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Abstract of the Dissertation

Spacetime and Matter in

Three-Dimensional Higher Spin Gravity

by

Eric Justin Perlmutter

Doctor of Philosophy in Physics

University of California, Los Angeles, 2012

Professor Per Kraus, Chair

We investigate the physical content of three-dimensional higher spin gravity, a sophisti-

cated toy model of high energy string theory. Starting from spin-3 gravity and working

our way toward the theory of an infinite tower of higher spins coupled to matter, we show

how to use higher spin gauge invariance to consistently generalize ordinary conceptions

of black holes. We also consider the dynamics of scalar fields in nontrivial higher spin

backgrounds. In view of the AdS/CFT correspondence as applied to certain vector-like

conformal field theories with extended conformal symmetry, we make several successful

comparisons of bulk and boundary computations.

ii



The dissertation of Eric Justin Perlmutter is approved.

Rowan Killip

Michael Gutperle

Eric D’Hoker

Per Kraus, Committee Chair

University of California, Los Angeles

2012

iii



To my infinitely loving and supportive parents.

iv



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Summary of chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Pure 3d gravity and the generalization to higher spins . . . . . . . . . 10

2.1 The BTZ black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The Chern-Simons formulation . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Higher spin gravity from Chern-Simons theory . . . . . . . . . . . . . . . 18

3 Spin-3 black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 SL(3,R) Chern-Simons theory, spin-3 gravity and its AdS vacua . . . . . 20

3.2 Review of spin-3 black hole solutions in wormhole gauge . . . . . . . . . 31

3.3 Gauge transforming the wormhole into a black hole . . . . . . . . . . . . 38

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3A Appendix: SL(3,R) generators . . . . . . . . . . . . . . . . . . . . . . . . 48

3B Appendix: Stress tensor correlator in RG flow solution . . . . . . . . . . 49

3C Appendix: Black hole and spin-3 field parameters . . . . . . . . . . . . . 50

3D Appendix: From wormhole to black hole . . . . . . . . . . . . . . . . . . 52

3E Appendix: Generalization to SL(N,R) . . . . . . . . . . . . . . . . . . . . 55

4 hs[λ] black holes in 3d Vasiliev gravity . . . . . . . . . . . . . . . . . . . 58

4.1 How to make higher spin black holes . . . . . . . . . . . . . . . . . . . . 61

4.2 The W∞[λ] black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 λ = 0, 1: comparison to CFT . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Implications for higher spin AdS3/CFT2 duality . . . . . . . . . . . . . . 79

v



4A Appendix: Holonomy equations with J4 6= 0 . . . . . . . . . . . . . . . . 80

5 Scalar fields and three-point functions in 3d Vasiliev gravity . . . . . 83

5.1 Matter fields in Vasiliev gravity . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Generalized Klein-Gordon equations in higher spin backgrounds . . . . . 91

5.3 Three-point correlators from the bulk . . . . . . . . . . . . . . . . . . . . 101

5.4 Three-point correlators from CFT . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5A Appendix: Derivation of (5.120) . . . . . . . . . . . . . . . . . . . . . . . 121

5B Appendix: Low spin results: Cs
0 in AdS . . . . . . . . . . . . . . . . . . . 122

6 Conclusion and future directions . . . . . . . . . . . . . . . . . . . . . . . 124

I Appendix: hs[λ], and Moyal vs. lone-star products . . . . . . . . . . . 126

II Appendix: Lightning review of 3d higher spin gravity coupled to scalars

131

vi



Acknowledgments

To begin, I would like to thank my advisor, Per Kraus: for patiently teaching me about

physics; for showing me how to do research; and for having faith that I would eventually

be worth working with. I would not be in this position without his guidance. I should of

course like to thank my other co-authors on the work presented here, Martin Ammon and

Michael Gutperle, for their partnership. Thanks to the aforementioned, to Eric D’Hoker

and the other members of the UCLA string theory group over the past several years for

making UCLA a comfortable place to learn, and for many enjoyable interactions.

Now for some non-physicists. Thank you Gabe, for friendship that continues to define

me. Thank you Leslie, for continually opening my eyes to what the world can be. Thank

you Dara, for sibling companionship that keeps me from staying inside my own head

at all times. And finally, thank you Mom and Dad, for everything that makes my life

whole, and for encouraging me to do what I love. I love you all.

vii



Vita

2002 Diploma, Horace Greeley High School, Chappaqua, New York

2006 Sc.B. (Mathematics-Physics), Brown University, Providence, Rhode

Island

2008 M.S. (Physics), University of California, Los Angeles, California

Publications

E. Perlmutter, “Hyperscaling violation from supergravity,” arXiv:1205.0242 [hep-th].

M. Ammon, P. Kraus and E. Perlmutter, “Scalar fields and three-point functions in

D=3 higher spin gravity,” arXiv:1111.3926 [hep-th].

P. Kraus and E. Perlmutter, “Partition functions of higher spin black holes and their

CFT duals,” JHEP 1111, 061 (2011) [arXiv:1108.2567 [hep-th]].

M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, “Spacetime Geometry in Higher

Spin Gravity,” JHEP 1110, 053 (2011) [arXiv:1106.4788 [hep-th]].

P. Kraus and E. Perlmutter, “Universality and exactness of Schrodinger geometries in

string and M-theory,” JHEP 1105, 045 (2011) [arXiv:1102.1727 [hep-th]].

E. Perlmutter,“Domain Wall Holography for Finite Temperature Scaling Solutions,”

JHEP 1102, 013 (2011) [arXiv:1006.2124 [hep-th]].

viii



1. Introduction

The primary goal of this dissertation is to elucidate the physical properties

of three-dimensional higher spin gravity.

In most contexts in physics, one studies theories of fields with spin two

(s = 2) or less. Gravitational interactions are mediated by the spin-2 graviton,

and one may include other matter fields, for example scalar (s = 0) or Yang-

Mills (s = 1) fields. All theories of tree-level supergravity have fields of spin

two or less, in particular those that descend from low-energy limits of string

theories; those fields describe the long-range dynamics of the underlying UV

complete theory.

There are various no-go theorems stating that subject to certain reasonable

assumptions, in flat space, massless fields of s > 2 cannot couple consistently to

massless fields of s ≤ 2. More precisely, assuming that the s < 2 fields couple

in a Lorentz-invariant manner to the graviton with two-derivative couplings,

the above statement is true. For recent discussion, see [1].

On the other hand, it has been powerfully demonstrated by Vasiliev and

collaborators that if one considers the same problem in curved, maximally sym-

metric spacetimes, the curvature scale of the spacetime acts as an expansion

parameter which one can use to build consistent interactions among fields of all

integer and half-integer spins. In particular, we will consider higher spin theo-

ries of gravity living in anti-de Sitter space (AdS), for which the full nonlinear

equations of motion (but not an action) are known. These highly nonlinear

field equations are essentially fixed by the large gauge symmetry of the theory,

so-called higher spin gauge symmetry, of which diffeomorphism invariance is

but a part. A consistency check on the theory is provided by linearizing around

AdS, in which case the spectrum is given by a (generally infinite) tower of free,

propagating higher spin fields understood by Frönsdal years before the full

nonlinear theory was formulated. For a sampling of some of these foundational
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works, see [2,3,4,5,6,7]; a nice review of Vasiliev theory is given in [8].

One issue on which we will focus is the fact that the role of spacetime

in higher spin theories is rather confusing, relative to traditional gravitational

intuition. To begin with, the metric transforms under an arbitrary higher

spin gauge transformation, which implies that ordinary notions of geometry

become gauge-dependent and hence physically opaque if not altogether mean-

ingless. On the level of the field equations themselves, there is a sense in which

the spacetime features of a given solution are not fundamental, emerging only

as a sort of gauge choice. This notion has long been around in conceptions of

quantum gravity. What is fundamental is the internal symmetry, which is real-

ized by a set of noncommutative variables. Thus, we are dealing with a theory

which has deep connections between spacetime nonlocality and twistor space

noncommutativity, two notions which have appeared widely in string/M/gauge

theory contexts over the years (e.g. [9,10]).

We will have much more to say about these features of Vasiliev gravity in

what follows. In particular, we choose to focus on the three-dimensional (3d)

case [11], which is more amenable to computation, and on non-supersymmetric

theories which possess fields of integer spin only. Mainly, this is because a 3d

theory of gravity with massless fields of s ≥ 2 has no local propagating degrees

of freedom. This is equivalent to saying that the Weyl tensor vanishes in 3d.

As we will soon review, this is intimately connected to the fact that we can re-

formulate the theory as a direct sum of Chern-Simons gauge theories [12,13]. A

further perk is that, unlike in dimensions greater than three, one can truncate

to include only a finite set of fields up to some spin s ≤ N for some integer

N ; this provides a stepping stone to studying the theory with an infinite tower

of nonlinearly coupled higher spin fields, and we will take advantage of it.

Finally, the role of matter fields is closer to our regular intuition, in that they

can be coupled in “on top” of the higher spin fields and are not required for the
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consistency of a given background, again in contrast to higher dimensions. A

review of the field content and equations of the 3d theory is given in Appendix

II.

Aside from our inherent interest in this extension of ordinary gravity, we

are motivated by the fact that Vasiliev gravity has certain features in common

with string theory at high energies. It is nonlocal with an enhanced gauge

symmetry, perhaps shows signs of black hole de-singularization (for a stringy

example of a classical singularity being smoothed out by stringy effects, see

[14]), and possesses at least part of the correct spectrum of fields. It has been

argued that the tensionless limit of string theory – a high-energy limit in which

we take α′ →∞ – should be described by some theory of massless higher spins,

in which case we can view the string theory for finite α′ as a broken or Higgs-ed

phase of this higher spin theory. The string spectrum contains massive higher

spin modes which become massless in this limit. While the derivation of such

a theory from string theory does not yet exist, it should be an uncontroversial

statement that Vasiliev gravity may be a sophisticated toy model of such a

theory. Given the fact that the Vasiliev theory’s equations are nearly fixed by

gauge symmetry, perhaps the connection is even deeper [15]; there are some

recent signs of this [16], and some intriguing speculations along these lines are

given in [17].

In a modern context, the existence of these theories in AdS obviously begs

for application of and to the AdS/CFT correspondence [18,19,20], which con-

jectures a duality between gravitational theories living in asymptotically AdS

spacetimes and quantum field theories living in one fewer spacetime dimen-

sion. We cannot do justFice to the power of holography here: its wide im-

pact on theoretical high energy physics, both gravitational and field-theoretic,

can hardly be overstated. The fundamental ingredient in the correspondence

is the map between bulk and boundary symmetries, likewise between bulk
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fields and gauge-invariant boundary operators each living in representations

thereof. From this, we can deduce that any higher spin example of AdS/CFT

must involve a CFT with a tower of conserved higher spin currents, sourced

in the bulk by the asymptotic boundary values of massless higher spin fields

[21,22,23,15,24].

The first concrete example of higher spin holography was given by Kle-

banov and Polyakov [25], who conjectured a duality between Vasiliev gravity

on AdS4 and the O(N) vector model. This model has free and critical fixed

points, connected by an RG flow triggered by the addition of a relevant double-

trace operator to the free O(N) Lagrangian; by the standard story of multi-trace

operators in AdS/CFT [26], this is realized in the bulk by the choice of quan-

tization for a scalar field whose mass is (in accord with our previous remarks)

fixed by higher spin symmetry to be (mL)2 = −2. Famously, the O(N) vector

model has of order N degrees of freedom, hence the name “vector” model, in

contrast with the paradigmatic supergravity examples dual to adjoint matter

theories with order N2 degrees of freedom. Further contrast is provided by the

fact that the (UV) boundary theory is free and hence trivially soluble, rather

than strongly (’t Hooft) coupled.

This conjecture was studied early on by [27,28,29] and all but confirmed by

the recent impressive work of [30,31,32] which calculated boundary three-point

correlators from the bulk. It was recently proven in [33] if one only assumes

the basic tenets of AdS/CFT.

In something of an inverse of the normal use of AdS/CFT, the potential of

higher spin holography perhaps lies not in learning about the boundary CFTs –

which may be soluble in themselves, at least in principle – but in understanding

on a deep level why and how AdS/CFT works at all. Additionally, recent work

has unearthed examples of higher spin dualities which are not trivial: the

boundary theories are not free, nor are they connected to free theories by RG
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flows [34,16,35,17].

One of these recent examples involves higher spin gravity in AdS3. This

AdS3 analog of the Klebanov-Polyakov conjecture is the proposed duality of

Gaberdiel and Gopakumar [34] between Vasiliev gravity in 3d coupled to a pair

of complex scalar fields and a ’t Hooft limit of the WN minimal model CFT,

which has a coset representation

SU(N)k ⊕ SU(N)1

SU(N)k+1
(1.1)

The ’t Hooft limit is defined as

N, k →∞ , λ ≡ N

k +N
fixed (1.2)

and in the limit the central charge behaves as

c ≈ N(1− λ2) (1.3)

The theory has so-called WN symmetry, a member of a large family of W-

algebras which encode extended conformal symmetry. One can think of these

as generalizations of Virasoro symmetry, which is actually just the W2 algebra,

and we will discuss this in more detail in section 3.

Notice that c ∼ N , signaling the vector-like nature of the CFT. This

time, however, there is a free parameter λ which takes values 0 ≤ λ < 1.

Theories with different values of λ are not equivalent, nor are the bulk theories

which also carry a λ-dependence in their symmetry algebra and in the scalar

mass. Compared to the Klebanov-Polyakov case, there is richer structure to be

studied here, and yet the CFT as a coset model retains the virtue of solubility:

the theory is not free, yet preserves exact higher spin symmetry.

In the work ahead we will come to bear on this duality and find strong

support for it, at zero and finite temperature. There is quite a bit of evidence

for this conjecture beyond the present work: this includes matches between
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bulk and boundary global symmetries [36,37]; the bulk 1-loop determinant and

the large N CFT partition function [38]; and certain three-point correlators

computed from bulk and boundary [39].

AdS/CFT says that black holes in the bulk map to finite temperature

states on the boundary, with the Hawking temperature equal to the temper-

ature of the dual CFT. We have already stressed that ordinary notions of

Riemannian geometry are not upheld in higher spin gravity. Is it possible to

speak meaningfully about black holes, and to write them down as solutions to

the field equations? We will answer this question in the affirmative in what

follows, although it will again be crucial that we work in 3d, which is undoubt-

edly connected to the lack of local degrees of freedom in the gauge sector (i.e.

without matter fields turned on). The issue of black holes in 4d is notoriously

difficult to study; indeed, there is not yet a satisfactory identification of even

a single solution which should rightfully be called a black hole, although there

are various proposals for objects which have certain commonalities with black

holes, at least in their asymptotic structure [40,41,42]. These works are rather

difficult to understand in physical terms in any case. We believe it is fair to say

that in 4d, the implications of higher spin gauge invariance for black holes has

not yet been understood. The recent work [43] shed some light on these issues

in the context of black hole phase transitions in vector-like holography, which

introduce subtlety given the O(N) degrees of freedom rather than O(N2).

1.1. Summary of chapters

Chapter 2 will give a brief overview of ordinary 3d gravity. We will discuss

concepts of asymptotic symmetry, introduce the AdS solution and the BTZ

black hole [44], and its formulation as two copies of SL(2,R) Chern-Simons

gauge theory. We will show that in AdS3, the asymptotic symmetry algebra

consists of left- and right-moving Virasoro algebras [45], and the general ro-

tating BTZ black hole carries independent left and right moving Virasoro zero
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mode charges. The BTZ entropy takes the form of Cardy’s formula, and so

matches elegantly with the entropy of any CFT dual with the same central

charge [46]. The extension of these ideas to the higher spin realm is concep-

tually pleasing and straightforward [47,48], and we will set the stage for our

investigations in subsequent chapters.

Chapter 3 will tackle the simplest case of higher spin gravity, namely

Chern-Simons theory with an SL(3,R) Lie algebra1. This theory describes

the interactions of a graviton with a massless spin-3 field, and has an AdS3

vacuum with two copies of the W3 algebra as its asymptotic symmetry group.

As ordinary AdS3 gravity contains BTZ black hole solutions with charge under

left- and right-moving Virasoro zero modes it is natural to ask whether gener-

alized SL(3,R) black hole solutions exist that carry charges under the W3 zero

modes too. We will see that they do, and must confront the fact that certain

spacetime characteristics that we usually think of as being invariantly defined

— such as the event horizon or curvature singularity of a black hole — become

gauge dependent.

A key insight in this respect was given in [50], where it was proposed that

the holonomies of the Chern-Simons gauge fields around the Euclidean time

circle should take the same values as for the BTZ black holes: this defines a

gauge-invariant horizon. It was shown that this criterion leads to a sensible

thermodynamics obeying a first law: the charges obey an integrability condi-

tion allowing one to integrate to find the thermodynamic partition function.

The entropy can then be calculated from the first law. We will explicitly show

that there exists a gauge in which the solution obeying this constraint is in-

deed manifestly a black hole. We thus have a very concrete example of how

two spacetime metrics with different causal structures can be gauge equivalent

in higher spin gravity.

1 Based on work in [49].
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Chapter 4 gives a much more powerful demonstration of the veracity of this

method, by extending this logic to the challenging arena of Vasiliev’s theory

of an infinite tower of higher spins2. This theory is based on a one-parameter

family of infinite dimensional gauge algebras, denoted hs[λ] [52,53,54,55,56,57].

To access the higher spin sector we turn on a nonzero spin-3 chemical potential,

α. Due to the nonlinear structure of the theory, this triggers nonzero values for

the entire infinite tower of higher spin charges. The values of these charges, and

the full smooth solution, can be determined systematically using perturbation

theory in α. Given that this is the theory which might conceivably appear as

some subsector of a low-energy limit of string theory, and at the very least is

the subject of the intriguing minimal model duality, we find this chapter to be

particularly interesting. We will also compare to CFT computations at special

values of λ and find agreement; such agreement has been found for all values

of λ recently [58].

Chapter 5 changes directions somewhat, leaving black holes behind for

computations of scalar wave equations and vacuum three-point functions in the

same 3d Vasiliev theory3. The former is a crucial ingredient in understanding

how consistently coupled matter interacts with higher spin fields, perhaps as

a first step toward understanding black hole formation. The latter is a funda-

mental test of AdS/CFT and will help us come closer to a perturbative proof

of the minimal model duality conjecture. Such three-point functions were cal-

culated in the 4d case with much more computational complexity in [30,31,32];

and certain of these correlators were computed in 3d before this work was done.

There are two immediate ways the contents of Chapter 5 generalize calcula-

tions of three-point correlators that came before it. The bulk computation of

[39] was in the “undeformed” Vasiliev theory, that is, at λ = 1/2 (or ν = 0

2 Based on work in [51].
3 Based on work in [59].
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in the language of [11]), and we will successfully extend this to arbitrary λ.

The minimal model computations of [39,60] only treat the low spins, and we

will successfully extend this to arbitrary spin. Our key physical insight is that

gauge transformations of AdS can generate nontrivial higher spin backgrounds,

and we can extract the three-point correlators by asking how the scalar field

in AdS transforms under such an operation.

Chapter 6 closes with some remarks and open questions for the field. We

have also included two appendices: Appendix I contains details of the higher

spin Lie algebra hs[λ], and Appendix II gives a review of the basic ingredients

in 3d Vasiliev gravity.
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2. Pure 3d gravity and the generalization to higher spins

We begin with some basic facts about 3d gravity in the absence of higher

spin fields. For further details and development beyond the scope of this work,

see [61].

The action for this theory with a negative cosmological constant, ignoring

boundary terms, is simply

S =
1

16πG

∫
d3x
√
g

(
R+

2

`2

)
(2.1)

Henceforth we set ` = 1. This theory admits few solutions, though they include

black holes. One of them is pure AdS3 in Poincaré coordinates:

ds2 = −r2dt2 +
dr2

r2 + r2dφ2 (2.2)

where r ∈ [0,∞) and we take φ ∼ φ+2π to be a periodic boundary coordinate.

Continuing to Euclidean signature, the conformal boundary at r →∞ has the

topology of a torus. All solutions of this theory are locally AdS3. We will find

it useful to define lightcone coordinates x± = t± φ, in which case this metric

becomes

ds2 = −r2dx+dx− +
dr2

r2 (2.3)

We will mostly work in Fefferman-Graham coordinates ρ = log r, in which the

metric is written

ds2 = dρ2 − e2ρdx+dx− (2.4)

and ρ ∈ (−∞,∞).

The theory also admits an AdS solution in global coordinates,

ds2 = dρ2 − (eρ +
1

4
e−ρ)2dt2 + (eρ − 1

4
e−ρ)2dφ2 (2.5)

which, as we will soon see, is the solution of the theory with the lowest mass.
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One might casually remark that 3d gravity is all about boundary condi-

tions. More rigorously, we mean that the specification of boundary conditions

is crucial in understanding how a theory that (locally) admits only a single

solution can be interesting. One can define a nontrivial notion of asymptotic

AdS symmetry as follows. We can consider the set of infinitesimal symme-

try transformations – diffeomorphisms – which leaves the leading behavior of

the metric (2.5) unaffected, but which generate subleading falloff slow enough

to generate a set of nonzero charges at infinity. This set of transformations

generates the asymptotic symmetry group.

In the case of ordinary AdS gravity, this analysis was first performed by

Brown and Henneaux [45]. The asymptotic symmetry group is two copies of

the centrally extended Virasoro algebra: with symmetry generators Ln, the

(right-moving) algebra is

[Lm, Ln] = (m− n)Lm+n +
c

12
n(n2 − 1)δm+n,0 (2.6)

with central charge c given by

c =
3

2G
(2.7)

and similarly for the right-movers Ln with central charge c. This is just the

algebra of 2d local conformal transformations. The algebra is equivalently

encoded in the OPE (now in Euclidean CFT) between two holomorphic stress

tensors T (z):

T (z)T (0) ∼ c/2

z4 +
2T (0)

z2 +
∂T (0)

z
+ (nonsingular) (2.8)

where (z, z) are complex coordinates on the Euclidean plane, and similarly for

T (z). We move back and forth via the mode expansions

T (z) =
∑
n∈Z

Ln
zn+2 , T (z) =

∑
n∈Z

Ln
zn+2 (2.9)
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(Keep in mind that the anomalous transformation of the stress tensor as we

move from the plane to the cylinder induces a shift in the zero mode L0 by

−c/24; in the above the modes are defined on the plane by (2.9).)

Thus, from this point of view one can see, independently of AdS/CFT,

an equivalence between gravity on an asymptotically AdS3 background and

a 2d conformal field theory with central charge c, where c is given in terms

of gravitational quantities in (2.7). Every 2d CFT realizes two copies of the

Virasoro symmetry for some central charge (c, c), which count degrees of free-

dom4; appear as the normalization of the stress tensor two-point functions;

parameterize the trace anomaly; and give the coefficient of the thermal free

energy. There is one Virasoro copy each for the left-moving (holomorphic) and

right-moving (anti-holomorphic) sectors.

Later, we will see how this conformal symmetry becomes extended upon

adding higher spins to the bulk (although c will continue to take the Brown-

Henneaux value, given that it is defined by the stress tensor transformation

law, i.e. the spin-2 gravity sector of the theory). In this context, an “extension”

of the conformal symmetry means that there are fields besides the stress tensor

which have nontrivial OPEs with the stress tensor and among each other.

2.1. The BTZ black hole

Despite containing no local propagating degrees of freedom, the theory

does admit rotating black hole solutions, in particular the BTZ black hole [44].

There are two global charges, namely the mass M and angular momentum J ,

and we can write the metric in their terms as

ds2 = −N(r)2dt2 +
dr2

N(r)2 + r2(dφ+Nφ(r)dt)2 (2.10)

4 For a diff-invariant theory, c = c. Relaxing this condition, we encounter a theory with grav-

itational anomalies, which can be realized holographically by adding bulk gravitational Chern-

Simons terms [62] to (2.1). We will often focus solely on the holomorphic sector henceforth,

with the anti-holomorphic sector implied.
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where

N(r) =

√
r2 − 8GM +

16G2J2

r2

Nφ(r) = −4GJ

r2 , |J | ≤M
(2.11)

The inner and outer horizons lie at

r2
± = 4GM

1±

√
1−

(
J

M

)2
 (2.12)

The static case is J = 0 – in which case r− = 0 – and the extremal case is

J = M – in which case r− = r+.

Using the Bekenstein-Hawking entropy formula, we compute the entropy

as

S =
AH
4G

= 2π
(√M + J

8G
+

√
M − J

8G

)
(2.13)

Let us write this metric in two more ways. Having defined the inner and

outer horizons, we can write the metric as

ds2 = −
(r2 − r2

+)(r2 − r2
−)

r2 dt2 +
r2

(r2 − r2
+)(r2 − r2

−)
dr2 + r2(dφ− r+r−

lr2 dt)2

(2.14)

We can also pass to Fefferman-Graham coordinates5 with lightcone boundary

coordinates x± = t± φ once more in which case the metric is

ds2 = dρ2 + 8πG
(
L(dx+)2 + L(dx−)2

)
−
(
e2ρ + (8πG)2 LLe−2ρ

)
dx+dx−

(2.15)

where we have defined linear combinations

L =
M − J

4π
, L =

M + J

4π
(2.16)

In these coordinates the horizon is at e2ρh = 8πG
√
LL.

5 The explicit coordinate transformation is given in [61].
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Thinking of this as a black hole, we pass to Euclidean coordinates and

demand the absence of a conical singularity at ρ = ρh. The Euclidean BTZ

black hole is obtained by taking dx+ = dz and dx− = −dz. To avoid a

conical singularity at the horizon we need to make the identification (z, z) ∼=
(z + 2πτ, z + 2πτ), with

L = − k

8πτ2 , L = − k

8πτ̄2 (2.17)

The inverse temperature of this solution, β, and angular velocity of the horizon,

Ω, are then given by

τ =
iβ + iβΩ

2π
, τ̄ =

−iβ + iβΩ

2π
(2.18)

Note that Ω should be continued to pure imaginary values in order to obtain

a real Euclidean section. The modular parameter τ is identified with that of

the boundary torus, and appears in the path integral as a potential:

Z(τ ; τ̄) = Tr[e4π2i(τL−τ̄L)] (2.19)

The topology of this spacetime is a solid torus, where the radial direc-

tion goes “into” the body of the torus. The noncontractible cycle corresponds

to the angular direction. We can think of obtaining the BTZ solution as a

modular transformation of the thermal AdS spacetime, which is just the Eu-

clidean continuation of the global AdS metric (2.5): for thermal AdS, which

is also topologically a solid torus, it is clear upon inspection that the non-

contractible cycle is the time direction. So all we have to do to pass from

thermal AdS to BTZ is to interchange the time and space directions on the

boundary torus: this corresponds to performing a modular S transformation

on the torus, which is just an SL(2,Z) symmetry transformation of the torus.

A family of SL(2,Z)-inequivalent black holes can be obtained by performing

general SL(2,Z) transformations on thermal AdS, which label the two cycles in

all ways consistent with SL(2,Z) symmetry.
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These definitions allow us to make direct contact with a CFT interpreta-

tion. We want to think of the Lorentzian CFT as living on a cylinder. In the

language of the Virasoro algebra, (L,L) are left- and right-moving zero mode

charges, respectively. The precise relation to the Virasoro zero modes is

2πL = L0 −
c

24
, 2πL = L0 −

c

24
(2.20)

where (L0, L0) are defined on the plane. Notice that in terms of (L,L) and

(c, c) as defined by (2.20) and (2.7), the entropy can be written as

S = 2π

(√
c

6

(
L0 −

c

24

)
+

√
c

6

(
L0 −

c

24

))
(2.21)

This is precisely the Cardy formula: that is, the high temperature number

of states for any6 2d CFT with central charges (c, c) and zero mode charges

(L0, L0). Therefore, we have shown that the entropy of the BTZ black hole

with global quantum numbers (M,J) in a theory with Newton’s gravitational

constant G can be accounted for microscopically by the degrees of freedom of

any 2d CFT, subject to definitions (2.7), (2.16) and (2.20) [46].

The value L0 = c
24 defines a black hole threshold; at threshold, we have

the extremal BTZ solution J = M (cf. (2.16)), and there is a continuous tower

of non-extremal black hole states for all L0 >
c

24 with J < M . The vacuum

value L0 = 0 corresponds to global AdS3; from (2.7), (2.16) and (2.20) we see

that we should associate a negative mass M = − 1
8G to global AdS3.

2.2. The Chern-Simons formulation

It was discovered over two decades ago that Einstein gravity with a negative

cosmological constant can be re-written as a SL(2,R) × SL(2,R) Chern-Simons

theory [12,13] . With 1-forms (A, Ā) taking values in the Lie algebra of SL(2,R),

the action is

S = SCS [A]− SCS [A] (2.22)

6 This applies upon assuming a gap in the L spectrum, and unitarity of the CFT.
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where

SCS [A] =
k

4π

∫
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(2.23)

The Chern-Simons level k is related to the Newton constant G as

k =
1

4G
(2.24)

which is equivalent to

c = 6k (2.25)

The combination 8πG that frequently appeared in BTZ calculations becomes

2π
k .

The SL(2,R) commutation relations are

[Lm, Ln] = (m− n)Lm+n (2.26)

We recognize this as the Virasoro algebra restricted to m = ±1, 0, minus the

central term. SL(2,R) is thus the “wedge subalgebra” of the Virasoro algebra;

we will see a generalization of this notion in the higher spin context as well.

The Chern-Simons equations of motion correspond to vanishing field

strengths,

F = dA+A ∧A = 0 , F = dA+A ∧A = 0 (2.27)

To relate these to the Einstein equations, we introduce a vielbein e and spin

connection ω as

A = ω + e , A = ω − e (2.28)

and plug into the flatness conditions: the resulting equations are just the Ein-

stein equations with negative cosmological constant written in the frame for-

malism. Expanding e and ω in a basis of 1-forms dxµ, the familiar spacetime

metric gµν is defined as

gµν =
1

2
Tr(eµeν) (2.29)
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Let us now write the BTZ solution in this language. One can show that

the following flat connections give the metric (2.15) (given some trace normal-

ization for SL(2,R) generators):

A = (eρL1 −
2π

k
e−ρLL−1)dx+ + L0dρ

A = −(eρL−1 −
2π

k
Le−ρL1)dx− − L0dρ

(2.30)

The ρ-dependence can be gauge transformed away by

A = b−1(a+ d)b , A = b
−1

(A+ d)b (2.31)

for

b = eρL0 , b = b−1 (2.32)

in which case flatness is trivial to demonstrate. This deserves comparison to

the metric formulation, which requires slightly more work to show that BTZ

is a solution. This is especially true for the solution in which L(x+),L(x−)

rather that being constants.

We note that as a technical matter, it is easier to find the Virasoro algebra

by using a Chern-Simons connection than it is in the metric formulation, where

the specification of asymptotic boundary conditions on metric components is

somewhat ad hoc. By contrast, one easily recovers the Virasoro algebra by

demanding that infinitesimal gauge transformations

δA = dλ+ [A, λ] (2.33)

leave intact the connection (2.30). Assuming that the leading term is to be

unmodified – which is equivalent to saying that the leading asymptotic be-

havior of the metric must not ruin the AdS form – one can always use gauge

transformations to put the connection into this form. The set of nontrivial

gauge transformations are those that modify L: that is, certain gauge trans-

formations are not trivial at the boundary, but instead moves one around the
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space of physically distinct solutions [63]. (These are sometimes clumsily called

“would-be” gauge transformations.) It is thus a simple matter to recover the

Virasoro algebra.

This technique easily generalizes to the higher spin arena [47,48], where a

metric-like technique is not available. We will explicitly perform this procedure

in the next chapter.

2.3. Higher spin gravity from Chern-Simons theory

The key insight with respect to higher spin gravity, first developed by [48],

is that we can consider taking (A,A) to lie in some other, larger, Lie algebra

besides SL(2,R), which we will denote G. Doing so is equivalent to coupling

some set of higher spin fields to Einstein gravity, where the rank of G determines

the number of higher spin fields. Taking G = SL(N,R), for example, one has

a theory of Einstein gravity coupled to a tower of symmetric tensor fields of

spins s = 3, 4, . . . , N . Taking G to be an algebra of infinite rank introduces an

infinite tower of such spins; the details of the theory depend on which algebra

one chooses. In all of these cases, one recovers Einstein gravity upon restriction

to a SL(2,R) × SL(2,R) subalgebra of G × G. Note that in general a given G

admits many inequivalent embeddings of SL(2,R); this leads to the appearance

of multiple AdS3 vacua in the theory [49]. Ultimately – with respect to possible

relationships to string theory and AdS/CFT duality – we are interested in the

theory with algebra G = hs[λ], which admits a single SL(2,R) subalgebra.

It is worth emphasizing that, on a technical level, to pass to a metric-like

formulation is generally difficult. On a basic level, the action of a consistently

coupled, infinite tower of higher spin fields – even that of a single spin-3 field

coupled to gravity – is not known in the metric like formulation. And while

we can define a generalized vielbein which has an expansion in G generators,

it is not even well-understood whether definitions of the metric-like fields – as

traces over symmetric products of vielbeins – can be unambiguously fixed (up
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to field redefinitions) [64]. So our only option at present is to use the Chern-

Simons formulation, which fortunately lends itself rather nicely to computation

in higher spin gravity.

Furthermore, one of the lessons from recent work on higher spin gravity

is that certain quantities are better understood in the Chern-Simons picture,

and others in the metric-like picture. To gain any geometric understanding of a

given solution – for instance, to probe its causal structure – the Chern-Simons

formulation is not helpful. This is true even in the simplest SL(2,R) case, where

the BTZ horizon is essentially invisible in the connection itself. On the other

hand, we will see that the full gauge invariance of a given higher spin theory

is most easily understood in terms of the connections, as is the identification

of terms in the connection with CFT currents.

A particularly clean arena in which all of the aforementioned issues – be-

sides the difficulty of passage to the metric-like formulation – are clearly present

is the case of spin-3 gravity, which we take to be Chern-Simons theory with an

SL(3,R) gauge algebra. We now construct black holes of this theory with spin-3

charge, generalizing BTZ, and tackle the obstacles presented by the enlarged

higher spin symmetry to ensuring a consistent thermodynamics.
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3. Spin-3 black holes

In preparation for the construction of the spin-3 black hole, we focus on

the simplest extension of pure SL(2,R) gravity: namely, SL(3,R) gravity.

In section 3.1 we apply the Chern-Simons formulation to the spin-3 theory

and construct the AdS3 vacuum which has W3 symmetry following [48]. We

also construct a second AdS3 vacuum based on the non-principal embedding of

SL(2,R) in SL(3,R) and show that the asymptotic symmetry algebra is W
(2)
3 .

Finally, we construct solutions which can be interpreted as renormalization

group flows between the two vacua. In section 3.2, we heat this system up: in

particular, we review the black hole solutions in “wormhole” gauge found in

[50], and explain the BTZ holonomy prescription for characterizing a gauge-

invariant horizon. In section 3.3 we construct the explicit gauge transformation

taking the solution from “wormhole” gauge to “black hole” gauge, and establish

that the metric and spin-3 field are smooth across the horizon precisely when

the holonomy conditions are obeyed. We close with some discussion. Some

calculational details, as well as generalizations of some results to the case of

general N , are relegated to appendices of this chapter.

3.1. SL(3,R) Chern-Simons theory, spin-3 gravity, and its AdS vacua

In this subsection, we set the stage for the black hole by presenting the two

distinct AdS3 vacua of this theory and their asymptotic symmetry algebras.

Finally, we exhibit an RG flow solution interpolating between these vacua, and

study some of its properties.

We must preface this discussion with a warning that the asymptotic sym-

metry of one of these vacua – namely, the W
(2)
3 symmetry – has recently been

shown not to admit any unitary representations [65]. This is a general feature

of non-principally embedded AdS vacua for any G ⊃ SL(2,R). So while this

vacuum does not have desirable physical properties, we discuss it as an entry
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point to the peculiarities of higher spin gravity; in any case, this feature does

not generalize to the hs[λ] case in which we are ultimately most interested.

3.1.1. Connections and metric-like fields

As discussed in the previous section, we consider SL(3,R)× SL(3,R) Chern-

Simons theory, which corresponds to spin-3 gravity in three dimensions with a

negative cosmological constant. Our conventions follow those in [50].

The action is

S = SCS [A]− SCS [A] (3.1)

with opposite CS levels (k,−k). The 1-forms A and A take values in the Lie

algebra of SL(3,R). An explicit representation of the eight generators Li, i =

−1, 0,+1 and Wj , j = −2,−1, · · · ,+2, as well as our conventions, is given in

appendix 3A. Recall that we set

k =
1

4G
(3.2)

With the definition (2.28), the spacetime metric gµν and spin-3 field ϕµνγ

are identified as

gµν =
1

2
Tr(eµeν) , ϕµνγ =

1

3!
Tr(e(µeνeγ)) (3.3)

where ϕµνγ is totally symmetric as indicated. Restricting to the SL(2,R)

subalgebra generated by Li, the flatness conditions (2.27) can be seen to be

equivalent to Einstein’s equations for the metric gµν with a torsion free spin-

connection. More generally, we find equations describing a consistent coupling

of the metric to the spin-3 field.

Acting on the metric and spin-3 field, the SL(3,R)× SL(3,R) gauge symme-

tries of the Chern-Simons theory turn into diffeomorphisms along with spin-3

gauge transformations (the Chern-Simons gauge transformation also include

frame rotations, which leave the metric and spin-3 field invariant). Under dif-

feomorphisms, the metric and spin-3 field transform according to the usual
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tensor transformation rules. The spin-3 gauge transformations are less famil-

iar, as they in general act nontrivially on both the metric and spin-3 field. It

is worth noting, though, that if we ignore the spin-3 gauge invariance, then

we can view the theory as a particular diffeomorphism invariant theory of a

metric and a rank-3 symmetric tensor field.

3.1.2. The W3 AdS3 vacuum

We consider the following flat connections

AAdS = eρL1dx
+ + L0dρ

AAdS = −eρL−1dx
− − L0dρ

(3.4)

where x± = t± φ. Using (3.3), the corresponding metric and spin-3 field are

ds2 = dρ2 − e2ρdx+dx−

ϕαβγ = 0
(3.5)

The metric is that of an AdS3 of unit radius.

More generally, we can consider solutions that approach this vacuum

asymptotically, and work out the resulting asymptotic symmetry algebra. The

analysis proceeds in a parallel fashion for the barred and unbarred connections,

and so we’ll just focus on the latter. Also, since we will shortly present a more

detailed computation for the second of our AdS3 vacua, here we just sketch

the steps. Following [48], we consider the following form for the connection

A =

(
eρL1 −

2π

k
L(x+)e−ρL−1 −

π

2k
W(x+)e−2ρW−2

)
dx+ + L0dρ (3.6)

In [48] there is a parameter σ accompanying the W-generators that we are here

setting to σ = −1. Under gauge transformation,

A→ A+ dλ+ [A, λ] (3.7)

One then works out the most general λ that preserves the form (3.6). Under

these allowed gauge transformations the functions L(x+) and W(x+) trans-

form. The asymptotic symmetry algebra is obtained from the Poisson brackets
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of the charges that generate these transformations; see [48] for details. Alter-

natively (see section 4 of [50] for details), one can translate these variations

into an operator product expansion for the symmetry currents, and the result

is the W3 algebra:

T (z)T (0) ∼ 3k

z4 +
2

z2T (0) +
1

z
∂T (0)

T (z)W(0) ∼ 3

z2W(0) +
1

z
∂W(0)

W(z)W(0) ∼ −5k

π2

1

z6 +
10

π

1

z4L(0) +
5

π

1

z3∂L(0) +
3

2π

1

z2∂
2L(0)

− 1

3π

1

z
∂3L(0)− 32

3k

1

z
L(0)∂L(0)− 32

3k

1

z2L(0)2

(3.8)

Here we are using complex coordinates: z = x+. The TW OPE identifies W

as a spin-3 current, i.e., as a dimension (3, 0) primary operator. The same

analysis for the barred connection gives rise to anti-holomorphic W3 algebra

with a dimension (0, 3) current.

From the TT OPE the central charge is found to be

c = 6k (3.9)

which, using (2.24), agrees with the usual Brown-Henneaux formula c =

3l/(2G).

3.1.3. The W
(2)
3 AdS3 vacuum

The procedure reviewed above for extracting the asymptotic symmetry

algebra is an example of the classical Drinfeld-Sokolov procedure, with which

one can construct aW -algebra from an embedding of the SL(2,R) algebra inside

a Lie algebra. In the example just given, the SL(2,R) algebra was generated by

(L1, L0, L−1). This is the “principal embedding” in SL(3,R). It is characterized

by the fact that the five W generators transform as a spin 2 multiplet with

respect to the SL(2,R) algebra. As discussed, this embedding gives rise to the

W3 algebra.
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In the case of SL(3,R) there is exactly one additional inequivalent

embedding of SL(2,R), up to conjugation7. We define rescaled versions

of (W2, L0,W−2) so that they obey the same commutation relations as

(L1, L0, L−1),

Ŵ2 =
1

4
W2, L̂0 =

1

2
L0 , Ŵ−2 = −1

4
W−2 (3.10)

These have traces

Tr(L̂0L̂0) =
1

2
=

1

4
Tr(L0L0) ,

Tr(Ŵ2Ŵ−2) = −1 =
1

4
Tr(L1L−1)

(3.11)

Note that the branching of the adjoint representation of SL(3,R) into SL(2,R)

representations is different in this case. There is one spin-0 multiplet, given by

W0, and two spin-1/2 multiplets, given by (W1, L−1) and (L1,W−1). (This is

in addition to a spin-1 multiplet given by the SL(2,R) generators themselves).

This embedding gives rise to another W -algebra known as W
(2)
3 , sometimes

referred to as the Polyakov-Bershadsky algebra [66,67]. Next we work out the

corresponding AdS3 vacuum and its asymptotic W
(2)
3 symmetry algebra. Its

central charge, which we denote by ĉ, will soon be related to the central charge

c of the W3 vacuum.

The unbarred gauge field includes fields for the highest weight generator

in each multiplet

A = e−ρL̂0
(
Ŵ2 − T Ŵ−2 + jW0 + g1L−1 + g2W−1

)
eρL̂0dx+ + L̂0dρ (3.12)

We parameterize a general gauge transformation as follows

λ =e−ρL̂0
(
ε1Ŵ2 + ε0L̂0 + ε−1Ŵ−2

+ γW0 + δ1L1 + δ−1W−1 + ρ1W1 + ρ−1L−1

)
eρL̂0

(3.13)

7 Some relevant facts about SL(2,R) embeddings in SL(N,R) are reviewed in appendix 3E.
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Here the x+ dependence of the fields and the transformation parameters is

suppressed. We demand that the gauge transformation

δA = dλ+ [A, λ] (3.14)

respect the form of (3.12). The conditions determine the transformations of

the fields (T, j, g1, g2) dependent on the parameters (ε1, γ, δ1, ρ1). Defining new

fields

j =
9

2ĉ
U

T = −6

ĉ
T − 27

ĉ2
U2

g1 =
3√
2ĉ

(G+ +G−)

g2 =
3√
2ĉ

(G+ −G−)

(3.15)

as well as transformation parameters

ε1 = ε

γ = −1

2
η +

9

2ĉ
Uε

δ1 =
1

2
√

2
(α+ + α−)

ρ1 =
1

2
√

2
(α+ − α−)

(3.16)

the transformation rules become

δU = ε′U + εU ′ − α+G+ + α−G− −
ĉ

9
η′

δT =
ĉ

12
ε′′′ + 2ε′T + εT ′ +

3

2
α′+G+ +

1

2
α+G

′
+ +

3

2
α′−G− +

1

2
α−G

′
− + η′U

δG+ =
ĉ

6
α′′− +

3

2
ε′G+ + εG′+ + α−(T +

18

ĉ
U2 +

3

2
U ′) + 3α′−U + ηG+

δG− = − ĉ
6
α′′+ +

3

2
ε′G− + εG′− − α+(T +

18

ĉ
U2 − 3

2
U ′) + 3α′+U − ηG−

(3.17)

where the prime denotes a derivative with respect to x+. These are identical

to those generated according to

δO = 2πRes
(
J(z)O(0)

)
(3.18)

25



with the current (denoting the operators by the same symbols in an abuse of

notation)

J =
1

2π

(
εT + ηU + α+G+ + α−G−

)
(3.19)

and the operator product expansion

U(z)U(0) ∼ − ĉ

9z2

U(z)G±(0) ∼ ±1

z
G±(0)

T (z)U(0) ∼ 1

z2U(0) +
1

z
∂U(0)

T (z)G±(0) ∼ 3

2z2G±(0) +
1

z
∂G±(0)

T (z)T (0) ∼ ĉ

2z4 +
2

z2T (0) +
1

z
∂T (0)

G+(z)G−(0) ∼ − ĉ

3z3 +
3

z2U(0)− 1

z
(T (0) +

18

ĉ
U(0)2 − 3

2
∂U(0))

(3.20)

This is the classical W
(2)
3 algebra (see e.g. [68]). Apart from the stress energy

tensor T , we have weight 3/2 primaries, G±, as well as a weight one current,

U . Note that the conformal weight of each field is obtained from the SL(2,R)

spin by adding one. This is a general feature as discussed in appendix 3E. Due

to the presence of the two spin-3/2 bosonic currents, the W
(2)
3 algebra can be

thought of as a sort of bosonic analog of the N = 2 superconformal algebra.

Unlike the latter, the W
(2)
3 is nonlinear, as seen by the appearance of U2 in

the G+G− OPE.

The AdS vacuum for the SL(2,R) embedding (3.10) is given by gauge

connections
AAdS = eρŴ2dx

+ + L̂0dρ

AAdS = −eρŴ−2dx
− − L̂0dρ

(3.21)

which yields

ds2 =
1

4

(
dρ2 − e2ρdx+dx−

)
ϕαβγ = 0

(3.22)
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The metric now describes an AdS3 of radius 1/2.

Note that the central charge ĉ was not determined by the procedure leading

to (3.20). This is a consequence of the fact that the Chern Simons level k does

not enter in (3.14). The central charge can, however, be determined by the

following argument.

Comparing the two SL(2,R) embeddings, the generators that appear obey

the same SL(2,R) commutation relations. The only difference arises from the

rescaled trace relations (3.11). This has the effect of reducing the overall nor-

malization of the Chern-Simons action restricted to the SL(2,R) subalgebra by

a factor 1/4 compared to before, which is to say that k is effectively replaced

by k/4. The central charge of the W
(2)
3 vacuum is therefore modified:

ĉ =
1

4
c =

3k

2
(3.23)

This result can also be established from the metric point of view. If instead

of using (3.3) to define the metric we use ĝµν = 2Tr(eµeν), then the W
(2)
3 AdS3

vacuum will again have unit radius. The action expressed in terms of the hatted

metric will take the same form as in the unhatted case, except for an overall

factor of 1/4 from the rescaled trace. Applying the Brown-Henneaux formula

then again yields (3.23).

Yet another way to arrive at this result is to compute the Poisson brack-

ets of the charges generating the asymptotic symmetry transformations. The

rescaled trace relations just lead to a factor in front of the action that leads to

rescaled versions of the canonical momenta. Once again, the effect is just to

replace k by k/4.

Given the metric (3.22) with radius 1/2, one might be tempted to conclude

that ĉ = 1
2c by applying the Brown-Henneaux formula directly. However, a

proper analysis has to take into account both the scale size of the AdS3 and

the effective Newton constant, which this argument does not do.
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3.1.4. flow between W
(2)
3 and W3 vacua

It is very easy to write down a solution that interpolates between the W
(2)
3

vacuum in the UV and the W3 vacuum in the IR. We take

A = λeρL1dx
+ + e2ρŴ2dx

− + L0dρ

A = −λeρL−1dx
− − e2ρŴ−2dx

+ − L0dρ
(3.24)

Note that we have chosen to accompany dρ by L0 rather than L̂0, which ac-

counts for the e2ρ factors multiplying the W-generators. Also, for reasons to

be explained momentarily, compared to (3.21) we take the Ŵ2 term in A to be

associated with dx− rather than dx+. The parameter λ is arbitrary, and can

be set to any desired value by shifting ρ and scaling x±. At large ρ the con-

nections approach (3.21) (after rescaling ρ and exchanging x+ ↔ x−), while

at small ρ they approach (3.4).

The corresponding metric and spin-3 fields are

ds2 = dρ2 −
(

1

4
e4ρ + λ2e2ρ

)
dx+dx−

ϕαβγdx
αdxβdxγ =

1

3!
Tr(eee) = −1

8
λ2e4ρ(dx+)3 +

1

8
λ2e4ρ(dx−)3

(3.25)

The metric interpolates between the two AdS3 vacua at large and small ρ. In

an orthonormal frame, the spin-3 field vanishes asymptotically at large and

small ρ, but is nonzero in between. Additionally, while the metric preserves

Lorentz invariance in x±, the spin-3 field does not.

We now discuss the CFT interpretation of the RG flow from the stand-

points of the UV and IR CFTs. From the standpoint of the UV CFT with

W
(2)
3 symmetry, the RG flow is triggered by the λ-terms in (3.24). In the UV

CFT λ is a source for the spin-3/2 operators.8 This can be seen from the field

equations, or by noting that under the UV scale invariance λ has dimension

8 It was in order to have this interpretation that we associated the L1 and Ŵ2 generators in

(3.24) with opposite chiralities.
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1/2 = 2 − 3/2, which is correct for a source conjugate to a dimension 3/2

operator. Thus, the RG flow is initiated by adding to the UV CFT Lagrangian

a relevant operator of dimension 3/2.

Thinking in terms of the IR CFT with W3 symmetry, the flow is initiated

by adding the Ŵ±2 terms, which correspond to adding to the Lagrangian the

spin-3 currents. These are irrelevant dimension 3 operators, and so deform the

theory in the UV. They drive the theory to the new UV fixed point with W
(2)
3

symmetry.

One surprising feature concerns the central charges. We have cUV = 3k
2

and cIR = 6k, and so cIR > cUV , which seems at first to be in conflict with

the c-theorem. However, there is no actual contradiction since the proof of

the c-theorem applies to Lorentz invariant RG flows (rotationally invariant

in Euclidean signature), whereas here we are adding non-Lorentz invariant

operators. The fixed points of the RG flow are Lorentz invariant field theories,

but the full flow is not. While there is thus no immediate conflict with the

c-theorem, this result is still somewhat puzzling as it seems at odds with the

usual intuition regarding the decrease of degrees of freedom under RG flow.

The resolution of this puzzle may involve the fact that the UV CFT really has

a family of stress tensors due to the presence of a U(1) current algebra.

While we leave a complete analysis of this and related RG flows to future

work, it is useful to present a few results to aid in interpretation. First, we

consider linearized perturbation theory around the RG flow background. This

will allows us to determine the relation between UV and IR operators. Fo-

cussing just on the A-connection, we turn on terms corresponding to nonzero

currents in the UV and IR. We thus add to (3.24) the terms

δA =
(
TIRe

−ρL−1 +WIRe
−2ρW−2

)
dx+

+

(
JUVW0 +G

(1)
UV e

−ρL−1 +G
(2)
UV e

−ρW−1 + TUV e
−2ρW−2

)
dx−

(3.26)

where all coefficients, TIR etc, are arbitrary functions of (x+, x−). Up to
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normalization, these coefficient functions are the respective currents in the

UV/IR.

Solving the linearized field equations, we find

JUV =
1

2λ
TIR

G
(1)
UV = − 2

λ
WIR

G
(2)
UV = − 1

6λ2∂+TIR

TUV =
1

24λ3∂
2
+TIR

(3.27)

along with

∂−TIR = − 2

λ
∂+WIR

∂−WIR =
1

24λ3∂
3
+TIR

(3.28)

From the first two relations in (3.27) we see that the IR currents (TIR,WIR)

are locally related to the UV currents (JUV , G
(1)
UV ). In particular, the IR stress

tensor is locally related to the UV spin-1 current, not to the UV stress tensor.

The equations in (3.28) show that deep in the IR, which corresponds to large

λ, the currents (TIR,WIR) obey chiral conservation equations as expected.

The relation between TUV and TIR indicates that TUV , which is of course

a dimension 2 operator in the UV, acquires dimension 4 in the IR. This can

be shown in more detail by computing the AdS/CFT two-point correlator

〈TUV TUV 〉. This computation is carried out in appendix 3B, and the result is,

in momentum space and up to overall normalization:

〈TUV (p)TUV (−p)〉 =
p3

+p−

λ4 − 4
3
p4

+

p2
−

(3.29)

At short distances we have
p4

+

p2
−
� λ4 and so the UV result is

UV : 〈TUV (x)TUV (0)〉 ∼
∫

d2p

(2π)2

p3
−
p+
eip·x ∼ 1

(x−)4 (3.30)
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At long distances we take
p4

+

p2
−
� λ4, and expand (3.29) to first subleading order,

since the leading order term is polynomial in momentum space and hence a

contact term in position space. The leading behavior is thus

IR : 〈TUV (x)TUV (0)〉 ∼
∫

d2p

(2π)2

p7
+

p−
eip·x ∼ 1

(x+)8 (3.31)

This result shows that TUV goes from being a dimension (2, 0) operator in the

UV, to being a dimension (0, 4) operator in the IR. The fact that the operator

goes from being rightmoving to leftmoving is of course a consequence of the

non-Lorentz invariant character of the RG flow.

3.2. Review of spin-3 black hole solutions in wormhole gauge

In [50] the following solution was proposed to represent black holes carrying

spin-3 charge:

A =
(
eρL1 −

2π

k
Le−ρL−1 −

π

2k
We−2ρW−2

)
dx+

+ µ
(
e2ρW2 −

4πL
k
W0 +

4π2L2

k2 e−2ρW−2 +
4πW
k

e−ρL−1

)
dx− + L0dρ

A = −
(
eρL−1 −

2π

k
Le−ρL1 −

π

2k
We−2ρW2

)
dx−

− µ
(
e2ρW−2 −

4πL
k
W0 +

4π2L2

k2 e−2ρW2 +
4πW
k

e−ρL1

)
dx+ − L0dρ

(3.32)

The structure of this solution is easy to understand. Focus on theA-connection.

As in (3.6), to add energy and charge density to the W3 vacuum we should add

to A+ terms involving L−1 and W−2, as seen in the top line of (3.32). For black

holes, which represent states of thermodynamic equilibrium, the energy and

charge should be accompanied by their conjugate thermodynamic potentials,

which are temperature and spin-3 chemical potential. We incorporate the

former via the periodicity of imaginary time, while the latter was shown in

[50] by a Ward identity analysis to correspond to a µW2 term in A−. The
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remaining A− terms appearing in (3.32) are then fixed by the equations of

motion.

Let us quickly elaborate on the Ward identity analysis of [50]. The con-

formal dimension of the holomorphic spin-3 current W is (3, 0), which means

that the addition of a term

δSCFT = −
∫
d2zµ(z, z)W(z, z) (3.33)

to the CFT action perturbs the CFT by an irrelevant operator, and µ is the

chemical potential for spin-3 chargeW. (Identical statements are implied about

the holomorphic partners µ,W .) The CFT in question has classical W3 sym-

metry, which is fully encoded in the OPEs among the stress tensor T and spin-3

field W:

T (z)T (0) ∼ c/2

z4 +
2T (0)

z2 +
∂T (0)

z
+ . . .

T (z)W(0) ∼ 3W(0)

z2 +
∂W(0)

z
+ . . .

W(z)W(0) ∼ c/3

z6 +
2T (0)

z4 +
∂T (0)

z3 +
1

z2

(
2βΛ(0) +

3

10
∂2T (0)

)
+

1

z

(
β ∂Λ(0) +

1

15
∂2T (0)

)
(3.34)

where the parameter β is given by

β =
16

5c
(3.35)

and the operator Λ is defined as follows

Λ(w) =: T (w)T (w) : − 3

10
∂2
wT (w) (3.36)

Note that we do not claim the bulk theory and W3 CFT to be dual: this is

merely a statement about asymptotic symmetry in 3d classical gravity. We

have not specified a particular CFT with some central charge, etc, and in fact
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there is no known W3-symmetric CFT with large central charge, a prerequisite

to mapping classical gravity calculations to those of CFT.

For us to consider µ as a source, we must show that certain Ward identities

among the potentials and charges are obeyed. On the CFT side, these can be

derived by computing expectation values of ∂zL and ∂zW in the presence of

the operator insertion (3.33), and using the OPEs. We can map these Ward

identities to bulk equations of motion evaluated on some connection, as was

shown in [69] for the case of ordinary gravity with a spin-2 source. The question

is, “what connection?” Following [69], the answer is to write the most general

possible connection in so-called “highest weight gauge”, with each component

an arbitrary function of (z, z), and solve the field equations. This connection

contains a piece A− ⊃ µ(z, z)e2ρW2 – this is the source term. Upon making

a precise identification between the bulk charges (L,W) and the boundary

charges (T,W), one can show that the Ward identities are satisfied. See [50]

for further details.

The upshot is that the connection (3.32) is the most general highest-weight

gauge connection one can write with a constant source µ, where µ appears as a

leading term in A−. The fact that µ multiples a W2 generator means that this

connection violates the W3 AdS boundary conditions, since that piece grows

faster than eρ: this comports with the fact that it is the bulk realization of an

irrelevant operator deformation of the CFT.

We have now established the baseline argument for why the connection

(3.32) may represent a bulk state of thermodynamic equilibrium with nonzero

spin-3 charge. Let us now try to understand the geometric implications.

3.2.1. Geometry, thermodynamics and holonomy

The metric and spin-3 field are extracted using (3.3); the metric, for ex-
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ample, looks like

ds2 = dρ2 + 4
(
µe2ρdx− − π

2k
We−2ρdx− +

4π2

k2 µL
2
e−2ρdx+

)
×
(
µe2ρdx+ − π

2k
We−2ρdx+ +

4π2

k2 µL
2e−2ρdx−

)
−
(
eρdx+ − 2π

k
Le−ρdx− +

4π

k
µWe−ρdx+

)
×
(
eρdx− − 2π

k
Le−ρdx+ +

4π

k
µWe−ρdx−

)
+

1

3

(
4π

k

)2

(µLdx− + µLdx+)2

(3.37)

It is already clear that the solution is cleanest in the Chern-Simons picture,

though we still must pass to the metric-like formulation to understand various

physical features of the solution. For instance, the spin-2 charges (L, L), equiv-

alently the mass and angular momentum, correspond to simple coefficients in

the connection, whereas in the metric they appear in more convoluted fashion.

(This is true of the BTZ solution as well.)

We will henceforth restrict attention to the nonrotating case:

L = L , W = −W , µ = −µ (3.38)

for which the metric is, in terms of (φ, t) coordinates,

ds2 = dρ2 −
{

(2µe2ρ +
π

k
We−2ρ − 8π2

k2 µL
2e−2ρ)2

+ (eρ − 2π

k
Le−ρ +

4π

k
µWe−ρ)2

}
dt2

+
{

(eρ +
2π

k
Le−ρ +

4π

k
µWe−ρ)2 + 4(µe2ρ +

π

2k
We−2ρ +

4π2

k2 µL
2e−2ρ)2

+
4

3

(
4π

k

)2

µ2L2
}
dφ2

(3.39)

If we set µ =W = 0, then the connections become those corresponding to

a BTZ black hole asymptotic to the W3 vacuum. From the standpoint of this
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CFT, the µe2ρW2dx
− term represents a chemical potential for spin-3 charge,

and theWe−2ρW−2dx
+ term gives the value of the spin-3 charge. This solution

is therefore interpreted as a generalization of the BTZ black hole to include

nonzero spin-3 charge and chemical potential.

Another useful special case to consider is L = W = 0 with µ 6= 0. After

shifting ρ, the resulting connection is identified with the RG flow solution (3.24)

with λ = 1
2
√
µ . So for small (L,W) and finite µ, we can think of this solution

as representing an excited version of the RG flow.

Suppose one wants to interpret the connections (3.32) as describing a

smooth black hole. We should first demand that as µ → 0, the metric turn

over to that of the BTZ black hole. Secondly, the Euclidean geometry should

be smooth at the horizon, and the accompanying spin-3 field non-singular. In

ordinary gravity, we enforce this by demanding the absence of a conical singu-

larity at the Euclidean black hole horizon; a priori, this should not be expected

to work in this spin-3 setting where that notion is not gauge-invariant. Finally,

the black hole must define a consistent thermodynamics. In ordinary gravity,

this is guaranteed by enforcing smoothness, but this is not so here.

To elaborate, the general non-rotating solution (3.32)-(3.39), as written,

can be thought of as depending on four free parameters: three of these are

(L,W, µ), and the fourth is the inverse temperature β, corresponding to the

periodicity of imaginary time, t ∼= t+iβ. However, we expect that there should

only be a two-parameter family of physically admissible solutions: once one

has specified the temperature and chemical potential the values of the energy

and charge should be determined thermodynamically. For the uncharged BTZ

solution the relation between the energy and the temperature is obtained by

demanding the absence of a conical singularity at the horizon in Euclidean

signature. The analogous procedure in the presence of spin-3 charge is more

subtle, as was discussed in detail in [50].

35



We want to think of the black hole as a saddle point contribution to a

partition function of the form

Z(τ, α) = Tr[e8π2i(τL+αW)] (3.40)

But since this implies L ∼ ∂Z/∂τ and W ∼ ∂Z/∂α, Z will exist only if the

charge assignments obey the integrability condition

∂L
∂α

=
∂W
∂τ

(3.41)

Therefore, our task is to come up with a prescription for defining the charges,

consistent with a definition of smoothness, that leads to (3.41).

If we naively try to interpret the metric (3.39) directly as a black hole, the

zeroth order thing to check is whether there is a horizon. Enforcing gtt = 0 in

(3.39) implies that a sum of squares must vanish; in addition, these Fefferman-

Graham coordinates require that gtt(ρh) = ∂ρgtt(ρh) = 0. The only solutions

to the resulting equations do not define a consistent thermodynamics, nor do

they have a smooth µ → 0 limit in which we should hope to recover the BTZ

solution. Thus, (3.39) looks like a traversable wormhole, interpolating between

two W
(2)
3 AdS vacua. Is there a black hole hiding somewhere?

The answer, as we will show explicitly, is yes. The key point is that we

should not have expected our naive treatment to work: such a procedure is

not gauge-invariant! This theory includes spin-3 gauge transformations which

modify the metric, and so any definition of a black hole which relies on compu-

tations of actual metric components in a fixed gauge is bound to fail. Instead,

a gauge-invariant proposal was put forth in [50]. It was proposed there that

one should compute the holonomy of the Chern-Simons connection around the

Euclidean time circle, and demand that its eigenvalues take the fixed values

(0, 2πi,−2πi). This was proposed as the gauge invariant characterization of

the condition for the Euclidean time circle to smoothly close off at the hori-

zon. This condition has the virtue of being gauge invariant, reproducing known
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BTZ results in the uncharged limit, and, as shown in [50], being compatible

with the first law of thermodynamics. In the next section we will find strong

independent evidence for the validity of this proposal: in particular, we will

see that this metric can be gauge-transformed to look like a black hole, whose

smoothness condition as determined by the usual Euclidean prescription gives

the same charge assignments as the holonomy condition.

Writing

τ =
iβ

2π
(3.42)

corresponding to the modular parameter of the torus, the holonomy around

the time circle is9

ω = 2π(τA+ − τA−) (3.43)

For the BTZ black hole, the conditions on its eigenvalues can be recast as

det(ω) = 0 , Tr(ω2) + 8π2 = 0 (3.44)

which, enforced for the connection (3.32), become explicitly

0 = −2048π2µ3L3 + 576πkµL2 − 864πkµ2WL+ 864πkµ3W2 − 27k2W

0 = 256π2µ2L2 + 24πkL − 72πkµW +
3k2

τ2

(3.45)

It was shown in [50] that, upon taking α = βµ (cf. (3.40)), one indeed finds that

the conditions (3.45) imply integrability. This is equivalent to saying that we

can define an entropy that is consistent with the first law of thermodynamics.

In contrast to ordinary gravity where we can use either the area law or the value

of the Euclidean action to compute the entropy, neither of these approaches

are immediately applicable in the higher spin case, and so we need to proceed

as described here. Note also that the relation α = βµ should be thought of as

being determined self-consistently together with the charge assignments.

9 For completeness, in appendix 3C we provide the holonomy along the angular direction.
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In the next section we find the explicit gauge transformation needed to take

the wormhole into a black hole, along with the explicit black hole metric. This

metric is completely smooth, as is the accompanying spin-3 field, and has AdS3

asymptotics. Furthermore, at least within our ansatz, there is a unique such

black hole solution, and its smoothness requires that the holonomy conditions

(3.45) be obeyed.

3.3. Gauge transforming the wormhole into a black hole

In this section we describe the solution to the following problem. We start

from the static wormhole solution reviewed in the last section:

A =
(
eρL1 −

2π

k
Le−ρL−1 −

π

2k
We−2ρW−2

)
dx+

+ µ
(
e2ρW2 −

4πL
k
W0 +

4π2L2

k2 e−2ρW−2 +
4πW
k

e−ρL−1

)
dx− + L0dρ

A = −
(
eρL−1 −

2π

k
Le−ρL1 +

π

2k
We−2ρW2

)
dx−

+ µ
(
e2ρW−2 −

4πL
k
W0 +

4π2L2

k2 e−2ρW2 −
4πW
k

e−ρL1

)
dx+ − L0dρ

(3.46)

We then consider new connections related to these by SL(3,R) gauge transfor-

mations:
A = g−1(ρ)A(ρ)g(ρ) + g−1(ρ)dg(ρ)

A = g(ρ)A(ρ)g−1(ρ)− dg(ρ)g−1(ρ)
(3.47)

with g(ρ) ∈ SL(3,R). The relative gauge transformation for A versus A is taken

to maintain a non-rotating ansatz. The metric and spin-3 field corresponding

to (A,A) will take the form

ds2 = gρρ(ρ)dρ2 + gtt(ρ)dt2 + gφφ(ρ)dφ2

ϕαβγdx
αdxβdxγ = ϕφρρ(ρ)dφdρ2 + ϕφtt(ρ)dφdt2 + ϕφφφ(ρ)dφ3

(3.48)

We demand that this solution describe a smooth black hole with event horizon

at ρ = ρ+, or at r = 0 with

r = ρ− ρ+ (3.49)
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Assuming that grr(0) > 0, as will be the case, this first of all requires gtt(0) =

g′tt(0) = 0 and gφφ(0) > 0, so that after rotating to imaginary time the metric

expanded around r = 0 will look locally like R2 × S1:

ds2 ≈ grr(0)dr2 − 1

2
g′′tt(0)r2dt2E + gφφ(0)dφ2 (3.50)

In order for the metric to avoid a conical singularity at r = 0 we need to

identify tE ∼= tE + β with

β = 2π

√
2grr(0)

−g′′tt(0)
(3.51)

Having done so, we can switch to Cartesian coordinates near r = 0 and the

metric will be smooth.

The same smoothness considerations apply to the spin-3 field. Noticing

the parallel structure, we see that we should demand ϕφtt(0) = ϕ′φtt(0) = 0,

and

β = 2π

√√√√ 2ϕφrr(0)

−ϕ′′φtt(0)
(3.52)

with the same β as in (3.51).

There is still one more condition to impose to ensure that the solution is

completely smooth at the horizon. If we work in Cartesian coordinates (x, y)

around r = 0, we should demand that all functions are infinitely differentiable

with respect to both x and y. If this is not the case then some curvature in-

variant (or spin-3 quantity) involving covariant derivatives will diverge. Given

the rotational symmetry, this condition implies that the series expansion of all

functions should only involve non-negative even powers of r. We impose this

by demanding that all functions be smooth at the horizon, and even under

reflection about the horizon:

grr(−r) = grr(r) , gtt(−r) = gtt(r) , gφφ(−r) = gφφ(r)

ϕφrr(−r) = ϕφrr(r) , ϕφtt(−r) = ϕφtt(r) , ϕφφφ(−r) = ϕφφφ(r)
(3.53)
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We now summarize the solution to this problem. More details are provided

in appendix 3D. The symmetry conditions (3.53) can be enforced by demanding

et(−r) = −h(r)−1et(r)h(r)

eφ(−r) = h(r)−1eφ(r)h(r)

er(−r) = h(r)−1er(r)h(r)

(3.54)

with h(r) ∈ SL(3,R), and similar conditions on the spin-connection. The BTZ

solution has h(r) = 1, so we can think of these conditions as a “twist” of

the BTZ vielbein reflection symmetries. In addition, h(0) = 1, implying that

et(0) = 0, a feature of the BTZ solution that persists in the spin-3 case.10

To gain some insight into the form of g(r) and h(r) we can start with the

BTZ solution and then carry out the gauge transformation perturbatively in

the charge. These considerations lead us to the ansatz

g(r) = eF (r)(W1−W−1)+G(r)L0

h(r) = eH(r)(W1+W−1)
(3.55)

for some functions F,G and H. Perturbation theory suggests that this ansatz

gives the unique solution to our problem, although we have not proven this.

On the other hand, having assumed the ansatz (3.55) the remaining analysis

definitely has a unique solution.

Even after assuming this ansatz, finding a solution that satisfies all the

smoothness conditions involves a surprisingly large amount of complicated al-

gebra requiring extensive use of Mathematica and Maple. Some details are

provided in the appendix. As we have already mentioned, a crucial point is

that the solution to our problem requires that the holonomy conditions (3.45)

are obeyed; equivalently, we can derive the holonomy conditions by requiring

the existence of a smooth black hole solution.

10 Moreover, it is both surprising and convenient that the location of the horizon r = 0 turns

out to be at ρ = ρ+, with ρ+ given by the same expression as for BTZ: e2ρ+ = 2πL
k

.
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Here we just present the final form for the transformed metric. It will be

convenient to define dimensionless versions of the charge and chemical poten-

tial:

ζ =

√
k

32πL3W , γ =

√
2πL
k
µ (3.56)

as well as a parameter C defined as

ζ =
C − 1

C3/2
(3.57)

The metric takes the form (3.48) with

grr =
(C − 2)(C − 3)(
C − 2− cosh2(r)

)2

gtt = −
(

8πL
k

)(
C − 3

C2

)
(at + bt cosh2(r)) sinh2(r)(

C − 2− cosh2(r)
)2

gφφ =

(
8πL
k

)(
C − 3

C2

)
(aφ + bφ cosh2(r)) sinh2(r)(

C − 2− cosh2(r)
)2

+

(
8πL
k

)
(1 +

16

3
γ2 + 12γζ)

(3.58)

The coefficients at,φ and bt,φ are functions of γ and C, and are displayed in

appendix 3C along with the spin-3 field.

With these results in hand, we demand a smooth horizon via (3.51) and

(3.52). Using the definition (3.57), the resulting equations can be written as

1728γ3ζ2 − (432γ2 + 27)ζ − 128γ3 + 72γ = 0(
1 +

16

3
γ2 − 12γζ

)
L − πk

2β2 = 0
(3.59)

These are precisely the holonomy conditions (3.45), merely rewritten in the

(ζ, γ) variables!

3.3.1. Limits and asymptotics
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Solution of equations (3.59) for the charge ζ and inverse temperature β

yields

ζ =
1 + 16γ2 −

(
1− 16

3 γ
2
)√

1 + 128
3 γ2

128γ3

β =

√
πk
2L√

1 + 16
3 γ

2 − 12γζ

(3.60)

We have chosen the branch of ζ consistent with recovery of the BTZ solution

in the γ → 0 limit, namely the one with a power series expansion in positive

(odd) powers of γ.

The uncharged BTZ limit corresponds to taking ζ, γ → 0, and C → ∞.

On the other hand, the maximal value of (ζ, γ) obtained from (3.60) is

ζmax =

√
4

27
, γmax =

√
3

16
(3.61)

and this corresponds to C = 3. Therefore, we can take C to lie in the range

3 ≤ C <∞.

The extremal lower bound can also be seen directly on the level of the

metric (3.58), which degenerates at C = 3. This is a virtue of the manifestly

smooth horizon of the black hole, in contrast to the wormhole geometry which

has no limiting form at this value of the charge, and hence one must resort to

the holonomy to find it instead.

The metric coefficients diverge at r = r?, where

cosh2(r?) = C − 2 (3.62)

The leading behavior of the metric near r? is

ds2 ≈ 1

4

dr2

(r? − r)2

+

(
2πL
k

)(
C − 3

C2(C − 2)

) −[at + bt(C − 2)]dt2 + [aφ + bφ(C − 2)]dφ2

(r? − r)2

(3.63)
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This gives AdS3 with radius 1/2, and thus our transformed black hole solu-

tions are asymptotically AdS3. In addition, the spin-3 field expressed in an

orthonormal basis goes to zero at r?.

As C approaches 3 from above we see from (3.62) that r? → 0. Nonetheless

we can extract the extremal asymptotics by scaling the coordinates as we take

C → 3. This has the effect of separating r? from the horizon and stretching

the region in between.

Expanding around extremality by defining

γ = γext − δ (3.64)

we define asymptotic coordinates

r =
√
δr̃ , t =

t̃

δ
(3.65)

Expanding all quantities and taking the δ → 0 limit, one finds a metric

ds2 ≈ r̃2
?

(r̃2
? − r̃2)2dr̃

2 − 512πL
9k

r̃2
?

(r̃2
? − r̃2)2 r̃

2dt̃2

+

(
32πL
k

+
96πL
k

r̃2
?

(r̃2
? − r̃2)2 r̃

2

)
dφ2

(3.66)

where r̃? =
√

8
√

3
3 . This metric has the same AdS3 asymptotics as the

nonextremal metric (3.63), which becomes evident upon defining a Fefferman-

Graham coordinate r̃ = r̃? tanh(η).

The coordinate r appearing in (3.58) only covers the region outside the

event horizon; it is analogous to
√
r − 2M for the Schwarzschild solution. The

region inside the horizon is obtained by continuing r to pure imaginary values.

3.3.2. Black hole entropy

In [50], the entropy of the black hole was found to be

S = 4π
√

2πkLf(y) (3.67)
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where

f(y) = cos θ , θ =
1

6
arctan

(√
y(2− y)

1− y

)
, 0 ≤ θ ≤ π

6
(3.68)

and y = 27
2 ζ

2. (We have specialized to the static case.) This was originally

found by solving a first-order nonlinear ODE, derived by combining the defi-

nition of the partition function with the holonomy conditions.

The function f(y) takes a pleasantly simple form upon plugging in for ζ

as a function of C, using (3.57). This step yields

θ =
1

6
arctan

Λ(C)

√
1− 3

4C

 (3.69)

with

Λ(C) ≡ 6
√

3C(C − 1)(C − 3)

(2C − 3)(C2 − 12C + 9)
(3.70)

Surprisingly, taking the cosine of this angle yields the simple expression

f(y) =

√
1− 3

4C
(3.71)

As with other quantities in our analysis, we see that the entropy is most simply

expressed in terms of C. The extremal and zero charge limits are recovered

upon inspection.

It is of course natural to wonder if the black hole entropy can be expressed

in terms of a geometrical property of the horizon. There is of course no reason

to expect that the Bekenstein-Hawking area law holds, since the spin-3 field

is nonzero at the horizon, and indeed one easily checks that S 6= A/4G. This

is related to one of the primary challenges inherent in higher spin gravity: the

enlarged gauge invariance renders familiar geometric quantities, such as the

horizon area, non-invariant under higher spin gauge transformations. Perhaps

there exists a higher spin version of the Wald entropy formula [70] that is fully

gauge invariant.
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3.4. Discussion

Let us close with some open issues. We address the black hole, the RG

flow, and generalization to other higher spin theories in turn.

Our main result was showing explicitly how to gauge transform between

the wormhole and the black hole. The overall logical structure is very tight:

the existence of the gauge transformation is contingent upon the holonomy

conditions being satisfied, and there then exists a unique gauge transformation

and smooth black hole metric.11 The wormhole and black hole have dramati-

cally different causal structures, and so it is of course conceptually interesting

that they can be related by a higher spin gauge transformation.

This situation has no analog in ordinary gravity. By adding in matter to

probe the solution, one can map out the light cones and determine the causal

structure in a unique fashion. But in our spin-3 theory it is not possible to

simply throw in a minimally coupled scalar field to probe the solution, as there

is no obvious way to do so that is compatible with the full higher spin gauge

invariance. In this respect, the situation is analogous to string theory, where

it is also not possible to add in matter arbitrarily. However, it is known how

to couple in propagating scalar fields to the large N limit of these higher spin

theories [11,71]12, and such scalars play an important role in the conjecture of

[34]. In Chapter 5, we will consider this problem. In that context, it therefore

seems possible to compute AdS/CFT correlators between the two asymptotic

boundaries of the wormhole/blackhole. One could then determine whether

or not these two boundaries are causally connected, by seeing whether such

correlators exhibit lightcone singularities.

We have already noted that it would be very useful to have a higher spin

11 Strictly speaking, these statements are subject to the qualifications noted below (3.55).
12 Using this formalism massless fields in the background of the BTZ black hole were studied

in [72].
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version of Wald’s entropy formula at our disposal to gain a better geometric

understanding of the theory, to the extent that this is possible. Our entropy

formula (3.71) takes a surprisingly simple form (as compared to the algebra

leading to it), and is perhaps suggestive of a geometrical interpretation. Also,

the twisted vielbein reflection conditions (3.54) deserve to be better under-

stood.

While the existence of the black hole gauge is extremely useful for concep-

tual and interpretational purposes, it is likely to be the case that the wormhole

gauge is more convenient for doing computations. In the wormhole gauge we

know how to read off the charges and symmetries from the asymptotic form

of the connection. In fact, this can be done in either of two ways: by viewing

the solution in terms of the W3 CFT deformed by an irrelevant spin-3 oper-

ator, or in terms of the W
(2)
3 CFT deformed by a relevant spin-3/2 operator.

On the other hand, in the black hole gauge, the gauge field near r = r? does

not take a form in which we know how to identify the CFT data, cf. (3.12).

It would be convenient and perhaps enlightening if we could understand the

black hole asymptotics better. Such an analysis would likely need to involve

the subleading terms near the AdS3 boundary at r = r?.

The existence of multiple AdS3 vacua in this theory, both of which have

vanishing spin-3 field, is another intriguing and novel feature due to the inclu-

sion of higher spin. We were led to a simple RG flow solution between these

vacua triggered by a spin-3/2, Lorentz symmetry-breaking CFT operator. We

would like to improve our understanding of the behavior of the central charge

under the flow, and in particular why it increases towards the IR. As noted

earlier, the Lorentz symmetry-breaking nature of this RG flow places it outside

the assumptions of the c-theorem; maybe another quantity can be constructed

which monotonically decreases along RG flows from UV to IR.

Perhaps most conceptually interesting is the extension of these ideas to
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bulk theories with larger gauge groups. Let us consider SL(N,R) × SL(N,R)

for now. When N > 3, there are then multiple higher spin charges and poten-

tials to play with, and there could be interesting interplay among them. The

ideas of this chapter were directly generalized to the spin-4 case in [73], and

a similarly consistent thermodynamic story was found. Also, to each embed-

ding of SL(2,R) in SL(N,R) is associated an AdS3 vacuum with asymptotic

symmetry given by the W -algebra obtained by classical Drinfeld-Sokolov re-

duction. Modulo issues of interpretation described above, the central charge

of the Virasoro algebra coming from the principal embedding will always be

the largest. That of the other vacua will have an inverse relation to the index

of the SL(2,R) embedding used to construct the vacuum. Some relevant group

theoretic details are presented in appendix 3E. It is easy to write these solu-

tions down in the Chern-Simons language once one has the explicit SL(2,R)

embedding: simply take ansatz (3.21) and replace Ŵ2 and L̂0 by the generators

of the new SL(2,R) embedding. It is equally straightforward to construct RG

flows between these vacua, and hence between CFTs with different symmetries,

by altering (3.24) in the same manner. The set of allowed RG flows depends

on the details of the Lie algebra, but one can see that in general the vacuum

with largest (smallest) AdS radius has no relevant (irrelevant) operators, and

so is IR (UV) stable.

However, as we mentioned earlier, all AdS vacua with connections valued

in non-principally embedded SL(2,R) subalgebras have asymptotic symmetries

which do not admit unitary representations. Furthermore, when we soon gen-

eralize to the hs[λ] theory which has an infinite tower of higher spins, there is

only a single SL(2,R) subalgebra. We prefer to view the existence of multiple

AdS “vacua” in the SL(N,R) theories as a peculiarity that shouldn’t be taken

too seriously. In combination with the fact that we do not know whether one

can consistently couple matter to these theories, it seems that the SL(N,R)
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theories lack certain features which we wish to see in an interesting theory of

higher spin gravity. On the other hand, the SL(N,R) theories appear to have

some features which lend themselves to interpretation of the puzzle of the pre-

ponderance of “light states” in the WN minimal model CFT at finite N [74];

so perhaps we should not cast them off as physically irrelevant.

Appendix 3A. SL(3,R) generators

As in [48] with σ = −1, we use the following basis of SL(3, R) generators

L1 =

 0 0 0

1 0 0

0 1 0

 , L0 =

 1 0 0

0 0 0

0 0 −1

 , L−1 =

 0 −2 0

0 0 −2

0 0 0



W2 =

 0 0 0

0 0 0

2 0 0

 , W1 =

 0 0 0

1 0 0

0 −1 0

 , W0 =
2

3

 1 0 0

0 −2 0

0 0 1



W−1 =

 0 −2 0

0 0 2

0 0 0

 , W−2 =

 0 0 8

0 0 0

0 0 0


(3A.1)

The generators obey the following commutation relations

[Li, Lj ] = (i− j)Li+j

[Li,Wm] = (2i−m)Wi+m

[Wm,Wn] = −1

3
(m− n)(2m2 + 2n2 −mn− 8)Lm+n

(3A.2)

and trace relations

Tr(L0L0) = 2 , Tr(L1L−1) = −4

Tr(W0W0) =
8

3
, Tr(W1W−1) = −4 , Tr(W2W−2) = 16

(3A.3)

All other traces involving a product two generators vanish.
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Appendix 3B. Stress tensor correlator in RG flow solution

In this appendix we compute the AdS/CFT two-point correlator of the

UV stress tensor TUV in the background of the RG flow solution (3.24). To

compute the correlator we need to turn on the source conjugate to TUV and

then compute the linearized response. The coefficient relating TUV to the

source is the two-point function. In this computation we will not pay attention

to overall normalization factors.

In studying linearized fluctuations around the RG solution, the following

ansatz turns out to be appropriate

A =
(
µe2ρW2 + λeρL1 + l0L0 + h1e

−ρL−1 + h2e
−2ρW−2

)
dx+

+

(
W2e

2ρ + JUVW0 +G
(1)
UV e

−ρL−1 +G
(2)
UV e

−ρW−1 + TUV e
−2ρW−2

)
dx−

+ L0dρ

A = e2ρW−2dx
+ − λeρL−1dx

− − L0dρ
(3B.1)

Here λ is constant, while all other coefficients are arbitrary functions of x±.

The leading large ρ behavior of the metric derived from this connection is

ds2 ≈ dρ2 − 4e4ρdx+dx− − 4e4ρµ(dx+)2 (3B.2)

From this we see that µ acts as a source for T++ = TUV , and so we need

to work out the relation between TUV and µ. Solving the linearized flatness

conditions, we find

G
(2)
UV = − 1

3λ
∂+JUV

l0 = −1

2
∂−µ

h1 =
λ

2
JUV

h2 = − 1

32
∂2
−µ−

λ

8
G

(1)
UV

(3B.3)
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along with

∂+G
(1)
UV =

λ

2
∂−JUV

8∂3
+JUV + 12λ3∂−G

(1)
UV = −3λ2∂3

−µ

TUV =
1

12λ2∂
2
+JUV

(3B.4)

We solve (3B.4) in momentum space, assuming dependence eip+x
++ip−x− ,

which gives

TUV = − 1

24

p3
+p−

λ4 − 4
3
p4

+

p2
−

µ (3B.5)

which implies the result quoted in (3.29).

Appendix 3C. Black hole and spin-3 field parameters

3C.1. Metric and spin-3 field in black hole gauge

The coefficients at,φ and bt,φ in the black hole metric (3.58) are as follows:

at = (C − 1)2
(
4γ −

√
C
)2

aφ = (C − 1)2
(
4γ +

√
C
)2

bt = 16γ2(C − 2)(C2 − 2C + 2)− 8γ
√
C(2C2 − 6C + 5) + C(3C − 4)

bφ = 16γ2(C − 2)(C2 − 2C + 2) + 8γ
√
C(2C2 − 6C + 5) + C(3C − 4)

(3C.1)

The t and φ coefficients are related by flipping the sign of γ, though this is not

a bonafide sign flip of the charge, under which C would also transform.

The spin-3 field has components

ϕφrr =
2

3

√
2πL
k

(C − 3)(4γ(C2 − 5C + 3)− 3
√
C)

C(C − 2− cosh2(r))2

ϕφtt = −16
√

2

3

(
πL
k

)3/2 (C − 3

C3

)
(at,3 + bt,3 cosh2(r)) sinh2(r)

(C − 2− cosh2(r))2

ϕφφφ = 16
√

2

(
πL
k

)3/2 (C − 3

C3

)
(aφ,3 + bφ,3 cosh2(r)) sinh2(r)

(C − 2− cosh2(r))2
+ ϕφφφ(0)

(3C.2)
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where

at,3 = at ·
(
4γ(3− 2C)− 3

√
C
)

aφ,3 = aφ ·
(
4γ(3− 2C)− 3

√
C
)

bt,3 = 64
(
C(C(C2 − 10C + 30)− 37) + 15

)
γ3

− 16
√
C(C(10C2 − 57C + 88)− 36)γ2

+ 4C(C(9C2 − 42C + 62)− 36)γ

− 3C3/2(2C2 − 6C + 5)

bφ,3 = 64
(
C(C(C2 − 10C + 30)− 37) + 15

)
γ3

− 16
√
C(C(2C2 + 3C − 16) + 12)γ2

+ 4C(C(−3C2 + 6C − 10) + 12)γ

− 3C3/2(2C2 − 6C + 5)

(3C.3)

and

ϕφφφ(0) =
16
√

2

9C3

(
πL
k

)3/2 (
4γ(2C − 3) + 3

√
C
)
·(

16γ2(C2 − 12C + 9) + 12γ
√
C(3− 5C)− 9C(C − 1)

) (3C.4)

3C.2. Horizon holonomy

For completeness, we provide the holonomy around the φ circle, which can

be viewed as another piece of gauge-invariant information characterizing the

effect of spin-3 charge. The holonomy matrix is just Aφ itself. We again work

with the trace squared and determinant to obtain

det(Aφ) = −16

(
2πL
k

)3/2

(1 + 16γ2)ζ

Tr(A2
φ) =

(
16πL
k

)
(1 +

16

3
γ2 + 12γζ)

(3C.5)

The holonomy for the barred gauge field is

det(Āφ) = −det(Aφ) , Tr(Ā2
φ) = Tr(A2

φ) (3C.6)
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Note from (3.58) that Tr(A2
φ) is directly related to the area of the event horizon,

since gφφ(0) = 1
2Tr(A2

φ).

Appendix 3D. From wormhole to black hole

We begin by recalling the vielbein reflection equations (3.54):

et(−r) = −h(r)−1et(r)h(r)

eφ(−r) = h(r)−1eφ(r)h(r)

er(−r) = h(r)−1er(r)h(r)

(3D.1)

where h(r) ∈ SL(3, R). We obtained these by solving for the horizon geometry

perturbatively in the charge, noticing that et(0) = 0, and demanding reflection

symmetry of the metric and spin-3 field as one moves away from the horizon.

Consideration of the spin-connection, for which only ωφ(0) = 0, allows us to

convert these to statements about the gauge fields which are simpler to work

with:
A+(−r) = h−1(r)A−(r)h(r)

A+(−r) = h−1(r)A−(r)h(r)

Ar(−r)−Ar(−r) = h−1(r)[Ar(r)−Ar(r)]h(r)

Ar(−r) +Ar(−r) = α(r)h−1(r)[Ar(r) +Ar(r)]h(r)

(3D.2)

α(r) is some function of r and the charge which will not be needed.

Recalling that the gauge field A is related to the wormhole gauge field A

by (3.47), our goal is to solve equations (3D.2) for g(r) while solving for h(r)

along the way. We will solve the first of these equations, after which we find

that the remaining three are satisfied automatically.

As stated in the text, perturbation theory indicates that g(r) and h(r)

take the following simple forms:

g(r) = eF (r)(W1−W−1)+G(r)L0

h(r) = eH(r)(W1+W−1)
(3D.3)
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This ansatz gives a metric and spin-3 field which respect the symmetries of the

static BTZ solution around which we perturb. F and H are odd in γ, and G

is even. In addition, H is odd under reflection through the horizon, consistent

with

h−1(−r) = h(r) ≡ h (3D.4)

which is implied by (3D.1). Notice that the problem is now highly overcon-

strained: we are solving for three functions (F,G,H), but we have four 3 × 3

matrix equations to solve.

Let us rewrite the first of equations (3D.2) in terms of A:

A+(−r) = M−1A−(r)M , M = g−1(r)h(r)g−1(r) (3D.5)

There are five independent components of this matrix equation, which we solve

directly. Expanded in generators, M includes pieces proportional to each ele-

ment of SL(3,R) and the identity, making a mess of algebra. One is aided by

defining redundant variables, solving for them, and reinserting these definitions

to solve for (F,G,H). To that end, we define the variables (X,Y ) as

Y = −
√

4F 2 +G2

G
, X = e−GY (3D.6)

These combinations are ubiquitous in the explicit form of these equations.

After a display of brute force, one can reduce these five equations to the

following three:

ζ =
Y 2 − (1 + cosh2(r))

(Y 2 − 1)3/2
cosh(r)

X =

√
Y − 1

Y + 1

√√√√ Y + 1 + cosh2(r)

Y − (1 + cosh2(r))

tanH = − sinh(r) cosh(r)√
Y 2 − (1 + cosh2(r))2

(3D.7)

The sign of H correlates with the convention µ > 0.
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One can solve the first equation by taking

Y 2 = 1 + C cosh2(r) (3D.8)

where C is defined by

ζ =
C − 1

C3/2
(3D.9)

as in (3.57). The final expression for X, and then for (F,G,H), can be written

most compactly as

X =

√
C + Y − 1

C − Y − 1

G = − 1

Y
log(X)

F

G
=

√
C

2
cosh(r)

tanH = − sinh(r)√
C − 2− cosh2(r)

(3D.10)

Remarkably, this solves all of the reflection symmetry equations (3D.2).

Let us state some of the parameter ranges. Recalling the holonomy condi-

tions, for example, we know that 3 ≤ C <∞. This implies |Y | ≥ 2, so choosing

the branch Y > 0, we see that X ≥ 1. This in turn implies that (F,G) < 0.

We can clearly see the divergence that feeds down to the metric and spin-3

field. Using the definition of Y , we note that

cosh2(r?) = C − 2 ⇔ Y (r?) = C − 1 (3D.11)

In the zero charge limit, C →∞, X → 1, and (F,G,H)→ 0 as we recover

the BTZ black hole. In the extremal limit, C → 3, X →∞, and (F,G)→ −∞.

This explains the divergence of the metric and spin-3 field in the extremal limit:

the gauge parameters are breaking down. For convenience, we present the first

few terms in a perturbative expansion of F and G. With

F = f1γ + f3γ
3 + f5γ

5 + . . .

G = g2γ
2 + g4γ

4 + g6γ
6 + . . .

(3D.12)
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we have

f1 = −4

3
cosh(r)

f3 = −128

81
cosh(r)

(
2 cosh2(r)− 3

)
f5 = −8192

3645
cosh(r)

(
6 cosh4(r)− 15 cosh2(r) + 40

) (3D.13)

and

g2 = −64

9

g4 = −4096

243

(
cosh2(r)− 6

)
g6 = −65536

10935

(
12 cosh4(r)− 60 cosh2(r) + 395

) (3D.14)

Appendix 3E. Generalization to SL(N,R)

In this appendix we will briefly discuss (mainly following [75,76]) how

one determines the asymptotic symmetry algebras for the SL(N,R) vacua. As

shown in [78] the inequivalent SL(2,R) embeddings in SL(N,R) are uniquely

determined by the branching of the fundamental representation of SL(N,R)

into ni dimensional representations of SL(2,R). The branchings are given by

the partitions {n1, n2, · · · , nl} of N . From this one can determine how the

adjoint, i.e. the algebra itself, decomposes into representations of the SL(2,R)

algebra. In general there are representations of spin s = 0 up to spin s = N−1.

We denote the number of spin s representations by ms (of which some can be

zero). For example the principal embedding is given by the partition {N},

hence the adjoint representation decomposes as

m1 = 1,m2 = 1, · · · ,mn−1 = 1 (3E.1)

We denote the SL(2,R) generators as (L̂+, L̂−, L̂0) (corresponding to a spin

s=1 multiplet) and the generators of spin si as (W
(i)
−si ,W

(i)
−si+1, · · · ,W

(i)
si ). The
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ansatz for the SL(N,R) connection is a “highest weight” gauge, where we as-

sociate a field with the W
(i)
−si for each spin i.

A = e−ρL̂0
(
L̂1 + T (x+)L̂−1 +

∑
i

J (i)(x+)W
(i)
−si

)
eρL̂0dx+ + L̂0dρ (3E.2)

Here T is related to the stress energy tensor of the conformal algebra. A

general gauge transformation is given by

λ = e−ρL̂0
(
ε1L̂1 + ε0L̂0 + ε−1L̂−1 +

∑
i

2si∑
j=0

α
(i)
j W

(i)
−si+j

)
eρL̂0 (3E.3)

By using the fact that the W
(i)
s transform in spin si representations of the

SL(2,R) and following the general strategy of considering gauge transforma-

tions which preserve the gauge choice (3E.3), one can establish the following

facts:

First, for each field J (i) with spin zero (i.e. si = 0) to transform like a

conformal primary, the relation of T to the stress tensor and the transformation

parameter have to be modified. Temporarily referring only to the {J (i), α
(i)
0 }

of the spin-0 representations, we must make the redefinitions

T = T +
∑
i

1

2
(J (i))2, α

(i)
0 = α̃

(i)
0 + ε1J

(i) (3E.4)

With this improvement J (i) is associated with a weight one primary, and T

is the stress tensor up to constant rescaling. Second, the fields J (k) with spin

sk > 0 then all transform like conformal primaries of weight sk + 1.

For the principal embedding, (3E.1) implies that one has a (quasi) primary

of weight 2, i.e. the stress tensor, and conformal primaries of weight 3, 4, · · · , n.

This is indeed the field content of the Wn algebra and the classical Wn algebra

can be obtained this way.

Other SL(2,R) embeddings will lead to different W algebras. For example,

for SL(3,R) the only other partition is given by {2, 1}, and (3E.1) becomes

m0 = 1, m1/2 = 2, m1 = 1 (3E.5)
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This gives one weight 1, two weight 3/2 and one weight 2 primary of the W
(2)
3

algebra, as was established in more detail in the main part of the paper.

The number of embeddings quickly grows with larger N and we will not

discuss these cases here.
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4. hs[λ] black holes in 3d Vasiliev gravity

Having constructed spin-3 black holes in the relatively simple SL(3,R)

theory of higher spin gravity, we now apply our previous logic to the Vasiliev

theories containing an infinite tower of higher spin fields [11]. These theories

are based on a one-parameter family of infinite dimensional gauge algebras,

denoted hs[λ] [57]. The BTZ black hole is still a solution of this theory, but

rather too simple as it carries vanishing values for all higher spin charges. To

access the higher spin sector we turn on a nonzero spin-3 chemical potential,

α. Due to the nonlinear structure of the theory, this triggers nonzero values for

the entire infinite tower of higher spin charges. The values of these charges, and

the full smooth solution, can be determined systematically using perturbation

theory in α.

As in the SL(3,R) case studied in [79,49], crucial input is provided by

demanding a gauge invariant smooth horizon, as expressed in terms of the

holonomies. The main output of this procedure is a result for the black hole

partition function, Z(τ, α; τ , α). Here τ is the modular parameter of the torus

that describes the boundary of the Euclidean black hole geometry, and α is

the leftmoving spin-3 chemical potential, as noted above. Similarly, α is the

rightmoving analog of α. As usual, given the partition function, other ther-

modynamical quantities such as the energy and entropy can be obtained by

suitable differentiation. Our result for the black hole partition function, up to

order α8, is

lnZ =
iπk

2τ

[
1− 4

3

α2

τ4 +
400

27

λ2 − 7

λ2 − 4

α4

τ8 −
1600

27

5λ4 − 85λ2 + 377

(λ2 − 4)2

α6

τ12

+
32000

81

20λ6 − 600λ4 + 6387λ2 − 23357

(λ2 − 4)3

α8

τ16

]
+ . . .

+ rightmoving

(4.1)

where the rightmoving part is obtained by replacing τ and α by τ and α in
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the obvious way. The leading term in (4.1) is the usual BTZ result. We note

that the factor of λ2 − 4 appearing in the denominators is just due to our

normalization convention for the spin-3 charge, and has no special significance.

The entropy formula obtained from this partition function can be thought of

as a generalized version of Cardy’s formula to include higher spin charge.

As we now discuss, this result can be used to test the AdS/CFT duality

conjectured recently by Gaberdiel and Gopakumar [34], which we discussed in

the introduction. Recall that they propose to consider theWN minimal model

coset CFT
SU(N)k ⊕ SU(N)1

SU(N)k+1
(4.2)

The ’t Hooft limit is defined as

N, k →∞ , λ ≡ N

k +N
fixed (4.3)

Gaberdiel and Gopakumar conjecture that this theory in the ’t Hooft limit is

dual to the bulk higher spin theory based on the algebra hs[λ], along with some

additional scalar fields that will play no role in the present discussion.

To make contact with our black hole result, we should consider the parti-

tion function of this theory with the insertion of a spin-3 chemical potential,13

ZCFT (τ, α; τ , α) = Tr
[
e4π2i(τ L̂+αŴ−τ L̂−αŴ)

]
(4.4)

where the operators denote the suitably normalized Virasoro and spin-3 zero

modes. As is standard, to compare with the black hole side we should consider

the leading high temperature asymptotics, defined here by taking τ, α → 0

with α/τ2 fixed. This is a version of the Cardy limit, generalized to include

the higher spin chemical potential. In this limit, the duality conjecture asserts

that (4.1) and (4.4) should agree.

13 In general, one might wonder whether such traces are convergent. In the following we will

be considering perturbation theory in α and α, and such issues will not arise.
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While it should be possible to test this prediction for general λ, in this pa-

per we will only carry out the CFT computation for the special values λ = 0, 1.

The reason why these values are more tractable is as follows. In general, the

symmetry algebra controlling the coset theory in the ’t Hooft limit is believed

to be the infinite dimensional algebra W∞[λ]. This needs to be so in order

for the duality conjecture to be true — for instance, the W∞[λ] algebra is

the asymptotic symmetry algebra of hs[λ] gravity on AdS3 [36,47,48,64] —

but independent evidence is also available [36,38]. At λ = 0, 1 these algebras

simplify. At λ = 1, after a change of basis, the algebra turns into the linear al-

gebra WPRS
∞ [80]. Importantly for us, this algebra can be represented in terms

of a collection of free bosons, with the higher spin currents being quadratic

in the bosons [81,82,83]. Since the bosons are free, we can of course compute

(4.4) exactly for this theory. If we make the plausible assumption (justified in

more detail in the text) that this free boson theory should share the same high

temperature partition function as the coset theory at λ = 1, then we arrive at

the striking prediction that our black hole result should match a certain free

boson partition function. Up to the order that we have checked, this turns out

to be correct: we find precise agreement with (4.1) at λ = 1!

An analogous story holds at λ = 0, but now in terms of free fermions. At

λ = 0 the W∞[λ] algebra is related to the algebra W1+∞ [84] by a constraint

that removes the spin-1 current. Since the W1+∞ algebra can be represented

by free fermions [85], we can compute its partition function with the spin-1

constraint imposed. We then find precise agreement with (4.1) at λ = 0.

We view these results as providing strong evidence for the validity of our

rules for treating black holes in higher spin gravity, and for applying them

to the conjecture of Gaberdiel and Gopakumar. Further tests along these

lines are clearly possible, perhaps by pushing the comparison to higher all

orders in α. Another useful generalization would be to turn on additional
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chemical potentials. More ambitiously, it seems reasonable to hope that these

comparisons will lead to a deeper understanding of how the duality is working

at a fundamental level.

The remainder of this chapter is organized as follows. In section 4.1, we

generalize the results of the previous chapter to a set of rules for constructing

higher spin black hole solutions. These are applied to the hs[λ] theories in

section 4.2, and the black hole partition function is computed. In section 4.3 we

compute the partition functions for free bosons and fermions, and demonstrate

agreement with the bulk result for λ = 0, 1. Section 4.4 contains a discussion of

the implications of our results for the AdS/CFT correspondence. In appendix

4A we display certain holonomy equations in detail.

4.1. How to make higher spin black holes

We would like to consider the general problem of constructing consistent

black holes in a higher spin theory built upon an arbitrary Lie algebra G which

contains a SL(2,R) subalgebra. Based on the lessons of the previous chapter’s

spin-3 toy model (and the success of the same construction at spin-4 [73]), a

reasonable prescription for building smooth black holes with higher spin charge

is as follows:

1. Write down a BTZ solution.

2. Compute the BTZ time circle holonomy eigenvalues.

3. Write down a flat connection that includes nonzero chemical potentials for

some chosen set of higher spin charges.

4. Fix the charges in the solution by demanding that the holonomy of the

solution around the time circle agrees with that of BTZ.

The resulting solution will represent a black hole in the sense described

above. Note that if G is of infinite rank, there will be an infinite number of

holonomy constraints. Note also that the these solutions are not in general
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gauge equivalent to BTZ, since the holonomies around the angular circle will

differ.

In the above algorithm, step 3 is stated the least explicitly. Fortunately, our

spin-3 example suggests a straightforward way to find the relevant connections.

To explain this, consider the explicit spin-3 connection used in [79,49]14

A =
(
eρL1 −

2π

k
Le−ρL−1 −

π

2k
We−2ρW−2

)
dx+

+ µ
(
e2ρW2 −

4πL
k
W0 +

4π2L2

k2 e−2ρW−2 +
4πW
k

e−ρL−1

)
dx− + L0dρ

(4.5)

with an analogous formula for A. The corresponding metric has no event

horizon, but when the holonomy conditions are obeyed it is gauge-equivalent

to one that does [49].

Written in the form (4.5) the solution appears rather complicated, but in

fact the structure is quite simple. First, following [48] we note that we can

write

A = b−1ab+ b−1db (4.6)

where b = eρL0 , and a is obtained from A by setting ρ = dρ = 0. In terms of

a, the flatness equations are simply [a+, a−] = 0. To exhibit flatness we need

only observe that

a− = 2µ

[
(a+)2 − 1

3
Tr(a+)2

]
(4.7)

The form of A+ corresponds to choosing the “highest weight gauge”.

Namely, if we assume that A+ grows as eρ, then by a gauge transformation

it can always be put into the form in (4.5) [48]. Finally, as shown in [79]

by a Ward identity analysis, the µe2ρW2 term in A− gives rise to a chemical

potential µ conjugate to spin-3 charge.

14 The generators {W±2,W±1,W0} transform in the 5-dimensional representation under the

adjoint action of {L±1, L0}. Also, as in [79,49] we are here using a representation of the SL(3,R)

generators in terms of 3× 3 traceless matrices.
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This discussion suggests a simple way to write down solutions that in-

corporate chemical potentials for higher-spin charges for any G: to turn on

potentials µs for fields of spin s, simply take

A+ = ABTZ+ + (higher spin charges)

A− ∼
∑
s
µs
[
(A+)s−1 − trace

]
Aρ = L0

(4.8)

where multiplication is defined by the chosen matrix representation of the Lie

algebra G. L0 is the diagonal element of the SL(2,R) embedding into G used to

construct the BTZ solution. As usual, the terms in A− incorporate the sources,

and those in A+ encode the charges. Exactly which charges one must turn on

in order to have a consistent solution depends on the theory in question, and

is determined by solution of the holonomy equations.

As already emphasized, the metric derived from (4.8) may not possess a

horizon, but based on our study of the SL(3,R) theory we expect that there

exists another connection lying on the same gauge orbit that does yield a black

hole metric. Finding the explicit gauge transformation will typically be quite

involved and G-dependent, but for purposes of interpretation, we merely require

its existence.

4.2. The W∞[λ] black hole

As an intermediate step before writing down the black hole solutions, we

review the features of hs[λ] that we will need. In particular, we introduce an

associative multiplication known as the “lone-star product” [57], the antisym-

metric part of which yields the hs[λ] Lie algebra.

4.2.1 hs[λ] from an associative multiplication

The hs[λ] Lie algebra is spanned by generators labeled by a spin and a

mode index. We use the notation of [36], in which a generator is represented
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as

V sm , s ≥ 2 , |m| < s (4.9)

The commutation relations are

[V sm, V
t
n] =

s+t−|s−t|−1∑
u=2,4,6,...

gstu (m,n;λ)V s+t−um+n (4.10)

with structure constants defined in appendix I.

The generators with s = 2 form an SL(2,R) subalgebra, and the remaining

generators transform simply under the adjoint SL(2,R) action as

[V 2
m, V

t
n] = (m(t− 1)− n)V tm+n (4.11)

These SL(2,R) generators will be relevant in construction of the BTZ solution.

When λ = 1/2, this algebra is isomorphic to hs(1,1), the commutator of

which can be written as the antisymmetric part of the Moyal product. Simi-

larly, the general λ commutation relations (4.10) can be realized as

[V sm, V
t
n] = V sm ? V tn − V tn ? V sm (4.12)

if we define the associative product

V sm ? V tn ≡
1

2

s+t−|s−t|−1∑
u=1,2,3,...

gstu (m,n;λ)V s+t−um+n (4.13)

This is known as the “lone star product” [57], and (4.12) follows upon using

the fact that

gstu (m,n;λ) = (−1)u+1gtsu (n,m;λ) (4.14)

The odd values of u drop out of the commutator, leaving (4.10). In the re-

mainder of the paper we may resort to the shorthand

Γ ? Γ ? . . . ? Γ︸ ︷︷ ︸
N

≡ (Γ)N (4.15)
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for some hs[λ]-valued element Γ.

Formally, V 1
0 is the identity element. Thus, to extract the trace from a

product of generators, one picks out the u = s + t − 1 part of (4.13), up to

some normalization:

Tr(V smV
t
n) ∝ gsts+t−1(m,n;λ)δstδm,−n (4.16)

In order to facilitate easy comparison to the SL(3,R) conventions of [79,49], we

choose to define

Tr(V smV
s
−m) =

12

(λ2 − 1)
gss2s−1(m,−m;λ) (4.17)

which implies the SL(2,R) traces

Tr(V 2
1 V

2
−1) = −4 , Tr(V 2

0 V
2
0 ) = 2 (4.18)

in agreement with the basis used in [79,49].

A convenient property of the hs[λ] Lie algebra is that when λ = N for

integer N ≥ 2, one can consistently set all generators with s > N to zero (i.e.

factor out the ideal of the Lie algebra), and the algebra reduces to SL(N,R).

This implies a similar truncation of the boundary symmetry: that is,W∞[N ] =

WN upon constraining all fields of spin s > N to vanish. Factoring out the

ideal is automatic on the level of the trace:

Tr(V smV
s
−m) ∝

s−1∏
σ=2

(λ2 − σ2) (4.19)

Therefore, as regards the construction of black holes, the holonomy conditions

reduce to those of SL(N,R) when λ = N ; this will be a useful check for us.

Another aspect of the lone star product that we wish to highlight is the

following simple result for products of the highest weight SL(2,R) generator:

(V 2
1 )s−1 = V ss−1 (4.20)
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A look back at (4.8) shows that this relation makes it easy to read off the

leading behavior of A− from that of A+.

In what follows, we work with a flat connection a (and, implicitly, ā) that

has no ρ-dependence nor ρ component, as in (4.7), by writing

A = b−1ab+ b−1db

A = bāb−1 + bdb−1
(4.21)

with

b = eρV
2

0 (4.22)

Conjugation by b of a generator with mode index m produces a factor emρ.

4.2.2. The BTZ black hole

We now follow the prescription described in section 2.3 for constructing

the higher spin black hole. In the hs[λ] theory, the BTZ black hole has the

connection

a+ = V 2
1 +

1

4τ2V
2
−1

a− = 0
(4.23)

This is straightforward, as the V 2
±1 are SL(2,R) elements. The BTZ holonomy

can be encoded in the infinite set of traces

Tr(ωnBTZ) , n = 2, 3, . . . (4.24)

where

ωBTZ = 2πτ

(
V 2

1 +
1

4τ2V
2
−1

)
(4.25)

All odd-n traces vanish. The lowest even-n traces are

Tr(ω2
BTZ) = −8π2

Tr(ω4
BTZ) =

8π4

5
(3λ2 − 7)

Tr(ω6
BTZ) = −8π6

7
(3λ4 − 18λ2 + 31)

(4.26)
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4.2.3. The W∞[λ] black hole

Our ansatz for a black hole with spin-3 chemical potential is

a+ = V 2
1 −

2πL
k
V 2
−1 −N(λ)

πW
2k

V 3
−2 + J

a− = µN(λ)

(
a+ ? a+ −

2πL
3k

(λ2 − 1)

) (4.27)

where

J = J4V
4
−3 + J5V

5
−4 + . . . (4.28)

allows for an infinite series of higher-spin charges. The solution is accompanied

by the analogous barred connection. N(λ) is a normalization factor,

N(λ) =

√
20

(λ2 − 4)
(4.29)

chosen to simplify comparison to the SL(3,R) results of [79,49]. In particular,

truncating all spins s > 3 gives a solution with the same generator normaliza-

tions and bilinear traces as the spin-3 black hole (4.5) of the SL(3,R) theory.15

Suppressing the dependence on barred quantities, we think of this black

hole as a saddle point contribution to the partition function

Z(τ, α) = Tr
[
e4π2i(τL+αW)

]
(4.30)

where we continue to define the potential as

α = τµ (4.31)

where τ is the modular parameter of the boundary torus, defined via the iden-

tification (z, z) ∼= (z + 2πτ, z + 2πτ), with x+ = z, x− = −z. This will once

again be justified upon solving the holonomy equations, as the charges will

satisfy the integrability condition

∂L
∂α

=
∂W
∂τ

(4.32)

15 To be clear, there is no pathology for λ ≤ 2: we could easily rescale generators to eliminate

any troublesome factors of λ2 − 4.
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The structure of this ansatz is understood as follows: a+ is the asymptot-

ically AdS3 connection written in the “highest weight gauge” that was used

to reveal the asymptotic W∞[λ] symmetry in [47,48]. The component a− is a

traceless source term that deforms the UV asymptotics: by (4.20),

a− = µN(λ)V 3
2 + (subleading) (4.33)

Though similar in some ways, this hs[λ] black hole has some properties

that are quite different from its SL(3,R) counterpart. First, there is an infinite

set of holonomy constraints to solve, corresponding to enforcing smoothness

across the horizon of the metric and higher spin fields. Furthermore, solution

of these constraints demands that all higher-spin charges are turned on. This

is due to the structure of the W∞[λ] algebra. For instance, the WW OPE has

a term

W(z)W(0) ∼ . . .+ µJ4(0)

z2 + . . . (4.34)

and likewise for OPEs of higher spin currents.

This sourcing of ever-higher spins is nicely on display in the bulk: we will

find that without all spins turned on, (4.32) is not satisfied by the solution of

the holonomy equations.

4.2.4. Holonomy

For the W∞[λ] black hole ansatz (4.27), the holonomy matrix is

ω = 2π

[
τa+ − αN(λ)

(
a+ ? a+ −

2πL
3k

(λ2 − 1)

)]
(4.35)

with a+ and N(λ) as in (4.27) and (4.29), respectively. The holonomy con-

straints are

Tr(ωn) = Tr(ωnBTZ) , n = 2, 3, . . . (4.36)

We proceed to solve (4.36) perturbatively in α. We assume a perturbative
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expansion of the form

L = L0 + α2L2 + . . .

W = αW1 + α3W3 + . . .

J4 = α2J
(2)
4 + α4J

(4)
4 + . . .

J5 = α3J
(3)
5 + α5J

(5)
5 + . . .

(4.37)

and so on for higher spins. The OPEs tell us that the spin-3 chemical potential

µ sources the spin-4 current atO(µ2), the spin-5 current atO(µ3), and onwards,

which this ansatz incorporates. Note the parity under sign flip of α.

To exhibit the structure of the holonomy equations, and to set up our

perturbative solution, we write the terms that contribute at lowest perturbative

order for each charge that appears in a given equation, ignoring all of the

coefficients and displaying just the first four equations:

n = 2 : C
(2)
BTZ = L + αW + α2J4 + . . .

n = 3 : C
(3)
BTZ = αL2 + W + αJ4 + α2J5 + α3J6 + . . .

n = 4 : C
(4)
BTZ = L2 + αWL + J4 + αJ5 + α2J6 + α3J7 + α4J8 + . . .

n = 5 : C
(5)
BTZ = αL3 + WL + αJ4L+ J5 + αJ6 + α2J7 + α3J8 + . . .

(4.38)

C
(n)
BTZ stand for the BTZ holonomies (4.26) that are of course of order α0. The

“. . .” denote terms that contribute at higher perturbative order (for instance,

an α2L2 term at n = 2). At each value of n, two more charges enter at

ever-higher orders in α. In appendix 4A we write out the all-order holonomy

equations up to n = 4, with spins J5 and higher set to zero for simplicity.

In the case that the gauge algebra is SL(N,R), as obtained by setting

λ = N , the system of equations terminates at n = N . For the SL(3,R) theory

studied in [79,49] this allowed the holonomy equations to be solved exactly

as the solution of a cubic equation. For general λ we instead must proceed
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perturbatively. In examining the structure of the equations (4.38) one might be

concerned by the fact that at even(odd) orders in α, all even(odd) n equations

contribute. This implies that the system is highly overconstrained, infinitely

so, in fact; nevertheless it turns out that there is a consistent solution that

satisfies the integrability condition, at least as far as we have checked.

We solve through O(α8). Combining (4.37) and (4.38), we see that we

only need work up to n = 6. The solution is

L = − k

8πτ2 +
5k

6πτ6α
2 − 50k

3πτ10

λ2 − 7

λ2 − 4
α4 +

2600k

27πτ14

5λ4 − 85λ2 + 377

(λ2 − 4)2 α6

− 68000k

81πτ18

20λ6 − 600λ4 + 6387λ2 − 23357

(λ2 − 4)3 α8 + . . .

W = − k

3πτ5α+
200k

27πτ9

λ2 − 7

λ2 − 4
α3 − 400k

9πτ13

5λ4 − 85λ2 + 377

(λ2 − 4)2 α5

+
32000k

81πτ17

20λ6 − 600λ4 + 6387λ2 − 23357

(λ2 − 4)3 α7 + . . .

J4 =
35

9τ8

1

λ2 − 4
α2 − 700

9τ12

2λ2 − 21

(λ2 − 4)2α
4 +

2800

9τ16

20λ4 − 480λ2 + 3189

(λ2 − 4)3 α6 + . . .

J5 =
100
√

5

9τ11

1

(λ2 − 4)3/2
α3 − 400

√
5

27τ15

44λ2 − 635

(λ2 − 4)5/2
α5 + . . .

J6 =
14300

81τ14

1

(λ2 − 4)2α
4 + . . .

(4.39)

When solving these equations the coefficients are obtained in a zigzag pattern:

first solve for the leading term in L, then that of W, then the subleading term

in L, then the leading term in J4, and so on. From the solutions of L and W

we readily confirm that the integrability equation (4.32) is obeyed, although

it has to be said that at our current level of understanding this appears as a

minor miracle. We take this to be powerful evidence that the holonomy pre-

scription is the correct one for defining higher spin black holes with consistent

thermodynamics.

To obtain the partition function we can integrate either one of the equa-
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tions
∂ lnZ(τ, α)

∂τ
= 4π2iL , ∂ lnZ(τ, α)

∂α
= 4π2iW (4.40)

and thereby arrive at the result quoted in the introduction:

lnZ(τ, α) =
iπk

2τ

[
1− 4

3

α2

τ4 +
400

27

λ2 − 7

λ2 − 4

α4

τ8 −
1600

27

5λ4 − 85λ2 + 377

(λ2 − 4)2

α6

τ12

+
32000

81

20λ6 − 600λ4 + 6387λ2 − 23357

(λ2 − 4)3

α8

τ16

]
+ . . .

(4.41)

This partition function is the main result of our bulk analysis. The black

hole entropy S can be obtained by applying standard thermodynamics:

S = lnZ(τ, α)− 4π2i(τL+ αW − τL − αW) (4.42)

Since the formula for the entropy does not appear particularly illuminating we

refrain from writing it. Suffice it to say that at order α0 the the entropy is

A/4G, where A is the area of the BTZ horizon, but at higher orders in α no

geometric interpretation is evident.

4.2.5. Comments and two checks

Ignoring the factors of λ2 − 4 for the moment — which, we recall, can be

normalized away — the charges all take the form

Js = τ−s
∞∑
n=0

(
α

τ2

)2n+s−2

P
(s)
n (λ2) , s ≥ 3 (4.43)

where we include W ≡ J3. The degree n polynomials P
(s)
n (λ2) have zeroes

that do not coincide with those of other values of n or s, and so are unlikely

to carry any significance.

A first check on our result (4.39) is the λ-independence of the first correc-

tion toW and, by integrability, to L. This can be understood as following from
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the universal leading coefficient of the WW OPE, which in our normalization

is16

W(z)W(0) ∼ −5k

π2

1

z6 + . . . (4.44)

In addition, we recall that the hs[λ] trace automatically mods out the

effects of higher spin generators upon taking λ = N for integer N ≥ 3. So

computing the holonomy in hs[λ] and then evaluating at λ = N is identical to

computing the holonomy in the SL(N,R) theory from the start.

To verify this, we have embedded the black hole with spin-3 chemical po-

tential in the theories with Lie algebras G =SL(3,R), SL(4,R), SL(5,R). The re-

sults of these investigations match (4.39) exactly (modulo the non-existence of

some of the J charges in these cases). Furthermore, we have confirmed that the

holonomy equations themselves reduce to those of SL(N,R) non-perturbatively

(see appendix 4A for an example).

Another useful check is to consider hs[1
2 ]. In this case, the gauge algebra

can be represented in terms of a Moyal product, with generators being even

degree polynomials in two spinor variables [11]. All computations can then be

carried out in this framework, and the results precisely agree with (4.39) at

λ = 1/2.

4.3. λ = 0, 1: comparison to CFT

Recall that W∞[λ] is the asymptotic symmetry of the AdS3 vacuum of

the hs[λ] theory, and possesses hs[λ] as its wedge subalgebra in the c → ∞

limit, as discussed in [36]. In anticipation of an application of our results to

the holographic realm, we switch gears and study two CFT realizations of

W∞[λ] symmetry. One is a theory of free bosons at λ = 1, and the other, a

theory of free fermions at λ = 0. We compute their exact partition functions

16 The sign convention adopted here differs from that in most CFT references, but turns out

to be more convenient.
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in the presence of a spin-3 chemical potential; the perturbative expansions

match (4.41). We defer a discussion of why this should be, and its intriguing

implications, to the next section.

For easy reference, the gravity results for the leftmoving part of the parti-

tion function through O(α8) are

λ = 1 : lnZ(τ, α) =
iπk

τ

[
1

2
− 2

3

α2

τ4 +
400

27

α4

τ4 −
8800

9

α6

τ12 +
10400000

81

α8

τ16 + . . .

]

λ = 0 : lnZ(τ, α) =
iπk

τ

[
1

2
− 2

3

α2

τ4 +
350

27

α4

τ8 −
18850

27

α6

τ12 +
5839250

81

α8

τ16 + . . .

]
(4.45)

We ignore the rightmoving part henceforth and focus on a single chiral sector.

4.3.1. λ = 1: Free bosons

A theory ofD free complex bosons has globalW∞[1] symmetry with central

charge c = 2D [81,82,83]. The symmetry algebra is also known [57] as WPRS
∞ ,

and can be written in a linear basis, unlike the W∞[λ] algebra for other values

of λ.

The complex bosons have OPE

∂φ
i
(z1)∂φj(z2) ∼ −

δij
(z1 − z2)2 , i, j = 1, 2, . . . D (4.46)

The stress tensor and spin-3 current are (summations implied)

T = −∂φi∂φi

W = ia
(
∂2φ

i
∂φi − ∂φ

i
∂2φi

) (4.47)

where a is some normalization constant. W is Virasoro primary, as it should

be to match with the spin-3 current of our bulk theory. The other higher spin

currents are also quadratic in the scalars but include more derivatives; the

linearity of the symmetry algebra follows from the quadratic nature of these

currents.
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To fix a, we compute the leading part of the WW OPE:

W(z)W(0) ∼ −4a2D

z6 + · · · (4.48)

Since our standard normalization is

W(z)W(0) ∼ − 5k

π2z6 (4.49)

to match up we take

a =

√
5k

4π2D
(4.50)

Trading D for k according to c = 6k = 2D, we have

a =

√
5

12π2 (4.51)

Now we write down mode expansions. We work on the cylinder with

coordinate w = σ1 + iσ2, related to the plane coordinate z as z = e−iw. We

suppress the i indices for the time being. We write

∂φ(w) = −
∑
m
βme

imw , ∂φ(w) = −
∑
m
βme

imw (4.52)

where the modes obey

[βm, βn] = mδm,−n = [βm, βn] (4.53)

The normal ordered stress tensor is

T = −
∞∑
m=1

(
β−mβm + β−mβm

)
+
k

4
+ nonconstant (4.54)

Since what appears in the partition function is the zero mode of the stress

tensor, only the constant terms are relevant here. In the remainder of this

section we drop the ground state k/4 term, as it plays no role in the high

temperature expansion that we are interested in.
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As in [79], the quantity L is related to the constant part of the stress tensor

as

L = − 1

2π
T (4.55)

and so we have

L =
1

2π

∞∑
m=1

(
β−mβm + β−mβm

)
(4.56)

Now consider the mode expansion of the spin-3 charge, which is the con-

stant part of W. We get, after normal ordering,

W = 2a
∞∑
m=1

m
(
β−mβm − β−mβm

)
(4.57)

We can think of the states as being described by arbitrary numbers of

positively and negatively charged particles. For example, a state of the form

|nm, nm〉 = (β−m)nm(β−m)nm |0〉 (4.58)

obeys

L|nm, nm〉 =
1

2π
m(nm + nm)|nm, nm〉

W|nm, nm〉 = 2am2(nm − nm)|nm, nm〉
(4.59)

It is now elementary to compute the partition function

Z(τ, α) = Tr
[
e4π2i(τL+αW)

]
(4.60)

and we obtain

lnZ(τ, α) = −D
∞∑
m=1

[
ln
(
1− e2πiτm−8π2iaαm2

)
+ ln

(
1− e2πiτm+8π2iaαm2

)]
(4.61)

In the high temperature regime, τ2 → 0, we can convert the sum to an

integral. This gives

lnZ(τ, α) = − 3ik

2πτ

∫ ∞
0
dx

[
ln

(
1− e−x+ 2iaα

τ2 x2
)

+ ln

(
1− e−x−

2iaα
τ2 x2

)]
(4.62)
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where we also used D = 3k.

It is straightforward to expand in powers of α and do the integrals:

lnZ(τ, α) =
iπk

2τ
− 2iπk

3

α2

τ5 +
400iπk

27

α4

τ9 −
8800iπk

9

α6

τ13 +
10400000iπk

81

α8

τ17 + · · ·

(4.63)

This agrees precisely with the gravity result (4.45).

4.3.2. λ = 0: Free fermions

A theory of D free complex fermions furnishes W1+∞ symmetry with cen-

tral charge c = D [85]. The W1+∞ algebra has spins s = 1, 2, 3, . . ., and is

related to W∞[0] by a constraint that eliminates the spin-1 current. In the

following we will proceed by using a chemical potential to demand that the

spin-1 charge is set to zero in the partition function.

The fermions have OPE

ψ
i
(z1)ψj(z2) ∼

δij
z1 − z2

(4.64)

The stress tensor is

T = −1

2
ψ
i
∂ψi −

1

2
ψi∂ψ

i
(4.65)

According to [85] the relevant spin-3 current is, up to a normalization

constant b that we will fix in a moment,

W = ib(∂2ψ
i
ψi − 4∂ψ

i
∂ψi + ψ

i
∂2ψi) (4.66)

As noted in [84], this current is not primary, as the TW OPE contains an extra

term of the form J/z4 where J is the spin-1 current. From this point of view

it is clear that to compare with the bulk we need to set J = 0 so that W will

appear as effectively primary.

Now we consider the leading part of the WW OPE, which is

W(z)W(0) ∼ −24Db2

z6 + · · · (4.67)
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where we’ve now taken D complex fermions. To match to our usual normal-

ization we should take

b =

√
5

144π2 (4.68)

where we’ve used D = c = 6k.

The mode expansion on the cylinder is17

ψ(w) = e−
iπ
4
∑
m
bme

imw , ψ(w) = e−
iπ
4
∑
m
bme

imw (4.69)

with

{bm, bn} = δm,−n (4.70)

Ignoring the zero point energy and nonconstant terms, the normal ordered

stress tensor is

T (w) = −
∞∑
m=1

m(b−mbm + b−mbm) (4.71)

so

L =
1

2π

∞∑
m=1

m(b−mbm + b−mbm) (4.72)

Similarly, the spin-3 current is

W = −6b
∞∑
m=1

m2(b−mbm − b−mbm) (4.73)

A state of the form

|nm, nm〉 = (b−m)nm(b−m)nm |0〉 (4.74)

obeys

L|nm, nm〉 =
1

2π
m(nm + nm)|nm, nm〉

W|nm, nm〉 = −6bm2(nm − nm)|nm, nm〉
(4.75)

17 We suppress the i indices.
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Finally, we need to consider the spin-1 charge operator, which is Q ∼
∫
ψψ.

Our precise definition of the charge operator is

Q|nm, nm〉 = (nm − nm)|nm, nm〉 (4.76)

In the thermodynamic (high temperature) limit it won’t matter whether

we impose Q = 0 as an exact condition on states or as an expectation value;

the latter is more convenient since it can be imposed by including a chemical

potential for Q and tuning it appropriately. The partition function including

a chemical potential for Q is

Z(τ, α, γ) = Tr
[
e4π2i[τL+αW]+iγQ

]
(4.77)

We calculate this to be

lnZ(τ, α, γ) = D
∞∑
m=1

[
ln
(
1 + e(2πiτm−24π2ibαm2+iγ)

)
+ ln

(
1 + e(2πiτm+24π2ibαm2−iγ)

) ] (4.78)

Converting the sum to an integral we have

lnZ(τ, α, γ) =
3ik

πτ

∫ ∞
0
dx

[
ln

(
1 + e

−x+ 6ibα
τ2 x2+iγ

)
+ ln

(
1 + e

−x− 6ibα
τ2 x2−iγ

)]
(4.79)

We now fix γ by demanding charge neutrality. The charge is obtained by

differentiating with respect to γ and so we need

0 =

∫ ∞
0

dx

[
1

e−x−iεx2−iγ + 1
− 1

e−x+iεx2+iγ + 1

]
(4.80)

where we defined

ε =
6bα

τ2 (4.81)

Solving perturbatively gives

γ = −π
2

3
ε+

16π4

9
ε3 − 448π6

9
ε5 +

1254656π8

405
ε7 + · · · (4.82)
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We now plug this into (4.79), expand in ε, and compute the integrals. After

inserting the value of b given above, we find

lnZ(τ, α) =
iπk

2τ
− 2iπk

3

α2

τ5 +
350iπk

27

α4

τ9 −
18850iπk

27

α6

τ13 +
5839250iπk

81

α8

τ17 + · · ·

(4.83)

This agrees precisely with the gravity result (4.45).

4.4. Implications for higher spin AdS3/CFT2 duality

We now consider what lessons can be drawn from the agreement between

our bulk gravity computations and those for free bosons and fermions. For this

discussion, let us make the assumption that the agreement will persist to all

order in α.

Symmetry obviously plays a powerful role in determining these partition

functions. The most likely explanation for why we see agreement is that the

answer is fixed by symmetry. On the bulk side, our black hole solutions just

involve the non-propagating bulk fields described by the Chern-Simons action,

and not the additional scalar fields that arise in the context of the conjecture

[34]. Since the topological sector is what gives rise to the asymptotic symmetry

algebra, it seems plausible that the physical properties of solutions that lie in

this sector are fixed by symmetry.

On the CFT side, a symmetry argument proceeds along the following

lines.18 The partition functions we compute are determined, at order αn,

by the n-point correlation functions of spin-3 currents on the torus. We are

interested in the high temperature behavior of these correlation functions. Per-

forming modular transformations term by term, the leading high temperature

behavior will be related to correlation functions at low temperature, which are

evaluated on the infinite cylinder, or equivalently the plane. Finally, the cor-

relation functions of spin-3 currents on the plane can be computed from the

18 We thank Matthias Gaberdiel for discussions of these matters.
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OPEs. Thus, given the OPEs, we expect that we should be able to compute

the partition function in the high temperature limit, and it should agree with

our gravity result. Indeed, this computation has now been done on the CFT

side [58] to O(α6), to agreement with the results herein. This is a powerful

check, as the mechanics of the CFT computation look nothing like those on

the gravity side; it is an outstanding issue to understand in a deeper sense why

these two diverse approaches match.

As was already mentioned in the introduction, our final result should be

thought of as a Cardy formula for CFTs withW∞[λ] symmetry and with large

central charge.

Although we have argued that our successful matching of partition func-

tions in terms of free fermions and bosons is a consequence of symmetry, it is

interesting to note that for λ = 0 it is believed that the theory (4.2) is in fact

fully equivalent to free fermions with a singlet constraint. It would therefore

be very interesting to carry out further tests of the AdS/CFT duality [34] at

λ = 0. In fact, a recent construction in [86] has cast the theory at λ = 0 as

the untwisted sector of a theory of free bosons subject to a continuous orbifold.

The fact that bosons, not fermions, were utilized in that construction is not

fixed, however.18

We conclude with one final simple observation. Both for λ = 0 and λ = 1,

in the free fermion/boson theories, there are natural candidates for operators

dual to the scalar fields that appear on the bulk side of the duality [34]. These

bulk scalars are dual to spinless operators in the CFT of dimension ∆ = 1±λ.

At λ = 0 we have the free fermion operator ψ(z)ψ̃(z), and at λ = 1 we have the

free boson operator ∂φ(z)∂φ(z), both of which have the appropriate dimension.

Appendix 4A. Holonomy equations with J4 6= 0

Here we present the holonomy equations, Tr(ωn) = Tr(ωnBTZ), for the
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black hole connection (4.27), up to n = 4. In the interest of clarity and space,

we only include charges up to J4. We find

n = 2 : 0 = α2J4(144k2(λ2 − 9))− 1792π2α2L2 − 504πατkW

− 168πτ2kL − 21k2

n = 3 : 0 = αJ4

(
36k2(λ2 − 4)(λ2 − 9)[80πα2L(λ2 − 16) + 9kτ2(λ2 − 4)]

)
− 40α3π2

[
45W2k(5λ4 − 65λ2 + 264) + 256L3π(λ2 − 4)(λ2 − 16)

]
− 4320α2WLπ2τk(λ2 − 4)(4λ2 − 29)

− 4032αL2π2τ2k(λ2 − 4)2

− 189Wπτ3k2(λ2 − 4)2

n = 4 : 0 = α4J2
4

(
57600k4(λ2 − 4)(λ2 − 9)[35λ6 − 1330λ4 + 21707λ2

− 134748]
)
− J4

(
624k2(λ2 − 4)(λ2 − 9)

[
12800α4L2π2(7λ4 − 199λ2

+ 1788) + 8400α3Wπτk(5λ4 − 95λ2 + 636)

+ 23760α2Lπτ2k(λ2 − 4)(λ2 − 11) + 99τ4k2(λ2 − 4)2
])

+ 665600α4Lπ3
[
75W2k(λ2 − 9)(5λ4 − 95λ2 + 636)

+ 352L3π(λ2 − 4)(λ4 − 17λ2 + 100)
]

+ 131788800α3WL2π3τk(λ2 − 4)
[
3λ4 − 51λ2 + 244

]
+ 137280α2π2τ2k(λ2 − 4)

[
64L3π(λ2 − 4)(11λ2 − 71)

+ 45W2k(5λ4 − 65λ2 + 264)
]

+ 823680αWLπ2τ3k2(λ2 − 4)2
[
23λ2 − 123

]
− 9009k2(3λ2 − 7)(λ2 − 4)2(k + 8πLτ2)(k − 8πLτ2)

(4A.1)

We have organized these equations so as to reveal the J4 dependence.

Comparison to (4.38) reveals the underlying structure discussed in the main

text.

It is instructive to ask what happens when we take λ = 3. Since this

reduces to the SL(3,R) case, in which there are only two independent holonomy
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equations, one requires that the n = 4 equation should vanish on account of

the other two, and that any J4 dependence should drop out of these equations.

The latter is evident upon inspection. And indeed, taking λ = 3 reduces

the mess of n = 4 to be proportional to the n = 2 equation by a finite factor.

Both the n = 2 and n = 3 equations reduce to those in [79] (see e.g. equation

(5.14) there).
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5. Scalar fields and three-point functions in 3d Vasiliev gravity

We now switch gears from finite to zero temperature physics. One of

the motivations for constructing the hs[λ] black holes was to construct the

(conjectured) bulk dual to finite temperature states in the minimal model CFT.

There are many other checks of this conjecture that can be done, some of them

prior, in a sense, to the construction of black holes. For instance, a more basic

quantity available for comparison is the set of boundary correlation functions

obtained from the Vasiliev theory. The simplest correlators are three-point

functions, and in what follows we calculate these correlators from the bulk and

compare to CFT: we will find perfect agreement between bulk and boundary.

Along the way, we present techniques for writing generalized bulk scalar

wave equations in arbitrary on-shell higher spin backgrounds, which have in-

teresting applications beyond the present context which we shall touch upon

in the next chapter.

Let us be more specific. On the CFT side we proceed under the assumption

that the theory hasW∞[λ] symmetry. A separate question, not addressed here,

is whether this is indeed true of the minimal model CFTs in the ’t Hooft limit;

evidence in favor appears in [36,38,60].

We now state our result for the three-point correlators. First, in the de-

formed bulk theory, we calculate the three-point function of two scalar fields

and a higher spin field of arbitrary spin s. Recall that there are two complex

scalar fields in the bulk, each with m2 = λ2−1. Taking one of them to be dual

to an operator O and its complex conjugate O, our result for the three-point

function in terms of the scalar-scalar two-point function is

〈O±(z1)O±(z2)J (s)(z3)〉
〈O±(z1)O±(z2)〉

=
(−1)s−1

2π

Γ(s)2

Γ(2s− 1)

Γ(s± λ)

Γ(1± λ)

(
z12

z13z23

)s
(5.1)

where the subscript denotes standard (+) or alternative (−) quantization of

the scalar. The higher spin curent normalization is specified in what follows.
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The same correlator for the other scalar field, dual to an operator Õ and its

complex conjugate Õ, is identical to (5.1) but absent the (−1)s prefactor. In

the context of the duality [34], these operators should be assigned to take

opposite quantization to one another.

Let us now mention a few of the main insights that allowed us to compute

these correlators relatively easily. First, it is well known that if the scalar fields

are set to zero the Vasiliev theory is equivalent to a Chern-Simons theory with

gauge algebra hs[λ]⊕hs[λ]. To compute correlators of the type (5.1) we need

to couple a free scalar field to this theory. The general rules for incorporating

scalar fields into the higher spin theory are complicated but known (see [11]

and appendix II). However, free scalar field equations can be derived from the

elegant equation19

dC +A ? C − C ? A = 0 (5.2)

where (A,A) denote the hs[λ]⊕hs[λ] gauge fields. As we will explain, C is a

“master field” that takes values in the Lie algebra hs[λ] supplemented with an

identity element, and the scalar is the part of C proportional to the identity.

This equation reduces to the Klein-Gordon equation for a scalar of mass m2 =

λ2 − 1 when evaluated in AdS, and in general gives the coupling of higher

spin gauge fields to the linearized scalar. An important role is played by the

star-product appearing in (5.2), which is an associative multiplication known

as the “lone-star product” [57]. In the original paper [11] this product is

realized in terms of the Moyal product applied to symmetric polynomials of

“deformed oscillators.” However, the deformed oscillator approach is rather

inconvenient for present purposes, as one has to deal with the tedious procedure

of resymmetrizing strings of oscillators. By contrast, the lone-star product

gives us a closed form expression for the multiplication rules, and turns out to

19 A second type of scalar, dual to the Õ operators noted above, obeys the same equation but

with A and A interchanged.
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be much simpler to work with.

The second key insight is to put the higher spin gauge invariance at center

stage. To compute three-point correlators of the type (5.1) we need to solve

(5.2) in the presence of flat connections A and A representing higher spin gauge

fields with prescribed asymptotics. Such flat connections can be generated by

gauge transformations. Therefore, if we start from a solution for the free scalar

in AdS3 and then act with the gauge transformation, we generate a new scalar

solution in the presence of the higher spin gauge fields. In this way, rather

than having to first work out the perturbed scalar equation and then solve it,

we can generate the solution in one step, which is a huge simplification.

On the CFT side, our starting point is the assumption that in the ’t Hooft

limit the WN coset CFT has W∞[λ] global symmetry. While this is unproven,

it is a prerequisite for the duality to hold in the pure gauge sector. Previous

calculations [39,60] took the tack of computing the s = 2, 3, 4 correlators (5.1)

at finite N in the CFT, and taking the ’t Hooft limit afterwards; this serves

as good evidence that W∞[λ] really does emerge in the ’t Hooft limit, but the

complications of finite N are not required if one wants to ask questions about

the scalar sector. Thus, for the purposes of calculating the correlator (5.1),

we believe that the most direct strategy begins with the assumed symmetry of

the ’t Hooft limit, and asks to what extent the representation theory ofW∞[λ]

— in particular, of its large k wedge subalgebra hs[λ] — fixes the correlator.

Generalizing results in [36], we show that, in fact, it is enough to reproduce

the result (5.1) and the accompanying result for the second scalar, providing

perfect agreement with the bulk.

Our results for bulk and boundary correlators reduce to previous compu-

tations [39,60] in the appropriate limits. In all, we find this to be a significant

step toward verifying the duality proposal [34].

Our techniques will also have application to computing other correlation
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functions in these theories. For instance, there is by now a good understanding

of higher spin black holes in D=3 [79,49,51,87,73]; in particular their entropy is

known to match that of the dual CFT in the high temperature limit [51]. Using

the results of this paper, it is now quite feasible to compute scalar correlators

in the background of a higher spin black hole and compare with CFT.

The remainder of this chapter is organized as follows. In section 5.1 we go

through the main steps involved in deriving the equation (5.2) from the general

formulation of the Vasiliev theory. Further details are provided in appendix

II of the manuscript. In section 5.2 we show how to work out the explicit

form of the scalar wave equation in the presence of higher spin gauge fields.

In section 5.3, which is the core of the chapter, we show how to use gauge

invariance to generate solutions of the scalar wave equations, and then read off

the desired correlation functions. In section 5.4 we compute these correlators

on the CFT side under the assumption of W∞[λ] symmetry, and demonstrate

perfect agreement with the bulk. We conclude with some comments in section

5.5. In Appendix 5A we derive a result needed in the text, and Appendix 5B

provides some useful explicit expressions for comparison with a formula derived

in section 4. Finally, Appendix I of the manuscript presents some evidence for

the isomorphism between the lone-star product and the Moyal product acting

on deformed oscillators.

5.1. Matter fields in Vasiliev gravity

We begin with a review of the formulation of 3d higher spin gravity due

to Vasiliev and collaborators, as presented in [11]. We first recall how to write

the gauge sector of this theory as a hs[λ]⊕hs[λ] Chern-Simons theory, and then

show how to introduce linearized scalar fields in the Chern-Simons language.

Seeing as we will not need all of the details of the theory’s construction, we

present an abridged discussion; the reader who would prefer not to take any-

thing on faith is referred to appendix II.

86



Vasiliev gravity contains one higher spin gauge field for each integer spin

s ≥ 2, coupled to some number of matter multiplets. There are various in-

gredients, foremost among them a set of “master fields:” a spacetime 1-form

W = Wνdx
ν as well as spacetime 0-forms B and Sα. Besides the spacetime

coordinates x, the generating functions W,B and Sα also depend on auxiliary

bosonic twistor variables20 zα, yα where α = 1, 2, as well as on two pairs of

Clifford elements: ψ1,2, and k, ρ. That is,

{ψi, ψj} = 2δij , kρ = −ρk , k2 = ρ2 = 1 (5.3)

Whereas ψ1,2 commute with all other auxiliary variables, k and ρ have the

properties
kyα = −yαk, kzα = −zαk

ρyα = yαρ, ρzα = zαρ
(5.4)

Roughly speaking, W encodes the gauge sector, B parameterizes the AdS

vacua of the theory and is used to introduce propagating matter fields, and

Sα ensures that the theory has the correct internal symmetries. The elements

{zα, yα, k, ρ} are ingredients in the realization of these symmetries, and the ψi

are required only when writing down solutions.

Twistor indices are raised and lowered by the rank two antisymmetric

tensor εαβ :

zα = εαβzβ , zα = zβεβα (5.5)

where we use the convention, following [11], ε12 = ε12 = 1. Functions of the

twistors zα, yα are multiplied by the Moyal product:

f(z, y) ? g(z, y) =
1

(2π)2

∫
d2u

∫
d2v eiuαv

α
f(z+u, y+u)g(z− v, y+ v) (5.6)

We can combine the oscillators and various other ingredients to construct

two sets of so-called “deformed” oscillators, denoted z̃α, ỹα. The ỹα, which

20 The zα, yα are sometimes referred to as ”oscillators.”
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will be more important for our work here, obey deformed oscillator star-

commutation relations

[ỹα, ỹβ ]? = 2iεαβ(1 + νk) (5.7)

These deformed oscillators give rise to the higher spin algebra hs[λ] as follows.

Define elements of the algebra to consist of symmetrized, positive even-degree

polynomials in ỹα. Multiplying these elements using (5.7), and projecting onto

k = ±1, the commutation relations are those of hs[λ], with λ = 1
2(1∓ ν).21

This deformed oscillator algebra plays a central role in the study of AdS

vacua in Vasiliev theory. It emerges dynamically from the field equations of the

full nonlinear system of higher spins. The parameter ν encodes the deforma-

tion, and in the event that ν = 0, the theory is said to be undeformed. ν also

plays two other important roles: it parameterizes a family of inequivalent AdS

vacua, and sets the mass of any scalar fields that we introduce to the theory.

These connections stem from the structure of the field equations, themselves

tightly constrained by higher spin gauge invariance.

To see how ν appears in connection with the AdS vacua, we examine the

field equations. There are five equations in terms of the master fields W,B and

Sα, and we present two of them here (the others are written in the appendix):

dW = W ∧ ?W

dB = W ?B −B ?W
(5.8)

The equations that we have omitted all depend on Sα. At the order to which

we will be working in this paper — namely, linear in the scalar fields — the

entire effect of Sα is that it forces W and B to be independent of k and z̃α.

With this in hand, we can proceed by focussing on (5.8).

21 More precisely, we consider polynomials of degree two and higher, since the constant term

star-commutes with everything. We also note that one can enlarge hs[λ] by including odd powers

of the ỹα in the polynomials, though our interests here are in purely bosonic Vasiliev theory.
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We first consider solutions with vanishing scalar field. This corresponds to

taking a constant background value for B,

B = ν (5.9)

where the constant ν is fixed by the omitted Sα equations to be the same

parameter as appears in the deformed oscillator expressions.

Now, the first equation in (5.8) can be written as a flatness condition for

two Chern-Simons gauge fields, each taking values in the Lie algebra hs[λ]. In

order to see this we introduce gauge fields A and A by

W = −P+A− P−A (5.10)

where A and A are functions of ỹα and the spacetime coordinates xµ. Here we

have introduced the projection operators

P± =
1± ψ1

2
(5.11)

obeying

P±ψ1 = ψ1P± = ±P±, P±ψ2 = ψ2P∓ (5.12)

Plugging (5.10) into (5.8) yields

dA+A ∧ ?A = 0

dA+A ∧ ?A = 0
(5.13)

From our earlier remarks, we see that if A and A are taken to be polynomials

of positive even degree in symmetrized products of ỹα, then (5.13) are equiv-

alent to the field equations of hs[λ]⊕hs[λ] Chern-Simons theory. Since SL(2)

is a subalgebra of hs[λ], this theory includes ordinary Einstein gravity with a

negative comological constant as a consistent truncation.

Before introducing the scalar fields, let us say a bit more about hs[λ]. The

hs[λ] Lie algebra is spanned by generators labeled by a spin index s and a mode

index m. We use the notation of [36], in which a generator is represented as

V sm , s ≥ 2 , |m| < s (5.14)

89



The commutation relations are

[V sm, V
t
n] =

s+t−|s−t|−1∑
u=2,4,6,...

gstu (m,n;λ)V s+t−um+n (5.15)

with structure constants defined in appendix I. The generators with s = 2 form

an SL(2,R) subalgebra, and the remaining generators transform simply under

the adjoint SL(2,R) action as

[V 2
m, V

t
n] = (m(t− 1)− n)V tm+n (5.16)

The parameter λ can be mapped to the parameters of the oscillator formulation

as

λ =
1− νk

2
(5.17)

where k = ±1. When λ = 1/2, the theory is undeformed and this algebra is

isomorphic to hs(1,1) [88].

To summarize what we have found so far, the gauge sector of the Vasiliev

theory boils down to hs[λ]⊕hs[λ] Chern-Simons theory. This sector of the

theory has no propagating degrees of freedom.

To introduce propagating scalar fields we study a linearized fluctuation of

B around its vacuum value (5.9),

B = ν + C(x, ψi, ỹα) (5.18)

The bosonic field C is taken to have an expansion in even-degree symmetrized

products of the deformed oscillators ỹα. The lowest term in the expansion,

with no deformed oscillators, will be identified with the physical scalar field. C

obeys

dC −W ? C + C ? W = 0 (5.19)

We decompose C as

C = P+ψ2C(x, ỹα) + P−ψ2C̃(x, ỹα) (5.20)
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Plugging into (5.19) we find

dC +A ? C − C ? A = 0

dC̃ +A ? C̃ − C̃ ? A = 0
(5.21)

As shown in the next section, expanded around AdS each of these equations

reduces to the Klein-Gordon equation for a scalar field of mass m2 = λ2 − 1.

More generally, these equations capture the interaction of the linearized scalars

with an arbitrary higher spin background. For example, they can be used to

study the propagation of a scalar field in the higher spin black hole of [51].

We note that the two equations (5.21) are related by A ↔ A, C ↔ C̃.

This is interpreted as a “charge conjugation” operation that flips the sign of

all odd spin tensor gauge fields. Another notable feature is that the equations

(5.21) are only sensible for A and A on-shell, i.e. satisfying equation (5.13).

This can be seen by taking d of these equations; if the connections are not flat

this leads to extra constraints on C and C̃ with no interpretation in terms of

propagating scalar fields.

Recapping, we have now reduced the system of equations down to (5.13)

and (5.21). These equations describe the propagation of linearized scalar fields

in an arbitrary on-shell higher spin background. They do not capture back-

reaction of the scalar on the higher spin fields, or self-interactions among the

scalars. Neither of these effects is needed for the computation of the three-point

correlators herein.

We now turn to solving these equations, and introducing efficient tools for

this purpose. We focus on the C equation; results for C̃ then follow by charge

conjugation.

5.2. Generalized Klein-Gordon equations in higher spin backgrounds

Starting from

dC +A ? C − C ? A = 0 (5.22)
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for some higher spin background determined by hs[λ]-valued connections

(A,A), we want to extract the generalized Klein-Gordon equation hiding

within.

As we said, in the traditional formalism of bosonic Vasiliev theory, the

master field C is expanded in deformed oscillators ỹα as

C = C1
0 + Cαβ ỹαỹβ + Cαβσλỹαỹβ ỹσ ỹλ + . . . (5.23)

where the star product is implied and all components of C are symmetric in

twistor indices. This separates the components of the master field into the

physical scalar field, which is the lowest component C1
0 , and the remaining

components related on-shell to C1
0 by derivatives. Plugging (5.23) into (5.22)

leads, after much work, to the scalar equations.

The most tedious part of this computation is multiplying the deformed

oscillators. We need to take a pair of symmetrized combinations of oscilla-

tors, multiply them, and then resymmetrize using (5.7). Rather than carrying

out this procedure each time, it would be much more convenient if we had a

closed-form expression for the multiplication rules. Recall that the Lie algebra

obtained via star-commutation of these elements is hs[λ]. Now, underlying

hs[λ] is an associative product, under which the hs[λ] Lie bracket becomes the

commutator (5.15). This “lone-star product” is defined as

V sm ? V tn ≡
1

2

s+t−|s−t|−1∑
u=1,2,3,...

gstu (m,n;λ)V s+t−um+n (5.24)

One recovers (5.15) upon using the fact that

gstu (m,n;λ) = (−1)u+1gtsu (n,m;λ) (5.25)

This was originally presented in an early paper on W∞ algebras [57], and used

more recently by two of the present authors [51] to compute black hole partition

functions in hs[λ] gravity.
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It is then very natural to suspect an isomorphism between the product rules

for symmetrized oscillator combinations and those of the lone-star product. In

appendix I we present strong evidence at low spins that, indeed, the lone-

star product acting on hs[λ] generators is isomorphic to the product involving

the deformed oscillators, with a specific identification between generators and

oscillator polynomials.

Proceeding under this assumption, which will be well justified by the con-

sistency of all results, provides a major technical simplification. One trades

the tedious symmetrization procedure for the known and easily manipulated

hs[λ] structure constants.

In this language, we expand the master field C as follows:

C =
∞∑
s=1

∑
|m|<s

CsmV
s
m (5.26)

This maps to (5.23) under the identifications

Csm ∼ Cα1α2···α2s−2 (5.27)

with the index m related to the number of oscillators ỹ1 versus ỹ2 as 2m =

N1−N2. (For more details see, appendix I.) The functions Csm are functions of

spacetime coordinates x, and the auxiliary tensor structure has been absorbed

into (s,m). The gauge fields are expanded similarly,

A =
∞∑
s=2

∑
|m|<s

AsmV
s
m , A =

∞∑
s=2

∑
|m|<s

A
s
mV

s
m (5.28)

The lowest scalar component, C1
0 , will be our physical scalar field, and the

remaining Csm will be related to derivatives of C1
0 . Upon plugging into (5.22)

we can obtain the equation of motion for C1
0 .

Let us begin by solving the equation (5.22) in AdS; aside from being an

instructive exercise, this will lay the foundation for what follows. The same
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computation has been performed in various places (e.g. [11,39]) in the oscilla-

tor language. Because there are no higher spin fields turned on in the vacuum,

C1
0 should obey the ordinary Klein-Gordon equation and the remaining com-

ponents should be fixed in terms of C1
0 . In addition, previous literature on the

subject tells us that the scalar mass squared is m2 = λ2 − 1. An attractive

feature of the theory is that the value of the mass is fixed by the gauge algebra.

5.2.1. AdS: Recovering the Klein-Gordon equation

The AdS connection is constructed out of the spin-2 generators alone,

namely those forming an SL(2,R) subalgebra of hs[λ]. We work in Euclidean

signature in Fefferman-Graham gauge, with radial coordinate ρ and boundary

coordinates (z, z̄). The connection is

A = eρV 2
1 dz + V 2

0 dρ

A = eρV 2
−1dz̄ − V 2

0 dρ
(5.29)

giving rise to a metric22

ds2 = dρ2 + e2ρdzdz̄ (5.30)

and vanishing higher spin fields.

Due to the simplicity of this connection — the small number of generators,

their low spin and the symmetric appearance of A and A — the C equations

(5.22) are simple to write. Decomposing along both spacetime and internal

hs[λ] space, and using the lone-star product, one finds the following linear

22 In this work, we will not need the prescription to pass from Chern-Simons to metric lan-

guage; suffice it to say that in writing this metric, we have chosen a particular normalization of

the hs[λ] trace. See [51] for conventions used here.
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combinations to equal zero 23

V sm,ρ : ∂ρC
s
m + 2Cs−1

m + Cs+1
m g

(s+1)2
3 (m, 0)

V sm,z : ∂Csm + eρ
[
Cs−1
m−1 +

1

2
g2s

2 (1,m− 1)Csm−1 +
1

2
g

2(s+1)
3 (1,m− 1)Cs+1

m−1

]
V sm,z̄ : ∂Csm

− eρ
[
Cs−1
m+1 −

1

2
g2s

2 (−1,m+ 1)Csm+1 +
1

2
g

2(s+1)
3 (−1,m+ 1)Cs+1

m+1

]
(5.31)

where |m| < s and ∂ = ∂z, ∂ = ∂z̄. (Here and henceforth, we suppress the

λ-dependence of the structure constants gstu (m,n).)

It is now easy to obtain the Klein-Gordon equation. Writing out a handful

of equations at s = 1, 2, one finds four that form a closed set for components

{C1
0 , C

2
0 , C

3
0 , C

2
1}:

V 1
0,ρ : ∂ρC

1
0 + C2

0 ·
λ2 − 1

6
= 0

V 1
0,z̄ : ∂C1

0 + eρC2
1 ·

λ2 − 1

6
= 0

V 2
1,z : ∂C2

1 + eρC1
0 +

eρ

2
C2

0 − eρC3
0 ·

λ2 − 4

30
= 0

V 2
0,ρ : ∂ρC

2
0 + 2C1

0 + C3
0 ·

2(λ2 − 4)

15
= 0

(5.32)

Solving for the higher components and plugging back in yields[
∂2
ρ + 2∂ρ + 4e−2ρ∂∂ − (λ2 − 1)

]
C1

0 = 0 (5.33)

This is the Klein-Gordon equation in the background (5.30) with the correct

scalar mass.

In order for the entire set of unfolded equations to be consistent, all com-

ponents of C must have a smooth solution in terms of C1
0 .24 We delay presen-

tation of the solution for the full master field C in AdS until section 4, where

23 V sm,xµ is a short-hand notation for the component along V smdx
µ.

24 Upon solving for the Csm in terms of C1
0 , one observes the following pole structure in the λ
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we will need it to compute the three-point functions. There, we will also show

that for any connection related to AdS by a non-singular gauge transformation,

the linearized matter equations (5.22) admit a consistent solution for the full

master field C.

Before moving on to higher spin deformations of AdS, let us elucidate the

structure of (5.31) and present a systematic strategy for isolating the minimal

set of equations needed to solve for C1
0 . We wish to highlight a special type of

component of C, namely those which are of the form Cm+1
±m and hence have the

smallest possible spin for fixed mode m: C1
0 , C

2
±1, etc. We call these “minimal”

components.

Starting with the V sm,ρ equations, it is clear that for fixed mode m, one

can solve these recursively for all non-minimal components in terms of Cm+1
±m

and ρ derivatives thereof. This is a consequence of being in Fefferman-Graham

gauge, whereby Aρ = −Aρ = V 2
0 , and we will remain in this gauge throughout

this paper. Having solved for the minimal components Cm+1
±m , one should view

the V sm,z and V sm,z̄ equations as determining these in terms of C1
0 and (z, z̄)

derivatives thereof.

This reveals a useful strategy for extracting the smallest possible set of

equations to obtain the scalar equation in any background. We think of the ρ

equations as implicitly solved. Then, along (z, z̄), one need only keep track of

the mode indices appearing in any given equation, and one need only look at

equations along minimal directions.

plane:

Csm ∼ (· · ·)
s−1∏
p=1

(λ2 − p2)−1 (5.34)

This is evident in (5.32), for example. These are not problematic for p 6= 1, as hs[λ] degenerates

to SL(N,R) at integer values of λ ≥ 2, and the spin s > λ fields do not exist. The singularity at

λ = 1 has a different role, but is a reflection of the fact that hs[1], in the absence of a rescaling

of generators, becomes similarly degenerate as many structure constants vanish.
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Let us demonstrate with the AdS connection (5.29). We use the following

heuristic for which components appear in which equations (structure constants

implied): for modes m = 0, 1, 2,

...
...

V0,z̄ ∼ ∂C0 + C1 , V0,z ∼ ∂C0 + C−1

V1,z̄ ∼ ∂C1 + C2 , V1,z ∼ ∂C1 + C0

V2,z̄ ∼ ∂C2 + C3 , V2,z ∼ ∂C2 + C1

...
...

(5.35)

The equations V 1
0,z̄, V

2
1,z form a closed set among components with m = 0, 1,

and so will be enough, along with whatever ρ equations we need, to find the

Klein-Gordon equation. This is exactly what we presented in (5.32).

5.2.2. Chiral higher spin deformations of AdS

To warm up to the higher spin connections we will ultimately consider,

we present the simplest possible higher spin deformation of AdS: a constant,

chiral spin-3 deformation,

A = eρV 2
1 dz − ηe2ρV 3

2 dz̄ + V 2
0 dρ

A = eρV 2
−1dz̄ − V 2

0 dρ
(5.36)

From the point of view of the boundary CFT, this corresponds to adding a

dimension-3 operator to the CFT, with constant coupling η.

Using our mnemonic of the previous subsection, we make quick work of

this connection. Again writing the C master field equation in spacetime and

gauge components, we show some of the z̄ equations:

V−1,z̄ ∼ ∂C−1 + C0 + ηC−3

V0,z̄ ∼ ∂C0 + C1 + ηC−2

V1,z̄ ∼ ∂C1 + C2 + ηC−1

V2,z̄ ∼ ∂C2 + C3 + ηC0

(5.37)
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The components along z are unchanged from the AdS case. Reinserting the

spin indices, the minimal closed set of equations is {V 1
0,z, V

2
1,z, V

3
2,z, V

2
1,z̄}, along

with any ρ equations necessary. Solving this system gives the following equation

for C1
0 : [

∂2
ρ + 2∂ρ + 4e−2ρ(∂∂ − η∂3)− (λ2 − 1)

]
C1

0 = 0 (5.38)

There is now a three-derivative term, as one would expect from dimensional

analysis.

This can be extended to a chiral spin-s deformation: for a connection

A = eρV 2
1 dz − ηe(s−1)ρV ss−1dz̄ + V 2

0 dρ

A = eρV 2
−1dz̄ − V 2

0 dρ
(5.39)

the generalized Klein-Gordon equation is

[
∂2
ρ + 2∂ρ + 4e−2ρ(∂∂ + η(−∂)s)− (λ2 − 1)

]
C1

0 = 0 (5.40)

This example nicely captures the primary general feature of higher spin

deformations: higher derivative terms enter the generalized wave equation.

One can extend these methods to any connection — black holes or RG

flows, for instance — although the difficulty in solving the resulting set of equa-

tions increases rather quickly with the number of generators. We now study a

slightly more complicated connection, relevant for computation of correlation

functions in section 4.

5.2.3. Higher spin currents in AdS

Starting from (5.36), we wish to allow η to have arbitrary dependence on

(z, z̄).25 This will act as a source for spin-3 charge J (3), enabling us to compute

the correlator 〈O(z1)O(z2)J (3)(z3)〉, where O is a scalar primary dual to C1
0 .

25 When writing the functional dependence of fields and operators on (z, z̄), we temporarily

use the notation z ≡ (z, z̄).
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To do so, we will need to obtain the scalar equation to linear order in the spin-3

source (which we now label µ(3)).

Previous work on higher spin gravity [48,79], following earlier work in pure

gravity [69], laid out a dictionary for relating sources and charges to compo-

nents of the Chern-Simons connection, and we will apply and recapitulate those

techniques here.

The following is a flat connection, to linear order in the source µ(3)(z):

Az = eρV 2
1 +

1

B(3)
J (3)(z)e−2ρV 3

−2

Az̄ = −
4∑

n=0

1

n!
((−∂)nµ(3)(z))e(2−n)ρV 3

2−n

Az̄ = eρV 2
−1

(5.41)

along with the usual Aρ = −Aρ = V 2
0 , subject to

∂J (3)(z) = −B
(3)

4!
∂5µ(3)(z) (5.42)

This is the same connection as first presented in [79], now embedded in

hs[λ] instead of SL(3,R) and with vanishing stress tensor. The leading term in

Az̄, namely −µ(3)e2ρV 3
2 , is the source, dual to the charge term 1

B(3)J
(3)e−2ρV 3

−2

in Az. The remaining terms in Az̄ are required for flatness. We have included

a normalization constant B(3) in the definition of the current. While its actual

value is unimportant for the calculations in this paper26, we include it to stress

that we are inserting the factor

e
∫
d2z µ(3)J (3)

(5.43)

in the CFT path integral. Writing the connection with unit coefficient (up to

a sign) for the chemical potential µ(3) then fixes the other free coefficient, and

26 For an explicit formula for this coefficient for any spin, see [36], equation (A.4), where

B(s) = − k
2π
Ns in their notation.
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B(3) is fixed by the Ward identity (5.42), equivalently by the OPE

J (3)(z)J (3)(0) ∼ 5B(3)

2π

1

z6 (5.44)

Passing to the metric-like formulation of the spin-3 field using ϕµνσ ∼

Tr(e(µeνeγ)), one can explicitly check that this connection turns on various

components of ϕµνσ: for instance, the component

ϕz̄z̄z̄ ∼ µ(3)e4ρTr(V 3
2 V

2
−1V

2
−1) (5.45)

makes it clear that we have turned on a spin-3 source that grows toward the

boundary.

Following our prior method, one finds that the following set of equations

forms the minimal closed set needed to determine C1
0 :

V 2
1,z , V 1

0,z , V 2
−1,z , V 3

−2,z , V 2
1,z̄ , V 1

0,z̄ , V 2
−1,z̄ (5.46)

As always, these should be accompanied by some number of V sm,ρ equations

required to eliminate non-minimal components of C. Solving these perturba-

tively, one finds the following scalar equation to linear order in µ(3) ≡ µ:

(
�KG + �µ

)
C1

0 = 0 (5.47)

where

�KG = ∂2
ρ + 2∂ρ + 4e−2ρ∂∂ − (λ2 − 1)

�µ = −1

6
e−6ρ

(
∂5µ∂

2
+ ∂4µ∂∂

2
)

+
4

B(3)
J (3)e−4ρ∂

3

+
1

3
e−4ρ

(
∂4µ∂ − ∂4µ∂∂ρ + ∂3µ∂∂ − ∂3µ∂∂∂ρ

)
− 1

6
e−2ρ

(
3∂3µ∂2

ρ − (λ2 − 1)∂3µ+ 3∂2µ∂∂2
ρ − 12∂2µ∂∂ρ

− (λ2 − 13)∂2µ∂ + 36∂µ∂2 − 12∂µ∂2∂ρ + 24µ∂3
)

(5.48)

This equation may be used to infer the cubic vertex between two scalars and

the metric-like spin-3 field. On the other hand, it does not clearly suggest what
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the analogous equation would look like for higher spin sources. What is clear

is that the number of terms will grow with the spin.

To solve this using standard AdS/CFT methodology, we write

C1
0 (ρ, z; z1) = Gb∂(ρ, z; z1) + φµ(ρ, z; z1) (5.49)

where the subscript denotes the order in µ. The first term is the bulk-to-

boundary propagator of a scalar in AdS with m2 = λ2 − 1, and with standard

(+) or alternative (−) quantization:

Gb∂(ρ, z; z1) = ±λ
π

(
e−ρ

e−2ρ + |z − z1|2

)1±λ
(5.50)

The solution to (5.47) to linear order in µ is

φµ(ρ, z; z1) = −
∫
d2z′dρ′e2ρ′Gbb(ρ, z; ρ

′, z′)�′µGb∂(ρ′, z′; z1) (5.51)

where Gbb(ρ, z; ρ
′, z′) is the bulk-to-bulk propagator obeying

�KGGbb(ρ, z; ρ
′, z′) = e−2ρδ(ρ− ρ′)δ(2)(z − z′) (5.52)

By judicious use of integration by parts, one can reduce the integral to a

boundary term and read off the three-point function. This was the strategy

employed in [39]. Instead, we will step back and discuss a simpler method

that makes full use of higher spin gauge invariance from the outset. With this

approach we bypass the need to first find the modified scalar equation and then

solve it, and instead contruct the needed solution directly.

5.3. Three-point correlators from the bulk

We now turn to the main focus of this paper: the efficient computation of

three-point correlation functions involving two scalar operators and one higher

spin current. Our basic observation is that starting from the solution for a
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free scalar field in AdS we can generate a new solution by performing a higher

spin gauge transformation. This essentially reduces the whole problem to de-

termining how the scalar field transforms under the gauge transformation.

5.3.1. Spin-1 example

To illustrate our general approach in the simplest context, in this section we

compute the three-point function of two scalar operators and a spin-1 current.

Rather than working in the Vasiliev theory, here we take the bulk action to be

a complex scalar field of mass m2 = λ2 − 1 coupled to a U(1) Chern-Simons

gauge field,

S =
k

4π

∫
A ∧ dA+

1

2

∫
d3x
√
g
(
|Dµφ|2 + (λ2 − 1)|φ|2

)
(5.53)

with Dµ = ∂µ + Aµ. To compute the correlator 〈O(z1)O(z2)J (1)(z3)〉 we

proceed as follows. We insert delta function sources at z2 and z3 by imposing

the following asymptotic behavior on the scalar and gauge field27

φ̂(ρ, z) ∼ µφδ(2)(z − z2)e−(1−λ)ρ , Âz(ρ, z) ∼ µAδ(2)(z − z3) , ρ→∞

(5.54)

This form for the gauge field corresponds to a source for the boundary current,

as explained in [89,90,61]. We then need to find the order µφµA contribution

to the vev O(z1), which also can be read off from the scalar field asymptotics,

φ̂(ρ, z) ∼ O(z)

Bφ
e−(1+λ)φ , ρ→∞, z 6= z2,3 (5.55)

We will keep the constant Bφ unspecified, though we note that a consistent

holographic dictionary fixes Bφ = 2λ (for λ 6= 0) [91]. The three-point function

is then given by

O(z1) = µφµA〈O(z1)O(zz)J
(1)(z3)〉+ · · · (5.56)

27 The reason for the hats will be clear momentarily. Also, note here that we are using

standard quantization for the scalar.
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where · · · denote terms of other order in µφ,A.

Since the gauge field has no propagating degrees of freedom we can generate

the required solution by a gauge transformation. In particular, we start by

solving for the scalar field with A = 0, using the bulk-boundary propagator

φ(ρ, z) =

∫
d2z′Gb∂(ρ, z; z′)φ−(z′) (5.57)

This solution corresponds to an arbitrary source φ−(z). To generate the desired

gauge field solution we apply a gauge transformation

Aµ = ∂µΛ , Λ(z) =
µA
2π

1

z − z3
(5.58)

where we use the formula ∂z
(

1
z

)
= 2πδ(2)(z). The gauge transformation acts

on the scalar field as

φ(ρ, z)→ φ̂(ρ, z) = (1− Λ(z))φ(ρ, z)

= (1− Λ(z))

∫
d2z′Gb∂(ρ, z; z2)φ−(z′)

(5.59)

The leading asymptotic behavior of the transformed scalar solution is

φ̂(ρ, z) ∼ (1− Λ(z))φ−(z)e−(1−λ)ρ , ρ→∞ (5.60)

from which we read off the relation between the original and transformed

sources

φ̂−(z) = (1− Λ(z))φ−(z) (5.61)

Inverting to first order in Λ, taking φ̂−(z) = µφδ
(2)(z− z2) gives us an expres-

sion for the original source

φ−(z) = µφ(1 + Λ(z))δ(2)(z − z2) (5.62)

We now insert this result in (5.59) and compute the asymptotic behavior for

z 6= z2,3. Retaining just the term of order µφµA, we find

φ̂(ρ, z) ∼ λ

π
µφ

(
Λ(z2)

|z − z2|2(1+λ)
− Λ(z)

|z − z2|2(1+λ)

)
e−(1+λ)ρ , ρ→∞ (5.63)
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from which we read off

O(z1) =
λµφBφ
π

(
Λ(z2)− Λ(z1)

|z12|2(1+λ)

)
(5.64)

Inserting the formula for Λ given in (5.58) and using (5.56) we arrive at

〈O(z1)O(z2)J (1)(z3)〉 =
λBφ
2π2

(
z12

z13z23

)
1

|z12|2(1+λ)

=
1

2π

(
z12

z13z23

)
〈O(z1)O(z2)〉

(5.65)

This simple example illustrates the power of our approach. Starting from

the solution for a free scalar in AdS3, as given by the bulk to boundary prop-

agator, all we need to do is to perform a gauge transformation to generate a

solution with the required asymptotic behavior of the gauge field. From this

solution we read off the scalar vev, and thence the three-point function.

5.3.2. General spin correlators

We now establish an algorithm for computing 〈O±(z1)O±(z2)J (s)(z3)〉 for

arbitrary s, where we take O± and its complex conjugate to be dual to the

complex scalar field C1
0 in either standard (+) or alternate (−) quantization.

We will work in the standard quantization throughout and include the alternate

quantization at the end by taking λ→ −λ. In addition, the case of the second

complex bulk scalar C̃1
0 , dual to an operator Õ± and its complex conjugate,

will be read off afterwards.

Our starting point is the equation (5.22) which we reproduce here:

dC +A ? C − C ? A = 0 (5.66)

This equation is invariant under the hs[λ]⊕hs[λ] gauge invariance

A→ A+ dΛ + [A,Λ]?

A→ A+ dΛ + [A,Λ]?

C → C + C ? Λ− Λ ? C

(5.67)
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Starting from AdS, we introduce a spin-s source in the unbarred sector by

performing a chiral gauge transformation with parameter

Λ(ρ, z) =
2s−1∑
n=1

1

(n− 1)!
(−∂)n−1Λ(s)(z)e(s−n)ρV ss−n (5.68)

This generates the desired source term in Az̄,

δAz = ∂zΛ
(s)e(s−1)ρV ss−1 + · · · (5.69)

and a conjugate current in Az,

δAz =
1

(2s− 2)!
∂2s−1Λ(s)e−(s−1)ρV s−(s−1) (5.70)

Isolating the lowest component of the transformed C field using (5.67),

which we denote with a hat, gives

Ĉ1
0 = C1

0 + (δC)1
0 = C1

0 − (Λ ? C)1
0 (5.71)

Using (5.68) and (5.24) we can compute (δC)1
0:

(δC)1
0 = −

2s−1∑
n=1

1

(n− 1)!
(−∂)n−1Λ(s) · 1

2
gss2s−1(s− n, n− s)Cs−(s−n)e

(s−n)ρ

(5.72)

This depends on an arbitrary component Cs−(s−n) of the master field C in

AdS. As discussed previously, these are all fixed on-shell in terms of C1
0 and its

derivatives. Once we write (δC)1
0 in terms of the AdS scalar C1

0 to obtain an

expression analogous to (5.59), the remaining work follows the spin-1 example

of subsection 4.1.

To organize the calculation, we first derive a general formula for the cor-

relator, delaying presentation of the explicit formulae for Cs−(s−n) to the next

subsection. We can rewrite (5.72) as

(δC)1
0 = D(s)C1

0 (5.73)
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for some s-dependent differential operator D(s) which contains derivatives

(∂, ∂ρ). Substitution for the Cs−(s−n) will reveal28 that in the sum (5.72),

only the terms for which n ≤ s will be needed for our computation: these have

no ρ-dependence, while the n > s terms decay at the AdS boundary. This will

imply that D(s) is of order s− 1 in derivatives ∂, so we can decompose D(s) as

D(s) =
s∑

n=1

fs,n(λ, ∂ρ)∂
n−1Λ(s)∂s−n (5.74)

All of the nontrivial information about the higher spin deformation is hidden

in the functions fs,n(λ, ∂ρ).

We now switch to the notation

C1
0 ≡ φ (5.75)

The leading asymptotic behavior of the transformed scalar is

φ̂(ρ, z) ∼ (1 +D(s))e−(1−λ)ρφ−(z) , ρ→∞ (5.76)

To move the D(s) through the ρ-dependent prefactor, we define

D
(s)
± ≡ D

(s)(∂ρ → −(1± λ)) (5.77)

and likewise for f
s,n
± (λ). Then setting the transformed source φ̂−(z) =

µφδ
(2)(z − z2) and inverting to linear order,

φ−(z) = µφ(1−D(s)
− )δ(2)(z − z2) (5.78)

The asymptotic behavior of the transformed scalar for z 6= z2 now reads,

omitting the leading part that is local in the higher spin source,

φ̂+(z) =
λµφ
π

∫
d2z′(1+D

(s)
+ (z))

(1−D(s)
− (z′))δ(2)(z′ − z2)

|z − z′|2(1+λ)
, ρ→∞ (5.79)

28 See equations 4.40, 4.42.
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It is now important to know what coordinates derivatives are acting on,

so we re-institute the subscript on derivatives: ∂ → ∂z. Isolating the piece of

order µφD
(s) and placing our scalar operator at the boundary point z = z1,

we have

φ̂+(z1) =
λµφ
π

D(s)
+ (z1) · 1

|z12|2(1+λ)
−
∫
d2z′

D
(s)
− (z′)δ(2)(z′ − z2)

|z1 − z′|2(1+λ)

 (5.80)

We want to integrate the second piece by parts, which was the point of the

definition (5.74). Writing the integral as

∫
d2z′

D−(z′)δ(2)(z′ − z2)

|z1 − z′|2(1+λ)
=

s∑
n=1

f
s,n
− (λ)

∫
d2z′

∂n−1
z′ a∂s−nz′ δ(2)(z′ − z2)

|z1 − z′|2(1+λ)

(5.81)

integrating by parts and ignoring boundary terms, the n’th term is

(−1)s−nfs,n− (λ)∂s−nz2

(
∂n−1
z2

Λ(s)

|z12|2(1+λ)

)

=(−1)s−nfs,n− (λ)
s−n∑
j=0

(
s− n
j

)
[∂n−1+j
z2

Λ(s)]∂s−n−jz2

1

|z12|2(1+λ)

(5.82)

Making use of the identity,

∂nz′
1

|z1 − z′|2(1+λ)
= (−1)n∂nz1

1

|z1 − z′|2(1+λ)

=
Γ(λ+ n+ 1)

Γ(λ+ 1)

1

(z1 − z′)n
1

|z1 − z′|2(1+λ)

(5.83)

one can reduce (5.80) to the following expression in terms of the f
s,n
± (λ) and

the transformation parameter Λ(s):

φ̂+(z1) =
λµφ

π|z12|2(1+λ)

[
s∑

n=1

(−1

z12

)s−n {
f
s,n
+ (λ)

Γ(λ+ s− n+ 1)

Γ(λ+ 1)
∂n−1
z1

Λ(s)

− fs,n− (λ)
s−n∑
j=0

(
s− n
j

)
Γ(λ+ s− n− j + 1)

Γ(λ+ 1)
(∂n−1+j
z2

Λ(s))z
j
12

}]
(5.84)
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(5.84) is the general expression for the scalar vev in the presence of a higher

spin perturbation, to first order in each of the scalar and higher spin sources.

For a higher spin delta function source at z3, we take (cf. (5.69))

Λ(s) =
1

2π

1

z − z3
(5.85)

and (5.84) becomes

φ̂+(z1) =
(−1)s−1λµφ

2π2|z12|2(1+λ)

s∑
n=1

1

zs−n12

{
f
s,n
+ (λ)

Γ(λ+ s− n+ 1)

Γ(λ+ 1)
(n− 1)!

1

zn13

− fs,n− (λ)
1

zn23

s−n∑
j=0

(−1)j
(
s− n
j

)
Γ(λ+ s− n− j + 1)

Γ(λ+ 1)
(n− 1 + j)!

(
z12

z23

)j }
(5.86)

Therefore, reading off the three-point function 〈O+(z1)O+(z2)J (s)(z3)〉

boils down to knowing the functions f
s,n
± (λ) encoding the change in the scalar

under gauge transformation.

Before turning to the problem of determining these functions f
s,n
± (λ), we

note that a conformally symmetric result has the property

〈O(z1)O(z2)J (s)(z3)〉 = (−1)s〈O(z2)O(z1)J (s)(z3)〉 (5.87)

This property is not manifest in our formula (5.86), but it implies that, resort-

ing to the notation of (5.80), the correct solution is given by

φ̂+(z1) =
λµφ
π

[
D

(s)
+ (z1) + (−1)sD

(s)
+ (z2)

]
· 1

|z12|2(1+λ)
(5.88)

In terms of the f
s,n
± (λ) this looks like

φ̂+(z1) =
(−1)s−1λµφ

2π2|z12|2(1+λ)

s∑
n=1

f
s,n
+ (λ)

zs−n12

Γ(λ+ s− n+ 1)

Γ(λ+ 1)
(n− 1)!

(
1

zn13
+

(−1)n

zn23

)

(5.89)

where the extra (−1)n comes from sign changes under derivatives acting on

1
|z12| (cf. (5.83)). One can show, by using (5.86) and (5.89) and equating terms
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with the same number of powers of z12, that this in turn implies the following

unobvious relations:

f
s,j
+ (λ) = −

s∑
n=1

(−1)nf
s,n
− (λ)

(
s− n
j − n

)
(5.90)

for some fixed j.

Upon solving for the f
s,n
± (λ) generated by the gauge transformation (5.68),

we will show that (5.90) is indeed satisfied.

5.3.3. The AdS master field C

To write the f
s,n
± (λ) as defined by (5.72), (5.73) and (5.74), we need a

formula for all components of the master field C in AdS, written in terms

of C1
0 ≡ φ. This amounts to solving (5.31). We first solve for the minimal

components Cm+1
±m in terms of φ, then for the non-minimal components C

s6=m+1
±m

in terms of the Cm+1
±m , and finally we put the two together.

Minimal components Cm+1
±m :

Taking m→ −m and s = m+ 1 in the second equation in (5.31) gives

∂zC
m+1
−m +

eρ

2
g

2(m+2)
3 (1,−m− 1)Cm+2

−m−1 = 0 (5.91)

where we recall that for some component Csn one needs |n| ≤ s − 1. Solving

recursively yields the following expression:

Cm+1
−m =

m+1∏
p=2

g
2p
3 (1, 1− p)

−1

(−2e−ρ∂z)
mφ (5.92)

A similar analysis along z̄ yields

Cm+1
m =

m+1∏
p=2

g
2p
3 (−1, p− 1)

−1

(2e−ρ∂z̄)
mφ (5.93)

where we have used the fact that gst3 (m,n) = gts3 (n,m).
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Non-minimal components C
s6=m+1
±m :

From the ρ equations in (5.31), one can see that, say, the component C2
0 will

have the same structure, when written in terms of φ, as C3
1 in terms of C2

1 , and

so on. In general, components with fixed s− |m| when expressed as a function

of their respective minimal components will have the same form in terms of

structure constants.

The solution is

Cs±m = (−1)s−1−m

 s∏
p=2+m

g
p2
3 (m, 0)

−1

×

b
s−1−m

2 c∑
α=0

Aα(s,m)∂s−2α−m−1
ρ

Cm+1
±m

(5.94)

The Aα(s,m) are defined as

Aα(s,m) = (−2)α
∑
i1...iα

α∏
k=1

g
ik2
3 (m, 0) (5.95)

with indices subject to

2k +m ≤ ik ≤ 2k + s− 1− 2α

ik ≥ ik−1 + 2 , ∀ k ≥ 2
(5.96)

In appendix 5B, we present expressions for several of the Cs0 obtained from

solving (5.31) directly to facilitate easy comparison with (5.94).

Via (5.92), (5.93) and (5.94), one has all components of C in terms of the

fundamental scalar field, φ. These formulae also justify our previous statements

about subleading terms, and about D(s) being order s− 1 in derivatives ∂.

With these results in hand, we combine (5.92) and (5.94) at m = s− n to

write Cs−(s−n) in terms of φ, and plug into (5.72). The result can be written

(δC)1
0 =

s∑
n=1

f
s,n
± (λ)∂n−1

z Λ(s)∂s−nz φ + (subleading)

=
s∑

n=1

(−1)s
2s−n−1

(n− 1)!
F±(s, s− n;λ)∂n−1

z Λ(s)∂s−nz φ

(5.97)
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where

F±(s, s− n;λ) = gss2s−1(s− n, n− s)

×

 s∏
p=2+s−n

g
p2
3 (s− n, 0)

−1s−n+1∏
p=2

g
p2
3 (1− p, 1)

−1

×

b
n−1

2 c∑
α=0

Aα(s, s− n)(±λ+ s− n+ 1)n−1−2α


(5.98)

with Aα(s, s − n) defined as in (5.95) and (5.96). We have dropped the sub-

leading terms in the second line of (5.97). To obtain this result we have used

the replacement ∂ρ → −(1± λ) and the identity

n−1−2α∑
χ=0

(
n− 1− 2α

χ

)
(s−n)n−1−2α−χ(1±λ)χ = (±λ+s−n+1)n−1−2α (5.99)

From (5.97), we easily read off the reduced expression for the functions f
s,n
± (λ)

:

f
s,n
± (λ) = (−1)s

2s−n−1

(n− 1)!
F±(s, s− n;λ) (5.100)

We can now plug this into our general formula (5.86) and read off the

correlator. If we are to obtain a conformally invariant result, it must also

satisfy the conformal identity (5.90), in which case formula (5.89) is equally

valid.

Of course, (5.100) is a rather complicated function when expressed in terms

of structure constants, and combined with (5.89) it is not at all clear that we

will arrive at our desired result. Accordingly we expect dramatic simplification

of the f
s,n
± (λ) when the structure constants are written out explicitly.

5.3.4. Final result

We set out to compute the f
s,n
± (λ) for low values of n, using the formulae

(5.98), (5.100). The results up to s = 8 are:
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f
s,1
± (λ) = (−1)s

f
s,2
± (λ) =

(−1)s

2

Γ(s± λ)

Γ(s− 1± λ)

f
s,3
± (λ) =

(−1)s

4

s− 2

2s− 3

Γ(s± λ)

Γ(s− 2± λ)

f
s,4
± (λ) =

(−1)s

24

s− 3

2s− 3

Γ(s± λ)

Γ(s− 3± λ)

f
s,5
± (λ) =

(−1)s

96

(s− 3)(s− 4)

(2s− 3)(2s− 5)

Γ(s± λ)

Γ(s− 4± λ)

f
s,6
± (λ) =

(−1)s

960

(s− 4)(s− 5)

(2s− 3)(2s− 5)

Γ(s± λ)

Γ(s− 5± λ)

f
s,7
± (λ) =

(−1)s

5760

(s− 4)(s− 5)(s− 6)

(2s− 3)(2s− 5)(2s− 7)

Γ(s± λ)

Γ(s− 6± λ)

f
s,8
± (λ) =

(−1)s

80640

(s− 5)(s− 6)(s− 7)

(2s− 3)(2s− 5)(2s− 7)

Γ(s± λ)

Γ(s− 7± λ)

(5.101)

Indeed, these are compact expressions. By induction, we obtain a tidy formula

for these functions:

f
s,n
± (λ) = (−1)s

Γ(s± λ)

Γ(s− n+ 1± λ)

1

2b
n
2 c(n− 1)!

bn−1
2 c∏

j=1

s+ j − n
2s− 2j − 1

(5.102)

Encouragingly, one can check spin-by-spin that this expression indeed sat-

isfies the conformal identity (5.90). Plugging this into (5.89) and including the

alternate quantization λ→ −λ then yields the final answer for the correlator:

〈O±(z1)O±(z2)J (s)(z3)〉 =
(−1)s−1Bφ

2π2|z12|2(1±λ)

Γ(s)2

Γ(2s− 1)

Γ(s± λ)

Γ(±λ)

(
z12

z13z23

)s
(5.103)

That is,

〈O±(z1)O±(z2)J (s)(z3)〉
〈O±(z1)O±(z2)〉

=
(−1)s−1

2π

Γ(s)2

Γ(2s− 1)

Γ(s± λ)

Γ(1± λ)

(
z12

z13z23

)s
(5.104)

This is manifestly conformally invariant, and the overall coefficient is the main

result.
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While we lack a rigorous proof of (5.102) and (5.103), we have confirmed

(5.102) up to n = 13; assuming (5.102), it is simple to confirm (5.103) at any

desired spin.

Recalling the discussion at the end of section 2, there exists a second

projection of the master field C that gives rise to the equation

dC̃ +A ? C̃ − C̃ ? A = 0 (5.105)

The lowest component of C̃ is also a complex scalar field, dual to a scalar

CFT operator Õ and its complex conjugate. This equation is simply related

to (5.66) by the exchange A↔ A, which flips the sign of all odd spin tensors.

Therefore, the result for the tilded correlator is simply our result (5.103) with

a (−1)s removed:

〈Õ±(z1)Õ±(z2)J (s)(z3)〉
〈Õ±(z1)Õ±(z2)〉

= − 1

2π

Γ(s)2

Γ(2s− 1)

Γ(s± λ)

Γ(1± λ)

(
z12

z13z23

)s
(5.106)

In the context of the WN coset CFT duality conjecture, one scalar is in

standard quantization and the other in alternate quantization. The operation

of flipping the sign of odd spin fields corresponds to a charge conjugation

operation in the CFT.

These results match and extend the bulk calculations of [39] which were

restricted to λ = 1/2. To further compare to the CFT, we now compute the

same correlators using CFT considerations, again for all λ and s, and find

perfect agreement with the bulk.

5.4. Three-point correlators from CFT

We now shift focus and consider the constraints on three-point functions

due to the existence of a higher-spin current algebra. Our considerations will

be entirely based on symmetry, and in particular on the existence of W∞[λ]

113



current algebra. If these currents are not present in the CFT, then even be-

fore considering scalar operators there will be a mismatch between bulk and

boundary correlators involving only currents. So we will assume the existence

of this symmetry algebra, and then see what constraints this imposes on the

scalar-scalar-current three-point functions. Our computations in this section

are along the same lines as in [36], but generalized to arbitrary s.

Suppose we have a spin-s current J (s)(z), and scalar primary operator

O(z, z),29 whose OPE has the following leading singularity,

J (s)(z)O(0) ∼ A(s)

zs
O(0) + · · · (5.107)

The three-point function is then related to the scalar two-point function as

〈O(z1)O(z2)J (s)(z3)〉 = A(s)

(
z12

z13z23

)s
〈O(z1)O(z2)〉 (5.108)

Writing the mode expansion

J (s)(z) = − 1

2π

∞∑
m=−∞

J
(s)
m

zm+s (5.109)

the zero modes act on the primary state |O〉 as

J
(s)
0 |O〉 = −2πA(s)|O〉 (5.110)

In the case of interest, the currents J (s)(z), s = 2, 3, . . ., obey the W∞[λ]

current algebra. The wedge modes are defined to be those that annihilate the

vacuum state, and are given by

V sm = J
(s)
m , |m| < s (5.111)

In general, these wedge modes do not yield a closed subalgebra of W∞[λ],

as their commutators yield modes outside the wedge; in particular, this is

29 We use the shorthand O(z, z) = O(z) in what follows.
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due to the nonlinearities present in W∞[λ]. However, the nonlinear terms are

suppressed at large central charge, and so in the limit c→∞ the wedge modes

do define a subalgebra of W∞[λ] – the wedge subalgebra. This subalgebra is

hs[λ]. To exploit this simplification, for the remainder of this section we will

assume that we are working in the limit of large central charge. See [36] for

further discussion.

Furthermore, these considerations fix the relative normalization of the bulk

and boundary currents. In particular, we have defined our conventions such

that the currents (5.109) are equal to the currents derived from the bulk.

Acting on |O〉 with the wedge modes, we obtain a representation of hs[λ],

and we can therefore use the representation theory of hs[λ] to determine the

zero mode eigenvalues appearing in (5.110), and thence the three point function

(5.108). The Virasoro zero mode eigenvalue is fixed by the scaling dimension

of O,

V 2
0 |O±〉 =

1

2
(1± λ)|O±〉 (5.112)

where we’ve now introduced the pair of scalar operators O±. We need to

compute the remaining eigenvalues.

To proceed, it is useful to build up the hs[λ] generators in terms of SL(2)

generators. We write V 2
1 = L1, V

2
0 = L0, V

2
−1 = L−1, which obey the SL(2)

algebra

[L1, L−1] = 2L0 , [L0, L1] = −L1 , [L0, L−1] = L−1 (5.113)

We then construct the V sm generators as30

V sm = (−1)m−1 (m+ s− 1)!

(2s− 2)!
[L−1, . . . [L−1, [L−1,︸ ︷︷ ︸

s−1−m

Ls−1
1 ]]] (5.114)

30 As will be discussed at the end of this section, we obtain a second inequivalent representa-

tion by appending a factor of (−1)s to the generators.
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where in addition we mod out by the ideal obtained by fixing the SL(2)

quadratic Casimir as

C2 = L2
0 −

1

2
(L1L−1 + L−1L1) =

1

4
(λ2 − 1) (5.115)

We can use this to work out the zero mode eigenvalues, as illustrated by the

first nontrivial case at s = 3, where V 3
0 acts on |O±〉:

V 3
0 = − 1

12
[L−1, [L−1, L

2
1]] =

(
1

3
C2 − L2

0

)
= −1

6
(λ± 2)(λ± 1) (5.116)

In the last step we used (5.112) and (5.114). Working out further examples by

brute force quickly gets tedious, so we adopt a more indirect approach.

First, it’s easy to see that V s0 will be a polynomial in λ of degree s− 1, as

illustrated in (5.116). This follows, since the terms in (5.114) obtained after

working out all the commutators will each have s − 1 generators, and using

either (5.115) or L0 = 1
2(1±λ) will convert a generator into at most one power

of λ.

Next consider taking λ = N , a positive integer. In this case, after factoring

out an ideal, hs[λ] becomes SL(N), which we can represent in terms of N ×N

matrices. In this representation the generators V sm with s > N all vanish

identically when they are constructed using (5.114), and in particular this holds

for the zero modes V s0 . We also note that the eigenvalues of L0 = V 2
0 in the

N ×N matrix representation are: −N−1
2 ,−N−1

2 + 1, . . . , N−1
2 . Note that the

smallest eigenvalue coincides with 1
2(1−λ), i.e. with the eigenvalue of L0 acting

on |O−〉. Together, these facts imply that V s0 |O−〉 = 0 for λ = 1, 2, . . . , s− 1.

Combining this with the statement in the previous paragraph, we fix the λ

dependence of the zero-mode eigenvalues to be

V s0 |O−〉 = N(s)[λ− (s− 1)] · · · [λ− 2][λ− 1]|O−〉

= N(s)(−1)s−1 Γ(s− λ)

Γ(1− λ)
|O−〉

(5.117)

116



for some prefactor N(s). To obtain the eigenvalues for |O+〉 we simply flip the

sign of λ, and we arrive at

V s0 |O±〉 = N(s)(−1)s−1 Γ(s± λ)

Γ(1± λ)
|O±〉 (5.118)

To fix N(s) we can pick some convenient value of λ. If we take λ = 1/2

then we can represent SL(2) as

L0 = −1

4
(x∂x + ∂xx) , L−1 =

1

2
∂2
x , L1 =

1

2
x2 (5.119)

We can then construct hs[1
2 ] using (5.114).

Now, at λ = 1/2 we have L0|O+〉 = 3
4 |O+〉, which in the representation

(5.119) is achieved by taking L0 to act on the function x−2. As shown in ap-

pendix 5A the eigenvalues of the other zero mode generators are then computed

to be

V s0 x
−2 =

(−1)s[(s− 1)!]2(2s− 1)!!

2s−1(2s− 2)!
x−2 (5.120)

Comparing this with the O+ version of (5.118) at λ = 1/2 yields

N(s) = − Γ(s)2

Γ(2s− 1)
(5.121)

which gives us our final result for the zero mode eigenvalues

V s0 |O±〉 = (−1)s
Γ(s)2

Γ(2s− 1)

Γ(s± λ)

Γ(1± λ)
|O±〉 (5.122)

Using (5.107) and (5.110), we have therefore fixed the three-point function

to be

〈O±(z1)O±(z2)J (s)(z3)〉
〈O±(z1)O±(z2)〉

=
(−1)s−1

2π

Γ(s)2

Γ(2s− 1)

Γ(s± λ)

Γ(1± λ)

(
z12

z13z23

)s
(5.123)

This agrees perfectly with the correlator obtained from the bulk, (5.103).

Now let us come back to the footnote accompanying (5.114). hs[λ] admits

the automorphism V sm → (−1)sV sm, which can be thought of as charge conju-

gation. If we had instead used the charge conjugate generators in (5.114) then
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a factor of (−1)s would have propagated through to the final result (5.123).

Equivalently, starting from O± we can consider operators Õ± that transform as

their charge conjugates. The three-point function of such operators is therefore

〈Õ±(z1)Õ±(z2)J (s)(z3)〉
〈Õ±(z1)Õ±(z2)〉

= − 1

2π

Γ(s)2

Γ(2s− 1)

Γ(s± λ)

Γ(1± λ)

(
z12

z13z23

)s
(5.124)

This agrees with the bulk result (5.106).

5.5. Discussion

5.5.1. Comparison with previous results

The results (5.123)-(5.124) derived from CFT considerations agree per-

fectly with the correlators derived from the higher spin theory in the bulk,

namely (5.103) and (5.106). Before discussing the implications of this agree-

ment, let us compare to previous work. To this end, we note that in our

normalization the current-current two-point function is

〈J (s)(z)J (s)(0)〉 =
3k

22s−1π5/2

sin(πλ)

λ(1− λ2)

Γ(s)Γ(s− λ)Γ(s+ λ)

Γ(s− 1
2)

1

z2s (5.125)

The derivation of this result proceeds in the same fashion as led to (5.44). This

normalization is the “natural” one, since the wedge modes defined in (5.109)

then obey the hs[λ] algebra with standard normalization.

In [39] three-point correlators were computed from the bulk for arbitrary s

and λ = 1/2; and in the ’t Hooft limit of the WN minimal model for s = 3 and

arbitrary λ. Their currents are normalized to 〈J (s)(z)J (s)(0)〉 = z−2s. Under

the identification Ohere
+ = OCY

+ and Õhere
− = OCY

− , and taking into account the

different normalizations for the currents, we verify that our results reduce to

those of [39] for the special values of s and λ.

In [60] the three-point function for s = 4 was computed in the ’t Hooft

limit of the WN minimal model. The normalization of the current was not
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specified, but a normalization independent ratio was obtained (see equation

3.35 therein). The corresponding ratio obtained from our result is

〈O+(z1)O+(z2)J (4)(z3)〉
〈Õ−(z1)Õ−(z2)J (4)(z3)〉

=
(1 + λ)(2 + λ)(3 + λ)

(1− λ)(2− λ)(3− λ)
(5.126)

which agrees with [60].

5.5.2. Comments

We now discuss the implications of our agreement between bulk and bound-

ary. On the CFT side, what went into the computation was the assumption

that the CFT has a symmetry algebra containing hs[λ], along with scalar opera-

tors of the correct dimension; everything else followed from hs[λ] representation

theory. So any CFT with these properties will have three-point functions that

match those of the bulk. One way that hs[λ] symmetry can emerge is if the

CFT has W∞[λ] symmetry, and the central charge is taken to infinity. Then

hs[λ] is identified with the wedge subalgebra of W∞[λ].

Now consider the case of the WN minimal models proposed by Gaberdiel

and Gopakumar as CFT duals of the bulk higher spin theory. As we have

stressed, even before considering the scalars, it is necessary that in the ’t Hooft

limit the CFT acquire W∞[λ] symmetry if it is to have a chance of matching

with the bulk. The bulk theory has such a symmetry, and this fixes the form

of all correlation functions on the plane involving just currents. These will not

match with the CFT unless the latter also has W∞[λ] symmetry.

Assuming that the CFT does indeed exhibit hs[λ] symmetry, let’s consider

the scalars. The results of this paper establish that if the CFT has scalar

operators of the correct dimension, ∆ = 1 ± λ, then the scalar-scalar-current

three-point functions on the plane will match between the bulk and boundary.

As an illustration of these comments, we now establish that a theory of

free bosons has correlators that match those of the corresponding bulk theory.
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Here by “correlators” we mean those discussed above: namely pure current

correlators, and scalar-scalar-current correlators, all evaluated on the plane.

Consider the following currents

J (s+2) = − 1

2π

2−s−1(s+ 2)!

(2s+ 1)!!

s∑
k=0

(−1)k
1

s+ 1

(
s+ 1

k

)(
s+ 1

k + 1

)
∂s−k+1φ∂k+1φ

(5.127)

where φ is a complex free boson. These currents yield the linear algebraWPRS
∞

[57] at c = 2 [81,85]; the generalization to higher c is obtained by introducing

additional copies of the free boson. After a nonlinear redefinition of the cur-

rents, WPRS
∞ becomes equivalent to W∞[1] [92,36]. For λ = 1 the bulk scalar

is dual to a CFT operator of dimension 2, and this is O = ∂φ∂φ. The results

of this paper show that the scalar-scalar-current three-point functions of this

free boson theory will match those of the higher spin theory in the bulk at

λ = 1. For instance, it is simple to check this explicitly for the case of the

spin-3 current.

A related situation occurs with complex free fermions at λ = 0. The

following currents [85]

J (s+2) =
1

2π

2−s−1(s+ 1)!

(2s+ 1)!!

s+1∑
k=0

(−1)k
(
s+ 1

k

)2

∂s−k+1ψ∂kψ (5.128)

realize the algebra W1+∞ [84] at c = 1. Although W1+∞ is not equivalent to

W∞[0] due to the presence of the spin-1 current in W1+∞, the wedge subal-

gebra of W1+∞ yields hs[0]; the spin-1 zero mode just yields an operator that

commutes with all the other wedge modes. The scalar operator in this theory

is O = ψ̃ψ. As we have discussed, this is enough structure to guarantee that

the scalar-scalar-current correlators (for spin greater than 1) will match those

of the bulk theory at λ = 0, and verifying this is straightforward.

Note that we are not making any claims here about a full duality between

these free boson/fermion theories and their bulk counterparts. Indeed, without
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further ingredients it seems clear that the theories cannot be equivalent: if we

simply add N copies of the free fields the CFT will have a U(N) symmetry

along with various nonsinglet operators, none of which appear to be present in

the bulk, at least classically.

Appendix 5A. Derivation of (5.120)

Given

L0 = −1

4
(x∂x + ∂xx) , L−1 =

1

2
∂2
x , L1 =

1

2
x2 (5A.1)

and

V sm = (−1)m−1 (m+ s− 1)!

(2s− 2)!
[L−1, . . . [L−1, [L−1,︸ ︷︷ ︸

s−1−m

Ls−1
1 ]]] (5A.2)

we need to show

V s0 x
−2 =

(−1)s[(s− 1)!]2(2s− 1)!!

2s−1(2s− 2)!
x−2 (5A.3)

We start from

etL−1f(x)e−tL−1 = f(x+ t∂x) (5A.4)

which follows by thinking of L−1 as the Hamiltonian for a free particle. In

particular, this implies

etL−1(L1)s−1e−tL−1 =
1

2s−1 (x+ t∂x)2s−2 (5A.5)

Expanding the left hand side in powers of t, the desired term yielding V s0 is

the ts−1 term. This term preserves the power of x, and so we can write

V s0 x
−2 = −

[
[(s− 1)!]2

2s−1(2s− 2)!
(x+ ∂x)2s−2x−2

] ∣∣∣∣∣
x−2 term

(5A.6)
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To extract the x−2 term on the right hand side we write a contour integral and

integrate by parts,

(x+∂x)2s−2x−2
∣∣∣
coeff of x−2

=
1

2πi

∮
dzz(z+∂)2s−2 1

z2 =
1

2πi

∮
dz

1

z2 (z−∂)2s−2z

(5A.7)

Now write (z−∂)2s−2 as the t2s−2 term in et(z−∂) = e−t
2/2etze−t∂ and perform

the integral. This yields

(x+ ∂x)2s−2x−2
∣∣∣
coeff. of x−2

= (−1)s−1(2s− 1)!! (5A.8)

Plugging this result into (5A.6) yields our desired formula (5A.3).

Appendix 5B. Low spin results: Cs0 in AdS

We present the explicit formulae for the components Cs0 of the master field

in AdS, through s = 8, obtained by recursive solution of the V s0,ρ equations in

AdS:

∂ρC
s
0 + 2Cs−1

0 + Cs+1
0 g

(s+1)2
3 (0, 0) = 0 (5B.1)

These can be compared to the spin s formula (5.94). We use the temporary

notation

gs23 (0, 0) ≡ gs (5B.2)
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and the following expressions act on C1
0 :

C2
0 = −(g2)−1∂ρ

C3
0 = (g2g3)−1 · (∂2

ρ − 2g2)

C4
0 = (g2g3g4)−1 ·

(
−∂3

ρ + 2(g2 + g3)∂ρ
)

C5
0 = (g2g3g4g5)−1 ·

(
∂4
ρ − 2(g2 + g3 + g4)∂2

ρ + 4g2g4
)

C6
0 = (g2g3g4g5g6)−1 ·

(
− ∂5

ρ + 2(g2 + g3 + g4 + g5)∂3
ρ − 4(g5(g3 + g2)

+ g4g2)∂ρ
)

C7
0 = (g2g3g4g5g6g7)−1 ·

(
∂6
ρ − 2(g2 + g3 + g4 + g5 + g6)∂4

ρ

+ 4(g6(g4 + g3 + g2) + g5(g3 + g2) + g4g2)∂2
ρ − 8g2g4g6

)
C8

0 = (g2g3g4g5g6g7g8)−1 ·
(
− ∂7

ρ + 2(g2 + g3 + g4 + g5 + g6 + g7)∂5
ρ

− 4(g7(g5 + g4 + g3 + g2) + g6(g4 + g3 + g2) + g5(g3 + g2) + g4g2)∂3
ρ

+ 8(g7(g5(g3 + g2) + g4g2) + g6g4g2)
)
∂ρ

(5B.3)
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6. Conclusion and future directions

A major theme of this work is the importance of gauge invariance. To be

sure, this is an old theme in theoretical physics, but in the higher spin context

there remains much to learn about its constraints on the physics. We have

shown that in the 3d case where the theory can be cast essentially as a pure

gauge theory coupled to matter, a clever use of gauge invariance alone can

determine much of the theory’s physical content.

We can use this gauge invariance to study the behavior of a scalar field

in the hs[λ] black hole background. This work is underway, and should tell

us something about the causal structure of this spacetime, i.e. whether it is

“more like” a black hole or a wormhole. We should also note, on the subject of

3d black holes, that there is a supersymmetric version of Vasiliev theory which

has recently been studied in a holographic context [93,94,95,96]. The gauge

sector is described not by hs[λ] but by a super-version known as shs[λ] [97].

Perhaps this theory contains interesting black hole solutions above and beyond

those of the bosonic Vasiliev theory and supersymmetric ordinary gravity.

On the subject of correlation functions and the deep lessons of higher spin

AdS/CFT duality, in the 4d three-point function calculations of Giombi and

Yin, especially in [31], gauge invariance plays a similar role as in our Chapter

5. They utilize what is called a “W = 0 gauge” to efficiently compute the

correlators of three fields of arbitrary spin. The W = 0 gauge master field

equations are much simpler to solve – all spacetime coordinate dependence

has been gauged away, leaving only certain functions of the internal spinor

variables – and upon a suitable gauge transformation back to the “physical

gauge,” one can essentially read off correlators. The key is to find the correct

ansatz for the nonzero master fields (B,Sα) in the W = 0 gauge.

[31] only computed O(N) vector model correlators this way, but we know

that the 4d Vasiliev theory contains a self-interaction ambiguity of the scalar
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master field which can, for generic choices of parameters, break parity [29].

It is natural to suggest that these theories are dual to parity-breaking CFTs.

There is limited evidence for this idea in the case of a dual Chern-Simons-

fermion CFT [16], but also evidence against this idea based on unpublished bulk

computations of correlators by the same authors as [16]. We expect that some

variant of our approach in 3d, whereby we generated the three-point correlators

by gauge transformation, may work in the 4d case; this is motivated partly by

considerations of [17] who showed that even in these parity-breaking cases,

correlators are fully fixed by the “almost conserved” higher spin symmetry.

In any case, we now sense a greater set of possibilities for higher spin duality

in 4d, in part motivated by [17]. This may also imply certain equivalences

among field theories, e.g. the critical O(N) model of bosons and the λ → 1

limit of the Chern-Simons-fermion theory.

The issue of black holes in 4d Vasiliev theory is also an important out-

standing issue, as is the question of how to introduce a Higgs mechanism into

Vasiliev theory to explicitly study the 1/N higher spin symmetry breaking.

Any connection to string theory will require understanding of both of these

issues. For instance, extrapolating the N = 4 SYM AdS/CFT duality to the

λ→ 0 limit will require an understanding of how the higher spin fields become

massless in this limit. Perhaps it will be more profitable to focus on 3d rather

than 4d Vasiliev theory in an effort to find higher spins from string theory.
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Appendix I. hs[λ], and Moyal vs. lone-star products

This appendix is meant as a self-contained review of salient features of the

hs[λ] Lie algebra, its associative “lone star product” multiplication, and their

relation to the deformed oscillator algebra used by Vasiliev.

The hs[λ] commutation relations are

[V sm, V
t
n] =

s+t−|s−t|−1∑
u=2,4,6,...

gstu (m,n;λ)V s+t−um+n (I.1)

with structure constants are

gstu (m,n;λ) =
qu−2

2(u− 1)!
φstu (λ)Nst

u (m,n) (I.2)

where

Nst
u (m,n) =

u−1∑
k=0

(−1)k
(
u− 1

k

)
× [s− 1 +m]u−1−k[s− 1−m]k[t− 1 + n]k[t− 1− n]u−1−k

φstu (λ) = 4F3

[
1
2 + λ , 1

2 − λ ,
2−u

2 , 1−u
2

3
2 − s ,

3
2 − t ,

1
2 + s+ t− u

∣∣∣∣∣1
] (I.3)

We make use of the descending Pochhammer symbol,

[a]n = a(a− 1)...(a− n+ 1) (I.4)

q is a normalization constant that can be scaled away by taking V sm → qs−2V sm.

As in much of the existing literature, we choose to set q = 1/4.

We note a handful of useful properties of the structure constants:

φstu

(
1

2

)
= φst2 (λ) = 1

Nst
u (m,n) = (−1)u+1N ts

u (n,m)

Nst
u (0, 0) = 0 , u even

Nst
u (n,−n) = N ts

u (n,−n)

(I.5)
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The first three of these imply the isomorphism hs[1
2 ] ∼= hs(1,1); that the lone

star product can be used to define the hs[λ] Lie algebra; and that all zero

modes commute.

The generators with s = 2 form an SL(2,R) subalgebra, and the remaining

generators transform simply under the adjoint SL(2,R) action as

[V 2
m, V

t
n] = (m(t− 1)− n)V tm+n (I.6)

These SL(2,R) generators are those used in construction of the AdS and BTZ

solutions.

When λ = 1/2, this algebra is isomorphic to hs(1,1), the commutator of

which can be written as the antisymmetric part of the Moyal product. Simi-

larly, the general λ commutation relations (5.15) can be realized as

[V sm, V
t
n] = V sm ? V tn − V tn ? V sm (I.7)

if we define the associative product

V sm ? V tn ≡
1

2

s+t−1∑
u=1,2,3,...

gstu (m,n;λ)V s+t−um+n (I.8)

This is known as the “lone star product” [57], and (I.7) follows upon using the

fact that

gstu (m,n;λ) = (−1)u+1gtsu (n,m;λ) (I.9)

The odd values of u drop out of the commutator, leaving (5.15). In parts of

the preceding, we have resorted to the shorthand

Γ ? Γ ? . . . ? Γ︸ ︷︷ ︸
N

≡ (Γ)N (I.10)

for some hs[λ]-valued element Γ.

Formally, V 1
0 is the identity element. Thus, to extract the trace from a

product of generators, one picks out the u = s+ t− 1 part of (I.8), up to some

normalization:
Tr(V smV

t
n) ∝ gsts+t−1(m,n;λ)δstδm,−n

∝ gss2s−1(m,−m;λ)
(I.11)
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I.1. Relation between hs[λ] and deformed oscillators

Recall the deformed oscillator commutation relations:

[ỹα, ỹβ ]? = 2iεαβ(1 + νk) (I.12)

which in our conventions ε12 = ε12 = 1 is

[ỹ1, ỹ2]? = 2i(1 + νk) (I.13)

The beauty of the deformed oscillators is that under the action of the Moyal

product31, their star commutator gives the oscillator algebra (I.12).

To compute the Moyal product of two symmetric, even-degree oscillator

polynomials, one uses (I.12) to symmetrize the product. To compute the lone-

star product of two hs[λ] generators, one plugs into formula (5.24). The pur-

pose of this section is to provide evidence that these two multiplications are

isomorphic upon identifying the map between the generator and polynomial

bases, and using the relation

λ =
1− νk

2
(I.14)

where k2 = 1 is the Clifford element defined in section 2 and in appendix A.

To our knowledge, this has not been proven in the literature.

Let us begin with the SL(2,R) subalgebra spanned by symmetric polyno-

mials

Sαβ = ỹ(αỹβ) (I.15)

These obey commutation relations

[S11, S22] = 8iS12

[S11, S12] = 4iS11

[S12, S22] = 4iS22

(I.16)

31 In what follows, every product of ỹ is implicitly a Moyal product.
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Comparing with the SL(2,R) subalgebra of hs[λ] canonically normalized as

[V 2
1 , V

2
−1] = 2V 2

0

[V 2
1 , V

2
0 ] = V 2

1

[V 2
0 , V

2
−1] = V 2

−1

(I.17)

these are equivalent under the assignment

V 2
1 =

(−i
4

)
S11 , V 2

0 =

(−i
4

)
S12 , V 2

−1 =

(−i
4

)
S22 (I.18)

Having fixed (I.18) we can compare, on the one hand, the Moyal product of

two Sαβ , and on the other, the lone-star product between two of the V 2
m, and so

on for higher spins. The work comes in symmetrizing the oscillator products,

through tedious but straightforward application of (I.12). We present results

through spin-4:

ỹ1ỹ2 = S12 + i(νk + 1)

ỹ1ỹ1ỹ1ỹ2 = S1112 + i(νk + 3)S11

ỹ1ỹ1ỹ2ỹ2 = S1122 + 4iS12 +
2

3
(νk + 1)(νk − 3)

ỹ1ỹ1ỹ1ỹ1ỹ1ỹ2 = S111112 + i(νk + 5)S1111

ỹ1ỹ1ỹ1ỹ1ỹ2ỹ2 = S111122 + 8iS1112 +
4

5
(νk + 3)(νk − 5)S11

ỹ1ỹ1ỹ1ỹ2ỹ2ỹ2 = S111222 + i(νk + 9)S1122 +
2

5
(νk + 3)(νk − 15)S12

+
2i

3
(νk + 3)(νk + 1)(νk − 3)

(I.19)

All remaining products can be found by commutation or taking the adjoint,

ỹ1 ↔ ỹ2, i→ −i.

Using these, one can show by explicit computation that, at least through

spin-4, any Moyal product of oscillator polynomials maps to the lone-star prod-

uct of hs[λ] generators upon making the identification

V sm =

(−i
4

)s−1

Ssm (I.20)
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where Ssm is the symmetrized product of 2s− 2 oscillators, with m defined as

2m = N1 −N2 (I.21)

The prefactor depends on the hs[λ] normalization factor q = 1/4 which we

have been using.

As a first check, (I.18) along with the fact that

(V 2
±1)s−1 = V s±(s−1) (I.22)

implies that this is trivially true for elements with m = ±(s− 1).

Let us demonstrate this equivalence for a few examples. Using (I.19) one

obtains the Moyal products of spin-2 polynomials:

S11 ? S11 = S1111

S22 ? S22 = S2222

S12 ? S11 = S1112 − 2iS11

S12 ? S22 = S1222 + 2iS22

S11 ? S22 = S1122 + 4iS12 +
2

3
(νk + 1)(νk − 3)

S12 ? S12 = S1122 −
1

3
(νk + 1)(νk − 3)

(I.23)

We now compare this to the lone-star products of spin-2 generators:

V 2
1 ? V 2

1 = V 3
2

V 2
−1 ? V

2
−1 = V 3

−2

V 2
0 ? V 2

1 = V 3
1 −

1

2
V 2

1

V 2
0 ? V 2

−1 = V 3
−1 +

1

2
V 2
−1

V 2
1 ? V 2

−1 = V 3
0 + V 2

0 −
(
λ2 − 1

6

)

V 2
0 ? V 2

0 = V 3
0 +

λ2 − 1

12

(I.24)
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These are isomorphic under (I.14) and (I.20).

A less trivial example is the product

S1112 ? S22 =
1

4
(ỹ1ỹ1ỹ1ỹ2 + ỹ1ỹ1ỹ2ỹ1 + ỹ1ỹ2ỹ1ỹ1 + ỹ2ỹ1ỹ1ỹ1)ỹ2ỹ2

= S111222 + 6iS1112 +
2

5
(νk + 3)(νk − 5)S12

(I.25)

Compare to the lone-star product

V 3
1 ? V 2

−1 = V 4
0 +

3

2
V 3

0 −
(
λ2 − 4

10

)
V 2

0 (I.26)

These are isomorphic under (I.14) and (I.20).

We conjecture that the isomorphism is valid for all spins under the identi-

fication (I.20).

Appendix II. Lightning review of 3d higher spin gravity coupled to

scalars

In this appendix we present all details necessary for the bulk theory’s

construction, following [11]. In particular we derive the equations (5.13) and

(5.21).

According to [11], the full non-linear system of equations governing the

interaction of matter with higher spin gauge fields is formulated in terms of

the following generating functions: a spacetime 1-form W = Wνdx
ν as well as

spacetime 0-forms B and Sα. The generating functions W,B and Sα depend

on spacetime coordinates x, on auxiliary bosonic twistor variables zα and yα

(α = 1, 2) as well as on two pairs of Clifford elements, ψ1,2 and k, ρ :

{ψi, ψj} = 2δij , kρ = −ρk , k2 = ρ2 = 1 (II.1)

Moreover, ψ1,2 commute with all other auxiliary variables, and k, ρ obey

kyα = −yαk, kzα = −zαk

ρyα = yαρ, ρzα = zαρ
(II.2)
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Indices on zα and yα are raised by εαβ and lowered by the rank two antisym-

metric tensor εβα,

zα = εαβzβ , zα = zβεβα (II.3)

with εαβεβγ = −δαγ . We follow the convention ε12 = ε12 = 1.

Using these properties of the auxiliary variabls the basic fields Wν , B and

Sα can be expanded in the form

A(z, y;ψ1,2, k, ρ|x) =
1∑

b,c,d,e=0

∞∑
m,n=0

1

m!n!
A
α1...αmβ1...βn
bcde (x) kbρcψd1ψ

e
2

× zα1 . . . zαmyβ1
. . . yβn

(II.4)

where A is either Wν , B or Sα. The expression A
α1...αmβ1...βn
bcde (x) in equation

(II.4) is an ordinary spacetime function. Note that A
α1...αmβ1...βn
bcde (x) can be

choosen to be symmetric in the indices (α1 . . . αm) and in the indices (β1 . . . βn).

In order to formulate the equations of motion we use the Moyal ?-product

which acts on the twistors y and z in the following way

f(z, y) ? g(z, y) =
1

(2π)2

∫
d2u

∫
d2v ei(uv)f(z+u, y+u)g(z− v, y+ v) (II.5)

where uv is a short-hand notation, uv = uαv
α. We can verify the following

commutation relations:

[yα, yβ ]? = −[zα, zβ ]? = 2iεαβ , [yα, zβ ]? = 0 (II.6)

where [a, b]? ≡ a ? b− b ? a is the commutator with respect to the ?-product.

In terms of the generating functions W = Wνdx
ν , B, Sα we are now ready

to write down the full non-linear equations of motion [11]:

dW = W ∧ ?W

dB = W ?B −B ?W

dSα = W ? Sα − Sα ? W

Sα ? S
α = −2i(1 +B ? K)

Sα ? B = B ? Sα

(II.7)
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Here, K – the so-called Kleinian – is given by

K = kei(zy) (II.8)

These equations (II.7) are invariant under the infinitesimal higher spin gauge

transformation
δW = dε+ ε ? W −W ? ε

δB = ε ? B −B ? ε

δSα = ε ? Sα − Sα ? ε

(II.9)

where ε is the infinitesimal gauge parameter which does not depend on ρ, i.e.

ε = ε(z, y;ψ1,2, k|x) (II.10)

We will see that W is the generating function for higher spin gauge fields

whereas B is the generating function for the matter fields. Sα will describe

auxiliary degrees of freedom.

Since the equations of the motion (II.7) possess the symmetry ρ→ −ρ and

Sα → −Sα we can truncate the system to the so-called “reduced” system, in

which Wν and B are independent of ρ, while Sα is linear in ρ. In this paper

we consider the reduced system.

II.1. Vacuum solutions

Here we consider vacuum solutions of the equations of motion (II.7). The

fields B,W and Sα of the vacuum solution are denoted by B(0),W (0) and S
(0)
α ,

respectively. In particular we take B(0) to be constant, i.e.

B(0) ≡ ν (II.11)

Plugging this ansatz into (II.7) we obtain the following three equations

dW (0) = W (0) ? ∧W (0)

dS
(0)
α = W (0) ? S

(0)
α − S

(0)
α ? W (0)

S
(0)
α S(0)α = −2i(1 + νK)

(II.12)
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Note that the other two equations of (II.7) are automatically satisfied by the

ansatz (II.11).

First, let us discuss the third equation of (II.12). We already mentioned

that Sα and therefore also S
(0)
α is linear in ρ. For the case ν = 0 we can choose

S
(0)
α = ρzα, cf. (II.6). For general ν, S

(0)
α can be given by

S
(0)
α = ρz̃α (II.13)

where we have introduced new auxiliary twistor variables z̃α and ỹα which are

also known as “deformed oscillators,”

z̃α = zα + ν wαk

ỹα = yα + ν wα ? K

wα = (zα + yα)

∫ 1

0
dt teit(zy)

(II.14)

The deformed oscillators ỹα and z̃α satisfy the commutation relations

[ỹα, ỹβ ]? = 2iεαβ(1 + νk)

[ρz̃α, ρz̃β ]? = −2iεαβ(1 + νK)

[ρz̃α, ỹβ ]? = 0

(II.15)

and therefore it is straightforward to verify that S
(0)
α , given by equation (II.13),

indeed satisfies the third equation of (II.12).

As dS
(0)
α = 0, the second equation of (II.12) implies that W (0) should

commute with S
(0)
α , which according to the third line of (II.15) can be achieved

by taking W (0) to be independent of k and z̃α. Therefore W (0) is only a function

of x, ψ1,2 and ỹ and can be expanded as

W (0)(ỹ;ψ1,2|x) =
1∑

d,e=0

∞∑
n=0

1

n!
W

β1...βn
00de (x)ψd1ψ

e
2 ỹβ1

? . . . ? ỹβn (II.16)

It turns out that we only have to consider symmetric products in ỹβ1
? . . . ? ỹβn .

Moreover, here we will consider only products with an even number of ỹ. Un-

der the star product the auxiliary variables ỹα generate the three-dimensional
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higher spin algebra hs[λ]. To be more precise, a symmetric product ỹβ1
?. . .?ỹβ2n

corresponds to a generator of hs[λ] with spin n+1. In particular the generators

Tαβ of the SL(2) subalgebra are given by

Tαβ = − i
4
{ỹα, ỹβ}? (II.17)

Multiplying symmetrized even-degree polynomials in ỹ, using the commutation

relations as given in the first line of equation (II.15) and finally projecting on

k = ∓1, the commutation relation are those of hs[λ] with λ = 1
2(1± ν). More

details, including the hs[λ] the structure constants, can be found in appendix

B.

Finally, let us consider the last equation of motion which we have to solve:

dW (0) = W (0) ? ∧W (0). (II.18)

This equation can be written as a flatness condition of a Chern-Simons theory

with gauge group hs[λ]⊕hs[λ] . In order to see this we introduce hs[λ]-valued

gauge fields A and A by

W (0) = −P+A− P−A (II.19)

where A and A are functions of x and ỹ. We have introduced projection oper-

ators

P± =
1± ψ1

2
(II.20)

obeying

P±ψ1 = ψ1P± = ±P±, P±ψ2 = ψ2P∓ (II.21)

Using (II.19) we can rewrite (II.18) in the following form

dA+A ∧ ?A = 0 , dA+A ∧ ?A = 0 (II.22)

which is precisely equation (5.13). Therefore the equations of motion for W (0)

are equivalent to flatness conditions of gauge fields A and A defined by equation

(II.19).
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II.2. Matter equations

Let us now linearize the equations of motion (II.7) around the vacuum

solution constructed in the last section. In particular, in this paper we are

interested in fluctuations of the field B around the constant background B(0) =

ν. The fluctuations of B are denoted by C, i.e.

B = ν + C (II.23)

For W and Sα we do not consider any fluctuations. Substituting this ansatz

(II.23) into the equations of motion (II.7) and using the equations (II.12), we

obtain two non-trivial equations for C

dC −W (0) ? C + C ? W (0) = 0[
S

(0)
α , C

]
?

= 0
(II.24)

Since S
(0)
α is given by equation (II.13) we can satisfy the second line of equation

(II.24) by demanding that C does not depend on z̃α nor on k. Therefore C is

only a function of ỹα, ψ1,2 and x. Typically, C is decomposed as

C(ỹ;ψ1,2|x) = Caux(ỹ;ψ1|x) + Cdyn(ỹ;ψ1|x)ψ2 (II.25)

It turns out [11] that Caux gives rise to an auxiliary set of fields that can be

set to zero consistently. By abuse of notation, we will use C instead of Cdyn

to simplify the notation. Moreover we will decompose C under the projection

operators P± as given in equation (II.20)

C = C(ỹ|x)ψ2 + C̃(ỹ|x)ψ2 (II.26)

where C = P+C and C̃ = P−C. If we also express W (0) in terms of gauge fields,

eq. (II.19), we can rewrite the second line of (II.24) in the form

dC +A ? C − C ? A = 0

dC̃ +A ? C̃ − C̃ ? A = 0
(II.27)
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These are the equations of linearized matter interacting with an arbitrary

higher spin background.

Comparing the first and second line of equation (II.27) we see that the

equations of motion for C and C̃ are related to each other by exchanging A

and A. Note that A and A can be written in terms of the generalized vielbein

e and generalized spin connection ω,

A = ω + e A = ω − e (II.28)

Under the exchange of A and A the generalized vielbein e is odd. Therefore
the sign of the generalized vielbein and hence the sign of any metric-like tensor
field of odd spin is flipped under this operation.
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