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Abstract

Open-ended assignments - such as lab reports and semester-long projects - provide
data science and statistics students with opportunities for developing communication,
critical thinking, and creativity skills. However, providing grades and formative
feedback to open-ended assignments can be very time consuming and difficult to
do consistently across students. In this paper, we discuss the steps of a typical
grading workflow and highlight which steps can be automated in an approach that
we call automated grading workflow. We illustrate how gradetools, a new R package,
implements this approach within RStudio to facilitate efficient and consistent grading
while providing individualized feedback. By outlining the motivations behind the
development of this package and the considerations underlying its design, we hope
this article will provide data science and statistics educators with ideas for improving
their grading workflows, possibly developing new grading tools or considering use
gradetools as their grading workflow assistant.

Keywords: data science education, statistics education, R, formative assessment, fair grad-
ing, reproducible teaching
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1 Introduction

From a learner’s standpoint, assessments are fundamental moments of the learning process.

Assessments (especially formative ones (Dixson & Worrell 2016)) give students opportu-

nities to practice, interiorize, deepen and demonstrate the concepts learned with lectures

and readings. By requiring the use of class material for answering questions and solving

problems, assessments reveal what parts of the syllabus are well understood and what parts

need, instead, revision. This is crucial for both students and instructors to make informed

decisions on how to improve, respectively, their learning and teaching strategies (Pai 2024).

Following up on assessment activities, teachers can give students qualitative (e.g., “The

source of the data utilized in your analysis was not specified.”) and quantitative (e.g.,

“9 out of 10”) comments. To distinguish the former from the latter, in this paper we

will reserve the term feedback for qualitative comments and we will call grades the scores

that quantitatively summarize how well a student did on the assignment. Grades are a

convenient summary of students’ performance (Lipnevich & Smith 2009). On the other

hand, as stated by the Guidelines for Assessment and Instruction in Statistics Education

(GAISE 2016), assessment must receive feedback in order to lead to learning, and teachers

should provide assessment and feedback throughout their courses.

The importance of feedback is underlined by several studies in the literature on education.

Reviewing research on formative assessment, Black and William (1998) found evidence that

innovations designed to improve frequent feedback can bring substantial learning gains. In

addition, a number of studies observe that feedback, when done well, can support learning

(Hattie & Timperley 2007, Carless 2006), especially for students with little prior knowledge

(Krause et al. 2009). In concordance with these observations, several scholars have argued
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for the need to raise awareness among teachers on the usefulness of formative feedback

(Nicol & Macfarlane-Dick 2006, Perera et al. 2008, Irons & Elkington 2021).

Impactful feedback should clarify what good performance is and encourage positive moti-

vational beliefs (Nicol & Macfarlane-Dick 2006), it should be provided in a timely manner,

and be constructive and specific to the student’s work (Juwah et al. 2004, Race 2001).

Providing accurate feedback and grades to students’ work can therefore be very time con-

suming and become a struggle for (even moderately) large classes. Data science courses are

particularly affected, as they face higher course enrollment numbers as one of their major

challenges (National Academies of Sciences, Engineering, and Medicine 2018).

Automated grading and feedback tools have been proposed by many as a possible solution

(Galassi & Vittorini 2021). For types of assessment where all ways of stating the correct

solutions can be enumerated, like multiple-choice, select-all and short-answer questions,

automated grading tools are available for assignments distributed using popular online

grading systems such as Gradescope (Singh et al. 2017) or learning management systems

(LMS) such as Canvas. Similarly, for computing assignments where the correct solutions

can be defined through a series of if-else statements, several automated grading tools are

currently available, including the Python library nbgrader (Blank et al. 2019) for grading

Jupyter notebooks, the R package learnr (Schloerke et al. 2020) for creating self-paced

interactive tutorials in teaching R and R packages, Otter-Grader (Pyles & UC Berkeley

Data Science Education Program 2022) for grading Python and R assignments, and the

language-agnostic autograder in Gradescope. These tools allow to give fast or even real-time

responses (as recommended by GAISE 2016) to those assignments for which, upon setup,

providing grades and feedback can be done without human judgement. However, they

are not amenable for many recommended assessment types, for which providing feedback
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remains challenging.

Indeed, open-ended assessments including lab reports (GAISE 2016), semester long projects

(GAISE 2016, Cetinkaya-Rundel et al. 2022), and writing assignments (Woodard et al.

2020, Johnson 2016) cannot be autograded, as enumeration of all possible correct or in-

correct approaches is not possible. These types of open-ended assignments are known to

provide opportunities for developing communication, critical thinking, and creativity skills

in addition to supporting statistical knowledge (Garfield & Gal 1999). Providing good

feedback to such assessments involves pedagogical choices and requires human judgement,

which brings two major challenges: a higher time-cost for grading and more difficulty

to grade consistently across students. These challenges can affect the number of open-

ended assignments and the quality of feedback that can be provided, even for small and

medium-sized classes. Using a detailed rubric for grading can greatly help with consistency

(Ragupathi & Lee 2020, Timmerman et al. 2011), but it requires time and can sometimes

be overlooked during the grading workflow.

In this article, we consider grading workflows that can assist with providing grades and

good-quality feedback to data science and statistics assignments that require human judge-

ment to be assessed. Gradescope (Singh et al. 2017) and the LMS Canvas, among other

online tools, both provide valuable options for grading open-ended assignments. Partic-

ularly Gradescope, as reported by teachers from many STEM disciplines (Garcia 2015,

Reck 2019, Yen et al. 2020), has made grading easier and faster, with features such as

rubric-based grading for transparency and consistency, dynamic rubric creation and group

assignments, to name a few. However, data science and statistics undergraduate classes

often include assignments that involve computing and may be completed, e.g., as R scripts

(see for example Hu & Dogucu 2022; and Dogucu & Çetinkaya-Rundel 2021), combination
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of computing, data visualization and writing using, e.g., R Markdown and Quarto files

(for instance Loy et al. 2019), multiple of these files (e.g., for a final project) and may be

administered using GitHub for a top-down approach to teaching Git (Beckman et al. 2021,

Fiksel et al. 2019). These cases are not easily handled with Gradescope.

The contributions of this article are threefold. In Section 2 we present the steps of a typical

grading workflow for data science open-ended assignments, highlighting the steps that can

be automated, and discussing pedagogical tools such as rubrics and feedback, to build the

concept of an automated grading workflow. Next, in Section 3, we introduce the package

gradetools (Ricci et al. 2022), that implements an automated-grading workflow within

the RStudio Graphical User Interface (GUI). This package enables efficient and consistent

grading directly within RStudio, as well as scalable yet individualized feedback provision,

and integrates with the existing R package ghclass (Rundel & Cetinkaya-Rundel 2022)

to streamline feedback distribution for assignments managed with GitHub. Following this,

in Section 4 we examine the key underpinnings of the gradetools package that allow it

to be an automated grading workflow. In doing so, we intend to provide data science

educators with ideas for improving their grading workflows, and possibly developing new

automated-grading workflow tools adjusted to their own grading needs. Lastly, in Section 5

we summarize key points and discuss the implications of this work for the statistics and

data science education community.

2 What is an automated grading workflow?

The assessment at scale of assignments that cannot be auto-graded requires automated

grading workflows, that is, systems that automate all or most repetitive grading tasks so
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Table 1: Phases of a typical grading workflow and corresponding tasks. Tasks colored in
green are pedagogical, in black are administrative. The tasks listed in the grading phase
need to be repeated for each submission to grade.

1. Preparation 2. Grading and Feedback 3. Finalization
Collecting students’
assignments

Retrieving and opening a
submission

Uploading grade sheets on
class’s learning
management system

Setting up a rubric Assigning grade and writing
feedback based on current rubric

Returning grades and
feedback to students

Setting up a grade sheet Updating rubric as needed
Updating record of student
corresponding to this submission
on the grade sheet
Closing the submission

as to reduce the time and effort required for a grader to assess students’ work and possibly

provide high-quality feedback.

A natural starting point for designing an automated grading workflow is to outline the tasks

that are executed in a typical grading workflow. We can break down a grading process into

three phases - (1) preparation, (2) grading and providing feedback, (3) finalization - each

with their respective tasks. Table 1 lists these phases and groups tasks into two types:

pedagogical and administrative. The former have a direct impact on what students learn

from their grade and their feedback, while the latter are related to the logistics involved

with the grading process.

Automated grading workflows should automate administrative grading tasks. These tasks

tend to be repetitive and mostly do not require human judgement during their execution;

in fact, their automation can minimize the occurrence of errors such as miscomputing the

overall grade or assigning a grade to the wrong student in the grade book.

Some pedagogical tasks - drafting and updating a rubric - always require human judgement;

other pedagogical tasks - evaluating a submission, considering how the rubric should be
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applied to a given submission - require human judgement for open-ended assignments.

Even when they do require human judgement, there are sources of repetitivity involved in

executing pedagogical tasks that an automated grading workflow can automate.

Unless a class has very few students, most of the time required for grading open-ended

data science assignments is typically spent in Phase 2, that is, evaluating submissions

and assigning grades and feedback. Providing individualized feedback is especially time-

demanding and may often be sacrificed, even though it is extremely valuable for students as

discussed in Section 1. Automated grading workflows can scale provision of individualized

feedback by leveraging the fact that some feedback that is individualized to features of

a student’s submission is in fact applicable to all students whose submissions present the

same features. To better illustrate this, the next subsection outlines different types of

feedback and explains how automation may be achieved.

2.1 Feedback types and automation

Feedback can differ based on its applicability across students and across questions. Table 2

distinguishes and exemplifies six types of feedback, based on whether they are applicable

to a single or to multiple students and to a single question, to multiple questions or to the

entire assignment.

Note that all of these feedback are individualized, in the sense that they are specific to a

student’s submission - rather than merely stating what the correct solution is or summa-

rizing how the whole class did on the assignment. However, some of these feedback are

repeatable - those that can be applied to multiple students - while some of them are unique

because they are specific to a feature that is present in a single submission.
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Table 2: Examples of feedback that can be given to only a single or to multiple students,
and for only one question or for multiple questions (or components).

Student
applicability

Question
applicability

Example

multiple single When interpreting the slope coefficient make sure to use units
of measurement (in this case, miles).

multiple multiple Please adhere to the Tidyverse style guide.
multiple entire

assignment
Great job on this assignment!

single single Recall our conversation about the p-value during office hour...
single multiple The soft g letter (ğ) encoding is not displayed correctly on

your output. In LaTeX try: \u{g}.
single entire

assignment
Thank you for your note, Menglin. I am glad you had fun
doing the assignment.

Whether they are repeatable or unique to a submission, feedback can be applicable to a

single question of the assignment (or component), applicable to multiple questions (or com-

ponents), or be general feedback that refer to how a student did overall on the assignment.

In our experience, we found that multiple-question, single-student feedback is rarely needed

but we commonly encounter the other feedback scenarios.

An automated grading workflow should expedite the provision of repeatable feedback across

different questions and students. It should also facilitate providing unique feedback on

the fly. One way of scaling the evaluation of submissions and the assignment of grades

and feedback is by setting up a rubric that has an item for each encountered feature of

students’ assignments and that, for each item, indicates both its associated feedback and

its associated score (that is, a number of points to remove, or add, to a student’s grade

when their work presents this feature). This will be further discussed in Section 4.

Given the rubric and a selection of rubric items prepared by the grader, a system can then

be designed to update the grade sheet and write individualized feedback to the assignment

that is being graded. An automated grading workflow should also facilitate updating the

rubric dynamically, when the grader encounters previously-unobserved features that may
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occur in other submissions yet to be assessed.

The R package gradetools is an automated-grading-workflow system designed around these

ideas, for executing Phase 2 tasks within RStudio. The next section shows what this system

looks like from the user perspective.

3 Introducing gradetools

3.1 Motivating grading scenario

Earlier functions of the gradetools package were first developed to assist with grading

assignments of the Stats 68 class - Statistical Computing and Exploratory Data Analysis

with roughly 60 students enrolled. Since its creation as a package, we also used gradetools

extensively in our Stats 6 - Introduction to Data Science course with around 120 students.

The courses share a similar computational structure. Every week students receive and

submit assignments through individual GitHub repositories. Formerly, the assignments

generally consisted of a R Markdown file (.Rmd), with questions involving a combination

of coding and text (e.g., running a model and interpret its results), or occasionally R scripts

(.R). Currently, we utilize Quarto files (.qmd) in our courses.

Teaching students good coding practices and reproducible workflows via R Mark-

down/Quarto and GitHub have been key learning goals of computationally rigorous

courses that we teach. In these courses, we assesses the raw .Rmd/.qmd files rather

than their rendered pdf or HTML files. In addition, students work on projects that have

multiple files with directories consisting of multiple folders. For instance, a project folder

has subfolders consisting of data, project proposal, and presentation with each subfolder
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having multiple files.

For such teaching settings, we had a few options to consider. The first one was the LMS

Canvas. Grading on Canvas can be efficient when each student submits a single pdf file for

an open-ended assignment. The interface allows for annotation and use of rubric. Canvas

did not meet our grading needs since students submitted multiple files (e.g., a dataset

they found and an Rmd file) and Rmd files could not be displayed. We did not consider

downloading students’ submissions as a zipped folder and opening one-by-one as that would

defeat the goal of efficient grading.

Another option was autograders including the aforementioned packages or Gradescope’s

automated grading feature. These options did not allow for assessing higher-levels of think-

ing that we wanted to assess. Lastly, Gradescope also has an online submission feature,

which in its capacity is similar to an LMS. Contrary to Canvas, Gradescope does dis-

play markdown documents. However, this also limits student’s submission to a single file

submission at a time and cannot help instructors assess a full project in a typical folder

structure.

We believe that in similar computationally rigorous statistics and data science courses,

students’ files are best suited to be evaluated in a GUI such as RStudio, where a grader

can look at the raw file and simultaneously, if needed, its rendered version. To avoid the

need of switching between different applications used to maintain a grade sheet and manage

a rubric, we created the gradetools package to carry out grading within RStudio. With this

package we also automated repetitive parts of the grading workflow, and we automated

writing a rich, individualized feedback file for each student that could then be shared with

them.
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3.2 Grading example with the gradetools package in RStudio

To better understand the process of grading with gradetools, we will walk through a simple

example of grading a quiz with two questions. In this example we begin with a properly

formatted class roster, quiz rubric, and student submissions. Details on gradetools’s format

requirements can be found in Section 4 and in the package’s introductory vignette (https:

//federicazoe.github.io/gradetools/articles/a-grading-with-gradetools.html).

Grading in action

To begin the process, the gradetools package is loaded and the grading function,

assist_grading() is called - this is shown in the first image of Figure 1. This function

requires the locations of the roster, rubric, and submissions, as well as where to write the

grading progress log, grade sheet, and feedback files. The function call triggers the grading

of the first student on the roster and opens their submission automatically. Based on the

provided location of the submission and on the desired location for the feedback file of a

single student, gradetools determines the file path for submission and feedback files of all

students in the roster. Grading is an interactive process where the grader is prompted in

the console to grade a submission according to the provided rubric.

Figure 1 displays three screenshots, each showing the student’s quiz on the left, and on

the right in the console is the rubric prompting and selection for a component of the

quiz. The first screenshot shows the grading function call (on the right), which begins the

grading process by automatically opening the first student’s assignment submission (on the

left) and prompting the grader to grade the first question on the quiz according to rubric

options (on the right). This student, Gia Bayes, has answered both parts of Question 1

correctly so the “Correct” rubric item is selected, removing zero points, by entering “100”,

11

https://federicazoe.github.io/gradetools/articles/a-grading-with-gradetools.html
https://federicazoe.github.io/gradetools/articles/a-grading-with-gradetools.html


the corresponding prompt code, into the console. This example is using a negative grading

scheme, where each rubric item is associated with points to remove from the total number

of points the question is worth. After the code is entered into the console, the user is then

prompted to grade the next question in the rubric. Note that there are additional options

- providing a personalized feedback message, creating a new rubric item, and terminating

the grading process - and these options will be discussed later.

Moving onto question 2, displayed in the second screenshot in Figure 1, the student was

asked to produce a plot and use it to compare within-group patterns. Overall the student

addressed this question, but plotted counts instead of proportions. We want to convey

that plotting proportions within groups would visualize all group patterns, while plotting

counts hinders comparison of patterns within the groups with relatively small counts. The

corresponding rubic item is the first available, “Plotted counts” which deducts 0.25 points,

and is selected by supplying “1a” to the console.

After all the questions have been graded, the user is prompted to provide feedback for how

the student did on the quiz overall, called general feedback. This rubric has one general

feedback rubric option, which commends the student’s adherence to the tidyverse style

guide. Gia Bayes did a great job using tidyverse style so this option is selected by entering

“100” into the console.

Once all questions have been graded, the submission automatically closes, the student’s

overall quiz grade is displayed, and grading continues with the next student in the roster,

Lee Kim. As shown in Figure 2, Lee’s quiz is automatically opened and the grader is

prompted to grade question 1. Lee correctly identified the number of observations and

variables, but did not use inline code in their answer, so the rubric item “Didn’t use inline

code” is applied by entering the prompt code “1a”, which will deduct 1 point from the
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Figure 1: Example of grading a quiz using gradetools in RStudio. Each image shows the
grading of a component of a student’s quiz. This quiz belongs to the first student on the
roster, Gia Bayes.
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question’s total of 2 points. For question 2 we see that the student did a bar plot of

counts, like the first student we graded, and they did not provide an explicit answer to the

question “Does bike type preference seem to vary by passholder type?”. These mistakes

each correspond to a different rubric item. Multiple rubric items are applied by using “–”

to separate prompt codes. After entering “1a – 2a”, the grader is asked to provide general

feedback for Lee’s quiz. Tidyverse style was not used for naming the bike rental data, so

we may choose to avoid providing a general feedback by entering “d” into the console.

Grading outputs

To conclude this example grading session we will proceed as if all remaining quizzes have

been graded. Upon completion of grading, or termination of the grading process, a fi-

nal grade sheet is created and feedback files are automatically written from the feedback

associated with the applied rubric items for each student, displayed in Figure 3.

Figure 3c shows the grade sheet for this quiz, with student identifiers obtained from the

class roster, total grade, and points earned for each question, separated by an ampersand.

The grade sheet could now be formatted and uploaded to a LMS and the feedback files

could be distributed to students. While grade sheets are common in practice, feedback files

may be less familiar.

The first student’s feedback file displayed in Figure 3a contains feedback associated with

the rubric items selected when grading this student. Notice that the prompt message for

the rubric item applied for question two, “Plotted counts”, is different than the feedback

message written to the file. Both messages were specified for that rubric item in the rubric

file, one meant as a concise summary for the grader and the other as a more thorough

note for the student. The association of feedback messages with rubric items is a key

aspect of gradetools which avoids redundancy of retyping feedback for the same mistake,
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Figure 2: Continuation of example of grading a quiz using gradetools in RStudio. Each
image shows the grading of a component of a student’s quiz. This quiz belongs to the
second student on the roster, Lee Kim.
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(a) Feedback for first student, Gia Bayes (b) Feedback for second student, Lee Kim

(c) Grade sheet

Figure 3: Outputs of grading: feedback files and grade sheet corresponding to example of
grading a quiz using gradetools in RStudio.
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while creating feedback documents that are specific to each students’ performance on the

assignment. For example, both students made the same mistake of making a bar plot of

counts for question two, so they both have the same corresponding message written in their

feedback file. The second student made the additional mistake of not explicitly answering

the question posed in question 2, so they have an additional message in their feedback.

Dynamic rubric editing

In this grading example the rubric already had rubric items for all instances we encountered.

When that is not the case, the grader would likely want to add rubric items as they grade

and encounter new responses. This is possible with gradetools by entering “r” into the

console instead of specifying an available rubric item. Another possibility is that the grader

may want to edit a preexisting rubric item, e.g., change the number of points possible for

a question or the feedback for a rubric item. Whenever the grader re-runs the grading

function with an updated rubric, all feedback files and the grade sheet are updated to

reflect the latest rubric version.

Unique on-the-fly feedback

Another option that was not showcased in the previous grading example is the ability to

write feedback message unique to a student - that is, a “single-student” type of feedback

in the terminology of Table 2. By entering “p” into the console while grading, the user

can enter a note to be written to the feedback file not associated with any points. For

example for the second student, question 2, we could have left a note in their feedback

telling the student they could receive partial credit if they resubmit their assignment with

an interpretation of the plot in response to the question.

Fixing grading mistakes
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Lastly, in this example we did not make any mistakes, but mistakes can happen in reality.

Grading can be stopped at any time by entering “s” into the console. Doing so will end the

grading process and all grading progress will be maintained through the grading progress

log produced. The function assist_regrading() can be used to regrade specified students

and questions (see the vignette for step-by-step instructions at https://federicazoe.github.

io/gradetools/articles/b-regrading-with-gradetools.html).

3.3 Grading scenarios

The grading function assist_grading() has the core grading functionalities (later summa-

rized in Figure 6) and is useful for users with limited R knowledge. The previous grading

example demonstrated using gradetools to grade a single file per student. We will now

discuss other grading scenarios and their respective gradetools functions.

Grading projects

Sometimes assignments involve multiple files to grade, for example a final project that

includes a README file to describe where the data was obtained and a Quarto file that

generates a presentation. Assignments that involve multiple submissions can be handled

by gradetools, by providing a vector of file paths for a student’s submission, instead of just

a single location. Another useful ability for grading projects in RStudio with gradetools

is the option to render documents while grading, so the raw and rendered files can be

viewed at the same time. Examples of these features for grading projects can be found

in gradetools’ comprehensive vignette (https://federicazoe.github.io/gradetools/articles/e-

comprehensive-example.html).

Grading team assignments
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We use team grading to refer to the case when multiple students share a submission and

grade. The assist_team_grading() function allows for grading team assignments and

functions similarly to assist_grading(). The only additional requirement is a column in

the roster denoting what team each student is on. The grading process for team assignments

results in a single feedback file and grade for each team. A vignette for team grading can

be found at https://federicazoe.github.io/gradetools/articles/c-extended-capability-teams.

html.

Grading assignments managed through GitHub

Assignments can be managed through GitHub, teaching students reproducibility practices

and version control, but collecting assignments from GitHub, grading, and returning feed-

back to student can be time consuming without the appropriate tools, such as the R package

ghclass. Our package complements the streamlined collection of GitHub repositories with

ghclass, by allowing the noting of issues while grading with assist_advanced_grading()

or assist_team_grading(), and allowing the user to push feedback and create issues on

GitHub using push_to_github(). A vignette on using gradetools with assignments man-

aged through GitHub can be found at https://federicazoe.github.io/gradetools/articles/d-

extended-capability-github.html.

Multiple graders

When an instructor has helpers, such as teaching assistants, the grading load can be split

accross multiple people. This may mean the students submissions are partitioned between

the graders (e.g. grader 1 the first 20 students and grader 2 the last 20 students), or the

questions for all submission may be partitioned between the graders (e.g. grader 1 grades

the odd questions and grader 2 the even). The functions assist_advanced_grading()

and assist_team_grading() allow for the user to specify which students and questions
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are to be graded, with the default of all students and questions. Simultaneous grading

with gradetools would result in different grading log files for each grader (see Section 4.3

for details on this file). Merging grading log files would then need to be implemented by

the grading team, as gradetools does not currently include a function for it.

3.4 Considerations for adoption

When considering adopting gradetools as your automated-grading-workflow assistant, it is

important to take into account your grading scenarios and if gradetools is compatible, and

weigh the advantages against the learning curve. This package was made with coding and

report scripts for data-science assignments in mind, for classes with frequent assignments

and/or 30 or more students per grading staff - where there are no grading packages or

software that we are aware of. But gradetools can also be helpful for grading scenarios

beyond its original purpose, especially for teachers at institutions that do not pay for

grading software such as Gradescope.

A key consideration for adopting gradetools, or any other software, is the learning curve.

Minimal R knowledge is required for gradetools, since the user only needs to know how to

call a function from a package, but an understanding of file paths is necessary since the argu-

ments for the grading functions are almost all file paths. The biggest challenge in adoption

would be learning the details of how the rubric must be formatted and the file naming con-

ventions in order to use gradetools. These requirements are detailed in the introductory vi-

gnette (https://federicazoe.github.io/gradetools/articles/a-grading-with-gradetools.html),

and their purpose is discussed in Section 4. Once a user has successfully called the grading

function, the grading process is straightforward, as exemplified in Section 3.2.

The time to grade is an important decision when creating assignments and deciding on a
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grading workflow. Grading open ended questions can be time consuming, and gradetools

speeds up the process by automating repetitive tasks, but still requires considerable time

relative to assignments that could be autograded. For large classes and limited teaching

staff, the time gain for using gradetools may still not be enough to allow grading many

open-ended assignments throughout the quarter, and a combination of frequent quizzes

autograded with another tool (e.g., Online assignments in Gradescope) with few open-

ended assignments graded with gradetools may be considered.

We restricted the scope of gradetools to mostly the grading stage, leaving collection of

student submissions, distribution of feedback files, and uploading grade sheets mostly be-

yond the scope of our package, with the exception of GitHub-compatible functionalities.

Our package could be combined with other available software, such as a package to dis-

tribute feedback files through email or packages which can aid in the collection of student

submissions, in order to speed up other components of your grading workflow.

4 Underpinnings of automation in gradetools

In this section we provide more details on how gradetools is designed. The package’s

vignettes that can be found at https://federicazoe.github.io/gradetools/ are the best doc-

umentation to get started to use gradetools functionalities. Instead, this section is for

the reader who would like to understand how these functionalities are implemented in

gradetools. This would be especially valuable for someone who is considering to extend

gradetools or to develop new automated grading-workflow tools to better suit their grading

needs.

In the next subsections we discuss the main strategies adopted by gradetools for automating
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repetitive tasks encountered in Phase 2 of grading (i.e. assigning grades and feedback), that

were outlined in Table 1. Specifically, we consider automation with: (1) retrieving, opening

and closing submissions; (2) assigning grade and feedback based on rubric; (3) maintaining

the grade sheet. For each of these tasks, we are going to see that the way in which they

are automated is tied to specific choices made during Phase 1 of grading (i.e. grading

preparation).

4.1 Retrieving, opening and closing submissions

With many submissions, considerable time may go into retrieving, opening and closing

submission file(s) without automation of these tasks. As seen in the grading example of

Section 3.2, these are tasks that are automated by gradetools. To automatically identify the

student corresponding to each submission, some assumption must be made on the way in

which students assignments are collected (or better, stored). The solution that we adopted

with gradetools is to assume that students have a unique student identifier, specified in

the roster, and that this identifier is present (at least once) in the student’s assignment

file path and is the only part unique to that student’s assignment file path. For example,

if the first quiz consists of a single Quarto file, all submissions may be stored in a folder

named quiz1 and the file names may be quiz1-GiaBayes.qmd, quiz1-lee-kim.qmd, etc.

Thanks to this structure, at grading time, the grader needs to provide the student identifier

and assignment file path for only one student in the roster. For example, a grader can

call assist_grading() with inputs example_student_identifier = 'GiaBayes' and

example_assignment_path = 'quiz1/quiz1-GiaBayes.qmd', and provide the location of

the roster where the other student identifiers are listed. Then, the template quiz1/quiz1-

+ student identifier + .qmd is assumed for all assignment file paths, and gradetools is able
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to iterate through opening and closing all submissions.

An assignment made of multiple files can be handled in a similar way. For example, if the

first quiz consisted of two files (e.g., a Quarto document with a data analysis and a R script

with some functions) all submissions may be stored in a folder named quiz1 and the file

names for GiaBayes may be analysis-GiaBayes.qmd and functions-GiaBayes.R, those

for lee-kim may be analysis-lee-kim.qmd and functions-lee-kim.R, etc. As another

example, both files could have the same name but be stored in a folder with naming

specific to the student, e.g., files analysis.qmd and functions.R may be located in folders

quiz1-GiaBayes, quiz1-lee-kim, etc. In the above cases, when grading we could provide

example_student_identifier = 'GiaBayes' and the vector example_assignment_path

= c('quiz1/analysis-GiaBayes.qmd', 'quiz1/functions-GiaBayes.R') for the for-

mer case or example_assignment_path = c('quiz1-GiaBayes/analysis.qmd',

'quiz1-GiaBayes/functions.R') for the latter case.

Provided that student submissions are stored with these regular file paths, besides iterating

through all submissions, gradetools can also retrieve the file(s) of one or more specific

students, for example because we wish to grade or re-grade only their submissions. The

functions assist_advanced_grading() or assist_regrading() have optional arguments,

respectively students_to_grade and students_to_regrade, that can be set to a single

string or to a vector of strings specifying the identifiers of the students we wish to (re-)grade.

4.2 Assigning grade and feedback based on rubric

Once the submission file(s) of a students have been retrieved and opened, we need to read

(i.e., evaluate) the students’ work. For each component of the assignment, we must choose

which items from the rubric we want to apply, possibly add new items to the rubric, and
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(a) Unformatted rubric

(b) Formatted rubric

Figure 4: Rubric from grading example in its readable form and formatted to be compliant
with gradetools rubric requirements.
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ideally give the student some qualitative feedback specific to their work. Without a system

like gradetools, these tasks may be extremely time and energy consuming, as they require

to simultaneously refer to and possibly edit multiple grading files (the submission files, the

rubric, the grade sheet and some file where we write feedback). As illustrated with the

grading example of Section 3.2 (e.g., see Figure 1), the strategy we adopted with gradetools

enables to visualize the available rubric items directly in RStudio, next to the open file(s),

and only requires the grader to enter one or more short prompts corresponding to the rubric

items to be applied to the submission. In this process, on the back end, the grade sheet

gets updated and a feedback file gets written for each student that is graded.

The key to this automation is setting up a rubric that has all the necessary information to

(i) make grading prompts, such as those shown in Figure 1 and Figure 2; and, based on the

choices made by the grader, (ii) compute the grade and (iii) assign personalized feedback.

Without gradetools, when grading the example assignment from Section 3 a grader may use

a rubric such as the one displayed in Figure 4a. This rubric breaks down the assignment into

components (in this case, questions) and, for each component, specifies its assigned points

(e.g., 2 points for Question 1). Each item of the rubric represents a potential error (e.g.,

Mispecified observation) and notes the points to remove for that error (e.g., -1). The rubric

required by gradetools encodes all this information, plus additional information to make

rubric prompts and write feedback. Figure 4b displays the rubric provided to gradetools

in the examples of Section 3. Each entry represents a rubric item, and for each item it

specifies (i) what the item applies to (an assignment component/question, all questions, or

the assignment overall); (ii) the total number of points for the component/question (only

for items specific to a component/question); (iii) the prompt code the grader needs to type

to apply the item; (iv) the prompt message to be shown next to the prompt code; (v) the
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Table 3: The specifics of each entry (item) in the rubric, in the case of an item applicable
to all questions.

Specifics Description Example
Name What question the item is

available for
All questions

Prompt code What the grader enters to apply
this item

1

Prompt message The description that the grader
sees while grading

tidyverse code style

Feedback What the student sees when they
receive feedback

Please adhere to the Tidyverse
style guide, as discussed in
Lecture 1.

Points to remove The penalty applied when this
item is selected

0.5 points

feedback to apply when the item is selected; and (vi) the points to remove from (or to add

to) the total grade when the item is selected. The function create_rubric_template()

creates an empty csv file with the necessary column names to aid in formatting the rubric.

The meaning of each column of the rubric formatted for gradetools is further illustrated

in Table 3, with an example rubric item applicable to all questions (note that total points

are left blank for items applicable to all questions, as shown in Figure 4b). Let’s assume

that the grader wants to provide the feedback “Please adhere to the Tidyverse style guide”

for a specific question or for the overall assignment. This is the feedback that the student

will see. However, writing out this comment each time the grader encounters a submission

that needs such feedback is time consuming. To save time, gradetools utilizes a short code,

that we denote prompt code, in this case defined as 1. By selecting 1, the grader is able to

provide the full length comment and apply the corresponding score policy. To be quick-to-

enter, prompt codes can be short and uninformative and therefore difficult to remember,

so a short prompt message can be shown along with the prompt code to remind the grader

what feedback the prompt code corresponds to.

In gradetools, while grading, the grader is able to see the prompt message and the prompt
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code, while the student will be able to see the corresponding personalized and extended

feedback when feedback files are returned. As shown in Figure 2, the grader can quickly

indicate (possibly multiple) items to apply among available ones in the rubric.

As anticipated in Section 2, linking each rubric item with some corresponding feedback

allows gradetools to scale the provision of detailed individualized feedback. In addition

to expediting provision of repeatable feedback across different questions and students,

gradetools supports the provision of unique feedback on the fly and the dynamic update

of the rubric, for which prompt codes “p” and “r” are reserved, respectively (as shown in

Figure 1).

4.3 Maintaining the grade sheet and the feedback files

Figure 5: Screenshot of grading progress log file, at the end of grading two students as in
the example from Section 3.2.

Finally, we consider how gradetools assists with maintaining the grade sheet and feedback

files. Grading progress is recorded by gradetools in a grading progress log file. Figure 5

shows the content of this file for the example of Section 3.2. When beginning to grade a new

assignment, this file is created with a row for each student in the provided roster (displayed

as column in Figure 5, for readability), including information such as where assignments
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files are located and indicating that all students are ungraded. When grading a student’s

submission, the grading log file is dynamically updated to keep track of any prompt code

entered by the grader and eventually students grading statuses change from “ungraded” to

“all questions graded”. The grading progress log file is not meant to be edited directly by

the grader, but is used by gradetools to keep track of the grading progress so that grading

can be interrupted and resumed at any time. Specifically, as shown in Figure 5, the grading

progress log saves all rubric prompt codes that have been applied by the grader. At the

end of the grading process, as discussed in Section 4.2, applied prompt codes are used

in combination with the rubric to produce the grades for the final grade sheet and the

feedback for each student’s feedback file, e.g., the ones shown in Figure 3. Only storing the

selected prompt codes allows the grader to change the grade and feedback corresponding

to any rubric item, anytime until grading is completed, and see the changes be reflected

in the feedback files and final grade sheet (as mentioned in Section 3.2). Importantly, a

grader should never change prompt codes that have already been used, as this would result

in the loss of grading progress.

At the end of grading, a feedback file is created for each student. When calling gradetools’

functions, the grader specifies where the feedback files should be stored by providing an

example feedback path. Similarly as with the example assignment path described in Sec-

tion 4.1, the provided student identifier must be present in the provided example feedback

path, so that files with feedback for different submissions can always be distinguished. In-

formation on where the grader wishes to store feedback files is also recorded in the grading

progress log, as shown in Figure 5.

Since there are a plethora of ways instructors distribute grades and feedback, automated

delivery of grades and feedback files to the students was determined to be outside of
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gradetools’ scope, with the exception of pushing feedback files to GitHub. In the next

section, we provide some alternatives in the R ecosystem.

5 Discussion

In Section 2 we have discussed the grading workflow as a three-step process: preparation,

grading and providing feedback, and finalization. In Section 3 we have shown what au-

tomation of this grading workflow looks like with the R package gradetools and in Section 4

we have detailed how gradetools supports this automation. Figure 6 summarizes gradetools

functions, emphasizing the pedagogical tasks, and noting the tasks managed by each func-

tion. From this figure, it is evident that gradetools has some limitations and does not serve

every step of the grading process.

Figure 6: Diagram of automated grading workflow using gradetools in the grading step.
Administrative tasks in black and pedagogical tasks in green. Special bullet shapes map
tasks that gradetools assists with to the name of the functions that support them. Repeat-
able and unique feedback refer to the concepts defined in Section 2.1.

In terms of inputs, graders will need to provide the roster and students’ submissions and
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gradetools does not support retrieval of them. In terms of outputs, the package provides

feedback files for each student and the overall gradesheet. Gradetools only supports re-

turning of feedback files to students via GitHub. For the tasks that are not supported

by gradetools, there are many R packages that can facilitate these tasks such as rcanvas

(Ranzolin et al. 2017), moodleR (Dietrichson 2022), ghclass (Rundel & Cetinkaya-Rundel

2022), gmailr (Hester & Bryan 2023) for working with the Canvas, Moodle, GitHub, and

GMail Application Programming Interfaces (APIs) respectively. These packages can sup-

port tasks like retrieving students’ work and returning students’ scores and feedback. Some

of the Learning Management Systems (LMSs) may also provide interfaces that allow bulk

downloads and uploads manually.

The gradetools package focuses mainly on the second step of the grading workflow by

improving the grading and feedback process through automating the administrative tasks.

The most important benefit of using gradetools is that it helps adopt an efficient and

fair grading workflow. Even though we did not study it rigorously, in terms of efficiency,

gradetools saves a lot of time in grading once the initial learning curve has been passed.

In terms of fairness, the fact that gradetools enforces use of a rubric allows for consistent

grading and feedback across different students and questions. Use of rubrics are pivotal to

fairness especially in performance-based assessments (Shepherd et al. 2008).

In summary, gradetools automates many administrative tasks in the grading workflow with

many pedagogical considerations but it is by no means a single solution to a fully automated

grading workflow. Instructors who are interested in fully automating the grading workflow,

would need to be proficient in R and rely on packages other than gradetools. For instance,

if an instructor downloads files from an LMS they might need to do string manipulation

to have filing name consistency across different students’ file names. In our courses, we
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have managed to fully automate our grading workflow by supplementing gradetools with

GitHub features of ghclass (Rundel & Cetinkaya-Rundel 2022) and data wrangling features

of the tidyverse packages (Wickham et al. 2019).

The gradetools package can be an important addition to an instructor’s toolkit, especially

to support reproducibility. With a stronger emphasis on teaching of reproducibility skills,

students working directly in literate programming notebooks such as Quarto and learning

to manage and name these files are important parts of their data science training (Pruim

et al. 2023). In these teaching scenarios, it is important to use grading-workflow tools

like gradetools, that allow to provide students with feedback on their coding practices in

addition to their coding outputs. Along with teaching reproducibility, reproducible teaching

is also important (Dogucu & Çetinkaya-Rundel 2022). The gradetools package allows for

grading code and files (e.g., rubric) to be reused (or modified) from one academic term to

the next, and to be picked up by other instructors or TAs grading the same assignment.

Besides increased emphasis on reproducibility, another important change in data science

education that can motivate the use of automated-grading-workflow tools is the develop-

ment of generative artifical intelligence (AI) tools. Even though there is not a consensus

on how AI tools can benefit the learning process, examples of use show that AI is here to

stay to be part of the learning process (Ellis & Slade 2023). With students’ increased use of

AI, we expect instructors to modify some of their assignments to alternative formats with

more reliance on open-ended assessments, deriving a greater need for tools like gradetools.

Contrary to some other grading tools, since gradetools is an R package, it is free to use. It

does not require internet connection during the extensive period of grading and providing

feedback. However, users would still need internet connection in the first and third steps

of the grading workflow.
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When students’ work is considered, needless to say privacy is important (e.g., grades) and

can be protected under law depending on the country. In our grading process we have used

the package on our local computers and stored the grade sheets and other private documents

locally. However, it is worth noting that users who choose to use R and gradetools on

different platforms such as in the Cloud will need to be mindful of what they are storing,

what is legal and ethical to store in that specific platform.

In this paper, in addition to introducing gradetools and how it can be utilized in data science

classes, we have also shared our vision of an automated grading workflow and defined the

distinction between pedagogical tasks and administrative tasks in grading, defined different

feedback types such as unique and repeated ones. We will continue to maintain gradetools

for use in our own data science courses and beyond. We hope that this work will help the

community of data science and statistics educators use gradetools as their grading workflow

assistant or develop their own tools for assisting their grading workflow.
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