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Chapter 14

Functional Imaging of Cerebral Oxygenation with Intrinsic 
Optical Contrast and Phosphorescent Probes

Anna Devor, Sava Sakadžić, Mohammad A. Yaseen,  
Emmanuel Roussakis, Peifang Tian, Hamutal Slovin, Ivo Vanzetta,  
Ivan Teng, Payam A. Saisan, Louise E. Sinks, Anders M. Dale,  
Sergei A. Vinogradov, and David A. Boas

Abstract

Microscopic in vivo measurements of cerebral oxygenation are of key importance for understanding 
normal cerebral energy metabolism and its dysregulation in a wide range of clinical conditions. Relevant 
cerebral pathologies include compromised blood perfusion following stroke and a decrease in efficiency  
of single-cell respiratory processes that occurs in neurodegenerative diseases such as Alzheimer’s and 
Parkinson’s disease. In this chapter we review a number of quantitative optical approaches to measuring 
oxygenation of blood and cerebral tissue. These methods can be applied to map the hemodynamic response 
and study neurovascular and neurometabolic coupling, and can provide microscopic imaging of bio
markers in animal models of human disease, which would be useful for screening potential therapeutic 
approaches.

Key words O2 sensing, Phosphorescence quenching, Intrinsic optical signals, Energy metabolism, 
In vivo imaging, Hemoglobin, Two-photon microscopy, CCD

1  Introduction

Cerebral oxygenation and O2 metabolism are key parameters defining 
healthy brain function. Until recently, though, our knowledge of the 
microscopic dynamics of cerebral oxygenation has been limited by a 
lack of methods with the spatial and temporal resolution needed to 
follow oxygenation changes induced by varying neuronal activity. 
Most of what we know about the behavior of cerebral oxygenation 
during the hemodynamic response comes from measurements of 
light absorption by hemoglobin in the blood. This method, com-
monly referred to as “optical imaging of intrinsic signals (OIS)”, is 
based on differential absorption spectra of oxy- and deoxy-
hemoglobin (HbO and Hb) in the visible range and does not require 
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loading of extrinsic O2-sensitive probes. Following the original dem-
onstration [1], the intrinsic imaging method was widely used for 
investigation of neuro-hemodynamic coupling [2–11] and mapping 
of cortical neuronal responses [12–15] (Box 1).

The hemoglobin molecule is composed of four monomers, 
each containing an O2-binding heme group. Hemoglobin tetramer 

Box 1 Optical Imaging of Intrinsic Signals—A Historical Perspective

One hundred and twenty years ago, Roy and Sherrington [16] argued that neuronal activation causes 
the local vasculature to respond. While unequivocal confirmation of this claim had to wait nearly a 
century, until radioactive methods became available [17–20], large reflectance changes of brain tissue 
during localized seizure activity could be visualized already in the late 1930s [21]. A few decades later 
advances made it possible to detect and analyze the much smaller optical signals during activity of the 
normal cortex. These were accounted for by activity-associated changes in cerebral blood flow (CBF) 
and volume (CBV) [18, 22]; in addition, Chance [23] and Jöbsis [22] observed that neuronal activity 
is often accompanied by oximetric signals that can be detected optically by monitoring the absorption 
(and/or fluorescence) of hemoglobin and other intrinsic chromophores.

In the late 1980s, Grinvald et al. [1] showed that the small light absorption changes induced by these 
activity-evoked hemodynamic responses can be used to explore cortical functional architecture in vivo, 
by using a CCD camera to image the cortex upon illumination at specific wavelengths during the pre-
sentation of sensory stimuli. The resulting cortical images can then be used to produce functional maps 
at the spatial resolution of a few tens of microns, more than enough to image the columnar structure 
of the mammalian neocortex.

Since then, the interpretation of intrinsic signals in terms of neuronal activity—and thus their utility 
for functional brain mapping—has been tightly linked to our understanding of the mechanisms under-
lying neurovascular coupling. In fact, such knowledge is necessary to distinguish between optical sig-
nals resulting from changes in the activity of local neuronal populations and those resulting from the 
vascular effects of remote neuronal events (e.g., venous drain). To address this issue, Frostig et al. [4] 
imaged the sensory-evoked optical responses in the cortex at several wavelengths and tried to decom-
pose them spectroscopically into CBV and O2 saturation. A few years later, Malonek and Grinvald [6] 
used a continuous wavelength spectroscopic approach, optical imaging spectroscopy, to investigate the 
hemodynamic response in further detail. Both studies concluded that some hemodynamic events colo-
calize better with neuronal activity than others. In particular, an early increase in deoxy-hemoglobin 
concentration (Hb)—the so-called initial dip—was detected, and interpreted as resulting from local O2 
consumption induced by neuronal activity while the vasculature is still at rest. Thus, the initial dip is 
expected to colocalize more accurately with neuronal activity than the subsequent hemodynamic events, 
i.e., increased CBV and CBF, which are mediated by the complex spatiotemporal transfer function of 
the active vascular response [11, 24]. Which hemodynamic response component is best for functional 
mapping and how to optimally choose the imaging parameters (wavelength, timing of data acquisition, 
etc.) are therefore still the object of some debate [8, 25–31].

Whatever its conclusion, de facto, imaging the activity of visual stimuli in early visual cortex using 
oximetric wavelengths (600–630 nm, emphasizing changes in [Hb] over those in [HbO]) has allowed 
investigators to obtain high-quality single-condition functional maps, i.e., maps obtained by compar-
ing stimulated conditions to rest. This has not been possible using isosbestic wavelengths, where Hb 
and HbO absorb with equal strength and which thus emphasize changes in CBV. At those wave-
lengths, differential approaches (the comparison of several stimulated conditions one to another) are 
needed to visualize functional architecture at the columnar level [4, 24], at least upon stimulation with 
large visual stimuli. Interestingly, in other cortices such as auditory [32–34] and rat somatosensory 
cortex [26], CBV-based optical signals have turned out to warrant at least as good mapping as oximet-
ric ones. Moreover, in primate visual cortex [30] it has been shown that, upon stimulation with small 

(continued)
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retinotopic stimuli, the resolution of CBV-dominated signals is as precise as that obtained using 
oximetric ones.

Taken together, these accumulating results indicate that the optimal choice of the signal to be used 
for functional mapping might depend on the relation between the topology of the local vascular 
network and that of the functional architecture to be mapped, that is, on the specific cortical area. 
However, kind and duration of the stimulus, as well as the signals’ etiology, must also be taken into 
account (e.g., the CBV response appears to have an early capillary component and a delayed macrovas-
cular one), in rodents [27, 35, 36] and primates [30]. Finally, it has been shown that, under some cir-
cumstances, imaging at long wavelengths (>700 nm) is advantageous in spite of the small signal sizes, 
because it reduces the contribution of surface vasculature [37]. Yet, the precise composition of the 
optical signal at those wavelengths remains to be determined [38].

Irrespective of the above issues, detailed maps of the cortical functional architecture have been 
obtained in a large variety of preparations—from rodent through cat and ferret up to the primate—in 
several cortical areas, including both sensory (visual, auditory, somatosensory) and motor. In early 
visual cortex, intrinsic imaging of functional domains was first reported by Grinvald et al. [1] and later 
on by many others [39–42]. These studies have laid the groundwork for optical imaging of higher 
visual areas such as MT [43], V4 [44], and inferotemporal cortex [45]. Fine functional organization of 
auditory cortex revealed by Fourier optical imaging was reported by Kalatsky et al. [46], after earlier 
work by Frostig and co-workers [47] and other groups. In the somatosensory cortex, the visualization 
of whisker barrels in the rat has been a standard protocol for nearly 20 years now [48]. Moreover, the 
representation of functional domains for digits [49–51] and recently the representation of mechanical 
nociceptive stimuli within SI have been reported [52].

The elimination of anesthesia has been another critical step. High-resolution optical imaging in alert 
monkeys was first reported by Grinvald et al. [53], and later in trained monkeys by Roe’s group [54]. 
However, the challenge of long-term imaging in the awake behaving primate could be met only with 
the development of an artificial, transparent dura substitute [14, 55, 56]. This has allowed investigation 
not only of the functional architecture but also of its stability over time [14], as well as its behavioral 
correlation with neurophysiology [15]. Optical imaging has also enabled long-term developmental 
studies such as imaging the development of orientation preference maps [57, 58] and the layout of 
functional domains in strabismic animals [59, 60].

Due to its high resolution and non-invasiveness, optical imaging of intrinsic signals has also been 
used to explore pathological situations, such as the exploration of epilepsy, in animal models as well as 
in humans [61, 62] and in intraoperative imaging in humans [63, 64], with the goal of finely localizing 
the site of specific cortical functions.

exists in equilibrium between two states (T and R), characterized 
by different affinity to O2. The O2 binding to hemoglobin is allo-
sterically regulated in the sense that the binding itself shifts the 
equilibrium towards the higher affinity R state (for review see 
[65]). Conformationally the T and R states are different, but their 
optical absorption spectra are very similar. In contrast, binding of 
O2 to a heme group induces significant spectroscopic changes. 
Therefore, each monomer in the hemoglobin molecule, whether it 
exists in the T or in the R state, can be considered an independent 
chromophoric unit.

During an increase in neuronal activity, the associated increase 
in flow and volume of blood results in a decrease of O2 extraction 
fraction (from blood to tissue) producing a decrease in deoxy-
hemoglobin concentration ([Hb]) and an increase in oxy-
hemoglobin concentration ([HbO]). This effect can be detected, 

Box 1 (continued)
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for example, by a decrease in light absorption at 580 nm and the 
corresponding changes in the absorption-based image (for a recent 
example from rat somatosensory cortex see [66]). Thus, mapping 
of neuronal activity can be achieved using a simple epi-illumination/
reflectance setup and a CCD camera for detection. Multi-
wavelength illumination [6] can be used to extend this method to 
quantify HbO and Hb changes (as % change from the baseline) 
[38, 67, 68]. Such absorption-based measurements are linearly 
related to the fraction of O2 bound to hemoglobin, while their 
relationship to the blood pO2 (dissolved O2) is defined by the non-
linear hemoglobin O2 binding curve.

An alternative approach to quantifying intravascular O2 changes 
in the brain is based on introducing extrinsic phosphorescent 
probes into the blood stream [25, 69–71,] and measuring phos-
phorescence lifetime. The method—namely the use of phospho-
rescence quenching to quantify O2 tension—was originally 
developed by Wilson and colleagues [72, 73] and relies on the fact 
that molecular oxygen (O2)—a triplet molecule in the ground 
state—is able to quench emission from excited triplet states of 
other molecules, such as phosphorescent metalloporphyrin-based 
probes. Thus, while the intrinsic imaging method measures hemo-
globin oxygenation, the phosphorescence quenching technique 
detects O2 by measuring kinetics of quenching. Therefore, it can 
be applied for both intravascular and tissue measurements, given 
an adequate strategy for delivery of the probe. The phosphorescence 
lifetime of a probe depends on the partial pressure of O2 (pO2) in 
the immediate vicinity of the probe, providing a spatially localized 
measurement. O2 is the only effective dynamic quencher of phos-
phorescence present in biological systems in sufficient concentra-
tion, so measurements of phosphorescence report O2 levels with 
high specificity. Importantly, the decay lifetime (rather than the 
phosphorescence intensity) is measured, which makes the tech-
nique insensitive to local variations in the probe concentration and, 
very importantly, to changes in tissue optical properties. As such, 
lifetime measurements are insensitive to the absorption and scat-
tering changes associated with the hemodynamic response in vivo, 
as long as a sufficient number of photons reach the detector for the 
accurate fitting of the phosphorescent decay. A brief discussion of 
phosphorescent probes can be found in Box 2 below as well as in 
recent papers (see, for example, [74, 75]).

Imaging with intrinsic hemoglobin-based contrast or with 
phosphorescence in wide-field mode using a CCD camera has no 
true depth resolution: the signal at every pixel represents a 
weighted sum of the response through the whole depth of light 
penetration with the highest sensitivity to the cortical surface. This 
limitation might be acceptable for certain types of intravascular 
studies, in particular, studies of the “columnar” organization of 
circulation in cerebral cortex: the vertical orientation of diving 
arterioles and, more importantly, surfacing venules, transporting 
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Box 2 Phosphorescent O2 Sensors

The ideal phosphorescent O2 probe for in vivo applications consists of a phosphorescent chromophore 
of the maximal attainable brightness, encapsulated inside a protective jacket, the role of which is to 
regulate O2 diffusion to the chromophore (and thereby constant kq, Eq. 2) in order to maintain high 
O2 sensitivity throughout the physiological range. Unrestricted O2 access (too high kq) leads to com-
plete quenching of phosphorescence already at low O2 concentrations, whereas overly restricted access 
(low kq) results in a narrow dynamic range, i.e., the difference between the phosphorescence of the 
quenched and unquenched probes is too small. Similarly, too short triplet lifetimes result in low sensi-
tivity because of low probability of collisions with O2.

Only a few chromophores exhibit bright phosphorescence in solutions at ambient temperatures. 
Based on the optical spectra, emission quantum yields, and triplet lifetimes, porphyrins of Pt and Pd are 
by far the best suited for O2 measurements in the physiological pO2 range. The original probes were 
based on simple derivatives of Pd porphyrins [73, 76]. Such porphyrins are relatively hydrophobic and 
need to be prebound to serum albumin (usually bovine albumin) to improve their solubility and pre-
vent aggregation in aqueous media. As a result, exogenous protein becomes a part of the injected mate-
rial, which may lead to unwanted immunogenic reactions and possible toxicity.

Introduction of dendritic polyglutamic porphyrins [77, 78], known as Oxyphors R2 and G2, allevi-
ated the necessity of pre-binding probes to albumin, thanks to polyglutamic branches which render the 
compounds highly water-soluble. Nevertheless, Oxyphors R2 and G2 still require binding to endoge-
nous albumin, because only albumin complexes of these probes are suitable for measurements in the 
physiological O2 range [79]. As a result, O2 measurements with R2 and G2 can be performed only in 
albumin-rich environments (e.g., blood plasma). Even in the blood, though, incomplete binding, easily 

(continued)

Fig. B1 Molecular structure of PtP-C343. PtP-C343 is a dendritic O2 probe, in which phosphorescence of 
metalloporphyrins upon two-photon excitation is enhanced by intramolecular Förster resonance energy 
transfer (FRET) from two-photon coumarin-343 antennae chromophores (blue). The O2 sensitivity of the 
probes is regulated by dendritic encapsulation of the core metalloporphyrin (gray), while peripheral polyeth-
yleneglycol residue groups on the dendrimer isolate the probes from contact with biological macromolecules 
in the environment (green).

Optical Imaging of Oxygenation
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encountered at high probe concentrations (above ~10−5 M), can lead to heterogeneous decays and 
compromise measurement accuracy.

Keeping the calibration constants of probes unaltered in biological systems is a significant challenge, 
but also a stringent requirement for quantitative imaging. Indeed, it is not sufficient to have a lumines-
cent probe whose signal simply changes in response to O2. It is important that both kq and τ0 (Eq. 2) 
remain exactly the same as they were determined during the calibration. These probes’ parameters are 
defined by the probes’ immediate environment; to insure their stability the probe molecule must remain 
in aqueous phase, forming no complexes with bio-macromolecules, cellular membranes, or other bio-
logical objects. These requirements have been fulfilled in the so-called fully protected third-generation 
probes [74, 80]. Pt or Pd porphyrins in these probes are encapsulated inside hydrophobic poly-
arylglycine (AG) dendrimers, whose exteriors are modified with hydrophilic polyethyleneglycol (PEG) 
residues. PEGylated jackets regulate the sensitivity and dynamic range of the measurement and insure 
the probes’ high aqueous solubility and inertness with respect to the biological system. This general 
design is inherent in both one- and two-photon (vide infra) O2 probes.

To enable two-photon phosphorescence lifetime microscopy (2PLM), special phosphorescent probes 
were recently developed with enhanced two-photon absorption cross sections. One such probe is PtP-
C343 [81], which has been successfully utilized in vivo in brain imaging studies [82–84]. The functional 
elements of PtP-C343 are Pt tetraarylporphyrin (PtP), which acts as a phosphorescent core, and several 
C343 units, which play the role of the two-photon antenna (Fig. B1). Near-infrared energy (e.g., at 
840 nm) is absorbed by the C343-antenna and within fractions of a nanosecond channeled to PtP via 
intramolecular FRET, where it is utilized to populate the emissive triplet excited state. The redox poten-
tials of PtP and C343 and the distances between them within the probe molecule are optimized to mini-
mize the unwanted triplet quenching by electron transfer [80, 81]. The C343-antenna enhances 
phosphorescence in PtP-C343 approximately 25-fold compared to that or a regular one-photon probe. 
Because of the effect of the dendritic layer and peripheral PEG groups, PtP-C343 is pH-insensitive in the 
physiological range and its signal is independent of interactions with proteins in the blood.

Box 2 (continued)

the deoxygenated blood along the imaging axis. Sensing tissue oxy-
genation, however, has a stronger requirement for the resolution 
in depth. Indeed, metabolic differences between cortical layers 
have been demonstrated with other methods, e.g., cytochrome 
oxidase staining and incorporation of 2-deoxyglucose [85–87]. In 
recognition of the importance of depth-resolved tissue pO2 mea-
surements, numerous studies have employed point polarographic 
O2 sensors, also called “O2 electrodes” [88]. While measurements 
with O2 electrodes have provided invaluable insight into tissue O2 
dynamics in cerebral [89, 90] and cerebellar cortex [91], the point 
nature of the measurement, blind positioning, and invasiveness of 
the method—the need for repetitive penetrations throughout the 
cortical tissue for mapping the signal at different locations—put 
significant constraints on throughput and data interpretations. 
Indeed, O2 electrode measurements have demonstrated a signifi-
cant degree of unaccounted for variability between nearby loca-
tions, which could result from differences in the electrode position 
relative to the blood vessels and/or tissue damage associated with 
electrode insertion [92, 93]. O2 electrodes have been successfully 
used to map oxygenation on the cortical surface [94–96], circum-
venting the uncertainty of blind positioning. Other methods of 
measuring tissue O2 include binding of nitroimidazole-based 
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drugs [97] and electron paramagnetic resonance (EPR) oximetry 
[98, 99]. These methods differ in spatial and temporal resolution, 
but generally cannot be applied to real-time tissue O2 microscopy.

Several new approaches to tissue oximetry have recently been 
disclosed. First, imaging modalities based on photo-acoustic effect 
(photo-acoustic tomography [PAT], photo-acoustic microscopy 
[PAM], optical resolution photo-acoustic microscopy [OR-PAM]) 
are capable of volumetric measurements of the Hb/HbO ratio 
[100] with an optical contrast and, except in the case of OR-PAM, 
ultrasound resolution. Due to the low scattering of sound waves, the 
imaging resolution of PAT is much higher than that of  
Diffuse Optical Tomography (DOT), e.g., sub-millimeter resolu-
tion at depths as high as 50 mm. However, direct comparisons of O2 
images obtained by the two methods have yet to be performed. 
Also, penetration depth of PAM is higher than that of current opti-
cal microscopy technologies (e.g., two-photon microscopy and 
optical coherence tomography). Second, a microscopic O2 imaging 
method has been described by Warren and collaborators [101] who 
quantified the Hb/HbO ratio by measuring the excited state absorp-
tion of the two components using multiphoton absorption and exci-
tation by shaped femtosecond infrared pulses. This technique is 
subject to the same depth limitations as all methods relying on bal-
listic photons and, like DOT, suffers from low sensitivity. A variant 
of luminescence quenching technique has recently been described 
by Ashkenazi et al. [102] who measured triplet kinetics using tran-
sient triplet–triplet absorption and acoustic detection. However, 
generation of adequate acoustic signals requires very high probe 
concentrations and/or near-saturation excitation regime in order to 
produce adequate amounts of the triplet state. Finally, a method is 
being developed, which is based on the dependence between the 
time-averaged fluorescence intensity of regular fluorescent dyes and 
population of dark triplet states of these dyes in O2-dependent fash-
ion [103, 104]. This approach also requires extremely high excita-
tion intensities, unlikely to be sustainable by biological tissues.

Seeking to overcome the problem of spatial resolution in 
CCD-based wide-field imaging of pO2 based on O2-dependent 
phosphorescence quenching, some studies have attempted to 
combine the phosphorescent quenching method with two-pho-
ton excitation [71, 105]. Unfortunately, regular metalloporphyrin-
based phosphorescent probes have very low two-photon 
absorption cross sections, and therefore require extremely high 
probe concentrations and high laser powers to observe adequate 
signals. Probes such as Oxyphor R2 [77, 79] and simple hydro-
philic Pd porphyrins [73], which can operate only as complexes 
with albumin (vide infra), partially exist in unbound form at such 
high concentrations. As a result, the phosphorescence decays 
are  characterized by complex lifetime distributions and cannot 
be  interpreted quantitatively. To enable 2PLM of O2, special  
two-photon-enhanced phosphorescent probes have recently been 
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designed [80, 81, 106]. Here, two-photon-“antenna” chromo-
phores are included in the probe molecules for the purpose of cap-
turing excitation energy and transmitting the excitation to 
phosphorescent cores via intramolecular Förster resonance energy 
transfer (FRET).

The other major obstacle precluding widespread use of two-
photon excitation of phosphorescent probes is a temporal mis-
match between high repetition rates of femtosecond Ti:sapphire 
lasers, typically used for multiphoton excitation (~80 MHz), and 
long triplet lifetimes of porphyrin-based probes (tens to hundreds 
of microseconds). To circumvent this problem, the excitation must 
be gated to allow for acquisition of the phosphorescence decay. 
Commercial systems suitable for simultaneous measurement/
imaging of phosphorescent lifetimes during the gate off-time and 
fluorescent lifetimes during the gate on-time are just starting to 
appear (Becker & Hickl data acquisition boards SPC-830 and 
SPC-150, http://www.becker-hickl.de). However, it is possible to 
modify or build a 2PLM system in a laboratory with optical exper-
tise [71, 81–83]. 2PLM allows measurement of both intravascular 
and tissue pO2 with unprecedented spatial resolution and is well 
suited to imaging of pO2 changes during functional activation 
[84]. Furthermore, it has been recently demonstrated that 2PLM 
enables estimation of blood flow in individual capillaries simultane-
ously with intravascular pO2 [83].

Despite its advantages in spatial resolution and applicability to 
measurements of tissue oxygenation, 2PLM does not replace mea-
surements of intrinsic signals. Rather, it complements the suite of 
tools available for metabolic/hemodynamic measurements. Multiple 
measurement techniques need to be employed to obtain the full 
picture of the underlying physiological process and to cross-validate 
one another. For example, one can combine measurements of oxy-
genation with extrinsic measurements of blood flow to estimate the 
cerebral rate of O2 metabolism: 2PLM with optical coherence 
tomography [107, 108] for microscopic resolution, or intrinsic 
imaging with either laser speckle [66] or wide-field red blood cell 
velocity measurements [109] for a larger “mesoscopic” view. Below 
we discuss the technical aspects of the multi-wavelength CCD-based 
method for imaging of intrinsic signals and the application of phos-
phorescence quenching for imaging of intravascular and tissue pO2, 
and provide specific examples and references for further reading.

2  Optical Imaging of Hemoglobin Oxygenation

Researchers have long recognized intrinsic optical changes in fluo-
rescence, absorption, and scattering associated with neuronal and 
metabolic activity. The sources of fluorescence changes are small, 
intrinsically fluorescent metabolites such as NADH and FAD, 
whose signals change during a metabolic response to increased 
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neuronal activity or changes in O2 availability (e.g., during hypoxia) 
[110]. These molecules have characteristic chromophore-specific 
excitation bands. The hemoglobin in blood absorbs visible light 
and is the main source of intrinsic contrast in brain tissue in the 
visible spectrum [4, 6, 25, 111–114]. At longer wavelengths, 
where Hb and HbO have negligible absorbance, light-scattering 
effects dominate. Near-infrared scattering changes, for example, 
underlie the contrast in optical coherence tomography [115, 116].

Since hemoglobin-based OIS was introduced to measure the 
functional architecture of the cortex in vivo [1], the method has 
been widely applied (Box 1). The popularity of OIS for in vivo 
studies is due largely to the robustness of the hemodynamic 
response, utilization of endogenous contrast agents, and moderate 
complexity of the optical instrumentation setup. In addition, 
intrinsic signals have a relatively large percentage change from the 
baseline (ΔI/I) in response to neuronal activation, enabling data 
collection with minimally invasive procedures, such as imaging 
through the thinned skull.

Whereas OIS relies on functional hemoglobin changes to 
create contrast, increases in blood volume and the amount of 
hemoglobin during the hemodynamic response produce unwanted 
“artifacts” for fluorescence imaging techniques in vivo, such as 
calcium or NADH imaging. Absorption and scattering changes 
typically affect both the illuminating light on the way to the fluo-
rophore and the emitted fluorescence. To correct the signal, one 
can employ algorithms based on the reflectance changes at an addi-
tional wavelength [117–119] or fluorescence signals from a physi-
ologically inert fluorophore such as SR101 or GFP [120, 121].

OIS typically uses a CCD camera for signal detection and 
provides spatial resolution in the XY plane ranging from ~10 μm on 
the cortical surface to hundreds of micrometer in cortical layers 2–3, 
and no true depth resolution (see Chapter 2 in this volume). By 
measuring the absorption changes at multiple wavelengths of light, 
and given knowledge of the path length of light through the tissue, 
it is possible to quantify absolute hemoglobin concentration changes 
[38, 68]. Below we consider the quantitative estimation of Hb and 
HbO from multi-wavelength OIS data and the spatial resolution of 
common OIS instrumentation setups.

Performing OIS with a number of different illumination wavelengths 
(referred to hereafter as “spectral” imaging) enables estimation of 
changes in oxy-hemoglobin (∆HbO), deoxy-hemoglobin (ΔHb), 
and total hemoglobin (ΔHbT) [66–68, 122, 123]; for a recent 
review see [124].

For spectral imaging, one can employ a white illumination 
source filtered with a rotating filter wheel [9, 26, 66–68, 123, 125–
127], a set of electronically controlled flashing LEDs optically 
chopped with appropriate filters [128], or a grating monochromator 

2.1  Multi-wavelength 
Imaging Method  
for Quantification  
of Oxy- and 
Deoxy-hemoglobin
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[129]. Figure  1a shows an example of a simple instrumentation 
setup used in our laboratory. Illuminating light (labeled “1” in the 
figure) from a tungsten–halogen light source (Oriel, Spectra-Physics) 
is directed by a lens (“2”) through a 6-slot filter wheel (“3”), cou-
pled to a 12-mm fiber bundle (“4”) that brings the illuminating 
light to the specimen (“5”). In this filter wheel, the center wave-
lengths of the filters range between 560 and 610 nm at 10-nm inter-
vals. The filter wheel is mounted on a DC motor and rotates at 
~18 Hz, resulting in a ~3 Hz acquisition rate per wavelength. The 
light is collected by an objective lens (“6”) and images are acquired 
by a cooled 16-bit CCD camera (Cascade 512B, Photometrics) 
(“7”). Image acquisition is triggered by individual filters in the filter 
wheel passing through an optic sensor. The image set at each wave-
length is averaged across trials and the averaged data are converted 
to ∆HbO and ∆Hb at each pixel using the modified Beer–Lambert 
relationship:

	
D l e l D e l D lA t C t C t DHbO HbO Hb Hb,( ) = ( ) ( ) + ( ) ( )( ) ( ) 	

(1)

Fig. 1 Conversion of multi-wavelength signals to HbO, Hb, and HbT. (a) Optical instrumentation setup with a 
light source (1), focusing lens (2), filter wheel (3), fiber bundle (4) that brings illumination to the specimen (5), 
objective lens (6 ), and CCD camera (7 ). (b) Absorption spectra of hemoglobin in the visible range. (c) Single-
filter maps of absorption changes (left ) and the corresponding signal time-courses extracted from the active 
region (right ). Signal time-courses for each of the six wavelengths are superimposed. (d) Estimated HbO, Hb, 
and HbT maps (left ) and time-courses (right ).

Anna Devor et al.
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where ΔA(λ,t) = log(Ro/R(t)) is the attenuation at each wavelength, 
Ro and R(t) are the measured reflectance intensities at baseline and 
time t, respectively, ΔCHbO and ΔCHb are the changes in concentra-
tions of HbO and Hb, respectively, and εHbO and εHb are the 
wavelength-dependent molar extinction coefficients (Fig. 1b). This 
equation is solved for ΔCHbO and ΔCHb using a least-squares 
approach. The differential pathlength factor, D(λ), accounts for the 
fact that each wavelength travels slightly different pathlengths 
through the tissue due to the wavelength dependence of scattering 
and absorption in the tissue. It is estimated using the approach 
described by Kohl et al. [38] through Monte Carlo simulations of 
light propagation in tissue (Table 1). Baseline concentrations of 60 
and 40  μM are assumed for HbO and Hb, respectively [3, 8]. 
Results for relative hemoglobin changes during functional activa-
tion are only weakly sensitive to these assumed baseline values [66]. 
Figure 1c–d shows an example of ∆HbO/∆Hb estimation from 
the six-wavelength data in rat barrel cortex in response to a single 
deflection of one whisker. Larger hemodynamic changes induced 
by various pathological manipulations (e.g., middle cerebral artery 
occlusion, cortical spreading depression) require application of 
nonlinear fitting algorithms to estimate hemoglobin changes [130].

In two-dimensional (2D) camera-based OIS, a collimated beam in 
the visible spectrum incident onto the brain surface propagates 
inside the tissue. The reflected light from the brain is collected by 
the objective lens and imaged onto the CCD chip, forming a 2D 
image. Tissues at different depths of the cortex contribute to the 
image on the camera, such that the measured signal intensity of 
each pixel represents a weighted sum of the response through the 
whole depth of light penetration (with the highest sensitivity to the 
cortical surface) [131, 132]. Because of light scattering in the cor-
tex, even a point source in the brain tissue will not result in an 
image corresponding to a diffraction-limited spot but to a much 
larger region. The size of this region is determined by the configu-
ration of the optical imaging system (numerical aperture (NA) and 
the depth at which the image is in focus, referred to as “focal plane 

2.2  Optical 
Resolution and Depth 
Sensitivity 
Considerations

Table 1 
The pathlength correction factor and extinction coefficients for commonly used illumination 
wavelengths.

λ (nm) 560 570 580 590 600 610

D(λ) 0.0537 0.0500 0.0503 0.0909 0.1587 0.2044

εHbO(λ), ×1.0e + 05 0.7511 1.0247 1.1539 0.3316 0.0737 0.0346

εHb(λ), ×1.0e + 05 1.2387 1.0380 0.8526 0.6523 0.3380 0.2174

The values for extinction coefficients are corrected for the concentration of hemoglobin in tissue.

Optical Imaging of Oxygenation



236

depth”) and the optical properties of the tissue (such as the scatter-
ing and absorption coefficients).

Propagation of light in a highly scattering medium such as 
cortical tissue is complicated and cannot be modeled analytically 
with adequate accuracy. Instead, numerical methods, such as 
Monte Carlo methods, are widely used to simulate light transport 
in tissues [133–135]. A systematic Monte Carlo study of spatial 
resolution and depth sensitivity for 2D optical imaging methods 
with configurations typically encountered in functional brain imag-
ing demonstrated that more than 97 % of the signal comes from 
the top 500 μm of the tissue [134] (see Chapter 3 in this volume). 
Therefore, no significant contribution is expected to originate in 
cortical layers 4 or 5. The spatial resolution using the common NA 
and focal depth settings is less than or comparable to the size of 
cortical columns in rodent barrel cortex.

OIS provides a sensitive tool for mapping the location of neuronal 
responses to sensory stimulation and for studying neurovascular 
coupling while varying the evoked hemodynamic response in the 
temporal and spatial domain [4, 11, 14, 48, 136]. Figure 2a shows 
an example from the rat barrel cortex. The skull over the barrel 
cortex contralateral to the stimulated whisker pad was thinned 
until transparent, and tactile stimuli were delivered to single whis-
kers at different time delays [137]. The hemodynamic response to 

2.3  Example 
Application: Mapping 
of Rat Barrel Cortex 
Using Multi-
wavelength Optical 
Imaging

Fig. 2 Imaging of hemoglobin oxygenation in the rat primary somatosensory cortex. (a) Example HbO, Hb, and 
HbT maps in response to a tactile stimulus of single whiskers. The maps correspond to 2.5 s after the stimulus 
onset for four stimulus conditions: one deflection of a single whisker (“1st alone” and “2nd alone”), simultane-
ous deflection of both whiskers (“together”), and a sequential deflection with a 200-ms interval (“200 ms”). 
The signal for Hb and HbO is expressed in percent change relative to its own baseline concentration (40 and 
60 μM, respectively). HbT was calculated as a sum of Hb and HbO. (b) Example HbO, Hb, and HbT maps  
in response to an electrical forepaw stimulus. Red and black arrows point to the surface arteries and veins, 
visible on HbO and Hb images, respectively.
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tactile stimulation of individual whiskers is clearly localized (red 
and blue circles in Fig. 2a). Moreover, one can study the additive 
properties of the response by stimulating multiple whiskers, either 
simultaneously or sequentially.

Figure 2b shows a different example of ∆Hb/∆HbO/∆HbT 
maps in response to a much stronger stimulus: an electrical stimu-
lus delivered to a forepaw in the rat. In this case, the skull was 
thinned bilaterally over the forepaw region of the primary somato-
sensory cortex. Note that the amplitude of the signal change is 
almost an order of magnitude larger than in the previous case. The 
maps in both cases have a spatial structure, which can be exploited 
to study the transformation of neuronal circuit activity to hemody-
namic signal changes [126, 127].

3  Direct Methods for O2 Imaging Using Phosphorescent Probes

The phosphorescence quenching method exploits exogenous 
molecular probes, which emit from their triplet spin states (as 
opposed to fluorescent probes, which emit from singlet spin states), 
to quantify O2 content in living tissue [73]. O2 can react with 
excited state molecules in the environment, quenching their lumi-
nescence. Collisional quenching is much less probable on the time 
scale of excited singlet states (nanoseconds) than of triplet states 
(microseconds to milliseconds), making phosphorescence much 
more sensitive than fluorescence to dynamic O2 quenching. The 
phosphorescence decay time (τ) of a probe depends on the partial 
pressure of O2 in the physiological pO2 range according to the 
Stern–Volmer relationship:

	

t
t

to
o= +1 2kq pO

	
(2)

where τo and τ are the phosphorescence lifetimes in the absence of 
O2 and at O2 pressure pO2, respectively, and kq is the O2 quenching 
constant. Parameters kq and τo are characteristic of the probe mol-
ecule and the environment (solvent, pH, temperature, etc.) and do 
not depend on the measurement system. Phosphorescence quench-
ing is arguably the most direct method of O2 quantification, since 
the physics of quenching is well understood. In biological systems 
O2 is the only small-molecule quencher present in sufficiently high 
concentrations: hence the specificity of the measurement.

Phosphorescence quenching as a form of biological oximetry 
has been developed specifically for in vivo applications. Phospho-
rescent probes (Box 2) are introduced directly into the medium of 
interest, where they report on the oxygenation in their local envi-
ronments. External excitation and detection are used to retrieve 
the signal. Using phosphorescence, O2 can be imaged in large 
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areas/volumes [69, 72, 138, 139] potentially in 3D [140]; no 
mechanical damage is done to the tissue, and the measurement can 
be performed with high temporal and spatial resolution. If phos-
phorescence is excited by ballistic photons, as in microscopy appli-
cations [141–143], the spatial resolution is limited only by the 
optical diffraction. Provided that the volume contains a sufficient 
number of probe molecules, temporal resolution is limited only by 
the triplet lifetime (sub-millisecond range). However, in practice, 
collection of multiple decays is required to obtain a reliable mea-
surement. Thus, phosphorescent probes with high emissivity are 
the key to high temporal and spatial resolution.

4  Single-Photon Excitation of O2-Sensitive Probe

Regular phosphorescence-based pO2 measurements by linear 
(one-photon) excitation can be performed with relatively simple 
instrumentation. For example, using a time-gated CCD camera 
synchronized with a pulsed- or frequency-modulated excitation 
source [69, 70, 138, 139, 144–147], spatially resolved oxygen-
ation maps can be collected in tissue or vasculature with temporal 
resolution on the order of seconds.

Frequency-modulated illumination can be provided by an 
optically chopped halogen source light or an LED [144, 145]. 
Alternatively, in the time domain, one can use flash lamps [69, 70, 
138] or a pulsed laser such as a q-switched, frequency-doubled 
Nd:YAG laser that delivers ~6-ns pulses at a fixed frequency 
(10 Hz) [139, 147]. As with OIS, the excitation light is typically 
coupled into a multimode fiber positioned at an angle relatively 
oblique to the cortical surface. The sample can also be excited with 
a 0° incidence angle if a dichroic mirror is used to couple the exci-
tation and detection beams. In a wide-field microscopy system 
operating in one of our laboratories [139], the phosphorescence 
light is collected by a low-magnification infinity- 
corrected objective (e.g., Olympus XL Fluor 4x/340, 0.28 NA), 
and an image is formed on the CCD sensor by a 100-mm focal 
length tube lens. A long-pass filter is positioned between the objec-
tive and the tube lens to suppress the excitation light, and the sig-
nal is detected from the entire field of view at once. Higher 
signal-to-noise ratio (SNR) can be achieved by binning pixels on 
the CCD chip (at a price of lower spatial resolution). A single life-
time image (reconstruction of the phosphorescent decay) requires 
multiple camera exposures temporally jittered relative to the illu-
mination. Using a pulsed laser source, each camera exposure starts 
at a specific programmed delay with respect to its corresponding 
excitation pulse (Fig. 3a). For each pixel, intensity values are plot-
ted against the delay between the excitation pulse and CCD expo-
sure to generate the phosphorescence decay. If frequency-modulated 
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excitation is used rather than pulsed excitation, the lifetime can be 
computed from the phosphorescence waveform’s phase delay with 
respect to the excitation waveform (Fig. 3b) [145]. Maps of pO2 
are computed per pixel using the Stern–Volmer relationship 
(Eq. 2).

An illustration of CCD-based intravascular pO2 imaging is 
presented in Fig. 4. In this example, a simple laser speckle imaging 
system was used simultaneously with the pO2 measurement to 
record relative blood flow changes (rCBF) for estimation of the 
cerebral metabolic rate of O2 (CMRO2) [139]. See Chapter 15 in 
this volume for review of laser speckle imaging.

As discussed in Sect. 2.2, CCD-based imaging (in combination 
with wide-field excitation of the phosphor) suffers from poor 
spatial resolution due to the scattering of light in tissue. Confocal 
microscopy can be employed to improve the spatial resolution in a 
single-photon excitation mode [143]. In the confocal regime, the 
scanning galvanometer mirrors can be programmed to direct the 

Fig. 3 Phosphorescence lifetime measurements—time-domain and frequency-
domain methods. (a) Timing relationship for time-domain measurement of phos-
phorescence decay. A pulsed laser delivers light at a fixed repetition rate, with 
each pulse generating a phosphorescent decay. Each laser pulse triggers a 
corresponding brief camera exposure, delayed by a programmed period after the 
laser pulse. Each camera exposure captures a different portion of the phospho-
rescence decay. After several laser pulses, the phosphorescence decay can be 
measured and the lifetime is estimated by an exponential fit. (b) Timing relation-
ship for frequency-domain lifetime measurement. A sinusoidally modulated exci-
tation beam runs continuously, and a synchronized camera collects multiple brief 
exposures at programmed phase delays. After several exposures, the delayed 
sinusoidal phosphorescence waveform can be estimated, and the lifetime is esti-
mated by tan(θ)/2π × modulation frequency, where theta is the phase delay of 
the phosphorescence waveform [98].
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excitation beam to distinct locations from which pO2 measurements 
are made. The detected light must be de-scanned by placing the 
detector after the galvanometer scanners and spatially filtered using 
a pinhole in front of the detector. Thus, spatial resolution is improved 
by (1) confining the excitation to a small volume and (2) rejecting 
out-of-focus phosphorescence by implementing the pinhole.

5  Two-Photon Phosphorescence Lifetime Imaging (2PLM) of O2

In addition to single-photon excitation of O2-sensitive probes, 
two-photon excitation is now being employed to achieve better 
depth resolution and higher spatial localization [71, 81–83, 148]. 
In two-photon microscopy, ultrashort laser pulses and a high NA 
objective are required to induce nonlinear excitation of the probe, 
confining the generation of the excited state to the immediate 
vicinity of the focal volume. In two-photon microscopes con-
structed in our laboratories [81, 82], phosphorescence is excited 
by trains of femtosecond pulses from a Ti:sapphire oscillator, gated 

Fig. 4 CCD measurement of intravascular pO2 with simultaneous laser speckle imaging during forepaw 
stimulation. (a) Position of the cranial window over the forepaw area of the somatosensory cortex and a pho-
tograph of the cortical vasculature. (b) Baseline pO2 map. (c) Composite image consisting of phosphorescence 
intensity (gray) and activation area (color). (d) Baseline speckle contrast image. (e) Time-courses of pO2 (red 
solid curve) and rCBF (black dashed curve) during several stimulation sequences extracted from the ROI 
marked by the white rectangles in (b) and (d). Black horizontal bars in (e) and (f) denote stimulus duration.  
(f) Trial-averaged pO2, rCBF, and rCMRO2 responses. Scale bar is 1 mm.
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Fig. 5 Two-photon detection of phosphorescence. (a) Schematic of the experimental setup. EOM electro-optic 
modulator, GS galvanometer scanner, PMTs analog-mode photomultiplier tubes, PMT counter a Geiger-mode 
photomultiplier tube. (b) Maximum intensity projection along the z direction of a 250-μm-thick stack in the 
mouse cortex. The vasculature was labeled with dextran-conjugated fluorescein isothiocyanate (FITC). 
(c) Phosphorescence intensity image of microvasculature obtained at a depth of 240 μm below the cortical 
surface. The color bar shows the average number of photon counts in each pixel collected during a single 
phosphorescence decay. Four arrows mark the locations of the same capillary vessels in panels (b), (c), and 
(e). (d) Measured pO2 values in microvasculature at various depths (colored dots), overlaid on the maximum 
intensity projection image of vasculature structure (grayscale). Digital processing was performed to remove 
images of the dura vessels. Edges of the major pial arterioles and venules are outlined in red and blue, respec-
tively. (e) Composite image showing a projection of the imaged vasculature stack. Red arrows mark pO2 
measurement locations in the capillary vessels at a depth of 240 μm. Orange arrows point to the consecutive 
branches of the vascular tree, from pial arteriole (bottom left arrow) to the capillary and then to the connection 
with ascending venule (top right arrow). Scale bar, 200 μm.

Optical Imaging of Oxygenation



242

by an electro-optic modulator. The phosphorescent signals are 
detected by photon-counting modules (Fig. 5a). For example, the 
probe can be excited by a 10-μs excitation gate, followed by a 300-
μs data acquisition period. The counts are binned and subsequently 
used to reconstruct the decay, which is analyzed by the least-
squares method to obtain the phosphorescence lifetime. The SNR 
of the measurement is determined solely by the number of the 
counted photons. Only very few photons can be collected from a 
near diffraction-limited volume per excitation gate at a reasonable 
probe concentration [81]. Therefore, decays are typically analyzed 
after averaging multiple excitation cycles. The size of the excitation 
volume is dependent on the laser power and the duration of the 
excitation gate [148]. These parameters can be adjusted to select 
the optimal combination of the excitation volume (spatial resolu-
tion) and pixel dwell time (temporal resolution). For example, to 
measure baseline pO2 in the mouse cortex we usually acquire 500–
2,000 excitation cycles per point using PtP-C343 (for description 
of this and other probes see [74, 75, 77, 80–81]) at intravascular 
concentration of < 15  μM and with 10-μs excitation gates. The 
average laser power during the excitation gate is < 10 mW at the 
focal plane. Using 2,000 cycles, a grid of 600 points can be acquired 
in ~6  min. We estimate that under this excitation regime the 
emitting volume has ~2  μm lateral (XY) and ~5  μm axial (Z) 
dimensions.

Using 2PLM in an upright setup [82], we can image the cor-
tex of anesthetized mice and rats through sealed cranial windows, 
either injecting the phosphorescence probe into the vasculature 
through the femoral artery or pressure-injecting it directly into  
the brain tissue. Structural images of the cortical vasculature can be 
obtained either by imaging fluorescence emission from coumarin-
343 (C343) chromophores constituting the two-photon antenna 
of the PtP-C343 probe or, to increase contrast, by using intrave-
nously administered fluorescein isothiocyanate (FITC) conjugated 
with dextran (Fig. 5b).

O2 imaging in the cerebral cortex is typically performed in  
two steps. First, we raster-scan the excitation beam over the field of 
view, rendering 2D survey maps of the integrated emission inten-
sity (150 × 150 or 250 × 250 pixels, acquired in ~9 or ~25 s, respec-
tively). A single-plane scan performed 240  μm below the brain 
surface in Fig. 5c demonstrates the ability of the system to resolve 
the structure of the microvasculature down to the capillary level. 
After mapping the tissue, we average multiple excitation cycles in 
selected locations for accurate pO2 determination. Given the average 
of 500–2,000 cycles, the acquisition time corresponds to a tempo-
ral resolution of 0.16–0.76 s per single-point pO2 measurement. 
Finally, using Stern–Volmer calibration plots (Eq. 2), we convert 
phosphorescence lifetimes, obtained by fitting, into pO2 values 
(Fig. 5d–e).
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Measurement of pO2 based on 2PLM is uniquely capable of assessing 
pO2 directly in the cortical tissue. In the example shown in Fig. 6, 
PtP-C343 was microinjected into the interstitial space (tissue) of 
the rat primary somatosensory cortex through a glass pipette 
attached to a pressure injector, as is usually done with calcium indi-
cators [149]. In contrast to calcium indicators, PtP-C343 is easily 
dissolved in artificial cerebrospinal fluid and does not require addi-
tional solvents (such as pluronic acid or DMSO). Following micro-
injection, PtP-C343 quickly diffuses within ~1  mm from the 
injection site. Using our protocol, there is no significant decrease 
in the signal intensity up to 4 h after the injection. After that, the 
signal slowly reduces. Thus, a single injection per subject is suffi-
cient. FITC is administered intravenously to delineate the vascula-
ture (Fig.  6a) and allows coregistration of pO2 measurements 
relative to the vascular O2 sources. To investigate the spatial distri-
bution of tissue pO2 at the baseline (resting) level of neuronal 
activity, one can acquire grids of points (Fig. 6b). Plotted as a func-
tion of the radial distance from the arteriole (Fig. 6c), these data 
demonstrate a gradient indicating that O2 diffuses into the tissue 
through the walls of diving arterioles [84].

When the probe is also injected intravenously, one can perform 
simultaneous intravascular and tissue pO2 measurements. However, 
given the resolution of ~2 × 2 × 5 μm, capillary signals cannot be 
resolved if the probe is present in both intra- and extravascular 
compartments. Nevertheless, one can resolve intravascular pO2 in 
diving arterioles, although the ontogeny of the signal at the vessel 
border would be uncertain (Fig. 6d). Alternatively, capillary pO2 
can be readily imaged if the probe is present only in the vasculature 
(but not in the tissue around it) as demonstrated in Fig. 5.

When the beam is moved from point to point, a short time 
period is required to stabilize the galvanometer mirrors. Therefore, 
the most time-efficient way to accomplish a point pO2 measure-
ment is to stay at the same point and collect multiple decays before 
moving to the next point. For functional measurements, however, 
the sampling rate per point must match the kinetics of the dynamic 
process to be imaged. Figure 7 shows an example of a dynamic pO2 
measurement performed at ~1 Hz. In this example, 50 decays were 
collected at each point and the number of points was adjusted to 
allow us to revisit the point within ~1  s (1  Hz sampling rate). 
Therefore, after determining the target acquisition speed, one has 
to compromise between the overall number of measurement points 
and the number of excitation cycles collected per point. Multiple 
stimulus trials can be averaged before fitting for the decay to 
increase the SNR of the measurement. For example, 20 trials were 
averaged in Fig. 7.

5.1  Example 
Application: Two-
Photon Imaging of 
Tissue pO2 Dynamics 
in Rat Somatosensory 
Cortex with 
Phosphorescent 
Nanoprobe PtP-C343
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Fig. 6 Spatial distribution of baseline pO2 values. (a) A reference vascular image 
with an arteriole (“A”). The fluorescent contrast is due to intravascular FITC. The 
background fluorescence is due to the excitation of coumarin molecules in PtP-
C343. (b) The same image as in (a) with superimposed pO2 values and seg-
mented arteriolar territory. (c) pO2 as a function of the radial distance from the 
arteriole. (d) The plots at the bottom and on the right show X and Y profiles cut 
through the red lines in the image. The red circle indicates the arteriolar boundary 
estimated from the FITC reference.
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One additional limitation of 2PLM measurements is a decrease 
in SNR with increasing baseline pO2. This limitation stems directly 
from the O2 sensing mechanism of the probe: quenching of the 
triplet state by O2 leads to a fewer emitted photons. At higher pO2s, 
more of the probe molecules are quenched, resulting in fewer pho-
tons reaching the detector. The decrease in SNR at high pO2 is 
usually not a problem for baseline measurements, where it can be 
compensated for by averaging more excitation cycles per point.

Fig. 7 Stimulus-induced tissue pO2 changes in rat primary somatosensory 
cortex. (a) An image of the surface vasculature calculated as a maximum inten-
sity projection (MIP) of an image stack 0–100 μm in depth using a 4× objective. 
Individual images were acquired every 10 μm. (b) The same region at the depth 
plane of pO2 measurements, 150 μm below the surface. “A” and “V” indicate a 
diving arteriole and a surfacing venule, respectively. Red and blue arrows in (a) 
show the upstream and downstream surface arteriole and venule for “A” and “V,” 
respectively. A grid of measured baseline pO2 values is superimposed on the 
vascular reference plane. (c) The same vascular reference plane as in (b) with 
superimposed pO2 measurement points used for dynamic measurements. The 
points are color-coded according to the baseline pO2. (d) Stimulus-evoked time-
courses of pO2 change, extracted from each of the measurement points in (c). 
The traces are divided into two categories: high baseline (red) and low baseline 
(black). The dotted red and black lines correspond to the average for each cate-
gory. The black arrow denotes stimulus onset.
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6  Conclusions and Outlook

In this chapter we have reviewed methods for measuring intravas-
cular and tissue oxygenation, with a particular focus on applying 
OIS and phosphorescence quenching in the cerebral cortex. In the 
context of cortical function, these methods on their own provide a 
somewhat one-sided view of a single (but very important) aspect of 
the underlying physiological processes—oxygenation. A more com-
plete picture can be obtained by combining these imaging modali-
ties with other measurements of neuronal, glial, vascular, and 
metabolic activity. As such, OIS can be readily combined with 
simultaneous electrophysiological recordings [9, 27, 67, 150] or 
fMRI [105], and can serve as a bridge between the neuronal and 
fMRI signals, getting around the need to filter electrical potentials 
recorded in the environment of changing electromagnetic fields. 
Likewise, 2PLM can be combined with optical imaging of neuronal 
activity (e.g., two-photon calcium imaging [152], at least in alter-
nating stimulus trials; see Chapter 9 in this volume) and optical 
coherence tomography measurements of blood flow [107, 108]. 
Measurements of capillary flow—the speed of red blood cells in 
individual capillaries—can be extracted directly from 2PLM data 
when a phosphorescent O2 probe is applied intravascularly [83].

The choice of method for measuring oxygenation would depend 
on the requirement for spatial resolution, compartments of interest 
(intravascular or tissue), allocated budget, and availability of optical 
engineering expertise. OIS remains the method of choice for “meso-
scopic” mapping of neuronal activity on the cortical surface: It does 
not require delivery of extrinsic probes and is inexpensive and easy 
to implement in a standard neuroscience laboratory setting. The 
most significant drawbacks of OIS are scattering and lack of depth 
resolution, which result in an inherent uncertainty in the spatial ori-
gin of the imaged signals. 2PLM is situated on the opposite side of 
the experimental/instrumentation complexity spectrum, but offers 
high-resolution, deep-penetration imaging of either intra- or extra-
vascular pO2, depending on the location of the pO2 probe. Confocal 
imaging might serve as a good compromise on the instrumentation 
side and does not require probes with high two-photon cross sec-
tions, offering more flexibility in the choice of probe molecules. In 
the two-photon regime, the most important parameter determining 
the temporal and spatial resolution of the measurement is the phos-
phorescence quantum yield of the probe. Probes based on metallo-
porphyrins and other chromophores exhibiting brighter 
phosphorescence are currently being developed. Likewise, strategies 
for intracellular delivery of phosphorescent O2 probes are under 
investigation. In combination with transgenic methods for identifi-
cation of specific neuronal cell types in the cerebral cortex, intracel-
lular O2 probes could be used for evaluation of cell-type specific 
pathology in neurodegenerative disease.
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