the	approximate	depth	of	our	low-coverage	libraries	and	then	re-
called	CNV	variation	with	the	same	samples.	At	low	coverage,	we	were	able	to	detect	
81%	of	the	copy	number	variants	identified	at	high	coverage.	For	copy	number	
variants	called	at	high	and	low	coverage,	91%	of	the	copy	number	calls	(i.e.,	number	
of	copies	estimated	for	a	region	per	individual)	were	the	same.	When	copy	number	
calls	differed	between	high	and	low	coverage	test	sets,	the	difference	in	calls	was	
always	1.	This	suggests	that	while	we	have	likely	underestimated	the	number	of	
copy	number	variants	segregating	within	populations,	the	number	of	copies	at	a	
given	region	can	be	estimated	with	relatively	high	precision	in	the	low	coverage	
dataset.	
	
4.4.4.	Gene	expression	and	copy	number	analysis	

Liver	RNAseq	data	were	generated	for	41	of	the	50	individuals	used	in	this	
study	and	previously	published	(Mack	et	al.	2018).	In	brief,	liver	tissue	was	taken	in	
the	field	collected	in	RNAlater,	stored	overnight	at	4oC	overnight	and	then	frozen	at	-
80oC.	RNA	was	extracted	from	liver	tissue	with	the	Qiagen’s	RNeasy	Mini	Kit.	For	
each	individual,	100bp	paired-end	reads	were	sequences	on	an	Illumina	HiSeq4000.	
Trimmomatic	(Bolger	et	al.	2014)	was	used	to	trim	adaptors	and	then	trimmed	
reads	were	mapped	with	Tophat2	(Kim	et	al.	2013)	to	personal	reference	genomes	
based	on	the	mm10	reference.	Reads	mapping	to	exonic	regions	were	counted	with	
HTSeq-count	(Anders	et	al.	2015).	Expression	was	quantile	normalized	and	genes	
with	low	read	counts	(<10	reads	on	average	per	individual)	were	removed	(see	
Mack	et	al.	2018	for	details).		
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4.5.	Chapter	4	Figures	

	
Figure	1.	A.	Sampling	locations	across	the	east	coast	of	North	America.	Ten	mice	
were	collected	for	whole	genome	sequencing	from	each	location.	B.	Distribution	of	
shared	CNVs	across	the	House	mouse	genome.	Red	indicates	gains	and	blue	
indicates	losses	compared	to	the	house	mouse	reference.	Purple	indicate	losses	in	
some	individuals	and	gains	in	others.	C.	Ward’s	hierarchical	clustering	of	individuals	
based	on	the	presence	or	absence	of	CNV	calls	does	not	group	individuals	by	
population.	
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Figure	2.	A.	Correlations	between	copy	number	and	latitude.	We	identified	two	
regions	(highlighted	in	blue),	overlapping	7	genes,	where	copy	number	was	
significantly	associated	with	latitude.	B.	Differences	in	average	copy	number	
between	FL	and	NH/VT	for	the	top	latitude-associated	windows.	The	diamonds	
indicate	population	means.	
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4.6.	Chapter	4	Supplemental	Tables	
Table	S1.	Genes	where	liver	expression	is	positively	correlated	with	copy	number	
state.	
Gene	name	 rho1	 P	
Znrd1as	 0.66	 4.22E-06	
Znrd1	 0.65	 4.75E-06	
Btbd9	 0.64	 1.03E-05	
Dnah8	 0.61	 3.08E-05	
Glo1	 0.60	 4.98E-05	

Slc22a3	 0.50	 1.09E-03	
Nphp3	 0.48	 1.61E-03	
Vwa5a	 0.48	 1.71E-03	
Rpp21	 0.48	 1.85E-03	
Arfgef1	 0.46	 2.55E-03	
Trpm7	 0.46	 3.01E-03	
Cwc22	 0.42	 7.65E-03	
Ipo11	 0.41	 8.63E-03	
Stap1	 0.39	 1.18E-02	

Ugt1a6b	 0.39	 1.23E-02	
Ubr3	 0.38	 1.57E-02	
Uba5	 0.36	 2.37E-02	
Wdr7	 0.35	 2.60E-02	
Rictor	 0.35	 2.71E-02	
Trim23	 0.34	 3.33E-02	
Zfp874a	 0.33	 3.78E-02	
Usp34	 0.33	 3.94E-02	
Ppwd1	 0.32	 4.13E-02	
Pds5a	 0.32	 4.29E-02	

1Spearman’s	rank	correlation	rho	
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4.7.	Chapter	4	Supplemental	Figures 

	

Figure	S1.	Length	distribution	of	regions	of	variable	copy	number.	
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Figure	S2.	Two	genes,	Glo1	(A)	and	Dnah8	(B),	in	the	same	region	for	which	genic	
copy	number	showed	significant	differences	between	populations	(p=1.45x	10-2	
and	p=2.6	x	10-2,	respectively)	and	for	which	gene	expression	was	significantly	
correlated	with	gene	copy	number	(p=4	x	10-5	and	rho=0.59;	p=0.0059	and	
rho=0.43,	respectively).	
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Chapter	5	

Network	connectivity,	pleiotropy,	regulatory	
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Abstract	
Interactions	between	genes	can	influence	how	selection	acts	on	sequence	variation.	
In	gene	regulatory	networks,	genes	that	affect	the	expression	of	many	other	genes	
may	be	under	stronger	evolutionary	constraint	than	genes	whose	expression	affects	
fewer	partners.	While	this	has	been	studied	for	individual	tissue	types,	we	know	less	
about	the	effects	of	regulatory	networks	on	gene	evolution	across	different	tissue	
types.		We	use	RNAseq	and	genomic	data	collected	from	Mus	musculus	domesticus	to	
construct	and	compare	gene	co-expression	networks	for	10	tissue	types.	We	identify	
tissue-specific	expression	and	local	regulatory	variation,	and	we	associate	these	
components	of	gene	expression	variation	with	sequence	polymorphism	and	
divergence.	We	found	that	genes	with	higher	connectivity	across	tissues	and	genes	
associated	with	a	greater	number	of	cross-tissue	modules	showed	significantly	
lower	genetic	diversity	and	lower	rates	of	protein	evolution.	Consistent	with	this	
pattern,	“hub”	genes	across	multiple	tissues	also	showed	evidence	of	greater	
evolutionary	constraint.	Using	allele-specific	expression,	we	found	that	genes	with	
cis-regulatory	variation	had	lower	average	connectivity	and	higher	levels	of	tissue	
specificity.	Taken	together,	these	results	are	consistent	with	strong	purifying	
selection	acting	on	genes	with	high	connectivity	both	within	and	across	tissues.	
	
5.1.	Introduction	

Understanding	the	forces	that	govern	genetic	and	phenotypic	variation	
within	and	between	species	is	an	enduring	problem	in	evolutionary	biology.	The	
number	of	interactions	between	genes	and	the	phenotypic	consequences	of	these	
interactions	may	be	important	determinants	of	evolutionary	constraint	(Fraser	et	al.	
2002,	Fraser	et	al.	2003).	For	example,	a	gene	with	many	interactions	in	a	gene	
regulatory	network	common	across	cells	may	be	more	pleiotropic	than	genes	in	the	
periphery	of	that	network,	or	genes	with	tissue-specific	expression	(Stern	and	
Orgogozo	2008,	MacNeil	and	Walhout	2011).	Such	highly	connected	genes	are	
expected	to	be	under	strong	negative	selection,	as	any	change	to	these	genes	could	
affect	their	downstream	partners	(Stern	and	Orgogozo	2008).	One	approach	to	
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studying	relationships	between	genes	across	the	genome	is	to	identify	gene	co-
expression	networks,	summarizing	relationships	between	genes	based	on	their	
coordinated	expression	across	samples.	Genes	whose	expression	is	more	highly	
correlated	with	other	genes	in	the	network	are	thus	more	“connected”	within	a	co-
expression	network.	Gene	co-expression	is	of	biological	interest	as	co-expressed	
genes	are	expected	to	be	controlled	by	the	same	transcriptional	regulatory	program	
or	otherwise	be	functionally	related.	Gene	co-expression	network	analysis	has	been	
used	to	co-expressed	gene	sets,	compare	patterns	across	tissues	(Pierson	et	al.	
2015),	between	species	(Stuart	et	al.	2003,	Nowick	et	al.	2009,	Eidsaa	et	al.	2017),	
and	to	identify	sets	of	functionally	related	genes	associated	with	quantitative	or	
disease	phenotypes	(Ghazalpour	et	al.	2006,	Chen	et	al.	2017,	Yuan	et	al.	2017,	Zhou	
et	al.	2018).		

A	general	feature	of	co-expression	networks	is	that	they	are	scale-free,	with	a	
small	number	of	highly	connected	genes	and	many	genes	with	very	few	connections	
(Barabasi	and	Oltvai	2004).	The	few	highly	connected	genes	are	expected	to	show	
higher	levels	of	pleiotropy	compared	to	genes	with	fewer	connections,	and	
consequently	are	predicted	to	be	more	constrained	both	in	terms	of	changes	in	gene	
expression	and	in	protein	sequence.	Consistent	with	this,	a	number	of	studies	have	
found	that	more	connected	genes	exhibit	lower	genetic	diversity	and	lower	rates	of	
molecular	evolution	(Masalia	et	al.	2017,	Josephs	et	al.	2017,	Mähler	et	al.	2017).	
These	findings	parallel	what	has	been	seen	in	protein-protein	interaction	networks,	
where	genes	encoding	proteins	with	more	protein-protein	interactions	have	been	
shown	to	evolve	more	slowly	than	genes	with	fewer	interactions	(e.g.,	Fraser	et	al.	
2002,	Fraser	et	al.	2003).		

The	interplay	of	co-expression	network	topology	and	gene	expression	across	
tissues	has	received	less	attention.	However,	differences	in	co-expression	networks	
between	tissues	may	result	in	emergent	properties	of	gene	connectivity	that	affect	
sequence	evolution.	All	cells	carry	out	a	combination	of	common	and	tissue-specific	
processes	associated	with	their	unique	phenotypes.	Consequently,	genes	that	are	
highly	connected	in	one	tissue	type	may	be	more	peripheral	in	others.	Comparisons	
of	co-expression	networks	across	tissues	can	be	used	to	characterize	these	
differences	(Pierson	et	al,	2015,	Sonawane	et	al.	2017),	and	to	investigate	how	such	
differences	affect	sequence	evolution.	

There	are	extensive	genomic	resources	available	for	house	mice	(Mus	
musulus	domesticus),	making	them	a	powerful	system	for	studying	co-expression	
networks.	To	investigate	the	relationship	between	cross-tissue	co-expression	
networks	and	molecular	evolution,	we	constructed	co-expression	networks	for	10	
tissue	types	in	mice	collected	from	natural	populations.	We	used	these	data	to	
compare	co-expression	network	topology	between	tissues,	identify	tissue	specific	
expression	and	local	regulatory	variation,	and	associate	these	components	of	gene	
expression	variation	with	sequence	variation	and	evolution.		
	
	
5.2.	Results	and	Discussion	

We	analyzed	genome-wide	expression	data	generated	by	Harr	et	al.	(2016)	
for	224	tissue	samples	from	24	M.	m.	domesticus.	These	samples	correspond	to	10	
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different	tissue	types	(muscle,	thyroid,	brain,	testis,	spleen,	liver,	gut,	heart,	lung,	
kidney)	collected	from	lab-born	progeny	of	wild	house	mice	of	diverse	genotypes	
captured	in	Iran	(N=8),	France	(N=8),	and	Germany	(N=8),	and	raised	in	a	common	
environment	(see	File	S1).		
	
5.2.1.	Properties	of	gene	connectivity	within	and	across	tissues	
To	characterize	properties	of	gene	connectivity	within	and	across	tissue,	we	used	
Weighted	Gene	Co-expression	Network	Analysis	(WGCNA)(Langfelder	and	Horvath	
2008)	to	construct	co-expression	networks,	identify	co-expression	modules,	and	
estimate	gene	connectivity.	In	a	gene	co-expression	network	analysis,	the	
expression	of	each	pair	of	genes	is	compared	across	samples	to	create	a	co-
expression	network.	A	gene’s	connectivity	is	defined	as	the	sum	of	connection	
strengths	between	a	focal	gene	and	all	other	genes	in	a	network.	Genes	with	similar	
expression	patterns	can	then	be	grouped	into	co-expression	modules	(see	methods)	
(Langfelder	and	Horvath	2008)(Figure	1).	

First,	we	investigated	general	properties	of	co-expression	network	topology	
within	and	across	tissue	types.	Consistent	with	previous	studies	(Josephs	et	al.	
2017),	we	found	a	significant	positive	correlation	between	connectivity	and	gene	
expression	level	for	each	tissue	type	(Spearman’s	rank	correlation,	Table	S1).	Gene	
connectivity	was	also	correlated	between	different	tissue	types	(Spearman’s	rank	
correlation,	Table	S2),	with	correlation	coefficients	ranging	between	0.06-0.35	in	
pairwise	comparisons	between	tissues.	Testis,	brain,	and	spleen	showed	the	lowest	
average	correlation	coefficients	in	pairwise	comparisons	between	these	and	other	
tissues.		

To	investigate	how	properties	of	gene	expression	correspond	to	the	
preservation	of	co-expression	relationships	across	tissues,	we	also	used	WGCNA	to	
identify	modules	that	are	shared	across	two	tissue	types,	known	as	consensus	
modules	(Figure	1)(Langfelder	and	Horvath	2008).	For	each	pairwise	comparison,	
we	restricted	our	analysis	to	genes	expressed	across	all	tissue	types	(10,780	genes),	
built	co-expression	networks	for	these	genes	for	each	tissue,	and	then	constructed	
consensus	networks	across	each	tissue	pair	(45	comparisons	total).	We	then	
counted	how	many	consensus	modules	with	which	each	gene	was	significantly	
associated.	For	example,	a	gene	that	is	significantly	associated	with	a	co-expression	
module	between	every	pair	of	tissues	would	be	found	in	45	consensus	modules,	
whereas	a	gene	that	is	only	found	in	a	consensus	module	between	the	liver	and	
spleen	would	be	found	in	one	consensus	module.	Average	expression	was	
significantly	positively	associated	with	the	number	of	pairwise	consensus	modules	
in	which	a	gene	was	found	(Spearman’s	rank	correlation,	rho	=	0.88,	p	<	2.2e-16),	as	
was	average	gene	connectivity	across	tissues	(Spearman’s	rank	correlation,	
rho=0.79,	p	<	2.2e-16).	We	also	observed	a	significant,	but	weaker,	negative	
association	with	tissue-specificity	(see	below)(Spearman’s	rank	correlation,	rho=-
0.088,	p	=	1.17e-15),	where	genes	that	had	higher	tissue-specificity	values	were	
found	in	fewer	consensus	modules.			
	
5.2.2.	Tissue	specific	expression	and	connectivity	
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To	characterize	properties	of	gene	connectivity	within	and	across	tissue,	we	
used	Weighted	Gene	Co-expression	Network	Analysis	(WGCNA)(Langfelder	and	
Horvath	2008)	to	construct	co-expression	networks,	identify	co-expression	
modules,	and	estimate	gene	connectivity.	In	a	gene	co-expression	network	analysis,	
the	expression	of	each	pair	of	genes	is	compared	across	samples	to	create	a	co-
expression	network.	A	gene’s	connectivity	is	defined	as	the	sum	of	connection	
strengths	between	a	focal	gene	and	all	other	genes	in	a	network.	Genes	with	similar	
expression	patterns	can	then	be	grouped	into	co-expression	modules	(see	methods)	
(Langfelder	and	Horvath	2008)(Figure	1).	

First,	we	investigated	general	properties	of	co-expression	network	topology	
within	and	across	tissue	types.	Consistent	with	previous	studies	(Josephs	et	al.	
2017),	we	found	a	significant	positive	correlation	between	connectivity	and	gene	
expression	level	for	each	tissue	type	(Spearman’s	rank	correlation,	Table	S1).	Gene	
connectivity	was	also	correlated	between	different	tissue	types	(Spearman’s	rank	
correlation,	Table	S2),	with	correlation	coefficients	ranging	between	0.06-0.35	in	
pairwise	comparisons	between	tissues.	Testis,	brain,	and	spleen	showed	the	lowest	
average	correlation	coefficients	in	pairwise	comparisons	between	these	and	other	
tissues.		

To	investigate	how	properties	of	gene	expression	correspond	to	the	
preservation	of	co-expression	relationships	across	tissues,	we	also	used	WGCNA	to	
identify	modules	that	are	shared	across	two	tissue	types,	known	as	consensus	
modules	(Figure	1)(Langfelder	and	Horvath	2008).	For	each	pairwise	comparison,	
we	restricted	our	analysis	to	genes	expressed	across	all	tissue	types	(10,780	genes),	
built	co-expression	networks	for	these	genes	for	each	tissue,	and	then	constructed	
consensus	networks	across	each	tissue	pair	(45	comparisons	total).	We	then	
counted	how	many	consensus	modules	with	which	each	gene	was	significantly	
associated.	For	example,	a	gene	that	is	significantly	associated	with	a	co-expression	
module	between	every	pair	of	tissues	would	be	found	in	45	consensus	modules,	
whereas	a	gene	that	is	only	found	in	a	consensus	module	between	the	liver	and	
spleen	would	be	found	in	one	consensus	module.	Average	expression	was	
significantly	positively	associated	with	the	number	of	pairwise	consensus	modules	
in	which	a	gene	was	found	(Spearman’s	rank	correlation,	rho	=	0.88,	p	<	2.2e-16),	as	
was	average	gene	connectivity	across	tissues	(Spearman’s	rank	correlation,	
rho=0.79,	p	<	2.2e-16).	We	also	observed	a	significant,	but	weaker,	negative	
association	with	tissue-specificity	(see	below)(Spearman’s	rank	correlation,	rho=-
0.088,	p	=	1.17e-15),	where	genes	that	had	higher	tissue-specificity	values	were	
found	in	fewer	consensus	modules.			
	
5.2.3.	Relationship	between	regulatory	variation	and	connectivity	

Previous	studies	have	found	that	genes	with	local	regulatory	variation	also	
show	lower	average	connectivity	in	gene	expression	networks	(Mähler	et	al.	2017,	
Josephs	et	al.	2017).	To	investigate	the	relationship	between	connectivity	and	
regulatory	variation	in	house	mice,	we	identified	genes	with	allele-specific	
expression	in	each	tissue	type.	Allele-specific	expression,	the	difference	in	
expression	between	parental	alleles,	can	be	used	to	identify	cis-	acting	epigenetic	or	
genetic	variation	in	heterozygous	individuals	(Cowles	et	al.	2002).	In	each	tissue,	we	
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tested	exonic	heterozygous	sites	for	differences	in	expression	between	parental	
alleles	(see	Methods)(Table	S3).	We	identified	4,146	genes	with	allele-specific	
expression	across	all	10	tissue	types	(False-discovery	rate	<	0.1;	Table	S4),	many	of	
which	(28.48%)	showed	allele-specific	expression	in	more	than	one	tissue-type.		

We	then	tested	whether	genes	with	allele-specific	expression	showed	lower	
average	connectivity	within	a	tissue.	As	the	power	to	detect	allele-specific	
expression	increases	with	expression	level	(Fontanillas	et	al.	2010;	Figure	S2),	
connectivity	scores	were	adjusted	for	average	expression	level	within	each	tissue	
(see	methods).	We	found	that	in	all	tissues,	genes	with	regulatory	variation	had	
lower	average	connectivity	than	genes	without	regulatory	variation	(permutation	
tests,	all	comparisons	p	<	0.0001).	We	also	found	that	genes	with	allele-specific	
expression	had	higher	levels	of	tissue-specificity	on	average	(permutation	test,	p	<	
0.0001;	Smax	adjusted	for	average	expression	level	across	tissues).		

	
Genes	with	local	regulatory	variation	may	have	lower	average	connectivity	if	

genes	with	higher	connectivity	are	under	stronger	purifying	selection	and	thus	less	
tolerant	of	regulatory	variation.	Consistent	with	this,	we	find	that	genes	with	allele-
specific	expression	in	any	tissue	have	higher	dN/dS	values	(Mann-Whitney	U,	
p=0.03).	We	also	downloaded	protein	interaction	data	from	STRING	(Szklarczyk	et	
al.	2017)	and	found	that	genes	with	regulatory	variation	encoded	proteins	that	have	
fewer	interacting	partners	on	average	(Mann-Whitney	U,	p	<	2.2e-16).	Finally,	we	
found	that	genes	with	allele-specific	expression	were	less	likely	to	encode	
transcription	factors	(χ2	test,	p	<	0.0001).	This	was	also	observed	for	transcription	
factors	that	were	considered	tissue-specific	(χ2	test,	p	<	0.0001).		
	
5.2.4.	Relationship	between	connectivity	and	sequence	evolution	
	 To	examine	the	relationship	between	sequence	evolution	and	characteristics	
of	expression,	we	performed	pairwise	tests	between	aspects	of	gene	expression	
across	tissues	(average	connectivity,	average	expression	level,	and	variance	in	
expression	and	connectivity	across	tissues)	and	measures	of	sequence	variation	
(SNP	density)	and	protein	evolution	(dN/dS	ratio)	(Table	1).	To	control	for	the	
relationship	between	these	measures	and	other	variables,	we	then	performed	
partial	Spearman	correlations	between	characteristics	of	gene	expression	and	
sequence	evolution.	We	found	that	average	connectivity	and	average	expression	
level	across	tissues	showed	highly	significant	negative	associations	with	dN/dS	ratio	
(Figure	2A)	and	SNP	density	(Figure	2B).	Variance	in	gene	expression	level	and	
connectivity	across	tissues,	represented	by	the	interquartile	range	of	a	gene’s	
expression	or	connectivity,	were	also	found	be	a	significant	predictor	of	dN/dS	ratio	
and	SNP	density	(Table	1).	We	also	performed	1,000	permutations	in	which	the	
relationship	between	the	predictors	and	dN/dS	ratio	and	SNP	density	was	
randomized.	None	of	correlations	in	the	permutated	datasets	were	more	extreme	
than	the	observed	partial	correlations.		
	 Modules	that	are	preserved	across	tissues	are	expected	to	have	functions	
that	are	common	across	tissues	(Pierson	et	al.	2015).	To	assess	whether	the	
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preservation	of	module	relationships	across	tissues	was	also	associated	with	rates	
of	sequence	evolution,	we	asked	whether	genes	found	in	a	greater	number	of	
consensus	modules	between	pairs	of	tissue	types	showed	greater	sequence	
conservation.	We	predicted	that	genes	that	were	found	in	more	modules	across	
tissues	would	show	greater	sequence	constraint,	as	these	genes	may	also	show	
higher	levels	of	pleiotropy.	Consistent	with	prediction,	we	found	that	dN/dS	(Figure	
3A;	Spearman’s	rank	correlation,	rho	=	-0.22,	p	<	2.2	x	10-16)	and	SNP	density	
(Figure	3B;	Spearman’s	rank	correlation,	rho	=	-0.16,	p	<	2.2	x	10-16)	were	
significantly	negatively	correlated	with	the	number	of	consensus	modules	in	which	
a	gene	was	found.	As	in	the	previous	analysis,	we	also	performed	a	partial	Spearman	
correlation	to	account	for	average	expression	level,	expression	variance,	gene	
connectivity,	and	variance	in	connectivity	across	tissues.	We	found	that	the	
association	between	dN/dS	ratio	(Partial	Spearman	correlation,	rho=-0.11,	p	<	2.2x	
10-16)	and	SNP	density	(Partial	Spearman	correlation,	rho	=	-0.039,	p	=	0.00036)	
were	still	significant	when	accounting	for	these	variables.		In	1000	permutations	in	
which	the	relationship	between	pair	number	and	dN/dS	ratio	and	SNP	density	was	
randomized,	no	correlation	was	more	extreme	than	that	observed	for	the	dN/dS	
ratio	and	only	one	permutation	was	more	extreme	than	that	observed	for	SNP	
density.		
	
5.2.5.	Constraint	on	cross-tissue	hub	genes	

Co-expression	analyses	have	been	widely	applied	to	identify	“hub”	genes,	or	
genes	whose	expression	is	highly	correlated	with	their	expression	module.	Hub	
gene	analysis	has	also	become	a	popular	method	for	identifying	genes	whose	
expression	is	related	to	variation	in	quantitative	traits	(Ghazalpour	et	al.	2006)	or	
disease	phenotypes	(e.g.,	Chen	et	al.	2017,	Yuan	et	al.	2017,	Zhou	et	al.	2018).	As	hub	
genes	represent	genes	most	highly	associated	with	their	module’s	expression,	we	
expected	genes	that	were	annotated	as	hubs	in	more	tissues	would	be	genes	that	
were	more	essential	and	would	show	greater	sequence	constraint.		

Each	gene’s	module	membership	was	estimated	based	on	the	correlation	
between	that	gene’s	expression	and	the	expression	of	the	module	eigengene	
(Langfelder	and	Horvath	2008).	Genes	where	module	membership	was	greater	than	
0.8	were	considered	“hub	genes”	for	subsequent	analyses,	a	cut-off	selected	because	
of	its	usage	in	previous	studies	(e.g.,	Yuan	et	al.	2017).	Consistent	with	what	has	
been	seen	in	human	populations	(Sonawane	et	al.	2017),	we	found	that	genes	that	
encode	transcription	factors	were	more	likely	to	be	hub	genes	(χ2	test,	p	=	0.0002).		

We	then	compared	hub	genes	across	tissues.	We	found	that	a	large	
proportion	of	the	hub	genes	we	identified	in	our	analysis	are	unique	to	one	tissue	
type	(61%),	and	only	9.2%	of	these	genes	were	annotated	as	hubs	in	3	or	more	
tissues	(Figure	S1).	Consistent	with	the	idea	that	cross-tissue	hub	genes	represent	
genes	with	essential	biological	functions,	we	also	found	that	genes	that	were	
identified	in	hubs	in	3	or	more	tissues	were	highly	enriched	for	mutant	phenotypes	
related	to	mortality/aging	(q=	2.93	x	10-12;	including	significant	enrichment	of	the	
mortality/aging	subcategories	abnormal	survival,	preweaning	lethality,	prenatal	
lethality	and	embryonic	lethality),	abnormal	cell	physiology	(q	=	5.66	x	10-5),	and	
abnormal	homeostasis	(q	=	1.98	x	10-4).	These	genes	were	also	enriched	for	several	
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GO	terms,	including	positive	regulation	of	biological	process	(q	=	1.03	x	10-26)	and	
regulation	of	cellular	processes	(q	=	3.01	x	10-22).	Genes	annotated	as	hubs	in	just	
two	tissues	were	also	significantly	enriched	for	mutant	phenotypes	related	to	
mortality/aging,	but	this	enrichment	was	less	significant	(q	=	0.01).	

Parallel	to	the	previous	analyses,	where	we	asked	whether	more	highly	
connected	genes	or	genes	found	in	a	greater	number	of	cross-tissue	modules	were	
more	constrained,	we	also	asked	whether	genes	annotated	as	hubs	in	more	tissue	
types	were	under	greater	evolutionary	constraint	by	comparing	the	dN/dS	ratios	
and	SNP	densities	for	genes	identified	as	hubs	in	no	tissues,	1	tissue	(n=6,632),	2	
tissues	(n=2,532),	and	3	or	more	tissues	(n=1,001).	We	found	that	genes	identified	
as	hubs	in	more	tissues	showed	lower	average	dN/dS	and	SNP	density	(Figure	4).		
	
5.3.	Conclusion	

Here	we	have	used	natural	populations	of	house	mice	to	characterize	co-
expression	networks	for	10	tissue	types	and	associate	components	of	gene	
expression	variation	with	sequence	variation	and	evolution.	Genes	with	higher	
connectivity	across	tissues	showed	significantly	lower	genetic	diversity	and	lower	
rates	of	protein	evolution.	We	also	found	that	genes	in	more	pairwise	consensus	
modules	show	significantly	lower	genetic	diversity	and	lower	rates	of	protein	
evolution.	Genes	that	were	hubs	across	more	tissues	showed	the	same	evidence	for	
evolutionary	constraint	and	were	significantly	enriched	for	mutant	phenotypes	
related	to	mortality	and	aging.	Finally,	we	found	that	genes	with	allele-specific	
expression	had	lower	connectivity	on	average,	lower	dN/dS	values,	and	fewer	
connections	in	protein-protein	interaction	networks.	In	this	regard,	regulatory	
variation	at	peripheral	genes	may	provide	variation	that	can	act	as	a	substrate	for	
adaptive	evolution.	Altogether,	these	results	are	consistent	with	purifying	selection	
acting	on	pleiotropic	genes	and	suggest	that	gene	connectivity	is	an	important	
determinant	of	evolutionary	constraint.		
	
5.4.	Methods	
5.4.1.	Expression	data	

RNAseq	data	was	downloaded	from	Harr	et	al.	(2016).	These	samples	
correspond	to	lab-born	progeny	of	M.	m.	domesticus	collected	from	Germany,	Iran,	
and	France	and	up	to	10	tissue	types	per	individual	(muscle,	thyroid,	brain,	testis,	
spleen,	liver,	gut,	heart,	lung,	kidney).	As	reported	in	Harr	et	al.	(2016),	samples	for	
DNA	and	RNA-sequencing	were	obtained	from	the	first	or	second	generation	of	out-
breeding	in	an	animal	facility	and	are	expected	to	represent	full	wild-type	variation.	
Individuals	used	for	RNA-sequencing	were	age-matched	males.	We	downloaded	
RNAseq	reads	mapped	with	Tophat2	(Kim	et	al.	2013)	to	the	mm10	reference	
genome	(http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/).	We	then	
counted	reads	that	mapped	to	exonic	regions	using	HTSeq-count	(Anders	et	al.	
2015).		
	
5.4.2.	Co-expression	analysis	

First,	samples	that	were	tissue-specific	outliers	were	identified	through	a	
principle	component	analysis	and	were	removed	from	subsequent	analyses.	Three	
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individuals	were	removed	because	of	relatedness	(first	or	second	degree	relatives).	
For	individual	co-expression	analyses,	genes	with	fewer	than	20	reads	on	average	
per	tissue	were	removed.		Gene	expression	was	then	quantile-normalized	and	
corrected	for	the	known	co-variate	of	relatedness	using	a	Baysian	approach	(Stegle	
et	al.	2010,	Stegle	et	al.	2012).	The	program	Weighted	Gene	Co-expression	Network	
Analysis	was	then	used	to	construct	co-expression	networks	for	all	tissue-types	for	
all	individuals,	following	WGCNA	protocols	(Langfelder	and	Horvath	2008).	In	short,	
we	first	constructed	a	gene	co-expression	network,	represented	by	an	adjacency	
matrix,	which	denotes	co-expression	similarity	between	pairs	of	genes	across	
different	samples,	for	each	tissue.	Then,	modules	were	identified	using	hierarchical	
clustering.	Dissimilarly	between	clusters	is	measured	based	on	topological	overlap.	
Each	module	is	summarized	by	a	representative	eigengene,	or	the	first	principle	
component	of	the	module.	Each	gene’s	total	connectivity	within	a	tissue	was	then	
retrieved	using	the	command	intramodularConnectivity.		
		 To	compare	co-expression	patterns	across	tissues,	we	then	restricted	our	
analysis	to	genes	that	were	expressed	across	tissue	types	(10,780	genes).	As	
described	above,	the	program	Weighted	Gene	Co-expression	Network	Analysis	was	
used	to	build	co-expression	networks	for	each	tissue	type	and	then	build	consensus	
networks	across	each	pair	of	tissues	(45	pairs	total).		
	
5.4.3.	Tissue	Specificity	

To	compare	gene	expression	across	tissue	types	and	identify	genes	with	
tissue	specific	expression,	mapped	reads	were	downsampled	across	samples/	
tissues	types	to	account	for	differences	in	average	library	size	between	individual	
samples.	Genes	with	fewer	than	an	average	of	50	reads	across	all	samples	were	
discarded.	Tissue	specificity	was	subsequently	defied	as	in	Sonawane	et	al.	(2017):	
	

!!(!) = !"# !! ! −  !"# !! !"" − !"# !! !"" 	
	
Where	the	specificity	(S)	of	gene	j	in	tissue	t	corresponds	to	(the	median	(med)	
expression	(e)	of	the	gene	in	that	tissue	(t)	-	the	median	expression	of	the	gene	in	all	
tissues	(all))	-	interquartile	range	(IQR)	of	expression	of	that	gene	across	all	tissues.	
A	gene’s	highest	S	value	across	all	10	tissues	was	designed	Smax.	Genes	in	a	tissue	for	
which	S>2	were	considered	tissue-specific.	Under	this	definition,	genes	can	be	tissue	
specific	in	more	than	one	tissue.	The	number	of	tissues	a	gene	was	considered	for	is	
the	gene’s	multiplicity	value.	A	total	of	4902	genes	were	found	to	be	tissue	specific	
in	just	one	tissue	type,	meaning	these	genes	have	a	multiplicity	of	1.		
	
5.4.4.	Allele-specific	expression	

To	identify	allele-specific	expression,	we	downloaded	genome-wide	SNP	calls	
from	Harr	et	al.	(2016)	(http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/)	
for	these	individuals.	Individuals	that	did	not	have	corresponding	genomic	data	
were	not	included	in	this	analysis.	RNAseq	reads	mapped	to	the	reference	and	
alternative	allele	for	heterozygous	sites	were	counted	using	GATK	ASEReadCounter	
(McKenna	et	al.	2010).	Sites	where	fewer	than	20	reads	supported	either	the	
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reference	or	the	alternative	allele	were	discarded.	Allele-specific	expression	was	
then	called	as	described	in	Mack	et	al.	(2018).	The	number	of	SNPs	that	could	be	
tested	in	each	tissue	is	listed	in	Table	S3,	corresponding	to	a	total	of	15,390	genes	
across	all	tissue	types.	We	retained	the	variants	with	the	lowest	p-values	per	gene	
and	then	performed	a	false-discovery	rate	correction	using	R’s	p.adjust	(See	Table	
S4).	
	
5.4.5.	Measures	of	sequence	evolution	
Estimates	of	dN	and	dS	between	mouse	and	rat	were	downloaded	from	Ensembl	
(Zerbino	et	al.	2018).	SNP	density	was	estimated	based	on	genome-wide	SNP	calls	
for	from	Harr	et	al.	(2016),	counting	SNPs	that	fell	within	the	boundaries	of	each	
gene	and	correcting	for	the	length	of	a	gene	using	gene	start	and	stop	annotations	
downloaded	from	Ensembl.	
	
5.4.6.	Enrichment	analyses	

Tests	for	enrichments	of	mutant	phenotypes	were	done	using	modPhEA	
(Weng	et	al.	2017).	All	GO	category	enrichment	analyses	were	performed	with	
PANTHER	(Mi	et	al.	2016).		
	
5.4.7.	Protein	interaction	networks	

Protein	networks	were	downloaded	from	STRING	(Szklarczyk	et	al.	2017)	for	
Mus	musculus	domesticus.	Interactions	were	filtered	for	“high	confidence”	
interactions	(>0.7).	
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5.5.	Chapter	5	Table	
Table	1.	Spearman’s	rank	correlation	coefficient	between	gene	expression-related	
measures	and	sequence	evolution	
		 dN/dS	 SNP	density	

	
Pairwise	 Partial	 Pairwise	 Partial	

Average	expression	level	
across	tissues	

-0.26***	
	

-0.15***	
	

-0.15***	
	

-0.14***	
	

Expression	IQR	across	tissues		 -0.22***	 0.042**	 -0.05***	 0.17***	
Average	connectivity	across	

tissues	
-0.18***	

	
-0.045***	

	
-0.16***	

	
-0.09***	

	
Connectivity	IQR	across	tissues	 -0.12***	 0.04**	 -0.11***	 -0.04***	

***P<0.0001	
**P<0.001	
	 	



	 133	

5.6.	Chapter	5	Figures	

	
	
Figure	1.	Constructing	gene	co-expression	networks	(Langfelder	and	Horvath	
2008).	(A)	Co-expression	similarity	is	compared	between	pairs	of	genes	across	
different	samples	in	order	to	build	(B)	a	co-expression	network.	(C)	Co-expression	
modules	are	identified	using	hierarchical	clustering.	(D)	Consensus	networks	across	
each	pair	of	tissues	are	then	created	to	identify	modules	that	are	conserved	across	
tissues.		
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Figure	2.	A.	Average	connectivity	across	tissues	is	significantly	correlated	with	
dN/dS	ratio	(Pairwise	Spearman’s	rank	correlation	rho=-0.18,	P<0.0001;	Partial	
Spearman	rho=-0.045,	P<0.0001).	B.	Average	connectivity	across	tissues	is	
significantly	correlated	with	SNP	density	(Pairwise	Spearman’s	rank	correlation	
rho=-0.16,	P<0.0001;	Partial	Spearman	rho=-0.09,	P<0.0001).	
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Figure	3.	A.	Genes	in	more	pairwise	consensus	modules	show	significantly	lower	
dN/dS	values	(Pairwise	Spearman’s	rank	correlation	rho	=	-0.22,	P	<	2.2	x	10-16;	
Partial	Spearman	rho	=	-0.11,	P	<	2.2	x	10-16).	B.	Genes	in	more	pairwise	consensus	
modules	also	show	significantly	lower	SNP	density	(Pairwise	Spearman’s	rank	
correlation	rho	=	-0.16,	P	<	2.2	x	10-16;	Partial	Spearman	rho=-0.039,	P	=	0.00036).		
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Figure	4.	Genes	that	are	“hubs”	in	more	tissues	are	associated	with	lower	dN/dS	
values	(A)	and	lower	SNP	density	(B).	Comparisons	were	performed	with	
permutation	tests.		
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5.7.	Chapter	5	Supplemental	tables	
	
Table	S1.	The	relationship	between	gene	expression	and	connectivity	within	
tissues.	

Tissue	 rho1	 P	
Thyroid	 0.31	 <	2.2e-16	
Lung	 0.38	 <	2.2e-16	

Spleen	 0.49	 <	2.2e-16	
Muscle	 0.48	 <	2.2e-16	
Brain	 0.55	 <	2.2e-16	
Testis	 0.55	 <	2.2e-16	
Kidney	 0.62	 <	2.2e-16	

Gut	 0.63	 <	2.2e-16	
Liver	 0.55	 <	2.2e-16	
Heart	 0.44	 <	2.2e-16	

1Spearman’s	rank	correlation	rho	
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Table	S2.	Pairwise	comparisons	of	gene	connectivity	between	tissues	(Spearman’s	
rank	correlation).	

	
Lung	 Kidney	 Muscle	 Liver	 Thyroid	 Testis	 Brain	 Gut	 Heart	 Spleen	

Lung		 		 0.25	 0.18	 0.12	 0.2	 0.13	 0.14	 0.17	 0.24	 0.14	

Kidney	 		 		 0.27	 0.29	 0.35	 0.23	 0.23	 0.33	 0.29	 0.21	

Muscle	 		 		 		 0.21	 0.3	 0.13	 0.17	 0.23	 0.28	 0.13	

Liver	 		 		 		 		 0.25	 0.06	 0.13	 0.24	 0.25	 0.14	

Thyroid	 		 		 		 		 		 0.16	 0.17	 0.27	 0.4	 0.17	

Testis	 		 		 		 		 		 		 0.15	 0.15	 0.13	 0.12	

Brain	 		 		 		 		 		 		 		 0.15	 0.16	 0.14	

Gut	 		 		 		 		 		 		 		 		 0.23	 0.19	

Heart	 		 		 		 		 		 		 		 		 		 0.18	
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Table	S3.	Number	of	genes	with	a	SNP	that	could	be	tested	for	allele-specific	
expression	(ASE)	
	

Tissue	
Number	of	
samples	

Number	of	genes	that	could	
be	tested	for	ASE	

Spleen	 18	 8,389	
Brain	 20	 7,973	
Heart	 20	 6,351	
Kidney	 20	 7,464	

Gut	 14	 6,933	
Thyroid	 20	 5,756	
Testis	 20	 8,673	
Muscle	 18	 5,347	
Liver	 20	 6,151	
Lung	 14	 9,048	
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Table	S4.	Number	of	genes	with	allele-specific	expression.	
	

			 FDR	
Tissue	 q	<0.1	 q<0.05	
Spleen	 1057	 884	
Brain	 840	 659	
Heart	 729	 582	
Kidney	 1000	 784	

Gut	 750	 639	
Thyroid	 403	 354	
Testis	 1255	 971	
Muscle	 563	 457	
Liver	 956	 814	
Lung	 892	 730	
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Table	S5.	Tissue-specific	transcription	factor	enriched	for	tissue-specific	mutant	
phenotypes	
Tissue	 Tissue-specific	mutant	phenotypes		 q-value	
Brain	 Abnormal	brain	size		 1.725	x	10-4	

	
Abnormal	brain	weight		 0.003	

	
Abnormal	cerebellar	cortex	morphology		 1	x	10-3	

Testis	 Abnormal	testis	weight		 0.027	

	
Small	testis		 0.01	

	
Abnormal	seminiferous	tubule	size		 0.016	

Liver	 Abnormal	liver	morphology		 0.01	

	
Abnormal	liver	size		 0.018	

Spleen	 Abnormal	spleen	size		 0.002	

	
Small	spleen		 0.002	

	
Enlarged	Spleen		 0.017	

	
Abnormal	splenocyte	apoptosis		 0.004	

	
Abnormal	spleen	physiology		 0.006	

	
Abnormal	splenocyte	physiology		 0.002	

	
Abnormal	splenocyte	proliferation		 0.001	
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5.8.	Chapter	5	Supplemental	Figures	

	

	
Figure	S1.	(A)	The	number	of	genes	in	each	tissue	that	were	classified	as	tissue-
specific.	In	orange	are	genes	that	encode	transcription	factors.	(B)	The	number	of	
hub	genes	that	are	found	across	different	numbers	of	tissues	 	
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Figure	S2.	Genes	for	which	we	could	detect	allele-specific	expression	have	higher	
expression	on	average	(permutation	test,	p<0.0001).	
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